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Introduction. 

The discovery by M. Gromov of negatively curved metric spaces and 
groups [Gro87] has strongly influenced geometric topology and combina- 
torial group theory. Spaces which are negatively curved generalize hyper- 
bolic manifolds, and they share many of the geometric features of hyper- 
bolic manifolds. For example, in a compact, negatively curved space with 
non-elementary fundamental group, geodesies behave much as they do in a 
hyperbolic manifold: the universal cover has a space at infinity correspond- 
ing to endpoints of geodesies, and there is an ergodic geodesic flow. For 
compact spaces which are not negatively curved, it seems desirable to find 
some common geometric features, and it would be even better to find a 
geometric feature which characterizes lack of negative curvature. This char- 
acterization should be similar to W. Thurston's Hyperbolization Conjecture 
for 3-Manifolds, which says that a closed 3-manifold M with infinite, freely 
indecomposable fundamental group is hyperbolic if and only if M has no im- 
mersed, incompressible torus. This conjecture can be weakened as follows 
[Mos95]: 

Weak Hyperbolization Conjecture.  Given a closed 3-manifold M, ex- 
actly one of the following happens: 

1. M is negatively curved in the sense of Gromov 

2. M has an immersed incompressible torus. 

We present a geometric characterization for compact spaces which are 
not negatively curved, in terms of their 2-skeleta. The reader will recognize, 
even without precise definitions of the terminology, that our characterization 
parallels the above statement. 

^he first author is supported in part by NSF grant DMS 95-04946. 
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Theorem A.  Given a finite 2-complex X,  exactly one of the following 
happens: 

1. X is negatively curved in the sense of Gromov. 

2, There is compact, 2-dimensional measured lamination A of Euler char- 
acteristic zero, and a "nice" map f:A—>X which is strongly least 
area on leaves. 

Here is a brief discussion of negative curvature and laminations, suffi- 
cient to understand the statement of Theorem A; §1 contains a more formal 
treatment. 

Negative curvature for a finite, simplicial 2-complex X is defined, in terms 
of a linear isoperimetric inequality. Following [BF92], we say that X is 
negatively curved if there is a constant K such that for every homotopically 
trivial closed curve 7, there exists a disc map d: D —> X spanning 7 such 
that Area(d) < K - Length^). Length and area are measured by using 
some piecewise simplicial metric on X, for example a metric that makes 
the 2-simplices into equilateral Euclidean triangles of some constant side 
length. Gromov has proved that negative curvature of X is equivalent to 
the universal cover X being a hyperbolic metric space (see [Gro87], [CDP90], 
or appendix 2 of [GS90])—there exists 8 > 0 such that for each geodesic 
triangle A in X and for each point p in one side of A, the distance from p 
to the union of the other two sides is at most 6. 

The property of negative curvature can be formulated for any finite sim- 
plicial complex Y. Negative curvature is independent of the actual metric 
chosen on Y. Indeed, it depends only on the fundamental group [Gro87]: Y 
is negatively curved if and only if, for any finite simplicial complex X with 
7ri(X) « 7ri(y), X is also negatively curved. It follows that if you want to 
study negative curvature of Y, you are free to replace Y with any X having 
the same fundamental group. In order to simplify the lamination theory, we 
pick X to be a finite 2-complex. 

We should point out that the term "negatively curved space" is some- 
times used in the literature to refer to a space which is "locally CAT(K) 
with K < 0"; this is a local condition on X or on X, whereas our concept 
of negatively curved space is an asymptotic condition on X. 

We use the term lamination for what has been called a "foliated space" 
in the literature. Our laminations are always 2-dimensional, so a lamination 
has the local structure of the product of a 2-disc with a locally compact 
Hausdorff space T called the local transversal A measured lamination is a 
lamination A together with an assignment of a finite, positive Borel measure 
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to each local transversal, so that a compatibility condition holds as the local 
transversal moves around. The simplest example of a measured lamination 
is a compact surface, whose local transversals are points which are given the 
Dirac measure. 

A "nice" map from a measured lamination A to a 2-complex X is a con- 
tinuous function /: A —> X, with certain restrictions on the local behavior 
of / on leaves, in order to rule out pathologies like constant maps from A to 
X. The map / is normal if for each leaf L of A, there is a cell-decomposition 
of L such that each fc-cell maps homeomorphically to a fc-cell of X, and for 
any 2-cells a =fi r in L sharing a common vertex, we have f(a) ^ /(T). If 
we relax this definition by allowing a 2-cell of L to map as an n-fold cyclic 
cover of a 2-cell in X, and if n is bounded above by some constant TV, we 
obtain the definition of an N-normal map. In theorem A, "nice" means 
"3-normal". This cannot be strengthened very much: there are examples of 
2-complexes X which are not negatively curved, and for which the second 
condition of theorem A fails if "nice" means "normal". 

The Euler characteristic of a measured lamination A generalizes the Eu- 
ler characteristic of a compact surface. We use a definition which generalizes 
Euler's formula x^F — E + Vioid, surface with F faces, E edges, and V 
vertices. This formula generalizes most easily when there is a map f:A—>X 
which is a local embedding on leaves. In that case, F represents the total 
transverse measure of A over the barycenters of 2-cells of X, E is the total 
transverse measure over the barycenters of 1-cells, V is the total transverse 
measure over the 0-cells, and we have x(A) = F — E + V. 

A map /: A —* X is strongly least area on leaves if for each leaf L C A 
with universal cover L, and for each embedded disc D C L, the induced disc 
map D —* X has least area among all disc maps with the same boundary. 
Notice that when A is a 2-torus, this condition is quite unlike the usual 
condition that f:A—>X have least area in its homotopy class. 

The laminations produced by Theorem A are called limiting laminations, 
for reasons which will be explained below. The strongly least area property 
is necessary in order for the lamination to carry any geometric information 
about X. It is instructive to consider the case where X has a limiting 
lamination which is a closed, connected oriented surface, that is, a torus T2. 
If there is a strongly least area map f:T2-*X, then / is vri-injective, so 
7ri(X) has a Z2 subgroup. To see why, consider the induced map /: R2 —> 
X, and let F C R2 be the lattice realizing the group of deck transformations. 
If / is not TTi-injective, there is a line segment E C R2 connecting two lattice 
points such that 7 = f{E) is a homotopically trivial curve in X, It follows 
that 7 extends to a disc map d: D —► X.  Let A be the area of this disc 
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map. Now construct a large parallelogram P in R2 with E as one side, 
and with vertices in F, having area larger than 2A. This parallelogram P, 
when mapped into X, is assumed to be least area. The boundary of P maps 
to a path of the form ^f6ry~16~1 in X, for some closed curve 6. This path 
also bounds a disc map whose domain is obtained by joining two copies of 
D by a long, thin strip of infinitesmal area. This disc map has area 2A1 

contradicting that / is strongly least area; therefore / is 7ri-injective. 
The above argument raises the hope of proving the Weak Hyperboliza- 

tion Conjecture for a 3-manifold M by showing that if M is not negatively 
curved, then a limiting lamination A —> M can be approximated by an in- 
compressible torus. Using the approximation methods of Morgan & Shalen 
[MS88], this is true if the map A —> M is an embedding; but this approach 
gives no information for nonembedded limiting laminations. Moreover, there 
exist spaces with limiting laminations which cannot be approximated by an 
incompressible torus. For instance, when Tri(X) is the Baumslag-Solitar 
group BS(1,2) = (a, b | bab~l = a2}, the space X is not negatively curved, 
but 7ri(X) has no Z2 subgroup. In §5 we give an explicit description of X 
and its limiting lamination A. This lamination does not have a Euclidean 
structure, in fact it has leaves which are quasi-isometric to the hyperbolic 
plane. We also describe an example of a space X with a limiting lamination 
that does have a Euclidean structure, yet this lamination cannot be approx- 
imated by a compact surface. These examples emphasize that any hope of 
proving the Weak Hyperbolization Conjecture for 3-manifolds must rest on 
special methods of 3-manifold topology. 

Here is an outline of the proof of Theorem A. Suppose X is not negatively 
curved. It follows that there is a sequence of least area disc maps dj: Dj —» 
X, such that 

AYesi(Dj)/Length(dDj) —* oo    as   j —► oo 

Such a sequence is called a fat disc sequence for X, and lack of negative 
curvature is characterized by the existence of a fat disc sequence. Regard 
these disc maps as a sequence of measured laminations with boundary, by 
putting a transverse Dirac measure on each disc Dj. Now normalize the 
Dirac measure, dividing it by Area(.Dj). Show that the fat disc sequence has 
a subsequence converging to a lamination map f:A—>X such that A has 
no boundary and x(A) = 0. The fact that A has no boundary comes from an 
argument of Plante [Pla73]: in a fat disc sequence, the normalized boundary 
length is equal to Length(dDj)/ Area(£)j) which vanishes in the limit. The 
fact that the x(A) = 0 comes from an argument we learned from Morgan- 
Shalen [MS88]: after passing to a subsequence, we have Dj/ Area(.Dj) —> A, 
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so x(Dj)/ Area(£>j) —> x(A). But x(Dj) = 1 and Area(2}j) —»• oo, so 
x(Dj)/ ATea,(Dj) —> 0 and it follows that x(A) = 0. These arguments are 
carried out in §2. 

The hardest part of this outline is obtaining convergence. We do this 
by constructing a compact universal lamination with boundary fi, equipped 
with a map /: fi —> X, so that the leaves of fJ consist of all nice (i.e. 3- 
normal) maps of surfaces to X. Then we prove the Normal Disc Theorem 
which says that any fat disc sequence can be replaced by one which is 3- 
normal, hence the discs Dj in the sequence may be regarded as leaves of ft. 
The space of normalized transverse measures on Q is compact, hence the 
normalized Dirac measures on the Dj have a subsequence converging to a 
transverse measure on fi, whose support is the desired measured lamination 
A. 

The proof that /: A —> X is strongly least area on leaves is carried out 
in §3. The main tool is the Strong Shadowing Theorem, which shows that 
for each leaf L of A with universal cover L, the induced map /: L —> X is a 
Gromov-Hausdorff limit of a subsequence of the fat disc sequence dj: Dj —> 
X. In particular, for each embedded disc D C L there is an embedding 
D c-> Dj for some j such that the composed map D ^-» Dj -> X is identical 
to / | Z?, and hence the latter map is least area. 

The converse is proved in §4 by quoting results from analysis; our thanks 
to E. Ghys for suggesting this method. Given a strongly least area measured 
lamination f:A—>X with x(A) = 0, it is shown in §1 that A has no sphere 
leaves. Then we use a theorem of Ghys to conclude that almost every leaf 
L of A is conformally Euclidean. Next we use the Ahlfors Lemma which 
says, in modern language, that when L is conformally Euclidean it cannot 
be negatively curved; in fact, the universal cover L has an embedded fat 
disc sequence. Finally, using the fact that the induced map L —> X is least 
area, it follows that X is not negatively curved. 

Theorem A is applied to give new proofs, in the restricted setting of 
2-complexes, for two geometric results: the Flat Plane Theorem (see §5), 
and the Conformal Minimal Plane Theorem (see end of §4). The Flat Plane 
Theorem says that if X is nonpositively curved in the sense of CAT(O) ge- 
ometry, and if X is not negatively curved in the sense of Gromov, then the 
universal cover X contains an isometrically embedded copy of the Euclidean 
plane; this is proved in [Bri] for any nonpositively curved space. The Con- 
formal Minimal Plane Theorem says that if X is not negatively curved in 
the sense of Gromov then there is nonconstant, conformal least area map of 
the Euclidean plane to X; this is stated in [Gro87] for any compact space. 
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It might be interesting to prove an analogue of Theorem A in. the cat- 
egory of closed Riemannian manifolds, where "least area" is interpreted in 
the classical sense of a solution to the Plateau problem. This should yield 
new proofs of the Flat Plane Theorem and the Conformal Minimal Plane 
Theorem in their full generality. The main difficulty in obtaining a Rieman- 
nian version of Theorem A will be the local lamination theory (we chose to 
restrict attention to 2-complexes in part because the local lamination theory 
is so simple). In particular, one would have to prove a Riemannian version 
of the Normal Disc Theorem, that any least area disc map into a closed 
Riemannian manifold may be replaced by one with no smaller isoperimetric 
ratio, and with bounded local geometry in the sense of [Sch]: uniform cur- 
vature bounds are satisfied at each point of the disc, up to and including 
points on the boundary. 
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groups and spaces. Our results were inspired by the methods of Plante, 
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1. Preliminaries. 

1.1. Negatively curved spaces. 

We shall work primarily in the simplicial category, so we will use the 
unadorned word complex to denote a simplicial complex; occasionally we 
also speak of cell complexes. The fc-skeleton of a complex X is denoted 
X(k\ The n-th barycentric subdivision of X is denoted YFX. The link 
of a vertex v G X is denoted Link(i;). We shall use the notions of regular 
neighborhoods, simplicial maps, PL subcomplexes, PL maps, and general 
position of PL maps. A triangulation of a topological space X is a simplicial 
complex with underlying space X. By convention, if X is a complex and 
Y is a topological space, a map /: Y —> X is called simplicial, PL, etc., if 
there is a triangulation of Y so that / is simplicial, PL, etc. 
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Given topological spaces X, Y, Z and continuous maps f:Y-+X and 
g: Z —> X, the maps / and g are equivalent if there is a homeomorphism 
h: Y —► Z such that f = go h. 

Let X be a finite 2-complex. If each edge of X is incident to no more 
than three 2-simplices then we say that X is generic. It is easy to change 
an arbitrary complex X so that it is generic, without changing 7ri(X), or 
indeed without changing the simple homotopy type of X. Prom now on, we 
fix a generic 2-complex X. 

Each 2-simplex of X is given a metric making it isometric to an equilat- 
eral Euclidean triangle of side length 1. We will normalize the area measure 
so that each 2-simplex has total area 1. By integrating pull-back measures 
we therefore obtain a well-defined notion of length for each PL map of a 
1-manifold into X, and of area for each PL map of a 2-manifold. For simpli- 
cial maps the measurement of length and area is more elementary, e.g. for 
a simplicial curve just count the number of edges in the domain mapping 
homeomorphically to edges of X. Having fixed these notions of length and 
area, we use them from now on without comment. 

A disc map is a simplicial map from a disc to X. For emphasis we 
sometimes call this a simplicial disc map. We will also need the more general 
category of PL disc maps, which are just PL maps from a disc to X. The 
unadorned term "disc map" is reserved for simplicial maps. 

A finite complex X is negatively curved if there is a constant K such 
that for every homotopically trivial closed simplicial curve 7 in X, there is 
a disc map d: D —> X extending 7 (i.e. dd is equivalent to 7), so that the 
following linear isoperimetric inequality is satisfied: 

Area(d) < K • Length^) 

This definition is equivalent to the usual "thin triangles" definition for either 
the 1-skeleton of the universal cover of X, or for any Cayley graph of 7ri(X) 
(see [Gro87], [CDP90], or appendix 2 of [GS90]). 

Lack of negative curvature for X may be characterized as follows. The 
isoperimetric ratio of a disc map d: D —► X is defined to be X(d) = 
Area(d)/Length(c?d). A disc map d: D —> X is said to be least area 
if, for every disc map df: D' —> X such that dd and dd' are equivalent, 
Area(d) < Area(d/). The complex X is not negatively curved if and only 
if there exists a sequence of least area disc maps dj: Dj —► X such that 
lim:7'_00X(<ij) = 00. Such a sequence will be called a fat disc sequence for 
X, and when the entire sequence is understood, dj will be called a fat disc 
map and Dj a fat disc. 
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We also use a PL notion of least area. A PL disc map d: D —> X is 
PL least area if it has least area among all PL disc maps with the same 
boundary. Given a simplicial disc map, the property of PL least area is a 
priori stronger than simplicial least area. However, it is not hard to see these 
are equivalent; this follows from the first part of the proof of the Normal 
Disc Theorem. 

1.2. Measured Laminations. 

The term "lamination" is used in the theory of surfaces and 3-manifolds 
to mean a closed, foliated subspace; the local transversals of such spaces are 
often totally disconnected, instead of the fc-disc tranversal of a codimension- 
k foliation of a manifold. Our foliated spaces will not exist in any ambient 
manifold, and they will have totally disconnected transversals, hence we 
use the term "lamination". The term "foliated space" has also been used 
in the literature. We begin by defining topological laminations, then we 
introduce additional structure to define measured laminations and simplicial 
laminations. The latter are useful for defining the Euler characteristic of 
a measured lamination. All laminations throughout this paper will be 2- 
dimensional. 

Definition of a lamination. Let A be a compact topological space. 
A lamination chart for A consists of an open subset V C A, an open disc 
D C R2, a locally compact Hausdorff topological space T called the local 
transversal, and a homeomorphism g: D x T —> V. A plaque of the chart 
is any set of the form P = g(D x t) for some t G T. Informally, we shall 
often identify a plaque of the chart with D. Although the chart is formally 
a quadruple (V^D^T^g), we shall often suppress the role of g and write 
V = D x T C A; also, we shall sometimes replace D with some plaque P 
and write V = P x T C A. We often confuse the local transversal T with 
any section of the projection D x T —> T. 

If we wish to deal with laminations having boundary, we must consider 
pairs of compact spaces (A, 9A). There will be two kinds of lamination 
charts. One kind was described above, mapped to an open set in (A — dA). 
In addition we will have charts based on a half-disc model (Z),SZ>), where 
D is the intersection of the open unit disc in R2 with the closed upper 
half-plane H C R2, and dD = DndH. The notation dD denotes the "half- 
boundary" of the half-disc D. Charts based on a half-disc are maps of pairs 
(D x T, 3D x T) —► (A, 9A). For simplicity, we shall assume below that we 
are dealing with the closed case, dA = 0. 
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A lamination chart (JJ,C,S,f) is a sub-chart of (y,D,T,g) if U C V, 
and the map 

C x 5 -£* [/ ^ V ^ JD x T 

has the form (x,s) »-> (/i(a;, s),p{s)). The map hs: x >-> h(x,s) is an em- 
bedding of C into £) for each s G 5, called a Zea/ overlap map. The map 
p: 5 —► T is an embedding called the transversal overlap map. 

A lamination atlas for A consists of a collection of lamination charts 
which cover A, such that for any two charts U, V and any x G U D V, there 
is a common subchart W containing x. If A is equipped with a lamination 
atlas, then A is called a lamination. Any plaque of any chart of A is also 
called a plaque of A. The collection of all open subsets of all plaques of A 
forms a basis for the leaf topology on A, and any component of this topology 
is called a leaf of the lamination A. A local transversal is also called an 
open transversal, and any subset T' of an open transversal such that T' is a 
closed subset of A is called a closed transversal of A. 

Next, a transverse measure u on A assigns to each local transversal 
T a finite Borel measure, whose total mass is denoted ^(T), so that each 
transversal overlap map is measure preserving onto its image. The pair 
(A, v) is called a measured lamination if u(T) > 0 for all local transversals 
T. 

Cell structures and simplicial structures on measured lamina- 
tions. 

By making the leaves of a lamination A into cell complexes which fit 
together in the transverse direction, we obtain a cell structure on A, which 
is useful in defining the Euler characteristic of any transverse measure on A. 
When each 2-cell is a 2-simplex—a triangle—we obtain a simplicial structure 
on A. We shall not give the most general definitions; rather, our definitions 
are tailored to laminations having an atlas where each local transversal is 
both open and closed. 

