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Analytic surgery, as defined in [9] and [6], is a one-parameter met- 
ric deformation of a Riemannian manifold M, which stretches M 
across a separating hypersurface if in a cylindrical fashion; the 
singular limit is a complete manifold with asymptotically cylindri- 
cal ends, M. In this paper, the analysis of [9] and [6] is used to 
study the behaviour of analytic torsion of unitary representations 
under analytic surgery. A gluing formula is obtained relating the 
analytic torsion of M to the 'b-analytic torsion' hT (a regularized 
analytic torsion on manifolds with boundary) of M. This is then 
used to prove the Cheeger-Miiller theorem, asserting the equality 
of analytic and Reidemeister torsion r on closed manifolds, and to 
prove the following combinatorial formula for b-analytic torsion on 
odd dimensional manifolds with boundary: 

bT{N)=T{N)2-1^x{dN). 

As a step in the proof, a Hodge-theoretic description of the Mayer- 
Vietoris sequence for cohomology under analytic surgery is devel- 
oped. 

1. Introduction. 

This paper follows on from the two earlier papers on analytic surgery [9] 
and [6], which will be referred to as Tart I' and Tart 11' below. Analytic 
surgery is a method for studying surgery on manifolds as a limiting, rather 
than discrete, process. Let M be a closed manifold, and H C M a separating 
hypersurface with defining function x\ that is, H = {x = 0} and dx ^ 0 
on H. Let h be a metric on M and e G [0, CQ] a parameter. The family of 
metrics 

(i) ^ = ^T^ + h 
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is a smooth family for e > 0 and has a singular limit at e = 0, which is 
an 'exact b-metric' (see section 2) on M, the disconnected manifold with 
boundary obtained by compactifying each component of M \ H with a copy 
of H. M may be regarded as the result of 'cutting' M at if, but it carries 
a complete metric, with the boundary geometrically at infinity. In Parts I 
and II, the spectral geometry of a family of generalized Laplacians associated 
with ge was analysed, and the analysis was applied to a gluing formula for 
the eta invariant for the Dirac operator on a spin manifold M. In the present 
paper, this analysis is applied to analytic torsion. 

Analytic torsion T is an invariant of a flat unitary bundle E over a Rie- 
mannian manifold M introduced by Ray and Singer in [18]. It is defined by 
formal analogy with a formula for Reidemeister torsion, or R-torsion, de- 
noted r, a combinatorial invariant of a simplicial complex. Ray and Singer 
showed that T(M, g) has the same formal properties as R-torsion, the most 
important of which is that, in a suitable sense, it is independent of the met- 
ric, and is thus a manifold invariant. They conjectured that these two tor- 
sions are equal. This was proved several years later by Cheeger and Miiller 
independently in [5] and [15]. In recent years, several more proofs and gen- 
eralizations of this result have appeared. Vishik [20], [21] has established 
the relationship between analytic torsion, defined using classical boundary 
conditions, and R-torsion on manifolds with corners. Burghelea, Priedlan- 
der and Kappeler [3] obtained a new proof using Witten's deformation of 
the de Rham complex via a Morse function. Miiller in [16] extended the 
result to flat bundles E assuming only that the determinant bundle det E 
is unitary. Bismut and Zhang [1] proved a further generalization when the 
bundle E is not necessarily unitary; log(T/r) is then given by the integral of 
a local 'anomaly'. The formula (2) for b-analytic torsion fits into the scheme 
conjectured by Liick in [8], with a boundary contribution to the logarithm 
of torsion given by log 2/2 times the index of an induced operator on the 
boundary. However the sign of this boundary contribution appears to be 
reversed relative to Luck's and Vishik's; see Example 8. (For the purpose of 
comparison, note that Luck's normalization of torsion is the square of that 
used here.) 

In another direction, Klimek and Wojciechowski in [7] have studied the 
'adiabatic limit' of analytic torsion on manifolds with boundary (that is, the 
limit when a cylinder of length R —> oo is attached to the boundary) in the 
case when the boundary Laplacian is invertible. 

Since analytic torsion and Reidemeister torsion are both differential in- 
variants, most proofs of their equality proceed by establishing that they have 
the same gluing formula under surgery, and then using this to compare the 
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two torsions for an arbitrary manifold to one for which the result is known. 
In the present paper, this program is carried out for analytic surgery. But 
since the manifold with boundary M resulting from the 'cut' in analytic 
surgery carries a complete metric, the Laplacian on M has continuous spec- 
trum; this means that the heat kernel on M is not trace class, so the analytic 
torsion on M cannot be defined by the usual formula (8) involving the trace 
of the heat kernel. However, a regularized analytic torsion, cb-analytic tor- 
sion', was defined in [11] using the 'b-Trace' to regularize the trace of the 
heat kernel (see section 3). The gluing formula (30) expresses T(M1E) in 
terms of 6T(M, E) and other geometric data at e = 0. By comparing to 
a standard surgery formula for R-torsion, the following formula is obtained 
for their ratio: 

Theorem 1. If M is odd dimensional, the difference log T — log r obeys the 
surgery formula 

,    T(M,E,ge)     1     
bT(M,E,go)     1     /rrN1    0 

T(Af,jE?,0c) T{M,E,go)      2 

where XE(H) = x(H) • rank £7 is the Euler characteristic of the cohomology 
of H with coefficients in E. 

Prom this the Cheeger-Miiller theorem follows using Cheeger's approach 
(also mentioned in [15]), transforming two copies of any manifold M to Sn 

by a series of Morse surgeries. Given this result the following combinatorial 
formula for b-analytic torsion is almost immediate: 

Theorem 2. For an odd dimensional manifold with boundary N, with flat 
unitary bundle E and exact b-metric g, 

(2) hT{N, E, g) = 2-x^iV)/4T(iV, E, g). 

This paper is organized as follows. In section 2 the results in Parts I and 
II which are relevant to this paper are discussed. In section 3 analytic, fa- 
analytic and R-torsion are discussed in detail. In section 4 a Hodge version 
of the Mayer-Vietoris sequence for analytic surgery is developed; this is an 
important requisite for deriving the surgery formulae, as well, perhaps, as 
being of independent interest. In sections 5 and 6 the gluing formulae for 
analytic and R-torsion, respectively, are derived, and by comparing these 
Theorem 1 is obtained. Finally, in section 7 Theorem 1 is applied to give 
another proof of the Cheeger-Miiller theorem and to derive the combinatorial 
formula (2) for b-analytic torsion. 
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2. Analytic Surgery. 

Let JV be a manifold with boundary, and x a boundary defining function. 
An exact b-metric on TV is a metric of the form 

dx2     t 

x1 

where h is a smooth metric. In terms of t = log x the metric looks like dt2+h, 
so this form of metric gives N the geometric structure of a manifold with 
asymptotically cylindrical ends, with log a; —> —oo approximately arc length 
along the end. In analytic surgery, the family of metrics (1) degenerates to 
an exact b-metric on M. The geometric picture is that as e —> 0, a long 
cylindrical neck develops across H with length 2sinh~1(l/e) + 0(1) —> oo. 
The study of analytic surgery was initiated in [9] (Part I) and continued in 
[6] (Part II), motivated by the study of a similar family of metrics in [10] 
(degenerating to an incomplete conic metric). The main objects of study 
were the resolvent and heat kernel of a a family of generalized Laplacians 
associated to ge. Here, the results of those papers are applied to analytic 
torsion. 

