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0. Introduction. 

In this paper we shall give sufficient conditions for local CR diffeomor- 
phisms between two real analytic submanifolds of C^ to be determined by 
finitely many derivatives at finitely many points. These conditions will also 
be shown to be necessary in model cases. We shall also show that under the 
same conditions, the Lie algebra of the infinitesimal CR automorphisms at 
a point is finite dimensional. 

Let M be a real analytic submanifold of C^. For p € M a CR vector 
at p is a vector of the form X^i cj'^~^ cj ^ ^o tangent to M at p. If M1 

J oZj 

is another submanifold of C^, a mapping F : M —> M' is called CR if for 
any p 6 M the pushforward F*X of any CR vector X on M at p is a CR 
vector of M1 at F{p). In particular, the restriction to M of a germ of a 
holomorphic diffeomorphism H from C^ to itself is a CR map from M to 
its image. 

As in [BER1] (see Stanton [Stl] for the case of a hypersurface), we shall 
say that a real submanifold of C^ is holomorphically nondegenerate if there is 
no germ of a nontrivial vector field X)j=i cj(^)w^^ w^h cj(^) holomorphic, 
tangent to M. If M is holomorphically nondegenerate there is an integer 
Z(M), with 0 < l(M) < iV, called the Levi number of M (see §1) which mea- 
sures the holomorphic nondegeneracy of M. If M is a Levi-nondegenerate 
hypersurface then l(M) = 1. A connected real analytic submanifold is min- 
imal almost everywhere if there is no germ of a holomorphic function whose 
restriction to M is a nonconstant real-valued function. This coincides with 
the notion of being minimal at most points in the sense of Tumanov [Tul]. 
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If M is a hypersurface which is holomorphically nondegenerate, then M is 
minimal almost everywhere. 

The following uniqueness result is one of the main theorems of this paper. 

Theorem 1. Let M C C^ be a connected, real analytic, holomorphically 
nondegenerate submanifold of codimension d and Levi number l(M) such 
that M is minimal almost everywhere. Then for all p 6 M outside a proper 
real analytic subvariety of M the following holds. If M' C C^ is another 
real analytic submanifold with dim^ M1 = dim^ M, and F1G are smooth 
germs at p of CR diffeomorphisms of M into Mf such that in some local 
coordinates x on M 

QMp Q\OL\Q 

<al> fcS-W = ftP-M 

for all |a| < (rf+ l)Z(Af), then F = G. 

Corollary. Let M be as in Theorem 1. Then for all p € M outside a 
proper real analytic subvariety of M the following holds. If H is a germ at 
p of a local biholomorphism of CN mapping M into itself and fixing p, with 

(0.2) g(p) = 6jk,    ^P(P) = 0, 1 < j, k < N, 2 < H < (d+l)l(M), 

then H is the identity map on M. 

In fact, Theorem 1 also follows from the statement of the Corollary. In 
case M is a Levi-nondegenerate hypersurface (i.e. d = 1 and 1{M) = 1) 
Theorem 1 reduces to the result of Chern-Moser [CM] that a germ of a CR 
diffeomorphism is uniquely determined by its derivatives of order < 2 at 
a point. Generalizations of this result for Levi nondegenerate manifolds of 
higher codimension were later given by Tumanov-Henkin [TH], Tumanov 
[Tu2]. More precise results for Levi nondegenerate hypersurfaces have been 
given by Beloshapka [Be] and Loboda [L]. 

A smooth real vector field X defined in a neighborhood of p in M is 
an infinitesimal holomorphism if the local 1-parameter group of diffeomor- 
phisms exp tX for t small extend to a local 1-parameter group of biholo- 
morphisms of C^. More generally, X is called an infinitesimal CR auto- 
morphism if the exptX are CR diffeomorphisms. We denote by hol(M,p) 
(resp. aut(M,p)) the Lie algebra generated by the infinitesimal holomor- 
phisms (resp. infinitesimal CR automorphisms). Since every local biholo- 
morphism preserving M restricts to a CR diffeomorphism of M into itself, it 
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follows that hol(M,p) C aut(M,p). It follows from the work of Tanaka [Ta] 
that hol(M, p) is a finite dimensional vector space if M is a real analytic Levi 
nondegenerate hypersurface. Recently Stanton [St2] proved that if M is a 
real analytic hypersurface, hol(M, p) is a finite dimensional real vector space 
for any p G M if and only if M is holomorphically nondegenerate. In this 
paper we prove more general results for any real analytic CR submanifold. 
Recall that a real analytic submanifold M of C^ of codimension d is CR if 
M is locally defined by the vanishing of d real valued real analytic functions 
/>!?••• iPdi with linearly independent differentials, such that the linear span 
of the complex differentials dpi,... , dpd is of constant dimension. 

Theorem 2. Let M C C^ be a real analytic, connected CR submanifold. 
If M is holomorphically nondegenerate, and minimal almost everywhere then 

(0.3) dimR aut(M,p) < oo 

for all p € M. 

Theorems 1 and 2 are optimal in the sense that holomorphic nondegen- 
eracy is necessary for the conclusions of Theorems 1 and 2 and that the 
condition that M is minimal almost everywhere is necessary in model cases. 
We have the following result. 

Theorem 3. Let M C C^ be a connected real analytic CR submanifold. 

(i) // M is holomorphically degenerate, then for any p G M and any inte- 
ger K > 0 there exist local biholomorphisms F and G near p mapping 
M into itself and fixing p such that 

<0-4> 8F-W = MS-M 

for all \a\ < K, but F ^ G on M. Furthermore, dim]^hol(M,p) = oo. 

(ii) // M is holomorphically nondegenerate but nowhere minimal then 
for p in an open dense set in M either dimMhol(M,p) = oo or 
dim^ hol(M, p) = 0. 

