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This article presents a sharp pointwise geometric characterisation of the 
smooth structure of 54 and its only standard quotient EP4 , which we ob- 
tained some years ago. The proof that we give here is a significantly sim- 
plified version of our original proof ([M2]). The main statements are the 
following two theorems. 

Theorem 1. Any compact 4-Tnanifold which admits a metric whose cur- 
vature is more pinched (w.r.t. "weak pinching", see below) than the product 
S1 x (iS3, can) is diffeomorphic to the (standard) 4-sphere, if it is orientable, 
or else to the standard Za-quotient'. 

Its turns out that the products S1 x (S3,\ can) ,A in R^, and the 
standard projective plane (P2, F-S) have the same weak pinching, 1/6 . We 
also prove the rigidity statement that these are basically the only possible 
limiting examples : 

Theorem 2. Any compact ^manifold which admits a metric whose cur- 
vature is as pinched as S1 x (S3, can) is, if not diffeomorphic to S4 or the 
standard MP4, isometric to either (IP2, ^-5^ or a (Riemannian) quotient of 
Ex (S^Acan), A G E^. 

At the same time R. Hamilton gave an independant characterization of 
the smooth 54 in terms of positivity of the curvature operator (see [H2]). 
A key issue lies in the choice of relevant (Riemannian) invariants to work 
with ; the weak pinching is by definition the norm of the tracefree curvature 
operator, normalized by the scalar curvature to get a scale invariant, (see 
Part I for a more formal definition). This concept has been introduced in 
[Ml], where it is also proved that the weak pinching decreases monotonically 
to zero along any integral curve of the Ricci field ( —2ric, to be precise), 
provided that the issuing metric is pinched enough.   Note that there the 
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assumption is weak enough to allow for the possibility of some negative 
curvature, and that, on a 4-manifold, 1/6-weak pinching does not imply- 
that the curvature operator is positive, nor vice-versa. 

More recently we succeeded in proving a sharp pointwise geometric char- 
acterization of the standard differentiable structure of the sphere (and its 
quotients) in all but a finite number of dimensions. This had been a long- 
standing conjecture : using different technics, E. Calabi, D. Gromoll, H. 
Karcher, K. Shiohama, M. Sugimoto and E. Ruh proved some C00-sphere 
theorems in the classical setting invoking the ratio of sectional curvatures, 
but these were still far from the conjectured "1/4-theorem". This gives us 
further motivation to publish this new version of our original proof in dimen- 
sion 4 which, since 1986, has only been available as a preprint (in french). 
Altogether it should definitely offer weak pinching the geometric status it 
deserves. 

Since of different nature, the higher dimensional cases will not be dis- 
cussed in this paper. 

It can be noted that in connection with the question of existence of met- 
rics with positive curvature on exotic spheres, Theorems 1 and 2 establish 
that any metric on the "fake" real projective space constructed by S.E. Cap- 
pell and J.L. Shaneson (see [C-Sl], [C-S2] and [L]), though a Z2-quotient of 
the standard 4-sphere, is more distorted than the standard product metric 
on S1 x S3 and the Fubini - Study metric on P2. Moreover, if there is any 
exotic S* - which is not ruled out by Preedman's solution of the topological 
4-dimensional Poincare conjecture (see [F]) - this conclusion would also hold 
for any metric on any such manifold. 

The very starting point is Hamilton's result [HI] that any compact 3- 
manifold of positive Ricci curvature can be deformed to a manifold of con- 
stant sectional curvature. Hamilton's strategy consists in integrating the 
Ricci curvature as a vector field on the space of metrics of the underlying 
manifold to get a metric of constant sectional curvature. As early as '84 
(see [Ml]) we demonstrated that this approach could be (somewhat surpris- 
ingly) extended to higher dimensions to prove that any sufficiently pinched 
manifold carries a metric of constant (positive) curvature. 

The paper's main contribution is to extend this argument to any metric 
which is more pinched than the product Sl x (53, can), or equivalently, than 
the standard metric structure on the complex projective plane, (P , F-S). 
By this we mean a metric of positive scalar curvature whose weak pinching 
is less than the weak pinching of both of these standard structures, i.e. 1/6. 
It can be noted, in contrast, that the argument can not apply to any of the 
limit metrics: vanishing of the weak pinching is known to imply constant 
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sectional curvature by the second Bianchi identity, which is possible only on 
(a quotient of) the smooth 4-sphere ! 

We work only with metrics of positive scalar curvature, (see Paragraph 
I-C), but it may be worth noticing, as a final comment, that the Ricci 
curvature of some of the limit metrics, namely of the products S1 x (iS3, 
can), is not even positive. 
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I. Definitions, notations, prerequisites and a first sketch. 

Let M be a compact smooth 4-manifold and g a Riemannian metric on 
M . Using the metric we will freely identify the tangent and cotangent bun- 
dles, but for two exceptions : using the metric, we can identify S2 (A2T*M) 
with the symmetric endomorphisms of A2 (r*M); we will denote by ^ the 
isomorphism. There is also a relevant morphism from S2 (A2T*M) to the 
symmetric endomorphisms of S2 (T*M): let us define for any (0,4)-tensor 
A and vectors X and V, 

AiX.®Y + Y®X) = A(X,.,Y,.) + A{Y,.,X,.) 

and then extend the definition by linearity. We will denote by (.,.), and |.| 
the scalar product and the norm on ®#T*M®<g)#TM induced by the metric. 
Working with endomorphisms, we will denote the identity by id , the trace 
by tr , the kernel by ker , the set of all eigenvalues by spec and by * the 
adjunction w.r.t. the scalar product (.,.). 

D will stand for the unique metric, torsion-free connection on TM as 
well as for its functorial extension to the tensor algebra <g)#T*M and D* 
for its formal L2-adjoint on 1-forms, i.e.  D*a = — S (DxiO) (Xi) for any 

Xi 

<7-orthonormal frame {Xi)^    . 
The Riemannian curvature is then denoted by R (as a tensor field of 

type (0, 4)) or by R when we insist on R being a section of S2 (A2T*M), 
the bundle of symmetric endomorphisms of the space of skew 2-covectors, 

o 
or else by iZ, when we view the curvature as a section of S2 (52T*M), the 
bundle of symmetric endomorphisms of the space of symmetric 2-vectors. 
The Ricci trace we denote by ric and the total trace, the scalar curvature, 
by seal. In the following lines z stands for the tracefree Ricci curvature, 
z =  ric —  ^ #, and W is the conformal (or Wey 1) curvature. We will 
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also use a symmetrizing projector onto S2 (A2 (r*M)), K, which we define 
by the identity: 

K(T) = T — 0-2134 0 T — (71243 °T + (73412 0 T , 

and will denote by ^(T) (K(T)) when we want to view the result through 

the isomorphism ^ (and      , respectively). 
The usual irreducible splitting of the curvature algebra under the O(n)- 

action is written R = 2n(n-i)9®9 + fff + ^ where ® is the algebraic lifting 
from S2T*M to S2A2T*M, sometimes called Kulkarni product although one 
of the algebraic operations well-known to, and used by invariant theorists 
in the late nineteen century: for two 2-covectors h and fc, and four vectors 
Xi, ...,X4, we set : 

h®k(Xi, X2, X3, XA) = h(X1, X3) k (X2, XA) + h (X2, X4) k (Xu X3) 

- h(XuXJk(X2,X3) - h(X2,X3) k(XltXA). 

We can of course apply previous isomorphisms ~ and    to (the result of) 

any such product ; we will then denote the composition by h®k and h ® k 
respectively. 

The trace-free curvature operator T> = ^| + W is called the deviation, 

and its (normalized) pointwise norm \V\2 seal"2, which is invariant under 
rescaling, weak pinching. 

Note that in dimension 4, one has a further splitting of the Weyl curva- 
ture , W = W+ + W~, when considering the S'0(4)-action on the curvature 
algebra which is associated to the Hodge star operator eigendecomposition 
and reflects the well-known isomorphism so (4) = so (3) ®so (3). 

Let us recall the following fundamental analytical result upon which our 
proof relies. 

Proposition 1. (Global integrability for the Ricci flow [HI], [M3 - 
chap 2 th. V]) Let M be a compact smooth n-manifold and go any metric 
on M. For all real numbers a > —2(n-i)> there is a unique maximal integral 
curve, (ft, t £ [0,T), of the vector field —2 (ric + a seal g), originating from 
go ; the C®-norm of the curvature, R(gt)j diverges atT ifT is finite. 

A proof for the case a = 0 may be found in [HI]. Since this is enough 
for our present purposes we will not provide any argument here -although 
we recommend the more general and natural approach taken in [M3]. 
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In the proof of the main theorems we will also need the evolution equa- 
tions for the basic Riemannian invariants and for weak pinching. The nota- 
tions are consistent with [Ml] where the equations have been first derived. 

Proposition 2. (Evolution equation for the curvatures) [Ml, Lem- 
ma 1 and Proposition 2] Along any integral curve for the field --2ric the 
curvatures obey the following differential equations 

(i) 
(j^ + D*D\ R = -\ (ric ®g - R) O R 

--.Ro  (ric ©5-^) +KIROR\  • 

(2) ( — + D*D\ ric =-2 ric o ric +2i2 (ric) ; 

and 

(3) (0. + D*D\  seal =2|ric|2. 