As the analytic torsion and b-analytic torsion are defined in terms of 
the heat kernel by (8) and (12), (13), determining the behaviour of analytic 
torsion involves understanding the behaviour of the heat kernel e~tAe as 
e —> 0. In Parts I and II this was done using different methods for short 
time (t < C) and long time {t > C) behaviour. The short time behaviour 
was treated in Part I via the asymptotic expansion of the heat kernel near 
the diagonal as t [ 0. The long time behaviour was treated by constructing 
the resolvent (A€ — A2)      and using the functional calculus: 

(3) e-<A« = i- ( e-tx2 (Ae - A2) -12A dA, 

where 7 is a contour enclosing the spectrum. 
The analysis of Part I was carried out under the assumption that the 

Laplacian A/f on H is invertible, that is, that the first eigenvalue CTQ of Aj? 
is positive. This assumption makes no essential difference to the short time 
behaviour, but greatly simplifies the long time behaviour of the heat kernel, 
which was indeed the reason for making that assumption. For if <JO > 0 then 
zero is below the continuous spectrum of the Laplacian on M, which is the 
interval [CTQ, 00). This means that the spectrum of Ae remains discrete near 
zero as e —► 0, and so the heat kernel is exponentially decreasing as t —> 00 
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(up to finite rank) uniformly in e. When AH has null space, that is CTQ = 0, 
the situation is quite different. The heat kernel e~tAc then has an expansion 
in powers oit'i/2, for j > 0, as t —> oo ([11, chapter 7] or [Part II, section 8]). 
This makes the limit of analytic torsion a more delicate matter, and indeed 
there is an 'extra' term in the surgery formula for analytic torsion from the 
small eigenvalues, those going to zero with e. 

2.1. The resolvent under surgery. 

As it is the small eigenvalues that dominate the behaviour of the heat 
kernel as t —> oo, to obtain the long time behaviour of the heat kernel from 
the integral (3) it is necessary to understand the resolvent (A€ — A2) as 
A and e both approach zero. In Parts I and II this was done using the 
approach outlined in [13], in which the Schwartz kernel of the inverse of an 
elliptic operator is constructed on a blown-up version of its natural domain 
to resolve singularities in the operator. In this situation the operator Ac is 
degenerate at x = 0, e = 0; the vector field Vx2 + e2 dx which is associated 
with Ac is singular there. In Part I, the single surgery space Xs was defined 
by 

X5 = [Mx[0,eo];ff x {0}] 

The notation means that the submanifolds listed after the semicolon are to 
be blown up in the given order. The vector field y/x2 + e2dx lifted to Xs is 
smooth, and the two components M± of M are separated in Xs. In fact the 
boundary of Xs consists of two parts, BQ = M, which is the disjoint union 
of M+ and M_, and the face JSi, a compactified copy of H x R, coming 
from the blowup. The resolvent (A€ — A2) is constructed on the surgery 
double space X2, a double-space analogue of Xs (that is, with two copies 
ofM): 

X2 = [M2 x [0,eo];# x H x {0};ff x M x {0};M x H x {0}] 

for A away from the continuous spectrum [CTQ, OO) of AQ. 

In Part II, the assumption of invertibility of AH is removed, and then 
further blowups are necessary to construct the resolvent as A and e both 
approach zero (which is now the bottom of the continuous spectrum). To 
see why further blowups are necessary, consider the following example. 

Example 3. Consider the resolvent (A — A2) on a circle of length L. Let 
r be an arclength coordinate. Then the kernel of the resolvent (regarded as 
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a half density) is 

/A      ,9\-i      /sinAir — r'l     cosAfr — rf)\ , ,   , ,,1 , , 

To connect this with surgery, assume that L is a function of e: L = 
2sinh""1(l/6), the approximate growth rate of the length of the cylinder 
in analytic surgery. Thus the variable sinh~1(l/e) is a more geometric pa- 
rameter than e itself; for convenience define iase = l/sinh~1(l/6) ('inverse 
arc-sinh'), which goes to zero with e, but only logarithmically. For A away 
from the continuous spectrum [0, oo) one may replace tan AL by its limiting 
value i sgn Im A as L —> oo. However, if A and e are both allowed to approach 
zero, then the limit is a function of the limiting ratio A/ ias 6. Thus it is nec- 
essary to introduce the scaled spectral parameter z = A/ ias 6. Having done 
that, one should also introduce a rescaled arclength variable s = r(iase), 
and then the resolvent may be written 

/A      x2\-i        !    {sinz\s-s'\     cosz(s-s')\ fi 
(A"A)     =i^( 2z  +     2ztan/)|dV0ldV0112- Iclo fc    \ £Z Zi/O bdll Z       J 

This is now meromorphic in z and (iase)""1 times a smooth (conormal) 
density down to ias 6 = 0. 

It is then reasonable to expect that the resolvent under surgery will 
be a nice (conormal) function of rescaled arclength along the cylinder, s = 
(iase) sinh~1(a;/e) and s1, as A and e approach zero. Now it is easy to explain 
why further blowups on Xs are necessary: s is not a smooth function — in 
fact, not even continuous — on Xs. It takes the value ±1 on M± and the 
value 0 on B\. 

The logarithmic single surgery space XLS of Part II is a blown-up version 
of Xs on which s is a smooth function. It is defined by 

■^Ls = ((^s)log)tb • 

The subscript log means, by definition, that all boundary defining func- 
tions p are replaced by ilgp = l/(logl/p); the subscript tb indicates that 
all boundary hypersurfaces of codimension at least two (here just the in- 
tersection SQ PI B\) are to be blown up. In this case, one new face 
B2 — H x [—l,0]s U H x [0,1]5 is created (note that ilgp and iasp are 
smooth functions of each other and equal to first order at p = 0). It turns 
out that the combined operations of log and tb have good functorial prop- 
erties; see [6, section 2].   The resolvent with scaled spectral parameter, 
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(A€ — (iase)2;?2)    , is constructed on the double space analogue of XLS, 

^Ls = ((^s)log)tb 

xL 

in section 6 of Part II. 

2.2. Reduced normal operator. 

Corresponding to the new face B2 is a new model operator on that face. 
In fact the model operator of Ae occurs in two different places in Taylor 
series in iase off B2: near B2, Ae ~ AH + (iase)2!)2 + ©((iase)00), where 
s € [—1,1] is the coordinate above. Hence 

Ae - (iasc)V - AH + (ias£)2(£>2 - z2). 

On functions on B2 valued in C00([— 1, l]s;null A/f), (Dg—z2) is the leading 
part. The operator D2 comes with natural boundary conditions at s = ±1 
which makes it into a self-adjoint operator on null A//-valued functions on 
[—1,1]5, the reduced normal operator, denoted RN(A). The boundary con- 
ditions are of mixed Dirichlet-Neumann type. The reduced normal operator 
is of prime importance for the calculations in this paper. 

To describe the reduced normal operator, first recall some facts about 
the extended L2 null space of AM± (with respect to the measure dgo). The 
extended L2 null space consists of the sections v such that AM^^ = 0 and 
v G x~6L2(M±) for all 6 > 0. Since the measure dgo behaves as dx/x.dy as 
x —> 0, functions which are bounded and nonvanishing at x = 0 are not in 
L2, but are in extended L2. Near the boundary, AM± ~ —(xVx)2 + AH- It 
is shown in [11, chapter 5] that such v have an expansion near x = 0: 

v ~ (loga:)t;i(y) + vo(y) + vf,    v1 G L2, vi e null(Ajj). 

Moreover, defining subspaces of null(A/f) 

A± = {vi I 3^ - (logaOvid/) + vo(y) + v\ Av = 0, v' G L2} 

A± = {^0 I 3t; ~ vo(y) + v', Av = 0, v' G L2} 

then A^ and A^ are orthocomplements in null(Aj/) for each choice of sign. 
They are the leading coefficients of logarithmically growing and bounded 
extended L2 null space, respectively. They are determined by the value of 
the scattering matrices S±(X) (see [11, chapter 6] or [Part II, section 6]) at 
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A = 0. In fact, for A small, S±(X) is an End(null(Aif ))-valued function of A 
and 

(4) 5±(0) = projAg-projA^. 

In Part II, section 3, it is shown that if u £ C00(XilS) is an 'approximate 
surgery eigenfunction', that is, 

(Ae-(ias€)V)u = 0((iase)3), 

then u = u \ B2 satisfies the equation 

(5) (Ds
2-z2)n = 0, 

J    u\s=-i e A?, A^|s=_i G A^, 
(6) and n 

E|*=+ieA£, Dsuls^ieA1;. 

This comes from analysing the Taylor series of u at the boundary of X^. 
The reduced normal operator RN(A) is the operator D^ with the boundary 
conditions (6). In Part II, section 6, it is shown that 

Proposition 4. The small eigenvalues A(e) have the behaviour A(e) = 
(iase)2z2(e) + 0((ias€)2), where lime_>o22(e) is equal to either 0 or an eigen- 
value of RN(A) or infinity. 