(iii) IfM is defined by the vanishing of weighted homogeneous polynomials, 
and nowhere minimal then for any p G M and any integer K > 0 there 
exist local biholomorphisms F and G nearp mapping M into itself and 
fixing p such that (0.4) holds for all \a\ < K, but F ^ G on M. Also 
dim^ hol(M, p) = oo. 
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The paper is organized as follows. In §1 we recall some results about 
holomorphically nongenerate manifolds and Segre sets of a generic manifold. 
In §2 we prove a result on uniqueness of CR diffeomorphisms, of which 
Theorem 1 is a consequence. In §3 we study infinitesimal CR automorphisms 
and prove Theorem 2. In §4 we prove Theorem 3 and also construct an 
example to show that one can have dim^ hol(M,p) = 0 even if M is nowhere 
minimal. In §5 we make some remarks concerning the group Gp of local 
biholomorphisms leaving M invariant and fixing a point p G M. 

1. Preliminaries. 

1.1. Holomorphic nondegeneracy and fc-nondegeneracy 
of real analytic CR submanifolds. 

Let M C C^ be a connected real analytic CR submanifold. We denote by 
V the largest holomorphic submanifold in C^ containing M with minimum 
dimension. As in [BER1] we call V the intrinsic complexification of M. If V 
is all of C^, then M is called generic. Thus any CR submanifold is generic 
when considered as a submanifold of its intrinsic complexification. Recall 
that M is called holomorphically degenerate at po G M if there is a germ of 
a holomorphic vector field at po which is tangent to M but not trivial (i.e. 
not identically 0) on M. It can be easily checked that M is holomorphically 
degenerate at po as a submanifold of C^ if and only if it is holomorphically 
degenerate at po as a submanifold of V. 

We say that M is holomorphically nondegenerate if it is not holomorphi- 
cally degenerate at any point. In fact it is proved in [BER1] that if M is 
holomorphically degenerate at one point, it is holomorphically degenerate 
at every point. 

Suppose M is a real analytic generic submanifold of C^ and that M is 
defined near po G M by p(Z, Z) = 0, where p = (pi, ...,/><*) are real valued 
real analytic functions with p{po,Po) = 0 and dpi A ... A dpd ^ 0 near po- 
Let L = (Li,..., Ln) be a basis for the CR vector fields on M near po. For 
any multi-index a put La = Z/j*1 ... L^n. Introduce, for j = 1,..., d and any 
multi-index a, the vectors 

(1.1.1) Vja(Z1Z) = L«pjZ(Z1Z), 

where pjz denotes the gradient of pj with respect to Z.  We say that the 
generic real analytic submanifold M is k-nondegenerate at po if k is the 
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smallest positive integer for which the span of the vectors Vja(po,po), for 
j = l,...,d and |a| < fc, equals C^. This definition is independent of the 
coordinate system used, the defining equations of M, and the choice of basis 
L. We.say that a real analytic CR submanifold M is fc-nondegenerate at 
po G M if M is fc-nondegenerate at po as a generic submanifold of its intrinsic 
complexification V. 

If M is a connected CR submanifold of C^ and V its intrinsic complex- 
ification, then the CR dimension of M is the nonnegative integer defined 

by 
dimM M = dime V + CR dim M. 

The following proposition is in [BER1, Proposition 1.3.1] for generic mani- 
folds. Its extension to CR manifolds is immediate. 

Proposition 1.1.1. Let M C C^ be a connected real analytic CR sub- 
manifold of CR dimension n. Then the following are equivalent 

(i) M is holomorphically nondegenerate. 

(ii)  There exists pi € M and k > 0 such that M is k-nondegenerate at pi. 

(iii) There exists V, a proper real analytic subset of M, and an integer 
I = 1{M), 0 < Z(M) < n; such that M is I-nondegenerate at every 
peM\V. 

The number l(M) given in (iii) is called the Levi number of M. 

1.2. The Segre sets. 

In this section, we introduce the Segre sets of a generic real analytic 
submanifold in C^ and recall some of their properties. We refer the reader 
to the paper [BER1] for a more detailed account (including proofs of the 
main results) of these sets. Let M denote a generic real analytic submanifold 
in some neighborhood U C C^ of po G M. Let p = (pi,... pd) be defining 
functions as above, and choose holomorphic coordinates Z = (Zi,... , ZN) 

vanishing at po- Embed C^ in C2N = Cf x C^ as the real plane {(ZX) G 
£2N £ _. 2^ Let us denote by pr^ and pr^ the projections of C2N onto 
Cg and C^, respectively. The natural anti-holomorphic involution jj in C2N 

defined by 

(1.2.1) *(z,c) = (C,S) 
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leaves the plane {(Z, C) C = ^} invariant. This involution induces the usual 
anti-holomorphic involution in C^ by 

(1.2.2) CN 3Z^ pr^pr^Z)) = ZeCN. 

Given a set S in Cg we denote by *S the set in C^ defined by 

(1.2.3) *S = prc(lpTz1(S)) = {((eS}. 

By a slight abuse of notation, we use the same notation for the corresponding 
transformation taking sets in C^ to sets in Cg. Note that if X is a complex 

analytic set defined near Z0 in some domain Ct C C^ by hi(Z) = ... = 
hk{Z) = 0, then *X is the complex analytic set in *fi C C^ defined near 
£0 = 2° by ^i(C) = ••• = hk(C) = 0. Here, given a holomorphic function 
h(Z) we use the notation h(Z) = h(Z). 

Denote by Ai C C2^ the complexification of M given by 

(1.2.4) M = {(Z,O€C2Np(Z,O = 0}. 

This is a complex submanifold of codimension d in some neighborhood of 0 
in C2N. We choose our neighborhood U in C^ so small that U x *U C C2N 

is contained in the neighborhood where A4 is a manifold. Note that M. is 
invariant under the involution (J defined in (1.2.1). 

We associate to M at po a sequence of germs of sets iVo, iVi,..., Nj0 at po 
in C^—the Segre sets of M at po—defined as follows. Put NQ = {po} and 
define the consecutive sets inductively (the number jo will be defined later) 
by 

(1.2.5) Arj+i = pvz (M n pr^1 CNjj) = prz (M n "pri1 (AT,)) . 

Here, and in what follows, we identify a germ Nj with some representative of 
it. These sets are, by definition, invariantly defined and they arise naturally 
in the study of mappings between submanifolds (see later sections in this 
paper, and [BER1]). 

The sets Nj can be described in terms of the defining equations p(Z, Z) = 
0 (see [BER1, §2.2]), e.g. 