Corollary 3. (Evolution equation for weak pinching) [Ml., Propo- 
sition 2] Along any integral curve for the field —2 ric the weak pinching 
obeys the following differential equation 

(4) 

( !- + D*D\ (\V\2 seal"'3) -2(13-1) seal-1 (d\V\2 seal"", d seal)   = 

- 2 scar2-/?|scal DT)-V®d scalj2 

-2(2-/3)^-1) scar2-^!©]2^ scal|2 

+ 2 scaT'3 ( (R o R + K (R o R J , V j - /?|P|2|ric|" scal" 

The main body of this paper is devoted to the proof that for any metric 
(of positive scalar curvature) whose weak pinching is less than 1/6 there is 
some real number ft in the interval (1, 2) s.t. the curvature polynomial 

(5) Pp{R) =\^RoR + k(RoR\,v\- j3\V\2 |ric|2 seal-1 

is non-positive for any real number /3 in the interval [/?, 2] ; more precisely 
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Proposition 4. Let M be a compact smooth 4-manifold. For any metric 
of positive scalar curvature, go, on M whose weak pinching is less than 1/6 - 
i.e. for any metric which is more pinched than the product S1 x (S71-1, can) 
- there is some real number fio in the interval (1, 2) s.t. for all (3 in [/?o, 2] the 
(3 weak pinching \V\2 scal-^ is uniformly bounded along the integral curve 
of the Ricci field — 2TIC starting from go. 

In fact, we prove that the global /3-weak pinching sup IP)2 seal ^ is 
v 

monotonic along the integral curve, and so sup \V\2 scaP^is a uniform up- 
V,go 

per bound along the integral curve of -2 ric originating from 50-   By the 
parabolic maximum principle the monotonicity of sup \V\2 scal-^ reduces 

vfgo 
to the following statement: the term of differential order 0 in (4), i.e. the 
fundamental polynomial i^C-R), is non-positive on 1/6-weakly pinched cur- 
vature tensors, and negative on any more pinched curvature. The latter is 
largely an algebraic problem. 

The solution, i.e. a proof of Proposition 4, spreads over Parts II to V, 
and must be considered the heart of the paper. The strategy to derive the 
geometric conclusions from Proposition 4 is not new ; for completeness's 
sake, we give the details in Part VI, which consists basically in a specializa- 
tion in dimension 4 of arguments in [Ml, Proposition 3]. Part VII is devoted 
to the rigidity theorem (Theorem 2) that characterizes the limit geometries. 
This part does rely on Theorem 1 and its proof, since exact 1/6-weak pinch- 
ing is too weak an assumption to characterize the limit geometries: there 
are (exactly) 1/6-weakly pinched geometries on 54, for example, obtained 
from the canonical metric by appropriate bashes. Using technics involved in 
proving Theorem 1 we can nevertheless prove that from the curvature view- 
point there are basically only two types of 1/6-weakly pinched geometries 
which are not diffeomorphic to 54 nor EP4. In both cases, the curvatures 
offer enough symmetries to enable us to reconstruct the geometry from the 
curvature "a la Elie Cartan". Although different from the discussion of the 
limit cases in [H2], there are expected similarities when reconstructing the 
limit geometries from the holonomy reductions, like in Lemma 36 below. 
Note once more 1/6-weak pinching does not imply non-negativity for the 
curvature operator, which makes life harder at this stage also, and that we 
can reconstruct the projective plane without invoking the Prankel conjec- 
ture. 
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II. Reduction to a problem in real algebraic geometry. 

A. A splitting of the fundamental polynomial. 

We begin with the additional splitting of the fundamental polynomial 
PpiR) associated to the 5o(4)-splitting of the Weyl algebra according to 
the eigenspaces of the Hodge *-operator. The Riemannian curvature tensor 
of a 4-manifold, when viewed as a (symmetric) endomorphism of A2T*M 
splits into a (symmetric) endomorphism of A+,R+ = ^id^ + W+, where 

W+ is the restriction W^A+J a (symmetric) endomorphism of A",i?~ = 

£f!idA- + W-,W- = W\A- a morphism from A+ to A-,Z|A+ = 2|a|A+, 
and its transpose (w.r.t. the natural scalar product on A2T*M) from A~ 

to A+, ^^|A-- Introducing the (skew-)commutator of two endomorphisms, 
[., .] and {., .} respectively, we can summarize this in the following identities 

R= ^id + z + W,   {Z,*} = 0 
0 

and 

[W, *] = 0 

For convenience, set Z\A- = B and for any linear morphism u between two 
linear spaces of the same dimension n, denote by u the cotranspose of u - 
i.e. the unique linear map defined by 

u(x) A 2/2 A • • • A yn = x A ufa) A • • • A u(yn) . 

To avoid clumsy notations, we also denote by ~ the composition of ~ with 
the "isomorphism. 

According to the previous splitting, the fundamental polynomial Pp(R) 
can be rewritten 
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Lemma 5. 

(6) 3 

P/JCH) = tr (W?+)3 + tr (w-)8 + 3 (BB*, W+) + 3 (BB*, VF") 

+ ^ (trA+ BB* + trA- 5*5) 

seal (tr(w+)2 + tr(w-)2J 

+ 2 (i?+,^ -  ^idA+) + 2 (5", JT -  ^idA-) 

- 2 (s, 5*) - 2 (i?*, B) - 2|X>|2 |ric|2 seal"1 

+ (2 - 0) |P|2 |ric|2 seal"1 . 

Proof. Let (ej)^1, be an orthonormal moving frame (for TM), so that ejr = 
ei A e2 ± es A 64, ef = ei A 63 =F 62 A 64 and erf = ei A 64 ±62 A 63 form 
an orthogonal basis for A+ (resp. A"). One can then check the following 
identities 

K(koR^ (e+, e+) = 2-1 (^ (4), et) (R (4) ,4) - (£ (e+), e+)' 

= 2(^(e+),4). 

By similar calculations, one can derive the following identities 

K(ROR) (4,4) = 2 (i?+ (4),4) = 2 (5+ (4),4) ; 

JT (A o A) (e",ej) = 2 (#" (er), £r) = 2 (5+ (ej) ,e") ; 

K^o^ (e-r£+) = K (koRJ (£+,£r) =-2(B*(£r),4) 
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This can be written 

n(A+r®A+ K(ROR\ =2R+; 

n(A+r®A- K[RoR\ =-2B; 
(7) V / 

Il{A-r®A+K\RoR) =-2B*; 

o       o 

IVm- K\RoRj=2R-. 

where II^ stands for the orthogonal projection onto E, (and E is here a 
subset of End (A2T*M)). □ 

B. Decoupling Ricci and Weyl curvatures. 

As symmetric endomorphisms of A+ (resp. A"), W+ and BB* 
(resp. W~ and B*B) are diagonalizable on R in orthonormal b^ises. Let 

(ri}")i=i > ri ^ r2 $ r3" be the spectrum of £+, (rz")i=1, rf < r^ < r^", 

the spectrum of fir, and (6?)J=1, 0 < 6i < 62 < &3 the B*B (and ££*)- 
spectrum. 

Lemma 6. Let r+ = Ef=1r/" (r~ = Sf=i^i") ^e ^e ^race 0/ ^+ (Vesp. 

i?"^. The scalar products (BB*, W+) and (B*B1W~) admit the following 

sharp upper bounds : 

(8) 

^B,w-)<j:(r7-
r

Ty?. 

Proof. More generally, let cp and ^ be two real endomorphisms and suppose 
that ip is diagonalizable on R in an orthonormal basis and that the spectrum 
of ^ is real. Denote by Ai < • • • < An the (^-spectrum and by /xi < • • • < 
fjLn the ^-spectrum and consider an orthonormal eigenbasis for cp,  (ei)^_v 
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associated with the eigenvalues (Aj)^. Then 

n 

1=1 

n n—1 

i=l i=l yj=i+l j=i+l 

n 

< Y2 Az/ii 
i=l 

□ 

Let us define Ar+ = (r^ — r^")  + (r^ — rj1") + (rj — rf)   and similarly 
Ar- with respect to the r2~, and introduce the curvature polynomial 

(9) Q0 (R) = - ((rJ - r+)2 r+ + (r+ - r2
+)2r+ + (r2

+ - r+)2 r3+ 

+ (rr-rr)arr + (rr-ra-)arr + (rir-rr)arr) 

+ S±(rt+r7)^-8r±^-2r^(±b]] 
i=l i=l \i=l      / 

3 
2 

^ ^ 1=1 

+ (2-/?)|P|2(|z|2+^!) seal"1. 

Corollary 7. The fundamental polynomial Pp(R) admits Qp{R) as a 
sharp upper bound. It is obtained by decoupling the Weyl and Ricci cur- 
vatures in Pp(R). 

Proof. The first Bianchi identity amounts to 

r+-r- = 12(nA4#)=0 ; 

Let us denote r = r+ (= r""). The following three identities are then easily 
derived: 

1 3 

(a) \Z\2 = ^\z®g\2 = 2\z\2 = tiBB* + tiB*B = 2 ]£&?; 
i=l 
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(b) A:i: = 32(a;i-|)2,x€{r+,r-}; 
1=1 

(c) 

2x 
^ (/^ " 3 )   + ^i^a* - -r- (a;ia;2 + ^xs + xirrs) 
i=i 

+ yE^-3J -2:^-3) x 
i=l i=l 

= - \Xi (X3 - a^)2 + ^2 (^3 - ^i)2 

+^3 (#2 — #1) ) , where x € {r+,r~}. 

These imply the following upper bound for Pp(R) 

(10) 

Pfi(R) < - ({4 - rtf 4 + (r3
+ - rtf rf + (r2+ - r+)2 r+ 

+ (is" - rr)2r2' + (r3" - r2")2rr + (r2" - rTfrz) 

+ 3E(^ + rr)^-|r5:^-2r-1(x;^ 
i=l i=l \i=l      / 

^ ' 1=1 

+ (2-/3)p|2('|z|2+ ^!!) scal-1^ 

C. Reduction : from /? -weak pinching to weak pinching. 

Because of the differential equation satisfied by the scalar curvature along 
any integral curve of the Ricci curvature (see (3)), the maximum principle 
implies that positive scalar curvature is preserved ; in particular, scalar 
curvature never vanishes along any integral curve originating from, a metric 
of positive scalar curvature. One may introduce the following homogeneous 
(scale invariant) curvature-type invariants: 

rf — rfr'1, fr = r^r"1, hi = hr'1, Ar+ = r"2Ar+ and Ar- = r~2Ar- . 
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The curvature polynomial Qp may then be written with respect to these 
new variables as 

QAR) = r* (- (rt - r+)2 r+ - {% - rff r2
+ - (r+ - *+)2 ^ 

- (^  " r2 )   rl  - (r3   - rl )   r2- {r2  - rl )   r3 ) 

i=l i=l 

-2(£%y+i2bM3-
y  3  ;E^) 

+ (2 - /?) |P|2scar2 (l^l2 scaP2 + 1/4) seal3 . 

