COMMUNICATIONS IN ANALYSIS AND GEOMETRY Volume 6, Number 1, 141-152, 1998

The *p*-energy minimality of $x/|x|$

 \rm{R} OBERT \rm{H} ARDT $\rm{^1}$, \rm{F} ANGHUA \rm{L} IN $\rm{^1}$ and \rm{C} HANGYOU \rm{W} ANG $\rm{^2}$

The map $\frac{x}{|x|}$: $\mathbf{B}^n > \mathbf{S}^{n-1}$ is *p*-energy minimizing whenever $p \in \mathbb{S}$ $[n-1,n).$

This minimality was first established for $p = 2$, $n = 3$ in [BCL] (with another proof in [ABL]), for $p = 2 < n$ in [L], and for $p \in \{2, 3, ..., n-1\}$ in [CG] (with another proof in [AL]). R. Musina [M] also proved the *p*energy minimality of orthogonal rotations among degree 1 maps of S^{n-1} for $p \in [n-1, n]$. However, there remained, for non-integer p, the possibility of some non-homogenous extension of $\text{id}_{\mathbf{S}^{n-1}}$ to \mathbf{B}^n having less p-energy than $\frac{x}{|x|}$. The present paper, rules this out for $p \in [n-1, n)$. Our argument, which does not rely on the previous works, involves continuation in p , uses Jacobi field considerations, and starts with p near n . Behavior of singularities of *p*-energy minimizers as $p \uparrow n$ is the theme of [HLW], and questions on asymptotic behavior near singularities led to Lemma 2 below, which classifies normal *p* Jacobi fields along the identity.

Figure goal is to show that, for $p \in [n-1, n)$, any map $u \in W^{1,p}(\mathbf{B}^n, \mathbf{S}^{n-1})$

with
$$
u|\partial B^n = id_{S^{n-1}}
$$
 must have *p*-energy at least equal to the number\n
$$
\int_{B^n} \left| \nabla \left(\frac{x}{|x|} \right) \right|^p dx = \int_{S^{n-1}} \int_0^1 \left[\frac{\sqrt{n-1}}{r} \right]^p r^{n-1} dr d\Sigma = \frac{(n-1)^{\frac{p}{2}} \sigma_n}{n-p}.
$$

Here $d\Sigma$ denotes integration on the $(n-1)$ -sphere with respect to Hausdorff μ^{n-1} and μ^{n-1} and

$$
\sigma_n = \mathcal{H}^{n-1}(\mathbf{S}^{n-1})
$$

denotes the volume of the $(n-1)$ -sphere.

For functions or vectorfields defined on S^{n-1} , we will follow the notation of [S] for the operators ∇^S , divg, $\Delta_S = \text{div}_S \circ \nabla^S$ which involve differentiation only in directions tangent to S^{n-1} . Thus, for any function $u \in C^1(\mathbf{S}^{n-1}, \mathbf{R})$ and point $a \in \mathbf{S}^{n-1}$,

$$
(\nabla^{\mathbf{S}} u)(a) = (\nabla u)(a) - [a \cdot (\nabla u)(a)]a \in a^{\perp}.
$$

¹Research partially supported by the NSF

²Research partially supported by the Sloan Foundation

Also for any (not necessarily tangent) vectorfield $v \in C^1(\mathbf{S}^{n-1}, \mathbf{R}^n)$, we have the formula

$$
\operatorname{div}_{\mathbf{S}} v = \sum_{i=1}^n \mathbf{e}_i \cdot (\nabla^{\mathbf{S}} (\mathbf{e}_i \cdot v)) ,
$$

where $\mathbf{e}_1 = (1,0,\ldots,0),\ldots,\mathbf{e}_n = (0,\ldots,0,1)$, and Stoke's theorem implies that

(1)
$$
\int_{\mathbf{S}^{n-1}} \operatorname{div}_{\mathbf{S}} v \, d\Sigma = 0.
$$

A map $w \in W^{1,p}(\mathbf{S}^{n-1}, \mathbf{S}^{n-1})$ is a *p*-harmonic map if, for any $\zeta \in$

$$
0 = \frac{d}{dt}\Big|_{t=0} \int_{\mathbf{S}^{n-1}} \left| \nabla^{\mathbf{S}} \left(\frac{w + t\zeta}{\|w + t\zeta\|} \right) \right|^p d\Sigma
$$

= $p \int_{\mathbf{S}^{n-1}} \left[\left(\left| \nabla^{\mathbf{S}} w \right|^{p-2} \nabla^{\mathbf{S}} w \right) \cdot \nabla^{\mathbf{S}} \zeta - \left| \nabla^{\mathbf{S}} w \right|^p w \cdot \zeta \right] d\Sigma.$

