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1. Introduction. 

In this paper we are concerned with the equation 

(1.1) Au + K(x)eu = 0 in E2 , 

where fi is a domain in R2 and K satisfies 

(1.2) a < K(x) < b 

for some positive constants a and b. This equation appears in the problem 
of finding a metric conformal to the standard Euclidean metric in M2 such 
that ^K(x) is the Gaussian curvature of the new metric. For a solution u 
of (1.1), the total curvature is defined by 

(1.3) a= f  K{x)e<xUx 
JR

2 

Suppose K(x) satisfies (1.2), one interesting question is how to estimate 
the total curvature a in terms of the constants a and 6. Our first result 
concerning the equation (1.1) is 

Theorem 1.1. Assume K satisfies (1.2) and u is a solution of (1.1). Then 

(1) the total curvature a > in (l + \/f)/ an^ 

(2) if a = iir (l + \/f), then, after a translation, 

(1.4) i^j6    ^WSn.' 
[a     if \x\ > ro , 

1 



and 
(1.5) 

u(x) = < 

Chiu-Chuan Chen and Chang-Shou Lin 

21og    2/I^-2loSrQ + log2 if \x\ < ro 

2 log 
2VT(^)Vf' 

i+(JSf) 

- 21ogro + log2     if \x\ > ro 

ro> 

hold for almost everywhere x and for some ro > 0. 

If we consider radial solutions only, then we can estimate the upper 
bound of the total curvature provided that the total curvature is nnite. 

Theorem 1.2. Assume that K satisfies (1.2) and both K{x) and u(x) are 
radially symmetric with respect to 0. Suppose the total curvature of u is 
finite, then 

(1) a < 47^1 + ^); and 

(2) i/a = 47rfl + ^Y then 

(1.6) 

and 
(1.7) 

K(x) = 
a     if \x\ < ro 

b     if \x\ > ro, 

u(x) = < 

2 log 

2 log 

21/S 
T    -21ogro + log2 if M < ro, 

r-2—7=-    - 21ogro + log2     if \x\ > ro 
1+(M)2^    / M 

r0 

for some ro > 0. 

As an application of Theorem 1.1, we can derive an interior estimate for 
a solution u of 

(1.8) AM + K(x)euW = Q in ft 
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where ft is a bounded domain in M2 and K satisfies (1.2).   Let A be a 
compact set of Q. It was proved in [BM] that for any solution u of (1.8), 
the inequality 

swpu < C(a, 6, A, f), inf u) 
A ft 

holds. It was conjectured in [BM] that the dependence of C in terms of inf u 

is linear. In [S], the conjecture was proved to be true, that is, there exist 
constants Ci < 1 and C2 such that 

(1.9) Cisupu + infu<C2 
A ft 

where C2 = C2(a, 6, -A, ft) and Ci depends on | only. 
Prom (1.5), we know that for (1.9) to hold true, Ci must be less than or 

equal to ^/^. The main result of this paper is 

Theorem 1.3. Assume that K satisfies (1.2) and u is a solution of 
(1.8). Then, for any compact subset A of ft, there exists a constant 
C = C(a, 6, A, ft) such that the inequality, 

(1.10) 4/7- supu + iniu < C , 
V b   & Q, 

holds.  More generally, if we assume that there are ^ > p > 0, cr > 1 and 
B > 0 such that for \x — y\ < p, 

K(x) \log\x-y\\ 

holds, then any solution u of (1-8) satisfies 

(1.12) A/-supii + infu< C , 
V a   A Q 

where C depends on a, 6, A, $7, /?, a, and B. 

Obviously, if K is Holder continuous, that is, 

(1.13) \K{x)-K{y)\<B\x-yf 

for x, y € ft and for some constants B, 0 < /3 < 1, then K satisfies (1.11) 
with a = 1. Hence, as a corollary of Theorem 1.3, we answer a question 
asked in [BLS]. 
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Corollary 1.4. Suppose that K satisfies (1.2) and (1.13). Then any solu- 
tion u of (1.8) satisfies 

sup u + inf u < C 
A n     " 

where C = C(a, 6, A, ft, J3, /?). 

We will first prove both Theorem 1.1 and Theorem 1.2 in Section 2. The 
proof of Theorem 1.3 will be given in Section 3. 

2. Proofs of Theorem 1.1 and Theorem 1.2. 

In this section, we begin with a proof of Theorem 1.1. 