2.3. Heat kernel under surgery. 

In Parts I and II the heat kernel for small times and the heat kernel 
for long times were constructed in different ways. The heat kernel for small 
times was constructed in Part I by the usual Hadamard parametrix method 
adapted to surgery geometry, and works in the general case (with no as- 
sumption on invertibility of AH)- The heat kernel on the diagonal for small 
times {t < 1) lives on the space Xs x [0, l]r (where r = V^). To make it 
easier to compare with the heat kernel for large times, it is a good idea to 
lift it to A^J = XLS x [0, l]r. For large times (t > 1), the heat kernel was 
constructed in Part II via the contour integral (3), and lives on the more 
complicated space 

A
L

1
HT

1
 = [*!* x I1* «>]r; #2 x {r = 00}; Bo x {r = 00}; B1 x {r = 00}]. 

The notation [1, oo]T denotes the compactification of [1, oo)r at infinity with 
boundary defining function 1/r at infinity.   The full heat kernel (on the 
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diagonal) then lives on the space ALHS which is the union of A^j and 

^LEs along r = 1. The blowups create extra faces at infinite time, on 
which the heat kernel has transitional behaviour between the polynomial 
decay of the heat kernel on M and the rapid decay on M (see figure). 

Denote by JBQ, BI and B2 the three boundaries at e = 0 lifted from 
-^Ls x [0, oo]T, denote by B^, Bf0, Bf the three new boundaries at t = 00 
created by blowup and denote by i?ioo the lift of X^ x {r = 00}. Let po, pi, 
P2, P™, pf, pf be corresponding boundary defining functions and ptf be a 
boundary defining function for the boundary at r = 0 . After multiplying by 
the formal density factor |d(iase)(iase)"2Gft/£|, the heat kernel restricted to 
the diagonal is in pt"f

nC00(ALHs; ^D), where the D-density bundle is defined 
by nD(ALHs) = (POPIPO

0
PI

0
)~

1
(P2P2

0
)"

2
^6(ALHS). The heat kernel has the 

following behaviour at So, Bi, B2 and B^: 

At BQ, e *Ae restricts to e"tAM + O(iase) 

At Bi, e-tA* restricts to e~'A" + O(iase) 

(7) At B2, e~tAe restricts to e"iAH + O(iase) 

At 5°°, e-'Ac isO(iase), 

(iase)"^-^ restricts to e-TRN(A\s,s). 



264 Andrew Hassell 

The notation in the fourth line has the following meaning. First, T = 
^(iase)2 is a rescaled time variable along the boundaries at t = oo, 
iase = 0. Second, the heat kernel e~TRN(A) of the reduced normal op- 
erator is an End(null A/f)-valued function on [—1,1], so has an expansion 
0^(5,3',T)(/>i(-,(/>j). Reinterpreting the fc as sections over iJ, and lifting to 
3$° which is a blowup of B2(XLs) x [0,00]^ = ([-1,0] U [0,1])* x if x 
[0,00]^;, the leading term at B™ is (iase)aij(s,s,T)</>i(y)(-,(/>j(y)). 

The restrictions in (7) are the data needed to compute the limit of ana- 
lytic torsion under analytic surgery. 

3. Analytic and Reidemeister torsion. 

The analytic torsion of a flat unitary bundle E over a manifold Mn is 
defined via the zeta function of the Laplacian on E: 

(8) 

logT(Mn,9,E) = ±Y,(-l)*+l
q\ogdetA'q = l£(-l)«g^£(0), 

q=0 q=0 

CM-     E    *-* = r5)f ^^f-   Res>f 
A € spec Aq 

where Q is the zeta function for A9, the Laplacian on g-forms with values 
in E, and A^ is Aq projected off the zero eigenspace. Using the heat kernel 
representation, one can show that the zeta function analytically continues 
to s = 0. In order to generalize to b-analytic torsion, it is convenient to 
present this in a somewhat nonstandard way. Consider the two integrals 

(9)        mi m- -* wiL F{t)T 
where F(t) = ts Tr e~tAq. The first converges for Re 5 large, and the second 
for Re s small. It is well known that the pointwise trace of the heat kernel 
on the diagonal has an expansion at t = 0 

tre-*«(p,p) = Jtt-Wa-s+^gM + 0(t-*+*+1) 
i>o 

for any if, where the a^ are universal polynomials involving the metric and 
its derivatives.   Substituting this into the first integral in (9) shows that 
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the integral meromorphically continues to C. The trace of the heat kernel 
as t —► oo equals dim null Aq plus an exponentially decreasing part, so the 
second integral also meromorphically continues to C (in fact analytically, 
the zero in l/F at s = 0 cancelling the pole coming from the constant part 
of tTe~tAq at t = oo). Therefore one can define the zeta function to be the 
sum of the meromorphic continuation of these two integrals. 

Prom this one can derive a more explicit formula for analytic torsion, in 
the form of a convergent integral. The regularization (9) of JQ

00
 tzdt/t is zero 

for every z. (That is why F{t) was chosen to be e~tAq rather than e~tA<7.) 
Assume that M is odd dimensional. Then the zeta function for A9 may be 
written in the form (9) with F(t) equal to 

JM 
tre-tA« £V2+*a_»+i(M,A„0e) 

3=0 

The first integral then converges absolutely near s = 0; the second will not 
because of the constant term proj null Ag in the trace of the heat kernel as 
t —► oo. Pulling this term out and integrating yields an expression for the 
zeta function in terms of integrals absolutely convergent near s = 0, which 
by differentiating in s at s = 0 gives the formula 

(io)   iogr(M,5e) = 

+f?/ Jl       t   JM 

+ 7 dim null A9 I, 

n-l 
2 

j=0 

IM 

n-l 
2 

where 7 = 9sr(l) is Euler's constant. 
All this goes over in a straightforward way to manifolds with boundary 

N endowed with a b-metric. Consider the two integrals 

(ii) 

— f 
C rlt 

t 
and — f rw Jc 

00 Wf 
tsb-Tre-tA*>N—. 

c t 
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The pointwise trace of the b-heat kernel has the same asymptotic expansion 
at t = 0 as does the heat kernel on M: 

K 

where the a^ are as above. Hence the first integral is defined for Re 5 large 
and meromorphically continues to C. It is shown in [11] that the b-Trace 
of the heat kernel as t —» 00 has an expansion in half-powers of £, so this 
integral converges for Res < 0 and continues meromorphically as before. 
Thus the b-zeta function may be defined by the meromorphic continuation 
of their sum: 

(12) 
1     rc rii       1     r00 

The b-analytic torsion is defined by 

1  n ribr 
(13) logbT(N,g(hE) = -£(-l)V^f(0), 

q=0 

analogous to (8). Unlike the b-eta invariant of Part II, the spatial integrals 
defining b-analytic torsion are not absolutely convergent, and thus b-analytic 
torsion is sensitive to the boundary defining function used to compute the 
b-Trace. Recall from [11] that an exact b-metric determines a canonical 
section \dx\ of the conormal bundle of the boundary, up to a global constant 
multiple, by the condition that there are no terms ^dyi in the metric at 
the boundary. It is essential to take the b-Trace with respect to one of these 
canonical sections (the result is invariant under scaling by constants so the 
result is independent of the global constant multiple). 

As with the analytic torsion, one can derive a formula for bT in terms 
of convergent t-integrals. And just as with analytic torsion, the limit of the 
b-Trace of the heat kernel enters into the formula. Unfortunately this value 
was calculated incorrectly in [11]. In an appendix to this paper, the correct 
value is computed.   Referring to (40) for the term proportional to 7, the 
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formula is 

(14)    log6r(iV,5o) = 
r ( yt~x 

+ 7 dim L2 null Aq 

j=o 
n-1 

2 

If M is even dimensional, then, as in the boundaryless case, the combi- 
nation Xl(""l)996Cg(5) vanishes, and therefore the log of b-analytic torsion 
vanishes. To see this, note that in this case 

By the APS index theorem for d+8, the b-Trace of Yl(~^)qe~tAq ^ constant 
in t, equal to the Euler characteristic of N. (There is no boundary term in 
this case - see [11, chapter 9].) This makes the integrand a pure power of t, 
which is then regularized to zero. 