Thus, on S^{n-1} , we have, in a distribution sense, the equation

$$
\mathrm{div}_\mathbf{S}\left(\left|\nabla^\mathbf{S} w\right|^{p-2} \nabla^\mathbf{S} w\right) + \|\nabla^\mathbf{S} w|^p w = 0.
$$

Note that $id_{S^{n-1}}$, or more, more generally, the restriction θ of any rotation in $O(n)$ is a *p*-harmonic map of \mathbf{S}^{n-1} for any positive *p* because $|\nabla^{\mathbf{S}} \theta| \equiv \sqrt{n-1}$ and $\Delta_{\mathbf{S}}\theta = -(n-1)\theta$.

While one does not expect general weak solutions of this equation to be continuous, we will only be working with \mathcal{C}^1 solutions. These occur for example in the Sobolev range, $p > n - 1$.

Lemma 1. For any numbers $n - 1 < q_0 < q_1 < \infty$, there exist positive α *and C, depending only on qo and qi, so that*

$$
\|w\|_{\mathcal{C}^{1,\alpha}} \ \leq \ C \left(\int_{\mathbf{S}^{n-1}} \left|\nabla^{\mathbf{S}} w\right|^p \, d\Sigma \right)^{\frac{1}{p}}
$$

 $for any p-harmonic map$ $w: S^{n-1} \rightarrow S^{n-1}$ with $q_0 \leq p \leq q_1$.

Proof. Sobolev embedding implies that

$$
||w||_{\mathcal{C}^{0,\beta}} \leq C \left(\int_{\mathbf{S}^{n-1}} \left| \nabla^{\mathbf{S}} w \right|^p d\Sigma \right)^{\frac{1}{p}}
$$

n-l the regularity theory of degenerate elliptic systems. See, e.g. $\text{[HL1]}, \S 3. \square$ with $\beta = 1 - \frac{n-1}{q_0}$. The gradient Hölder continuity bound then follows from

Suppose *v* is a \mathcal{C}^1 normal field along *w* ; that is, $v \in \mathcal{C}^1(\mathbf{S}^{n-1}, \mathbf{R}^n)$ and $v \cdot w \equiv 0$. To derive the *p* Jacobi field equation for *v*, we assume that

$$
w_t = \frac{(1-t)w + tv}{|(1-t)w + tv|}
$$

is a *p*-harmonic map for $|t|$ small and compute $\frac{d}{dt}|_{t=0}$ of the *p*-harmonic map equation of w_t . Thus

$$
0 = \frac{d}{dt}\Big|_{t=0} \int_{\mathbf{S}^{n-1}} \left[\left(|\nabla^{\mathbf{S}} w_t|^{p-2} \nabla^{\mathbf{S}} w_t \right) \cdot \nabla^{\mathbf{S}} \zeta - |\nabla^{\mathbf{S}} w_t|^p w_t \cdot \zeta \right] d\Sigma
$$

=
$$
\int_{\mathbf{S}^{n-1}} \left[\left(|\nabla^{\mathbf{S}} w|^{p-2} \nabla^{\mathbf{S}} v + (p-2) |\nabla^{\mathbf{S}} w|^{p-4} (\nabla^{\mathbf{S}} w \cdot \nabla^{\mathbf{S}} v) \nabla^{\mathbf{S}} w \right) \cdot \nabla^{\mathbf{S}} \zeta
$$

-
$$
\left(|\nabla^{\mathbf{S}} w|^p v + p |\nabla^{\mathbf{S}} w|^{p-2} (\nabla^{\mathbf{S}} w \cdot \nabla^{\mathbf{S}} v) w \right) \cdot \zeta \right] d\Sigma
$$

so that, on S^{n-1} , we now have, in a distribution sense, the equation (2)

$$
J_w v := \text{div}_{\mathbf{S}} \left(\left| \nabla^{\mathbf{S}} w \right|^{p-2} \nabla^{\mathbf{S}} v + (p-2) \left| \nabla^{\mathbf{S}} w \right|^{p-4} (\nabla^{\mathbf{S}} w \cdot \nabla^{\mathbf{S}} v) \nabla^{\mathbf{S}} w \right) + \left| \nabla^{\mathbf{S}} w \right|^{p} v + p \left| \nabla^{\mathbf{S}} w \right|^{p-2} (\nabla^{\mathbf{S}} w \cdot \nabla^{\mathbf{S}} v) w = 0.
$$

For w being id_{Sn-1}, or more generally a rotation, $|\nabla^{\mathbf{S}}w|$ is a constant, and (2) is nondegenerate elliptic. In fact, here global solutions have a simple characterization:

Lemma 2. $For 2 \leq p \neq n-1$, any normal p Jacobi field v along $w = id_{S^{n-1}}$ *is* the restriction of a skew-symmetric linear map of \mathbb{R}^n . For $p = n - 1 \geq 2$, v *is the restriction of an infinitesimal conformal transformation of* \mathbf{R}^n .