Let A be a lamination. If D x T C A is a lamination chart where T 
is an open and closed transversal, and if P is a polygon embedded in the 
open disc .D, then P x T is called a polygon chart of A. We shall usually 
suppress the role of Z), although the existence of the chart D x T is part of 
the definition of a polygon chart. A cell structure on A is a set of polygon 
charts V covering A, such that if Pi x Ti =fi P2 x T2 € V are not disjoint then 
the intersection, written in Pi x Ti coordinates, has one of the following two 
forms: 
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• E x T where E is an edge of Pi and T is an open and closed subset of 
Ti. 

• V x T, where V is a vertex of Pi and T is an open and closed subset 
ofTi. 

If V = {Pi x Ti , ... , P/v x TJV} is a finite cell structure on a compact 
lamination A, then each leaf L inherits the structure of a cell complex, 
where each 2-cell has the form Pn x t for some n = 1,... , N and some 
t E Tn. This collection of cell complexes, one for each leaf, has bounded 
local combinatorics: there is a uniform bound on the number of sides of 
each 2-cell and on the valence of each vertex. If each Pn is a 2-simplex then 
we obtain a simplicial structure on A. 

If V is a cell structure on A, the barycentric subdivision of V is a simplicial 
structure S1^ defined in the obvious manner, so that the simplicial structure 
induced on a leaf L by E1^ is the barycentric subdivision of the cell structure 
on L induced by P. 

Laminations on 2-complexes. Consider a 2-complex X, In the crud- 
est definition, a "lamination on X" would just be a continuous map from 
a lamination to X. But we want a more refined definition with built-in 
restrictions on the local behavior on leaves, in order that the collection of 
laminations on X satisfy some kind of precompactness. We will achieve this 
by restricting the germs of maps at any given point of X. 

If A is a lamination, a map p: A —> X is called an N-normal lamination 
map, where iV is a positive integer, if there exists a cell structure V on A 
such that each leaf L of A satisfies the following: 

• The map p | L: L —> X is a nondegenerate simplicial map between 
barycentric subdivisions, that is, between the simplicial structure on 
L induced by S1P and the simplicial complex E1^. 

• For each 2-cell C of L, the map p | C is a cyclic branched cover of 
degree < N over some 2-simplex a of X, branched over the barycenter 
of a (see figure 1). 

© If two distinct 2-cells in L have nonempty intersection, then they map 
to distinct 2-simplices in X. 

If two distinct 1-cells in L have nonempty intersection, there is no require- 
ment that they map to distinct 1-simplices in X, and so an JV-normal lam- 
ination map may have leaves that are not locally embedded near vertices of 
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Figure 1: A 3-fold cyclic branched cover of a 2-simplex 

X, Of course, there may also be leaves which are not locally embedded near 
barycenters of 2-simplices of X. 

If (A, dk) is a lamination with boundary, an N-normal lamination map 
is defined similarly as a map of pairs p: (A,9A) —► {X^X^)^ with the 
additional requirement that leaves of dk are locally embedded in X^l\ 

In the special case that the lamination A is just a surface, that is, all 
transversals are discrete, then an iV-normal lamination map A —> X is called 
an N-normal surface mapped to X. 

1.3. Euler characteristic. 

Suppose A is a measured lamination with a finite cell structure V = 
{Pi x li}^. We shall define x(A) in terms of P. In principle, x(A) should 
not depend on V. When A has a Riemannian metric, this follows for all 
"smooth cell structures" from a Gauss-Bonnet type theorem which equates 
the polyhedral formula for x(A) w^h a certain curvature integral; see §4. 

To define the Euler characteristic, we need a way to count faces, edges, 
and vertices of P, using the transverse measure v. The total weight of faces 
is defined to be 

i=l 

We must also define the total weights of edges and vertices. First note 
that the "1-skeleton" |J{^-^ x ^i} can be rewritten as the union of a finite 
collection of the form {Ej x Tj | j = 1,... , J}, so that for each j the set Ej 
is an edge of some Pi and Tj C Tf, and so that if E^ x T^ and Ej2 x Tj2 are 
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not disjoint then their intersection has the form V x T" for some endpoint 
V of E^ and some T" C T^. The total weight of edges is defined to be 

E = £«<$) 
3=1 

Similarly, the "0-skeleton" U{Vertices(Pi) x Ti} can be rewritten as a finite, 
pairwise disjoint collection of the form {Vk x T£ | k = 1,... , K}, so that for 
each fc, the point Vk is a vertex of some Pi and T^ C T*. The total weight of 
vertices is defined to be 

Finally we define 
X(A) = V-E + F 

1.4. Statement of the theorem. 

We need to define strongly least area maps. Suppose S is a connected 
surface and p: S —> X is an iV-normal map. The universal covering map 
TT : S —► S may be composed with p to give an iV-normal map po TT :: S —* X. 
We say that p is strongly least area if for every PL subcomplex D C S 
homeomorphic to a 2-disc, the PL disc map (p o TT | D): D —► X is PL least 
area. 

Theorem A. Let X be a finite, generic 2-complex.   Exactly one of the 
following is true: 

1. X is negatively curved. 

2. There exists a compact measured lamination A with x(A) = 0, and a 
3-normal map f:A—>X which is strongly least area on each leaf 

One reason strongly least area laminations are nice is the following: 

Lemma (No sphere leaves). If f: A —> X is N-normal and strongly 
least area on each leaf then no leaf of A is a sphere. 

Proof Suppose there is a sphere leaf L.   By iV-normality, the leaf L has 
positive area.  Choose a PL closed curve 7 C L bounding a disc Di C L 



Spaces which are not negatively curved 79 

of less than half the area of L. On the other side, 7 bounds another disc 
D2 of more than half the area. Both of the induced maps Di —> X and 
D2 —* X are least area, but they have the same boundary and different 
areas, a contradiction. □ 

2. Construction of limiting laminations. 

Our method of constructing laminations uses branched surfaces, which 
are 2-dimensional analogues of train tracks. Just as 1-dimensional lamina- 
tions are approximated by train tracks, so are 2-dimensional laminations 
approximated by branched surfaces. In fact, a 2-dimensional lamination 
can be completely specified by a finer and finer sequence of branched sur- 
faces approximating the lamination. We shall show how a lamination can 
be constructed by taking the inverse limit of a certain sequence of branched 
surfaces, in much the same way that a 1-dimensional lamination is the in- 
tersection of a sequence of (neighborhoods of) train tracks. 

In the next section we collect definitions concerning branched surfaces, 
and in the following sections we give a general construction for laminations 
as inverse limits of certain sequences of branched surfaces. The general con- 
struction can be applied to any finite 2-complex X, resulting in a lamination 
$1 called the "universal AT-normal lamination" for X. Most of the leaves of 
the universal iV-normal lamination are not useful for analyzing the geometry 
of X. However, if X is not negatively curved, we shall produce a transverse 
measure /x on £2, and the support of fi will be a measured lamination A of 
Euler characteristic zero; in §3 its leaves are shown to be strongly least area. 

2.1. Branched Surfaces. 

Locally, a branched surface without boundary looks like a stack of pan- 
cakes which have been partially glued together. To formalize this, consider 
a finite, triangulated surface F. An F-stack is a finite 2-complex S together 
with a PL map </>: S —> F called the stack projection^ such that each point of 
S is in the image of a PL section of (/>. We write <S = Fi U • • • U Fn to indicate 
that Fi,... , Fn are all of the sections of (j), A disc stack is an F-stack where 
F is a disc. 

Now we define a branched surface without boundary using an atlas of 
disc stacks. Consider a finite 2-complex B. A branched surface atlas for B 
is a finite collection of disc stacks A satisfying the following properties: 
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1. For each cj): S —> F in A we have: 

• S is a PL subcomplex of B. 

• int<S = 0"1(intir) is an open subet of B. 

• The set Pr S = S — int S is the frontier of S in B. 

2. The collection {int(5) | S G A\ is an open cover of B, 

3. If (\>i\ Si -» Fi is in A for % = 1,2, and if x G int(5i) n int(52), then 
there exists a disc stack (f): S —> F satisfying item 1 and the following: 

• x G int(<S). 

• ScSinS2. 

• For each i = 1,2 there exists a PL embedding fi: F —> Fi such 
that /i o ^ = (^ | 5. 

In item 3 the stack (j): S —» F is not required to be part of the atlas w4. 
A branched surface without boundary is defined to be a finite 2-complex 

B equipped with a branched surface atlas. When B is a branched surface 
without boundary, a "disc stack of B" will always mean a disc stack S that 
is compatible with A in the sense that ^4u{<S} is also an atlas. Nevertheless, 
for certain technical reasons we will usually keep track of the original atlas. 
If S = Z?i U • • • U Dn is a disc stack of Z?, each disc Di is called a, smooth 
disc of <S; also, forgetting which stack the disc came from, Di is called a 
smooth disc of B. The set of points where B is not locally homeomorphic 
to R2 is called the branch locus of -B, denoted TB; this is a subcomplex of 
the 1-skeleton JE^

1
). The closure of a complementary component of TB is 

called a sector of J5. Note that a sector is a union of 2-cells. 
We shall also use branched surfaces with boundary. The definitions 

need to be adapted. One allows half-disc stacks as well as disc stacks. Our 
model F for a half-disc is the intersection of the closed unit disc with the 
closed upper half plane in R2. The half-boundary SF is the intersection 
of F with the x-axis, the frontier Fr(F) is the intersection with the unit 
circle, and int(F) = F — Fr(F), while the corners of the half-disc F are 
the common endpoints of 9F and Fr(F). A half-disc stack is a PL map 
of pairs («S, dS) —> (F, 9F) so that each point of S is contained in a PL 
section F -> 5; let intS = ^(intF) and Fr<S = 0-1(Fr(F)). A branched 
surface with boundary is a pair of complexes (JB, dB), with an atlas of disc 
stacks and half-disc stacks whose interiors form an open cover of £', whose 
frontiers are the topological frontiers in B, and with compatibility conditions 
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as above. We shall refer to branched surfaces with boundary simply as 
"branched surfaces". Smooth discs and half-discs are defined as above. The 
branch locus is the set of points where (£, dB) is not locally a surface with 
boundary. Sectors are defined as above. 

Given a branched surface B and an arbitrary surface 5, a carrying map 
is a PL map /: (S,dS) —> (B,dB) such that each point of S is contained 
in the interior of a disc or half-disc D such that / embeds D as a smooth 
disc or half-disc in B. Given a compact lamination A, a continuous map 
/: (A, dA) —* (B,dB) is called a carrying map (and A is carried by B) 
if the restriction of / to each leaf is a carrying map. If in addition / is 
surjective then / is a full carrying map, and A is fully carried by B. 

Given a carrying map /: A —> -B, if (/>: S —> F is a disc stack for B, then 
f~1(S) may be regarded as a lamination chart of the form F x T, where 
T = ((/> o /)~1(y) for any y E F. Given any x € B, the disc stack and the 
point y may be chosen so that x = (j)~'l{y)^ and we denote Tx = T. If a is 
any cell of B, then we denote T^ = Ty for any y G int(<7). Note that for any 
cr, the transversal T^ is both open and closed. 

Now we consider the additional structure on a branched surface which is 
induced by the transverse measure from a measured lamination carried by 
that branched surface. An invariant measure on a branched surface B is a 
function /i: B —> R>o such that for any disc stack (j): S —> F of B, if we 
define a function //$: int(F) —► R>o by iis{x) = X^-i^) My)>then Ate is 

constant on int F. 
Here is the standard method for constructing invariant measures. Start 

with a weight vector on 2?, which is a function /z assigning to each 2-cell a C 
1? a number ^(cr) > 0. If x G int(<j) then we may define n{x) = ^(a). Given 
an edge E G i^1) not in dB, the 2-cells incident to E may be partitioned 
into two sides denoted <7i,... , crm and cr^,... , (jfn, so that any x G int(S) is 
contained in a disc stack </>: <S —> D2 where 5n(criU- • -Ua™) = ^~1{a; < 0} 
and <S f! (cr^ U • • -cr^) = (j)~l{x > 0}. The weight vector /J, determines an 
invariant measure if for any E with sides ai,... , <Tm and o^,... , a^ we have 

M^i) H 1- M^m) :::= M0!) + 1" Man)-  For any x € int(25), we may 
then define /x(a;) to be the common value of either side of this equation. 
It is straightforward to check that for any vertex x of JB, and for any disc 
stack 0: S —> F oi B whose interior contains x and no other vertex, if 
(t>~l{(j>{x)) = {x} then the value of /^(y) is constant for y G in^F) — </>(a;), 
and so we may define ii{x) to be this constant value. 

Consider /: A —> B, a measured lamination carried on a branched sur- 
face, with transverse measure v on A. There is a unique invariant measure 
li on B that is induced by z/, in the following sense. Consider a disc stack 
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(t>\ S —► D of B. The set (^ o /)~1(int D) is a lamination chart of the form 
int D x Ts for some open and closed transversal Ts of A. We say that fi 
is induced by v if v{Ts) = Hsix), for any rr e 'mt{D) and any disc stack 
(t>:S^Doi B. 

Given a measured lamination on a branched surface /: A —» JB with 
transverse measure z/, we may define a Borel measure on A as follows. Sup- 
pose that we have a positive Borel measure on 5; for instance, we might 
impose a measure on each 2-simplex a of B by modelling it on some Eu- 
clidean triangle. In A, we have a coordinate chart int(cr) x T^, and there is a 
Pubini product measure on this chart obtained as the product of the Borel 
measure on a and the Borel measure u on T^. This induces a Borel measure 
on all of A, called the mass, denoted Mass(^4) for a Borel set A C A. For any 
2-simplex a and any Borel subset T7 C T^ we have Mass(cr x T7) = ^(T7). 
Note that Mass is a positive Borel measure on A. 

2.2. Laminations from refining sequences. 

A PL map of branched surfaces p: B -^ B' is called a submersion if, 
for each x £ B and each disc stack (/>': S' —> D' of Bf with p(x) £ int(<S7), 
there exists a disc stack (/>: S —> D of B with x € int(<S), and there exists 
an embedding f:D-^ I?7, such that p(S) C «S7, and f o </) = cj)' o p. 

We shall construct laminations as inverse limits of branched surfaces. 
Let pk: Bk —> Bk-i, k = 1,2,... be a sequence of submersions of branched 
surfaces. Let pkj: Sfc —> -Bj denote the composition pj+i o ... o £>/._! o pfc. 
The sequence of submersions is said a refining sequence for the lamination 
A if A = limi?fc, where we are taking an inverse limit of topological spaces. 
Recall the definition of inverse limits. An inverse sequence is any sequence 
# = {xk) with Xk € Bk such that Pk(xk) = #fc-i- As a topologicail space, 
A consists of all inverse sequences, with the smallest topology so that the 
projection maps /&: A —> #&, given by /fc(a;) = %, are continuous. We 
also require that the inverse sequence respect atlases: there exist atlases of 
Ak for Bk and a lamination atlas lim^ for A such that p^JAj = Ak and 

fkl{Ak) = A. We shall use the abbreviations B = BQ and / = /Q. 

In general, any lamination carried by a branched surface B is the inverse 
limit of some refining sequence starting with B. While we shall not prove 
this general statement, we shall construct a "universal refining sequence" 

Pfc+l   D       Pk P2      jD       Pi      TD 
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whose inverse limit is a "universal lamination" for B. The universal lam- 
ination, roughly speaking, is a lamination having a leaf for every possible 
surface carried by B. 

The construction of the universal refining sequence depends on a choice 
of an atlas A = Ao for B = BQ. We require that A is especially nice in that 
the boundaries of disc stacks are in general position with respect to each 
other. We choose an order on the disc stacks AQ = {Si,... ,<!>#}. Since the 
inverse limit will respect this atlas, we can abuse notation by writing Sr for 
the pull back stack p^Q(Sr). 

Now we construct the sequence Bk inductively, B^ being obtained from 
Bk-i by modifying the branched surface in a neighborhood of a disc stack 
Sr of the atlas Ak-i- One uses different disc stacks cyclically, so that for 
constructing Bk from Bk-i one uses Sr where r = k (mod R). First we 
enlarge <Sr in Bk-i to obtain a disc stack S^ ensuring that stack boundaries 
are still in general position when Sr is replaced by its enlargement. The 
enlargement should have the property that each smooth disc of Sr be con- 
tained in the interior of a smooth disc of <S£. An atlas of enlarged disc stacks 
^o ^ {^i? • • • I^R} should be chosen once and for all in J3o, and the required 
enlargements w4^_1 = {<S[,... , SR} in Bk-i are obtained by pulling back en- 
largements from BQ. In -B^-i, let S = {E} be the set of smooth discs of Sf

r. 
Each disc E is included into <S£, and hence also into .B&_i. We remove Sf

r 

from Bk-i and we replace it by the disjoint union of the discs JS, attached to 
Bk-i — S'r just as they were before the modification. The resulting branched 
surface is B^. The map Pk,k-i is the identity in the complement of ££ and 
for each attached disc J5, the restriction of Pk,k-i to E is induced by the 
inclusion map of E into Bk-i. We say that B^ is obtained from Bk-i by 
resolving the disc stack Sr. 

When Sr is resolved, clearly any adjacent disc stack Si has also been 
modified. We would like to obtain an atlas Ak for Bk with disc stacks 
Pk fe-iO^*)* However, we have no assurance that these subsets of Bk are 
always disc stacks: the stack projection Si —> Di induces by composition a 
projection P^k-iiSi) "-* A whose domain may not be covered by sections. 
We fix this problem by trimming away portions of £&. The problem can be 
stated another way: the branched surface p^ ^_1(5i) may not fully carry any 
lamination, so that Bk also does not fully carry any lamination. Obviously, 
we are only interested in the maximal sub-branched surface of Bk which does 
fully carry at least one lamination. Therefore we replace Bk by this sub- 
branched surface. For a more algorithmic procedure, carry out the following 
inductive process for trimming away more and more of Bk- Letting i cycle 
through the index set {!,... ,#}, repeat the following operation until it 
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stabilizes: remove any sector of B^ contained in Pk\-i(^i) that does not lie 

in a section of the projection Pkk-ii^) -* A- This process must stop since 
there are only finitely many sectors in B^. Either way that B^ is trimmed, 
the pull back of each Si under the map Pk,k-i yields a disc stack in B^ also 
denoted <%, and we obtain the atlas Ak- 

Theorem (Resolution of stacks yields refining sequence).    The se- 
quence 

constructed above is a refining sequence, and thus A = HmUfc is a com- 
pact, topological lamination carried by each Bk, and the natural projections 
fk: A —► Bk are carrying maps. Further one can choose atlases for the Bk Js 
and for A which are respected by the sequence. 

Proof. Define A = lim J5^. At this point we do not know that A is a lamina- 
tion, though we can say what the local transversals look like. Given a disc 
stack 0: S —> D in the atlas v4o, denote </>& = (j) o pk0, which is the stack 
projection of the disc stack pj^)1^) *n ^e a^as ^fc- For any y G int(D), 
^k 1(y) ^s a fin^e set Tyk of points in Bk all projecting to y, and the natural 
maps Tyk —> Ty,fc-i form an inverse system. The inverse limit Ty -= ^im Tyk 
is the space whose points are inverse sequences {x^ \ k > l,x^ 6 T^^, and 
Pkj(xki) = Xji}- The generating sets for the topology of Ty are just the 
inverse images of points Xk € Tyk under the projection maps Ty —► T^. 
Ultimately, the space Ty = (0 o /)~1(y) will be a local transversal for the 
lamination A. However, to prove A is a lamination we must get an expression 
for a local transversal which does not depend on the choice of y £ int(Z?), 
but only on the disc stack S. 

To show /: A —» B is a lamination carried by S, we use the atlases Aj 
for the branched surfaces of the refining sequences. We shall construct a 
lamination atlas for A, with one lamination chart for every disc stack in AQ. 

