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Calabi-Yau threefolds with positive second Chern 
class 

KEIJI OGUISO AND THOMAS PETERNELL 

The second Chern class of a Calabi-Yau threefold is called positive 
if, regarded as a linear form on the Picard group, it takes positive 
values on the nef cone, that is, the closure of the ample cone, except 
the origin. The purpose of this paper is to show that every Calabi- 
Yau threefold with positive second Chern class admits only finitely 
many different proper algebraic fiber space structures. We also give 
some partial results on the finiteness of birational contractions. It 
is also shown that any smooth Calabi-Yau threefold in a smooth 
Fano fourfold has positive second Chern class. 

Introduction. 

In connection with the mirror phenomenon expected for Calabi-Yau 
threefolds, D.Morrison ([14]) raised the following 

Cone Conjecture. In the nef cone Amp(X) of a Calabi-Yau threefold X, 
there exists a finite rational polyhedral cone U such that the union of the 
translates 7(11) by automorphisms 7 G Aut(X) covers the convex hull of the 
rational points lying in the nef cone Amp(X). 

However, at the present time, this conjecture has been checked only for 
one non-trivial example by [7] and very little are known in general. 

On the other hand, in the course of his classification program of Calabi- 
Yau threefolds according to the behaviour of the second Chern class, Wilson 
([26]) observed that the automorphism group of a Calabi-Yau threefold X, 
which is in general a discrete group, is actually finite if the second Chern 
class is positive, that is, C2(X) • D > 0 for all non-zero nef divisors D, and 
then asked : 

Question 1. Is the nef cone of a Calabi-Yau threefold with positive second 
Chern class a finite rational polyhedral cone? 
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An important theorem of Miyaoka [13] shows that the second Chern class 
is non-negative for every Calabi-Yau threefold X, that is, C2(X) - D > 0 for 
all nef divisors D on X. Since it is also known that every (non-zero) rational 
point of the nef cone of a Calabi-Yau threefold with positive second Chern 
class gives rise to an (algebraic) fiber space structure for X ([24, 17, 26]), 
this question is translated into the following more geometrical (but slightly 
weaker) 

Question 2. Are there only finitely many different algebraic fiber space 
structures on a given Calabi-Yau threefold with positive second Chern class? 

The main purpose of this paper is to study Question 2. Here and 
throughout this paper, a Calabi-Yau threefold means a normal projective 
complex threefold X with at most Q—factorial terminal singularities, with 
UJX := Ox(Kx) — Ox and with Hl{X, Ox) = 0. An (algebraic) fiber space 
structure on X is a morphism $ : X —> Y onto a normal projective variety 
Y with connected fibers. We call such $ : X —> Y a proper algebraic fiber 
space if 0 < dimy < dimX and a birational contraction if diuiY = dimX. 

Our Main Theorem is as follows. (See also the remark at the end of 
section 3 for a slight generalization.) 

Main Theorem 1. Every Calabi-Yau threefold with positive second Chern 
class admits only finitely many proper algebraic fiber space structures, that 
is, such a Calabi- Yau threefold has only finitely many different K3 fibrations 
and elliptic fibrations. 

It is known that there is a Calabi-Yau threefold (with non-positive second 
Chern class) which has infinitely many different K3 fibrations and elliptic 
fibrations ([17]). 

We also give some partial results concerning the finiteness of birational 
contractions (Propositions 4.1 and 4.6). These together with Wilson's ob- 
servation quoted before provide another evidence for the Cone Conjecture. 

Our proof of main Theorem 1 (§3) is based on the following topics : 

(1) Alexeev's theory on log surfaces ([1, 23]) 

(2) Estimates of global log canonical indices of the base spaces of certain 
elliptic fiber spaces (Proposition 2.4) after Kodaira, Ueno, Kawamata 
and Nakayama. 

In the last section of this paper we also study second Chern classes of 
smooth Calabi-Yau threefolds in smooth Fano fourfolds, that is, smooth 
anti-canonical members of Fano fourfolds. 
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Main Theorem 2. Every smooth Calabi-Yau threefold in a smooth Fano 
fourfold has positive second Chern class. In particular, any smooth Calabi- 
Yau threefolds in a Fano fourfold do not admit abelian fibrations. 

Our proof is an application of the following remarkable Theorem due to 
Kollar and several structure theorems of fibered Calabi-Yau threefolds ([17, 
21, 18]). 