First let us note that, although the curvature polynomial Qp{R) does vanish 
for constant curvature (J) = 0), it is non-positive for very pinched curvature : 

Lemma 8. If the weak pinching is small enough, Qp{R) is non-positive 
for all /? sufficiently close to 2 ; more precisely 

3£o > 0 s.t. Ve, 0 < s < eo, 3/Jb, 0 < fo < 2 s.t. 

p|2 seal"2  < s2 => Q^(i2) < 0, VjS G [/?o, 2] . 

Proof It amounts to staightforward arithmetic. Assuming 

Pfscal-*  (=^(^+M + i(^)) <e2, 

we can check the following bounds 

(a) 

3i;(^+fr)^<2EX? 
i=l i=l 

/  3 \    /  3        \ 1/2 
\2\  / Y^XO 

3 

<2(i + 3^)X;^; 
3 

i=l 
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(c) 

(r£ - rf )2rvj- + (r^ - r^)2 rf + (rj - r^)2r^ 

= iAr+ + (rt-r+)2(rt-l/3) 

+ (nT " ^)2 W " 1/3) + (rt - rtf {rt - 1/3) 

using Holder inequality, and similarly, 

(C) 

(^3   - ^T)2 ^2   + (^3   - *2")2 ^T + (^2   - *T)2 ^3" ^  g^r- (1 - 6e) . 

Prom these, we deduce the following upper bound for QpiR) : 

Qp{R) < r3 (-^f (1 - 6e - (1 - fi/2) (l + 2s2)) 

-^L(l-6e-(l-P/2)(l + 2e2))\ 

-{i:^{^-^e-^e-(2-P)(l + 2e^  , 

which leads to the lemma. 
Because of this, we can isolate the very pinched curvatures and prove by 

some compactness argument that for any pinching constant C, C £ (0,1/6), 
there is some positive constant A)(C)J A)(C) 6 (l^), such that Qp(R) is 
non-positive for all (3 G [/?o> 2] and i? s.t. Q2(R) < 0 : 

Lemma 9. Suppose the curvature polynomial Q2(R) is negative for all R 
such that 0 < \V\2 seal""2 < 1/6. Then for any positive real number 6 there 
is some positive number fio s.t Qp(R) is non-positive for every real (3 in the 
interval [/?o>2] and every curvature-type tensor R s.t \V\2 seal-2  < 1/6 — 5. 

Proof. According to Lemma 8, there exist two positive real numbers s and 
Pu Pi < % s.t. QfhK) is non-positive for /? in [ft, 2] and   p|2 seal-2 < e. 



A sharp characterizationof the 4-sphere in curvature terms 35 

The equations Y^=i H = ^ Z)f=i U ~ 1 an^ ^ie inequalities 0 < fei < 

h < h, rt <ft < *$, ?! < ?2 < ^3" and & < JXi {^ - V3)2 + 
(ft~ — 1/3) +26? < 4 (1/6 — 6) define a compact semi-algebraic variety, Z)f, 
in R9  on which r~3Q2 achieves its negative maximum m. Since 

Q/3(JR) = r3(r-3Q2(JR) + 8(2-/3)|P|2scar2 (\z\2 seal"2 +1/4)) 

<r*{r-sQ2{R) + ^h 

Q/3(R) is non-positive on Z)f for all (3 greater than or equal to 2 + ^p. We 
conclude the proof by setting fio = max (/5i, 2 + ^p). 

III. Solving the algebraic reduction: reduction 
of the dependence of the fundamental 

polynomial on the Ricci curvature 
to a dependence on its norm. 

In the previous paragraph we have reduced the proof of Proposition 4 to 
the statement that the real semi-algebraic variety of (formal) codimension 
2 in R9, defined by the following equations and inequalities is empty : 

(ii) 
(rf + ?% + r£ = r1 + r2 + r3 =1, rf < rj < i\j", r1 < r2 < ^3 , 

0 < 61 < h < 63, 0 < Ar+ + Ar- + 6\B\2 < 2    and 

-3 ((rt - rt)2rt + (1$ - ?t)2 ?t + (^ " rf? % 

+ (r3  - r2 )   rl  + (r3  - rl )   r2+ (r2  ^ rl )   r3 J 

+9 ({it + *3-) % + (^t + rj) H + (rf + rf) &?) 

^-8\B\2 - 6\B\4 + 86616263 - \B\2 (Ar+ + Ar-) > 0 . 

Let us recall that the auxiliary variables 6j, and Ax = (#3 — X2)2 + 
(xs — xi)2 + (X2 — ^i)2, x G r4", r~ have been introduced earlier, and that 
consistently we set here B = r~1B so that the identity \B\2 = 5Zi=i ^ holds. 

No classical algebraic inequality nor any rough variational approach with 
respect to any natural geometric parameter can solve the reduction. This 
is due to the existence of two different curvature tensors, of type S1 x S3 

and P2 respectively, that both lie on the boundary of the previous variety. 
Because of this bifurcation, variational and/or convexity arguments are only 
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possible on some part of the variety under consideration. Moreover these 
convexity arguments often require some auxiliary variables which reflect in a 
better way the symmetries of the algebraic system: the geometrical content 
of the variables may help to discover them. This is made more explicit in 
the following three parts. 

A. Some symmetries of the fundamental polynomial. 

Let us introduce the auxiliary variables f+, fr , defined by the identities 

rT ri     '   o J    ri   ~~ ri   "•" o» 3'     l        l      37 

ai,a2, defined by the identities 

rt = Tsai + ^ rt = Teai - TT2' 
and 71 and 72 which are defined similarly with respect to fj" and fj. 

Lemma 10.  The following identities hold : 

2 2 
*3" = -"/i"1'  f3" = _7f7l'  ^r+ = 3 ("I + "i)    and   ^r- = 3 W + T^)   • 

The inequalities fJ1" < fj < r^" and ff < fj < fJ are equivalent to y/3ai < 
02 < 0 and \/37i < 72 < 0, respectively. Finally the curvature polynomial 

(fs" - ^2")2^1" + (*3" - ^i")2^2" + (^2" - ^i")2^3" 

becomes 
1* 3,9        0 _Ar+ + _ai _ _aia2; 

and similarly, 

(r3  " r2 )   rl  + (r3   " rl )   r2 + (r2   - ^1 )   ^3   = g Ar- + -^=71 - ^7172- 

Proo/. This can be checked by straightforward substitutions and simplifica- 
tions. 
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Corollary 11.  The algebraic reduction (11) is equivalent to the polynomial 

Sm = -3 (a* + 4 + 7l
2 + 72

2) - -| (al + 7l
3) 

+ ^(a1a|+7l72
2)-2|5|2 

-6|5|4-3|B|2(«2 + a2 + 7l
2 + 7

2) 

-^(«i+7i)(26|-(6? + 6!)) 

- A (a2+72) (&! - g?) + 366162&3, 

being negative on the semi-algebraic variety defined by the inequalities 

V3ai < a2 < 0, VSj! < 72 < 0, 0 < h < h < 63 , 

and 

0<3(a2 + a2 + 7
2 + 7

2)+6^6f<2. 
1=1 

B. Dependence on the distorsion in the lower two Z2-eigenvalues. 

In this paragraph we assume that bf + b^ and all variables but 61 and &2 
are fixed and produce a sharp upper bound for 5i(i2), independent of the 
ratio 61/62- 

Lemma 12. Eliminating the variable 61/62 leads to the (sharp) upper 
bound S2(R) for the curvature polynomial Si(R), given as follows. 

Si(R) < -3 (a? + al + 7l
2
72

2) - ^ («! + 7?) + ^ ("i«2 + 7i72
2) 

- 2|S|2 - 6|B|4 - 3|i?|2 (a2 + a2 + 7l
2 + 7

2) 

-A(a1+71)(362-|B|2) 

+ A(|B,2_^((a2 + 72)2 + 8^V2 

= S2(R) . 
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Proof. Let us introduce the auxiliary variable x = b\/ \b\ + 62) ; then the 
constraint 0 < hi < 62 may be written x G [0,1/2]. The only term in S\(R) 
involving the ratio 61/62 is 

9 (- (as + 72) (81 ~ b\) + 4616263)  . 

Clearly enough, 1/-2 f (a2 + 72) + 863 J is a sharp upper bound for the 
function 

/(*) = (B? + &I) ("^^ (1" 2-) + 463 v^ir^)) 

on the interval [0,1/2]. This proves the lemma. 

C. Dependence on the largest Z2-eigenvalue. 

Introduce two more auxiliary variables, u = 02 + 72 and t> = 0:1 + 71. 

Lemma 13. The  algebraic  expression S2{R)   admits the sharp  upper 
bounds SsiR) and S3(R) which don't involve the ratio 63/I.Bl. 

When \B\2 > (3v2 - u2) /8 , then 

(12) 

S2(R) < -3 (l + |5|2) (a? + a2 + <# + tf) - ^ W + 7?) 

