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1. Introduction. 

This paper is concerned with Seiberg-Witten gauge theory over Seifert 
fibered spaces. A Seifert fibered space TT : Y —► E is the unit circle bundle of 
an orbifold line bundle over E whose total space is a smooth three-manifold. 
The case where Y is diffeomorphic to the product of a circle with a Riemann 
surface has been studied extensively in [29]; in this paper, we will restrict 
attention to those Seifert fibered spaces which are not diffeomorphic to a 
product (indeed, those of non-zero degree, in a sense which will be made 
precise). 

Let ir] denote the connection form of the circle bundle, and g^ be an 
orbifold metric over E with constant curvature, then we can endow Y with 
the metric 

9Y = 7?2 + 7r*(#E), 

for which the tangent bundle TY has an orthogonal splitting 

TY ^R©7r*(TE). 

The Levi-Civita connection on E then canonically induces a reducible con- 
nection 0V which respects this splitting. We study the solution space to the 
Seiberg-Witten equations over Y, using the above metric and connection on 
TY (rather than the Levi-Civita connection, which is usually used in the 
definition of these equations). 

Let E be a two-dimensional orbifold of genus g with marked points 
xi,..., xn with associated multiplicities ai,..., an. Viewing the marked points 
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as "fractional points," one can define a natural Euler characteristic by the 
formula 

(1.1) X(E) = 2-20+ £(1-1), 

where g is the genus of the underlying smooth curve |S|. 
An orbifold line bundle E over E (hence, in particular, a Seifert fibered 

space) is specified up to isomorphism by its Seifert data (see Section 2), 

b(E) = (b(E),/31(E),...,(3n(E)), 

a vector of integers with 
0 < PiiE) < at. 

It has an orbifold degree defined by the formula 

The Seiberg-Witten equations on Y are the equations: 

*Tr(FB) - M*) = 0 

DB* = 0, 

for a spinor \I/ and B a 0V-spinorial connection. 

Theorem 1. Let Y be a Seifert fibered space of non-zero degree over the 
orbifold S. The moduli space of solutions to the Seiberg-Witten Equations 
on Y with metric gy and connection 0 V is naturally identified with the union 
of the moduli space of flat S1-connections overY and two copies of the space 
of effective orbifold divisors over E with orbifold degree less than —^rp. 

Remark 1.1. In the above statement, the solutions have not teen parti- 
tioned according to the Spinc(3) structures in which they live. See The- 
orem 5.19 for a restatement of Theorem 1 which makes this partitioning 
explicit. 

The map from the solution space to the spaces of divisors is obtained 
by taking a solution (£?, \I>) to the zero-set of *. In the course of the proof 
of Theorem 1, it is shown that the solution must be circle-invariant and ^ 
lies in the ±1 eigenspace of Clifford multiplication by i * 77. Hence ^r"1(0) 
consists of a collection of fiber circles and so determines a divisor over E. 
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In other words, the moduli space of solutions to the Seiberg-Witten 
Equations consists of a collection of components corresponding to the iS1- 
representation variety of Y (which is a certain number of copies of the Jaco- 
bian torus of |S|) and a collection of components C+(e) and C~(e), labeled 
by all vectors e of non-negative integers (e, ei,..., en), with 

0 < €» < a*, 

and 

^oti 2      . 
1=1 

The spaces C+(e) and C~(e) both correspond to the space of effective orb- 
ifold divisors on S with multiplicities €$ over the singular points x^ and a 
background degree e. As such, these spaces are diffeomorphic to the eth 

symmetric product of |E|, Syme(|S|). For (B,*) G ^(e), * lies in the ±1 
eigenspace of Clifford multiplication by i * 77. 

So, loosely speaking, the solutions to the Seiberg-Witten equations 
over Seifert fibered spaces consist of closed orbits of the circle action with 
bounded weight which, in turn, corrspond to familiar objects from contact 
geometry. If 77 is a connection form for Y whose curvature form vanishes 
nowhere (which can always be arranged when the orbifold degree of the 
bundle defining Y is non-zero), then 77 is a contact form on Y. Moreover, 
the closed orbits for the circle action are precisely the closed orbits for the 
corresponding Reeb flow. 

In a similar vein, flow lines between critical manifolds correspond to 
holomorphic (or anti-holomorphic) curves in the cylinder M x Y. Indeed, 
we obtain a correspondence between the moduli spaces of gradient flow- 
lines and certain holomorphic curves in the closed orbifold ruled surface i?, 
obtained by attaching two copies of the base orbifold to the cylinder. To 
state the correspondence precisely, we make the following definition. 

Definition 1.2. Let E-jE-j. c R denote the two "sections at infinity" in 
the ruled surface. Given a pair of orbifold line bundles Ei and E2 a divisor 
on R interpolating between Ei and E2 is an effective divisor D C R which 
does not contain E_ or Tl+ and whose restrictions to these curves are divisors 
in Ei and E2 respectively. 