Theorem ([4, appendix]). Let V be a Fano manifold with n = dimV > 
4. Let X £ | — Ky] be a smooth member. Then the inclusion map 

U : NE(X) -> NE(V) 

is bijective. In particular, the ample cone of a smooth Calabi- Yau threefold 
in a Fano fourfold is a finite rational polyhedral cone. 

Combining these with Wilson's observation [26], we also obtain 

Corollary.  The automorphism group of a smooth Calabi- Yau threefold in 
a Fano fourfold is finite. 

Each of these three properties gives an obstruction for a smooth Calabi- 
Yau threefold to be embedded in a smooth Fano fourfold. It is also interest- 
ing to note that this is not the case for K3 surfaces. For example, it is known 
by [22] that the Fermat quartic surface in P3 has an infinite automorphism 
group. 
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theory of Alexeev. This plays an essential role in this paper. Both authors 
would like to express their thanks to Doctor D. Dais for useful discussions 
and Professor T. Katsura for pointing out a serious gap in the proof of main 
Theorem 2 in a preliminary version of this paper. 

1. Preliminaries. 

We shall employ freely the standard notation of the theory of minimal 
model program as given in [11]. We start stating several easy remarks in 
order to make our arguments clear. 
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Definition (1.1). (1) A normal projective complex threefold X with at 
most Q—factorial terminal singularities is called a Calabi-Yau threefold 
if ux ~ Ox(Kx) ^ Ox and H^X, Ox) = 0. Note that X has then 
at most isolated rational singularities ([20]). 

(2) The second Chern class C2(X) of a Calabi-Yau threefold X is defined 
by C2(X) := v*C2(Y), where is : Y —► X is a resolution of Sing(X). 
This well-defined cycle is regarded as a linear form on the Picard group. 
The second Chern class C2(X) of a Calabi-Yau threefold X is called 
positive, or C2(X) > 0 for short, if C2(X) takes positive values on the 
nef cone Amp(X) — {0} of X. 

(3) By an algebraic fiber space, or an algebraic contraction, we mean a 
surjective morphism $ : X —> Y onto a normal projective variety 
Y with connected fibers. An algebraic fiber space $ : X —► Y is 
called proper if 0 < dim(Y) < dim(X) and a birational contraction 
if dim(Y) = dim(X). A birational contraction cp : X —> Y is called 
primitive if it cannot be factored into several of those contractions. 

(4) By a Fano n—fold, we mean a smooth projective complex n—fold V 
whose anti-canonical divisor — Ky is ample. It is well known that 
every Fano n—fold is simply connected. In particular, if X is a smooth 
member of | — Ky] of a Fano fourfold V, then X is a (smooth simply 
connected) Calabi-Yau threefold. 

Now we apply several semi-ampleness criteria ([24, 17, 26]) to obtain 

Lemma (1.2). Let X be a Calabi-Yau threefold with C2(X) > 0. Then 
every Q—divisor D lying in the intersection of the nef cone and the cubic 
cone (D3 = 0) gives rise to a proper algebraic fiber space $\mD\ : X —> W 
for some positive integer m. The same holds if D is nef and big (D3 > Oj, 
only that now the associated morphism is a birational contraction. 

Lemma (1.3). Let C C Rp = Zp &% M be a closed cone with vertex 0. 
Suppose that there is a linear functional L : Rp —> R such that L is positive 
on C\{0}. Let N be a positive real number and let Cjv = Cn{x 6 Rp\L(x) < 
N}. Then CN contains only finitely many lattice points. 

Proof This follows from the compactness of CN. 

We shall apply this lemma in the following two special cases. 
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Corollary (1.4). Let X be a Calabi-Yau threefold with C2(X) > 0. Then 

Amp(X) n{xe Pic(X)\c2(X) -x<N} 

is finite for any given positive number iV. 

Corollary (1.5). Let (X,H) be a polarised normal variety. Then the num- 
ber of numerical equivalence classes of effective curves I satisfying I • H < N 
is finite for every positive number iV. 

The next lemma and its corollary will frequently be used in section 2. 

Lemma (1.6). Let /x : T —> S be a birational morphism between normal 
varieties T and S and D an (integral) Weil divisor on T. Then there is a 
natural isomorphism 

where /i* on the right hand side denotes pushforward of cycles. In particular, 
ifV>*{OT{D)) is invertible, then /x*(0T(£>)) - 0s(//*(r>)). 