Consider a stack S £ AQ, with stack projection (j): S —> D. We shall show 
that /^"1(int5) is homeomorphic to mtD x T for some compact topological 
space T. In what follows, we index disc stacks according to the branched 
surfaces they live in, so that Sk = Pfco (*-*)• 

Let £k be the set of all smooth discs of Sk- By construction, there is 
a subsequence B^ of the branched surfaces such that S^ is the disjoint 
union of the discs of E^. More explicitly, if S is the r-th disc stack of the 
enumeration of A, then we can take fe = r + Ri. The transversal T^A- is 
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constant throughout £), say Ty^ = T/^. It follows that the inverse limit 
transversal Ty is constant over D. Let us say Ty = T for all y in D. This 
proves that the set /^(S) in A has the form D x T as a set. In fact, 
by considering the subsequence 5^, it is clear that /^(S) = ]imSki = 
limD x T^ = D x HmT^ = D x T. A similar argument shows that this 
defines an atlas for A. □ 

Observe that the lamination constructed above can be given a simplicial 
structure. This follows from the fact that each Bn may be triangulated so 
that each submersion pn: Bn —► Bn-i is a simplicial map, not just a PL 
map. To see why this can be done, note that one may replace the original 
triangulation of Bn by an iterated barycentric subdivision, so that each disc 
stack in A® and each enlarged disc stack in MQ is a subcomplex. Once this 
is done, there is a triangulation on Bn defined by induction so that pn maps 
each simplex of Bn homeomorphically to a simplex of 5n-i, hence pn is 
simplicial for every n. 

We call the refining sequence constructed above a universal refining se- 
quence and we call the inverse limit a universal lamination. These names 
are justified by the following proposition: 

Universality Proposition. Let Bn be the universal refining sequence con- 
structed from (BQ, Ao)- Given a surface F and a carrying map go: F —* BQ, 

there exists a unique compatible sequence of carrying maps gn: F —> Bn, in 
the sense that pnm o gm = gn for all n > m. 

Proof. Given n, suppose the sequence has been extended up to gn. Let 
j5n+i be obtained from Bn by resolving discs of the disc stack S. If D is a 
component of (gn)~l(S), then gn(D) is a section of <S, so gn+i is forced to 
take D to the unique smooth disc of Bn+i which projects to gn(D). The 
definition of <7n+i on the rest of F is also forced, since the map i?n+i —► Bn 

is 1-1 except over the enlarged disc stack whose smooth discs are resolved 
in the modification of Bn to J5n+i. □ 

It follows from this that the universal lamination constructed as an in- 
verse limit is actually universal: 

Corollary (Universality of the inverse limit). If B is a branched sur- 
face and fiQ-^Bisa universal lamination on B, then for any lamination 
g: A —> B carried on B, there exists a unique continuous map q: A —> Q 
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respecting carrying maps, i.e. f o q = g. In particular, ifQf is another uni- 
versal lamination, then there is a unique homeomorphism q: £1' —> J7 such 
that f oq = f 

Proof. Let Bn be a universal refining sequence starting at B = Bo, for which 
Q = |imJ5n, and let fn: Q —► Bn be the carrying maps. By the Universal- 
ity Proposition, the carrying map g = go: A —> B lifts to a compatible 
sequence of carrying maps gi: A —> JBn, hence passing to the inverse limit 
we obtain a continuous map 9 respecting carrying maps. To prove unique- 
ness, if qi: A —> Q is any continuous map respecting carrying maps, then 
fn 0 #1 is a compatible sequence of carrying maps from A to B lifting g, 
hence gn = fn o ^ so g = g^ 

If fi and fi' are universal, we obtain continuous maps in either direc- 
tion respecting carrying maps, and by uniqueness the compositiom; must be 
identity maps. □ 

Here are some remarks about the universal lamination. 
It may happen that the resolution process applied to a branched sur- 

face B eventually produces an empty branched surface, i.e. the universal 
lamination is empty. This happens if and only if B carries no lamination. 
Because the resolution process can be carried out algorithmically, there is 
an algorithm that takes a branched surface as input and stops if and only 
if the branched surface does not carry any lamination. In other words, the 
set of branched surfaces carrying no lamination is recursively enumerable. 
However, this set is not recursive; see [Gab95]. 

There is one more comment worth making about the universal lamina- 
tion. Given any lamination, one can modify it by adding a cover of a leaf, 
by adding parallel copies of a leaf, or by replacing a leaf by one of its own 
covers. When we speak of "covers of leaves" we mean covers compatible with 
carrying maps—for example if /: F —> B and g: G —> B are carrying maps 
from surfaces F and G to a branched surface J5, then / covers g if there is 
a covering map q: F —► G satisfying g o q == /. The universal lamination 
has the property that if it contains a certain leaf, then it does not contain a 
cover of that leaf, nor does it contain parallel copies of the leaf. 

2.3. The splitting progress lemma. 

The lemma described in this section will be used in proving that a lim- 
iting lamination is strongly least area. The proof is given here because it 
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follows naturally after the developments of the previous section. 
Consider a universal refining sequence ... —> Bi —>...—> Bi —► Bo 

with universal lamination Q, = limBi. Consider also two'leaves F, G of fi, 
so we have two sequences of compatible carrying maps /*: F —► Bi and 
5i: G —> Bi. We are assuming, as we may, that each submersion Bi —► i?i_i 
is a simplicial map, hence F and G may be triangulated (tiled) so that the 
maps /i, gi are simultaneously simplicial. We wish to analyze how fi and 
gi can be parallel in Bi over respective subtilings of F and G, and how 
parallelism can fail on larger subtilings. Further, we wish to analyze how 
the "region of parallelism" shrinks as i increases and fi is split apart from 
gi. Our goal is to show that splitting progresses at a uniform rate. 

We must say what types of "subtilings" will be needed. Suppose C is 
a surface-like 2-complex, with no more than two 2-cells incident to each 
edge; let dC be the union of edges incident to a unique 2-cell. We measure 
combinatorial distance between tiles of C as the minimum number of tiles 
a dual path from one tile to another must intersect, and we assume C has 
a connected dual 1-complex so any two tiles in C have finite combinatorial 
distance. Suppose a: C -* F, v: C —> G are simplicial local embeddings. 
By composition we obtain "carrying maps" fioa and Qiou from C to Bi. We 
say that a and v axe parallel in Bi if fi o a = gi o v. When this is so, let ddC 
be the portion of dC where the maps fi and gi "split apart" or "diverge". 
That is, ddC is the union of 1-cells E C dC across which the maps a and u 
cannot be extended without destroying parallelism in Bf. if s C F — cr(C) 
and t C G — z/(C) are the 2-cells adjacent to cr(E) and u(E) respectively, 
then fi(s) ^gi(s). 

The following lemma says that if each tile of C is within a bounded 
distance r of ddC, then in some Bj with j > i, the sets fj(cr(C)) and gj{v(C)) 
are disjoint. Moreover, given n = j — i, disjointness in Bj is guaranteed for 
some r depending only on n. 

Lemma (Splitting Progress). Let Bi be a universal refining sequence. 
For each integer n > 1 there exists r > 1 with the following property. Sup- 
pose F, G, {fi: F -+ Bi], {g^. G -> Bi}, C, a: C -> F, u: C -> G are 
given as above. Given i, suppose that a and v are parallel in Bi. Suppose 
furthermore that each tile ofC is within combinatorial distance r ofddC. It 
follows that fi+n(<j(C)) and fi+n(v(C)) are disjoint in Bi+n. 

Proof. Suppose that the refining sequence is defined using an atlas .4o for 
BQ containing R charts, yielding atlases Ai for Bi.   Any tile (2-simplex) 
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r C C is contained in a disc D such that cr(D) and v{D) are mapped by fc 
and gi to the same smooth disc of Ai- But if r is adjacent to ^C^, then in 
Bi+R the discs <J{D) and z/(Z?) are not mapped to the same smooth discs of 
atlas Ai+R. It follows that in Bi^R, the discs (j(D) and v{D) are mapped 
to disjoint smooth discs of A{+2R' By induction, any two tiles of C within 
combinatorial distance n of ddC are mapped disjointly into Bi+2Rn- D 

2.4. Normal Surfaces in a 2-complex. 

We have shown how to pass from a single branched surface to a refining 
sequence and then to a lamination. To construct a lamination on a 2- 
complex X, we shall construct a canonical branched surface for X, by using 
an adaptation of the normal surface theory of Haken, see [Hak61], [Sch61]. 
Haken's normal surface theory was designed to analyze embedded surfaces 
in 3-manifolds. Our adaptation is designed to analyze surfaces mapped to a 
2-complex X. For the moment, we do not assume that X is generic. That 
assumption will be made at the appropriate time. 

Normal tiles. A handle structure on X is defined as follows. Consider 
the second barycentric subdivision E2X. For each 0-cell v G X, the 0- 
handle with core v is the regular neighborhood of v, i.e. the union of all 
cells of S2X touching v. This is homeomorphic to the cone on the graph 
Link(v). For each 1-cell a G X, the 1-handle with core a is the union of 
the closures of all cells of E2X in X — {0-handles} touching a. This is 
homeomorphic to / x (cone on finitely many points ). Finally, for each 2-cell 
a C X, the 2-handle with core a is the closure of the 2-disc component of 
X — {0-handles} U {1-handles} contained in int(<j). Note that the core of a 
1-handle or 2-handle is not a subset of the handle. 

The frontier of a handle H is a graph K. Given an integer iV > 1, we 
define an N-normal cycle in if to be a closed edge path 7 in K, with the 
following restrictions. If H is a 0-handle, then 7 passes through each edge 
of K at most once. If H is a 1-handle, then 7 is embedded. And if if is a 
2-handle, so if is a circle, then 7 is an n-fold covering map of K for some 
n < N. The cone on 7 to the barycenter of the core of ii* is a PL disc 
map, and any equivalent PL disc map is called an N-normal tile in H with 
frontier 7. Two equivalent JV-normal tiles are said to belong to the same 
tile type. The most important fact about tile types is that for fixed AT, there 
are only finitely many iV-normal tile types. 
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We also define half-tile types. Given a handle H with frontier K, an edge 
path 7 in if is called a normal path if it is not closed, and if the following 
conditions hold. If H is a 0-handle then 7 passes over each edge of K at 
most once. If H is a 1-handle, then 7 is embedded, and the endpoints of 7 lie 
on the core of if. There are no normal paths in the frontier of a 2-handle. 
The cone on (7,97) gives a half-disc map (D,(5D) —> (X^X^) called a 
normal half-tile in ii", with frontier 7. The endpoints 87 are the image of 
the corners of the half-disc (D,(5D). There are only finitely many half-tile 
types, none in any 2-handle. When D —► X is a normal tile, let QD denote 
the emptyset. 

An N-normal surface is a PL map /: (3,83) —► (X,X^) for which the 
inverse image of each handle falls into components C, so that if C fl 83 = 0 
then / I C is an iV-normal tile, and otherwise / | (C, C fl 83) is a normal 
half-tile. Notice that this agrees with the earlier definition of iV-normal 
laminations on X, specialized to a lamination with discrete transversals. 

The unadorned term "normal" is a synonym for "l-normal", and for any 
N >1 the term "iV-normal half tile" is a synonym for "normal half-tile". 

The universal normal branched surface. Normal tiles and half-tiles 
are used to construct a branched surface B associated with each complex 
X, called the universal normal branched surface of X. Later we will con- 
struct an auxiliary complex XN and use it to define the universal N-normal 
branched surface of X. 

We shall construct the universal normal branched surface B together 
with a map b: (B,dB) —> (X, X^). To construct B, start with a disjoint 
union of 2-discs IID, which are the domains of normal tiles and half-tiles 
mapped into X, one belonging to each tile type and half-tile type in each 
handle. The normal tile maps d: D —> X yield a map b: II D —> X. 
We shall declare certain frontier gluings among the collection IIJD, and the 
resulting quotient space is B. The quotient of USD will form dB. The 
gluings will respect the map b: II D —> X, which therefore descends to a 
map 6: (B,dB) -> (X,XW). 

Consider two normal tile or half-tile maps d: D —* ii", d': D' —> ii7, 
where ii", Hf are adjacent handles of distinct indices. Consider an embedded 
arc a C H fl ii7, with the following restrictions: 

1. d~1{a) and (d!)~l{a) both map homeomorphically to a. 

2. If one of H or H' is 2-handle then a = HnH'. 
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3. If one is a 0-handle and the other a 1-handle, so H D H' is a star 
centered on £ = H D H' fl X^l\ then either a connects two endpoints 
of the star or a connects an endpoint to £; furthermore, if £ «E da then 
d-1® G 32? and WHO G 95'. 

Then we declare that dr1{a) and ((i/)""1(a) are to be glued, respecting the 
homeomorphisms to a. 

We give B the structure of a simplicial complex, by pulling back cells of 
E2X, so 6 is a simplicial map from B to S2X. To put a branched surface 
structure on S, we need an atlas. There will be one disc stack S(B) for each 
normal tile or half-tile D, and the stack projection will be the restriction of 
b to 5(JD). In order for disc stack boundaries to be in general position, the 
base of S{D) is a slightly modified version of Z), as shown in Figure 2. The 
disc stacks will be components of inverse images under b of modified handles 
H associated to handles i?; there will be one component of b~l(H) for each 
normal tile or half-tile in H. For k = 2, there is only one tile type in if2, 
hence we can let H2 be a regular neighborhood of H2 in X, a slightly wider 
handle. The corresponding stack 6~1(flr2) is connected and generally has 
many smooth discs. At the other extreme, for k = 0, there are many tile 
types D, and the corresponding stacks are chosen to be the components of 
6~1(flr0), where H0 is a slightly smaller handle than if0, obtained from H0 

by removing a very small regular neighborhood of dii"0. Each component of 
6""1(iy0) consists of a single smooth disc. Finally, if k = 1 then H1 is chosen 
to be "longer" and "narrower" than the 1-handle H1: for each 0-handle H0 

adjacent to if1, add to if1 a regular neighborhood of the intersection with 
if0, and then for each adjacent 2-handle if2 remove a very small regular 
neighborhood of the intersection with if2. This clearly defines a branched 
surface atlas with stack boundaries in general position. 

We call B the universal normal branched surface for X, a terminology 
which is justified by the following obvious statement: 

Proposition. Given a surface F and a PL map f: (F,dF) —> {X,X^)f 

the map f is normal if and only if there exists a carrying map f: (F, OF) —> 
(B,dB) such that bo f = f. Moreover, if f exists then it is unique. □ 

If p: A —> B is a universal lamination for B, then the composition b o 
p: A —+ X can therefore be regarded as a universal normal lamination on 
X. Any two universal normal laminations on X are homeomorphic by a 
homeomorphism which respects the maps to X. 
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Figure 2: Base discs of a branched surface atlas 

Next we define the universal iV-normal branched surface BN of X. Define 
a complex Xpj obtained from X as follows. For each 2-cell a C X and each 
integer n with 2 < n < N, attach an additional 2-cell an to X by using, as 
the attaching map, the n-fold cover of the attaching map of cr. There is a 
natural map q: XN —> X which maps an to a by an n-fold cyclic covering 
map branched over the barycenter of a. Pull back the handles of X to 
obtain a handle decomposition of XJV, which is used to define normal tiles 
and half-tiles in XN. A normal tile or half-tile in XN is good if it projects 
to an iV-normal tile or half-tile in X. Now construct a branched surface 
b: BN —► XN following the procedure described above, but using only good 
normal tiles and half tiles. We therefore obtain a map 

b:B-^XN-^X 

This is the universal iV-normal branched surface of X, because: 

Proposition.  Given a surface F and a PL map 

f:(F,dF)-+(X,xW), 

the map f is N-normal if and only if there exists a carrying map 

f:(F,dF)^(BN,dBN) 
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such that bo f = f. Moreover, if f exists then it is unique. □ 

2.5. Making disc maps normal. 

We shall apply normal surface theory to study least area disc maps in X, 
in order to understand the absence of negative curvature. Starting with a 
fat disc sequence in X, we would like to lift it to a sequence of carrying maps 
in the universal iV-normal branched surface iJ, for some uniform value of N, 
yielding a sequence of leaves in the universal iV-normal lamination Q. Then 
we can pass to a limit using compactness of fi. However, a disc map f:D—> 
X need not be iV-normal, and so cannot be lifted to B in general. The point 
is that iV-normality is a kind of "precompactness" condition on a set of disc 
maps, and there is no guarantee that a fat disc sequence is precompact 
(one way to make this precise is using Gromov-Hausdorff convergence: a 
sequence of fat discs is precompact in the Gromov-Hausdorff sense if and 
only if the combinatorics are locally bounded). The following result resolves 
this problem, by allowing an arbitrary fat disc sequence to be replaced by 
one which is "precompact". Recall that for a PL disc map f:D—>X, the 
isoperimetric ratio is defined by 1(f) = Area(/)/Length(c?/). 

Normal Disc Theorem. Let X be a generic 2-complex. Given a least 
area disc map f\D-*X, there exists a 3-normal disc map f: D' —> X 
such that f is PL least area and 1(f) > 1(f)' 

Corollary. If X is not negatively curved, then there exists a S-normal, PL 
least area fat disc sequence dj: Dj —* X. D 

Remark. Simple examples show that the statement of the Normal Disc 
Theorem cannot be improved by requiring the resulting fat disc to be a 
local embedding. For the first example, build X from a torus T by taking 
an embedding a: [—1,1] -» T and identifying a(t) with a(—t) for all t G 
[0,1]. The complex X is homotopy equivalent to a torus and hence is not 
negatively curved, but any fat disc sequence for X has discs which, are not 
local embeddings over 0-handles. For another example, build X from a disc 
D and a one-holed torus T by gluing dT to dD via a 2-1 covering meip dT —> 
dD. Again X is homotopy equivalent to a torus, but any fat disc sequence for 
X has discs which are not 1-normal. These also provide counterexamples 
to stronger versions of Theorem A which require the lamination to have 
locally embedded or normal leaves.   On the other hand, we do not know 
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if the Normal Disc Theorem or Theorem A can be improved by replacing 
"S-normal" with "2-normar\ 

Here is an outline of the proof of the Normal Disc Theorem. We shall 
perform alterations on / to make it more and more normal, without ever 
increasing area. In the iV-Normal Disc Lemma we shall make / normal over 
2-handles, then over 1-handles. Then we shall try to make / normal over 
0-handles, but there is an obstruction. This obstruction may be pushed 
into the 2-handles, producing an iV-normal disc map. Having proved the 
iV-Normal Disc Lemma, we shall then show how iV may be reduced to 3. 

We begin the proof of the Normal Disc Theorem with a lemma which 
shows that PL and simplicial least area are closely related: 

Simplicial least area lemma.  Given a PL disc map 

f:(D,dD)^(X,xW) 

with simplicial boundary, there exists a simplicial disc map 

ff:D'-+X 

with equivalent boundary such that Area^) < Area(/). 

Proof. We shall alter / until it is simplicial, without ever changing df or 
increasing Area(/). 

Consider a 2-simplex a C X. Let C be the closure of a component of 
Z"1 (inter), and let fe = / | C. As y G int(a') ranges over the regular values 
of /c, let M be the minimum value of |/^1(y)|, and let y be a regular value 
at which that minimum is acheived. Recalling that Area(cr) = 1, it follows 
that Area(/c) > M. Choose a neighborhood U of y so that each component 
of fcl(U) maps homeomorphically to U. Now homotop / by stretching 
U over all of cr; formally, compose with an ambient homotopy of X that 
is fixed outside a and that crushes the annulus a — U onto da, taking U 
homeomorphically to a. This procedure does not change / on D — int(C), 
so in particular df is unchanged, and the area is reduced by Area(/c) — M. 
Doing this for each 2-simplex, if W is the union of all open 2-simplices of X 
then cl(/"'1(W)) is a disjoint union of closed 2-cells {C}, each disjoint from 
dD, each mapping homeomorphically to a 2-simplex; all further homotopies 
of / will be fixed on these 2-cells. 