Theorem 2. Let Y as in Theorem 1, and fix components C+(ei);C
+(e2) 

in the moduli space Msw{Y). Let Ei, E2 be line bundles over E with Seifert 
data ei and e2 respectively.   Then, there is a natural identification of the 
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moduli space of flows between C+(ei) and C+(e2) with the space of divisors 
in R interpolating between Ei and E2. Similarly for the space of flows 
between C~(ei) and £"(62). Moreover, there are no flows between C+(ei) 
andC~(e2). 

Similar statements hold for flows which involve the reducible locus (see 
Theorem 10.6). 

In addition to providing a conceptual interpretation of the moduli spaces 
of flow-lines, in terms of holomorphic data, the above theorem furnishes a 
concrete, computational understanding of these moduli spaces, since the 
corresponding holomorphic objects can be understood quite explicitly. To 
clarify this point, we set up an identification between the theory of holomor- 
phic curves in the typically singular ruled surface R (a surface with isolated 
cyclic quotient singularities in a two-to-one correspondence with the marked 
points on the base orbifold), with the theory of holomorphic curves in its 
smooth resolution R. We state the correspondence theorem informally as 
follows, relegating the technically complete statement to Section 11 (see 
Theorem 7): 

Theorem 3. There is a natural identification of the moduli space of divi- 
sors on R interpolating between Ei and E2 with the moduli space of divisors 
on R in the homology class determined by Ei and E2, via the procedure 
described in Section 3. 

Note that R is a blow-up of CP2 or a ruled surface (see Sectiion 3) and 
one can often use this description to understand the moduli space explicitly. 

To illustrate the above results, we derive a formula for the dimensions 
of the moduli spaces of flow-lines. But before describing this formula, we 
must introduce some notation. Suppose that the Seifert fibered space Y 
has Seifert invariants (6,/?i, ...,/?n). Let d3

k be the kth denominator in the 
Hirzebruch-Jung continued fraction expansion of otj/Pj, i.e. for a fixed j, 
d3

k for k = 0, ...,mj is the sequence of integers which satisfies the initial 
conditions 

4=(3j, 
the recurrence relation 

di = 4-1 '4=* 
4-i 

-dj ak-2> 
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and the termination condition that 

<■ = i 

for some integer rrij. Here, \x\ denotes the smallest integer no greater than 
x. Given Seifert data e = (e, ei,..., €n), let ££ be the minimal decomposition 
of €j with respect to the d^ ..., d^., i.e. for a fixed j, the ££ for k = 1,..., rrij 
satisfy the recurrence relation 

■3 _ P - sfc — 
ti-TEiW 

4 
Definition 1.3. Given the above data, we define a rational quantity, the 
Y^dimension of e, by the formula 

n     ( f m3       \ /rrij i \ 

j=l  I \fel     / \€=1 t=l ai-lai / 

(rrij min(A;,^) 

E4«« E sr* 
+ e + 53(l)(deg(£;)-deg(irs))' 

where Ks is the orbifold canonical bundle, and E is the orbifold line bundle 
over E with Seifert data e. 

Combining Theorems 2 and 3 with the Riemann-Roch formula, we get 
the following Corollary: 

Corollary 1.4.  The moduli space of flows from (^(ei) to C±(e2) has di- 
mension given by 

dimy(ei) + dimy-i(e2), 

where Y~l is the inverse ofY, as a circle bundle over E. 

We specialize the above results first to the case where Y fibers over a 
Riemann surface E with no orbifold points, and then to the case where 
Y = E(p, g, r) is a Brieskorn sphere (i.e. the Seifert fibered space which is 
an integral homology sphere fibering over the genus zero orbifold with three 
marked points with pairwise relatively prime multiplicities p, g, and r). 
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Corollary 1.5. Let Y be a non-trivial circle bundle over a Riemann surface 
E of genus g, with first Chern number n. Then, the Seiberg-Witten moduli 
space is identified with: 

(Z/nZ x (R/Z)2*) II m C+(e) J II m C-(e) j , 

where now e is simply a non-negative integer, and 

C+(e)^C-(e)^Syme(E). 

The dimension of the space of flows connecting C+(ei) with C"1"^) is given 
by 

dimM(eu 62) = ^1 " ^ (ei + 62 - {2g - 2)) + (ci + 62). 
n 

When Y = E(p, g, r) is a Brieskorn sphere, the Seiberg-Witten moduli 
space is a discrete collection of points, since 

x(E(p,(Z,r)) = l (1_l_l_l\< L 

2 2 V      P     9     r 

Following the usual construction of Floer homology, we can form the rel- 
atively graded chain complex freely generated by the irreducible critical 
points, with boundary maps induced by one-dimensional flow lines (see Sec- 
tion 13). In the Brieskorn sphere case, our results then specialize to the 
following statement about the homology groups of this complex, the irre- 
ducible Seiberg-Witten Floer homology groups 'HFlJr(E(p1 q,r)): 

Corollary 1.6. Forp^q^r pairwise relatively prime, the group 

HFr(E(p,q)r)) 

is a free Abelian group generated by two generators for each triple (ei, 62,63) 
of non-negative integers satisfying 