Proof. Here we easily compute that $(\nabla^{\mathbf{S}} w)(x)$ is orthogonal projection onto $x^{\perp},$ so that

$$
\left(\nabla^{\mathbf{S}} w\right)(x) = \mathrm{id} - \frac{x_i x_j}{|x|^2}, \ |\nabla^{\mathbf{S}} w| \equiv (n-1)^{\frac{1}{2}}, \ (\nabla^{\mathbf{S}} w \cdot \nabla^{\mathbf{S}} v) = \mathrm{div}_{\mathbf{S}} v,
$$

$$
\mathrm{div}_{\mathbf{S}} \left[\left(\nabla^{\mathbf{S}} w \cdot \nabla^{\mathbf{S}} v\right) \nabla^{\mathbf{S}} w \right] = \nabla^{\mathbf{S}} (\mathrm{div}_{\mathbf{S}} v).
$$

Thus, (2) becomes, after dividing by $(n-1)^{\frac{p-2}{2}}$,

(3)
$$
\Delta_{S} v + \frac{p-2}{n-1} \nabla^{S} (\text{div}_{S} v) + (n-1)v + p (\text{div}_{S} v) X = 0,
$$

where X is the injection of S^{n-1} into R^n . Integrating (3) using (1) and integration by parts gives the vector equation

$$
0 = 0 + 0 + \int_{S^{n-1}} ((n-1)v - p(\nabla^{S} X) [v]) d\Sigma
$$

= $(n-p-1) \int_{S^{n-1}} v d\Sigma$,

so that *v* has average 0 provided $p \neq n-1$.

Next we multiply (3) by $-v$ and integrate over S^{n-1} to find that

$$
\int_{\mathbf{S}^{n-1}} \left(\left| \nabla^{\mathbf{S}} v \right|^2 + \frac{p-2}{n-1} \left(\mathrm{div}_{\mathbf{S}} v \right)^2 - (n-1) |v|^2 + 0 \right) d\Sigma = 0.
$$

With $v = (v_1, \ldots, v_n)$, we may rewrite the latter equation as

$$
(4) \sum_{i=1}^{n} \int_{S^{n-1}} \left(\left| \nabla^{S} v_i \right|^2 - (n-1) v_i^2 \right) d\Sigma + \frac{p-2}{n-1} \int_{S^{n-1}} \left(\text{div}_S v \right)^2 d\Sigma = 0.
$$

Recall that $n-1$ is the first eigenvalue of $-\Delta_{\mathbf{S}}$ on \mathbf{S}^{n-1} , with eigenspace generated by linear functions. Since, for $p \neq n-1$, each component v_i has average zero, each summand in (4) is necessarily nonnegative, hence zero, and each v_i is the restriction of a linear function. That is, $v(x) = Ax$ for all $x \in S^{n-1}$ and some linear map $A: \mathbb{R}^n \to \mathbb{R}^n$. Since the quadratic function $(Ax) \cdot x$ vanishes on S^{n-1} , it is identically zero and may be differentiated twice to see that $A^T + A = 0$, i.e., *A* is skew-symmetric. Every such skewsymmetric *A* gives a distinct solution $v(x) = Ax$ to (3) because divs $v \equiv 0$ and $\Delta_S v \equiv -(n-1)v$.

In case $p = n - 1 \geq 2$, *v* may not have average 0. But now, the penergy on the sphere is conformally invariant, we may first apply a suitable infinitesimal Mobius transformation to change *v* to some other normal Jacobi field that has average 0, and then argue as above. □

Lemma 3. For any number $q \in [2, \infty)$ *except* $n-1$ *, there exists a positive* $\epsilon_0 = \epsilon_0(n,q) \; so \; that, \: for \: |p-q| < \epsilon_0, \; any \: p\text{-}harmonic \: map \: w: \mathbf{S}^{n-1} \to \mathbf{S}^{n-1}$ ϵ *that is* ϵ_0 *close, in* \mathcal{C}^1 *norm, to an orthogonal rotation* θ *is itself an orthogonal rotation.*