+ ^ (^a2 + 7171) " m2 - Q\B\4 + ^=(u2 + v2 + 8|2?|2)3/2 

+ -l-(-v)(f--uA=S3(R) . 
4\/6 v     y V 3 

When \B\2 < (Zv2 - u2) /8, f/ien 

(13) 

52 (R) < -3 (a? + a2 + 7? + 7!) (1 + |5|2) - -^ (of + 7!) 

+ ^(aiaI + 7i722)-2|5|2-6|JB|4 

1R 
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Proof. The part of SziR) involving the ratio b^l\B\ is 

A (_ ^ _ |BP) is^ai + (w _ -bt] ^ + (Q2+72)2) v. 

On the interval   J-j-^ |5|2 ^ ^^g grs^ derivative of this expression w.r.t. the 

variable 63 has the same sign as some quadratic polynomial in 63. It should 
be clear that a sharp upper bound for the above expression in 63 on the 

interval   LJ-, IB)2   is given by its value 

(14) 
l- (j£|2 + I U - u2 + ((«2 - v2)2 + 8|B|V + «2 (3t;2 - «2))1/2))  , 

at the critical point, provided this point belongs to the interval   L3L-, |jgp 

This is equivalent to the system 

f&\B\2-v2 + u2>Q 

M\B\t - 8|5|2 (3^2 - 2u2) - u2 {Zv2 - u2) > 0 , 

which, in turn, is equivalent to the inequality \B\2 > 3v ^u . 

If |JB|2 < Sv ^u , then an upper bound for the former expression in 63, 

on the interval *-$-, \B\2 , is provided by its value at |JB|
2
. After a straight- 

forward substitution and some algebraic eliminations we obtain the upper 
bound (13). This is a sharp upper bound for the fundamental polynomial 
which involves only the norm of the trace-free Ricci curvature without refer- 
ring any longer to the explicit spectrum, nor to any coupling with the Weyl 
curvature. 

IV. Isolating Sl x S^-type curvatures. 

This part is devoted to a proof of the algebraic reduction for the case 
\B\2> (3v2-u2)/8. 

Proposition 14. Under the assumption 8\B\2 > 3v2 — u2 the polynomial 
Ss(R) is non-positive on the semi-algebraic variety defined by y/Sai < a2 < 
0, V&yi < 72 < 0 and 0 < 3 (a? + a| + 7^ + 72)+6|S|2 < 2. If it vanishes, 
either the curvature is of type SA (i.e. T> = 0) or of type S1 x 53 (i.e. W = 0 
and Z2 = ^idA2;. 
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A. Eliminating some dependence on the spectrum 
of the conformal curvature. 

We introduce the variables x = ai—71 and y = 0^2—72, and thus obtain a 
system (u, v, x, y) with respect to which the fundamental polynomial shows 
more symmetries. We start with a (sharp) upper bound which cancels some 
dependence on the spectrum of the Weyl curvature. 

Lemma 15.  The algebraic expression Ss(R) admits the following sharp 
upper bound, S^R), which no longer involves the ratio x/y. 

sm < -\ («2+^+^+^)__^ ((_„) (3^ _ ^ 

- 3 (x2 + y2) (n2 + v2)1'2) - 2\B\2 - 6|B|4 

- ||B|2 («2 + v2 + x2 + y2) + JL („» + v* + 8|S|2)3/2 

Proof. The only terms involving the ratio a;/y in Ss{R) are, up to a factor 

~(^i+7i3)+3(aiai + 7i72) • 

Switching to the x, y, u and t; variables this can be rewritten 

—-- (v3 — S-u2?;) — -v (a;2 — y2 — 2uxy) . 

Introducing the auxiliary variable 9 G [0,27r) defined by x = y/x2 + y2 cos ^, 
and y = \/x2 + y2 sin ^, one obtains, 

1 3 
-- (v3 - 3ti2t;) - - (x2 + y2) (vcos2l9 - u sin 20) . 

As a function in 0, this expression is 7r-periodic and achieves its maximum, 
which is equal to 

-\ {v* - Zu2v) + \{x2 + y2) x/^T^ , 
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at the points on the circle characterized by the equation tg 29Q = —uv"1 

and 0o € l"^, TT] U fe, 27rl. This proves the lemma. 

B. Reducing the dependence of the upper bound 
on the conformal curvature to the variables u and v 

and eliminating the Ricci curvature. 

The previous bound 64(i2) is clearly monotonic w.r.t. (a;2 + y2), so that 
we are in either of the following two cases: 

1. S4(R)  is decreasing w.r.t     (x2 + y2)   :   the case 1 + |B|2   > 

Proposition 16. If 1 + \B\2 > -% (u2 + v2) ' , then the upper bound 

S4(R) is non-positive on the semi-algebraic variety defined by y/3ai < a2 < 
0, \/37i < 72 < 0 and 0 < 3 (af + a| + 7^ + 7I) + 6|JB|2 < 2 and zero only 

for curvature with V = 0 (S4-type), or W = 0 and Z2 = ^-id^. 

Proof Under the assumption 1 + |J5|2 > ^ (u2 + v2)*, the value of S4(R) 

on x2 + y2 = 0 provides a (sharp) upper bound for S^R), which is written 

S*(R) = -| (u2 + *?)-■£$ i-v) (3«2 " o2) - 2|S|2 - 6|5|4 

4N/6V       v ;     2v/6       y 

Introducing the variable X =  (8\B\2 + u2 + v2j     , the derivative w.r.t. 

|£|2 ^ 

Therefore, either (—v) > -t, and the value at 

|B|2 = |B|2m„ = i-(^) 
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is a sharp upper bound for S^R), or 

^6 [,(_), (I-^^y 
in which case 55 (R) achieves its upper bound on the boundary of the interval 

riR|2    _3tt2-n2 .3.2     _1     (u2 + v2\i 
[l-Olmin -  jT » l-olmax - 3 - I  4 J |' 

This is because Xmax = (§ — (u2 + v2))      is always larger thar. 2/\/6 - 
since u2 + v2 < | - and smaller than 4/\/6. 

When evaluating SsiR) at \B\2 = |B|max) one gets 

S6{R) = --- 
4    U

2 + u2       3    /8     . -      oX\
3/2 

3 2 4\/6 (f-C^ + O)     +^(-)(-3«2 + ,2)) 

which we can consider as a function of the variables u2 + v2 and u^+vi: it 
is then clearly increasing w.r.t. the variable v2/ (u2 + v2). Moreover, the 
bound 5v2 + u2 < | is automatically satisfied if u2 + v2 < ^ . This leads to 
the following sharp upper bound for Se(R), not depending on v2/ (u2 + v2). 
Set k = u2 + v2 : 

This last expression can be checked to be convex in A;. It has value 

I (-y= — 1J <0atA; = 8/15, and 0 at k = 0. This non-negative value for the 

upper bound corresponds tou = v = 0 = x = y and |J5|2 = IBJ^. = 1/3 ; 
moreover, in this case, o^ = 7f = 0 for i G {1,2}, and the critical value for 

63 (see (14)) is LJ- = ^, which, in turn, implies b2 = b^ = 3" = ij- Going 
back to the classical geometric invariants these identities can be rewritten 
W = 0 and Z2 = ^-id^. It will be checked later that this corresponds to 
S1 x S^-type curvatures. 

In the case where ^ < u2+v2 < |, only two arcs of the circle u2+v2 = k 
(those points on the circle satisfying bv2 + u2 < |) need be considered so 
that the value at u2 = |fc — | and v2 = — | + |, which simplifies to 

'4     k\        3    /8     7V
/2 

(M)+i5i(i-*) (8-^ 
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is the sharp upper bound for Se(R) we shall consider.   This function is 

decreasing in k on the interval   ^, |   and has value |(-^ — lj<0at^. 

It remains to evaluate S^(R) at \B\2 = l-B]^, which, as a function of 
k = u2 + v2 and v may be written 

The second derivative of T,Q(R) w.r.t. v is the quadratic polynomial 

-2(9"2+;r+1)- 
Since y/3 ai < a^ < 0 and \/3 71 < 72 < 0, it follows that u2 < 3v2 and 

that v belongs to the interval   — fc1/2, —|     La subinterval of [—2/y^(3), 0]. 

Prom this, one can check the maximum of ^(R) in v on the interval 
[vmm{k), vm3X(k)] is achieved on the boundary of the interval. 

Note that either k < 8/15 and so vmin = —fc1/2, or k G ^, | in which 

case Vmin ==""^(|'~^) (because of the relation 5v2 + u2 < |). As for the 

upper bound i;max = — f ? which corresponds to v2 = | and tx2 = ^, the 

relation 5v2 + u2 < | is automatically satisfied since k < | f Ar+ + Ar- J < 
4 
3* 

In the case where k < ^,  we have ?;min = — vfc (and u = 0) so that 

which is negative on [0,8/15]. 
In the case where | > k > ^,  we have v^ = | — | and 

Twm 9   Z^2     k\1/2 (4     3k\ S6(%2=f_! = ^ ^3 - 4J      ^3 - yj 2 " 3 ; 

this last expression can be shown to be decreasing and negative on the 

interval   ^, | . 

As for the value at vmax = —^, one has 

^)l„_#=-f(i+^), 
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which is non-positive (k > 0) and zero only if k = 0.  In this latter case, 

l^l2 = l^lmin = ^f^ " 0 and ^r+ + Ar_ = f = 0, which means V = 0 : 
this critical value of the upper bound corresponds here to curvatures of type 
(5n, can). 

2. S4(R)  is increasing w.r.t.     {x2 + y2)   :   the case 1 + |J5|2   < 

Proposition 17. //   1 + \B\2 < -^= (-u2 + v2) ' , then the upper bound 

S^R) is negative. 