Proof. Since the sheaves (/i*(<!?T(I?)))** and 0s(//*(.D)) coincide outside a 
set of codimension at least 2 and since both are reflexive, they must coincide 
on 5. □ 

Corollary (1.7). Let // : T —► S be as in (1*6). Let C be a reflexive sheaf 
of rank 1 on T. Then the following two statements are equivalent; 

(1) /,,(£) ~ Os, 

(2) there is an effective integral Weil divisor E (possibly 0) supported in 
the exceptional locus of fi such that C ~ OT{E). 

2. Log canonical index of the base spaces of certain elliptic 
fibrations. 

Until the Remark of Proposition (2.4), we work in the following setting: 

Setting (2.1). Let ip : Y —> S be a proper surjective morphism between 
normal projective varieties Y and S such that 

(1) dimY = dimS, + l = n + l; 
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(2) Y has only terminal singularities of index 1; 

(3) uy ~ ¥*(£) with an invertible sheaf C which is globally generated in 
codimension 1 on 5, that is, the codimension of Supp(Coker(H0(£) ® 
Os —► £)) is at least 2; 

(4) the geometric generic fiber Yrf is a smooth elliptic curve. 

By a big open set we mean a Zariski open set whose complement has 
codimension at least 2. We first point out the following 

Lemma (2.2). There is a big open set S0 C S such that every scheme- 
theoretic fiber Ys over s G 5° is one-dimensional and not multiple as a 
l~cycle. 

Proof. Choose n — 1 general very ample divisors iJi,..., Hn-i on S such that 
their intersection C = Hi fl... fl Hn-i is a smooth irreducible curve. Then 
consider the induced elliptic surface (p\F : F = Y Xs C —> C. Note that F 
is smooth if ifi,..., Hn-i are general and that the linear system \KF\ is free 
by the condition (3) in (2.1) and the adjunction formula. In particular, <p\F 
has no multiple fibers. This implies the result. □ 

(2.3). Following Nakayama ([16]), let us consider the next commutative 
diagram: 

Z —^-> Y 

>{   i' 
T  ► S 

where, 

(1) Z and T are nonsingular, 

(2) A and /z are surjective birational morphisms, 

(3) / : Z -» T is a (projective) elliptic fibration, which is smooth over 
a Zariski open subset T0 of T whose complement D := T — T0 is a 
simple normal crossing divisor, and 

(4) IJL\T
0
 : T0 -► /z(T0) is isomorphic. 

Then, we deduce by [9] that 
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(5) the usual J—function J : T0 —► C extends to a morphism J : T —> 
P1, and 

(6) f*ujz is an invertible sheaf with (/^z)012 ^ uj^^OT^l^ajDj+H), 

where Dj are divisors supported in D, the dj are rational numbers with 
12aj E {0,2,3,4,6,8,9,10} according to the type of general (singular) fibers 
over Dj, and H is a general element in | J*Oipi(l)|. 

Here, we do not need the condition (3) in (2.1). From now, we use the 
condition (3) in (2.1). 

Note that each irreducible component of D over which a general fiber of 
/ is multiple is contracted by [A to some algebraic set whose codimension in 
S is at least two by (2.2). Now, we can apply [16] to obtain 

(7) the pair (5, As) is a log variety with only log terminal singularities, 
where the divisor As is defined by 

(8) As = M*(^tf+ £%£>/)• 

The main point of this section is 

Proposition (2.4). In the notation of (2.1)-(2.3) we have Os(l2(Ks + 
As)) ^ JC®

12
. In particular, the integral Weil divisor 12(1^+As) is Cartier. 

Proof. First we show 

Claim (2.5).  There is an effective Cartier divisor E supported on the ex- 
ceptional locus of n such that f*(uJz) — OT(E) <8> M*(£). 

Proof of (2.5).   By (2.1) (2) we have uty = Kfaz)- Therefore the projection 
formula yields 

V>*(f*{uz)) = V*(^*(vz)) = V*(UY) = V*V*(C) = £. 

Consequently /i*(/*(u;z)®M*0C~1)) — Os> Now the claim (2.5) follows from 
(1.7). □ 

Coming back to the proof of (2.4), we calculate by virtue of (2.5) and 
(2.3)(6) : 

OT(12E) ® //(£®12) ~ (Muz))®12 
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~ a;|12 0 OT(H) ® OT(12j2ajDj) = OT(12KT + H + 12^^^). 