Proof. We may assume that $\theta = \text{id}_{S^{n-1}}$. First note that a solution *w* of *r* too. We may assume that $v = \log_{n-1}$. This hote that a solution w of the *p*-harmonic map equation on S^{n-1} that is C^1 close to the identity has $|\nabla^{\mathbf{S}} w|$ pointwise close to the constant $(n-1)^{\frac{p}{2}}$. Thus *w* may be shown,

by a standard bootstrap argument, to be \mathcal{C}^{∞} . Similarly, for such w, the Jacobi field equation (2) is a uniformly strongly elliptic system having only smooth solutions. In particular, for any $k \in \{2, 3, \ldots\}$, we have the standard Schauder estimate

$$
||v||_{\mathcal{C}^{k,\alpha}} \leq C (||J_wv||_{\mathcal{C}^{k-2,\alpha}} + ||v||_{\mathcal{C}^{k-2,\alpha}}),
$$

which is valid uniformly for all *p* in some neighborhood of any fixed $q \in (2, n - 1) \cup (n - 1, \infty)$. With this and Lemma 2, we readily verify, as in [HM], §6, that, with $w = \text{id}_{S^{n-1}}$, J_w is Fredholm and that the implicit $\text{function theorem implies that some } \mathcal{C}^1 \text{ neighborhood of } \text{id}_{\mathbf{S}^{n-1}} \text{ is a } \mathcal{C}^1 \text{ manifold.}$ fold of dimension $\frac{n(n-1)}{2}$. However, the rotations $\theta \in O(n)$ near the identity already provide a full open $\frac{n(n-1)}{2}$ -dimensional neighborhood of the identity. Thus some \mathcal{C}^1 neighborhood of idg_{n-1} consists entirely of rotations. \Box

Next we prove, for the reader's convenience, two lemmas which follow from the general discussion of [HLW].

 $\textbf{Lemma 4 (}[H{\text{LW}}],\!S\text{1.1,1.3}).$ *If* $p > n - 1$ *and* $w \in \mathcal{C}^1(\mathbf{S}^{n-1},\mathbf{S}^{n-1})$ *has degree* $d > 0$ *, then*

$$
\int_{\mathbf{S}^{n-1}} \left|\nabla^{\mathbf{S}} w\right|^p d\Sigma \ \geq d^{\frac{p}{n-1}} (n-1)^{\frac{p}{2}} \sigma_n ,
$$

with equality if and only if d = ¹ *and w is an orthogonal rotation.*

Proof. One combines Hölder's inequality with the relations

$$
d\sigma_n = \int_{\mathbf{S}^{n-1}} \mathrm{Jac}(\nabla^{\mathbf{S}} w) d\Sigma \leq \int_{\mathbf{S}^{n-1}} (n-1)^{\frac{1-n}{2}} |\nabla^{\mathbf{S}} w|^{n-1} d\Sigma.
$$

If equality holds, then $|\nabla^{\mathbf{S}} w|$ is constant and each linear map $\nabla^{\mathbf{S}} w(a)$, for $a \in S^{n-1}$ must be conformal with conformality factor 1 because *w* maps \mathbf{S}^{n-1} to itself. □

Lemma 5. For any positive number ϵ , there exists a positive $q = q(\epsilon) < n$ so that if $q \leq p < n$, $w_p \in C^1(\mathbf{S}^{n-1}, \mathbf{S}^{n-1})$ has positive degree,

(5)
$$
w_p\left(\frac{x}{|x|}\right) \text{ is } p-\text{energy minimizing } ,
$$

and

and
(6)
$$
\int_{S^{n-1}} \left|\nabla^S w_p\right|^p d\Sigma \leq \epsilon^{-1} ,
$$

then

(7)
$$
||w_p - \theta||_{\mathcal{C}^1(\mathbf{S}^{n-1})} < \epsilon,
$$

for some rotation $\theta \in O(n)$.

Proof. By (5) each w_p is a p-harmonic map. Moreover, the family of all p-harmonic maps from S^{n-1} to itself satisfying (6) and corresponding to $p \in [n - \frac{1}{2}, n]$ is, by Lemma 1, precompact in $\mathcal{C}^1(\mathbf{S}^{n-1})$. Thus, if Lemma 5 were false for some positive ϵ , then we could find a sequence $p_i \uparrow n$ and corresponding C^1 convergent sequence of maps $w_i = w_{p_i} \in C^1(\mathbf{S}^{n-1}, \mathbf{S}^{n-1})$ of positive degree satisfying (5) and (6) but not (7) for any rotation θ .