Now consider a 1-simplex E C X. Choose a regular value z € intE for 
the restriction of / to cl(/~1(int(£?))). After the alterations of the previous 
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paragraph, no component of /""1(^) is a point, because the 2-cells {C} are 
pairwise disjoint and disjoint from dD. Choose a neighborhood V C E 
of z so that /~1(T^) is a Cartesian product over V. Now homotop / by 
stretching this region out over all of E, so that cl(/~1(int J5)) is a Cartesian 
product over J5, and make sure that the homotopy is stationary on dD. This 
procedure does not change Area(/). The triangulation of dD may now be 
extended over all of D so that / is simplicial. □ 

Corollary. Any least area disc map is PL least area. □ 

Henceforth we use the unmodified term "least area" regardless of whether 
we are speaking about simplicial or PL disc maps. 

iV-Normal Disc Lemma. Given a constant C, consider the collection 
Ac of all least area PL disc maps into X with simplicial boundary whose 
isoperimetric ratio is at least C. If Ac is nonempty, then it has a member 
of minimal boundary length which is N-normal for some N. 

Proof. By the Simplicial Least Area Lemma, we may assume that Ac has 
a member f:D—>X with Length(9/) minimal, so that / is simplicial. 
In particular / is normal over 2-handles, although this property will be 
destroyed later on. 

Note first that df cannot immediately retrace any edge of X. Otherwise, 
there is a segment of dD of the form Ei*J*E2, where Ei and E2 are mapped 
to the same edge E of X and J is mapped to an endpoint v of E. It follows 
that / may be homotoped to reduce Length(9/) by 2, without changing 
Area(/), by homotoping Ei * J * E2 to the endpoint of E opposite v. The 
homotoped map /' is least area, for if /' could be altered to reduce area 
without changing df, then df could be pushed back out through E to give 
a map with the same boundary as / but with smaller area, contradicting 
that / is least area. Also, /' has larger isoperimetric ratio than /, and 
smaller boundary length. But now we have contradicted the choice of /. 

Now we consider 1-handles. The 1-handle H corresponding to an edge 
E retracts to a subinterval of J5, so that the retraction map is a fibration 
whose fiber is a star. The cocore of H is the fiber running through the center 
of J5, denoted cocore(Jff). Since / is already transverse to the endpoints 
of cocore(iir) and df is simplicial, we can homotop /, using a homotopy 
with support in the 1-handle, to make / transverse to the cocore, without 
changing area or boundary length.   Consider /~1(cocore(-H')).   This is a 
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collection of closed curves and arcs. If there is a closed curve c, redefine / 
on the disc bounded by c to map that disc into cocore(iy), then homotop 
/ slightly so the image of the disc is disjoint from cocore(i7), eliminating c 
as a component of /~1(cocore(flr)). Notice that before redefining / on the 
disc bounded by c, the area of that disc had to be 0, otherwise the new / 
would have smaller area than the old, a contradiction to least area. 

At this point we know that f~1(cocoYe(H)) contains only arcs. Among 
these arcs there might be an undesirable arc a with both endpoints mapped 
to the same vertex of the cocore. Either both ends of a are on dD and are 
mapped to the center of the cocore, or both ends of a are mapped to the 
same extreme vertex of the cocore. We show that neither case can happen. 

Consider first the case where the ends of a are mapped to the same 
extreme vertex, lying on a 2-handle H' with core 2-cell a. Let Ci, C2 be 
the components of /^(H') containing the endpoints of a. Now / may be 
homotoped to reduce area, using a homotopy supported on a neighborhood 
of Ci U C2 U a. This contradicts that / is least area. Intuitively, / folds two 
2-cells of D over the 2-simplex a, with the fold occurring along £7, so the 
fold may be pushed over the 2-simplex to reduce the area by 2. 

Now consider the case where a is properly embedded in D and da is 
mapped to the central point of cocore^). By a homotopy of / supported 
in a neighborhood of a, we may assume that / maps all of a to the central 
point of cocore(i7), without changing Area(/) or df. Cutting D along 
a, we obtain two PL disc maps gn: Dn —► X, n = 1,2, with surgery 
arcs an C dDn that are identified with a. Now homotope gn to push 
the surgery arc an off cocore(if) and into an adjacent vertex, so that dgn 
becomes simplicial. Clearly Length(%i) + Length(d<72) + 2 = Length(d/) 
and Area(<7i) + Area(^2) = Area(/). It follows that either T(gi) > 1(f) or 
^{92) > 2T(/)- (This uses the fact that (ai + a2)/(&i + 62) is between ai/bi 
and a2/&2 if all the numbers are positive). Moreover, gi, 52 are least area, for 
if either area could be reduced preserving the boundary, then the new maps 
could be reglued along a, resulting in an area reduction of / preserving 5/, 
a contradiction. It follows that one of the PL least area disc maps gi and 
52 has an isoperimetric ratio no smaller than that of /, and the length of 
its boundary is shorter than that of /. This contradicts our choice of /. It 
follows that no undesirable arcs can occur. 

We have shown that every component of /~1(cocore(jH')) is an arc 
a C int(-D) whose endpoints are mapped to distinct vertices of cocore(iy). 
To make / normal in iJ, homotop / to stretch a small neighborhood of 
cocore(H) over the entire length of the 1-handle. The homotopy can be 
done relative to the boundary and the adjacent 2-handles. Because we have 
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excluded the undesirable arcs above, it is now easy to see that the compo- 
nents of /~1(iir) give normal tiles and half-tiles mapped to H. 

Now we consider 0-handles. Let H be a 0-handle with core vertex v G X. 
Letting K = PriJ, note that / is already transverse to a neighborhood 
N(K) C H. If df maps the endpoints of an arc of (5/)"*1(iI) to the same 
vertex of the graph K, then df has an immediate retracing of an edge of 
X, which cannot happen. All arcs of (5/)~1(iJ) are therefore mapped to 
paths joining different vertices of K, and after a homotopy of / supported on 
f~l(H—N(K)), the paths will all be embeddings. Now consider possibilities 
for /~1(i7). Since / is already transverse to N(K), each component U 
of /~1(iy) is a surface with boundary. A priori several bad things could 
happen: U could be a disc with holes; or U fl dD could be disconnected. 
Also, by our construction so far the components of C7n/~1(-K') are mapped 
in relatively nicely, in that they do not have any immediate retracings of 
edges of the graph K] nonetheless, they may traverse the same edge of K 
more than once. 

Suppose now that one of the components, [/, of /~1(JH
r) is a. disc with 

holes, having a circle boundary component a in the interior of D and bound- 
ing a disc E there. The disc E must include some normal tiles in 2-handles 
adjacent to H, and so E contributes a positive amount to the area of /. 
Redefining / on mt(E) so that it is mapped into iJ, we reduce Area(/) 
without changing 9/, contradicting that / is least area. We conclude that 
every component U of the surface /~1(iiZ') has no holes. 

Now suppose that there is a disc component U of /^(H) having more 
than one arc of dD on its boundary. This means that U is cut from D by 
at least two arcs of f~l(dH). Suppose 7 and 8 are two arc components 
of U fl dD. Choose an arc a C U joining points in the interiors of 7 and 
5, so that / maps a to the center of if; such an arc a must exist, since 
/(7) and /(<S) each hit the center of H. Cutting along a produces two 
PL disc maps gn: Dn —> X, n = 1,2. Now we repeat the analysis used 
in 1-handles. We have Area(/) = Area(5i) + Area^) and Length(9/) = 
Length(d£i) + Length^). It follows that l(gi) > 1(f) or Ifa) > 1(f). 
Also, since / is least area, so are gi and 52. Also, Length(pi) and Length^) 
are strictly less than Length(/). But then we can replace / by gi or 52? 
whichever has the larger isoperimetric ratio, contradicting our original choice 
of /. We conclude that all components of /~1(iJ) must be discs in the 
interior of D, or half-discs intersecting dD in an arc. 

The remaining problem is that for a disc or half-disc E of f'~1(H), the 
set FrE = /~1(i;C), the frontier of E relative to D, might traverse an edge 
of K more than once.  First suppose that Fr E traverses the edge r C K 
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two times in opposite directions, and choose an arc a in E joining two such 
preimages of r. In fact, we can choose a with endpoints in adjacent 2-handle 
normal tiles of D which are mapped to the same 2-handle H1 oiX, but with 
opposite orientation. Clearly there is a homotopy pushing a into H1, and 
then a further homotopy reducing area by 2, contradicting that / is least 
area. We conclude that Pr E cannot traverse an edge of K twice in opposite 
directions. 

However, it may be possible for FrJS to traverse the same edge many 
times in the same direction. Before continuing, replace the map / | E with 
the cone on the map / | Fr E, and so E contains a unique point c mapped 
to the core vertex v] when E is a half-disc, we have c G (5i2. Let r be an 
edge of K which is traversed by m > 2 edges of Pr E. The circle or arc Pr E 
may now be written as OLQ * ri * ai * r2 * (22 * * * • * ^m * ^m? where ri,... , rm 

are all the preimages of r, and ao,... , am are the complementary segments 
of Pr E (see Diagram 3, which illustrates the case where E is a disc; when E 
is a half-disc, both ao and am may be non-empty, but when E is a disc we 
choose ao = 0). Now we show how to correct this problem, at the expense 
of increasing branching over the barycenters of 2-handles. 

The edge r C K is contained in a 2-cell a of X. For each i = 1,... , m, 
let Ci be the 2-cell of D which contains r^ (see Diagram 3). A priori, it may 
happen that C^ = Ci2 for some ii ^ 12 € {1,... , m}. However, this violates 
the fact that / is least area, as follows. Choose an embedded arc 7 C a 
connecting the barycenter of a to v, intersecting r at a single, transverse 
intersection point. Let 7; C Ci be an arc mapping homeomorphically to 
7 and connecting the center of Ci to c passing through r^. It follows that 
In U 7i2 is a closed curve in .D, bounding a subdisc Df C D. Define a new 
disc Dff by removing int(D/) from D and gluing 7^ to 7J2 respecting the 
map /. It follows that / induces a PL disc map f": D" -+ X with the same 
boundary as / and with Area(///) < Area(/), contradicting that / is least 
area. This shows that the cells Ci are pairwise distinct, as illustrated in 
Figure 3. 

We may express dCi as an oriented closed curve $ based at c, and 
/ I ^ induces the same orientation on da for each i. Now define a new cell- 
decomposition of D by breaking c into m points ci,... , c™, one associated 
with each arc a^ and joining the cells Ci,... , Cm into a single cell C with 
boundary /?i*- • -H*/^, as shown in Diagram 3 (when E is a half-disc, the point 
Cm lies on <?D, and is associated to both ao and am). The cells of D outside 
Ci U • • • U Cm, and the maps from these cells to X, remain unaffected by this 
operation. The circle /?!*•••* (3m maps to da by a covering map of degree 
m, which extends to a degree m cyclic cover of C over o*.  This defines a 
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Figure 3:  Disc maps can be made normal in 0-handles at the expense of 
introducing cyclic covers of 2-handles 

PL disc map /': D —> X with df = <?/', and evidently Area(/) == Area(//), 
because the contribution of Ci U • • • U Ck to Area(/) equals the contribution 
of C to Area(//), namely m. The map /' is iV-normal over each 2-handle for 
some N, and f is still normal over each 1-handle. Notice that E has been 
replaced by m distinct components of the preimage of H, and the frontiers 
of these components still do not traverse any edge of K twice in the opposite 
direction. In fact, these boundaries can be written as ai * r^ (or, in the case 
where E is a half-disc and i = m, as ao * r^ * am) where f | ai is equivalent 
to / | ai, and r^ maps homeomorphically to r. 

The first time we do this operation, the map / starts out being 1-normal 
over 2-handles, and afterwards is iV-normal over 2-handles for some JV. 
Now we want to repeat the operation wherever there is a 0-handle H and a 
component E of f"1 (H) such that Pr E traverses some edge of dH more than 
once in the same direction. Since / is now only iV-normal over 2-handles, 
some slight changes are needed in describing the operation. Consider the 
2-cells Ci,... , Cm described above. Now we only know that C,; is a cyclic 
covering over a of some degree JVj. After breaking c into m points ci,... , Cm, 
the curve /3i*---*(3m maps to da by a covering map of degree JVi H h Nm, 
so we may define a cyclic covering of C over a of degree iVi H f Nm. Now 
the map is iV-normal for some possibly larger value of JV. 

Each time the operation is repeated, the number of 2-cells of I) decreases, 
so eventually the procedure must stop. Once this happens, we have produced 
a least area JV-normal disc map /: D —» X, for some JV. Moreover, we still 
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have that / G Ac, that is, 1(f) > C, and Length(3/) is minimal among all 
PL disc maps with isoperimetric ratio > C. This finishes the proof of the 
iV-Normal Disc Lemma. □ 

Proof of Normal Disc Theorem. Consider a least area disc map /o: D —> X. 
Applying the iV-Normal Disc Lemma, we obtain a PL least area iV-normal 
disc map f:D^X that has minimal boundary length among all least area 
PL disc maps with simplicial boundary of isoperimetric ratio > X(/o). 

Now we must show how to reduce N to 3, using the fact that X is generic. 
This will involve much cutting and pasting of the cell decomposition of D. 
These cut and paste operations are closely related to the "diamond moves" 
of combinatorial group theory (see e.g. [Ger87]). The intuition behind these 
operations is that branch points of / with high degree can be split up into 
several branch points of bounded degree. The difficulty is doing this so that 
different branch points of / live in different cells of D. 

Consider a cell C C D of degree > 3. Let W C X be the 2-simplex 
/(C). Note that C ^ D, for otherwise by iV-normality the map / is a 
cyclic branched cover of W, but then we may replace / by a map which 
is a homeomorphism onto W, reducing the boundary length of / without 
changing the isoperimetric ratio, contradicting the choice of /. Therefore 
C has at least one edge not lying on dD, which by iV-normality must map 
onto an edge E of W that is adjacent to at least one other 2-simplex of X. 
Since X is generic, there exist either one or two other 2-simplices in X with 
the edge £?, denoted J5, R (ignore one of these letters if necessary). We shall 
think of i?, W, and B as the colors red, white, and blue. Let XR, XW, XB 

be the barycenters of i?, W, and 2?, and let XE be the barycenter of E. Let 
&Ri ow, CXB be oriented, simple paths in i?, W, B respectively, which go 
from XR, xw, XB (resp.) to XE* 

Now define a region X C D by the following recursive procedure: start 
with X = C, then add on to X any cell of D whose intersection with X 
contains a common edge mapped to E. Continue adding on cells of D in 
this manner until no more cells can be added. When the procedure halts, 
any edge of X mapped to E is either interior to X or lies on dD. We shall 
examine several features of X in detail. Once this is done, we shall show how 
to change the map / | X so that no 2-cells in X have degree > 3. The phrase 
"copy of E" will refer to any edge of X that is mapped to E. 

Let J* = X H f~l(oLR U aw U OLB) denote the "dual graph" of J, with 
one vertex in each 2-cell of J, and one vertex on each copy of E. Each 2-cell 
of X is colored either i?, W, or i?, matching the color of the triangle of X 
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Figure 4: If J* is not a tree then Area(/) can be reduced. In this and later 
diagrams, the inverse image of E is indicated by thicker arcs. 

onto which that 2-cell is mapped. Each vertex of X* contained in a 2-cell of 
X is colored either i?, W, or S, matching the color of the containing 2-cell. 
Note that a 2-cell (or colored vertex) cannot be adjacent to another 2-cell 
(or colored vertex) of the same color. 

Here is a sequence of facts about Z. 

Fact 1.   J* is a tree. 
If not, we will contradict the fact that / is least area. If Fact 1 is false, 

then there is a simple loop in J*. This loop may be described as 

^ = a^1 * 61 * a^"1 * 62 * ... * a"1 * &n, 

for some n > 1, where ai and hi are located in some cell Ci C X, and if Ci 
is labelled, say, W, then a^ and 6f are both preimages of aw (see Figure 4). 
The integer n must be even, for as the loop is traversed, the copies of E that 
the loop crosses have orientations which alternate between pointing into and 
out of the loop. Now cut D open along £, and throw away the disc bounded 
by t. What remains is an annulus A, whose intersection with d is denoted 
C[. The annulus A will be sewn up to form another PL disc map with 
boundary 9/, but with smaller area. This is done by making the following 
identifications on dA\ for each i = 1,... , n, identify ai with hi. Since ai and 
hi share their tail endpoints, this identification can be described by saying 
that ai and hi are "folded" together. These identifications evidently make A 
into a disc £>', and the map / | A respects these identifications, since ai and 
hi both map to the same one of the arcs ##, aw, or a^. We therefore obtain 
a new PL disc map f:D'-> X, Clearly df = 5/, and Area(//) < Area(/), 
contradicting that / is least area. 

Fact 2.   J is a pinched topological disc. 
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In other words, we show that X is a topological disc with possible identi- 
fications of boundary vertices. To see why, first note that any two 2-cells of 
X can intersect only along a copy of E, or possibly along a common vertex 
which maps to a vertex of E\ this follows from the fact that any two of the 
triangles i?, W, B intersect only along 2?, since X is a simplicial complex. 
Together with Fact 1, it follows that the interior of X is an open topological 
disc, and it also follows that there are no identifications of edges along dX. 
However, there may be vertex identifications along 9X, hence X must be a 
pinched topological disc. In what follows, we shall assume that X is actually 
a topological disc; the modifications needed to correct this assumption are 
minor. 

Fact 3.    There is at most one copy of E on dX. 
If not, we will reach a contradiction of the fact that / minimizes bound- 

ary length, among all least area PL disc maps with simplicial boundary 
and with isoperimetric ratio > X(/o). Recall that any copy of E on dX 
necessarily lies on dD. 

Supposing this fact is not true, there is a simple path in X* going from 
dD to dD. This path may be described as i = aj"1*61*a^1*62*.. .*a~1*6n, 
as above. The endpoints of £ lie on two copies of J5, namely Ei,E2 C dD. 
Cutting open D along £, we obtain two subdiscs D^ for k = 1,2, each 
having a copy of £ on its boundary. On Dfc, fold the copies of ai and bi for 
1 < i < n, yielding a new disc D^ (see Figures 5 and 6). These identifications 
are consistent with / | Dfc, hence we obtain a PL disc map /&: Df

k —» X. 
It is not immediately true that dfi and 8/2 are simplicial. Let Eik = 

EiHDkr and let Xk = E^ fl E2k in D'k. Given fc, each of E^ and E2k maps 
to a half of E] when n is odd they map to different halves of E; and when 
n is even they map to the same half. 

If n is odd, it follows that dfi and 9/2 are simplicial, as illustrated in 
Figure 5. Note that Length(d/) = Length(d/i) + Length^). Also, fi 
and /2 are least area, for if there are PL disc maps /{ and /^ with the 
same boundaries and no larger area, one of which has smaller area, then 
/{ and /^ can be reglued into a disc map by stretching xi and X2 into arcs 
and identifying; the resulting PL disc map has the same boundary as / but 
smaller area, a contradiction. 

If n is even then dfi and 8/2 are not simplicial, as shown in Figure 6, 
because /& folds the segment E^ U E2k doubly over the same half of E. 
But fk can then be homotoped to retract that segment to an endpoint of 
J5, making dfk simplicial. Having done this, it follows that Length(9/) = 
Length(9/i) + Length(d/2) + 2. The PL disc maps /1 and /2 are least area, 
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Figure 5: When dX has two copies of E\ "odd" case 

for if not then restoring their boundaries to the "unsimplicial" form, we can 
stretch and glue as above, obtaining a PL disc map with the same boundary 
as / and smaller area, a contradiction. 