The dependence of analytic torsion T(M, g) on the metric g can be de- 
scribed very simply. Let cohomology bases {fiq} C Hq(M) be fixed. Using 
the Hodge theorem to identify Hq(M) with harmonic forms, let Vq be the 
volume of {iiq} induced by the inner product on harmonic forms given by 
g. Then 

-i 

(15) T(M,9)(  Y[vq)      [l[Vq 
\q even i q odd 

is independent of the metric [19]. Thus, T can be thought of invariantly as 
a metric on the one-dimensional vector space 

detline H*(M) = /\ *tfeven(M) (/\ #odd(M)) . 
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Here /\ denotes the top exterior power of a vector space, and /\* the top 
exterior power of its dual. 

For computations in this paper, it is most convenient to study torsion 
relative to a fixed basis of cohomology classes - those which come from the 
'Hodge Mayer-Vietoris sequence' for analytic surgery. Hence, we define, as 
in [19], analytic torsion with respect to a choice of bases {/z1} C Hl{M) by 

(16) r(M)//) = r(M,5)nM?l^](-1)g 

where {a/} is an orthonormal basis of harmonic forms with respect to the 
metric g and [uq \ iiq] denotes the determinant of the change of basis matrix 
Wq, if u/? = Wq{iiq). Equation (15) ensures that T{M,iii) is well defined, 
independent of the metric. In the setting of analytic surgery, T(M, //) has 
the advantage of being independent of e. 

Next, Reidemeister torsion (or R-torsion) is discussed. Let 

0 yo ^ V1 ^ V2 ^ 

be a complex of finite dimensional vector spaces with inner product. Suppose 
preferred bases {//} C Hl in cohomology are given. The torsion is an 
alternating product of determinants defined as follows. Let Bl C V1 be the 
image of dl~l and let bl be a basis of Bl. Let cl denote an orthonormal basis 
of V1. Using the notation [ | ] as above, the torsion is given by 

(17) T{V,d,iii) = n[c<?i&MdT(&<7+i),^](-i)' 

This definition is independent of the choice of bl as a change of basis will 
introduce into the product identical Jacobian factors in the numerator and 
denominator. Naturally, it does depend on the choice of volumes in coho- 
mology. More invariantly, one can define the torsion as a metric on the 
determinant line of the cohomology of V. Note that many authors define 
torsion via volume elements a;*2 for V1 and /i*1 for Hl. Since these lie in the 
dual spaces of f\ V1 and /\ iJ2, the formula for torsion then takes the form 

r = Y[{(3*q A (dqyp*q+1 A ti*q | u*q}(-Vq 

with /?*<* € (Adi^VO*, P*q \ Bq ^ 0. Here it is written in the form (17) 
to make the comparison with (16) more evident. If the iil are taken to be 
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an orthonormal basis of Hl then r has the alternate expression 

(18) r = JJ|det4|(-1)9 

q 

where d^ : (kerd9)1* —> imdq is the restriction of dq. This formula is used 
in section 6. 

Given a simplicial decomposition of a manifold M, there is a cochain 
complex 

0 -► C0(M) -£ C^M) -^ C2(M) -^ ... 

whose elements are E-valued (linear functionals on) formal sums of cells. 
Taking the inner product on Cq that makes each cell orthonormal, and 
choosing volumes in cohomology iir*(M), then a torsion is given by (17), 
called the R-torsion of M. The important property (see [14]) of this quantity 
is that the torsion is invariant under subdivision of the cells comprising M, 
and is therefore a topological invariant of (M, //). One can also take a flat 
unitary bundle E over M and form the complex of cochains with values in 
E. Then (17) defines a topological invariant T(M,E,H

1
). Prom here on, a 

fixed flat unitary bundle E over M will be understood; it will usually be 
dropped from notation. 

Notice that, with cohomology bases given by an orthonormal basis of 
harmonic forms with respect to some metric g on M, the R-torsion has the 
same dependence on the metric as does the analytic torsion. With such a 
choice of bases, the torsion is denoted r(M, £7, g). Analytic and Reidemeister 
torsion share two other important properties: they vanish in even dimensions 
on closed manifolds, and they obey the same formula for the torsion of a 
product. These formal similarities led Ray and Singer to conjecture in [18] 
that the analytic and R-torsions of a closed manifold were equal. 

If M has boundary, there are a priori (at least) two R-torsions to con- 
sider, corresponding to the choice of relative or absolute cohomology. These 
are related by Poincare duality; if M is odd dimensional, then the two are 
equal, so will simply be denoted r(M). 

4. A Hodge Mayer-Vietoris sequence. 

In this section the behaviour of cohomology of flat unitary bundles under 
surgery is investigated. Some of the results here — in particular the counting 
argument below (20) — appeared previously in the preprint [4] of Cappell, 
Lee and Miller. 
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Since E is a flat bundle, the operator d on .E-valued forms determined 
by the (flat) connection on E forms a twisted complex 

0 -+ ft0(M;£) -> fi^MjS) -> n2(M;E) -. ... 

giving twisted cohomology groups Hq(M\ E). If M is the union of two open 
sets [/, V then there is a long exact sequence in cohomology, the Mayer- 
Vietoris sequence: 

... -> fffl-^E/nyj.E) -> H«(MiE) -^ H(i(U]E)®H(i(V]E) -> 

If if splits M into two pieces M± then thickening each piece M± a little 
across H yields two open sets to which Mayer-Vietoris can be applied; the 
intersection UnV then is H x (—6,6) whose (absolute) cohomology is nat- 
urally the same as that of H. If Z is a manifold with boundary, denote 
by H*hs(Z), H*el(Z) the cohomology, and the cohomology relative to the 
boundary respectively. Then the Mayer-Vietoris sequence takes the form 

(19) 

- H'-HH) - H<(M) ■£+ ^bs(M+)©i?a
9
bs(M_) -£» H<>(H) -> 

(the bundle E is understood and dropped from the notation, here and be- 
low). 

On a compact manifold M without boundary, the Hodge Theorem states 
that the space of harmonic forms with respect to any metric is isomorphic 
to the de Rham cohomology and gives canonical choices (given the metric) 
for cohomology classes on M. It is useful to have canonical choices of co- 
homology for all spaces in the exact sequence (19) for the computations in 
the next chapter. For this purpose a Hodge version of this exact sequence 
is developed. 

As a first step towards a Hodge version of the sequence (19), recall 
results from [11, chapter 6] on the Hodge theory of a manifold Z with 
boundary and exact b-metric. This 'b-Hodge theory' works equally well 
with twisted cohomology groups corresponding to a flat unitary bundle. 
In [11] relative and absolute Hodge cohomology groups #£.absHo(^) an<^ 
iiZ£relHo(Z) are defined, being bounded elements of the null space of A^. 
Forms a G ^absHo^) an<^ P ^ ^relHo(^) are characterized by their 
behaviour near dZ. In product coordinates (x, y) near dZ, 

a = a'(y) + 0(xs) 
dx c     near dZ for some 6 > 0. 

P=-Af3'(y) + 0(xs) 
X 
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The boundary-data map BD* is defined by BD*(a) = a', BD*(/?) = ft. 
The null space of BD*, consisting of forms which are 0{x6) near dZ, is the 
L2 cohomology space i?^Ho(Z). The groups have an inner product given 
by the L2 norm on L2 cohomology and the inner product induced from 
m{H) by BD*. The boundary-data map is such that BD*(#£abSjHo(Z)) © 

BD9(iy^elHo(Z)) is an orthogonal decomposition of Hq(dZ); thus, these 
groups can be assembled into a relative cohomology sequence 

">  Hb-abs,}lo(Z)   "^  • 

The unlabelled map is the identity on the L2 cohomology and is zero on its 
orthocomplement. 

Denote the images BD'(^abSiHo(M±)) and BD«(fl*|i>Ho(M±))   C 

H«(H) by A9
±, Rl respectively. Then Aq

± = (il|)± = *Rl~1~q (Poincare 
duality), where dim M = n. 

Consider the implications of b-Hodge theory for the sequence (19) under 
surgery. By exactness of (19), 

Hq(M) = im(Hq-1{H) -► Hq(M)) © im f 

= (imkq-1)L®kevkq. 