First we claim that $\deg w_i = 1$ for *i* sufficiently large. In fact, letting $d_i = \deg w_i$, we first note that $d = \sup_i d_i < \infty$. So we may chose fixed disjoint closed balls $\overline{B_{\delta}(a_1)},\ldots,\overline{B_{\delta}(a_d)}$ in the open ball **B**, and then define a comparison map $v_i : \overline{B} \to S^{n-1}$ so that $v_i\vert \partial B = w_i\vert \partial B$,

$$
v_i(x) = \left(\frac{x-a_j}{|x-a_j|}\right) \text{ for } x \in \overline{\mathbf{B}_{\delta}(a_j)} \text{ and } j = 1,\ldots,d_i,
$$

and v_i is Lipschitz on $\overline{B} \setminus \cup_{j=1}^{d_i} B_{\delta}(a_j)$ with

$$
M = \sup_i \|\nabla v_i\|_{L^{\infty}(\overline{\mathbf{B}}\setminus \cup_{j=1}^{d_i} \mathbf{B}_{\delta}(a_j))} < \infty.
$$

Thus, by Lemma 4 and the minimality of $w_i(x/|x|)$,

$$
d_i^{\frac{p_i}{n-1}}(n-1)^{\frac{p_i}{2}}\frac{\sigma_n}{n-p_i} \leq \int_{\mathbf{B}} \left|\nabla w_i\left(\frac{x}{|x|}\right)\right|^{p_i} dx \leq \int_{\mathbf{B}} \left|\nabla v_i\right|^{p_i} dx
$$

$$
\leq d_i(n-1)^{\frac{p_i}{2}}\frac{\sigma_n\delta^{n-p_i}}{n-p_i} + \frac{\sigma_n}{n}M^n.
$$

Multiplying by $n - p_i$ and letting $i \to \infty$ gives a contradiction, if $d_i \geq 2$ for infinitely many i.

Having established that deg $w_i = 1$ for *i* large, we may now construct, for *i* large, another comparison map $\tilde{v}_i : \overline{B} \to S^{n-1}$ so that $\tilde{v}_i | \partial B = w_i | \partial B$,

$$
\tilde{v}_i(x) = \frac{x}{|x|} \text{ for } x \in \overline{\mathbf{B}}_{\frac{1}{2}} ,
$$

and \tilde{v}_i is Lipschitz on $\overline{B} \setminus B_{\frac{1}{2}}$ with

$$
N = \sup_i \|\nabla \tilde{v}_i\|_{L^{\infty}(\mathbf{B} \setminus \mathbf{B}_{\frac{1}{2}})} < \infty.
$$

To define \tilde{v}_i on $\overline{\mathbf{B}}_1 \backslash \mathbf{B}_{\frac{1}{2}},$ we may, for example, fix a Lipschitz map \tilde{v} : $\overline{\mathbf{B}}_{\frac{3}{4}} \backslash \mathbf{B}_{\frac{1}{2}}$ so that

$$
\tilde{v}(x) = \begin{cases} \frac{x}{|x|} & \text{for } x \in \partial \mathbf{B}_{\frac{1}{2}}, \\ w\left(\frac{4}{3}x\right) & \text{for } x \in \partial \mathbf{B}_{\frac{3}{4}}, \end{cases}
$$

where $w = (\mathcal{C}^1) \lim_{i \to \infty} w_i$. Then let

$$
\tilde{v}_i(x) = \begin{cases} \tilde{v}(x) & \text{for } x \in \overline{B}_{\frac{3}{4}} \setminus B_{\frac{1}{2}}, \\ \frac{(4-4|x|)w(x/|x|) + (4|x|-3)w_i(x/|x|)}{|(4-4|x|)w(x/|x|) + (4|x|-3)w_i(x/|x|)|} & \text{for } x \in \overline{B}_1 \setminus B_{\frac{3}{4}}. \end{cases}
$$

Now, by Lemma 4 and the minimality of $w_i(x/|x|)$,

$$
(n-1)^{\frac{p_i}{2}} \frac{\sigma_n}{n-p_i} \leq \int_{\mathbf{B}} \left| \nabla w_i \left(\frac{x}{|x|} \right) \right|^{p_i} dx \leq \int_{\mathbf{B}} |\nabla \tilde{v}_i|^{p_i} dx
$$

$$
\leq (n-1)^{\frac{p_i}{2}} \frac{\sigma_n \left(\frac{1}{2} \right)^{n-p_i}}{n-p_i} + \frac{\sigma_n}{n} N^n .
$$

Multiplying by $n - p_i$ and letting $i \to \infty$ now shows that

$$
\int_{\mathbf{S}^{n-1}} \left|\nabla^{\mathbf{S}} w_i\right|^{p_i} d\Sigma \rightarrow (n-1)^{\frac{n}{2}} \sigma_n \text{ as } i \uparrow \infty.
$$

By Lemma 4, $w = (C^1) \lim_{i \to \infty} w_i$ must be a rotation. Thus (7) holds with $\theta = w$ for *i* sufficiently large, the desired contradiction. \Box

Theorem. The map $\frac{x}{|x|}: \mathbf{B}^n \to \mathbf{S}^{n-1}$ is p-energy minimizing for all $p \in \mathbb{R}$ $[n-1,n).$