Here the value on x2 + y2 = | (2 — 6|B|2 J —vP — v2 provides the sharp 

upper bound for S^R). Recall that, in this part, |J3|2 > 3t;2~^ > 05 

and note that the further assumption 1 + |J5|2 < -^= [y? + v2) /   implies 

The value on x2 + y2 = § ^2 - 6|JB|2) - u2 - u2 is 

54(i2) < -2 + 2|£|2 + -L (l - 3|B|2) VS + ^= (fc + 8|B|2)3/2 

27 *w-^(_)(^-|).1Mfl) 
4\/6 

As a function of |J5|2 this expression can be checked to be convex; in par- 
ticular the values of T^{K) on |J5|^in = ^-^ and l^l^ = \ - | provide 
the upper bound we are looking for. 

On |J5|2 = |J5|^in = ^^p^, TsCR) evaluates to the following simple 
expression, using the variable x = v2 — u2: 

This expression can be shown to be convex in x on the interval — |, k\ (note 

that 3v2 >u2>0 means that x G   — 5, fc ) and has value 

_2 +    9    fcl/2 _    9    fc3/2 
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at x = — |. This is negative for k in the interval [8/27,4/3]. At x = k it has 
value 

_2+ 9 Vfc + ^.^L^ 
Ve 4       8\/6 

The function -2 + -7=2/ + fy2 - ^J/3 is concave on the interval [-f^|, 4| 

and achieves its maximum at y = f \/6) where it evaluates to —8/49 < 0. 
On \B\2 = l-BlLx = 5 - («2 + w2) /4, TsCil) evaluates to the following 

simple expression, using the auxiliary variables k = u2+v2 and x = v2—v? : 

where x e [-k/2, fc], fc G [8/27,4/3] and x < | - ffc (since ^=^ < i - f). 
Note that — k/2 < | — |&, since k < | and that & < | — |A; is equivalent to 

^ ~ 15 • 
In any case, the former expression for ®e(R) is monotonic non-decreasing 

in x on [—k/2, k] and has value 

\/6 4A/6V3       / 2     3' 

at fc. This function of k is convex on  0, ^   and is equal to ^ f -^ — 1J <0 

at ^ and to -^ (l3 - ^|) < 0 at ^. 

In the case where k > 8/15, @e(R) is equal to 

at | — |fc.   This expression turns out to be convex and negative on the 
interval [8/15,4/3]. □ 

V. Isolating P2-type curvatures. 

We consider in this part the remaining case : 8|JB|
2
 < Sv2 — u2. 

Proposition 18.  Under the assumption 8\B\2 < 3v2 — u2, the polynomial 

Ss(R) is non-positive on the semi-algebraic variety defined by 

V3 ai < a2 < 0, 
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V371 < 72 < 0   and 

0<3(a? + al + 7i2 + 722)+6|B|2<2. 

// it vanishes then one of the following three cases holds: 

(1) Either V = 0 (S^-type curvatures), 

(2) or Z = 0, spec f i2|A+) =:  {IJOJO} and R\^- = id\^- (P2-ty'pe curva- 

ture), 

(3) or Z = 0, i?|A+ = id|A+ and spec (i?|A- ) =  {1,0,0} (IP-type curva- 

ture). 

A. Eliminating x/y and n/u to reduce the dependence 
on the conformal curvature. 

Recall that we have set v = ax +71 and u = #2 + 72 • As in the previous 
paragraph let us introduce the variables x = ai — 71 and y = a 2 — 72 so 
that the only inhomogeneous factor in 53 (J?), 

""Te ^ + ^ + V5 ^ia'+ 7l7^ 
may be written 

9 

4\/6 
('y3 - 3u2v + Sv (x2 - y2) - 6uxy) . 

In this expression the variable x/y can be eliminated -as we have done in 
Lemma 15- to achieve the sharp upper bound 

sz(R) < -I (x2 + y2 + k) (l + |£|2) .+ ^ (1,) (4W2 - 3A; + 8|B|2) 

+^ fcV* (x2 + y2) - 2|5|2 - 6|5|4 = S4(i2) , 

where we have set k = u2 + v2. 
Since &v2—k = St;2—u2 > 0, the expression for s±(R) is clearly monotonic 

non-increasing in v, when the variables a;2 + y2,& and |S|2 are kept fixed. 
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Eliminating the variable v by substituting t;min = — fc1/2 for v leads to the 
following sharp upper bound 

**&) = -§ (i + \B\2) (x2+y2 + k)-^ (fc3/2 ~ ^ (-2+y2 +fc)) 

v6 

B. Eliminating fc to get a bound depending only on 
the Ricci curvature . The case: 1 + \B\2 > ^ fc1/2. 

If -^g A:1/2 < 1 + |B|2, then S5(i?) is non-increasing as a function of the 

variable (x2 + y2), so that we get an upper bound by setting x2 + y2 = 0 in 
the above expression : 

*(*) = -2|B|2 - 6|5|4 + ||B|2 ^ (2^ - fci/a) + lk(^= **/' - 

The assumption 8|B|2 < 3v2--^2 implies fc > -^- ; the pinching assumption 
Ar+ + Ar- + 6|JB|

2
 < 2 amounts to k < | - 4|B|2. Note that such a real k 

exists only if IB)2 < 1/5. 
The expression for SQ(R) can be checked to be convex in k on the in- 

terval p3   5| — 4|B|2 .   Substituting k = ^- into SQ(R) one obtains 

2|J3|2 (-3 + 8|JB| - 5|JB|
2
) , which is negative on the interval (0,1/5]. Let us 

remark that the case \B\2 = 0 corresponds to k = x2 + y2 = 0, i.e. \V\2 = 0 : 
this critical case is associated with curvatures of type 54 . Substituting 
A; = 4 f i — \B\2) into SQ(R)^ one obtains 

-2+2i^+^(l-ifii2)1/2G+|i|2 

This can be shown to be concave in |J5|2 on (0,1/3), and negative (since it 
is negative at the root of the derivative). 
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C. Eliminating |J5| to get a bound depending 
only on the conformal curvature . 

The case : 1 + |JB|
2
 < ^ k1'2. 

If r^= A;1/2 > 1 + |i?|2, then s§{R) is non-decreasing as a function of the 

variable x2 + y2 ; the substitution x2 + y2 = | — 4|S|2 — u2 — v2 leads to the 
following upper bound 

ss{R) < -2 - |B|2 (A fc^ - 2) + JL fci/2 (1 - fc/2). 

Under the local assumption -7= fc1/2 > 2 + 2|2?|2 > 2, one obtains the upper 
bound 

*5(i2)<-2 + -^k1/2(l-k/2). 
vo 

As a function of the variable fc1/2, the last expression is concave, non-positive 
and vanishes only for k = 2/3. 

If S5(i?) also vanishes, we must have \B\2 = 0 and x2 + y2 = 2/3 ; if 
54 (R) vanishes then u = 0 and v2 = k (cf. paragraph V-A). 

If ss(R) also vanishes then,  in Lemma 15,  0o   €   {0, TT}, i.e.    x  G 

{zbv^TV} = {±}/l} and y = 0 . 

Let us assume that 8\B\2 < 3v2 - u2 and 1 + \B\2 < -^ k1/2; we 
have just proven that the fundamental polynomial cannot vanish except if 

ai = — A/|, 71 = 0, #2 = 0, 72 = 0 and |J5| = 0, (which is equivalent to 

|J5| = 0, ai = -1/3, a2 = -1/3, 63 = 2/3 and c* = 0, i G {1,2,3}), or 

if ai = 0, 71 = —y §, #2 = 0, 72 = 0 and |i?| = 0, (which is equivalent 

to \B\ = 0, ai = 0, i G {1,2,3} and ci = C2 = -5, C3 = §). This 

means that i? preserves the Hodge splitting of A2 and either spec f R\A+) = 

{1,0,0}, ^|A- = 1/3 id or ^|A+ = 1/3 id and spec(j2|A-) =   {1,0,0}, 

which corresponds to the curvature operator of (P2, F-S), respectively (P2, 
F-S). 

This ends the proof of Proposition 18 . It means that we have solved the 
algebraic reduction - and so we have proved Proposition 4. 
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VI. End of the proof. 

Heuristically, at least, the remainder of the proof should now be clear : 
to get convergence to constant curvature along an integral curve from the 
monotonicity of \T>\2 scal""^, (3 < 2, it basically remains to prove that not 
only the supremum of the curvature norm (see Proposition 1) but also that 
the infimum of the scalar curvature actually diverges at the first singularity 
developped by the flow. Technical details are very close to the arguments 
in [Ml], which, in turn are an extension to higher dimensions of Hamilton's 
original argument for 3-manifolds. For the sake of completeness we provide 
them here. 

A. Gradient of the scalar curvature along 
an integral curve for the Ricci field. 

Proposition 19. For any 1/6-weakly pinched ^-raam/oM of positive scalar 
curvature (V, go) and any positive real number rj there is a constant C(r/) 
s.t along any integral curve of the Ricci field —2 ric originating from go, the 
gradient of the scalar curvature admits the following upper bound 

\d scal|  < 77 scal3/2 + C{rj) . 