£1   .  ^      63 x(S(p,g,r)) 
 1 1 < • 
p       q       r 2 

The Floer degree of either solution corresponding to (61,62,63) is calculated 
6y dimE(pjg>r)(0,€i,€2,€3) 
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This paper is organized as follows. Sections 2, 3, and 4 are introductory: 
Section 2 covers some of the basics of orbifold theory, Section 3 discusses 
some of the elementary properties of the ruled surfaces associated to an orb- 
ifold line bundle and its resolution, and Section 4 covers some of the basics 
of the Seiberg-Witten monopole equations. Section 5 contains the proof 
of the circle-invariance of monopoles over a Seifert fibered space y, which 
gives Theorem 1. Section 6 gives the identification of finite-energy gradient 
flow-lines with holomorphic data over the cylinder. Section 7 shows how 
to construct a divisor on the ruled surface, given this data. Section 8 is 
concerned with the converse problem: it shows how a divisor on R gives 
rise to a gradient flow-line, by reducing the problem to a Kazdan-Warner 
equation over the cylinder, which is then solved. Thus, Sections 7 and 8 to- 
gether construct maps between the moduli spaces, which are shown to give 
induce identifications on the infinitesimal level in Section 9, proving Theo- 
rem 2. Section 10 covers the analogue of Theorem 2 for flows involving the 
reducibles. Section 11 proves the correspondence between orbifold divisors 
over the singular ruled surface and divisors over its de-singularization, The- 
orem 3. Section 12 derives the dimension formula in Corollary 1.4 from the 
Riemann-Roch theorem, together with the correspondence with the space of 
divisors in the de-singularized surface from Section 11. Finally, Section 13 
is devoted to some examples. 

The authors wish to thank P. B. Kronheimer for inspiring conversations 
and G. Matic for explaining her work with P. Lisca, which provided a fertile 
testing-ground for our results. 

During the preparation of this manuscript, Baozhen Yu passed away. 
His untimely death has left us with a profound sense of loss. 

2. Orbifolds and Seifert Fibered Spaces. 

A Seifert fibered space is a three-dimensional manifold Y together with 
an S1 action with finite stabilizers (see [31], [30], [9]); these spaces can be 
profitably viewed in terms of the theory of orbifold bundles. This section 
outlines some of the elements of this theory. A more extensive discussion 
can be found in [9]. 

Let D denote the standard complex disk, on which TLjaL acts by ro- 
tation. An orbifold is a Hausdorff space |E| with a distinguished finite set 
of "marked points" xi, ...,#n given with integral multiplicities ai, ...,an all 
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greater than 1, equipped with an atlas of coordinate charts 

0i:(£>,O)    -*(Ui,Xi)   i = l,...,n 

(/>x • Dx   ->Ux x e E — {a;i,...,a;n}, 

where the ^ induce homeomorphisms from (D,0)/(Z/a;Z) to (Ui,Xi), the 
^ are homeomorphisms, the neighborhoods C/i of the distinguished points 
are pairwise disjoint, and all transition functions (defined over the overlaps) 
are holomorphic. Of course, when there are no marked points, TJ is simply 
a smooth holomorphic curve, and the theory which will be outlined below 
is simply gauge theory over that curve. In the presence of marked points, 
the underlying topological space |E| still inherits the structure of a smooth 
complex curve, with local coordinate on Z)/(Z/aiZ)-neighborhood of the 
marked point Xi given by wai, where w is a local (holomorphic) coordinate 
onD. 

An n-dimensional orbifold bundle is a collection of Z/aiZ-equivariant n- 
dimensional vector bundles Ei over Ui, and vector bundles Ex over the L^, 
together with a l—cocycle of transition functions over the overlaps. Over 
each C7i, a Z/a^Z-equivariant vector bundle is specified up to isometry by 
giving a representation 

Pi :Z/aiZ->Gln(C). 

The usual notions from gauge theory generalize in a straightforward way 
to orbifold bundles. For example, an orbifold connection on an orbifold 
bundle is a collection Vj of Z/c^Z-equivariant connections over the disks 
J7i, and connections Vx over the Ex, which match up; an orbifold section 
is a collection of Z/o^Z-equivariant sections ^ of the Ei and sections ipx of 
Ex, all of which match up; and a holomorphic orbifold bundle is a collection 
of (equivariant) holomorphic bundles over the charts, with a l—cocycle of 
holomorphic transition functions. 

Example 2.1. Holomorphic sections of the trivial orbifold bundle over S 
correspond to holomorphic functions over the smooth curve |E|. 

Example 2.2. The rotation action of Z/aZ on the disk D naturally lifts 
to an action on the cotangent bundle of £>, giving the cotangent bundle 
the structure of a Z/aZ-equivariant line bundle, or an orbifold line bundle 
over D/(Z/aZ). Moreover, any orbifold E is naturally endowed with a 
distinguished holomorphic orbifold line bundle the canonical bundle, denoted 
Kx, defined by gluing the cotangent bundles of the Ui and the Ux via the 
complex derivative of the transition functions. 
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Example 2.3. Given an orbifold S and a distinguished point Xi G £ whose 
neighborhood Ui is isomorphic to D/(Z/aZ), we can define a (holomorphic) 
orbifold line bundle HXi as follows. The bundle is trivial away from x^, 
and, over UXi, is given by the Z/a^Z-equivariant line bundle D x C, where 
a G Z/aiZ acts by 

(2iria 2nia    \ 
e   "i   W, 6  ai   Z) , 

with transition function w. 