Whatever the parity of n, we have constructed two least area PL disc 
maps /i and /2, with 

Area(/) = Area(/i) + Area(/2)    and 

Length(5/) > Length(d/i) + Length^) 

As we have seen before, at least one of these has isoperimetric ratio greater 
than or equal to 2r(/), contradicting the choice of /. 

Fact 4.   The map / | J preserves orientation. 
By this we mean that any two cells of X with the same color are mapped 

to the same triangle of X with the same orientation. Suppose this is false, 
say that two white cells Wi and W2 of X are mapped to W with opposite 

-1 
* an * K -1 orientation. Choose a simple edge path i = a1 * b^ * a^ * b^ * 

in 2"* from the center of Wi to the center of W2. Cutting open along t, leaves 
a hole whose boundary has two copies of each a* and &i, so as in Figure 7 
we can label the boundary of this hole as 

a1?1 * b^ * ... *anjl * b-\ * bn2 *a"^ * ... * bl2 * aj"£ 

The result of cutting Wi open along ai is denoted WJ, and the result of 
cutting W2 open along bn is denoted W^. Now we make the following iden- 
tifications, to define a new PL disc map. Identify a^i with 6n}i, and identify 
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En    xi 

E\2       %2        #22 

Figure 6: When dX has two copies of E: "even" case 

Figure 7: If Wi and W2 are mapped to W with opposite orientation, then 
after cut and paste, area can be reduced. 
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ai}2 with bni2] note that these are not folds. Then, for 1 < i < n — 1, fold 
b^i with aj+i,i, and fold 6^2 with a^+i^. 

These identifications are consistent with the map /, hence we obtain a 
new PL disc map f:Df —> X, with Of = df. Now, however, we shall 
perturb f to make its area strictly less than Area(/). To do this, note that 
Wi has a boundary arc a^l * 0^ 2 and W2 has a boundary arc b~\ * 6n)2 
which are then glued together to form a cell W' = Wl U W2. Nowr consider 
the boundary map /' | dW: dW —> 51^. Let <$' be the absolut(3 value of 
the algebraic degree of this map, 

^Idegreet/ldtT)! 

Similarly, let 

61 = |degree(/ | 3Wi)|,    62 = |degree(/ | cW2)| 

Because Wi and W2 are mapped to W with opposite orientation, we have 
6f = \Si — ^l, and clearly this is strictly less than 61 + 62. The map f | W7 

has area 61 + 62, but it can be changed by a homotopy rel boundary so that 
the area is \6i — fol, which is strictly smaller. Since the boundary map is 
the same as df, this contradicts the fact that / is least area. 

The next two facts are combinatorial consequences of Fact 4. We measure 
the distance between colored vertices of X* by ignoring the points where J* 
intersects a copy of E. 

Fact 5. The distance between any two vertices of the same color in 1* is 
even. 

Suppose not; choose, say, white vertices Wi, W2 with an odd dis- 
tance. The arc between these vertices determines a chain of cells Wi = 
Co, Ci,... , Cn = W2 with n odd. Let Of be the orientation on J?, W, or B 
obtained by pushing the orientation on Ci forward via /. Let ei be the ori- 
entation on E obtained from Oi as the induced boundary orientation. Note 
that ef 7^ e^+i for all i, and so e* alternates values as i increases. Since n is 
odd it follows that eo 7^ en, and so OQ ^ on, contradicting Fact 4. 

Before proceeding to the next fact, we say that a given color R, W, or 
B is a central color if there exists a vertex of J* with that color which is 
adjacent to vertices of both other colors. 

Fact 6.    There is at most one central color. 
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Suppose that, say, red and white are both central colors, so there is a 
path of vertices Wb—-Ro—BQ and another path Bi—Wi—i?i. Given a pair 
of vertices in a tree, if you make a new pair by moving one vertex of the 
original pair to an adjacent vertex, then the distance changes parity. By 
Fact 5, the distance between Wo and Wi is even, and it follows that the 
distance between BQ and Bi is odd, contradicting Fact 5. 

Henceforth, by relabelling we may assume that the only central color is 
W, or that there are only two colors W and i?, neither central. 

Now we put these facts to work. The disc X is decomposed into cells by 
copies of E. The degree of each cell is equal to the number of copies of E on 
its boundary. The strategy is to change this decomposition, by erasing the 
old copies of E in X and drawing in new copies, so that each new cell has no 
more than three copies of E on its boundary, hence its degree is < 3. One 
could try to do this in a piecemeal fashion, doing cut and paste operations 
analogous to the operations we have been doing above. But it turns out to 
be easier to erase completely the old copies of £?, ignore them henceforth, 
and then concentrate on the structure of dX as a guide for drawing in new 
copies of E. 

So first we must say what Fact 6 reveals about the structure of dX. The 
endpoints of each old copy of E give two points on dX, which we call dots. 
The arc of dX between two adjacent dots will be called a segment There 
is an even number of segments on X. By Fact 3, at most one segment is a 
copy of E. Every other segment maps homeomorphically to one of dR — E, 
dW — E, or dB — JE, hence segments may be colored i?, W, or B, except 
for at most one which is a copy of E. The color of a segment is the same as 
the color of the adjacent 2-cell. Also, two adjacent colored segments of dX 
lie on adjacent 2-cells of X, and hence they must have different colors. Since 
there is at most one central color, which we are assuming is W, it follows 
that every other segment of dX is colored W, and the remaining segments 
are colored either R or B, except that this pattern may be broken at most 
once at a segment which is a copy of E. 

Now we ignore the old copies of E in the interior of X, and we define a 
recursive procedure for drawing in new copies of E and carving X up into 
new colored cells, each with at most three copies of E on its boundary. To 
begin with, paint the entire background of X with gray, to indicate that we 
have not yet carved out any new cells from X. 

Step 0.    To initialize the procedure there are two cases. If there is a copy 
of E on 9J, let that be the first new copy of E\ if the two adjacent segments 
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are colored R or B (they must be the same), connect the opposite endpoints 
of these segments with a new copy of E which cuts off a new cell of degree 
2 colored R or J5; otherwise, if the two adjacent segments are colored W, 
go on to step 1. If there is no copy of E on 9J, choose an arbitrary R or B 
segment on 9X, and connect its endpoints with a new copy of JS, which cuts 
off a new cell of degree 1 colored R or B. 

Step 1. Now look at any new copy of E, call it JEi, which is adjacent to 
a portion of T that is still gray (if there is no such JKi, then the procedure 
stops). Look at the segments of dl which are incident both to Ei and to the 
gray part of X. At this stage of the procedure, those segments are colored 
W. It could be that the segments are the same, making a single segment 
connecting the two endpoints of J^i, in which case this segment together 
with Ei cuts off a new cell of degree 1 colored W. Otherwise, there are two 
segments, both colored W] we call these Wi and W2- Now look at the next 
segments adjacent to Wi and W2 respectively, call them 5i and 52. We have 
dots xt = Wi fl Si for i = 1,2. 

Step la. Suppose first that Si and 52 have the same color, say R. Connect 
the dots xi and X2 with a new copy E2 of E, and label the resulting cell W, 
which has degree 2. If 5i =52, then this segment together with £2 cuts off 
another new cell, which is then colored i?, and has degree 1. Otherwise, if 
5i 7^ 52, the endpoints of 5i and 52 opposite xi and X2 are to be connected 
with another new copy of J5, and the resulting cell is colored i?, with degree 
2. Now return to step 1. 

Step lb. Now suppose that 5i is colored, say, R and 52 is colored B. 
Going around the boundary of the gray portion of X from 5i to 52, it must 
happen that there are three adjacent segments colored, respectively, R, W, 
and J5, which we label R', W', and B, (see Figure 8). Consider the dots 
y = R' H W1 and z = W7 fl B'. Now draw in two new copies of E connecting 
the pair xi,y and the pair 2, X2- This cuts off a new cell colored W with 
degree 3. The edge connecting x\^y is then incident to segments labelled 
i2, and we can proceed as in step la, drawing in another new copy of E (if 
Si y£ Rf) and obtaining a new cell colored R with degree 1 or 2. Also, the 
edge connecting X2,z is incident to segments labelled S, and proceeding as 
in step la we obtain a new cell colored B with degree 1 or 2. Now return 
to step 1. 
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Figure 8: Cutting out new colored cells 

This finishes the description of the procedure. As the procedure goes on, 
fewer and fewer segments of dl remain adjacent to gray parts of J, while 
a larger and larger subdisc of X is carved into colored cells. The procedure 
eventually halts with all of X cut into new colored cells. When the procedure 
finishes executing, then we may use the new coloring to redefine / | J, and 
all branching numbers on X are < 3. The new / is still an AT-normal disc 
map for some AT, with the same area and boundary as the old, and the new 
domain disc D has the same number of cells as the old, but since we started 
with a cell C having degree strictly greater than 3, the total number of cells 
in D with degree > 3 has been reduced. We may repeat the procedure until 
there are no cells with degree > 3, at which time / is a least area 3-normal 
disc map with X(f) > X(fo). This finishes the proof of the Normal Disc 
Theorem. □ 

Two interesting questions which arise are: Can 3-normal be replaced 
by 2-normal? Which nonhyperbolic 2-complexes X have a normal limiting 
lamination? (not all, by the counterexamples given earlier). In regard to 
this last question, in §5 we shall prove that if a 2-complex X is non-positively 
curved in a certain sense, then each limiting lamination has locally embedded 
leaves. 
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2.6. Construction of the lamination. 

If X is not negatively curved, then by the corollary to the Normal Disc 
Theorem there is a 3-normal fat disc sequence dj: Dj —► X. 

Theorem. Any N-normal fat disc sequence dj: Dj —> X has a subsequence 
which determines an N -normal measured lamination A on X, with dA = 0 
and x(A) = 0. 

Notation: After passing to the subsequence given by the theorem, we 
shall use the notation 

A — r       dj 

*     Area(dj) 

and we call A a limiting lamination of the fat disc sequence dj. 

Proof. Let BQ be the universal iV-normal branched surface of X, and let Bi 
be the universal refining sequence of SQ. Each dj lifts to JBQ, and by the 
Universality Proposition we have lifts dlj\ Dj —► Bi of dj. Regarding each 
Dj as a leaf of the universal iV-normal lamination fi, we may proceed by 
taking the transverse Dirac measure on each Dj, weighted to have total mass 
1, and passing to a limit in the weak topology of transverse measures on SI. 
We prefer to do this more explicitly, constructing the limiting measure in 
terms of the refining sequence as follows. 

We will use the carrying map dlj to determine a normalized invariant 
measure vij on B^ by counting and then dividing by Area(dj). Passing to 
a subsequence, vy will converge as j —> oo to an invariant measure ui on 
Bi. Moreover, the Ui will form a compatible family of invariant measures on 
the refining sequence Bi, meaning that the pushforward of m+i through the 
submersion Bi+i —> Bi yields Ui. It follows that the Ui induce a trans verse 
measure v on the universal lamination ft. Taking A to be the support of v, 
we obtain the measured lamination (A, v) = ]^m(Bi, Ui). Using the: fact that 
R{dj) = l/l(dj) —> 0 as j —> oo, we will show that diH = 0, hence dA = 0. 
Since x{dj)/ Area(dj) = 1/Area(dj) —» 0, it will also follow that x(A) = 0. 
Here are the details. 

Since dj is a carrying map for the lamination Dj on Bi, by pushing 
forward the Dirac transverse measure on Dj we obtain an invariant measure 
Wij, with Wij(z) = |(do)~1(^)| for each z € Bi. Now define the normalized 
counting measures: 

= Wjj 
13      Aiea,(dj) 
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Each 2-cell of Bi has an area, obtained by pulling back the area measure 
from X. Recall that for any cell r of Bi and any invariant measure w, w(r) 
denotes w(z) for any z G intr. For each i,j it follows that Area((i/) = 
^k^ijio'k) m Area(ak), where {cr^} is an enumeration of the 2-cells of Bi. 
Fixing i and letting j vary, we have a constant sum 

53 vyC^jfe) • Area(<7fc) = 1 
k 

Therefore vy, or indeed any subsequence of vy, has a convergent subse- 
quence as j —> oo, and the limit is an invariant measure on Bi. This invariant 
measure has mass 1, hence is non-zero. 

We do not yet have a compatible family of invariant measures for the re- 
fining sequence {Bi}. To get this, we use a diagonal argument. Starting on 
BQ choose a subsequence t>oj(o,n) which converges to an invariant measure 
UQ on BQ. Since the disc maps d® in BQ lift to the disc maps dj in Bi, and 
since the counting weights of d3 and dj are both normalized by dividing by 
Area(dj), the invariant measures Vij(o,n) on Bi induce the invariant mea- 
sures fo,j(o,n) on -So- Now choose a subsequence j(l,n) of i(0, n), so that 
vij(i,n) converges to an invariant measure ui on Bi. Continuing in this way, 
we get a nested sequence of subsequences j(i, n) so that Vijfan) converges to 
an invariant measure Ui on Bi. Consider the term of the diagonal sequence 
vk,j(k,k)i which is an invariant measure on Bk- By construction, if k > i then 
vk,3(k,k) induces an invariant measure Uik on Bi. Fixing i, Ufc is a subse- 
quence of ^ij(i}n)> hence Uik converges to Ui. The operation of inducement 
from invariant measures on Bi+i to invariant measures on Bi is continuous, 
and clearly ^i+i^ induces 1^, so ui+i induces Ui. We have shown that the 
Ui form a compatible family of invariant measures on the refining sequence 

The refining sequence with its compatible family of invariant measures 
defines a measured lamination (A, v) = lim(i?i,^) carried by B, which is 
therefore an AT-normal lamination on X. 

Next we show that 9A = 0. If dA were nonempty then by positivity 
of the transverse measure v it would follow that dv is a positive transverse 
measure on the 1-dimensional lamination dk. Now dv induces the invariant 
measure dui on c?J3, and it would follow that dui ^ 0 for all i. It therefore 
suffices to show that dui = 0. 

For any 1-cell E C 9J3, define Length(B) by pulling back the length 
measure from X^l\ For each i,j we have 

Length(9d:7) = ]Pdwy(£fc) • Length^) 
k 
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where {.#&} is an enumeration of the 1-cells of dB. Since 

Length(9dj)/ Area(dJ) —> 0 

as j —> oo, it follows that 

yjdvij(Ek) • Length(^) -♦ 0   as   j —> oo 

so 
5^aMi(£?fc)-Length^) = 0 

Since Length(^) > 0 for all fe, we have 9iZj = 0. 
To prepare for the proof that x(A) = 0, we first define the Euler charac- 

teristic of an invariant measure u on a branched surface B, as an alternating 
sum: 

TQ Tl T2 

where n denotes an i-cell of B. Clearly if u is induced by a measured 
lamination carried by 5, then x(u) gives the Euler characteristic of that 
lamination. Also, x(u) varies continuously with u. 

Since Dj is a disc carried by Si, we have x(vij) = 1/Area(d!7). Since 
Z(dj) —> oo, it follows that Area(dj) —► oo, hence x(vij) —> 0 as j —> oo. It 
follows that x{ui) = 0? so X(A) = 0. □ 

3. Area minimization. 

Existence of an iV-normal measured lamination of Euler characteristic 
zero is not enough to characterize spaces which are not negatively curved. 
For example any 2-complex can be altered, without changing the fundamen- 
tal group, to accept a normal map of a torus, indeed an embedded torus. 
The additional property needed is that the lamination is strongly least area 
on each leaf. Here we show that limiting laminations have this property: 

Strong Least Area Theorem. // /: A —> X is an N-normal limiting 
lamination on X with A = limj^oodj/Area^-), for some N-normal fat 
disc sequence dj: Dj —> X, then f is strongly least area on each leaf 

The proof of this theorem may be cast in terms of Gromov-Hausdorff 
convergence. Let g: P —> X be a PL map, where P is homeomorphic to the 
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plane, and let p G P be a base point. We say that g is a Gromov-Hausdorff 
limit of the fat disc sequence dj: Dj —> X if for each embedded disc D C P 
containing p, and for all sufficiently large j, there exists a base point Xj € Dj 
and an embedding pj: (D,p) —> (Dj, rrj) so that the maps dj opji D -+ X 
converge uniformly to the map g | D. In the case where X is a 2-complex 
and the maps g: P —> X and dj: Dj —> X are all iV-normal, the sequence 
dj o pj converges uniformly to g | JO if and only if dj o pj is eventually equal 
to g | D. This is what we shall prove: 

Strong Shadowing Theorem. With the same hypotheses as the Strong 
Least Area Theorem, consider a leaf L of A with universal covering TC : L —► 
L; and an embedded PL disc D C L. For all sufficiently large j there exists 
an embedding s: D —» Dj such that dj o s = f o TT | D. 

Summarizing the preceding discussion, the Strong Shadowing Theorem 
is equivalent to the statement that the universal cover of each leaf of A is a 
Gromov-Hausdorff limit of the fat disc sequence. 

We now recast the Strong Shadowing Theorem in more suggestive lan- 
guage. Any map s: D —> Dj such that dj os = /OTT | D is called a shadow of 
D in Dj] the definition does not require s to be an embedding. The theorem 
therefore says that every disc embedded in the universal cover of a leaf has 
an embedded shadow in the fat disc Dj, for sufficiently large j. 

Proof that Strong Shadowing implies Strong Least Area. If D is a PL em- 
bedded disc in the universal cover of a leaf of A, let s: D —► Dj be a shadow 
in some fat disc. Since dj: Dj —> X is PL least area, the restricted map 
dj | s(D) is also PL least area. Therefore, the equivalent map s is PL least 
area. □ 

Our proof of the Strong Shadowing Theorem will be a bootstrap argu- 
ment. As a first step we prove: 

Weak least area theorem. With the same hypotheses as above, if L is a 
leaf of A, and if D C L is a subcomplex homeomorphic to a disc, then f I D 
is least area in X. 

This is an immediate consequence of: 

Weak shadowing theorem. If L is a leaf of A, and if D C L is a sub- 
complex homeomorphic to a disc, there exists a fat disc dj: Dj —» X and an 
embedding s: D —► Dj such that dj o s = f | D. 
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Remark. If all leaves of A were simply connected, the Weak Shadowing 
Theorem would be sufficient to prove the Strong Least Area Theorem. It 
seems likely to us that one could construct a limiting lamination with all 
leaves being simply connected. Nonetheless, we have chosen to prove the 
Strong Least Area Theorem for more general limiting laminations, in order 
to cover the fortuitous possibility that the limiting lamination has leaves 
which are not simply connected, perhaps even a torus leaf. 

Remark. It is much easier to prove the following intermediate version of 
shadowing: each disc D embedded in the universal cover of a leaf is shadowed 
by some immersion D —> Dj for some fat disc Dj. It is also easy to see that 
the map D -+ Dj, being a disc immersion into another disc, is least area. 
Might it be true that the composition D —> Dj —> X of least area maps is 
least area? This would give a much easier proof of the Strong Least Area 
Theorem. However Joel Hass, improving on the example given in [Has92], 
has shown us a 3-manifold M, a least area disc map E —► M, and a disc 
immersion D —► E, such that the composition D —>£?—> M is not least 
area. This example emphasizes how important it is to prove existence of 
embedded shadows D —> Dj. 

We have two tasks remaining: proving the Weak Shadowing Theorem; 
and proving that the Weak Least Area Theorem implies the Strong Shad- 
owing Theorem. 