By the remarks above, 

(imfc"-1)-1 = (Af1 + Al'1)1 = R11-1 n Rt1 

and 
ker kq = Aq

+ n Ai © HlBo(M+) © Hl^M.). 

Hence, 

(20)    dim Hq(M) = dim(^"1 n Rt1) + dim(Aq
+ n Aq_) 

+ dim(HlHo(M+) © HlHo(M.)). 

Now recall the results on small eigenvalues proved in chapter 6 of Part 
II. It was shown that the eigenvalues z(e) are continuous down to e = 0, 
with limiting behaviour (iase)2;?2 + o((iase)2), where z = 0 (corresponding 
to L2 null space) or z2 = z2 G specRN(Ag). It is not hard to check that 
the multiplicity of 0 6 specRN(A) is the dimension of the intersection A^ fl 
A£.  The intersection A^ D A^ is, for the Laplacian on q-forms, equal to 
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A+ D Aq_ © i?^" PI ROT , so the dimension of the space of eigenfunctions 
corresponding to z = 0 is 

(21) 
dimfl£Ho(M+) + dim^Ho(M_) + dim(A^ n Al) + dim^"1 n i?!"1). 

The cohomology Hq(M) is, by ordinary Hodge theory, given for each e > 0 
by the null space of A9, so comparing (20) and (21) shows that aZZ the 
eigenforms corresponding to z = 0 represent cohomology on M and therefore 
all eigenvalues corresponding to z = 0 remain identically zero for 6 > 0. In 
other words, the multiplicity of 0 € spec A9 is constant as e j 0. It confirms 
the intuitively plausible idea that one ought to have a cohomology element 
on M for every pair of elements on M+ and M_ that match at H. 

This fact has regularity implications for the generalized inverse of Ac. 
Let ne, for each e > 0, be the projection onto the null space of Ae. 

Proposition 5. (1) The Schwartz kernel of the projection n€ is smooth 
down to iase = 0 on X^. 
(2) The full heat kernel e~tAe on the diagonal is smooth on ALHS att = oo. 
(Compare Theorem 45 of Part II.) 

Proof (Sketch). (1) In Part II, section 6 it is shown that the projec- 
tion onto all eigenfunctions corresponding to one z'j G specRN(A) is in 

i 
^-c»,-i^2^.Q2^2j    jn fac^ foe Schwartz kernel of ne is easily seen to 

i 

be bounded as iase -> 0, so ne € *"oo'0(X2g;fi|>^s). In particular, n€ is 
smooth down to ias e = 0. 

(2) By Part II, Proposition 43, the heat kernel projected off null modes, 
e~tAc is smooth on ALHS at t = oo, and so the full heat kernel e~tAe = 
e~*Ac + ne is also smooth. □ 

The second property explains why there is no extra term depending on very 
small eigenvalues in the surgery formula for analytic torsion as there is for 
the eta invariant in Part II. 

The range of n€ is called the surgery Hodge cohomology of M, H*_ Ho (M). 
Using Proposition 5 the image in if *_Ho(M) of a cohomology class [a], where 
a is a closed -B-valued form on M, can be determined. Lifting a to a on 
^Ls? by the above proposition the image is given by ne(Q:). To analyse the 
behaviour of Ilea as e —► 0, let ^ be an orthonormal basis for iy£Ho(M+) © 
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^+ be an orthonormal basis for {I/J G #&iabs,Ho(^+) I BDfy) e A*_}, 

x2,+ be an orthonormal basis for {x G ^rel>Ho(M-|.) | BD^) G RL}. 

and let ^_, X^_ be the corresponding elements of #£abs,Ho(^-)> 
if^relHo(M_). The sections 0?, ^i? Xfc± can be extended to smooth 

sections 0i, xpj, Xk on ^Ls such that (</>i, (iase)1/2^-, (iase)1/2Xfc) form an 
orthonormal basis of the range of n€. (They can be constructed conor- 
mal on Xs and are then smooth when lifted to X^.) Near iJ, a has the 
form aa + ardx in product coordinates, where Q:a, ar are closed forms on 
H. At 6 = 0 near H, in terms of surgery forms (see Part II, section 3) 
a = aa + yjx1 + €2 OLr(dx/\/x2 + e2). Then 

n£Q: = Ma^i) + (iase)tl)j(&,il)j) + (iase)xk(a,Xk)- 

Because the coefficient of dx/y/x2 + e2 vanishes at Bi and B2, 

(a,<f>i) = ai(iase) 

(a, ifjj) = (ias e)    frj (ias e) 

(a,Xk) =cfc(iase), 

where a^, 6j, c^ are smooth functions of iase. Hence 

IIe5: = difa + bji/tj + (iasejCkXk, 

with (ai,bj,Ck) smooth functions of e, linearly independent as [a] ranges 
over H*(M). Define an inner product on i?*_Ho(M) by setting 

(22) |nea|2 = Y, I^WI2 + 2E M0)|2 + 2^ |Cfc(0)|2. 

This is independent of the choice of orthonormal vectors 0i,^j,Xfc- Hence 
iI*_Ho(M) splits into three orthogonal subspaces: 

Kv,*o(M) = {Uea I 6,(0) = Cfc(0) = 0}; 

(23) tfs*-abs,Ho(M) = {n£a I 0,(0) = Cfe(0) = 0}; 

HtrelMW = ("e" I «i(0) = &i(0) = 0}. 

Note that the L2 norms of elements of these three subspaces have the leading 
behaviours (iase)*2 where k = 0, — |, 5 respectively. In the Mayer-Vietoris 
sequence (19) #5_reiHo(^) ^s ^^ image 0f the connecting homomorphism 
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Hq-l{H) -+ Hq{M) and the map jq on Hl^M) is restriction to the 
boundary BQ. With the inner product (23), both these maps are isometries 
from the orthocomplement of the preceding map to their image. 

The b-analytic torsion obeys a formula analogous to (15) under defor- 
mations of the metric. In fact, if Vq denotes the volumes of fixed elements 
of either relative or absolute cohomology with respect to the inner product 
defined by b-Hodge theory, then 

(24) bT{N,9) = ( H VA ( H Vq )     W(N), 
\q even      /    ^g odd      J 

where bT is independent of the metric. This result is only used below to avoid 
assuming that the metric on iV in Theorem 2 is an exact product near the 
boundary, so the details of proof are omitted. It follows from the same formal 
manipulations which are used to prove (15) in [19]. In these manipulations, 
one needs to compute the b-Trace of certain commutators; this can be done 
using the formula from [11, chapter 5]. All such commutators turn out to 
vanish, making the final result very similar to the boundaryless case. 

5. Surgery formula for analytic torsion. 

The surgery formula for analytic torsion is derived by performing the 
integral (10). As the integrand lies on a blown-up version of its natural 
domain, the integrand is really a pushforward from ALHS to [0, ilgeo]iige. 
To compute the result, the Pushforward Theorem of [12] is applied. The 
general form of the computation is treated in Part II, Lemma 9. Prom 
this computation the formula (30) below is obtained relating T(M), bT(M) 
and the log determinants of RN(Ag). Comparing to a surgery formula for 
R-torsion, Theorem 1 is obtained. 

Step 1. As a first step, consider the calculation of the log determinant of 
the Laplacian on the interval [—1, l]^ with boundary conditions (6) under 
surgery. This is useful both as a model calculation for analytic torsion, and 
because it involves a calculation essential in Step 2. The log determinant can 
be calculated in two ways: using the exact scaling property of the Laplacian 
on an interval under surgery, and as a pushforward. In Part II, section 5, it 
is shown that the reduced normal operator of this operator under surgery 
reproduces the original operator. The interval [—1,1]^ with surgery metric 
ge — dx2/(x2 + €2) has length 2sinh~1(^/e) = 2(iase)~1, so the zeta function 
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for the Laplacian corresponding to g€ satisfies 

as,e) = (iaSe)-2sas) 

where £(s) is the zeta function of RN(A), and so 

logdetC(e) = -21og(iase)dimnullRN(A) + logdetRN(A). 