(1.2.6) iVi = {Zp(Z,0) = 0} 

and 

(1.2.7) iV2 = {Z 3C1 p(Z, C1) = 0, p(0, C1) = 0}. 
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We have the inclusions 

(1.2.8) NoCmc ... C Nj C ... 

and jo is the largest number such that the first jo inclusions in (1.2.8) are 
strict. (The Segre sets stabilize after that, and A^0+1 = NjQ+2 = ... .) It 
is shown in [BER1] that, in suitable coordinates (z, w) G Cn x Cd = CN 

(so-called normal coordinates), the Segre set Nj, for j = 1, ...,jo, can also 
be defined as images of certain holomorphic mappings 

(1.2.9) Cn x C(j-Vn 3 (z, A) ^ (z,vj(z,A)) G C". 

Thus, we can define the generic dimension dj of Nj as the generic rank of 
the mapping (1.2.9). 

So far we have only considered generic submanifolds. If M is a real 
analytic CR submanifold of C^, then M is generic as a submanifold of 
its intrinsic complexification V (see §1.1). The Segre sets of M at a point 
po G M can be defined as subsets of C^ by the process described at the 
beginning of this subsection (i.e. by (1.2.5)) just as for generic submanifolds 
or they can be defined as subsets of V by identifying V near po with C^ and 
considering M as a generic submanifold of O^. It can be shown that these 
definitions are equivalent. 

The main properties concerning the Segre sets that we shall use in this 
paper are summarized in the following theorem. 

Theorem 1.2.1. Let M be a real analytic CR submanifold in CN, and let 
Po € M. 

(a) Denote by W the CR orbit ofpo (i.e. the Nagano leaf or, equivalently, 
the CR submanifold of M of smallest dimension, with the same CR 
dimension as M, through po) and by X its intrinsic complexification 
(see §1-1). Then the maximal Segre set Nj0 of M at po is contained 
in X and Nj0 contains an open subset of X, i.e. dj0 = dimc-X\ 

(b) There are holomorphic immersions Zofo), Zi(ti),..., Zj0(tj0) defined 
near the origin, 

(1.2.10) C^' 3 tj i-> Zj(tj) G C* 

and holomorphic maps so(£i), •••J 
sjo-i(tjo)' 

(1.2.11) Cd' 3 tj H-> Sj-i(tj) G C*"1, 
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such that Zj(tj) has rank dj near the origin, Zj(tj) € Nj, and such 
that 

(1.2.12) {Zjit^ZjMsj-iitj^zM, 

for j = l,...,jo. 

Proof. Part (a) is contained in [BER1, Theorem 2.2.1], and the mappings in 
part (b) are constructed in the paragraph following [BER1, Assertion 3.3.2]. 
□ 

Remark 1.2.2.. The holomorphic immersion Zj(tj), j = 0,1,..., jo, in part 
(b) above provides a parametrization of an open piece of Nj. However, this 
piece of Nj need not contain the point po- Indeed, Nj need not even be a 
manifold at PQ. 

Recall that a CR submanifold M is said to be minimal at a point po G M 
if there is no proper CR submanifold of M through po with the same CR 
dimension as M. For a real analytic submanifold, this notion coincides with 
the notion of finite type in the sense of Bloom-Graham [BG]. One can check 
that if M is connected then M is minimal almost everywhere, as defined in 
§0 if and only if M is minimal at some point in the sense described above 
(see e.g. [BER1, Lemma3.4.1]). The following is an immediate consequence 
of the theorem. 

Corollary 1.2.3. Let M be a real analytic generic submanifold in CN and 
po G M. Then M is minimal at po if and only if dj0 = iV or, equivalently, 
if and only if the maximal Segre set atpo contains an open subset ofCN. 

2. Uniqueness of CR diffeomorphisms. 

The main result here is the following, which implies Theorem 1 as a 
special case. 

Theorem 2.1. Let M C C^ be a connected real analytic, holomorphically 
nondegenerate CR submanifold and let d be the (real) codimension of M 
in its intrinsic complexificiation. Suppose that there is a point p G M at 
which M is minimal For any po G M there exists a finite set of points 
pi,...,Pk£M such that if M' C C^ is another real analytic CR submanifold 
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with dim^ M' = dim^ M; and F, G are smooth CR diffeomorphisms of M 
into M' such that 

for I = 1,..., k, and \a\ < (d + l)Z(M), then F = G in a neighborhood ofpo 
in M. If M is minimal at po, then one can take k = 1. If in addition, M 
is l(M)-nondegenerate at po, then one may take pi = po. 

Remarks. 

(i) The condition (2.1) can be expressed by saying that the (d + l)l(M)- 
jets of the mappings coincide at all the points pi, ...,pfc. 

(ii) The choice of points pi, ...,PA; can be described as follows. Let Ui,...,Uk 
be the components of the set of minimal points of M in [/, a sufficiently 
small neighborhood of po in M, which have po in their closure. For 
each Z = 1,..., fc, we may choose any pi from the dense open subset of 
Ui consisting of those points which are /(M)-nondegenerate. 

Before we prove Theorem 2.1 we need some preliminary results. 

Proposition 2.2. Let M, M' C C^ be real analytic CR submanifolds, and 
po G M. Assume that M is holomorphically nondegenerate and generic, and 
that M is l(M)-nondegenerate at po- Let H be a germ of a biholomorphism 
of CN at po such that H(M) C Mf. Then there are CN valued functions 
SSfi, holomorphic in all of their arguments, such that 

(2.2) ^(z) = ^(z,C,ff(C)5...,^(C),...J, 

where \a\ < 1{M) + |7|, for all multi-indices 7 and all points (Z,£) € M 
near (po,po). Moreover, the functions \]/7 depend only on M, M' and 

(2-3) W(Po)'    l^l^'W- 

Proof It suffices to prove (2.2) in any coordinate system of the target space 
near PQ = .ff(po). If we choose normal coordinates for M7 at PQ then the 
proof is exactly the same as the proof of Assertion 3.3.1 and subsequent 
remarks in [BER1] (see also [BR1, Lemma 2.3]). □ 
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Proposition 2.3. Let M C G^ be a real analytic, holomorphically non- 
degenerate CR submanifold and po G M. Let X be the intrinsic complex- 
ification of the CR orbit W of po in M and d the codimension of W in 
X. Assume that M is l{M)-nondegenerate at PQ. If H1,!!2 are germs of 
biholomorphisms ofCN at po such that H1(M),H2(M) C M7, where M' is 
another real analytic CR submanifold with dim^ M' = dim^ M, and such 
that 

(2-4) -dz^{po) = ^z^{po)>    |a| -{d+ 1)/(M)' 
thenH^x^H2^. 