For the rest of this section, fix the universal AT-normal refining sequence 
forX, 

P<+1    JD       Pi      Tl P^1 Pi      D 
• • • —> r>i —► i*i-i —> • • • —> -DQ 

The lamination Q = limSi is the universal AT-normal lamination of X, 
the maps fii Q —> Bi are carrying maps, and the measured lamination 
(A, u) = lim(i?i, fj,i) = limdj/ Aiea>(dj) is a limiting lamination on X. Let 
(R: Dj —> Bi be the carrying map obtained from dji Dj —> X as in the 
Universality Proposition. 

Here is an outline of the proof of Weak Shadowing. First we prove the 
Stability Lemma, which says that the embedded disc D C L C A may be 
thickened to a sublamination D x T in the universal lamination i7, for some 
open, compact transversal T of fi, so that D itself corresponds to D x to 
for some to G T; this is just a form of Reeb Stability. After a few technical 
lemmas, we next prove the Disc Stack Isolation Lemma, which says that 
for sufficiently large i, the sublamination D x T C O can be "isolated" in 
the branched surface Bi in the following sense: the set Si = fi(D >: T) is a 
disc stack with a stack projection to D that agrees with the projection map 
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D x T -» D, and (/i)"1^) = DxT. We may regard Dj as a leaf of the 
universal lamination f}, and we want to know whether Dj intersects DxT 
nontrivially; if it does, any component of intersection is a shadow of D in 
Dj. Using the fact that the normalized Dirac measure on Dj converges to 
the transverse measure u on A, and the fact that D x to is in the support 
of z/, it follows that Dj fl (D x T) ^ 0 for all sufficiently large j, completing 
the proof. 

3.1. Technical lemmas. 

Each result about Cl contained in this section holds in a somewhat more 
general context. For example, the following version of "Reeb stability" holds 
for any lamination Q, carried on a branched surface. 

Stability Lemma. Let f:Q-+Bbea carrying map, let D be a 2-complex 
homeomorphic to the 2-disc, let L be a leaf of SI, and let g: D —> L be 
a simplicial local embedding. Then there exists a compact space T and a 
continuous map G: D x T —► SI with the following properties: 

1. There exists to E T such that g = G(-,to). 

2. If t £ T then G maps D x t into a leaf of Q by a simplicial local 
G f 

embedding, and the map D -+ D x t —► Q, —> B is identical to the 
map fog: D —» B. 

3. For each x € D, the map G(x1 •) is a homeomorphism of T onto an 
open and closed transversal of St. 

Moreover, if we add the condition that G(x x T) be maximal with respect to 
(l)-(3), then G is unique up to an isomorphism ofT. 

To refer to this lemma, we will say that G is obtained by thickening g in 
B. Of course, the same disc immersion in SI will produce different thickenings 
in different branched surfaces. In particular, if B1 —* B is a surjective 
submersion, the thickening of a disc immersion in B1 will be thinner than 
the thickening in B. 

Proof of Stability Lemma. We use the following classical fact from PL 
topology: any triangulation of a disc D has a shelling, a sequence of sub- 
complexes Eo C • • • C ER such that Do = Eo is a 2-cell, and if 1 < r < R 
then Dr = c\{Er — Er-i) is a 2-cell intersecting Er-i in an arc. 
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The Stability Lemma is proved by induction on R. If R = 0 then a = 
f(g(Eo)) is a 2-cell of B. Let T = Ta and let G map EQXT isomorphically 
onto a x T. Since / is continuous we have that int(-Bo) x T = /~L(int(cr)) 
is open, so T is open. Choosing x G int(cr), we may identify T with x x T = 
Z"1^) so T is closed. 

Assuming by induction that G': -ER-I X T" —► fi satisfies the conclusions 
of the lemma, consider a = /(# (£)#)), a 2-cell of B. Let a be the arc 
DR^ER-I- L^ # G B be any point in the set /(5(a)), so a; € cfcr. Consider 
the transversal Tx = p~1(a;), which is both open and closed. Both of the 
transversals T7 and Ta may be identified with open and closed subsets of 
Tx. The set T = T' fl Ta is therefore an open and closed subtransversal, 
and it is non-empty since it contains a point of g(D). The required map 
G: ER x T —> fi is obtained by pasting together G7 | ER-I X T and the 
isomorphism DR XT —> a XT. 

Uniqueness follows by observing that any maximal G must be the same 
as the G constructed above by induction. □ 

By a process similar to the proof of the Stability Lemma, we can define 
the holonomy of any lamination carried by a branched surface p: Q —> B. 
Let 7: [0,1] —> B be any dual edge path, choose edges i?i,... ,En C -B, 
numbers 0 = XQ < #1 < ... < xn = 1, and 2-cells <TO, cri,... , an C B such 
that jixi) E int(cri) and 7 [ [xi-i, Xi] passes from ai-i to ai through the edge 
Ei C ddi-i Hai. For each i, T^.j and T^ both embed naturally as open and 
closed subtransversals of T^. Define To = T^. By induction, define J* C Tai 

as the pull-back to T^ of the intersection of the embedded images of T^-i 
and T^ ^n TE^ this is an open and closed transversal of £}, possibly empty. 
Via embedding in T^ we therefore obtain measure preserving embeddings 
Tf+i —► Ti. By composition, we obtain an embedding Tn —> TQ. The image 
of this embedding is denote T7 C To, and taking the inverse we obtain a 
measure preserving homeomorphism /i7: T7 —► Tn called the holonomy map 
of 7. The domain of /i7 is an open and closed subtransversal of To, non- 
empty if and only if 7 lifts to a path in some leaf of fi. 

The following lemma holds for any lamination fJ which is the inverse 
limit of a refining sequence •••—> Bj —►•••—► 2?o. 

Embedding Lemma. If L is a leaf of Tt andS C L is a finite subcomplex, 
then there exists N such that JN \ S is an embedding in BN- It follows that 
for all n > N, the map fn | S is an embedding in Bn. 
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Proof. Suppose cr, r are distinct cells of any dimension in S. Since S C ft C 
^im(Bn), there must exist n such that /n(cr) and /nM have disjoint interiors. 
Since there are only finitely many pairs of cells, there exists iV such that any 
two distinct cells of S are mapped into BN with disjoint interiors, proving 
the lemma. □ 

The next lemma applies to any lamination ft which is the inverse limit 
of a refining sequence • • • —► Bn —>...—> BQ. In preparation for a later 
application of the Splitting Progress Lemma, we need to estimate distance 
to the "divergence locus", denoted dd in the Splitting Progress Lemma. 
Consider a disk D embedded in a leaf of ft as a subcomplex of that leaf, 
with D D 9ft = 0. By the Embedding Lemma there exists m such that fm 

embeds D in 5m; let D = fm{D). Consider a leaf Left and a component C 
of Ln/~1(D). Note that C is a surface-like 2-complex. One way that C can 
fail to map homeomorphically to D is if there is an edge E C dC such that 
fm(E) C int(D). Define ddC to be the set of all such edges. If E C c^C, 
then there is a 2-cell a of L adjacent to C along JS, and /m(^) £ D. The 
set ddC is where C "diverges" from B. 

The following lemma says that if C does not map homeomorphically to 
D, then djC is nonempty, and moreover every 2-cell in C is close to ddC. 

Lemma: Divergence is imminent. Using the above notation, let p be 

the number of 2-cells in D. If C does not map homeomorphically to D, then 
each 2-cell of C is within combinatorial distance p of ddC. 

Proof. We use a holonomy argument. Let r C C be any 2-cell. Choose a 
subcomplex S C C which is maximal subject to the following conditions: 

1. S is a connected subsurface. 

2. r C S. 

3. fm is an injection on int(S). 

Define ddS = dS fl ddC, and let fyS = cl(dS - 8*3). By maximality of 5, 
the edges of diS are identified in pairs under the map fm. 

We claim that if diS ^ 0 then ddS =^ 0. If diiS is non-empty, choose a 
path y C S connecting points x ^ y in diS which are identified in D. The 
projection of 7' to JD is a path 7 such that under holonomy, hy(x) = y ^ x. 
Since cr is an embedding on int(5), it follows that a(S) ^ D, for otherwise, 
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by Reeb Stability, we reach the contradiction that hy(x) = x. By maximality 
of S it follows that ddS ^ 0, proving the claim. 

Also, it cannot happen that diS = djS = 0, for if so then S = C is 
mapped by /m homeomorphically to l), contradicting the choice of C. 

We conclude that djS ^ 0. Now the area of the surface S is bounded 
above by the area of £>, and any tile in S is therefore within combinatorial 
distance p of d^S C S^C It follows that r is within combinatorial, distance 
p of ddC. □ 

The next lemma applies whenever fi is the universal lamination of a given 
branched surface 2?o? i-e« the inverse limit of the universal refining sequence 
•••-* 5$ —*•••—► 2?o constructed in §2.2. The lemma finds "isolated disc 
products" in f2. Consider a product sublamination F x T C fi, where F is 
a compact surface and T is a compact local transversal. We say that F x T 
is isolated in i?n if the following conditions hold: 

1. The image S = fn(F xT) is an F-stack with stack projection q: S —> 

F, so that for each t G T, the map F -» F x t -^ 5 -*U F is the 
identity. 

2. /-1(5)=Fxr. 

Given a sublamination A of fi, if F x T C A, and if the condition (2) is 
replaced by /~1(<S) fl A = F x T, then we say F x T is isolated in Bn relative 
to A. 

Disc stack isolation lemma. Suppose D is a disc embedded in a leafL C 
H. There exists a product sublamination D x T C f2; u/ii/i D = D x to for 
some to € T, swc/i £/ia£ /or a/Z sufficiently large n, D x T is isolated in Bn. 

Jm* Proof. First apply the Embedding Lemma so that /m embeds D in Bn 

Then apply the Stability Lemma to thicken D in Bm, obtaining a product 
D x T. Next, applying the lemma Divergence Is Imminent, if a component 
C of f-^ifmiD)) does not map homeomorphically to fm(D) then every 2- 
cell of C is within distance p of 9^(7, where p is the number of 2-cells in D. 
Applying the Splitting Progress Lemma, there exists n > m, independent of 
C and depending only on />, so that fn(D x T) D fn{C) = 0. It follows that 
D x T is isolated in i^. □ 
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3.2. Proofs of shadowing theorems. 

Proof of Weak shadowing. Recall that Q is the universal JV-normal lami- 
nation for the complex X, and (A, u) = |im(B^^) is the limit lamination 
as usual, with A C £2.  We are given a disc D embedded as a subcomplex 

of a leaf L; let 6: D —► X be the composition D c-> L C A —► X. By the 
Disc Stack Isolation Lemma we may thicken D to a product sublamination 
D x T C fi so that the composition D x T —> X is the same as the compo- 

sition D xT —> D —► X, and so that if i is sufficiently large then D x T is 
isolated in Si. Let <% = /j(JD x T), so <% is a jD-stack and /i"

1(5i) = D x T. 
The fat disc Dj may be regarded as a leaf of ft, and the map eft: Dj —> i?i 

is the same as the restriction of fi to Dj. Let Pj = (dp~1(5i), which we 
call the picture oi D xT in Dj. We claim that if j is sufficiently large, then 
Pj ^ 0. This follows from the fact that limi_00Mass(PJ) = Mass(Si) = 
Mass(D x T) ^ 0, where Mass(Pj) = Area(PJ)/ Area^-), and Mass(5i) 
is obtained by integrating the pullback of area measure in X against the 
function /^. In particular, for sufficiently large j we have Mass(Pj) ^ 0 so 

Pj ^ 0. 
Every component of the nonempty set Pj is of the form D x t. Each 

such component gives an embedded shadow of D in Dj. □ 

The proof of the Strong Shadowing Theorem uses the Weak Least Area 
Theorem, and is technically more difficult. Here is an outline. 

Recall that we start with an arbitrary PL embedded disc D in the univer- 
sal cover L of a leaf L of the limit lamination A. Assume D is a subcomplex 
of L. In the Weak Shadowing Theorem, where D embeds in L, the strategy 
was to thicken D up to an isolated disc product D x T C O, and to un- 
derstand how fat discs pass through D xT. In general there is no hope of 
finding an isolated disc product, because D is embedded only in L, not in 
L itself. Instead, we look at the downstairs image F C L of £), generically 
a subsurface of L. Since A may have holonomy around P, we cannot gener- 
ally mimic the Disc Stack Isolation Lemma to produce an isolated product 
sublamination F xT. But if there is holonomy, the identifications of the 
original disc map D —* L can be partially simplified, replacing it by a disc 
map into a nearby leaf having fewer identifications. This replacement does 
not change the induced map D —> X. Simplifying the disc map as much as 
possible, the resulting surface P may be thickened to a product sublamina- 
tion P x T C A, which is isolated relative to A in some Pf. We also show 
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that if Lt is the leaf containing F x i, then the induced map D —* Lt is an 
embedding, for each t; this is precisely where we use the Weak Least Area 
Theorem. This result is described in the lemma Simplifying Disc Maps. 

The rest of the proof is a delicate study of how fat discs pass through 
the F-stack Si = fi(F x T) C Bi, with the goal of showing that for some fat 
disc Dj, some component of Dj fl f[~l(Si) is an embedded shadow of D. By 
using isolation of the stack Si together with a measure theoretic argument, 
we produce some shadows of D in fat discs. Finally, by using the fact that 
the maps D —> Lt described above are embeddings, we show that there are 
embedded shadows of D in Dj, for sufficiently large j. 

We start by taking care of a minor technical annoyance: if we project 
D to L, the image may not be a surface. Instead it may be a, surface- 
like 2-complex having 0-cells where two or more 2-cells touch, so that a 
neighborhood of the 0-cell in the image of D is not a disc. To prevent this, 
we replace the disc D with a regular neighborhood: pulling back the second 
barycentric subdivision of X gives the second barycentric subdivision of the 
cell decomposition on Z; now attach to D all simplices of this subdivision 
which touch the original D. Having done this, the new D is still a disc in Z, 
and its boundary maps to the union of handle boundaries in X. Any disc 
in L with this property is called a standard disc. Any standard disc in Z, 
when projected to L, yields a subsurface F C L. Henceforth we assume D 
is standard. 

The following lemma shows how to thicken F to a product F x T C A, 
after possibly altering D to simplify its self-intersections in L. The lemma 
also provides crucial information about universal covers of leaves. The proof 
depends on the Weak Least Area Theorem. 

Lemma: Simplifying disc maps. Let L be a leaf of A with universal 

covering TT : L —> L, and let D C L be a standard disc. Let 6 be the composi- 

tion D —> L —> X. There exists a product sublamination F x T C A, and 
a map g: D —> F, such that the map g x id: D x T —> F x T C A has the 
following properties. Let gt: D —* A denote the map gt(x) = {g x id)(x,t), 
letFt = Fxt = gt(D), and let Lt be the leaf of A containing Ft. Then: 

1. For each t € T the composition D —^> A —> X is identical with 6. 

2. Let Lt have universal cover Lt. Any lift gt: D —> Lt of the map gt is 
an embedding. 
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5.  There exists an integer I such that if i > I, then F x T is isolated 
relative to A in Bi. 

Proof. Let g = TTI/). NOW let G;: D x Ti —► Bi be a maximal thickening of 
5 in Bi. The sets Tf form a nested sequence of closed subsets of To, whose 
intersection is {to}- We may identify the maps Gi | D x t and gt, and we 
may identify the maps Gi | D x to and 5. Let Ft = gt(D), a subsurface 
with boundary in L*. Note that statement (1) is automatically true for any 
iGTo. 

Let Ft denote the surface obtained from Ft by attaching all caps in 
Lt, i.e. disc components of Lt — int(Ft). It follows that Ft is essential in 
I/t, meaning that the induced map 7ri(Ft) —> 7ri(Lt) is an injection. Let 
F = Ft0, F = Ft0, and L = Lt0 (this will not be the final version of F). By 
the Embedding Lemma, we may take /' sufficiently large so that if i > I' 
then F is embedded by fi in B^. For the rest of the proof we fix If to insure 
this is so, and we write G = G//, / = //', and B = JB//. We abuse notation 
by sometimes using F to denote f(F) in B. In particular, / induces a map 
Ft-»FforeachteT//. 

We claim that if / > I' is sufficiently large, then for alH > / and t € Tf, 
the map / | Ft: Ft —* F extends to a continuous map Ft —> F. Prom this 
claim, statement (2) follows for any t G T/, for if there is a lift gt- D -+ Lt 
that is not an embedding, then there is a nonclosed curve 7 C D C L such 
that gt0 7 is closed in Lf The curve gt0 7 is therefore homotopically trivial 
in Lt, and so also in Ft since Ft is essential in Lf The map (/ J Ft) ogt 07 is 
therefore homotopically trivial in F, and so also in L. But the latter curve 
is the same as the projection of 7 to L under the universal covering map 
L —> L, which is homotopically nontrivial because 7 C L is not closed. This 
contradiction proves that gt is an embedding. 

The proof of the claim uses the Weak Least Area Theorem together with 
the Splitting Progress Lemma. Consider t E T//, and suppose that for some 
cap E C Ft with c = dF, the map / | c does not extend to a map E —> F. 
We want to show that t ^ Tj for some / independent of t and E. Since F 
is essential in L it follows that / | c does not extend to a map E —* L. Let 
C C F be a maximal connected subcomplex of E containing c such that 
/ j c extends to a map C —► L. Applying the Splitting Progress Lemma 
to C we conclude that the map / | c in L is not parallel to c C Lt in 
the branched surface JBj, as long as / is sufficiently large; therefore D and 
gt{D) are not parallel in J5/, so t ^ Tj. The fact that / is independent 
of t and E follows from the Splitting Progress Lemma and the fact that 
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Area(C) < Area^), if we can show that Area(J5) is bounded independently 
of t and E. The number Length^F*) is bounded by Length(<9.D) for each 
£, so each component of dFt has length bounded independently of i, hence 
by the Weak Least Area Theorem the area of each cap E of Ft is bounded 
independently of t and E, establishing the claim. 

Our family Ft does not necessarily define a product in A. To obtain a 
product, we choose ti G Tj such that g^ identifies a minimal number of 
cells (of any dimension); if Mt is the number of cells identified by g^ then 
M^ is minimal. Since the fixed point set of the holonomy map is a closed 
set, we can choose a neighborhood U C Tj of ti such that for any t G £7, 
if gt(x) = gt(y) then 5ti(^) = Otiiv), for any x,y G D. It follows that 
Mt < M^ for t G U. But since M^ is minimal we have Mt = M^, and the 
identifications that gt performs on D must be the same, so the surfaces Ft 
are all homeomorphic, for all t G U. 

Now let Ti C Ti be the transversal for a maximal thickening Hi: D x r^ —> 
Bi of h = /i^ = (^, for i > /. By choosing i sufficiently large, we may 
assume by the Embedding Lemma that fi embeds F^ in J5i, and we may 
also assume that Ti C U. Fix i so that this is so, and redefine: I to be 
this value of i. Let T = 77, redefine F = F^, and we now have a. product 
F x T —* A satisfying (l)-(2). As usual, we confuse F with its image in Bj. 

The final step is to show that F x T can be isolated in Bi if i > I is 
sufficiently large, using another application of the Splitting Progress. Lemma. 
We use the fact that the maximal thickening of D x ti relative to A in Bj 
has the form h x id: .D x T —> F x T for some map h: D -* F. Consider 
a component C of /j~1(F) which is not an F* for any t € T. If there were 
a map gc- D —► C such that fiogc = // o ^ for £ G T/, then clearly 
our thickening would not be maximal. Therefore there is no such gc- This 
means that if we start at an arbitrary tile of C and attempt to develop D 
onto C, then the leaf containing C must diverge from F before we have 
succeeded in developing all of D. It follows that every tile of C is within 
combinatorial distance Area(jD) of dd(C). Applying the Splitting Progress 
Lemma, there is an i > I such that all components C are mapped disjointly 
from fi(F x T) in B^ D 

Next we analyze how discs of the fat disc sequence pass through the 
F-stack which is the image of the product lamination F x T described in 
the statement of the previous lemma. 