Calculating the second way, the zeta function has an expression 

+ J_ fV (Tre-tA< - -^=) - - —^ dim null RN(A) 

near s = 0. Thus C(0,e) = -dimnullRN(A), and 

-tAe        2    \ dt (25)    logdetAe = -C,(0,e) = y>   TlV 
fA-KtJ  t 

+ /       Tre-1^ - -^= 7dimnullRN(A) 
Ji     \ V47rt/   t 

with 7 again Euler's constant. Computing this as a pushforward, it follows 
from Lemma 9 of Part II that log det Ae has an expansion 

logdet(A,5e)~   Yl  Vfc(iase)n(log(iase))fc. 
(n,k)eS 

where £ is the index set 

£ = {(-l,0)}u{(n,0),(n,l)|neN}. 

The first computation shows that only 60,1 and 60,0 are nonzero. The term 
fro,! is given by the integral (25) restricted to B™ D BQ and B™ fl Bi (there 
is no contribution from B2 O BQ or B2 D Bi because the heat kernel on the 
diagonal for finite time can be lifted from Xs x [0, C]^ and there can be no 
log(iase) term from this space). The 60,0 term is the sum of b-integrals on 
J5o and Bi and on B™. On BQ and J5i, where are metrically copies of R, the 
Laplacian is translation invariant, and so the b-integrals are zero. Hence, 
using the fourth line of (7), 

(26) 

60,0 = logdet(RN(A)) = 7 dim null RN(A) + bl tr 
JBS

0 
e-rRN(A) 
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Step 2. In this step the result of the calculation in Step 1 is used in the 
main computation, which is the surgery formula for analytic torsion. Let 

P[o,i] (P[i,oo]) be the stretched projection from AjjJ (Ay^) to [0,ilgeo]e. 
From (10), analytic torsion can be written as a pushforward 

(27)    logr(M,5£) = 
n-1 

d(ilge) 

2 

n-l 

d(ilge) 
(Hge) 

-i 

2 \ J/.-l-.N     -1 

+ P[l,oo].      tre"fA' - X}r?+io-t+i(M,06) 

+ 7 dim null Ag >. 

(ilge)5 

As with the log determinant above, there is an asymptotic expansion 

(28) logT(M,5e)~   Y,   «n,fc(iase)ri(log(iase))fc. 
{n,k)ee 

where £ is the index set 

£ = {(-l,0)}U{(n,0),(n,l)|n€N}. 

The actual object of interest is the torsion with respect to fixed cohomology 
classes 

(29) logr(M,/**) = logr(M,ge) + ^(-l)9log[w« | /*«]. 

Choose cohomology classes nq corresponding to an orthonormal basis of 
surgery Hodge cohomology as defined by (22). Then the determinant factors 
in (29) are of the form 

((iase)-2+0(l)) or l + 0(iase). 

The sum of logarithms of these therefore has the form C• log(ias e) + 0(ias e). 
This does not contain any constant term in ias e. Since it is known a priori 
that logr(M,/il) is constant in iase, it follows that logr(M,//1) is equal 
to ao,o in (28). Hence it is only necessary to compute ao,o- By Lemma 9 
from Part II, this comes from b-integrals on i?i, BQ and B™.   As in the 
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model calculation above, the contribution from Bi is zero, because the heat 
kernel e""tAHx]R is translation invariant in the M-direction and so its b-trace 
vanishes identically. From BQ, comparing (10) and (14) shows that the 
contribution is precisely the b-analytic torsion of M plus 7(dimnull AqiM — 
dimL2 null A jj). Finally, from B^, the contribution is the same as in (26) 
because by (7) the restriction of the heat kernel on this face is the heat 
kernel of the reduced normal operator. Therefore, 

  i   n 

logr(M,/i*) = ao,o = log6T(M,5o) + r J](-l)^[logdetRN(A(7) 

+ 7(dim null A^M - dim L2 null A ^ - dim null RN(Aq))]. 

But (20), the Hodge Theorem, and the fact that dim null RN(Ag) = 
dimA^ D A? = dimAq

+ D Aq_ + dimiJ^. fl Rq_ show that the coefficient 
of 7 is zero. Hence this reduces to 

(30) 

logT(M, AO = log6r(M,5o) + \ ^(-l)^logdetRN(A,). 

Step 5. The next step is to find an explicit formula for logdetRN(A) 
in terms of the subspaces A^, A^ that determine it. To state this result, 
first decompose the vector space V = null A// into an orthogonal direct sum 
V = V\ © V2 © V3, where 

Vi = A^nA^©A^nA^ 

y2 = A?nA^©A?nA^ 

F3 = ye(Vi©V2). 

Write A^,r, A^'r for the 'reduced' subspaces A^ fl V3, A± fl Va, two pairs of 
orthogonal complements in V3 all of which intersect only in {0}, and write 
55- for the scattering matrices £±(0) restricted to V3. The Laplacian A 
splits into a direct sum A = Ai + A2 + A3 with A* acting on sections of Vi, 
and so logdet A = logdet Ai + logdet A2 + logdet A3. 

Proposition 6.  The log determinants of Ai, A2, A3 are given by 

(31) log det Ai = 2 log 2 dim Vi 

(32) log det A2 = log 2 dim V2 

(33) log det A3 = log det(Id -ST+SL). 
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Proof. The operator Ai has nonzero eigenvalues (^) , k > 1, with mul- 

tiplicity dim Vi and the operator A2 has eigenvalues f ^ "2 ) ' ^ — ^' 
with multiplicity dim V2. The log determinant of these two operators can be 
calculated from the values of the Riemann zeta function and its derivative 
at s = 0; the result is (31) and (32). 

To calculate logdet V3, recall from Part II, section 5 that the eigenvalues 
of RN(A3) are periodic with period 7r/2. It is well known that the log 
determinant of an operator with eigenvalues (n7r/2+a:)2 is 2 log(2 sin 2a), for 
a 7^ fc7r/2. Note that A3 has no zero eigenvalues, because the multiplicity of 
0 as an eigenvalue is precisely dim A_h'

rnA_,r. Therefore the log determinant 
is the sum 

(34) ]r 2 log 2 sin 2a j 
3 

over eigenvalues ay such that 0 < aj < 7r/2. 
If a G (0,7r/2) is an eigenvalue of A3, then the corresponding eigenfunc- 

tion may be written 

The boundary conditions imply that 

0 + e-2ia</> e A^r,       <t> - e~2iai> e A^r, 

0 + e2iaip e A?'r, 0 - e2ia^ e A^r. 

Prom this follows 

proj A^ = proj A£'re-2i>, proj A?'> = proj A^re2ia^ 

proj Aj^ = - proj A^re-2*>,        proj A^'^ = - proj A^re2ia^ 

whence, by (4), 

0 = e-2iaSr
+^ Sr

+S
r_(j) = e4ia<t>, 

$ = e2iaSr_ilj, Sr
+S

r_^ = e-4ia^. 

By Weyl's Law and the 7r/2-periodicity of eigenvalues of A3, it follows that 
a € (0,7r/2) is an eigenvalue of A3 if and only if both e4zQ: and e~42a are 
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eigenvalues of S+SL- Then 

logdet(Id-S;SL) = log JJ(1 - e4ia0(l - e"4iai) 
j 

= lQgJJ(2-2cos4aj-) 
j 

= J] log(4 sin2 2a) = 2 ^ log(2 sin 2a). 
j 3 

This agrees with (34), so (33) is established. □ 

Step 4- Next substitute in (30) the results of Proposition 6 to get the 
surgery formula in terms of cohomology. In this case, A^ = A± © R±~ , 

A± = R± © A^1. Write A^, R^ for the reduced spaces analogous to 

A£*r
> A^r, and write 

Sr = projAr-proji?r, 

so that Sr
±(Aq) = Sq/ 8 -S^u. Then 

= i J^i-l^q {2(log2)[dim(^ n Aq_ © R^1 D Rl'1) 

+ dim(Rq
+ HRl® A"'1 D At1)] 

+ (log 2)[dim(^ n Rl © B?-1 n At1) 
+ dim(i^ n Aq_ © A^r1 n i?!-1)] 

+ logdet(Id -S^St) + logdet(Id -Sf 1'r5r1,r)} 

= J3(-l)«(Iog2) dim(^ n Ai) + dim(Rq
+ n ill) 

+ ^ dim(A^ D iJl) + i dim(JR^ n Ai) + ilogdet(Id-5|'r5i'r). 