Proof of Theorem 1.1. If a = +oo, the theorem holds trivially. Hence we 
may assume a < +oo. By a result in [CL](See Theorem 1.2 in [CL]), for 
any e > 0, there R(e) > 0 such that 

(2.1) ^ log |x| - c < u(x) < (=£ + e) log \x\ 

holds for |a;| > i2(e), where c is a constant independent of e. In peirticular, 
we have 

(2.2) lim   u(x) = —oo , 
|:E|—►-f-oo 

and 

(2.3) a > 47r . 

For each t G R, let nt = {x E R2|u(a;) > *}. By (2.2), |i7t| is finite, where 
\E\ denotes the area of a measurable set E in R2. Let u* be the Schwartz 
symmetrization of u, that is, u*(x) = ^*(|a:|) is nonincreasing in. \x\ and 
0,$ = {a;| u*(x) > t} is the ball Br(0) with the radius r = (^|fit|)2, Since u 
is locally Lipschitz, we have u* is locally Lipschitz also. We also note that, 
since u satisfies equation (1.1), |{a;| u(x) = t}\ = 0 for any t G R. Therefore, 
|fit I is strictly increasing in t and then u*(x) is strictly decreasing in |x|. 

Set 

(2.4) F(r) =  /        K(x)euW dx , 

and 

(2.5) K(r) = ^^ . 
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where F'(r) denotes the derivative of F with respect to r. Since |Ow*(r)| = 
7rr2, we have, for r > 5, 

|^tt*(r) \ fttt*(s)| = Ar2 - s2) = n(r + s)(r - s) • 

Hence 

F(r) - F(s) =  f K{x)eu(x) dx < c{r - s) 

for some constant c depending on r. Thus F'(r) exists for almost everywhere 
r and K(r) is defined for almost everywhere r. For such r, we have 

(2.6) 

2W*M <  lim ae«'(.4*)*('- + ft)a-«r2 

*(r+fc)\^u*(r) 

< lim i / ir(a;)ewWda; = F^r) 

< 27rr6ew*(r) 

By (2.5), we have 

(2.7) a < K(r) < b 

for almost ever3rwhere r. 
We want to derive a differential inequality for F(r). First, we let Ji = 

{p > 0 I ^ does not exists at r = p}, J2 = {p > 0 | ^ = 0 at r = p}, and 
E = ^*( Ji U J2) = {t| i = u*(r) for some r e Ji U J2}. Since -u* is locally 
Lipschitz, it is not difficult to see Hi(E) = 0, where Hi denotes the one 
dimensional Hausdorff measure of E. For t 0 E and r satisfying u*(r) = i, 
we have ^^ 7^ 0 and 

It is well-known that for almost everywhere £, the inequality 

(2.9) -ii^/"       iVul^rfffi, 
dt 7{u=t} 
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holds. (See the Lemma in §2.3 in [BZ]). For such t, by (2.8) and the isoperi- 
metric inequality, we have 

.2 
2 __ rj  /^o^2 

(27rr)'2 = Hi (dnff <( f    d#i 
\JdQt 

(210) ^ (Lmm) {L™dH> 

Thus 

(2.11) 

(27rr) < /    \Vu\dHx = - [    ^dHi^- [ Am 

= /  Keudx = F{r) , 

where t = u*(r). Let E = {t <£ E \ (2.9) does not hold}, and J3 = 
{r I ^*(r) G E}. Since H^E) = 0 and ^(r) ^ 0 for any r E J3, we 
have Hi(Js) = 0. If r € J2, (2.11) holds trivially. Therefore, we conclude 
that (2.11) holds for almost everywhere r. By (2.5) and (2.11), we have for 
almost everywhere r, that is, r £ Ji U J3, 

d(r£{ry\=4irreU.ir)2eU^ 
dr \ K(r) J dr 

2F'(r)     F'(r)F(r) 

-  K(r)        27rK{r) 

(2.12) _ 2F' /       F 

~  K  V      47r 
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Since a = ^(oo) > 47r, ^(ro) = 47r for some ro. Therefore, by (2.12) and 

noting that r-^,'^ is Lipschitz, we have for r > ro, 

(2.13) 

K(r)    -   b J0 
w V        47r J a Jro       

v ' V        ^7 

Since we assume F(oo) < +00, there is r/. —► +00 such that   lim  rf.F'(rk) = 
fc-»+oo 

0. By (2.13), we have 

F(oo)>47r(l + y!) 

since ^(oo) > 47r > 47r(l — y^ ). The proof of part (i) is complete. 