Proof. For $n = 2$, the theorem was established in [C] (see also, [CH],§7.1). Here the argument involved first verifying that, for $1 < p < 2$, any p harmonic map w from S^1 to itself is a constant speed geodesic. Then it was shown that $w(\frac{x}{|x|})$ fails to be minimizing in case $|\deg w| > 1$. Thus, a nonconstant minimizing tangent map (which must, by the regularity theory [HL1], exist for any minimizer with nonzero degree boundary data) is

necessarily of the form $\theta(\frac{x}{|x|})$ corresponding to some rotation θ of \mathbb{R}^2 . In particular, $\frac{x}{|x|} = \theta^{-1} \left(\theta(\frac{x}{|x|}) \right)$, being a rotation of a *p*-energy minimizer, is itself p-energy minimizing.

We now assume $n \geq 3$, and let

$$
P = \left\{ p \in [2, n) : \frac{x}{|x|} \text{ is } p\text{-energy minimizing} \right\} .
$$

First we observe that *P* is closed in $[2, n)$. In fact, if a sequence p_i in P approached a number $p_0 \in [2, n) \setminus P$, then there would exist some map

$$
u \in W^{1,p_0}(\mathbf{B}, \mathbf{S}^{n-1}) \text{ with } u|\partial \mathbf{B} = \text{id}_{\mathbf{S}^{n-1}} \text{ and}
$$
\n
$$
\int_{\mathbf{B}} |\nabla u|^{p_0} dx < \int_{\mathbf{B}} \left| \nabla \left(\frac{x}{|x|} \right) \right|^{p_0} dx = \frac{(n-1)^{\frac{p_0}{2}} \sigma_n}{n - p_0}.
$$

But then this strict inequality would continue to hold with p_0 replaced by p_i for *i* large, contradicting the p_i -energy minimality of $\frac{x}{|x|}$. Thus, $p_0 \in P$, and P is closed in $[2, n)$.

Second, we verify that $p \in P$ whenever $p < n$ is sufficiently close to n. In fact, suppose u_p is a p-energy minimizing map with $u_p|\partial\mathbf{B} = id_{S^{n-1}}$. By [HL1], there is an isolated singular point $a_p \in \mathbf{B}$ of u_p with

$$
(\deg u_p)(a_p) := \lim_{\delta \to 0} \deg u_p | (\partial B_{\delta}(a_p)) > 0.
$$

If $w_p\left(\frac{x}{|x|}\right)$ denotes a tangent map of u_p at a_p , then $\deg w_p = (\deg u_p)(a_p)$, and

$$
\frac{1}{n-p}\int_{\mathbf{S}^{n-1}}|\nabla w_p|^p d\Sigma = \Theta_{u_p}(a_p) := \lim_{r\to 0} r^{p-n}\int_{\mathbf{B}_r(a_p)}|\nabla u_p|^p dx.
$$

The interior monotonicity inequality [HL1],§4 gives the bound

$$
\Theta_{u_p}(a_p) \ \leq \ (1-|a_p|)^{p-n} \int_{\mathbf{B}_{1-|a_p|}(a_p)} |\nabla u_p|^p \, dx \ .
$$

For $a_p \neq 0$, we may then combine this with the inclusion $B_{1-|a_p|}(a_p) \subset$ $B_{2(1-|a_p|)}(\frac{a_p}{|a_p|})$ and the boundary monotonicity inequality [HL1],§5.6 centered at $\frac{a_p}{|a_p|}$ as well as the global energy bound

$$
\int_{\mathbf{B}} |\nabla u_p|^p dx \ \leq \ \int_{\mathbf{B}} \left|\nabla \left(\frac{x}{|x|}\right)\right|^p dx \ = \ (n-1)^{\frac{p}{2}} \frac{\sigma_n}{n-p}
$$

to conclude that

$$
\int_{\mathbf{S}^{n-1}} |\nabla w_p|^p d\Sigma = (n-p) \Theta_{u_p}(a_p) \leq C(n) < \infty ,
$$

independent of $p \in [n-1,n)$. Now, for any positive $\epsilon \leq C(n)^{-1}$, we can apply Lemma 5 to find that, for all p sufficiently close to n , there is an orthogonal rotation θ_p so that

$$
||w_p - \theta_p||_{\mathcal{C}^1(\mathbf{S}^{n-1})} < \epsilon.
$$

Insisting further that $\epsilon \leq \epsilon_0(n,n)$, Lemma 3 then implies that, for such p with $n - p < \epsilon$, w_p *itself is actually a rotation*. But $w_p(x/|x|)$, as a tangent map of the *p*-energy minimizer u_p , is *p*-energy minimizing [HL1], §6.4. Thus, $rac{x}{|x|} = w_p^{-1} \left(w_p \left(\frac{x}{|x|} \right) \right)$, being a rotation of a *p*-energy minimizer, is itself *p*-energy minimizing, and $p \in P$.