To start with, we derive the differential equation for \d scal| along an 
integral curve of the Ricci curvature : 

Lemma 20. Along any integral curve of the Ricci field —2 ric the gradient 
of the scalar curvature satisfies the following differential identities : 

(15) ( ^ + D*D J \d scal|2 = -2|JM scal|2 + 4 (d |ric|2, d seal)  ; 

and, 

(16) 

f T- + D*D J \d scal|2 seal-1 = 4 seal-2 (Dd seal, d seal ® d seal) 

- 2\d seal]4 seal-3 - 2 scaT^Dd scal|2 

+ 4 seal-1  (d |ric|2, d seal) 

- 2\d scal|2 |ric|2 seal-2 . 
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Proof. Starting with identity (3), one can obtain 

— |dscal|2 = 2 (d seal ® d seal, ric) +2 {d (-D*D seal + 2 |ric|2), d seal) , 
(Jo 

and, 

D*D\d scal|2 = 2(D*Dd seal, d seal) - 2|i?d scal|2, 

where 
dim M=n 

i)*Ddscal =-5^    (£>2dscal) (X^Xi,-) , 

for some orthonormal moving frame (Xj)™=1 on M. Because of the symmetry 
of the Hessian and the definition of curvature as a commutator, 

n 

D*Dd seal = - ^ (D (Dd scal) (•> xi> xi) + (^ (•» xi) d scal) W)) > 
i=i 

i.e. 

jD*Dd scal = +dA scal + d scal I ^ -R (•, -^i) ^i)  , 

which proves (15). 
Identity (16) is then a routine corollary of the previous calculation. 
Let us go back to the proof of Proposition 19 . The terms involving 

the covariant derivative of the Ricci curvature prohibit a straightforward 
invoking of the maximum principle. In order to balance these terms we 
introduce a |^|2-term, which we know to behave well under the flow: 

Proposition 21. Let 77 be some real number in the interval (0,1/4).  The 
curvature polynomial 

Q = \d scal|2  seal"1 + 80|z|2 - 77 seal2 

is "almost" monotonic along the integral curve of the Ricci field originating 
from any C — (C < 1/6) weakly pinched metric of positive scalar curvature, 
in the sense that it satisfies the following differential equation 

| + A)Q<CW. 
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Note. This is the 4-dimensional version of a general statement holding 
true in any dimension : see Lemma 83 in [M3 - Chap. 3]. 

Proof. Prom the evolution equation for the Ricci curvature (see (2)) and the 
scalar curvature (see (3)), one gets the following equation for the norm of 
the trace-free Ricci curvature 

(^ + D*D\ \Z\
2
 = -2|£> ric|2 + -|d scal|2 

+ 4 f R (ric), ric j seal |ric|2 . 

A main step towards the previous proposition is an improvement on the 
trivial inequality ' s^a' < \D ric|2, which relies on the study of a further 
splitting of the tensor field D ric. 

Lemma 22. Because of the invariance relation associated to the second 
Bianchi identity, we have the following stronger lower bound for \D ric| 

pric|2>-|Mscal|2 

18 

instead of the silly \DT\2 > i|dtrT|2. 

Proof Let us write D ric as a sum of a tensor Ti, all of whose traces vanish, 
and a tensor T2, which is the (orthogonal) projection of D ric on 

span (d seal ® 5, g (8) 6 ric, (g (8) S ric) o a), 

where a is the 3-permutation (3, 1, 2). By contracting the second Bianchi 
identity one obtains 6 ric = — ^d seal and the symmetry of D ric w.r.t. the 
last 2 variables then implies that there are some real numbers a and b s.t. 

Ti = a d seal ® g + b ((d seal ® g) o a + (d seal ® g) o a2) . 

These a and b are determined by considering all possible traces, which leads 
to the following system 

d seal      = (4a + 26) d seal 

—6 ric     = -d seal = (a + 56) d seal , 



52 Christophe Margerin 

whose only solution is a = | and b = ^. 
From the following identities 

(d seal ®<7, d seal (g> 5 o cr) = (d seal ®gr, d seal ^^ocr2) 

= (d seal ® g o (j,d seal ® 5 o cr2) = |(i scal|2 , 

we then deduce the lower bound we have claimed : 

\D ric|2 = |ri|2 + |T2|
2 > (4 (a2 + 2b2) + 4a& + 262) |d scal|2 . 

Back to the proof of Proposition 19, a straightforward corollary of the pre- 
vious lemma is the following differential inequality which holds along any 
integral curve of the Ricci field —2 ric 

(17)    (^ + D*D\ \Z\
2
 < -ho ric|2 + 4 (k (ric), ric")   - seal |ric|2 . 

The    next    ste 

I R (ric), ric j. 

The    next    step    consists    in    evaluating    the    curvature    polynomial 

Lemma 23. For any Riemannian manifold (M, g) which is more pinched 
than S1 x (S3, can) and any positive real numbers k and 77, there is some 
constant C = C{ri, fc, g) such that the following inequality holds 

k(R (ric), ric J   -  ^- |ric|2 < rj seal3 + C . 

Proof Because of the identities 

z ® g(z) = \z\ g — 2zoz, 

9® 9(9) = 65, 
o 

9 ® g{z) = — 2 z     and 

z®g(g) = 2z, 

the curvature polynomial I R (ric), ric j, can be written 

(k (ric), ric J =  ^-  + — seal \z\2 - tr zz + (W (z), z \ 
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Theorem 1 then implies that there is some real number /?o in the interval 
[1,2) s.t. \V\2 scal~^ is uniformly bounded (since it is monotonic) on the 
integral curve issued by 5, provided (3 G [Ah 2]. In particular there exists 
some real number K depending only on g s.t. 

(k (vie), ric)  - ^ |ric|2 < K (scal1+* + scal2fl) . 

Define 

c = c (7?, fc, K, fo) = sup kK (x1+l30 + x^1) - TJX
3
 (< +00) . 

Then 

kUk (ric), ric)  - ^ |ric|2J   < C (n, fe, K, A)) + *7 seal3 , 

which proves the lemma. 
Using the identities (3), (15) and (16) and the inequality (14) we can 

derive the following evolution equation for the curvature polynomial Q 

— + D*D ) Q < -2 seal"3 \d seal ® d seal - seal Dd scal|2 

(18) 

dt 

+ 4 seal""1  (d |ric|2, d seal) 

- 2\d scal|2 |ric|2 seal"2 - 16\D ric|2 

+ 320^fl (ric), ric)   -  ^ Iricl2) 

+ 2ri\d scal|2 — Arj seal |ric|2 . 

We can now observe that 1/6 — (C—, C < 1/6) weak pinching implies that 
the Ricci curvature is non-negative (resp. positive). That this statement is 
sharp can be checked on the product S1 x (53, can). 

Lemma 24. Any 1/6-weakly pinched (C—, C < 1/6, weakly pinched) Rie- 
mannian ^manifold of positive scalar curvature has non-negative (resp, pos- 
itive) Ricci curvature. 
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Proof. First observe the trivial bound \z\2 = i|Z|2 < \\V\2 < f seal2 . Since 
z is trace free (by definition), a sharp lower bound for the z-spectrum is 

— ^y^VC seal, which is not less than — ^p (resp. greater than). Since it is 

equal to z+ ^p g, the Ricci curvature is non-negative (resp. positive). One 
way to get this lower bound for the ^-spectrum is to note that the critical set 
for the xi-function on the intersection of the hypersurfaces Y17=i xi = Q and 
YA^I xf = C is characterized by the existence of two Lagrange multipliers 
A and fj, s.t. 

(1 — Xxi — //) dxi — y^ (Xxi + /JL) dxi = 0 . 
i>2 

As a result, all coordinates but xi are equal: one can then check that either 

xi = y     rc   ' (maximum) or xi = —J   ^n~1' (minimum). D 

Let C be less than or equal to 1/6. By Proposition 4, C-weak pinching 
is preserved by the flow. The previous lemma then implies that the Ricci 
curvature is non-negative (and positive if C is less than 1/6) along the 
integral curve originating from a C- weakly pinched manifold. Hence we can 
use the trace to get seal2 as an upper-bound for the square of the norm of 
the Ricci curvature , |ric|2, along any integral curve of the field -2 ric starting 
at a C — (< ^) weakly pinched metric. As a consequence, Lemma 23 and 
the differential inequality (18) imply the simpler differential inequality for 
the (differential) curvature polynomial Q 

(Jj + D'DJQKCfamtg), 

provided 77 G (0,1/4); here C is the constant in Lemma 23. This ends the 
proof of Proposition 21. 

Corollary 25. Associated to any C (< ^) weakly pinched ^-mam/oZrf of 
positive scalar curvature (M, go) and any real number in the interval (0,1/4) 
there is some constant C (v, go) s.t along the integral curve of the Ricci cur- 
vature, originating from the metric go, the gradient of the scalar curvature 
is uniformly bounded by the scalar curvature as follows 

(19) |dscal|  <i/scal3/2 +C(j/,go) . 

Proof. First note that the evolution equation for the scalar currature (3) 
and the (parabolic) maximum principle lead to a (finite) upper bound for 
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the length of any integral curve of the field —2 ric in terms of a pointwise 
lower bound for the scalar curvature of the issuing metric : 

Lemma 26. The length of the maximal interval of integrability of the Ricci 
field —2 ric originating from any metric go of positive scalar curvature is 
bounded from above by 2/mi seal (go)- 

Proof. Let p be a positive real number ; the real function / (£) = ^I^J is a 

solution of the ordinary differential equation ■g£ = Y and /(0) = /?, so that, 
according to the differential equation (3), the following differential inequality 
is satisfied 

(jt+D*D}  (seal -f{t))>\ (seal2 -/2) . 

The maximum principle ([M3] chap. 3 - II) then implies that seal (#,*) > 
/(£), where p is a lower bound for the scalar curvature of the initial metric 

So- □ 

According to Proposition 21, the following differential inequality holds 
true 

(l + ir^Q-cMt^o. 
Because of the parabolic maximum principle, this differential inequality im- 
plies that sup (Q — C (77), t) is non-increasing along any integral curve ; in 

v 
particular, there is some constant, only depending on 77 and the initial metric 
50 s.t. 

sup     Q <   sup  Q + C(r)) Tmax < K (77,50) . 
Mx[0,Tmax) Mx{0} 

Setting v = (277) '2, and using the Holder inequality, this can be written 

\d scal|  < v seal3/2 + c(v,go) , 

which concludes the proof of Corollary 25. 