Suppose a = 47r (1 + ,/f). Then inequalities in (2.9), (2.10), (2.11) and 
(2.12) must become equalities for almost everywhere r > 0. In particular, 
we have for almost everywhere r > 0, 

(2.14) ^rl^o 

and 

du*(r)      F(r) 
(2.15) 

dr 27rr 

Since both u* and F(r) are Lipschitz, we have   ud^ = -^ for r > 0. Prom 
(2.10), we also have for almost everywhere t, 

(2.16) fit is a ball and |Vu| = -^ on afit ar 

where t = tx*(r). 
Applying the coarea formula for ix, we have 

/    \Vu\2= /        / iV^ldifi^ 
JR2 J-OO   JU-

1
(S) 
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where MQ = maxu and u~1(s) = {x\u(x) = s}. Let 5 = u*(p). By (2.16), 

the coarea formula implies 

= /   \Vu*{x)\2dx. 

By (2.14), (2.17) and Theorem 1.1 in [BZ], we conclude that u(x) == u*(x + 
XQ) for some XQ € R2. Without loss of generality, we may assume XQ = 0. By 
the equation (1.1), K(x) = — Aue~u is also radially symmetric with respect 
to 0. By the equality in (2.12), we have 

la   it  |a;| > ro 

holds for a.e x, where ro satisfies .F(ro) = 47r. Hence (1.1) reduces to the 
ordinary differential equation 

{u"(r) + *^- + beu(r) = 0    for 0 < r < ro, 
(2-18) { ,r( . 

\u"(r) + ^SU. + oettW = o    for  r > r0 

with F(ro) = 47r. By elementary calculations, we can show that u has the 
form of (1.5). Thus the proof of Theorem 1.1 is completely finished. □ 

Proof of Theorem 1.2. Let u* and K be defined as in the proof of Theorem 
1.1. Since u and K are radially symmetric we have u = u* and K = K for 
a.e. re. By (1.1) 

-27rr-^ = - /       Audx = F{r) . 
dr JBr(Q) 

The inequality (2.12) now becomes 

^_ /rF'(r)\ _ 2F7 /       F \ 

dr V ir(r) 7       K   V       47r/ 

(2.19) r2F/ 

< < 
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Let ro satisfy F(ro) = 47r. Again for r > ro, we integrate to obtain 

(2.20) 
rF'(r)      1 

K(r) a       J 47r 

Since F(oo) < oo, there is {r*.} such that lim r^ = oo and lim r^F^rk) = 
k—>oo k-+oo 

0. Let r = rk in (2.20) and let fc —► oo, we conclude 

0<6 -i 

[(=-) 47r + 2F(oo) 
F2(oo) 

47r 

and 

F(oo) < 47r    1 + 

If a = 47r(l + W^J, then the equality in (2.19) must hold.   Thus 

K(x) = a for 0 < |a;| < ro and K(x) = 6 for |:r| > ro hold for a.e. x. The 
form (1.7) then follows from the corresponding ordinary differential equation 
to (1.1). □ 

3. The sup+inf Type Inequality. 

For the proof of Theorem 1.3, we need the following lemma, which was 
proved in [Su]. 

Lemma 3.1. Let u be a Lipschitz function defined in BR(0) and satisfy 
Au + Xeu < 0 in BR(0). Then 

(3.1)        u(0) < -!-  /        uds - 21og I 1 - -!- /      Xeudx I 
27rr JdBr(o) [       STT JBr{0) J 

holds for 0 < r < R where {-}+ = max{-, 0}. 

Proof of Theorem 1.3. Since (1.10) is a special case of (1.12), it suffices to 
prove (1.12) . Assume the conclusion does not hold, that is, there are v* 
and Ki which satisfy (1.2), (1.8) and (1.11) for some p, a and B such that 

(3.2) —7= sup Ui + inf Ui —► 00 
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as i -» oo. Then lim (sup-Uf) = oo and there is {xi} C A such that Ui(xi) = 
z->oo    A 

sup^i and lim Ui(xi) = oo. 
A i—oo 

Step 1. We will employ a blow up argument to show that if we rescale the 
functions Ui, then there is a subsequence of these functions which converges 
to a solution w on entire R2 with a minimal total curvature aw. That is, 
aw = 47r(l + \/f) and w has the form (1.5). 

