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The map A : Bn > Sn~l is p-energy minimizing whenever p G 
[n — l,n). 

This minimality was first established for p = 2, n = 3 in [BCL] (with 
another proof in [ABL]), for p = 2 < n in [L], and for p G {2,3,..., n — 1} 
in [CG] (with another proof in [AL]). R. Musina [M] also proved the p- 
energy minimality of orthogonal rotations among degree 1 maps of S71"1 for 
p € [n — 1, n). However, there remained, for non-integer p, the possibility of 
some non-homogenous extension of idgn-i to Bn having less p-energy than 
ill. The present paper, rules this out for p G [n—1, n). Our argument, which 
does not rely on the previous works, involves continuation in p, uses Jacobi 
field considerations, and starts with p near n. Behavior of singularities 
of p-energy minimizers as p j n is the theme of [HLW], and questions on 
asymptotic behavior near singularities led to Lemma 2 below, which classifies 
normal p Jacobi fields along the identity. 

Our goal is to show that, for p G [n — 1, n), any map u G T;F1'p(Bn, Sn~l) 
with n|9Bn = idgn-i must have p-energy at least equal to the number 

/ iv(*ydx = / rf^Eriv-drffi = c-1^. 
JB^\    \\

X
\J Jsn-iJo   L     r     J n-P 

Here dE denotes integration on the (n — l)-sphere with respect to Hausdorff 
measure Hn~l and 

an  = T-T-HS71"1) 

denotes the volume of the (n — l)-sphere. 
For functions or vectorfields defined on S71"1 , we will follow the no- 

tation of [S] for the operators Vs, divs, As = divgoV8 which involve 
differentiation only in directions tangent to S71-1. Thus, for any function 
u G C^S^R) and point a G S71"1, 

(Vsn)(a)  =  (Vw)(a) -  [a-(Vw)(a)]a G  a1. 
1 Research partially supported by the NSF 
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Also for any (not necessarily tangent) vectorfield v G C1(Sn~1, Rn), we have 
the formula 

n 

divsv =  X^-O^te'^))  > 
i=l 

where ei = (1,0,..., 0),..., en = (0,..., 0,1), and Stoke's theorem implies 
that 

(i) /   di divs^ dH = 0 . 

A map w € W1'p(Sn-1,Sn_1) is a p-harmonic map if, for any £ G 

d\       f      I   o / w + tC \\p 

0 =  —        /        Vs ( „        \. )\   dS 
dt\t=QJsn-i\      \\\w + K\J\ 

= pf   i [(|V
s«;r2 Vsw) • VSC - IV^fwC] dS . 

Thus, on S71"1, we have, in a distribution sense, the equation 

divs(|Vsw|P~2Vsw)  + \Vsw\pw = 0. 

Note that idgn-i, or more, more generally, the restriction 0 of any rotation in 
O(n) is a p-harmonic map of S71-1 for any positive p because |VS0| i= y/n — 1 
and As0 = -(n-l)0. 

While one does not expect general weak solutions of this equation to 
be continuous, we will only be working with C1 solutions. These occur for 
example in the Sobolev range, p > n — 1. 

Lemma 1. For any numbers n — I < qo < qi < oo, there exist positive a 
and C, depending only on qo and qi, so that 

\\w\\ci.a  < c(f      \Vswf dL\* 

for any p-harmonic map w : S71"1 —> S11-1 with qo < p < qi- 

Proof. Sobolev embedding implies that 

IMIcw < cfj^ JvSwfdxY 
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n-l 

the regularity theory of degenerate elliptic systems. See, e.g. [HL1],§3.    D 
with ft = 1 — ~-i. The gradient Holder continuity bound then follows from 

Suppose v is a Cl normal field along w ; that is, v € C1(Sn 1,Rn) and 
v • w = 0. To derive the p Jacobi field equation for v, we assume that 

(1 - t)w + tv 
Wt     \(l-t)w + tv\ 

is a p-harmonic map for \t\ small and compute ^|t=o of the p-harmonic map 
equation of Wf, Thus 