B. Geometric conclusion. 

According to Proposition 1, starting at any metric on any compact 4- 
manifold there is a maximal integral curve gt G [0,T) for the curvature 
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field —2ric such that lim ||iJ||co = +00.   Proposition 4, the heart of the 

proof, asserts that the fundamental polynomial P2(R) evaluated at any C—, 
C = ^, (C < jr) weakly pinched curvature is non-positive (resp. negative). 
Because of the parabolic maximum principle this is enough to ensure that 
the maximum of the weak pinching is a non-increasing (resp. decreasing) 
function along the integral curve of the field —2ric starting at any 1/6— 
(resp. C--,C < 1/6) weakly pinched metric. In particular, the scalar cur- 
vature is an upper bound for the norm of the curvature all along such an 
integral curve and the maximum of the scalar curvature must blow up as t 
approaches the upper bound T. Note that T is finite if go has positive scalar 
curvature, by Lemma 26. 

Because of the control on the gradient of the scalar curvature that Corol- 
lary 25 provides, one proves that the infimum of the scalar curvature must 
also blow up at T. 

Lemma 27. // the issuing metric is C — (C < |) weakly pinched and has 
positive scalar curvature, then the scalar curvature becomes almost constant 
when approaching the singularity : 

sup    |scal|/   inf    |scal|  —> 1 as t —> T . 
Mx{t} Mx{t} 

Proof. Because go (and so gt) is C — (C < ^) weakly pinched, Lemma 24 
grants us a positive lower bound for the Ricci curvature : there exists e > 0, 
e only depending on C, such that for all (£, x) in [0,T) x M, 

ric (gt) (x) > s (n - 1) seal (gt) (x) gt (x) . 

Then pick a positive real number z/, small enough for 47r2z/ (l — u1'2) to be 
less than the previous £. Clearly enough, since the (supremum of the) scalar 
curvature diverges at the singularity, there is some point r in [0, T) s.t. the 
constant C(^,50) in (19) is bounded from above by u   inf     sup    seal3'2. 

oefcT) Mx{0} 
Let p be a maximum of the scalar curvature on (M, go); because of Corollary 
25, the scalar curvature is bounded from below by (l — v1/2)  sup   seal on 

Vx{0} 
the ^-geodesic ball 

-l/2> 

P Bp = B I p, 2  1 [ v sup   seal 
Vx{0} 
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Inside the ball Sp, we have the following lower bound for the Ricci curvature 

ric > e(n — 1) seal g >e(n — l)(l — v1'2)   sup   seal g 
v ' Mx{0} 

> 47r2z/  sup    seal g , 
Mx{6} 

which, by invoking Myers theorem, implies that the conjugate distance to 
/ X-l/2 

p is at most 2 1 I u  sup    seal . In particular, no geodesic starting at 
\   Mx{0} J 

p can be minimizing beyond dBp, and the Hopf-Rinow theorem then says 
that Bp covers the manifold M . As a consequence, we have proved 

sup   seal/  inf    seal < (1 — z/1'2)      on [r,T) . 

This establishes Lemma 27. 
To conclude, let us remark that this is enough to prove that the weak 

pinching of any C — (C < 1/6) weakly pinched metric becomes arbitrarily 
small as t —► T. Indeed, since C < 1/6, there is some real number /? in 
the interval [1,2) such that \V\2 scal-^ is non-increasing along the integral 
curve of the field —2 ric . This implies the bound 

|P|2 seal"2 = \V\2 scal^ scaH2"^ < f   sup   \V\2 scal"^ )  scaH2"^ , 
\Mx{0} J 

which proves our claim,  since    inf     seal    diverges at T according to 
Mx{t} 

Lemma 27. Theorem 1 is then a corollary of any 4-dimensional differential 
sphere theorem since arbitrarily small weak pinching and almost constant 
scalar curvature obviously imply that the sectional curvatures are arbitrarily 
pinched (in the classical strong sense). 

In fact one can prove a more precise statement without invoking any 
external result : after a proper rescaling (say such that V (gt) = V (go)) the 
metrics gt converge exponentially towards a metric of constant curvature in 
all norms C^, k G N. See [M3, Chap. Ill - D p. 163-176]. 

VII, Rigidity : a classification of the limit cases. 

The object of this last part is to prove Theorem 2, i.e. to give a metric 
characterization of all 4-manifolds which are as pinched as Sl x (S*3, can) 
or (P2,F-S) but neither diffeomorphic to S4 nor 
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Proposition 28. The fundamental polynomial i^C-R) (cf. (5)) is always 
non-positive at a 1/6-weakly pinched curvature and zero only if one of the 
following four cases holds : 

1. \\V\\2 = 0, or 

2. ||X>||2 seal""2 = 1/6, HW+H = ||W|| = 0 and 

, N       seal   /   .  1  1  1 
Spec(z)=  —  ^-1,3,3,3 

(Sx x S'3 -type curvature), or 

3. ||p||2 seal"2  = \\W-\\2 scaP2  = 1/6, ||Z||= 0 and \\W+\\ = 0 
(IP2 -type curvature), or finally 

4. \\V\\2 seal"2   = ||W+||2 scaP2   = 1/6,  \\Z\\ = 0 and \\W-\\ = 0 
(IP2 -type curvature). 

Proof This has essentially been observed in the course of the proof of The- 
orem 1, where we have noticed that the vanishing of some upper bound for 
the fundamental polynomial implies that one of the following holds: (1) the 
deviation V vanishes, or (2) the Ricci curvature is diagonal (B = 0) and 
R is of type P2, or P2, or (3) conformal curvature vanishes (W = 0) and 
Z2 = ^^-id/v2 (see Propositions 16, 17 and 18). To conclude we need only 
the following result. 

Lemma 29.  The only curvature tensors whose Weyl projection vanishes 

and whose Ricci part satisfies the identity Z2 = §^-idA2 are of S1 x S3- 
type, i.e. such that W = 0 and spec (ric)  = seal (0,1/3,1/3,1/3). 

Proof Being symmetric, the Ricci tensor is diagonalizable in a g-orthonormal 
frame (ei,--- ,64) ; let (^i,--- ,24) be the ^-spectrum w.r.t. these eigen- 
vectors. Then, the associated A2-basis ei A 62 ± 63 A 64, ei A 63 qp 62 A 
64, ei A 64 ± 62 A 63 is an eigenbasis for Z2 with associated spectrum 
(zi + Z2 - Z3 - ^4)2 , (zi + Z3-Z2- Z4)2 and (zi +Z4-Z2- Z3)2. 

The assumption in the lemma then implies that either zi + Z2 — Z3 — 
£4 = zi + zs — Z2 — Z4 = zi + Z4 — Z2 — zs (and so zi = —seal/4 and 
Z2 = 23 = Z4 = scal/12), or zi + Z2 — zs — Z4 = Z2 + Z4 — zi — zs = 
zi + Z4 — Z2 — zs (and so Z2 =   —scal/4 and zi = 24 = 22 =  scal/12), or 
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zx + Z2 — zz — Z4 = zi + 23 — Z2 — Z4 = Z2 + zs — Zi — Z4 (and so £4 = —scal/4 
and zi = Z2 = zs= scal/12). This proves the lemma. 

A. The 1/6-weakly pinched metrics on 4-manifolds 
which are not diffeomorphic to (S4, can). 

Let us recall the following result in [Ml] (see Theorem 1 there, and its 
proof). 

Proposition 30. Positivity and non-negativity of the curvature operator 
are both preserved along any integral curve of the Ricci field —2 ric. 

Any metric whose curvature is everywhere of type S1 x S3 (resp. of type 
p2 or jp2^ js 1/6-weakly pinched and has non-negative curvature operator 
of rank 3 (resp. 4). Since the base manifold is compact, and the rank is 
semi-continuous, there is, for any metric go of type S1 x S3 (resp. P2 or 
P2), a positive real e such that along the [0, ej-segment of the integral curve 
of the field —2 ric originating from go, the curvature is non-negative and of 
rank at least 3 (resp. 4). 

Lemma 31. Any 1/6-weakly pinched 4-manifold of positive scalar curva- 
ture whose weak pinching at some point is smaller than 1/6, is diffeomorphic 
either to the standard S4 or its standard Z2-quotient 

Proof By the proof of Theorem 1, weak pinching \V\2 seal 2 satisfies the 
following differential inequality 

(^ + D*D\  \V\2 seal"2 + (d (\V\2 seal"2) ,a;) < 0 , 

for some 1-form cv on M, provided that the initial metric is 1/6 weakly 
pinched. Let us consider a 1/6-weakly pinched metric. If its weak pinching 
at some point is less than 1/6, then the (global) weak pinching is less than 
1/6 on some integral arc (0, e] originating from go. This follows from the 
strong maximum principle for parabolic type equations (cf. [M3 ; chap. 3-II 
B]). To conclude, one can invoke Theorem 1 for any metric gt, t G (0,e], 
to prove that the underlying manifold is in fact diffeomorphic to either the 
standard S4 or its only standard quotient 

Corollary 32. Any  compact ^-manifold which  admits  a  1/6-  weakly 
pinched metric of positive scalar curvature whose curvature at some point is 
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neither of type S1 x 53 nor of type P2 (P2) must be diffeomorphic to either 
the standard S4 or the standard '. 

Proof If at some point the weak pinching is less than 1/6, the corollary 
follows immediately from the previous lemma. If not, the weak pinching is 
constant and the differential equation satisfied by the weak pinching can be 
written, according to Theorem 1 and Proposition 28, 

||P|2 scalji, < 0 

in a neighbourhood of a point p where the curvature is neither of type S1 x S3 

nor P2 (P2) ; in particular for some positive real number e the weak pinching 
at p and t = e, [D]2 seal-2 (e,p), is less than 1/6 when the global pinching 
sup \V\2 seal*"2 is at most 1/6, according to Theorem 1.  Lemma 31 then 
exM 
concludes the proof. 