Let d(S,T) denote the distance between two sets S and T. When S 
is a one-element set {c}, we will also use d(c,T) to denote d({c},T). Let 
do = \d(A, dtt), Cli = {rr € ft |d(a;, 9ft) > do} and 

0i(aO = ^(x) + 21og(d(a;,dfti)) . 

Then lim gi(xi) = oo and the maximum of gi occurs at some point xi 6 fti. 
i—►oo 

We have 

Ui(xi) > Ui(xi) - C(ft) 

with C(ft) depending on the diameter of ft.    Let Mi  = Ui(xi), Li  = 

^d(xi, dfti)e 2 , and 

Mi 

My) = ui(e   2 y + xi)- Mi 

Then 

(3.3) A7;i + Ki(y)eVi = 0  for |y| < U , 

M.- 
where -K'i(y) = ^(e  "^"y + Xi) and lim L^ > h lim exp[A^(a;i)] == oo. For 

  i—►oo i—►oo 

|y| < ii, 

/ x         /_       -Mi, \        /_ s     „,            d(xi,dQi) 
Vi{y) < Qi (Xi + e   2 yJ - ^(xj) + 2 log —■ -^  

d(xi + e   2 y, afii) 

<21og2 . 

Let (r, 6) be the polar coordinate in R2, then 

\Jo     or       |      7|v|<r 
'dy <ar' 
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and 

+ 47r(21og2) 

ds + 47r(21og2) 

/   \vi{r,e)\de< I   vi(r1e)de 
Jo \Jo 

< c(l + r2) 

Thus for |y| < I with any fixed I 

Vi(y) = I      G(y, riKiirjy^dr, - /       f^ete 
J\n\<2l J\7i\=:2l or 

p p2n 
/        G(y,V)dr1+ /     1^(21,0)1(16 

J\T)\<21 JO 

I\V\<21 

>-c 

>-c(l + /2) 

where G(y,r)) is the Green function of —A on B2i(0). By the elliptic theory, 
we can pass to subsequences of {vi} and {Ki} and assume on any compact 
set of i 

Vi —* w      in C1'9 for any 0 < s < 1 

Ki^Ko     weakly* in L00 {■: 
as i —* oo. Moreover, a < Ko(y) <b and 

Aw + Ko{y)ew = Q   inR2. 

By (1.11) _ 

W7~~\ -<7+l 7—M \T      ^ 
Kfc) |log(e-^|y-z|j| 

as i —> oo if \y\, \z\ < I. Thus the essential supremum and infimum of i^o 
satisfy 

(3.4) 

By theorem 1.1, 

ess. sup ifo 
ess. inf KQ 

<a . 

QJTJ /  Ko<y)e~dy > 4, (1 +  /^li^) > 4. (1 + -1=) 
7R2 \       U ess. supi^oy \      v^/ 
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Recall p is the number in (1.11). Let p = imin(/9, d(9fii, dSl)), Li = 
Mi 

pe 2   and G{x,z) be the Green function of —A on Bp(xi). Then 

Mi=  f  _    _Ki(z)eUi^G(xilz)dz + si 
J\z-Xi\<0 

(3.5) a4J^-^P'w^+s" 
where s^ = 2fei|z_^.|=pwi(^)rf5« First, we claim that 

For if aw > 47r (1 + -i/^ J, then there are ei > 0 and large I such that 

f     Ko(y)ewdy> (1 + 2ei)4:ir (l + yj^\  . 

By (3.5) 

**jL 2-^Pa'*** 
Mi log||l^- 

'l¥l<' v 

ad + ^fi + ^-f^, 

for large i. Thus 

0 > y-Mi + 5i 

for large i.   Since s^ > inf ui and Mf > Ui(xi) — C(Q), it contradicts to 

(3.2). Hence aw = Air (1 + w^ ] must hold. By Theorem 1.1, w is radially 

symmetric with respect to some point yo € M2. After a translation., we may 
assume yo = 0. 
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Step 2. We will find a sequence k < Li such that 

(3.7) 

and 

f      Kie* dy>4i:(l + J-)- CiMf 
J\y\<k V       V <rJ 

(3.8) /      log KieVi dy < C2 

for Ci and C2 independent of i as i —> 00. 
Let 

(3.9)        k = sup < / < Li f     Ki(y)eVidy<47r(l + -)= 
J\y\<l \ ^O 

Since vi uniformly converges to w in any compact set of M2 and w satisfies 

we have 
lim U = +00 . 

i—>+oo 

Let e be a small positive number which will be chosen later. Then for 
large i, there exist r\ and ri such that 

/       Ko{y)ewdy = A-K (1 + -±=) 
J\y\<ri \      v0"/ 

•€ , 

and 

(3.10) /       Kiiyy'M dy = 4* (1 + 4=1 - ' 
J\y\<rl \ V<V 

Obviously,   lim r\ = r. Hence, 
i—*+oo 

(3.11) / Kie* dy < 
JriKMKli 

€ . 