= J   ^(iV^f-'v^ + (p-2)|Vst«;r4(VSi«-Vst;)Vsti;)-VsC 

- (\Vsw\pv + p\Vsw\p-2(Vsw ■ Wsv)w) • C] dZ 

so that, on S"-1, we now have, in a distribution sense, the equation 

(2) 

Jwv := divs(|Vsw|p 2Vsv + (p-2)|Vs^|P 4 (Vs^ • Vs^)Vs^) 

+ |Vs^|pt; + p|Vs^|p"2(Vs^-Vs^ = 0. 

For w being idsn-i, or more generally a rotation, \Wsw\ is a constant, and 
(2) is nondegenerate elliptic.   In fact, here global solutions have a simple 
characterization: 

Lemma 2. For 2 < p ^ n—1, any normal p Jacobi field v along w = idgn-i 
is the restriction of a skew-symmetric linear map o/Rn. Forp = n — 1 > 2, 
v is the restriction of an infinitesimal conformal transformation o/Rn. 

Proof Here we easily compute that (Vstu)(x) is orthogonal projection onto 
a;-1, so that 

(Vs™) (z) = id-^, |VS™|  =(n-l)l, (VswVsv)  = divsU , 

divs [(Vsw • Vsv) Vsw]  = Vs(divsi;) . 
p—2 

Thus, (2) becomes, after dividing by (n — 1) 2 , 

(3) Asv + -—-Vs (divs v) + (n-l)t; + p(divsv)X = 0, 
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where X is the injection of S71-1 into Rn. Integrating (3) using; (1) and 
integration by parts gives the vector equation 

0 = 0 + 0+/      ((n - IJw - p (VSX) [v]) dE 

= (n-p-1) /      vdY* , 

so that v has average 0 provided p^ n—1. 
Next we multiply (3) by — v and integrate over Sn~l to find that 

/    1 (l
vSH2 + frf (divs^)2 - (n-l)M2 + 0^ dE = 0 . 

With v = (vi,..., vn), we may rewrite the latter equation as 

(4) E /      (IvS^r - (^- ^i) dS + ^T /     (divs^)2 ^ = 0 . 

Recall that n — 1 is the first eigenvalue of —As on S71-1, with eigenspace 
generated by linear functions. Since, for p / n — 1, each component v* has 
average zero, each summand in (4) is necessarily nonnegative, hence zero, 
and each vi is the restriction of a linear function. That is, v(x) = Ax for all 
x E Sn~1 and some linear map A : Rn —> Rn. Since the quadratic function 
(Ax) • x vanishes on S71"1, it is identically zero and may be differentiated 
twice to see that AT + ^4 = 0, i.e., A is skew-symmetric. Every such skew- 
symmetric A gives a distinct solution v(x) = Ax to (3) because divs v = 0 
and Ast> = — (n — l)v. 

In case p = n — 1>2, v may not have average 0. But now, the p- 
energy on the sphere is conformally invariant, we may first apply a suitable 
infinitesimal Mobius transformation to change v to some other normal Jacobi 
field that has average 0, and then argue as above. □ 

Lemma 3. For any number q 6 [2, oo) except n — 1, there exists a positive 
60 = eo(n,g) so that, for \p — q\ < eo, any p-harmonic map w : S71-1 —► S71"1 

that is eo close, inC1 norm, to an orthogonal rotation 6 is itself an orthogonal 
rotation. 