Proof The intrinsic complexification of the CR orbit is contained in the 
intrinsic complexification of M, and the notion of holomorphic nondegen- 
eracy is independent of the ambient space. Similarly, the notion of l(M)- 
nondegeneracy is defined in the intrinsic complexification. Hence we may 
reduce to the case where M is generic; we shall assume this for the rest of 
the proof. 

Let Nj,j = 0,1,..., jo, be the Segre sets of M at po: and let Zo(*o)j..., 
Zj0(tjQ) be the canonical parametrizations of the Nj's and so(ti),...,SjQ-.i 
(tj0) the associated maps so that 

(2.5) {Zj+i(tj+i), Zjisjitj+i))) € M, 

for all j = 0,..., jo ~ 1 (see Theorem 1.2.1 (b)). In view of (2.4) and Propo- 
sition 2.2, there are functions \I/7 such that both H1 and H2 satisfy the 
identity (2.2) for (Z,C) G M. Substituting (2.5) with j = 0 into this iden- 
tity and recalling that Zo(io) = Po (i.e. it is the constant map), we deduce 
that H1 and H2 as well as all their derivatives are identical on the first Segre 
set A/i. Note that since each Nj is the holomorphic image of a connected 
set, if two holomorphic functions agree on an open piece, they agree on all 
of Nj. By inductively substituting (2.5) into (2.2) for j = 1,..., jo — 1, we 
deduce that the restrictions of the mappings H1 and if2, as well as all their 
derivatives, to the maximal Segre set Nj0 are identical. The conclusion of 
the proposition now follows from Theorem 2.2.1 (a), since Nj0 contains an 
open piece of X. □ 

We now proceed with the proof of Theorem 2.1. 

Proof of Theorem 2.1. By a change of holomorphic coordinates near po 
and by shrinking M, if necessary, we may assume that M is a real analytic, 
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holomorphically nondegenerate, generic submanifold of C^, for some K < 
N. 

Let V be the set of points on M at which M is not minimal. This 
is a real analytic subset and, since M is minimal at some point p, V is 
also proper. Denote by t/i, ...,£/& those components of M \ V that have 
po in their closure. Clearly, k is a finite number since M \ V is a semi- 
analytic subset (a semi-analytic set is locally finite in the sense that only 
a finite number of components meet each compact set). Also, since M is 
holomorphically nondegenerate, M is Z(M)-nondegenerate outside a proper 
real analytic subset. Pick pi € [//, for I = l,...,fc, such that M is Z(M)- 
nondegenerate at pi. 

Since M is minimal in [//, it follows from a result of Tumanov [Tul] 
that for every compact set Ki C Ui both F and G extend holomorphically 
into an open connected wedge Qi in C^ with edge on if/. Also, since M' is 
CR diffeomorphic with M, it follows that the intrinsic complexification V' 
of M' has complex dimension K as well. Since M is /(M)-nondegenerate 
at pi and hence also essentially finite at pi (see [BER1]), it follows that 
both F and G extend as biholomorphisms of some neighborhood of pi in 
CK onto a neighborhood of F(pi) G M' in V (see [BJT]). It follows from 
(2.1) and Proposition 2.3 that the holomorphic extensions of F and G into 
0,1 are identical. Consequently, F = G in Ui and, since this is true for any 
Z = 1,..., fc, the theorem follows by continuity of the mappings. □ 

3. The infinitesimal CR automorphisms. 

3.1. The minimal case. 

We shall prove Theorem 2 in this section. Let X1, ...,Xm G aut(M,po) 
be linearly independent over R. Let x = (a;i,...,xr) be a local coordinate 
system on M vanishing at po. In this coordinate system, we may write 

(3.1.1) *-t*7M£ -#M-1- 
For y = (yi,..., ym) € Mm, we denote by $(£, x, y) the flow of the vector field 
yiXi + ... + ymXm, i.e. the solution of 

(3.1.2) /    £(*'*»») = 2£i »*(*(*.*.»)) 
1    *(0,a;,y) = x. 
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By choosing 6 > 0 sufficiently small, there is c > 0 such that the flows 
*(*,«, y) are smooth (C00) in {(*,£, y) G R1*7**™ |i| < 2, \x\ < c, \y\ < 6}. 
This follows from the identity 

(3.1.3) <f>(st, x, y) = $(£, x, sy),    s G R, 

which, in turn, follows from the fact that the solution of (3.1.2) is unique 
(the reader can verify that the left side of (3.1.3) solves the initial value 
problem (3.1.2) that defines the right side of (3.1.3)). Denote by F(x,y) the 
corresponding time-one maps, i.e. 

(3.1.4) F{x1y) = $(l,x,y). 

Assertion 3.1.1.  There is a 8', 0 < 8' < 8, such that for any fixed yi,y<2 
with (j/1!, |y2| < 8f, if F(x, y1) = F(x,y2) for \x\ < c then necessarily y1 = 

y2- 

Proof of Assertion 3.1.1.    Note from (3.1.3) that, with the notation ei for 
ith unit vector in Rm, 

dF d d® 
(3.1.5) g-foO) = S[*(l^,«Ci)]a=o = -^(O^i Ci) = ^^)- 

Thus, denoting by X{x) the r x m-matrix with column vectors XZ
(:E), we 

have 

(3.1.6) ^{x,V) = X{x). 