Note that a trivial continuity argument proves that any metric (on a 
connected manifold) whose curvature at any point is of one of the three 
types 51 x 53, P2 or P2, is either everywhere of type S1 x S3, everywhere 
of type P2, or everywhere of type P2. 

Corollary 33. Let go be a metric on a smooth compact 4"7nanifold whose 
curvature is of type P2 or (P2). Let us assume that the rank at some point 
on the manifold of the curvature of some metric gt on the integral curve of 
the Ricci field, —2ric, issuing from go, is larger than 4- Then the manifold 
must be diffeomorphic to either the standard S4 or the standard RP4. 

Proof The metric gt for which there is some point where the curvature rank 
is larger than 4 can neither be of type P2 or P2 (rank 4) nor of type S1 x S3 

(rank 3) at that point. Corollary 33 therefore follows from Corollary 32. 

Corollary 34. // a compact ^-raam/oM is not diffeomorphic to the stan- 
dard S4 nor to its standard quotient RP4 and admits some metric go whose 
curvature is everywhere of type P2 or of type P2, then there is some positive 
real number e such that the rank of the curvature of any metric along the 
integral segment [0, e] of the Ricci field — 2ric issuing from go, is constant 
(and equal to 4)- 

Proof. Because of the semi-continuity property for the rank, this is just a 
reformulation of the previous statement. 
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Lemma 35. Let M be a compact ^-raam/oM which is not diffeomorphic to 
the standard S4 nor to its standard ^-quotient. If M can be equipped with 
some metric go whose curvature is everywhere of type S1 x S3, then there is 
a positive real number e such that the rank of the curvature of every metric 
along the integral segment [0, e] of the Ricci field, — 2ric, originating from 
go, is constant and equal to 3. 

Proof. By continuity, there is some integral segment [0,e], e > 0, of the 
Ricci field such that the metric gt has curvature whose rank is at least 3 
and whose type is neither P2 nor P2, for all t in the interval [0, e\. If at 
some point (£, P) in [0, e] x M the rank of the curvature is more than 3, 
then the curvature at this point is neither of type Sl x S3, P2, nor P2. We 
can conclude, according to Corollary 32, that the manifold is a standard 
(quotient of) SA. 

Lemma 36. // the rank of the curvature operators of all metrics in an 
integral segment [0, e] of the Ricci field, —2 ric, originating from a metric with 
a non-negative curvature operator is constant (as a function on [0, e] x M), 
then the kernels of the curvature operators form a parallel distribution in 
A2T*M. 

Proof (Compare with Lemma 8.2 and Theorem 8.3 in [H2].) Let us consider 
a smooth section ut in ker R{gt). Prom the equation 

Rgt(wt,wt) = 0 , 

we derive the following two identities : 

^)(^t) = -2R(ut,^j=0; 
dt 

((D'DRtet)) (u,t) ,Ut) = 4 {(DR(gt)) (UH),DUH) 

+ 2(R{gt)(Dut),DuH) 

= -2(R(gt)(Du)t),Du)t)  . 

According to the above two identities, equation (1) for the curvature along 
an integral curve of the Ricci flow, which we recall in the condensed form 

™+D*DR = p(R,9), 
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becomes 

(20) p (fl, g) {u)U ut) = -2Rgt (D«jt, Dujt) . 

In [Ml], we proved that p (R,gt) is non-negative on the kernel of Rgt pro- 

vided gt has a non-negative curvature operator. According to Proposition 
30, gt has a non-negative curvature operator when the originating metric go 
does. Identity (20) then shows that Dut lies in the kernel of the curvature. 
□ 

B. Metrics with S1 x 53-type curvature. 

Proposition 37. Any compact Riemannian 4.-manifold which is not dif- 
feomorphic to (the standard) S4 nor to its standard quotient MP4 and whose 
curvature is everywhere of type S1 x Ss is (isometric to) a quotient of 
Rx (S3,Acan), A G M^. 

Proof. Assume M is neither diffeomorphic to S4 nor to the standard 
The rank of the curvature operator on M must then be constant and equal 
to 3 on some interval [0, e], e > 0, according to Lemma 35. This implies 
that the curvature is parallel : 

Let Xi be a unit vector field on (M, gt) in the kernel of the Ricci curvature 
(a 1-dimensional distribution in TM) and let X2 and X3 be two unit vector 
fields, orthogonal to one another and both orthogonal to Xi. Then. X1AX2 
and Xi A X3 are in the kernel of the curvature operator Rgt, the A2TM- 
subspace generated by (Xi A Xi)i=2, where (Xi)i=1 is an orthonormal frame, 
and X2 AXs is orthogonal to the kernel. The second Bianchi identity and our 
assumption that the curvature is of type 51 x S3 imply R = /EL    #±, where 

/ is a smooth function on the manifold s.t. df (Xi) (X2 A X3, Y A Z) = 0 
for all vector fields Y and Z on M : in particular, grad / is orthogonal to 
ker ric in TM. 

The same argument with three orthogonal unit vector fields, all of which 
being orthogonal to Xi, shows that 0 = df(-) A • A • ,    ~ x±, i.e. that grad 

/ also lies in the kernel of the Ricci trace. Thus / must be a constant - as 
claimed. 
 Being parallel, the line-bundle ker ric is trivial on the universal covering 
M, and admits some global parallel unit section whose integral curves are 
geodesies ; these geodesies are without conjugate pairs since the sectional 
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curvature vanishes on any 2-plane tangent to the geodesic - according to 
the definition of S1 x 53-type curvature. Since the universal cover, M, is a 
symmetric space, all previous geodesies are rays. According to J. Cheeger 
and D. GromolPs^classification of complete, non-negatively curved manifolds 
this implies that M is isometric to some product Rk x iV, where N is compact, 
without any rays, and k is at least 1. The definition of curvature of type 
Sl x S'3 then implies that k is in fact one and that AT is a sphere of constant 
(sectional) curvature. 

C. Metrics with P2 (P2)-type curvature. 

Proposition 38. Any compact Riemannian ^-mam/o/d whose curvature 
is everywhere of type P2 (P2) is isometric to P2 (resp. F2), up to a scalar 
factor, or diffeomorphic to either iS4 or its standard quotient      A 

Note. Since any metric whose curvature is everywhere of type (P2, F-S) 
or (P2, F-S) is Einstein, the second Bianchi identity shows that its curvature 
tensor is, up to a global scalar multiple, the curvature of the Fubini-Study 
metric. Proposition 38 can then be deduced from a a theorem by F.Tricerri 
and L.Vanhecke, which states that any metric whose curvature at any point 
is the curvature of an irreducible symmetric space, is locally isometric to 
the model space. The reason why we here give an alternate proof is that 
it also applies to curvatures of type S1 x 53 (see Proposition 37), whereas 
Tricerri and Vanhecke's approach does not apply to reducible symmetric 
spaces with a non-trivial Euclidean factor. In fact, their statement is even 
false for M2 x R. 

Proof Assuming that the manifold M is neither diffeomorphic to 54 nor 

to MP4, let us introduce the orientation covering,   M, of M ; according to 
Corollary 34, the rank of the curvature is constant and equal to 4 on an 
integral arc [0, e],e > 0, and Lemma 36 asserts that the distribution of the 
kernel of the curvature operator is parallel. Since the Hodge decomposition 
is parallel and the kernel of the curvature of the initial metric go lies either in 

v 
A+ (or in A~), according to the choice of orientation on M, the distribution 
ker R(gt) is parallel in A+ (resp. A~). 

Equivalently (ker R^t))1- defines a parallel line distribution, L, in A+ 

(resp. A~). Since the curvature is everywhere of type P2 (P2), all metrics gt 
are Einstein and all sectional curvatures are positive . Being compact, even- 
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v 
dimensional, oriented and of positive curvature, M is simply connected and 
the line bundle L is trivial. In particular there is a global never-vanishing 
parallel section, cr, in L. 

Lemma 39.  The parallel trivializing section a is symplectic. 

Proof. Since L is a subbundle of A+ (resp. A"), 

crAcr = aA*a= |cr|2d Vol     (resp.  = —cr A *cr = — \cr\2d Vol) . 

This proves that a is of maximal rank. 
To go from the symplectic 2-form a to the Kahler structure we view a as 

a field of (skew-) Hermitian endomorphims which we can diagonailize (over 
C) ; the almost complex structure associated to the ^ -rotation in each (C-) 
eigenline is then parallel, and hence integrable. In our 4-dimensional setting 

this reduces to the observation that any element in A+ f TpM 1, p a point 

in M, admits a decomposition of the following form: u A v + *(t& A v), for 
v 

orthogonal vectors u and v in TpM.   Since * is an isometry, this can be 
written A(M Av + w At), AG M!!j_, where (u,v,w,t) is an orthogonal basis 
for the tangent plane (TpM,gt(p)) under consideration.  We then define J 
by Ju — v, Jv = —u, Jw = t and Jt = —xu, a definition which is clearly 
independant of the choice of the splitting X(u Av + wAt).  Moreover J2 

is equal to —id and is an isometry by construction.   As a consequence, 
J is skew-symmetric.   To extend the almost complex structure: J to all 

v 
of M we transport the vectors u, v, w and t parallel-wise along any curve. 
Though the resulting fields U, V, W and T may well depend on the path, 
X(U AVr + WrAT) = cris nevertheless well defined : set, as before, JU = 
V, • • •, to get the expected complex structure. 

Recalling the elementary result (see [Ber] Prop. 7.5) that any compact 
Kahler - Einstein manifold with positive sectional curvature is, up to a scalar 
multiple, isometric to the projective space of the same dimension, equipped 

v 
with the Fubini - Study metric, we conclude that M = (P2,F-S) (resp. P2, 

v 
F-S). Since P2 admits no smooth proper quotient, M = M = (P2. F-S).   □ 
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