Proof We may assume that 0 = idgn-i. First note that a solution w of 
the p-harmonic map equation on Sn~l that is C1 close to the identity has 
|Vsty| pointwise close to the constant (n — 1)2.   Thus w may be shown, 
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by a standard bootstrap argument, to be C00. Similarly, for such w, the 
Jacobi field equation (2) is a uniformly strongly elliptic system having only 
smooth solutions. In particular, for any k € {2,3,... }, we have the standard 
Schauder estimate 

\\v\\ck,«     <    C (\\Jwv\\Ck-2ta    +    |M|Cfe-2,«)    , 

which is valid uniformly for all p in some neighborhood of any fixed 
q G (2,n — 1) U (n — l,oo). With this and Lemma 2, we readily verify, 
as in [HM],§6, that, with w = idgn-i, Jw is Fredholm and that the implicit 
function theorem implies that some C1 neighborhood of idgn-i is a C1 mani- 
fold of dimension n ^    . However, the rotations 8 £ 0(n) near the identity 

already provide a full open n g -dimensional neighborhood of the identity. 
Thus some C1 neighborhood of idgn-i consists entirely of rotations. □ 

Next we prove, for the reader's convenience, two lemmas which follow 
from the general discussion of [HLW]. 

Lemma 4 ([HLW],§1.1,1.3). Ifp > n - 1 and w € C^S71"1^71"1) has 
degree d > 0, then 

f      |Vsw|pdE > d^(n-l)!an , 
Jsn-1 

with equality if and only if d = 1 and w is an orthogonal rotation. 

Proof. One combines Holder's inequality with the relations 

dan =   f      Jac(Vsw)dE<   /     (n - l)1^ IvV"1 d£ . 
./S"-1 Jsn-1 

If equality holds, then |Vsw\ is constant and each linear map Vsw(a), for 
a G Sn~l must be conformal with conformality factor 1 because w maps 
S71"1 to itself. □ 

Lemma 5. For any positive number e, there exists a positive q = q(e) < n 
so that if q < p < n, wp € C1(Sn~1, S71"1) has positive degree, 

(5) Wp f r—r j   is p — energy minimizing , 
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and 

(6) /      |Vsw/ dS < 6-1 , 

then 

(7) ||^p - 0||ci(s»-i)  < c , 

for some rotation 0 £ 0(ri). 

Proof, By (5) each Wp is a p-harmonic map. Moreover, the family of all 
p-harmonic maps from S71-1 to itself satisfying (6) and corresponding to 
p G [n — |,n] is, by Lemma 1, precompact in C1(Sn~1). Thus, if Lemma 
5 were false for some positive 6, then we could find a sequence pi | n and 
corresponding C1 convergent sequence of maps Wi = Wpi G C1(Sn""1, S71-1) 
of positive degree satisfying (5) and (6) but not (7) for any rotation 6. 

First we claim that degt^ = 1 for i sufficiently large. In fact, letting 
di = degwi, we first note that d = sup^di < oo. So we may chose fixed 
disjoint closed balls B^ai),..., Us (ad) in the open ball B, and then define 
a comparison map Vi : B —> S71-1 so that Vi\dJ5 = ^i|5B, 

■: — )     for x G B^aj)    and j = 1,..., di , 
\x ~~ aj\J 

and ^i is Lipschitz on B \ LL-l^B^fly) with 

M = ^Pl|V«i||Loo(5Xu^iB4(ai))  < oo. 

Thus, by Lemma 4 and the minimality of Wi(x/\x\), 

dr^n-l)^-^-  <   l\vwi fAir ^ <   ! |V«i|ft <fe n-ft  - 7B I        VN/I 7B 

n — pi n 

Multiplying by n — pi and letting i --> oo gives a contradiction, if d* > 2 for 
infinitely many i. 

Having established that degit/i = 1 for i large, we may now construct, 
for i large, another comparison map vi : B —> S71-1 so that {;i|dB = iyf |9B, 

^   
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and Vi is Lipschitz on B \ B i with 

N   =   SUp||VtJi||Loo(B\Bi) 
i 2 

<   oo . 