Using (1.6), (1.7) and the equality of Weil divisors ^(KT) = Kg) we con- 
clude 

£012 = IU(OT(12E) (8) /i*(/:012)) ~ fi*{0T(12KT + H + 12 ^Ta^-)) 

- C?5(//*(12irr + if + 12^ a^-)) = 05(12(^5 + A5)). 

This completes the proof of (2.4). □ 

Remark. This proof also shows that (5, As) has only log terminal singu- 
larities (cf. [16]). 

We now return to our study of Calabi-Yau threefolds. This might be the 
right place to introduce the following notion due to V. Alexeev [1, 23]. 

Definition. Let (5, A) be a log surface with only log terminal singulari- 
ties. Write A = ]Ca.?Ar ^et v : S' —> S be the minimal resolution with 
exceptional divisor Y^Ej- Let A^- denote the strict transform of Aj in S' 
and set 

Ks, + ]r a, A'j + Y^Ei = u*{Ks + Y^ aAj) + YlaiEi' 

Here ai are (uniquely determined) rational numbers. Then (*?, A) is said to 
be e—MRS log terminal if ai > e and if 0 < CLJ < 1 — e for all i,j. 

Corollary (2.6). LetX be a Calabi-Yau threefold. Suppose thatX has an 
elliptic fiber space structure tp : X —> W. Then Ow(l2(Kw + Aw)) ~ Ow, 
where A\y is defined as in (2.3)(8). In particular, the log surface (W, Ajy) 
is ^— MRS log terminal. 

Proof. Since UJX — Ox — <£*((9jy), the first part follows from (2.4). Note 
that oti > 0 because (W, Ajy) is log terminal. Now the second statement 
follows from an immediate calculation. □ 

We shall close this section by showing the next Lemma used in the proof 
of main Theorem 2. 

Lemma (2.7). Let (j> : S —► C be a relatively minimal elliptic surface. 
Assume that cf) is a smooth morphism, that is, <j> has no singular fibers. 
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Then, there is an etale cover TT : C —> C such that the induced fibration 
4> : S := S Xc C —> C satisfies hl(0^) = ^(Og) + 1. Moreover, we 
can choose such TT as an (etale) cyclic Galois covering of order I with I\12 
(possibly I = 1), 

Proof. Set C = <t)*{us/c) *& in (2-3). Then, C is an invertible sheaf on C with 
u;^ ~ 0*(ci;c<8>£) by the canonical bundle formula for an elliptic surface ([3]). 
Moreover, the smoothness of (j) implies £®12 ^ Oc- In fact, the formula in 
(2.3) (6) shows h?(C®12) ± 0, while we have degC = 0 by the smoothness of 
(/). Let n be the smallest positive integer such that £®n c^ Oc and consider 
the associated etale Galois covering 

TT : C := Specocie^C'1) -> C. 

Then, (5 is a smooth irreducible curve with 7r*£ ~ C?^. Set S := S Xc C. 
Let ft : S —> S and (/>: 5 —> (5 be the natural morphisms. Since TT and TT are 
etale, we calculate, 

ug = 7r*(ti;5) = n*<l)*{vc ® £) = 4>*IT*{VC ® £) = 0*(^c)- 

Using this equality and the Serre duality, we get 

A2(Og) = fc0(a;5) = h0(^we) = h0(M*(u>d)) = ^V,,) = fc1^). 

Combining this with the Noether's formula, we get 

1 - hHO-s) + h\Od) = x(Os) = (1/12)(4 + C2(5)) = 0. 

Here, the last equality follows from the fact that 4> • S —> C is also a smooth 
elliptic fibration. Thus, /^(ttg) = fc1^) + 1- n 

Remark. There is a relatively minimal elliptic surface <j): S -* C with no 
singular fibers but with hl(Os) = hl{Oc)- In fact, the Albanese map of a 
hyperelliptic surface gives such an elliptic fibration. 

3. Proof of Main Theorem 1. 

In this section we shall prove Main Theorem 1. Throughout this section, 
X is assumed to be a Calabi-Yau threefold with C2(X) > 0. According to 
[24, 17, 26], every possible proper fiber space structure tp : X —> W is one 
of the following: 
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Case 1. W = P1 and the general fiber is a K3 surface; 

Case 2, ip is an elliptic fibration with Aw > 0. 