Since 0 < a < Ki < 6, we have Avi + beVi > 0 in 5/^(0). Thus, if e is small 
enough, we can apply Lemma 3.1 to v^ By Lemma 3.1, the inequality 

Vi{x) < ^- f        Vids - 21og l 1 - -!- /      beudx I 
27rr JdBr(x) { w JBr(x) J 

< — / ?;ids + log4 . 
27rr 
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holds for r < ^f and 2r\ < \x\ < ^ if e is sufficiently small in (3.11) such 
that 

(3.12) b    f   e^b) dy < An . 

ri<\y\<li 

Thus, 

Vi(x) < —T /       Vi(y)dy + log4 . 
'""' JBr(x) 

By Jensen inequality and letting r = ^, we have 

eVi(x)   <.4exp   (   J_    f V\<J_[ eVi(y)dy 
yn"* JBrix)    )      nr2 JBr{x) 

(3.13) <    4      r K^eViiv) dy 
airr^ JT\<M<h 

TTO, 

for 2ri < |x| < |. Let 

^(0 = ^— /      Vi(y)dy . 

Then for r < k, 

—Viir) = -— /      A^ dy = -— /      ^e1'* dy 
dr 27rr 7|y|<r 27rr y|y|<r 

Integrating the inequality above gives 

(3.14) Vi(r) > -2 (l + ^\ logr + C2 

for some constant C2 and r <li. We want to apply the Harnack inequality 
to obtain a lower bound for vi. To see this, we employ (3.13) and have for 
M < r < !%, 

1 r 
(3.15) Vi(x) + 21ogr < logCi + loge < -loge < 0  for - < |x| < 2r 
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provided e is small enough. Prom now on e is a fixed small positive number 
such that (3.12) and (3.15) hold. Let 

Vi(x) = Vi(rx) + 21ogr 

for ^ < |rr| < 2. Then Vi(x) < \ loge in \ < \x\ < 2 and Vi satisfies 

Atii + Zi(ra;)e^ = 0 in - < |a;| < 2 . 

Since ^g^ < Ci^^ by (3.13) and (3.15), the Harnack inequality can 
be applied to — Vi. Hence there exists a constant C > 1 such that for |x| = 1 

—Vi(x) < —C /       Vi . 
J\x\=l l\x\-- 

Going back to the function v^ we have from (3.14) 

2C 
Vi{x) > -2log |a;| - -^ log |a;| + C3 

for 4ri < |z| < |. Therefore, letting 6 = (2 + ^) , we have for 4r\ < 

\x\ = R6<li 

Vi(x) >-2logR + C3 

(3-16) >    sup    Vi(y) 
li>\y\>R 

Obviously, Vi(x) >     sup    Vi(y) holds true also for \x\ = R6 < Ar\ since 
^>|y|>i2 

w{x) = w(\x\) is strictly decreasing in |x| and Vi converges to w on any 
compact set. 

Let mi(r) = max^(y) and io = m (^). For t > to, let fij = \y \ \y\ < l-% 
\y\=r \   / I 

and Vi(y) > t}. Obviously, the closure Qt of Ql is always contained in the 
open ball 5^(0).   Let v*(x) = v*(|aj|) denote the Schwartz symmetriza- 

2 
tion, that is, v*(|x|) is nonincreasing in |x| and {x\v*(x) > t} is the ball 

J3r(0) with r = (TT"
1
]^!)^ for t > io- Since Vi satisfies the equation (3.3), 

|{y| M ^ k, Vi(y) = t> to}\ = 0. Hence \ftt\ is strictly decreasing in t and 
then v*(|a;|) is strictly decreasing in r. We also have tf(|x|) is locally Lips- 
chitz. As in Section 2, we let 

(3.17) Fi(r)= [       Kiiyydy, 
JavtM 
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and 

(3.18) Ki{r) = 
Fl(r) 

2nrev!W 

for all r such that v*(r) is well-defined. As before, we can prove that Fi(r) 
is locally Lipschitz, therefore, Ki(r) is defined for almost everywhere r. 