Definition 2.4. The topological Picard group, denoted Pic*(E), is the group 
of topological isomorphism classes of orbifold line bundles over E, where the 
group law is tensor product. 

Lemma 2.5. The line bundle HQ generates Pict(jD/(Z/aZ)); inducing an 
isomorphism 

Pic*(J5/(Z/aZ)) = Z/aZ. 

Moreover, multiplying by w~P, where w is a holomorphic coordinate on D, 
and 0 < /3 < a, gives an identification between holomorphic sections on HQ 

and holomorphic functions on D/(Z/aZ). 

Proof. Holomorphic sections of HQ correspond to holomorphic functions 

with 

for each £ an ath root of unity; or equivalently, functions of the form 

f(w) = wPgiw?), 

where g is a holomorphic function. □ 

Given an orbifold line bundle E over a closed orbifold E with exceptional 
points xi,..., xn and multiplicities ai,..., a:n, Lemma 2.5 gives a collection of 
local invariants /?i,..., /3n with 

0 < Pi < ai 

which describe E near the singular points. 
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Definition 2.6. The bundle E®Hx^l®^.®Hx^n is an orbifold line bundle 
which is naturally isomorphic to a smooth line bundle over the smooth curve 
|S|. This bundle is called the de-singularization of E and is denoted \E\. 

Definition 2.7. Given an orbifold line bundle E over E, the collection of 
integers 

(Mi,-,/U 
where b is the first Chern number of the de-singularization \E\ over |E|, is 
called the Seifert invariant of E over E. 

The integer b will be called the background degree of E, 

Lemma 2.5 naturally globalizes to give the following: 

Proposition 2.8. The holomorphic sections of a holomorphic orbifold line 
bundle E over E correspond naturally to the holomorphic sections of its 
de-singularization \E\ over |E|. 

Two familiar theorems from complex geometry readily generalize to the 
orbifold context: 

Theorem 2.9 (Riemann-Roch). Let E be a holomorphic line bundle 
over a complex orbifold E, and £ denote its sheaf of holomorphic sections. 
Then 

(2.i) x(e)-x(OE) = b, 

where x{^) denotes the (complex) Euler characteristic of the sheaf T, O^ 
denotes the sheaf of regular functions on E, and b is the background degree 
of E. Equivalently, 

X(£) = l-g + b. 

Theorem 2.10. (Serre duality) Let E —> E be an orbifold line bundle over 
an orbifold equipped with an orbifold metric. Then the Hodge star operator 
induces an isomorphism 

#0(E, E) 9* ff^E, KE ® E'1). 

An orbifold line bundle E over E has a naturally associated first Chern 
number, or degree deg(E), defined by 

Pi deg(E) = b + Y:f. 
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Example 2.11. Since the pull-back of dz over D by the map which rotates 
through £ = e27rz/a is £dz, we see that the local invariants for the canonical 
bundle are a—1. In fact, since we can naturally identify the canonical bundle 
of a orbifold S away from the singular points with the canonical bundle of 
a smooth curve of genus <?, we have that the Seifert invariant of K^ is 

(20-2,ai-l,...,an-l). 

Thus, the degree of K^ is minus the Euler characteristic of E (as defined in 
Equation 1.1). 

We recall the following result (see [9],[30]), which says that the Seifert 
invariants of an orbifold line bundle classify the bundle. 

Proposition 2.12.  The map 

n 

Pic*(E)->Qe0Z/ai 
2=1 

given by 

E.-(deg(£), ft, ...,&) 

is an injection, with image the set of tuples (c, /?$) with 

c^^fa/ai    (mod Z). 

In particular, if the ai are mutually coprime, then Pic*(E) = Z is gen- 
erated by a single line bundle EQ with 

deg(Eo) 
ai...an 

Suppose N is an orbifold bundle whose local invariants fa are all rel- 
atively prime to a*. Then, the unit circle bundle of JV, denoted S(N), is 
naturally a smooth three-manifold. Such a circle bundle is called a Seifert 
fibered space. 

In this case, the orbifold invariants of N are reflected in the topologi- 
cal invariants of its unit sphere bundle, according to the following theorem 
(see [9]). 
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Theorem 2.13. // S(N) is a Seifert fibered space, then for 1 < i < n, 

7ri(S(N)) = (ai, bugi, h  [a,, h] = [6^,h] = [#,h] = 1 = 

and 

H ^N»-\ ffi(E)©Z   deg(iV) = 0,   ' 

H2(S(N)) 9i (Pi<*(E)/Z[N]) © Z29. 