We will treat these two cases separately. 

Case 1. Choose a general element F 6 \<P*(0$>i(l))\, that is, a general 
fiber of tp. Since F is a K3 surface, we have 24 = C2(ir) = F • c^-X"), hence 
the possible classes of F are finite by (1.4). But (p is uniquely determined 
by the class of F, since <p = 3>|F|- 

Case 2. By (2.6), (W,Aw) is a ^— MRS log terminal surface with 
-(Kw + Aw) = 0 and with Kw =£ 0. By the theory of Alexeev [2, 23], 
those surfaces fit into some bounded projective family, say p : W —» P. 
That is, for every elliptic fiber space structure <p : X —> W, there exists a 
point piy € P such that W ^ Wp^ = p""1(pw) . Let W be a p—very ample 
line bundle on W. Let Wp = p'~l{p) and Hp = W|wp- Then the function 
/i(p) = h0{Owp{y-tp)) is bounded, that is, there is a constant S such that 
h{p) < B for all p € P. Now let iJ = Tipw and choose a general element 
C G l-fiTj in such a way that the restriction of tp to M = (p~l(C) gives a 
relatively minimal elliptic surface ip : M —> C. Note that -KM = M|M and 
iiTJ^ = M3 = 0. Thus, by the Noether's formula, we calculate: 

capT) * M = c2(M) = 12X(OM) < 12(1 + ft2(0M)). 

Here, the first equality follows from the exact sequence, 

0 -> rM -> T^IM -> iV^iM -^ 0. 

On the other hand, the cohomology sequence associated with 

0 -> Ox(-M) ^OX-+OM-+0 

gives 

/i2(e?M) < h2(Ox) + h3{Ox(-M)) = h0(Ox(M)) = h0(Ow(H)). 

Combining these two inequalities, we get, 

C2(X) • ip*(H) = C2(-y) • M < 12 + 12S. 

Hence by (1.4) we obtain the finiteness of the class of (p*(H) in the nef cone. 
Now the finiteness of (p follows as in Case 1. 

This completes the proof of Main Theorem 1. □ 
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Remark. Our proof of main Theorem 1 gives also the following statements. 

(1) All the rational base spaces of elliptically fibered Calabi-Yau threefolds 
fit into some bounded projective family. (Compare with [6].) 

(2) Let X be any Calabi-Yau threefold. Let H be an ample line bundle 
on X and e a positive real number. Then there are only finitely many 
proper algebraic fiber structures on X of the form $p| : X —► W with 
D-C2{X)>eD-H2 (cf. [24]). 

4. Divisorial contractions on Calabi-Yau threefolds. 

In this section we are concerned with a primitive divisorial contraction 
on a Calabi-Yau threefold X, that is, a birational contraction ip : X —> 
X contracting exactly a prime divisor E c X. Then X is a Calabi-Yau 
threefold with canonical singularities along C = <p{E). In the literature [25, 
26, 27, 28], those contractions are often called of type III if C is a curve and 
of type II if C is a point, while the small contractions are called of type 1. 
We will keep this notation in this section. 

Finiteness in case when dim <p{E) = 0 is easy : 

Proposition (4.1). For any Calabi-Yau threefold X, there are only 
finitely many birational divisorial contractions cp : X —> X with dim 
(p(E) = 0. 

Proof. It is sufficient to prove the finiteness for primitive contractions of type 
II. _ 

Let (pi : X —> Xi (i = 1,2) be two different primitive divisorial birational 
contractions with exceptional divisors Ei. Then Ei n Ej = 0. In fact, oth- 
erwise, consider the curve B = Ei fl Ej. Let Ri C NE(X) be the extremal 
rays corresponding to tpi. Then [B] 6 Ri for i = 1,2 so that Ri = i?j, 
contradiction. 

Now let (pi(i € /) be all the primitive contractions of type II in question. 
Take a general hyperplane section H C X and put Fi = Ei • H. Then F? < 0 
in H. Since F^ • Fj = 0 for i ^ j by the previous argument, all the Fi are 
linearly independent. Since p(H) < oo, we conclude that I must be finite. 
□ 

Prom now on we assume that X is a smooth Calabi-Yau threefold with 
positive second Chern class and consider primitive birational contractions 
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of Type ///. Of course, this case is much more difficult than the previous 
one. 