The linear map in the last term may be rewritten 

Id -S^SY = 2(proj ^r proj Rqlr + proj ^r proj Aqlr). 

As A^r, i??.'r and i?^r, A^r form two pairs of orthocomplements and all 
have the same dimension, it follows 

ilogdet(Id-Sf Si'7") = ^(dim A^ + dimi^) + logdet(^r - Rqf), 
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where the last operator is orthogonal projection. The formula for the ana- 
lytic torsion is therefore 

\ogT(M,^) = logbT(M+,g0) + \ogbT(M.,gQ) 

+ X^-1)9 U10^2) [dim(^ n 41) + dim(i^ D Rq_) 

+ i dim(^ D Rq_) + i dim(i?^ n Al) 

+ logdet(^r -> RqlT) + ^(dim^r + dimRqf)\ . 

Since dim(A^ n Aq_) + dim(i^ n Rq_) + dim(^ D Rq_) + dim(^ n Aq_) + 
dim A^r + dimi?^r = dimil<?(.ff), the formula above becomes 

(35)    loglXM,^) = log6r(M+^o) +log6T(M_,<7o) 

+ ^(-l)9 |^[dim(^ n Al) + dim(flj. n Rq_)\ 

+ logdet(A$r -> ^r)} + ^XiKff). 

Let 

6. Surgery formula for R-torsion. 

0 ^ Ki -*!> K2 -^ ^3 -> 0 

be an exact sequence of complexes with inner product, such that the induced 
volumes are compatible. This means that, if a[ is an orthonormal basis for 
K\, 0,2 an orthonormal basis in Kq and a^ an independent set in Kq mapping 
to an orthonormal basis of K^, then 

(36) [kl(al),al\al} = l. 

Let elements of cohomology /i? be given in Hq(Ki). With these chosen 
volume elements, the long exact sequence in cohomology 

-> H^iKs) -^ WiKi) -1 H*(K2) ^ H*{Kz) -+ 

is an acyclic complex H with volumes. Then there is a formula (see [14]) 

(37) T(K2) = T(K1)T(KaMH). 
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The behaviour of R-torsion under surgery follows readily from this formula. 
Suppose that M is odd dimensional and is given a simplicial decompo- 

sition such that iiT, and therefore M+ and M_, are subcomplexes.  Apply 
(37) to the exact sequence in simplicial cohomology 

0 - C^Mi) -U C*(M) A C:bs(MT) - 0. 

Here, relative cochains on M± are those which vanish at the boundary; 
absolute cochains are unrestricted at the boundary. With the usual inner 
products on these spaces (all delta functions on cells orthonormal) this short 
exact sequence is compatible on induced volumes, so (37) applies. This 
equation is, in logarithmic form, 

logr(M) = logr(M+) + logr(M_) + logr(W), 

where it is understood that logr(7Y) is measured with respect to the same 
choices of volumes that were used in to compute the other torsions. To use 
this result, one must calculate T(7Y), where H. is the long exact sequence 

(38) -> H£{MT) ^ HUM±)   ** H*(M)   *> H^MJ   «* 

To compare r(M) to the analytic torsion T(M,iil), take volumes in co- 
homology given by an orthonormal basis // of surgery Hodge forms defined 
in equation (22), and volumes v± for the relative or absolute cohomology of 
M-t given by b-Hodge theory. Split these spaces into subspaces correspond- 
ing to the images of the above maps and their orthogonal complements: 

Hlx{M±) = [(Rl-1 e iO] © [^Hb(^t) © W1 n i?-~1)] 

Hi{M) = [Hlno(M±) © V^flf1 n Rl-1)] © 

[Hlno(MT)®V2(AlnA<L) 
HL(M^) ^ [Hl^iMJ © (Al n Al)] © [(^ © ^±)] . 

Factors of \/2 indicate that the inner product to be taken is \/2 times the 
standard one. They come from the factors of two in (22); with these inner 
products this decomposition is isometric. Referring to (18), the torsion is 
given by 

logT(W) = ^(-l^logdeti" t HIKO(
M

±) ® K'1 n R9-1 

- logdetp9 t #£HO(
M

T) © ^A+ n A- © ^RV1 n R"-1 

+ logdetc9 liA^eAl). 

[' 
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Recall the explicit definitions of the maps iq, pq and cq. The map i takes a 
relative form on M±, cuts off near the boundary to get a form on M, and 
then projects into Hodge cohomology. On the space iJ^Ho(M-j-) this map 
is the identity and on R^~ fl RqS this map is multiplication by 1/2, which 
means it has log determinant log(l/\/5)(dimi?^r  fl i?i~ ) on this factor. 

The map p is restriction to M±; this is the identity on i?^Ho(Mqi) and 
on A+ fl Aq_, which means it has log determinant log(l/\/2)(dim A+ fl Aq_) 
on this factor. To find the image of the connecting homomorphism c one 
takes (3 G A^. Q A±, extends into M, applies d and regards the result as a 
form in Hq

el(M±)] it is projection from A^ 0 Aq
± to i^ 0 i^.. Thus, 

logr(W) = E(-1)(?{ (-^) tM^r1 n RQ-1) + ^dMAl n Ai) 

+ log det(A^ eAl^RleR^l 

= ^(-l)9! ^(dim(^nA!.) + dim(^n^)) + logdet(^r -> i??:r) I 

Again the arrow denotes orthogonal projection. Subtracting this from (35) 
yields Theorem 1. 

7. Combinatorial formulae for analytic 
and b-analytic torsion. 

In this final section the Cheeger-Miiller theorem and Theorem 2 are 
readily obtained as corollaries of Theorem 1. 

Proposition 7 (Cheeger-Miiller Theorem). IfE is a flat unitary bun- 
dle over a closed manifold M then T(M; E) = r(M; E). 

Proof. If M is even dimensional then both torsions are equal to 1. So assume 
that M is odd dimensional. Then the result follows by applying Theorem 1 
to a series of Morse surgeries that transform two copies of any manifold M 
to the sphere S72, as Cheeger does in [5]. 

Let / be a nonnegative Morse function on M with distinct critical values. 
Define F on M x [0, l]u by F(p, u) = Au(l - u)f(p). Then the critical points 
of F are (p, 1/2) where p is a critical point of /. Since F(p, 1/2) = f(p) at 
critical points, F has distinct critical values.  Let a = max/.  For 6 small 
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enough, F""1(a — 6) is an n-sphere, and F"1^, a — 6] is a manifold with 
boundary 2M U Sn such that F attains a minimum on 2M, a maximum 
on Sn and has nonvanishing differential at the boundary. Analytic and R- 
torsion are both unchanged by a change of orientation and are multiplicative 
under disjoint union, so it suffices to prove the Proposition for 2M. The level 
sets of F define a family of manifolds that are diffeomorphic except when a 
critical point of F is crossed, in which case a cell is attached. Thus, from 
this one gets a finite collection of manifolds MQ = S'n, Mi,... MJV = 2M, 
such that Mi+i is obtained from Mi by removing a Sk x Dn~k and gluing in 
a Dk+l x S^-fc-1 along the (common) boundary. For any flat unitary bundle 
E over M, the lift of E to M x [0,1] restricted to F'1^) is a flat unitary 
bundle 25& over /~1(&). If there are no critical values of F in [61,62] then 
the bundles E^ and E^ are isomorphic flat bundles, so one can write Ei 
for the flat bundle over Mf. Since the surgery occurs in an arbitrarily small 
coordinate neighbourhood of a point in M x [0,1], the lift of the bundle E 
is trivial there. Therefore Ei is trivial on Sk x Dn~k and the bundle Ei+i is 
obtained from Ei by gluing in a trivial bundle over Dk+1 x Sk~~l. 

The equality of T and r for spheres, and therefore products of spheres, 
is known, due to explicit calculations by Ray in [17]. The proof proceeds 
by showing inductively that T(Mi+i] Ei+i) = T(Mi+iiEi+i) assuming that 
T(Mi]Ei) = r(Mi]Ei). Note that all these surgeries involve a separating 
hypersurface, although sometimes it is disconnected. 