As in the previous lemma, let F be a compact surface, and suppose F x T 
is embedded in the lamination A. Let Si = fi(FxT) C Bi. Further, suppose 
Si is an F-stack with stack projection Hi: Si —> F, and suppose that for all 
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t G T, the map F —> F x t —> <% —> F is the identity, and that F x T is 
isolated in Bi relative to A. Now define Pj C Dj to be Pj = (dp"1(5i)—this 
set is called the picture of F x T in Dj. 

A sector of I?; on which the invariant measure /x* is zero is called a ghost 
sector. Define dgPj as the union of edges of dPj having an adjacent 2-tile 
mapped to a ghost sector of Bi. Define c^Pj to be the closure of dPj — dgPj. 
Since F x T is isolated in Bi relative to A, it follows that cfoPj maps to dF 
under Ili od*-. 

For any integer p > 0 define Pj(p) to be the union of tiles in Pj whose 
combinatorial distance from dgPj is greater than p. 

The following lemma says that Pj is a "fat picture sequence" in the sense 
that, ignoring c^Pj, the leftover boundary c^Pj becomes arbitrarily small 
compared to the area. 

Fat picture lemma.  The picture is fat in the following sense: 

Area(PJ) 
lim , /^^-v = oo 

j-oo Length(^P;) 

Moreover, for any p>0: 

Area(P](p)) 
hm — / ..    = 1 

j->oo   Area(P|) 

Proof of Fat picture lemma. Recall that each carrying map fi: A —> Bi 
induces a positive Borel measure on A, by pulling back a standard Lebesgue 
measure of total mass 1 on each 2-cell of Bi, and taking the Fubini prod- 
uct with the transverse measure on A. Since each submersion Bi —> BQ 

maps each 2-cell of Bi homeomorphically onto a 2-cell of PQ? we may choose 
Lebesgue measure on a 2-cell of Bi by pulling back Lebesgue measure on 
the image 2-cell in BQ, and so the Borel measure on A is independent of Pf. 
Given a Borel set A C A, let Mass(A) denote its measure. 

By the construction, the limit as j —» oo of the normalized counting 
measure of dj is an invariant measure on Bi identical to that induced by 
the measured lamination A. We will use this fact to examine how dj passes 
through Si. Note that the weights induced by A or by F x T on all sectors of 
Si are positive. We have isolated Si in order that all sectors of Bi adjacent to 
int Si but not contained in Si are ghost sectors, hence the weights induced by 
A on these sectors are all 0. This means that the normalized counting weights 
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induced by the disc maps cfy on these sectors approach 0 as j —> oo. Each 
2-cell in Dj mapped to a ghost sector of Bi touches a uniformly bounded 
number of edges of dgPL Therefore, 

Length(^PJ) 
lim —r      /   = 0 

On the other hand, 

lim ^ffi) = Mass(DxT)     Q 

j^oo Area(Dj) Mass(A) 

Combining these limits, it follows that 

Length^) 
lim — .   ./   = 0 

j->oo     Area(Pj) 

which proves the first statement. In particular, given any e > 0, if j is 
sufficiently large then 

Length(^PJ) 

Area(PJ)     < e 

To prove the second statement, let M be an upper bound for the area of a 
ball of radius p in any surface carried by Pj. Since every cell of Pj — Pj(p) 
is within distance p of an edge of dgPp we conclude that Area(Pj- — P-(/>)) 
is bounded above by 

M • Length(^Pj) < Me Area(PJ) 

for sufficiently large j. We conclude that Pj — PHp) comprises an arbitrarily 
small proportion of Area(Pj). This proves the second statement from the 
first. □ 

Proof of the Strong Shadowing Theorem. Apply the lemma Simplifying Disc 
Maps to obtain the product F x T, isolated in Bi relative to A for i > I. 
We have an P-stack Si = fi(F x T) with A n /f1^) = F x T, and we have 
the picture P- = (dp"'1(<Si). Let Lt be the leaf of A containing F x t, and 
let gt: D —> Lt be the composition D->FttFxtcLt. 

Step 1: Constructing shadows. We use the Fat Picture Lemma to get 
lots of shadows s: D —► Dj of 6: D —► X.  In fact we construct shadows 
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s which are in the picture PL in the sense that s(D) C Pj; this implies 

<f}(s(I>))cS«. 
Choose a 2-cell S C D, and consider g(S), a 2-cell in F. Denote Qlj = 

Ui o d): Pj -> F, and consider the set (Q))"1^^)) c Pj- Since (A^) = 
lim(J5i, j^i), it follows that for i > I we have 

Area((Q*.)-i(g(S))) _ Area(g(S)) 
A~ A^(^) -   Area(F)    ^ ^ (*} 

Let p be the number of 2-cells in D. Applying the Fat Picture Lemma we 
obtain 

r     Area(ij(p)) 
hm — ■/ .x    = 1. (**) 
i-oo   Area(P]) v    J 

and combining (*) and (**), it follows that for i > /, if j is sufficiently large 
then 

(Q})-1(ff(E))ni5(p)^0. (***) 
Choose any 2-cell a C (Qp"1(5(E))nPj(/9). We construct a shadow s: D -> 
Dj of 5 in Pj such that s(E) = a. As in the Stability Lemma, the shadow 
s is constructed by using a shelling E = Fi C • • • C Ep of D. Note that a 
partial shadow si: Fi —> Fj is already defined, with image cr. Assume by 
induction that for r < p we have constructed a partial shadow sr: Er —> Fj 
extending si. It follows that sr(Er) C Pj, because 5i(Fi) C Pj(p). Let 
a be the arc Er D c\(Er+i — Er). We know that sr(a) (jL ^Pj, because 
the combinatorial distance from sr(Er) to c^Pj is at least p — r. We also 
know that sr(a) ^ dePj because a <JL dD and so g(a) <f_ dF. Since sr(a) (jL 
dPj it follows that sr can be extended over Er+i to yield a partial shadow 
sr4.i: Fr+i —> Pj. This completes the construction of a shadow of 6 in Pj. 

Step 2: Constructing embedded shadows. If any one of the shadows 
constructed in step 1 is embedded, the Strong Shadowing Theorem is proved. 
We study how shadows can fail to be embedded, and we use the Splitting 
Progress Lemma, together with the fact that F embeds in Lt for each t G T, 
to show that for some i > I and all j, any shadow of 6 in Pj is embedded. 

Consider a shadow s: F —> Dj of 6 in Pj which is not embedded. Let 
7 C F be an embedded edge path of minimal length so that s identifies the 
endpoints of 7, hence s o 7 is a simple closed curve in Dj. Let F be the 
subdisc of Dj bounded by 507, and let C = s(F)UF. The number Area(F) 
is bounded by a constant depending only on F and X, because dj | F is 
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a least area map into X and Length(&E) = Length^) is bounded, being 
no larger than the number of edges in D. Since Area(5(JD)) is bounded by 
Area(j9), it follows that Area(C) is bounded. Fix t G T. Since each lift 
gt: D —» Lt is an embedding, the curve 5^(7) is essential in Lt, so E cannot 
be parallel to a disc map in L*, and it follows that C cannot be parallel to 
any map of the form C —> Lt- Applying the Splitting Progress Lemma it 
follows that if i > I is sufficiently large then C is separated from each Ft in 
J5i, that is, d^{C) fl fi(Ft) = 0. It follows that s is not a shadow in Pj. 

We have shown that there is an % > I such that for any j, any non- 
embedded shadow of 6 in Pj is not a shadow of 6 in Pj. We know that for 
sufficiently large j there is a shadow s of S in P-; moreover, since P- C P^ 
it follows that s is also a shadow in P^, hence s must be embedded. This 
proves the Strong Shadowing Theorem, and finishes the proof of the Strong 
Least Area Theorem. □ 

4. Proof of main theorems. 

First we summarize the proof that if a finite, generic 2-complex X is not 
negatively curved, then there is a 3-normal measured lamination f:A—>X 
with x(A) = 0 which is strongly least area on each leaf. By the corollary 
to the Normal Disc Theorem, X has a 3-normal fat disc sequence dj: Dj —» 
X. By the theorem of §2.6, there is a measured limiting lamination A = 
limdj/ Area^dj) and a 3-normal map /: A —> X such that x(A) == 0. By 
the Strong Least Area Theorem of §3, / is strongly least area on each leaf, 
completing the proof. 

The proof of the converse rests on the following: 

Theorem: Curvature of leaves. If A is a compact, 2-dimensio7ial mea- 
sured lamination with x(A) = 0 such that almost every leaf is not a 2-s'phere, 
then for almost every leaf L of A, the universal cover L is not negatively 
curved. In fact, L has an embedded PL fat disc sequence. 

Before giving the proof we first apply it: 

Proof of theorem A. Given a finite 2-complex X, suppose that there is a 
n-normal measured lamination f:A—>X, such that x(A) = 0 and / is 
strongly least area on each leaf. From §1.4 it follows that A has no sphere 
leaves. By the theorem Curvature of Leaves it follows that A has a leaf L 
whose universal cover L has an embedded fat disc sequence.   Composing 
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with the least area map L —> X yields a PL fat disc sequence in X, which 
evidently implies the existence of a simplicial fat disc sequence in X, proving 
that X is not negatively curved. □ 

The proof of the theorem Curvature of Leaves will use some analytic 
tools. First, we shall apply a result of Ghys [Ghy88] which shows that 
almost every leaf L of A is conformally Euclidean. Then we shall use the 
Ahlfors Lemma [Ahl35] p. 88, which provides an embedded fat disc sequence 
in L. 

The results of [Ghy88] apply to orientable, Riemannian foliations of man- 
ifolds, but as Candel has pointed out [Can93], these results hold as well for 
oriented Riemannian laminations. We begin by making our lamination ori- 
ented and Riemannian, after which we can state and apply the results of 
[Ghy88]. 

A lamination is oriented if it is equipped with an atlas of charts of the 
form DxT where D is an oriented disc, such that leaf overlap maps preserve 
orientation. Without loss of generality we may assume that A is oriented, for 
otherwise the usual construction of orientation double covers for manifolds 
works to produce an orientation double covering map A —> A, and we may 

replace /: A —> X with the map A —► A —> X] if A has an transverse 
measure of full support with Euler characteristic zero then the same is true 
of A, and if the map A —► X is iV-normal and strongly least area on each 
leaf then the same is true of the map A —> X] also if almost every leaf of A 
has a universal cover with an embedded fat disc sequence then the same is 
true of A. 

Riemannian structures on laminations are defined following Candel 
[Can93]. A lamination A is smooth if it is equipped with an atlas of charts 
DxT where D is a smooth disc, such that leaf overlap maps are smooth. 
When A is smooth, a smooth Riemannian metric on A is a choice of a posi- 
tive definite quadratic form Q(p) on the tangent plane to each point p E A, 
such that for each chart DxT and each t £ T, the map Qt which assigns 
to x € D the quadratic form Qt{x) = Q(a;,i) is smooth as a function of rr, 
and as t varies in T the map Qt varies continuously in the C00 topology. 

Branched surfaces may be used to impose Riemannian metrics on lami- 
nations that they carry. Any branched surface B can be embedded in some 
Euclidean space Rn as a smooth subcomplex, so that each surface carried by 
B is locally a smooth submanifold of Rn, and so that the given PL structure 
on B is compatible with the smooth structure. Each point of B is equipped 
with a unique tangent plane, and that plane inherits a Riemannian metric 
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from Rn. Any carrying map k—*B induces a smooth Riemannian metric on 
A, so that the smooth structure and the PL structure on A are compatible. 

Given a carrying map A —> 5, we now have two ways to measure length 
and area in A: PL measurements and Riemannian measurements. Given a 
transverse measure /x on A, this leads to two different definitions; of x(A). 
First there is the PL definition we have been using all along. The other 
definition is given in [Ghy88] and [Can93]: the Fubini product of /x with 
Lebesgue measure on leaves gives a positive Borel measure v on A, and if 
k: A —► R denotes the Gaussian curvature function then x(A) = J kdfi. By 
applying the Gauss-Bonnet theorem to each sector of B it is easily proved 
that the two definitions of x(A) agree. 

Now we quote the theorems from analysis which will finish off our proof. 
First is a result of [Ghy88]: 

Theorem: Conformal Type of Leaves. If A is a compact, oriented Ri- 
emannian measured lamination such that almost every leaf is not a 2-sphere, 
and if xW = 0, then almost every leaf of A is conformally Euclidean, i.e. 
the universal cover is conformally equivalent to E2. 

Since this theorem is not stated in [Ghy88], some comments are needed to 
give a full justification; our thanks to E. Ghys for supplying these comments, 
as well as for making us aware of the Ahlfors Lemma. 

Proof As in the proof of proposition 3.1 of [Ghy88], the measure /JL can be 
written as a sum /x_ + /J,Q where /i_ is concentrated on the conformally hy- 
perbolic leaves and /IQ is concentrated on the conformally Euclidean leaves. 
Connes has proved that a 2-dimensional measured lamination with, positive 
Euler characteristic must have a positive measure's worth of leaves homeo- 
morphic to the 2-sphere [Con82], [M097], and hence the integrals f kd/j,- 
and /kd^o are both non-positive. But since /kd/i- + f kdfio = f kd/j, = 
X(A) = 0, it follows that f kdfj,-. = f kdfiQ = 0. Now, replacing p by //_, 
it suffices to prove that if almost every leaf is conformally hyperbolic, then 
the integral of curvature is negative. 

In the middle of p. 55 of [Ghy88] is the formula 

kdii=  / ^Ac^dfi -  / exp(2</>) dfj, <  / ^Acfrd/i 

where (f>: A —> [—oo,+oo) is a certain function which takes value —oo on 
conformally Euclidean leaves and value > — oo on conformally hyperbolic 
leaves (in the latter case, exp(2</>) is the "conformal multiplier function", 
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which the metric is multiplied by in order to make the curvature constant). 
However, since we are assuming that almost every leaf is conformally hyper- 
bolic, it follows that (/) > — oo almost everywhere, hence the above inequality 
is a strict inequality, which yields 

/ fcd/i<  / * A<j) d/j,. 

Then in proposition 3.2 the integral on the right is proved to be 0, hence 
fkdfi<0. □ 

Finally, we need the following result, originally found in [Ahl35] p. 188; 
see also [Can93]. 

Ahlfors Lemma. If S is a Riemannian surface which is conformally Eu- 
clidean, then the universal cover S has a smoothly embedded fat disc se- 
quence. 

Remark: the method of proof in [Can93] shows that if /: E2 —* S is 
a conformal isomorphism, and if Dr is the disc of radius r centered on 
the origin in the Euclidean plane, then there is a sequence rn so that the 
isoperimetric ratio of f{Drn) goes to oo. 

Proof of Theorem: Curvature of Leaves. By combining the theorem Confor- 
mal Type of Leaves with the Ahlfors Lemma it follows that for almost every 
leaf L of A, the universal cover L has a sequence of smoothly embedded discs 
dj: Dj —> L which is a fat disc sequence for some Riemannian metric on L. 
Letting Area# and Lengthy denote Riemannian area and length, this means 
kxe&R(dj)/ Lengthy(ddj) —> oo. We may assume that ddj is PL, by slightly 
perturbing dj so as to change Area^(dj) and Length^(9dj) by bounded fac- 
tors. Letting Area(dj) and Length(dj) denote PL measurements, since A is 
compact there is a constant K > 1 such that 

— Area(dj) < Area^(dj) < K Are^dj) 

and 

— Length^-) < Length^ddj) < KLengthiddj) 

and hence Area(<ij)/Length(c?<i/) —> oo. □ 

Applying these results we also obtain the following special case of a 
statement of Gromov [Gro87], 6.8.S: 
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Conformal Minimal Plane Theorem. Let X be a finite 2-complex. If 
X is not negatively curved then there is a nonconstant, conformal, least area 
map from the Euclidean plane to X. 

Proof If X is not negatively curved, let /: A —> X be a 3-normal limiting 
lamination. Applying the theorem Conformal Types of Leaves, theve is a leaf 
L C A whose universal cover L is conformally equivalent to the Euclidean 
plane. The induced map L —► X is nonconstant, conformal, and least area. 
□ 

5. Examples. 

5.1. The Baumslag-Solitar group BS(1,2). 

We shall give an explicit description of a normal measured lamination 
A —> X with x(A) = 0 which is strongly least area on each leaf, where 
the fundamental group of the 2-complex X is the Baumslag-Solitar group 
BS(1,2) = (a, 6 | fcah"1 = a2}. This lamination and analogous laminations 
for the groups BS(l,n) = (a, b | 6a6~1 = an) have played a role in studying 
quasi-isometric rigidity of these groups [MF97b], [MF97a]. 

The space X is the quotient of a cylinder S1 x [0,1] by the identification 
(2,1) ~ (22,0). Another description of X starts with a rectangle H by 
inserting a fifth vertex in one of the horizontal sides, then identifying sides 
labelled a and b with orientations, as shown in Figure 9, to obtain X. We 
call H a horobrick for reasons which will become clear. We will refer to 
the horizontal side of H containing two a edges as the long side, and the 
other horizontal side will be the short side. The edge labelling determines a 
gluing pattern on the five edges of H, and the quotient complex is X. The 
universal cover X is tiled with copies of H. To describe X, let T be the 
unique connected, directed tree such that every vertex has one incoming edge 
and two outgoing edges. For each directed edge E of T, construct an infinite 
strip of copies of H glued along their b edges, and map the strip to E by a 
fibration over R, so that each directed b edge maps to E preserving direction. 
At a vertex v of T, three of these strips are to be glued together, one strip 
Uiez ^i corresponding to the incoming edge, and two strips Uiez -^f an(^ 
UieZ H'i for each of the two outgoing edges. Now glue the long side of H^ 
to the short sides of ifo+i Uil2i-f2j an^ &lue t*16 ^onS side of H" to the short 
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a a 

Figure 9: The horobrick: a fundamental domain for X 

sides of if2iUi?2i+1. The description given of X yields a fibration <£: X -* T 
with fiber R, showing that X is contractible. 

We describe some useful subsets of X. A line in T is any bi-infinite 
directed path £, = ...* E^ * Ek * Ei+1 *.... The tiling on tfr^L) is 
combinatorially equivalent to a tiling of the upper half-space model R x R+ 

of the hyperbolic plane by isometric tiles, each a horobrick, so that for any 
edge Ei C L, the strip ^(-Ej) corresponds to the set R x p*^^1]. Each 
horobrick in this strip has the form [xtf, (x + 2)2*] x [2i,2i+1] for some x, 
i.e. a right angled "rectangle" with two geodesic sides of length ln(2), a long 
horocyclic side of length 2, and a short horocyclic side of length 1, hence 
the horobrick tiles are all isometric. The strips of horobricks are called 
horostrips. Imposing on H the above metric makes X and X into geodesic 
metric spaces. For each line L C T, ^(L) is therefore an (isometric copy 
of the) hyperbolic plane. A ray in T is any positive half of any line. If R 
is a ray, then ^(R) is a horoball in a hyperbolic plane. Let R, R' be any 
two rays in T which are disjoint except that they have the same endpoint 
v. The space ^{RUR') is obtained by gluing two horoballs isometrically 
along their common boundary ^(v); this is called a doubled horoball. The 
doubled horoball ^(.RUi?') can be pictured by turning it upside down and 
thinking of sheet draped along the clothesline ^(v); see Figure 10, which 
shows the sheet with a little air puffed between the two halves. 