Remark 2.14. The subgroup Pict(S)/Z[iV] C H2(Y;Z) corresponds to the 
image of the pull-back map 

Pic*(E) -^ [Line bundles over Y] -^ H2(Y;Z). 

When deg(iV) ^ 0, this is a finite Abelian group, by Proposition 2.12. 

Corollary 2.15. IfN is as above, withdeg(N) ^ 0, then the representation 
space of flat Sl bundles over S(N), Hom(7ri(y),51), fits into a split exact 
sequence 

0 —> ^(Is'ilzj — HomCTnfy)^1) -2+ Pic*(E)/Z[JVl — 0. 

3. The Ruled Surface. 

In looking at the flow equations for the Seiberg-Witten equation for a 
three-manifold V, one is naturally led to consider the cylinder Rc = E x Y. 
When Y = S(N) has the structure of a Seifert fibered space associated to 
the orbifold line bundle iV, the cylinder has a natural compactification, the 
space obtained by attaching two copies of E (attached to Y via TT), one at 
each end of the real line, +00 and —00. These curves will be demoted E_ 
and £_|_ respectively, and the compactified space will be denoted R. 

Equivalently, the space R can be thought of as the orbifold sphere bundle 
obtained by projectivizing the (orbifold) complex plane bundle C © N over 
S, with £_, £+ the projectivizations of C © 0 and 0 © N respectively. The 
projection 

TT: R-+Y, 
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naturally extends the projection map of M x Y to S, via the obvious iden- 
tification of R — £* = M x y, where E* = E+ U^~- ^ ^s clear from this 
model that a holomorphic structure on iV induces on R the structure of a 
(possibly singular) complex surface, for which TT is a holomorphic map. 

In fact, the singularities in R are all quotient singularities, which are in 
a two-to-one correspondence with the marked points of E. More precisely, 
let a e Z/aZ act on C2 by 

ax (w,z) = {Caw,CPaz), 

where £ is a primitive ath root of unity. Denote the quotient by 

Cai/j = C2/(Z/aZ). 

Now, if x G E is a singular point, then there are two corresponding 
singular points in the fiber of TT, 

x± = EiflTr'^a;), 

corresponding to the two fixed points of the S1 action on S2. If the local 
invariant of iV at x is /?, then a neighborhood of x± in R is biholomorphic 
to a neighborhood of the origin in Ca^±p. 

The minimal resolution, i?, of R can now be described quite concretely. 
First recall (see for example [10]; we will revisit this construction in Sec- 
tion 11) that the minimal resolution Ca^ is constructed by writing a//? in 
its "Hirzebruch-Jung" continued fraction expansion 

(3.1) I = *! - 
P a2 

i 
am 

(with di G Z, m > 2) which we will abbreviate by writing 

— = (ai,...,am). 

Then, Ca^ is obtained by plumbing together m bundles over S2 according 
to the following diagram: 

—ai             —a2             —as     — am_i        —am 
o o o • • • o o 

to obtain a manifold with m two-spheres {Si}£Li,  where Si has self- 
intersection number — a* and intersects only Si-i and Si+i (when i — 1, 
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i + 1 are still in the range from 1 to m) transversally in a single positive 
point. The map 

collapses the chain D = USi^i ^0 [0,0], and is biholomorphic away from 
the chain. Now, the minimal resolution R is obtained by inserting such a 
configuration of spheres over each of the 2n singular points in R. 

Since the restriction of an orbifold line bundle N over E, N\^^Xli_iXny, 
is isomorphic to the restriction of |iV| to |S| — {xi, ...,rcn}, we have that a 
Zariski open subset of R is isomorphic to a Zariski open subset of the smooth 
ruled surface obtained by projectivizing \N\ 0 C over |E|. Thus, we have: 

Proposition 3.1. The resolution R is the blowup of a ruled surface fibering 

over a surface of genus g. In particular, if g = 0, R is rational. 

4. The Seiberg-Witten Equations. 

We give a brief discussion of the Seiberg-Witten equations, mainly to set 
up the notation. For a thorough discussion see [28]. 

Let Y be a Riemannian three-manifold. A Spinc(3) structure (W, p) is 
determined by a Hermitian two-plane bundle, the spinor bundle W over Y, 
and a positive Clifford module structure 

p:T*Y^su(W) 

i.e. a skew-symmetric action of T*Y on W with satisfying the Clifford 
relation 

p(e)oP(e) = -\e\Hw, 
for any 0 G fi^Y, M), with the property that 

where fxy is the volume form of Y, and Iw is the identity endomorphism of 
the bundle W. In this second identity, we have used the action of A*Y on 
W, also denoted p, extending the given action of T* Y (this extension exists 
thanks to the Clifford relation). We will usually abbreviate p(6)® by 9 • <&. 

Fix an 50(3)-connection 0V on the cotangent bundle T*Y. 