Let ipi : X —> Yi (i G /) be all the primitive contraction of type III and 
Ei the (prime) exceptional divisor of ^f. Set Ci := (pi(Ei). Then, the general 
known structure of pi = <Pi\Ei : Ei -+ Ci is as follows ([25, 28]). First, pi is 
a conic bundle and the base curve Ci is always smooth. Moreover, Yi has 
generically Ai— or A2— singularities along Ci according whether the general 
fiber of pi is irreducible or reducible. In the first case Ei is a normal surface 
with at most An— singularities. 

Let H be an ample divisor on X. If a divisor D on X is not nef, then 
the unique positive t G R such that D + tH is nef but not ample is called 
the nef value of D with respect to H. In this terminology we have 

Lemma (4.2). Let J be a subset of I, where I is the set of all primitive 
contractions of Type III on X. Then, J is finite if there are constants A/", M 
such that 

(1) C2(X) 'Ei<N for all i G J, and 

(2) there is an ample divisor H on X such that the nef values U of Ei with 
respect to H satisfy U < M for all i G J. 

Proof In fact, consider the set A = {Ei + {ti}H\i G J}, where {^} is the 
round-up of U. Since {ti} < M + 1, it follows from (1) and C2(X) > 0 that 
A is contained in a compact set of Pic(X) ® R. Using again (1) we find that 
the classes of the Ei themselves are in a compact set (of Pic(X) ® M). Since 
h0(Ox(Ei)) = 1, this gives the finiteness we are looking for. □ 

Lemma (4.3). In the notation of 4*2(2), there is a constant M such that 
U < M for all those ipi for which —KEi is not ample. 

Proof. Set E = Ei and cp := cpi. Denote by j : E —> X the inclusion map. Let 
V = j*(NE(E)) C NE(X). Since ip is primitive, V is a 2-dimensional cone. 
Let F be a fiber of ip and I a cycle on the other geometrically extremal ray of 
V. We fix an ample divisor H on X. Clearly the nef value toiE with respect 
to H is just the nef value of E\E = NE = KE with respect to H\E. Since 
NE = KE is not negative by our assumption and since E • F = KE • F = — 2, 
we must have 

(*) E-l>0 
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by the Kleiman's criterion. On the other hand, the nef value t is computed 
by 

_ -E-F 
*"  H-F 

or by 

t       H-V 
In the first case we have t < 2, in the second t < 0 by (*). In any case, we 
can take M = 2. □ 

Proposition (4.4). In the notation of (4.2)(2) there exists a constant L 
such that ti < L for all ifi for which Ei is normal. 

Proof. By (4.3) we may assume that — Ifj^ is ample. Again we shall write 
E = Ei and ^ = <p. Note that either using [25, 28] as cited before or using 
the classification [5] and [8] and the fact that E is a conic bundle, we see that 
E is a rational surface with only rational double points as its singularities. 
In any case, (-5,0) is log terminal. So, by the cone theorem (see [11]) we 
have 

NE{E) = YJ^>*H 
with extremal rational curves lj satisfying KE • lj = —1 or —2. Now we 
consider as in (4.3) the map j* : NE{E) = NE(E) -> lVE(X). Take a cycle 
I on the geometrically extremal ray R of V = j*(NE(E)) not coming from 
(p. Write I = ^2 ajlj in NE(E) with aj > 0. Hence the same holds in V. But 
since / is extremal in V, we conclude that all those lj for which aj > 0 (and 
there are some ) must be in R. Hence we may take I = lj. In order to prove 
our claim, we must show that 

-E-lj 
H-lj 

is bounded. But since — E • lj = — KE • lj < 2, we can take L = 2. □ 

Remark (4.5). Since Ci is smooth, there exists a constant K (depending 
only on X) such that g(Ci) < K for alii G i*.  This is proved in [25]. 

Proposition (4.6). Let X be a smooth Calabi-Yau threefold with positive 
second Chern class. Then, there are only finitely many primitive birational 
contractions of Type III such that the divisor Ei is smooth and relatively 
minimal. 
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Proof. Let again E = Ei and g = g(Ci). Using the exact sequence 

o-ivj|X-nic|JB?->ni?^o, 

the relative minimality of E and (4.5), we obtain, 

C2{X) • E = c2{E) -K2
E = 4(5 - 1) < 4(K - 1). 