Finally, to complete the proof that $P \supset [n-1,n)$, we will show that $P \cap (n-1,n)$ is open. Suppose, for contradiction, that a sequence $q_i \in$ $(n-1,n)$ P approaches a number $q_0 \in P \cap (n-1,n)$. Let u_{q_i} be a q_i -energy minimizing map with boundary data the identity. Passing to a subsequence, we find the weak convergence in $W^{1,p}$, for all $p < q_0$, of u_{q_i} to a map $u_{q_0}: \mathbf{B} \to \mathbf{S}^{n-1}$. Using the minimality of u_{q_i} , one may check, as in $[HL1]$ §6.4, that u_{q_0} is q_0 -energy minimizing, that $u_{q_0}|\partial \mathbf{B} = id_{\mathbf{S}^{n-1}}$, and that

(8)
$$
\int_{\mathbf{B}_{\rho}(a)} |\nabla u_{q_i}|^{q_i} dx \rightarrow \int_{\mathbf{B}_{\rho}(a)} |\nabla u_{q_0}|^{q_0} dx \text{ as } i \rightarrow \infty
$$

for any ball $B_{\rho}(a) \subset B$.

We claim that $u_{q_0}(x) \equiv \frac{x}{|x|}$. Since $q_0 \in P$, u_{q_0} has the same q_0 -energy on B_1 as $\frac{x}{|x|}$, and the expression

$$
v(x) = \begin{cases} u_{q_0}(x) & \text{for } x \in \mathbf{B}_1, \\ \frac{x}{|x|} & \text{for } x \in \mathbf{B}_2 \setminus \mathbf{B}_1, \end{cases}
$$

defines a q_0 -energy minimizing map $v : \mathbf{B}_2 \to \mathbf{S}^{n-1}$. Suppose that $0 <$ $\rho \leq 1$ and $v(x) = \frac{x}{|x|}$ a.e. in $\mathbf{B}_2 \setminus \mathbf{B}_{\rho}$. The \mathcal{C}^0 boundary regularity $v|\mathbf{B}_{\rho}$ guarantees that *v* has no interior singularities on ∂B_{ρ} . Thus, *v* is C^1 in some neighborhood of ∂B_{ρ} . Moreover, since $|\nabla^S v| \equiv \sqrt{n-1}$ on ∂B_{ρ} , v satisfies a nondegenerate second order elliptic equation near $\partial \mathbf{B}_{\rho}$ and is actually infinitely differentiable there. Also ∂B_{ρ} is noncharacteristic for this equation, and $\frac{\partial v}{\partial r} \equiv 0$ on $\partial \mathbf{B}_{\rho}$. By the uniqueness of the Cauchy problem, the equation $v(x) = \frac{x}{|x|}$ holds in some open neighborhood of ∂B_{ρ} . It follows that

$$
\inf \left\{ \rho \; : \; v(x) = \frac{x}{|x|} \text{ a.e. in : } \mathbf{B}_2 \setminus \mathbf{B}_{\rho} \right\} \; = \; 0 \; ,
$$

hence, $u_{q_0}(x) \equiv \frac{x}{|x|}$.

Since $q_i > n - 1$, there is an isolated point $a_i \in \text{sing } u_{q_i}$ with $(\deg u_{a})/(a_i) > 0$. Next note that the constants in the small energy regularity theorem for *p*-energy minimizers ($[HL1]$, \S 2-3) are independent of *p* for p near q_0 . The point here is the uniform regularity of the blow-up equation div($|\nabla u|^{p-2}\nabla u$) = 0. This along with (8) implies that the singularities a_i approach sing $u_{q_0} = \{0\}$ as $i \to \infty$. Let $w_i(\frac{x}{|x|})$ denote a tangent map of u_{q_i} at a_i . As before, Lemma 4 implies that

$$
\int_{\mathbf{S}^{n-1}} |\nabla w_i|^{q_i} d\Sigma \ge (n-1)^{\frac{q_i}{2}} \sigma_n
$$

because deg $w_i > 0$. Moreover, since $B_{1-|a_i|}(a_i) \subset B_1(0)$, the interior monotonicity inequality now gives that