Definition 4.1. A Hermitian connection V on W is called spinorial with 
respect to 0V, if 0V is the connection V induces on the cotangent bundle; 
equivalently, if for all vector fields X and cotangent vector fields 6, we have 

(4.1) [Vx,p(9)) = -p(°Vx0) 
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Given an orthonormal coframe {01, #2, #3} over some patch, and a triv- 
ialization for W, the connection matrix of any 0V-spinorial connection V 
can be written with respect to this trivialization as 

(4.2) i^u^p^A^ + Mhy 

where ujj are the connection matrices for 0 V with respect to the trivialization 
{01,02,03} of T*r, and b e ^(Y, iR) is any purely imaginary 1-form. 

The pre-configuration space associated to W, written C(W), is the space 

C(W) = A(W) xr(Y,W) 

formed from the space ^(W) of 0V-spinorial Hermitian connections on W, 
together with the space of spinor fields over Y. Since w4(VF) has an affine 
structure for the vector space fi1^, iR), C(W) naturally inherits a manifold 
structure with 

T(B,*)C{W) ^ n^y^R) ©r(F, w). 

The gauge group G — Map(y, S1) acts on W by scalar multiplication, 
and hence on the space C{W) by 

ux (VB,*) = (UVBW~
1
,^), 

an action whose quotient, 

B(w) = c(w)/g, 

is the configuration space associated to W. If $ ^ 0, one calls the pair 
(B,ty) irreducible, and denotes the space of irreducibles by C*(W). The 
gauge group acts freely on the irreducibles. The linearization for the L2 

slice condition for the group action at (B, \I/) is the map 

TpvAW) -* Tge 2* n0(y, iR) 

given by 

(4.3) (6,^) »-> d*b + ilm(% ^), 

where the second term is the imaginary part of the Hermitian inner product 
of \I/ with ?/>. With the help of this slice, one can realize the quotient 

B*(W)=C*(W)/g 
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as a Hausdorff Hilbert manifold, after giving C(W) and G suitable Sobolev 
topologies. 

Following [19], there is a functional whose gradient flow equations are 
the four-dimensional Seiberg-Witten equations, and whose critical points 
are the three-dimensional Seiberg-Witten equations. More precisely, if we 
choose some reference connection BQ G A(W), there is a functional 

cs:C(W)^R 

defined by 

3(B, tt) = J (B - Bo) A Tr(FB + FBQ) + j (*, D^*), 

where 
DB:r(y,w)-^r(y;pv) 

is the Dirac operator of Y induced by the spin connection B on. W, angle 
brackets (,) here denote the real inner product on W (real part of the Her- 
mitian inner product), and Tr denotes the map induced by taking traces of 
matrices in ad(W). If u G £, then 

cs(B, *) - cs(u(B, *)) = 87r2(ci(W) U [u], [K]), 

where [u] denotes the one-dimensional cohomology class obtained by pulling 
back the fundamental class on S1. Thus, in general cs descends as a well- 
defined circle-valued function on B(W). When, for example ci(W) is a 
torsion class, cs is naturally E-valued. 

When D^ is self-adjoint, a property which depends only on 0V, a point 
(B, $?) G B(W) is a critical point for this functional, i.e. the gradient vector 
field Vcs vanishes at (B, *), if and only if (JB, \I/) satisfies 

(4.4) *Tr(FB) - ir(*) = 0 

(4.5) DB* = 0, 

the three-dimensional Seiberg-Witten equations. Here 

is adjoint to Clifford multiplication, in the sense that for all b G n1(Y,M), 
tyer(Y,W), we have 

(4.6) 5<t6-*>*>w = -<6,r(*)>Ai. 
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The critical points for Vcs in J8(W), the Seiberg-Witten moduli space in 
W is denoted Msw(W), and its irreducible part is denoted Mlw(W). The 
Seiberg-Witten moduli space, A4SW is the union over all distinct Spinc(3) 
structures W of the various moduli spaces Msw(W). 

Given a Riemannian four-manifold X carrying a Spinc(4)-structure 
(W+,W~,p) we can consider the four-dimensional Seiberg-Witten equa- 
tions 

(4.7) TrF£ - ia($) = 0 

(4.8) D^ = 0, 

where (A, $) G A(W+) ®r(X,W+). When X = R x Y (as Riemannian 
manifolds) is endowed with the Spinc(4)-structure induced by 7r*(W), these 
equations are gauge equivalent to the (upward) gradient flow lines for cs. 

5. Circle invariance of Solutions. 

In this section, we prove Theorem 1. Throughout the section, 

will denote the Seifert fibered space obtained as the unit circle bundle of an 
orbifold line bundle N over E. Unless explicitly stated otherwise, we assume 
that deg(iV) ^ 0. 

5.1. Line Bundles over Seifert Fibered Spaces. 

Orbifold line bundles E over E induce in a natural way (by "pull-back," 
7r*(J5)) line bundles over Y. This does not give a faithful correspondence 
between isomorphism classes, except when Y = |E| x S1 (see Remark 2.14). 
However, if one equips the line bundle with a connection, one gets a faithful 
correspondence, as described below (Proposition 5.3). 

In order to state properly the image of the correspondence, we must 
introduce some notions. 