Now apply Theorem 1. First, with M = Sk x Sn~k, and M± = Sk x 
Dn~k, with trivial bundle F, 

since n is odd. Applying it to Mi, Mii+ = M< \ (5fc x Dn~k), Mi- = 
Sk x D71"^, and assuming the result for (M^Ei) yields 

10g rfMi.+iJEi) 

Finally, applying it to Mi+i, Mi+i,+ = Mi+i \ {Dk+1 x 5n-fc-1), Mi+if_ = 
£>fe+1 x 5n-fe-1 yields 

r(Mi+i;£;m) =     ftr(Mi+1,+;£;i+1) 
ST(Mm;JBi+1) S T(Mi+i>+;^+1) ' 

Since (M^+;Ei) = (Mi+i,+;Ei+i), the Cheeger-Miiller Theorem follows. □ 
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Proof of Theorem 2. Using the metric independence (24) of b-analytic 
torsion, one can assume that N is an exact product near the boundary. 
Then by doubling N and applying Theorem 1, (2) follows. □ 

Example 8. The interval [0,1]. Consider the trivial C-bundle E over the 
interval [0,1]^, with b-metric dx2/(x2(l — a;)2). Since this makes [0,1] iso- 
metric to E and the Laplacian on [0,1] equivalent to the usual Laplacian on 
E, all b-Traces vanish and so log6T([0,1];-B) = 0, whence 6T([0,1]; E) = 1. 
This can be compared to the R-torsion relative to an orthonormal basis of 
b-Hodge cohomology (relative or absolute). The L2 cohomology of E is {0}, 
and the absolute cohomology consists of constant zero-forms. An orthonor- 
mal basis of #£absHo([0> 1]) *s therefore {l/\/2} since l/y/2 has boundary 
data (l/\/2, l/\/2) which has unit length. The R-torsion can be calculated 
by applying (18) to the cochain complex given by the cell decomposition 
e = [0,1], Po = {0}, Pi = {1}. With /xo = {1/\/25P0 + l/V&pJ, the 
R-torsion is equal to 

r([0,l]) = |det4| = d0 {^ - 7fPl = \y/2Se\ = \/2. 

One can also calculate analytic torsion of the Laplacian on [0,1] with 
respect to absolute boundary conditions on [0,1]. The form a{x) + b(x)dx 
satisfies absolute boundary conditions on [0,1] if dxa(0) = c^a^) = 6(0) = 
6(1) = 0. The form l/\/2 is an orthonormal basis of absolute cohomology if 
the length of [0,1] is two. The nonzero spectrum of the Laplacian on 1-forms 
is then (^f)2,  n > 0, so 

Ci(*) = (|)"2SC(2^ 

with £ the Riemann zeta function. Thus 

logT = -i<i(0) = ~ [-21og|c(0) + 2C'(0)] 
If,       TT       , ' 

= ~2 L  S2 "    g 

= -12l0g\ 
= log2, 

so T = 2.    Thus the formulae 6r(iV)  = r(iv)2-1/4x(9iV) and T^  = 

T(N)21^4x^dN^ for absolute boundary conditions are verified in this case. 



Analytic surgery and analytic torsion 285 

8. Appendix: Long time behaviour 
of the b-trace of the heat kernel. 

Let N be a manifold with boundary H, with exact b-metric 5, let AJV be a 
generalized Laplacian corresponding to 5, and let AH denote the Laplacian 
restricted to the boundary. In [11] it was shown that b-Tre~tAN has an 
expansion as t —► 00 

k 

b-Tre-tA» = Y,*^12 + 0(r<*+1>/2) 

for any fc. If null A/? = {0}, then ao = dim L2 null A AT, but in general 
this is not the case. This result is at first surprising since the heat kernel 
itself equals proj L2 null AJV + 0(t~1/2). The extra term arises from the 
non-uniformity of the b-regularization of certain terms in the heat kernel 
as t —> 00. This was observed in [11], but the value of ao was calculated 
incorrectly. In this appendix the correct value is computed. 

It was shown in section 8 of Part II that the surgery heat kernel, re- 
stricted to the diagonal, is smooth on the logarithmic heat space ALHS? 

except, possibly, at the face Btoo- Restricting to the face BQ = M\oz shows 
that the b-heat kernel e~tAo on the diagonal is smooth on 

[Miog x [0, oo]T; {ilgx = 1/r = 0}] . 

In fact, this is true for any manifold with boundary AT. 
The b-Trace of the heat kernel on iV is the result of a b-pushforward 

from this space to [0, oo]r. By Lemma 9, Part II, the coefficient ao is the 
sum of a b-integral over each of the two boundary hypersurfaces at r = 00, 
namely N\0g x {r = 00} and the blowup of {ilgx = 1/r = 0}, which will 
be denoted K. The former b-integral is absolutely convergent and yields 
the 'expected' value dim L2 null A^v- The latter yields the 'extra' term. The 
value of the heat kernel on K can be found by matching with the value on 
the face S^0, since in ALHS> K is the intersection of M\0g = BQ and B^. 
By (7), this is (iase)e-TRN(A)(s, 5) and the intersection with K occurs at 
s = ±1, T = 0. Referring to Part II, section 5, the heat kernel e-TRN(A) 
has the form 

e-TRN(A) = _!       (e-\s-sT/4Tld+e-\±2-S-sW4Ts\+oie-c/T, 

Write £ = ilgx, p = 1/r, and a = £/p; then a is a coordinate along the 
quarter circles fibreing K. In terms of s and T, a = VT/(1 — s). Writing 
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dh for the metric on if, the canonical density dgdt/t at K is 

d£     dt      ( da     dt 

el= v ^ T 
Thus, if Sj;r is the scattering matrix for iV, the contribution from if is a 
regularization of the divergent integral 

By Lemma 9 of Part II, the first, divergent term yields the same contribution 
as the term 

1 1A, A Adt 
i   -i==-<pj<pjdg 1 — 
N v 47r r J  t 

cut off away from the boundary, lifted to the blown up space and restricted 
to K. Since 1/r is constant on the fibres of the pushforward map, this is 
equal to 

i(V — 
r \JN X/ITT 

<t>J<i>jdg ) — 

and is therefore 0(l/r), giving zero contribution to ao- The other term is 
absolutely integrable and yields 

= Q(dimAI>-diinAJV))p 

by changing variable to l/a and using (4). Cancelling the formal density 
factor dt/t on R yields 

(39) ao = dim L2 null &N+ \ (dim AD - dim A^) 

= dim L2 null A^v + - dim AD - - dim null A//. 
2 4 

This differs from the value claimed in [11] by —1/4 dim null A/f. Notice that, 
in the APS index theorem to which this result is applied in [11], this term 
occurs in both &-Tre~*3+3 and fr-Tre"*9 3+, and therefore cancels. In the 
present situation, however, it does not cancel. 
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In the formula for b-analytic torsion of M there is a term proportional 
to Euler's constant 7, analogous to the term in (10). By (39) this term is 
given by 

1 ^(-l)^ (dimL2nullAqp + |(dimAj+ + A£_) 

— -(dim null A^M-i- \ H + dim null A^M_ \ H) 

As A^M± \ H = AqiH 0 Aq-hH, this is 

= I E(-1)^ (dim L2 nul1 \M + \(dim A\ + dim R^ 

+ dim Ai + dimi??."1) - -(dimnull Aq# + dim null Ag_i5//) J 

= i(E(-1)^dimL2nullA,,M 

+ 5^(-l)9| ((dim null A^H - dim #*) + dim i?^."1 + dim Al 

+ (dim null A^-i,// — J^Z ) — - (dim null A^ + dim null A9_i?7f) 

= i(E(-1)^dimL2nullA9)ig 

+ X^^-1)"!^1111^^"1 " dimi?+ + dim^- - dim Al-1)) 

= I (EC-
1
)
9
^™^ 

nul1 A<?,M + D-^fo*-^") + Xrel(M+))) 

since dimi^bs(M_) = dirndl + dimL2nullAg)M_ and dimiy^el(M+) = 
dim i?'- +dim I? null Ag)A/+ and XL

2
 (Mfc) = 0 since M is odd dimensional. 

By exactness of the sequence (38), 

Xabs(M_)-x(M) + Xrei(M+)=0. 

As x(^) = 0? ^his shows Xabs(^-) + Xrel(^+) = 0. Hence the term calcu- 
lated above is just 

(40) ^(-1)^ dim L2 null A^. 
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