So the first estimate of (4.2) holds if we take 4:(K -1) as N. The second one 
of (4.2) is already guaranteed by (4.4). Thus, the result follows from (4.2). 
□ 

Remark. In order to prove finiteness for ipi with Ei smooth but not neces- 
sarily minimal, we see by the same argument that we need to bound b2{Ei). 

5. Proof of Main Theorem 2. 

In this section we prove Main Theorem 2. 
We shall make use of the following Theorem proved by Kollar in [4, 

appendix]. 

Theorem (5.1). Let V be a Fano manifold with n — dimV > 4.   Let 
X G | — Ky\ be a smooth member. Then the inclusion map 

U : NE{X) -► NE(V) 

is bijective. 

Since NE(V) is a finite rational polyhedral cone by the cone Theo- 
rem, it follows that NE(X) is a finite rational polyhedral cone. Dualizing 
this isomorphism, the nef cones of V and X coincide via restriction and 
Amp(X)(~ Amp(V)) is a finite rational polyhedral cone. Now, in order to 
prove main Theorem 2, it is sufficient to show that C2(X) • D > 0 for all 
integral divisors D in dAmp(X) — {0}, the boundary of the nef cone. 

So, assuming that there is an integral divisor D in dAmp(X) — {0} with 
D • C2(X) = 0, we shall derive a contradiction. 

Denote by D the unique extension of D to V. This is nef but not ample 
on V. Replacing D by ra-D, and using the Base Point Free Theorem ([11]), 
we may assume that D is generated by global sections. Let (p : V —► W be 
the associated algebraic fiber space. Then W is normal and tp has connected 
fibers.   Let Y = ip{X) and -0 = <p\X. Note that ^ is not necessarily an 
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algebraic fiber space. Since X is an ample divisor in V, we have W = Y if 
dimW < 3. 

Denoting by ^(X, D) the numerical Kodaira dimension of .D, we shall 
treat the following three cases separately. 

Casel. i/(X,D) = l, 

Case 2. i/(X,D) = 2, 

Case3. i/(XJD) = 3. 

Case 1. Here we have W = Y = P1 by ft1 (Ox) = 0. For general 
t € W consider Vt = ¥?""1(^) and Xt = V;""1(*)- Then Vi is a smooth Fano 
threefold with an ample divisor Xt C Vt. In particular Xt is a smooth 
connected simply connected surface with trivial canonical class (by the 
adjunction formula), hence a K3-surface. On the other hand, we have 
C2(Xt) = C2{X) • Xt = 0, contradiction. 

Case 2. Here V = W is a normal projective surface. Take a general smooth 
hyperplane section C C W such that C, Vfc := y?""1(C) and Xc := /^~1(C) 
are all smooth. Set / := <p\vc : Vc —> C and 5 := V'lxc : ^C —* C Since 
—Kvc = —(Kv + <P*(C))\vci —Kvc is /—ample. Since Xc = Vc n X and 
Xp = Vp n X for each P G C, the ampleness of X implies 5 : Xc —^ C is an 
algebraic fiber space, that is, each fiber of g is connected. Since C2(X)-D = 0, 
we know by [17] that g is a (relatively minimal) elliptic fibration with no 
singular fibers. Thus, by Lemma (2.7), we find an etale covering TT : C —> C 
such that hl{OxG) = hl{P&) + 1. Here we set Xd := Xc ^c C. Let 
TTX : Xg —> Xc and g : X^ —» C be the natural morphisms. Similarly, 
set VQ := Vc Xc C and denote the natural morphisms by Try : V^ —► Vc 
and f '.VQ —* C. Since —i^vb is /—ample and since Try is etale, — Ky- = 