If J{x) = (Ji(a:),..., Jr{x)) is a continuous mapping into Rr for |a;| < c then 
we put 

/ r \ 1/2 

(3.1.7) ||JM=8up    EJ^)2 

By Taylor expansion we obtain 
ATP 

-Ctf-y1]2, (3.1.8)     ||F(a:>y
2)-F(x>y

1)||> —(x.y^-dr'-y1) 

where C > 0 is some uniform constant for jj/1), |2/2| < 5. Now, by assumption, 
the vector fields X1,...,^771 are linearly independent over R. This means 
precisely that there is a constant C7 such that 

(3.1.9) ll*0r).y||>C7'|y|. 
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Using (3.1.6), (3.1.9), the smoothness of F, and a standard compactness 
argument, we deduce from (3.1.8) that the conclusion of Assertion 3.1.1 
holds. □ 

Now, we proceed with the proof of Theorem 2. Denote by U the open 
neighborhood of p on M given by |x| < c. We make use of Theorem 2.1 with 
M replaced by U. Let pi, ...,£>& be the points in U given by the theorem. By 
choosing the number 6' > 0 in Assertion 3.1.1 even smaller if necessary, we 
may assume that the maps x »-> F(x, y), for \y\ < 6', are CR diffeomorphisms 
of U into M. Consider the smooth mapping from \y\ < 6' into W defined 
by 

(3„2) s„p^>)6R», 
where I = 1,..., fc, and \a\ < (d + l)l(M) (thus, the dimension /i equals k • r 
times the number of monomials in r variables of degree < (d+ l)l(M)). This 
mapping is injective for \y\ < 8' in view of Theorem 2.1 and Assertion 3.1.1. 
Consequently, we have a smooth injective mapping from a neighborhood of 
the origin in Em into R^. This implies that m < fi and hence the desired 
finite dimensionality of the conclusion of Theorem 2. □ 

3.2. The non-minimal case. 

We shall prove a generalization of Theorem 2 for the case where M is not 
minimal. Before stating this result, we need some notation. Let M C C^ be 
a real analytic CR submanifold, and let po G M. Denote by ^/(po) the ring 
of germs of C00 real valued functions on M at po which are also CR, and 
by GM(PO) the subring consisting of those that are real analytic, i.e. those 
that are restrictions of the elements in ON(PO) which are real valued on M. 
If / is a representative of an element in ^Afipo) then the restriction of / to 
each CR orbit is constant. (Conversely, if / is a real-valued C00 function 
near po € M which is constant on the CR orbits then / G FM{Po)-) Hence, 
if M is connected and minimal somewhere then GM(PO) ~ ^AiiPo) = K. 
On the other hand, if M is non-minimal everywhere then it follows from 
the Probenius theorem that GM(P) contains a non-trivial element if the CR 
orbit of p has maximal dimension. 

It is also easy to verify that aut(M,p) is a ^M^-niodule, and hol(M,p) 
is a ^M(p)-inodule, for every p G M.  Indeed, it is obvious that hol(M,p) 
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is a £/A/(p)-niodule, and the fact that aut(M,p) is a .T^CyO-niodule is also 
immediate from the following characterization of aut(M,p) (see e.g. [BR2]): 
a smooth real vector field X on M nearp G M is in aut(M,p) if and only if 

(3.2.1) [L,X]€L, 

where L denotes the space of smooth CR vector fields on M near p. 
The following is a generalization of Theorem 2. 

Theorem 3.2.1. Let M C C^ be a real analytic, holomorphically nonde- 
generate CR submanifold, and assume that M is everywhere non-minimal. 
Then there is a dense open subset fia C M such that aut(M,p) is a finitely 
generated free .FM(P)-module forp G fia> a^d a dense open subset Cth C M 
such that hol(M,p) is a finitely generated free GM(P) -module forp G fift. 

We begin with a local description of generic manifolds which are every- 
where non-minimal. 

Proposition 3.2.2. Let M C C^ be a generic, real analytic submani- 
fold of codimension d which is everywhere non-minimal, and let po E M 
whose local CR orbit is of maximal dimension. Then there are coordinates 
{z.w'.w'1) G Cn x Cd~~q xCq = CN, where q denotes the codimension of the 
local CR orbit of po in M, vanishing at po such that M is defined by the 
equations 

f    Im w' = <t)(z, z, Re w', Re w") 
1 ' * j \    lmw" = 0; 

here, (j) is a real valued analytic function with ^(z, 0, s7, s") = 0. Moreover, 
the local CR orbit of the point {z,wf,w") — (0,0, s"), for s" G M9, is given 
by 

{    Im w' = (t){z, z, Re u/, s") 

1       w" = s", 

Proof. Since the local CR orbit of po G M has maximal dimension, it follows 
from the Frobenius theorem that there are /ii,..., hq G 0JV(PO) such that 

(3.2.4) dhiA-.-Adhq^O 

near po> the restriction of each hj to M is real valued, and such that the CR 
orbit of any point pi near po is given by {p G M hi(p) = hi(pi),..., hg^p) = 
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hq(pi)}. Thus, there are coordinates (Z'.w") £ Cn+d~q x Cq, vanishing at 
po? such M is contained in Imw" = 0 and such that the CR orbits on M 
are given as the intersections between M and w" = s", for s" near 0 G R9. 
Since M is generic and contained in the flat surface Imw" = 0, we can 
make a change of coordinates Z' = A(w")Z', where A(wff) is an invertible 
(n + d — q) x (n + d — g)-matrix with holomorphic matrix elements in w", 
and write Z' = (u, v) G Cn x Cd~q such that M is given by 

(3-2-5) i     T„..„_ 
Im v = ^(u, n, Re v, Re it;77) 

Imw" = 0, 

where V^? u, s7,577) is real valued, real analytic, and satisfies 

(3.2.6) V(0,0,0, a") = ^(0,0,0, s") = |^(0,0,0, a") = 0 

for all s77 G Mg near 0. Now, we claim that we can actually find holomorphic 
coordinates (*, w') G Cn x Cd~q of the form 

(3.2.7) { *;« 

such that M is defined by 

Im w' = </>(z, z, Re w7, Re w") 

[ (3.2.8) . 
v        J }     lmti;77 = 0, 

where ^(z, z, s7, s77) is real valued, real analytic, and satisfies 

(3.2.9) 0(z,O,57,577) = O. 