Definition 5.1. Let E be a line bundle over Y. A connection A in E is said 
to have trivial fiberwise holonomy if for any x G E — {xi}f=ly the holonomy 
of A around TT""

1
^), HolA7r~1(x), is trivial. 

When the curvature two-form F(A) pulls up from E, i.e. L^FA — 0, so 
dip 

that FA — 7r*(Fo) (here ^- is an infinitesimal generator for the circle action 
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on y), the holonomy around a (generic) fiber is independent of the: particular 
fiber chosen. This is seen by connecting any two points a:, y € S — {^i}?=i by 
a path 7 missing the Xi, considering its preimage, a cylinder, and noticing 
that 

HolA7r"1x(HolA7r-1y)""1 = e^"1^ = e1^0 = 1. 

Thus, we have the following: 

Lemma 5.2. A connection has trivial fiberwise holonomy iff its curvature 
form pulls up from S, and there is a point x G S — {xi}f=1 whose fiber has 
trivial holonomy. 

Now we can state the correspondence: 

Proposition 5.3. There is a natural one-to-one correspondence between 
pairs (orbifold) bundles-with-connection over E and (usual) bundles-with- 
connection over Y, whose curvature forms pull up from £ and tuhose fiber- 
wise holonomy is trivial. Furthermore, this correspondence induces an iden- 
tification between orbifold sections of the orbifold bundle over E with fiber- 
wise constant sections of its pull-back over Y. 

Remark 5.4. It is important that the triviality of the fiberwise holonomy 
be tested over a point not in {xi}f=1. The holonomy over the exceptional 
circles 7r"1(xi) is not expected to be trivial; indeed, for an orbifold line bun- 
dle E the holonomy around the exceptional circle 7v~1{xi) is multiplication 

Proof We first discuss the correspondence between the bundles-with-con- 
nection. Given a bundle-with-connection over E, pull-back clearly induces a 
bundle-with-connection over Y with trivial fiberwise holonomy. To see that 
the correspondence is one-to-one, we invert this construction. 

Suppose we have a line bundle E over Y with connection A with trivial 
fiberwise holonomy. We must specify, over each C/i, a Z/o^Z-equivariant line 
bundle. Notice that over C/i, the projection TT is modeled on 

^:Dxz/aiZS1-*D/{Z/aiZ), 

so the local charts fa : D—> D/(Z/aiZ) defining the orbifold structure on 
E can be factored through TTJ, using the local trivializations for the orbifold 
line bundle defining the Seifert fibered space. Any two such lifts 

r, r7: D -> D x Z/aiZ' 
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differ by the action of the circle; i.e. there is a function 

uniquely specified by the property that 

T(W) = rf(w)f(w). 

This observation allows us to use the connection A to identify canonically 
the bundles T*(E) and T'*{E) over D. The identification is obtained by 
taking a homotopy from / to the constant map w *-> 1 G S1 and then 
using parallel transport of A along the tracks of the homotopy. This iden- 
tification is canonical, in the sense that is independent of the particular 
homotopy connecting / with the constant map. This is true because any 
two identifications differ by parallel transport around the fiber circles (or, 
more precisely, curves in the fiber of TT which are homologous to a generic 
fiber via a cylinder projecting to a path in E) whose holonomy was assumed 
to be always trivial. 

With these observations in place, we can define our orbifold bundle by 
defining it over Ui to be T*(E), for some lift r. The Z/aiZ action is induced 
by the above construction, observing that if r is a lift of the projection map 
TTi, so is 

27ria 

w H-> r(e ai w), 

a map we will call ra. Thus, we have an identification of T*(E) with T*(E) = 
T^E), giving us the maps covering the Z/o^Z action on D. The fact that 
this map actually induces a Z/a^Z action on T*(E) (i.e. that its of1 power 
is trivial) follows from the uniqueness in the above construction, and the 
observation that To = T^ . 

The statement about the correspondence between sections follows im- 
mediately from the definitions. □ 

5.2. The geometry of the Seifert fibered space. 

We give Y the metric 

gy = V2 + 7r*(gx)i 

where irj is a connection form for a constant curvature connection on Y, 
and gs is a constant curvature metric on E. The global 1—form rj induces a 
reduction in the structure group of TY to S'0(2); the kernel of r] is naturally 
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identified with the pull-back of the orbifold tangent bundle of E, so that we 
have orthogonal splittings 

TY 2 M— 0 7r*(TE)     and    T*Y ^ Rrj 0 7r*(T*E), 

where ^ is the vector field dual to 77. Note that for any vector field X dual 
to the pull-back of a 1-form from E, we have that 

(5.1) x   d 
= 0. 

T*Y can be naturally given a connection compatible with this reduction. 
Letting Vs denote the Levi-Civita connection on T*S, we can give T*Y the 
connection 0V = d © 7r*(Vs); i.e. the 50(3)-connection which satisfies 

(5.2) ^77 = 0, 

and, for any 9 Gft^EjE), 

(5.3) 0V7r*(^) = 7r*(Vs^). 

Let 0V be the Levi-Civita connection on Y. The purpose of the next 
lemma is to compare 0V-spinorial connections on W with 0V-spinorial con- 
nections. 