We note that an immediate consequence of (3.16) is, for R < -%. 

(3.19) 3^(0) Q nj^ C BH(0) 

The first part of (3.19) is easily seen from (3.16).  For the second part of 
(3.19), let z G ftm(#i). Then by (3.16), we have 

Vi(z) > max Vi(y) >    max   Vi(y) . 
\y\=RS %>\y\>R 

Hence z € BR(0), and (3.19) is proved. Prom (3.19), we immediately have 
for R < |, 

(3.20) 

Let Ri = (TT
-1 

(3.21) 

J      Kitoe^dy > F ((TT-
1
 In^JH)!)*) > F (^9) 

ft J   . Then 

Thus,   lim  Ri = +oo. Obviously, vf(r) is defined for all r < Ri- By (3.18) 
i—►+oo 

and (2.6), (3.19) implies for r < Ri, 

(3.22) Oi < ^i(r) < h 

where 

(3.23) 

and 

(3.24) 

Oj = ess. inf    Ki(y) , 
M<<£)4 

bi = ess.sup    Ki(y) . 

\y\<(li)i 
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Let TQ < rl satisfy F^TQ) = Air.  As in section 2, we can derive a similar 
differential inequality for Fi(r) as in (2.13), that is, the inequality 

rF!(r)       -1 
(3.25)  ^Ll> 

Ki(r)      ^Trcii 
F{r)-4n(l-J^y   F(r) - 4<ir (l + J^\ 

holds true for TQ  < T  < Ri almost everj^where.    Let .Rj  = sup < r  < 

Ri\ Fi(r) < 47r (l + y^) }. By (3.25), we have 

+ >2j^r-1 

for VQ < r < Ri. Integrating the differential inequality gives 

47r i1 + vf) - W 
log 

w-^l-^) <--^7> 

which implies 

(3.26) ^(r) > 4^ (l + J^) - Cr-2sJ % 

for TQ < r < Ri, where C is a positive constant independent of i. Trivially, 
(3.26) holds for Ri < r < Ri also. 

By (3.23) and (3.24), we have 

bi Kfy) 
— <      sup      =-—■ < a + Co log 

(I        Mi 
^a + dM-1 . 

/ CLi 1 1 Li> C2M-1 

Oi yJG 

Therefore, 

(3.27) 

Combined with (3.26), it yields 

(3.28) ^(r) > 47r (\ + -^ ) - Cr'^ - - CsMr1 
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for rj < r < i^. By (3.20) and (3.28), we have 

(3.29) f      KieVi dy > F (i?*2) > Air (1 + J^ ) - CIC^ ^ - C^Mf1 

for R< (j)5. Hence, 

(3.30) / Kie^ dy < CR~2^ '** + ^Mr1 . 
jR<\y\<h 

Applying Lemma 3.1 and (3.13) again, there exists C3 > 0 such that 

(3.31) ev^ <-\f KieVi dy < C3 (ixf2-^ ^ + Mr^xl'2) 

for |a;| < i (^Y.   Choose If satisfy (log^)2 = log^.   Obviously, If < 

i OA 2 for large i. Then, by (3.30) and (3.31), we have 

/      logl4Ki(y)eViM dy 
J\y\<ii       P 

< f      logMi^e^dy + log^ f Ki^e^dy 
•/|y|<i?       P P Jit<\y\<h 

< c, [(1+M-
1
 (log/*)2)+aog/i) (zr2v/^2+Mr1) ] 

<C5, 

which obviously yields (3.8). If Zj < Lj, then (3.7) holds trivially. If k = Li, 

then by letting R = (% V in (3.29), it yields 

/       K^ dy > Air (1 + -±=) - Czk       ' - CsMr1 

J\y\<Li \      va) 

which (3.7) follows immediately. 

Step 3.   To obtain a contradiction to (3.2), we note that by (3.5), (3.7) and 
(3.8), 

M > /       f £i - ^ ) K^B^ dy + * 
J\y\<h \47r        27r   / 

> (l + -y= ) Mj + inf Ui - Ce , 
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where CQ is a constant. Thus, we have 

—F=Mi + inf Ui < Ce , 

which obviously leads to a contradiction to (3.2). The proof of Theorem 1.3 

is completely finished. □ 
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