To define Vi on Bi\B i, we may, for example, fix a Lipschitz map v : Ba \B i 
2 4 2 

so that 
7-7 forxGSBi, 
\X\ 2 

v(x)    =     < S     /4 \ 
w   -a; j     for a; G SBa, 

\     V3  / 4 

where w; = (Cl) limi^oo w;i. Then let 

v(x) fora;6B3\Bi, 

Vt(a?) =   <   (4-4|a;|Ma:/|rr|) + (4|x|~3K(a:/|x|) 

|(4 - 4\x\)w(x/\x\) + (4|x| - 3)ti;i(a?/|x|; 

Now, by Lemma 4 and the minimality of Wi(x/\x\), 

fora;eBi\B3 . 

(n_ l)$_2!i_  <   / |v^ (-^r) ^ dx <   f iVvil* dx 
n-pi       JB\        \\X\J JB 

< (n.^Mii— + ^rr. 
n — pi n 

Multiplying by n — pi and letting i —> oo now shows that 

/       |Vsi(;i|Pi dE -»  (n - l)tcrn as i T oo . 

By Lemma 4, w = (C1) limi_>oo ^i must be a rotation. Thus (7) holds with 
0 = w for i sufficiently large, the desired contradiction. □ 

Theorem.  The map A : Bn —> Sn~l is p-energy minimizing for all p G 
[n —l,n). 

Proof. For n = 2, the theorem was established in [C] (see also, [CH],§7.1). 
Here the argument involved first verifying that, for 1 < p < 2, any p- 
harmonic map w from S1 to itself is a constant speed geodesic. Then it 
was shown that w(jfj) fails to be minimizing in case |degtt;| > 1. Thus, a 
nonconstant minimizing tangent map (which must, by the regularity the- 
ory [HL1], exist for any minimizer with nonzero degree boundary data) is 
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necessarily of the form ^(ifr) corresponding to some rotation 9 of R2.  In 

particular, A = O"1 (^(]f|))? being a rotation of a p-energy minimizer, is 
itself p-energy minimizing. 

We now assume n > 3, and let 

P =  < p € [2, n)  :  -r-y is p-energy minimizing > . 

First we observe that P is closed in [2, n). In fact, if a sequence pi in 
P approached a number po € [2, n) \ P, then there would exist some map 
u e W1^(B, S71"1) with u\dB = idgn-i and 

/Biv»r<fa</B|v(i 
n-po 

But then this strict inequality would continue to hold with po replaced by 
Pi for i large, contradicting the p^-energy minimality of A. Thus, po G P, 
and P is closed in [2, n). 

Second, we verify that p 6 P whenever p < n is sufficiently close to n. 
In fact, suppose up is a p-energy minimizing map with Up\dI5 = id-gn-i. By 
[HL1], there is an isolated singular point dp € B of Up with 

(degWp)(ap)  :=  limdegUp\(dBs(ap))  > 0. 

If Wp (A J denotes a tangent map of Up at a^, then degt^p = (degUp)(ap), 

and 

—^— /      \Vwp\pdZ = Gw rap)  :=  limr^n /        |Vtzp|
prfa; . 

n-pJSn-i p r->0 7Br(ap) 

The interior monotonicity inequality [HL1],§4 gives the bound 

QUMP)  ^  (l-\ap\)p-n f \Vup\pdx . 

For dp 7^ 0, we may then combine this with the inclusion Bi_|ajj|(ap) C 
&2(i-\a \)(wi) an<^ ^^e boundary monotonicity inequality [HL1],§5.6 cen- 

tered at TTJ
2

]- as well as the global energy bound 
lLp\ 

J,p\ 

P 

/BIV.P|^</B|V(^) dx =  (n — 1) 2 
n — p 
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to conclude that 

|Vwp|pdE =  (n-p)Qup{ap)  < C{n)  < oo , 
is^-i 

independent of p G [n — l,n). Now, for any positive e < C^n)-1, we can 
apply Lemma 5 to find that, for all p sufficiently close to n, there is an 
orthogonal rotation 0p so that 