$$
\int_{S^{n-1}} |\nabla w_i|^{q_i} d\Sigma = (n-q_i)\Theta_{u_{q_i}}(a_i)
$$
\n
$$
\leq (n-q_i)(1-|a_i|)^{q_i-n} \int_{B_1(0)} |\nabla u_{q_i}|^{q_i} dx
$$
\n
$$
\leq (n-q_i)(1-|a_i|)^{q_i-n} \int_{B_1(0)} \left|\nabla \left(\frac{x}{|x|}\right)\right|^{q_i} dx
$$
\n
$$
= (1-|a_i|)^{q_i-n}(n-1)^{\frac{q_i}{2}} \sigma_n \to (n-1)^{\frac{q_0}{2}} \sigma_n,
$$

as $i \rightarrow \infty$. Again, Lemma 5 shows, for each positive ϵ , that, for *i* sufficiently large,

$$
||w_i - \theta_i||_{\mathcal{C}^1(\mathbf{S}^{n-1})} < \epsilon ,
$$

for some rotation θ_i . Insisting now that $\epsilon \leq \epsilon_0(n, q_0)$, we deduce from Lemma 3 that, for such *i* with $|q_i - q_0| < \epsilon$, the map w_i itself is a rotation. As before, the q_i -energy minimality of $w_i(x/|x|)$ then implies q_i -energy minimality of $x/|x|$, which contradicts that $q_i \notin P$. \Box

Remark. J.M. Coron and R. Gulliver [CG] showed that $H(\frac{x}{|x|})$ is 2-energy minimizing where H is the standard Hopf map from \mathbf{S}^3 to \mathbf{S}^2 . In [HL3], we generalize most of the results of [HLW] and use a Jacobi field calculation as in [R], to verify the *p*-energy minimality of $H(\frac{x}{|x|})$ for $p \in [p_0, 4)$ for some $p_0 < 4.$

References.

- [ABL] F.J. Almgren, W. Browder, and E. Lieb, *Co-area, liquid crystals, and minimal surfaces,* S.S. Chern,ed. Springer Lectures Notes in Math. **1306** $(1988), 1-12.$
- [AL] M. Avellenada and F.H. Lin, *Fonctions quasi affines et minimization de J\VU\P* , C.R. Acad. Sci. Paris, **306(1)** (1988), 355-358.
- [B-C-L] H. Brezis, J.-M. Coron, and E. Lieb, *Harmonic maps with defects.* Comm. Math. Physics **107** (1986), 649-705.
- [C] B. Chen, *Singularities* of *p*-harmonic mappings, Thesis, University of Minnesota, 1989.
- [CH] B. Chen and R. Hardt, *Prescribing singularities for p-harmonic mappings,* Indiana Univ. Math. J. **44,** no.2 (1995), 575-601.
- [CG] J.M. Coron and R. Gulliver, *Minimizing p-harmonic maps into spheres,* J. Reine. Angew. Math. **401** (1989), 82-100.
- [HL1] R. Hardt and F.H. Lin, *Mappings minimizing the L p norm ofthe gradient,* Comm. P.A.M. **15** (1987), 555-588.
- [HL2] R. Hardt and F.H. Lin, *Singularities for p-energy minimizing unit vectorfields on planar domains,* Calculus of Variations and Partial Differential Equations, 3 (1995), 311-341.
- [HL3] R. Hardt and F.H. Lin, *The Hopf invariant of singularities of some penergy minimizing maps,* in preparation.
- [HLW] R. Hardt, F.H. Lin, and C.Y. Wang, *Singularities of p-Energy Minimizing Maps,* Comm. P.A.M., 50 (1997), 399-447.
- [HM] R. Hardt and L. Mou, *Harmonic maps with fixed singular sets,* J. Geom. Anal. 2, no.5 (1992), 445-488.
- [L] F.H. Lin, *Une remarque sur Vapplication x/\x\,* C.R. Acad. Sci. Paris, **305(1)** (1987), 529-531.
- [Lu] S. Luckhaus, *Partial Holder continuity for minima of certain energies among maps into a Riemannian manifold,* Ind. Univ. Math. J. 37 (1988), 349-367.
- [M] R. Musina, *Lower bounds for the p-energy and a minimization property of the map x/\x\,* Richerche Mat. **43** (1994), 335-346.
- 152 Robert Hardt, Fanghua Lin, and Changyou Wang
- [R] T. Riviere, *Minimizing fibrations and p-harmonic maps in homotopy* $classes$ *from* S^3 *to* S^2 , to appear in CAG.
- [S] L.Simon, *Lectures on geometric measure theory,* Proc. Centre for Math. Anal. 3 (1983) Australian National University, Canberra.

RECEIVED MAY 30, 1996.

RICE UNIVERSITY HOUSTON, TX 77252 USA

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NYU NEW YORK CITY, NY 10012 USA

AND

RICE UNIVERSITY HOUSTON, TX 77252 USA