7ry(—-KVfc) is also /—ample. Thus, the relative version of the Kawamata- 
Viehweg vanishing theorem ([11]) implies that B? f*Ov~ = 0 if j > 0 (and 

f*Oyg = C?^). Hence, by the Leray's spectral sequence, we get ^{OyS) = 
^(Og). On the other hand, since Xc is ample on VQ and Try is finite, 
Xg = Tr*Xc is an ample divisor on Vg. Note also that Xg and Vg are 
smooth because nx and Try are etale. Thus, by the Lefschetz theorem, we 
get h^Oxe) = h (Ove) and then h^Ox^) = h^Og). But this contradicts 
the previous equality hl(Oxd) = hl(Og) + 1. 
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Case 3. Since Ds > 0 and the linear subsystem \D\\x of |Z?| is free, we 
have dim Y = 3. Let / : X —> Z be the Stein factorisation of I/J. Since / is 
given by nD for some n and since D • C2(X) = 0, we obtain C2(Z) = 0 as 
a linear form on Pic(Z) (defined by the projection formula via /). Hence 
Z is a quotient of an abelian threefold A by a finite group acting freely 
in codimension two by [21]. Denote this quotient by TT : A —► Z. By the 
complete classification of these quotients given in [18], we have p(Z) = 3 or 
9, in particular p(Z) > 2. Recall that the ample cone Amp(X) is a finite 
rational polyhedral cone ((5.1)). Then the same holds for Amp(Z) since this 
can be regarded as a face of Amp(X). Thus we can pick a non-zero rational 
element y G dAmp(Z). Then 7r*(y) € dAmp(A). Note that every nef and 
big divisor on an abelian variety is necessarily ample, because there are no 
rational curves on an abelian variety. Thus, 

0 = 7r*(y)3 = de5(7r).y3. 

This implies y3 = 0. Let x = f*(y)- Then rr is a non-zero rational point of 
dA'mp(X) and a;3 = x • C2(X) = 0 (for the last equation note that for every 
divisor H on Z we have f*(H) • C2(X) = 0). In other words, we have a 
non-zero nef divisor F on X with F3 = 0 and F • C2(X) = 0. But this is 
impossible by previous cases 1 and 2. 

This completes the proof of main Theorem 2. □ 

In order to actually get examples of Calabi-Yau threefolds with positive 
second Chern class via Main Theorem 2, we need to know whether aniti- 
canonical linear system of a smooth Fano fourfold contains smooth members 
or not. We conclude this section by remarking a few facts concerning this. 
We specify to the case of Fano fourfolds V of index 2, the case of larger index 
being obvious. Write —Kv = 27?. If 62(^) = 1? Wilson proved the existence 
of smooth members in [Hi, hence by Mukai's classification [15], — Ky is even 
generated by global sections. The same holds for 62 (V) > 2 due to the clas- 
sification given by Theorem (5.2) below (without the assumption on smooth 
members in H). Hence Main Theorem 2 applies to the general member of 
the anti-canonical system on every Fano fourfold of index 2. At present no 
direct proof on the existence of smooth members of the anticanonical system 
of a Fano fourfold of index 2 and 62 ^ 2 is known. In case of index 1, noth- 
ing is known about the existence of smooth members in the anti-canonical 
system. 

Theorem (5.2).  The following is a complete list of all Fano fourfolds V 
with index 2 and b2(V) > 2. 
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(1) P1 x W with W a Fano threefold of index 2 or 4, 

(2) a 2:1 - covering over P2 x P2 ramified over a divisor of degree (2,2), 

(3) a divisor of type (1,2) in P2 x P3, 

(4) a linear section o/P2 x Qz, 

(5) the projectivisation of the nullcorrelation bundle over^P3, 

(6) a linear section in P3 x P3, 

(7) a linear section in the Fano fivefold obtained by blowing up P5 along a 
line, 

(8) the blow up of Q4 along a conic with the additional requirement that 
the plane spanned by the conic in P5 is not in Q4, 

(9) P((9P3(2)ee>P3), and 

(10) nOQ3(l)®OQ3). 

Proof This follows from several papers, but is never stated in the literature 
explicitly. A complete argument here has kindly been given to us by J. 
Wisniewski [32]. For more details, see [29], the references given there and 
[2]. Q.E.D. □ 

Remark.     (1) Assuming the existence of smooth members, this classifi- 
cation was already done in [15] and [29]. 

(2) In all the cases (2) - (10) we have 62(V") = 2, 50 there are exactly two 
Mori contractions on V. In the cases (2) - (6) both of these are of fiber 
type but not birational This is obvious except in (5). In this case the 
second contraction is given by the projection V = P(i?), where F is a 
so-called spinor bundle over the quadric Q3. We refer to [19]. In cases 
(7) - (10) one contraction is birational and the other is of fiber type. 

(3) Of course, it is just a matter of (tedious) calculations to verify main 
Theorem 2 in the case of Fano fourfolds of index 2 using Theorem 
(5.2). 
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