This follows from [BJT, Lemma 1.1] in the following way. Consider only 
the equation for Imv in (3.2.5) for a fixed s77 = Rew77. Lemma 1.1 in [BJT] 
asserts that there is a change of coordinates 

(3-2-10) \ >       *( n\ \     w' = /{UiV^s"), 

holomorphic in (u, v), such that the equation for Imv in (3.2.5) becomes the 
equation for Imw' in (3.2.8) and </> is as in (3.2.9). Moreover, the change 
of coordinates is obtained by the implicit function theorem, so if we now 
think of s77 as a real analytic parameter in (3.2.5) we find that the change 
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of coordinates (3.2.10) is real analytic in s". Hence, it can be extended 
as a holomorphic change of coordinates of the form (3.2.7). This change of 
coordinates coincides with (3.2.10) on Im w" = 0, and since M is contained in 
Imw" = 0 the claim is proved. This completes the proof of the proposition. 
□ 

The following is an easy consequence of Proposition 3.2.2 and the defi- 
nition of fc-nondegeneracy. 

Corollary 3.2.3. Let M C C^ be a real analytic, holomorphically nonde- 
generate CR submanifold and p G M. If the local CR orbit Wp of p is of 
maximal dimension then, for any integer k, M is k-nondegenerate at p if 
and only ifWp is k-nondegenerate at p. In particular, l(M) = l(Wp). 

Proof of Theorem 3.2.1. We start by showing that for p in an open dense 
subset Qa C M, aut(M,p) is a finitely generated free .F/v/O^-niodule. Denote 
by Wp the local CR orbit of any point p G M. Let Q* be the dense open 
subset of points p G M such that the dimension of Wp is maximal and such 
that M is Z(M)-nondegenerate at p. By Corollary 3.2.3, the CR orbit Wp, 
for p G £}£, is also Z(M)-nondegenerate at p and l(Wp) = Z(M). Next, define 
the following function on fi* 

(3.2.11) a(p) = dimR (aut(M,p)|p/fp(Pyp)) , 

where aut(M,p)|p denotes the subspace of Tp(M) obtained as values of the 
vector fields in aut(M,p) and fp(Wp) = aut(M,p)|pnrp(Wrp). Let ttl be the 
set of points p G O^ such that both dim^ aut(M,p)|p and a(p) are maximal 
in a neighborhood of p. Using the fact that the the CR orbits Wq for q in a 
neighborhood of p G f^ form a real analytic foliation of M, one can check 
by elementary linear algebra that 0% is open and dense in Q* and that a(q) 
is constant for q in a neighborhood of p. 

Let us denote by aut(M,p)/ the subspace of aut(M,p) consisting of those 
vector fields that are also tangent to Wq for all q in a neighborhood of p. It 
follows immediately from (3.2.1) that the restriction of any X G aut(M,p)/ 

to Wq, for q in a neighborhood of p, is in aut(Wg, q). We define the following 
function in fii "a 

(3.2.12) (3(p) = dimRaut(M,p)Vp. 

where aut(M,p)'|vvp denotes the subspace of aut(Wp,p) obtained by taking 
restrictions to Wp of the vector fields in aut(M,p)/. Let d denote the codi- 
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mension of the maximal CR orbits in C^. It follows from Theorem 1 and 
Corollary 3.2.3 that 0 < /?(p) < /i, where // denotes the dim^M times the 
number of monomials in dim^ M variables of degree < (d + l)Z(M), for all 
p G fi^. Clearly, if we have vector fields Yi,..., Yk on M that are tangent to 
each Wg, for q near p G fi^, and linearly independent over R as vector fields 
on Wp then they are also linearly independent over M on Wq, for all q in a 
neighborhood of p. We let fij* be the set of points p G fi* for which /?(p) is 
maximal in a neighborhood of p. It follows easily that 0% is a dense open 
subset of fii and that /3(q) is constant for q in a neighborhood of p. 

Now, let Qa be the intersection of 0% and Ct^ in f)^. This is a dense 
open subset of M, and we claim that aut(M,po) is a finitely generated 
free ,FM(po)-module for every po G (V Let X'v ...,X^po),Ti, ...,Ta(p0) G 

aut(M,po) be such that the images of X^, ...,XL v in aut(M,po)/|wp0 

form   a   basis   for   that   space,    and   the   images   of   Ti, ...,Ta(p0)   in 

aut(M,po)|po/^po(^Po) form a basis for the latter. As we noted above, the 
images of these vector fields are linearly independent in the corresponding 
vector spaces at every p in a neighborhood of po- This implies that these 
vector fields are linearly independent over the ring ^/(po)- To see this, 
assume that there are ci,..., ca(p0), di,..., d/3(p0) G ^MiPo) such that 

P(po) cx(po) 

(3.2.13) ^d^+^c/T^O. 

Taking the image of (3.2.13) in aut(M,p)|p/Tp(Wrp), for p near po* and using 
the fact that the X!- are tangent to Wp, we deduce that ci = ... = ca(p0) = 0. 
Then taking the image in aut(M,p)|vvp and using the fact that the di are 
constant on Wp, we deduce that di = ... = dp^y^ 0. Hence, the vector 
fields are linearly independent over ^/(po)- 

It remains to prove that these vector fields generate aut(M,po) as a 
-^(pcO-niodule. Now, since both a(p) and /?(p) are constant in a neighbor- 
hood of poj it follows that the images of X^,..., -X'Lp ^ in aut(M,p)/|vvp form 
a basis for this vector space for all p in a neighborhood of po? and similarly 
for the images of Ti,... ,Ta(p0). Hence, the vector spaces aut(M,p),|wp and 
aut(M,p)|p/Tp(W^) form C00 real vector bundles (not real analytic since 
the coefficients of these vector fields are merely C00 functions) over M in a 
neighborhood of po. Thus, if we take any X G aut(M,po) and consider its 
image in the latter vector bundle we obtain smooth real valued functions 
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Ci,..., ca(po) on M such that 

a(Po) 

(3.2.14) X^X-^CjTj 
3=1 

is tangent to Wp for all p in a neighborhood of po- We claim that 

(3.2.15) X/Gaut(M,po)/ 

(3.2.16) ci,..., ca(p0) G FMiPo)- 

To verify this, we compute the bracket of X with a CR vector field L G L 

a(po) 

[L)X] = [L)X']+E[I''c^] 
(3.2.17) 71 

a(po) 

= [L,X'] + J2 cjfoTj] + (Lcj)Ti- 

Since X, Ti, ...,ra(p0) € aut(M,p), we know that 

[L,X},[L,T1},...,[L,Ta(po)}elL. 