IK - 0pllci(s—i)  < ^ • 

Insisting further that e < €o(n,n), Lemma 3 then implies that, for such p 
with n — p < €, Wp itself is actually a rotation. But u;p(a;/|a;|), as a tangent 
map of the p-energy minimizer Up, is p-energy minimizing [HL1],§6.4. Thus, 

rjjr = w~l (wp (ifijjj being a rotation of a p-energy minimizer, is itself 

p-energy minimizing, and p G P. 
Finally, to complete the proof that P D [n — l,n), we will show that 

P PI (n — l,n) is open. Suppose, for contradiction, that a sequence qi G 
(n — l,n) \ P approaches a number go € P H (n — l,n). Let uqi be a 
^-energy minimizing map with boundary data the identity. Passing to a 
subsequence, we find the weak convergence in W1,7*, for all p < qo, of uqi to 
a map uqo : B -* S72""1. Using the minimality of uqi1 one may check, as in 
[HL1]§6.4, that uqQ is go-energy minimizing, that ^0|5B = idgn-i, and that 

(8) /        \Vuqi\
qidx ->   /       \Wuqo\

qodx  as i-> oo 
JBp(a) JBp(a) 

for any ball B/9(a) C B. 
We claim that uqo(x) = A. Since qo G P, n^ has the same go-energy on 

Bi as A, and the expression 

uqo(x)     for x G Bi, 
v{x)  =   {  x 

7 forn:GB2\Bi , 

defines a go-energy minimizing map v : B2 —> S71-1. Suppose that 0 < 
p < 1 and i>(a;) = A a.e. in B2 \ Bp. The C0 boundary regularity i^Bp 

guarantees that v has no interior singularities on 9Bp. Thus, v is C1 in 
some neighborhood of 9Bp. Moreover, since |Vst;| = \/n — 1 on 9Bp, t; 
satisfies a nondegenerate second order elliptic equation near 9Bp and is 
actually infinitely differentiable there. Also 9Bp is noncharacteristic for this 
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equation, and |p = 0 on dBp. By the uniqueness of the Cauchy problem, 
the equation v(x) = ||| holds in some open neighborhood of SBp. It follows 
that 

inf < p : v(x) = — a.e. in :  B2 \ Bp >   = 0 , 
I Fl J 

hence, uqo(x) = ^. 
Since qi > n — 1, there is an isolated point a* £ singly with 

(deg^J(ai) > 0. Next note that the constants in the small energy reg- 
ularity theorem for p-energy minimizers ([HLl],§2-3) are independent of p 
for p near go- The point here is the uniform regularity of the blow-up equa- 
tion div(|V^|p~2V^) = 0. This along with (8) implies that the singularities 
di approach sing^0 = {0} as i —> 00. Let ^(ifr) denote a tangent map of 
Uqi at di. As before, Lemma 4 implies that 

J. gn-l 

Qi 

dx 

because degw* > 0. Moreover, since B1_|ai|(ai) C Bi(0), the interior mono- 
tonicity inequality now gives that 

/      iVwipdE =  {n-q?)Qu(ai) 

< (n - ft)(l - loil)*-" /       IVU^I"^ 
^Bi(0) 

< (n-%)(l-N)9i-n/       kfe) 
yBiWl   VFI/ 

as i —► oo. Again, Lemma 5 shows, for each positive 6, that, for i sufficiently 
large, 

\\wi   -   0»llci(S»-i)   <   C > 

for some rotation ^. Insisting now that e < eo(n, go)? we deduce from Lemma 
3 that, for such i with \qi — go I < £, the map wi itself is a rotation. As before, 
the (fr-energy minimality of Wi(x/\x\) then implies g^-energy minimality of 
x/\x\, which contradicts that qi £ P. □ 

Remark. J.M. Coron and R. Gulliver [CG] showed that #(]§[) is 2-energy 

minimizing where H is the standard Hopf map from S3 to S2. In [HL3], we 
generalize most of the results of [HLW] and use a Jacobi field calculation as 
in [R], to verify the p-energy minimality of #(]§[) for p e [po>4) for some 
Po<4. 
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