An explicit fat disc sequence for X can be described as follows. First 
note that since X is a contractible 2-complex, X has no non-trivial 2-cycles. 
Therefore, any simplicial embedded disc d: D C X is area minimizing in 
X, for if d': D' -+ X is any other disc map with dd sst dd', then d-d' is a 
2-cycle, hence trivial, so d' must hit each cell of D, showing that Area(d/) > 
Area(d). Pick n € Z+; we shall describe the nth fat disc in the sequence, 
with n = 4 being pictured in Diagram 11. The path 6na6-na-16na-16-na 
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r"" n IE T-n j_ 31 

Figure 10: A portion of a doubled horoball 

i 

in X is null-homotopic, and it lifts to a simple closed path in X bounding 
an embedded disc Dn which is contained in a sheet (t>~l{R U Rr) draped 
along a clothesline (j>~l{v) as described above. By intersecting Dn with 
each half of the sheet, we obtain a decomposition Dn = D U D' where 
dD fl dD' is a lift of the path a271-1, and both of the simple closed curves 
dD and dDf are lifts of the closed curve bnab~na~2n. Evidently we have 
Length(&Dn) = 4 + 4n, and Area^) = 2 * (2n-1 + ... + 2 + 1) = 2n+1 - 2, 
hence limn_00Length(5J9n)/Area(J9n) =0. Projecting to X, we obtain a 
fat disc sequence dn: Dn —> X. 

The universal normal branched surface B for X can be described as 
follows. We use the description of X as the quotient of Sl x [0,1] under 
the identification (z, 1) ~ (^2,0). Choose a small e > 0. One sector of B 
is an annulus mapping to Sl x [e, 1 — e], which we call the wide annulus of 
B. Another sector of B, called the narrow annulus, is an annulus mapping 
to S'1 x [0, e] U S1 x [1 — e, 1]; the core of the narrow annulus divides it into 
two sub-annuli, one double covering Sl x [0, e] and the other single covering 
Sl x [1 — e, 1]. The remaining sector of B is a Mobius band, dividing down 
the middle into a single annulus whose interior singly covers Sl x [1 — €, 1], 
with the core of the Mobius band doubly covering the circle Sl x 0 embedded 
in X. The branched surface B has a unique positive invariant measure up 
to multiplication by a positive constant. It can be checked directly that the 
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Figure 11: Dual 1-cells in a horobrick 

normalized counting measures of the lifts of the fat discs dn to B converge 
to an invariant measure on B which assigns a weight 1 to the wide annular 
sector, and weight 1/2 to the narrow annular sector and the Mobius band 
sector. 

Instead of describing the canonical refining sequence of J3, we shall de- 
scribe the limiting lamination A directly, by constructing its local transversal 
over a base point in X, and by describing the holonomy maps around gener- 
ating curves in 7ri(X). The holonomy maps are closely related to the "dyadic 
adding machine", a well-known dynamical system [Rud90]. 

Choose a base point XQ G int(H), viewed as a point of X. The five edges 
of H map to the two edges of X] choose a point in the interior of each 
edge of X and pull back to a point in the interior of each edge of if, and 
connect XQ to each such point with a path. These paths, called dual 1-cells, 
are labelled as in Figure 11: U for up, L for left, R for right, and DQ,DI 

for down. We shall give an explicit construction of the local transversal r 
of A over XQ, and explicit descriptions of the holonomy maps of A along the 
paths R * IT1

, U * DQ
1
, U * D{1, and Do * D^1. 

To motivate the description of r, let us imagine that we already have 
a lamination A so that each leaf £ C A has universal cover £ which is a 
hyperbolic plane or a doubled horoball, in either case tiled by horobricks. 
In each case, a leaf with a chosen base point can be thought of as a Gromov- 
Hausdorff limit of fat discs with chosen base points. In the case of a doubled 
horoball leaf, base points are chosen along the clothesline in each fat disc. 
In the case of a hyperbolic leaf, base points are chosen farther and farther 
out into a sheet of the doubled horoball. We also remark that each leaf £ is 
either simply connected or, when £ is a hyperbolic plane, either £ = £ or £ is 
a cylinder obtained as the quotient of a hyperbolic plane by a homothety. 

Associated to each horobrick in a leaf are certain data which describe how 
the given horobrick sits inside the leaf. Given a horobrick H C £, consider 
the point x = r D H. There is a unique infinite path in X which lifts to a 
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path in £ starting at x and which has the form U*D~^ *U*D^ * ... * U* 
D~* * We can therefore associate to x the infinite sequence of O's and 
1's (ni, 712, • • • , nk,...). This data does not yet completely describe x. To 
get the next piece of data, consider a horostrip S containing x (when £ is a 
cylinder, picture S in the universal cover). If I is a doubled horoball, S may 
be adjacent to a clothesline, or there may be some finite number of horostrips 
below <S, intervening between S and a clothesline (picture the sheet hanging 
upward from the clothesline); whereas if £ is a hyperbolic plane, there are 
infinitely many horostrips below S. There is thus an element in the set 
Z+U{oo} describing the number of horostrips below x, including 6'. Finally, 
if £ is a doubled horoball, there is a binary piece of data describing which 
half of the doubled horoball contains x. 

Now we are ready to define r. Let S be a two point set 5 = {So, 5i}, 
for labelling halves of doubled horoballs. The transversal r is defined to 
be the set ({0,1}Z+ x Z+ x S) U ({0,1}Z+ x {oo}). By projecting onto 
the first direct factor {0,1}Z+ we obtain functions fki r —> {0,1} for each 
k G Z+. By projecting onto the second direct factor Z+ or {oo} we obtain a 
projection g: r —► Z+U{oo}. Finally, we have a projection h: p"1(Z+) —> S. 
We impose on r the topology generated by the functions /&, g, and /i, where 
{0,1} and S are given the discrete topology and Z+ U {oo} is topologized 
by taking the obvious bijection with the set {1/n | n € Z+} U {0}. We make 
r into a Borel space by choosing the measure of the set f^l(i) fl g^in) fl 
h~1(Sj) to be 2""n~"2 for each i,j € {0,1}, each fc, n G Z+, and choosing the 
measure of 5~1(oo) = 0. It follows that r has total mass 1. 

Now we describe holonomy. The holonomy maps will be denoted by 
the corresponding paths in X. The domain and image of the holonomy map 
R*L~l are both r. To motivate this map, consider a horobrick B with center 
x in a tiling of a horoball, look at the path U*D~**U*D~2*- • -*U*D~£*... 
described above, and consider how the subscripts are affected by replacing 
B with the next horobrick to the right. The action of R * L~l on a point 
x G r is obtained by interpreting the sequence f(x) = (/&(#)) as a 2-adic 
integer and adding 1, that is: 

f(R*L-1(x)) = f(x) + l 

If f(x) is a constant sequence of 1's, then adding 1 converts it to a constant 
sequence of O's. The values of g(x) and h(x) are left unchanged by i?* L"1. 
Note that the action on f(x) is identical to the so-called "dyadic adding 
machine" studied in dynamical systems [Rud90]. 

The domain of the holonomy map U * DQ
1
 is /1~1(0). The action of U * 

DQ
1
 on the sequence f(x) is a shift, removing the initial 0 from the sequence; 
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the action on g(x) is to add 1; and h(x) is left unchanged. The image of [/* 
DQ

1
 is r—5r'"1(l). The action of U^D^1 is similarly described. The domain 

and range of DQ * -DJ"1 are both g"1^); the effect of this holonomy map is 
motivated by noting that it moves between the two halves of a doubled 
horoball. The map leaves g(x) = 1 unchanged, and interchanges the values 
h(x). The action of Do * D^1 on f(x) depends on which half of the doubled 
horoball x lies in, i.e. it depends on the value of h(x). If h(x) = So, then 
f(x) is left unchanged. If h(x) = Si, then 1 is subtracted from /(x), i.e. for 
xe^ajn/i-^Si), 

f(Do*D^(x)) = f(x)-l 

It is straightforward that these definitions give a measure preserving pseudo- 
group acting on r. 

To prove that this pseudo-group defines a lamination A on X, there are 
three relators that must be checked, which come from the three normal tile 
types at the unique vertex of X. These tile types are in 1-1 correspondence 
with the three types of vertices that occur in a horobrick tiling of a hyperbolic 
plane or doubled horoball, as shown in Figure 12. Letting I denote the 
identity map on any space, the relators are: 

(a) # * L"1 * U * JDJ"1 * Do * U'1 = / 

(b) E*L-1*C7*Do1*L*JR-1*Di*C/-1 = J 

(c) Do * D]"1 * R * L-1 * Do * Df1 = I 

There is one confusing point in understanding relator (c): recalling that X 
is the quotient of a horobrick if, note that the paths R * L-1, U * DQ 

1 and 
U * DJ"1 all preserve orientation on if, but Do * DJ"1 reverses orientation 
on H. In Figure 12.c the horobrick in the upper part therefore has the 
orientation inherited from the page, whereas the horobricks in the lower 
part have the opposite orientation. 

Once the relators are checked, A is constructed as the quotient of H x r by 
gluing sides: the right side oiHxxis glued to the left side of if x (R*L~1 (x)), 
etc. The relators show that A is indeed a lamination, and that projection 
to if induces a map A —> X yielding a measured lamination on X. Each 
leaf of A is either a doubled horoball (when g(x) ^ oo), or a hyperbolic 
plane (when g(x) = oo and f(x) is not eventually periodic), or a hyperbolic 
cylinder (when g(x) = oo and f(x) is eventually periodic), and the universal 
cover of each leaf embeds in X. The map A —> X is therefore strongly least 
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Figure 12: Relators 

area on each leaf. It is straightforward to see that any measured lamination 
on X has Euler characteristic zero. 

5.2. Euclidean laminations. 

A lamination A is Euclidean if there is a lamination atlas where each 
chart has the form D x T for some open disc D C E2, so that leaf overlap 
maps are restrictions of Euclidean isometries. We shall describe two classes 
of spaces which are not negatively curved and that have Euclidean limiting 
laminations: non-positively curved 2-complexes, and Euclidean tiling spaces. 

Non-positively curved 2-complexes. Consider a 2-complex X for 
which each 2-simplex is identified with some triangle in E2, so that for each 
1-cell E of X, any two 2-simplices incident to E are glued isometrically along 
E. Lengths of paths in X can be defined, and X can be made into a path 
metric space by defining d(x,y) to be the length of the shortest path from 
x to y. Let D be a topological disc with a distinguished point XQ E int(D). 
Given a 0-cell x e X and a local embedding /: (D, XQ) -> (X, x), we can pull 
back the Euclidean metric on the 2-simplices to obtain a Euclidean metric 
on D with a cone singularity at x of some angle 0f > 0. We say that X has 
non-positive curvature, denoted K < 0, if for any /, 0/ > 27r. Note that 
the universal cover X inherits a metric of non-positive curvature. We shall 
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prove: 

Theorem. Let X be a nonpositively curved 2-complex X, and suppose that 
X is not negatively curved. If f: A —► X is an n-normal measured lamina- 
tion on X with x(A) = 0, and if f is strongly least area on each leaf then A 
is Euclidean, and each leaf maps into X by a local isometry. In particular, 
f is a local embedding on each leaf. 

Proof. For any y G A, there is a natural way to put a Euclidean metric 
on a neighborhood of y by pulling back the metric from X, except when 
y maps to a 0-cell of X, or when y maps to the barycenter of a 2-cell of 
X. In each of the two exceptional cases, there is a cone angle 6y > 27r, 
and y has a neighborhood which is isometric to a Euclidean cone of cone 
angle 6y. The Euler characteristic may be computed from cone angles as 
follows. Let X(0) denote the 0-skeleton of X as usual, and let X^ denote 
the dual 0-skeleton, i.e. the union of the barycenters of all 2-cells. Noting 
that since /""1(X(0) U ^(o)) is a disjoint union of local transversals, one 
may integrate the angle defect 27r — 9y against the transverse measure, and 
the result is equal to 27rx(A) = 0. Since dy is a continuous function of 
y € f~l(X^ U -X'(o)), and since the transverse measure is a positive Borel 
measure on f'~1(X^ U X(o)), and since 6y > 2'K for all y, it follows that 
0y = 27r for all y. We therefore obtain a Euclidean structure on A. The map 
/ cannot have a zipped local embedding at any point y € f~l(X^), and / 
cannot have a A;-fold branched cover with k > 2 at any point y G /~1(X(o)), 
because 6y > 27r for such values of y. □ 

Corollary: Flat Plane Theorem [Bri].  Under the same hypotheses as 
above, there is an isometric embedding E2 —» X. 

Proof. If /: A —> X is as in the previous theorem, and if L is a leaf with 
universal cover L « E2, then the induced map L —> X is a local isometry. 
By [Gro87] (see also [Bal91]) this map is an isometric embedding. □ 

Tiling groups. The theory of tilings of E2 has been pursued by many 
mathematicians. One is given a finite set of "tiles" in E2, and the problem 
is to determine if E2 may be tiled by translated copies of the given tiles, 
with no overlap of the interiors.  There are also restricted tiling problems 



136 Lee Mosher and Ulrich Oertel 

where one is given a particular Jordan curve 7 in E2, and the problem is 
to determine if the interior of 7 can be tiled. The last problem has been 
analyzed by Conway [Thu90], who associates to each tiling set, a group, 
which is the fundamental group of a certain complex associated to the tiling 
set. Conway shows that under certain conditions, 7 has associated to it a 
word w in the tiling group, and a necessary condition for the interior of 7 
to be tiled is that w is trivial in the tiling group. 

We shall make a brief study of the geometry of Conway's tiling groups, by 
proving that if the Euclidean plane can be tiled, then the tiling group is not 
negatively curved, and the associated 2-complex has a Euclidean limiting 
lamination. This phenomenon has been noticed in other contexts. For 
example, Benjamin Weiss pointed out to us that from Robinson's; tilings of 
E2 [Gr87], where the tiles are all Euclidean squares with various protrusions 
to specify the matching rules, one obtains a measure preserving action of 
Z2 on a compact measure space, and in the context of Robinson's tilings 
this action is easily seen to be a manifestation of the Euclidean limiting 
lamination constructed below. 

Our description of the general tiling problem is designed to lead to a quick 
definition of Conway's tiling group. Let V be a finite collection of tiles, each 
of which is a topological polygon in E2, i.e. a closed, embedded disc with 
a finite set of three or more distinguished points on the boundary called 
vertices; a closed arc between adjacent vertices on the boundary is called 
an edge. Suppose we are also given a finite set J7 of translational isometries 
between certain pairs of edges in the collection V] these are the matching 
rules which tell how tiles may be joined. The tiling problem asks: given the 
tiling data (V, J7), can E2 be tiled by translated copies of polygons in V, with 
disjoint interiors, so that whenever two tiles meet, their intersection is either 
a vertex of each, or an edge of each whose identification is a consequence 
of one of the matching rules? More formally, for each tile T in the tiling, 
there must exist some Pr G V and some Euclidean translation, fo such 
that T = /TC-PT)- Moreover, given tiles T, Tf whose intersection is more 
than a point, there must exist edges E C Pr and Ef C Pjv such that 
TflT" = fr^E) = /y (12'), and there must exist a matching rule g: E —► E, 

in J7 so that /T | E = /T' ° g \ E. 
Associated to the tiling data (V^J7) is the tiling group T = T{V, J7), 

discovered and studied by Conway [Thu90]. To define this group, let 
X = X(P1J

7) be the 2-complex obtained from the disjoint union of P, 
by identifying edges using J7. We make the additional hypothesis that X is 
connected. There may, of course, be other identifications which aixe forced 
by the given identifications in J7. Now define r(V,J7) = TTiiXiV^J7)). We 
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shall prove: 

Theorem. // E2 can be tiled using the tiling data (V^J7), then X = 
X^^J7) is not negatively curved, and X has a Euclidean limiting lami- 
nation. 

Proof. The complex X has a path metric obtained from the Euclidean metric 
on each tile. We shall use this metric to measure area and length, and with 
respect to this metric the limiting lamination we construct will be strongly- 
least area on each leaf. Without loss of generality, we may assume that the 
tile boundaries are rectifiable. This can always be acheived by replacing 
the original tiling data with new tiling data where tile boundaries are made 
piecewise straight. 

First we construct a "developing map" 8: X —► E2. Prom the construc- 
tion, it will follow that 8 has a section if and only if the plane can be tiled. 
Also, it will follow that any section is a least area map. This will allow us 
to construct a Euclidean limiting lamination. 

To construct 8: X —> E2, note that each edge of X can be thought of 
as a copy of a certain edge of the collection of polygons V, well-defined up 
to translation. Choose a maximal tree T for the 1-skeleton of X. First we 
define 8 | T. Enumerate the edges of T as {2£n}, so that EiU- • -Ui^n is a tree 
for all n. Now define 8 | En by induction, by letting 8(Ei) be an arbitrary 
translate of the associated edge of V, then by induction define 8(En) to be 
the unique translate of the associated edge of V so that 8 | Ei U • • • U En is 
continuous; in other words, the point Enn(EiU' • 'UEn-i) must be mapped 
to the same point of E2 by 8 | Ei U • • • U En-i and by 8 | En. 

Now consider an edge E of X which is not in T. The set E D T = dE 
consists of two points, and we must show that there is a translate of the 
associated edge of E connecting the image of these two points under 8. To 
do this, let a be the unique embedded path in T connecting dE. Then aUE 
is a closed curve in X, so it bounds a cellular disc map d: D —* X. We show 
by induction on Area(D) that there is a continuous map g: D —► E2 such 
that each tile of D is mapped to a translated copy of the associated tile of 
V. By further translating the map g, it follows easily that 8 | a = g | a, 
and hence 8 | a can be defined as g | E. If Area(Z)) = 1, then D is a copy 
of a tile of V which can be taken to be g(D). If Area(D) = n, then choose 
a tile P C D such that P fl dD is an arc; then D — P is a disc of area n — 1 
and so a map D — P —> E2 can be constructed as desired, and then the map 
may be extended to P by gluing across the common arc. 
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We have now defined 6 on the 1-skeleton of X, and it follows that 6 may 
be extended across each 2-cell. It follows immediately from the construction 
of 6 that the plane can be tiled if and only if 6 has a section. 

Now suppose that /: E2 —> X is a section of 6. We claim that f is a least 
area map. To prove this, let 7 be any simple closed curve in E2 bounding a 
tiled disc of area A, and let d: D —> X be any disc map bounded by / o 7. 
We have a disc map Sod into E2 bounded by 7, and this disc map must 
have area at least A, but Area(d) = Area(<$ o d) > A, so / is least area. 

A fat disc sequence for X is now constructed by taking an embedded fat 
disc sequence for E2 and mapping to X via /, as was done for non-positively 
curved complexes. The resulting limiting lamination is Euclidean. □ 

A question one might be tempted to ask is: can a Euclidean limiting 
lamination be approximated by a torus? To make the question more precise, 
we formulate it as follows: if a branched surface B carries a Euclidean 
limiting lamination, does B also carry a torus? In this form, the answer is 
no, as can be seen from the tiling examples as follows. We may construct 
a "Euclidean normal" branched surface B mapping to the complex X = 
X(Vi F), by using only those normal tiles which are local sections of 8: X —> 
E2. It is evident that the fat disc sequence constructed in the previous proof 
is carried by 5, hence the limiting lamination may be constructed so that it 
is carried by B. Note that B carries a torus if and only if there is a doubly 
periodic tiling of the plane. But it is well known that tile data (P, T} can be 
constructed such that the only tilings of the plane are aperiodic (see [Gr87]). 
For such tiling sets, the limiting lamination cannot be approximated by a 
torus. We were made aware of these examples by Benjamin Weiss. 

Question: is there a tiling group r(P, F) which is not negatively curved 
and which does not contain a Z2 subgroup? Can this be done so that 
X(V1J

r) is non-positively curved? 
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