Also, since both X' and L are tangent to Wp for all p near po, (3.2.17) 
implies that 

a(po) 

(3.2.18) E(Lc^ 

is tangent to Wp for all p near po- Since the images of Ti, ...,Ta(p0) in the 
vector space aut(M,p)|p/Tp(Wp) are linearly independent for p near po? we 
deduce that Lci(p), ...,Lca(p0)(p) = 0 for all p in a neighborhood of po- 
Hence, (3.2.16) is proved, because L G L was arbitrary. Moreover, (3.2.15) 
also follows because now (3.2.1) implies that [L,-X'/] G L. The claim is 
proved. 

To finish the proof of the first part of the theorem, we have to prove that 
X/ G aut(M,po)/ can be written 

(3.2.19) X' = J2 d3X'v 



CR automorphisms of real analytic manifold in complex space       309 

where rfi, ...,dp(po) e pMiPo)- By taking the image in the real C00 vector 
bundle aut(M,p)/|vKp, we obtain smooth real valued functions di^.^dp^ 
such that (3.2.19) holds. Since the values rfi,...,d^(p0) are unique as real 
numbers on each CR orbit, it follows that each function dj{p) is constant on 
the CR orbits near po and, hence, dj 6 ^MCPO)- This completes the proof 
of the statement that aut(M,po) is a finitely generated free ^/(poj-niodule 
at every po € ^a- 

To prove the corresponding statement for hol(M,p) we define Slh in 
complete analogy with f2a, replacing aut(M,p) by hol(M,p). The same 
proof as above, mutatis mutandi, completes the proof of the statement 
that hoi(M,po) is a finitely generated free C/M(po)-rciodule, since the vec- 
tor bundles corresponding to those with fibers aut(M,p)|p/I]?(W^) and 
aut(M,p)/|vVp5 replacing aut(M,p) by hol(M,p), are real analytic. We leave 
the details of this to the reader. □ 

4. Proof of Theorem 3 and examples. 

4.1. Proof of Theorem 3. 

To prove Theorem 3, suppose first that M is holomorphically degenerate. 
Then for any p € M there is a germ of a vector field X = 53?=i ci(^)s§T' 
with Cj(Z) holomorphic, tangent to M near p with nonzero restriction to M. 
Let h(Z) be any holomorphic function nontrivial on M with h(p) = 0 and 
K a positive integer as in the statement of the theorem. Then the vector 
field Y = Re(h(Z)KX) is a nontrivial element of hol^M^po) and vanishes 
to order at least K at p. For t > 0 small the CR mapping F = exptY 
extends to a local biholomorphism mapping M into itself with F(p) = p. It 
is not hard to check that all derivatives of F up to order K agree with those 
of the identity mapping, /, yet F ^ / on M. This proves (0.4) with G = /. 

Next, we show that hol^M^p) is infinite dimensional whenever M is 
holomorphically degenerate, or everywhere non-minimal and homogeneous. 
The proof of this in the case where M is holomorphically degenerate is 
exactly the same as in the hypersurface case (see [St2]). If M is homogeneous 
and everywhere non-minimal then there is a holomorphic polynomial h(z, w) 
which is real valued and non-constant on M (see [BER1]). Also, there is 
a non-trivial vector field X e hol(M,p) (e.g. the infinitesimal dilation; 
see [Stl]).  The infinite dimensionality of hol(M,p) follows by noting that 
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hkX € hol(M,po)5 for k = 0,1,..., are all linearly independent over E. 
We note also that by considering the mappings exp(i h(z,w)KX), we can 
construct nontrivial local biholomorphisms which agree with the identity up 
to any preassigned order. 

Finally, we shall show that if M is not minimal almost everywhere 
then for p £ M outside an open dense subset if dimR hol(M, p) 7^ 0, then 
dim]Rhol(M,p) = 00. Indeed, suppose the local CR orbit of p is of maximal 
dimension. Then it follows from Proposition 3.2.2 that there is a holomor- 
phic function h(Z) whose restriction to M is real and nonconstant. If X is a 
nontrivial vector field in hol(M,p), then so is X^ = h(Z)kX for any positive 
integer k. Since the X^ are all linearly independent as vector fields over M, 
it follows that dim]^hol(M,p) = 00. This completes the proof of Theorem 
3. □ 

4.2. A holomorphically nondegenerate, nowhere minimal 
CR submanifold with hol(M,0) = {0}. 

In Theorem 3, it is shown that for most points p G M, if hol(M,p) 
contains at least one non-trivial element and if M is nowhere minimal, then 
dim^ hol(M,p) = 00. In this section we construct an example to show it may 
happen that hol(M,p) = {0} for a holomorphically nondegenerate, nowhere 
minimal CR submanifold M. 

N. Stanton [St3] has given examples of real hypersurfaces with no (non- 
trivial) infinitesimal CR automorphisms. We leave it to the reader to verify- 
that a slight modification of the argument of [St3] proves the following. 

Proposition 4.2.1 ([St3]). Let M0 C C2 be the hypersurface defined by 

(4.2.1) Imw = z4z10 + z10zA + (Re^)|^|8. 

Then aut(Mo,0) = {0} (and hence also hol(M,0) = {0};. 

We will use this to prove: 

Proposition 4.2.2. Let M C C3 be defined by 

I   ImWl == ***10 + zl0*A + (Rei£;i')l*l8 + (Re™2)M4 

1     Im W2 = 0. 

r/ienhol(M,0) = {0}. 



CR automorphisms of real analytic manifold in complex space        311 

Remark.      Note that M is holomorphically nondegenerate and nowhere 
minimal. 

Proof. Assume that 

/      x 9      _,_ _x d      ..      x   d 
X = a{z,w)— + a{z1w)— + b{z1w)- 

(A 9 o\                                dz               dz               dwi 
^'z'6) _ _ _    d d        d 

is in hol(M, 0). This is the same as saying that the holomorphic vector field 

/      ^ d      -/      \ d      .,      x   d 
Y = a{z,w)— + a(x,T)— + b{z,w)- 

(4.2.4) dz
d K d 

d^d 

+ 6(x,r)^ + c(z)W)—+ C-(x,r)^ 

in C6 is tangent to the complexification M of M in C6 

(4.2.5) 

f    Wl - ri _ 2i(z*x10 + z10xA) - i(w1 + TIJ^X
4
 - i(v>2 + T2)z2x2 = 0 

I      W2 — T2 = 0. 

Let us denote the first equation above by p(z, w,XiT) = 0- I* is an easy 
exercise to verify that if Y is tangent to M then b(z, w) and c(z, w) are 
independent of z and real, i.e. b = b and c = c. We will use the notation 
b = b(w) and c = c(w). We let 

(4.2.6) Y' = a(,, «,)| + «(x, T)| + K«)^ + Hr)± 

and 

(4.2.7) po(«, wi, x, TL) = ti;i - n - 2i(/x10 + z1 V) - t(ti;i + n^V- 

Note that po = 0 is the defining equation of the complexification M0 of M0 

in C4. Applying Y to p, we obtain 

(4.2.8) 

(Yp)(z, w, XJ 
T
) = (Y'po)(z,w, X, T) - 2ia(z, w)(w2 + r^zx1 

- 2ia(x, r){w2 + T2)zlx - i(c(w) + C(T))Z
2
X

2
. 

Since Y is assumed tangent to .M, this expression is 0 on M. We can solve 
for r in the defining equations of M. and obtain 

(4.2.9) n = Qo(x, z, wx) + Ofa),    T2 = W2, 
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where ri = Qo(Xiziwl) ^s ^e defining equation of M0 in C4 and 0(^2) 
denotes, as usual, terms that contain the factor it/2. We have also substituted 
T2 = W2 in the first equation. Let us write (4.2.9) as r = Q(Xiz,w) for short. 
Note that (3(0, z, w) = Q(x, 0,w) = w and Qo(0, z, wi) = Qofa 0? ^1) = wi- 
Substituting in (4.2.8) we obtain 

(4.2.10) 

(Yfpo)(z,w,x,Q(x,z,™)) = 
4ia(z, w)w2zx2 + 4m(x, Q(x> zi ^))^2^2X + i(c(w) + c(Q(x, z, w)))z2x2. 

Let us expand the holomorphic vector field Y^z, wi, W2, X, TI,W2) in ^2- We 
obtain 

00 

(4.2.11) Y'{Z,W1,W2,X,T1,VJ2)=  $^lfc(*,Wl,X,n)t02» 
k=ko 

where each Y£ is a holomorphic vector field in the variables (2,wi,Xjri) 
and where in particular the vector field YJJ is not identically 0; we as- 
sume here, in order to obtain a contradiction, that Y' is not identically 0. 
Note that, since fco is assumed to be the lowest order in the expansion of 
Y,(z,wijW2,XiTiiw2)i the coefficients a(z,wi,W2) and b(wi1W2) have to be 
divisible by u^0 (fco could, of course, be 0). We expand a, 6, c in W2 as follows 
(4.2.12) 

00 00 00 

a(z,w) = Y^ ak(z,wi)w2i b(w) = X] bk(wi)w2i CH = ]^cfc(™i)w2- 
/c=fco A;=fco A;=0 

Identifying the coefficients of the lowest order term in W2 (i.e. of wij0) in 
(4.2.10), using the fact that 

Q(X, z, w) = (Qo(x5 ^ v>i) + Ofa), W2), 

we find 
(4.2.13) 

(XkoPo)(^ wuX, QoiXi z, wi)) = i(cko(wi) + cko(Qo(x, z, w1)))z
2x2- 

Now, it is easy to see that the expansion of the left hand side in terms of z 
and x does not contain a term with z2x2' The expansion of the right hand 
side contains the term 

(4.2.14) 2icko(w1)z
2x2^ 
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Thus, we must have Ck0(wi) = 0 and 

(4.2.15) (YJ^poHz, wu x, Qo(x, ^ m)) = 0. 

The latter implies that the vector field Yj£ in C4 is tangent to M0 or, 
equivalently, that the vector field X'k in C2, obtained by formally replacing 
X by z and ri by wi in Y^Q, is tangent to M0. Now, XL is the real part of 
a holomorphic vector field so, since Xf

kQ is tangent to M , X'kQ E hol(M0,0) 
and hence X'ko = 0 by Proposition 4.2.1. This contradicts the fact that YkQ 

was assumed ^ 0. Consequently, Y' is identically 0. That means Y has to 
be of the form 

(4.2.16) cM^ + c(T)^. 

It is easy to check that this implies c(^) = 0 as well. This completes the 
proof of Proposition 4.2.2. □ 

5. Remarks. 

We shall restrict our remarks to the case where M is a generic manifold. 
For any p G M we let Gp denote the set of germs H of biholomorphisms 
near p, with H(M) C M and H(p) = p. It is easy to see that the set Gp 
forms a group under composition of mappings. We have the following. 

Theorem 5.1. Let M be a real analytic, holomorphically nondegeneratej 
generic submanifold of CN which is minimal at some point. For all p G M, 
there is a unique topology on the group Gp with respect to which it is a Lie 
group whose Lie algebra is hol(M,p). 

This theorem follows from a slight modification of the proof of Theo- 
rem 3.1 of Kobayashi [K, p. 13], by making use of Theorem 2. Indeed, if 
dim^ hol(M,p) is finite, the exponential of holo(M,p) (those vector fields in 
hol(M,p) that vanish at p) is a connected Lie group G® which is a normal 
subgroup of Gp. (The vector fields in holo(M,p) can be integrated for all 
time in the sense of germs.) One may then impose the unique topology 
on Gp for which Gp/G® is discrete. However, there is a natural topology 
for the group Gp obtained by regarding Gp as a subspace of the space of 
holomorphic mappings. Also, using Corollary of §0, one can embed Gp as a 
subgroup of the group of invertible (d + l)Z(M)-jets from which it inherits 
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a topology. In general one does not know if these three topologies coincide. 
This question will be addressed in future work [BER2]. 
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