Let £ denote the constant defined by 

(5.4) drj = 2^E, 

where //s is the volume form on E. By Chern-Weil theory, we see that 

7rdeg(iV) 
5 Vol(E)   ' 

Then, we have the following: 

Lemma 5.5. Let (W,p) be a Spinc(3) structure over Y, and V and V be 

a pair of connections in W which are spinorial with respect to 0V and 0V 
respectively, with Tr(V) = Tr(V).  Then, for any b G fi1(y,M), ive have 

(5.5) V6b = V6b + £ Qp(6) - (6, r,)p(r,)^ , 

where $ denotes the vector field which is gy-dual to b. IfD and D are the 
Dirac operators V and V induce on W, then 

(5.6) B = B-^. 
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Proof. Pick an orthonormal coframe on a patch of Y 

{0O,0\02} 

so that 6° = 77, and {01,02} is pulled back from an orthonormal coframe on 
E. The connection matrix (u;j) for the covariant derivative V with respect 
to this coframe is given by 

0 -£02         tf1 

Z62 0          ^0 + wl 

-tf1 -£0° - ul         0 

which is an easy consequence of Cartan's structural equations, 

j 

and where w^ is the (pull-back of the) connection 1—form for the Levi-Civita 
connection on S. (Notice that the connection matrices here are for T*Y, 
which are off by a sign from the connection matrices for TY.) Thus, 

/ o    -ze2 £01N 

°v-ov=   ze2     o    £0° 
X-te1  -se0   o 

In local coordinates, Formula 4.2 says that 

= la-o0 <g> P(O
0
) + 0*® Pie1) + o2® P(0

2
MMY), 

from which both formulas follow easily. □ 

Remark 5.6. As a consequence of the above result, we have that the Dirac 

operator D is self-adjoint, since both D and multiplication by a real scalar- 
valued function are self-adjoint. 

Corollary 5.7. The anticommutator of the Dirac operator with Clifford 
multiplication by a 1—form is given by the formula 

(5.7) {D, p(b)} = -p((*d + d*)6) - 2V6b + 2f (6, r/). 
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Proof. This follows immediately from the analogous formula for the Levi- 
Civita Dirac operator (see for example [4]): 

together with the Lemma. □ 

5.3. Weitzenbock Decomposition of the Dirac Operator. 

Given a Spinc(3)-structure (W,p) on y, let V be a 0V-spino]:ial connec- 
tion on W, where 0V is the reducible connection considered above. Corre- 
sponding to the splitting of T*y, there is a canonical decomposition of the 
Dirac operator into two terms 

D = 77-V_CL+D2, 
dip 

which can be taken as the defining equation for D2. Since (taking L2-adjoint) 

(77 • V_a_ )   ^ — V_a_77 • if) = 77 • V.a.'^ + (V_a_77) - I/J = r) • V j^ij) 
\ dip J dtp dip \      dip    J dip 

(here we have used Equation 5.2, together with spinoriality, Equation 4.1), 
we have decomposed the Dirac operator as a sum of self-adjoint opera- 
tors. Correspondingly, we can give a Weitzenbock-type decomposition of 
the square of the Dirac operator: 

(5.8) D2 - (77 • V^)2 + (D2)2 + {77 • V_a_, D2} , 

as a sum of three operators, the first two of which are manifestly non- 
negative. Since the sum of the first two terms on the right has the same 
symbol as D2, the third term on the right is a priori a first-order operator. 
In fact, it turns out that this third term is a zeroth order operator, which 
can be written in terms of Clifford multiplication, as follows. 

Let 
11^ : T*y -+ 77-L C T*Y 

denote orthogonal projection of T*Y to the space perpendicular to 77, a 
subbundle which is naturally isomorphic to 7r*(T*E). Then we have the 
following: 
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Lemma 5.8.  The cross-term appearing Formula 5.8 is a zeroth-order oper- 
ator. More precisely, 

{»7-V£,D2} = ~P(II,.L*'&FB) 

Proof. Let 01,92 be a pair of orthonormal covectors over a neighborhood of 
Y pulled back from (a neighborhood in) E, and ei, 62 their duals. Then we 
can write D2 = 01 • Vei + ^2 • Ve2, so 

{17 * VJL, D2) = V -O1 • [VJL, VC11 + 77 • 92 • [V^, Ve2l . 
U dip J L      ^v7 J L       ^V J 

Here we have used the properties of V from Equations 5.2, 5.3, and 4.1, 
together with the Clifford relations 77 • O1- = —O1 • 77-. Now, for general vector 
fields u and v, 

[Vtt,Vfl]-VM=F(ti,t;); 

so using Equation 5.1, we see that 

{l7.V3fe,D2} = ,..^.Ffl(A>e1)+l7.^.Ffl(A>ea 

Since 0V pulls up from E, we have that the action of ^(^jCi) for i = 
1,2 must commute with Clifford multiplication, hence it must be a scalar 
endomorphism, so 

So, by definition, we see that 

The lemma now follows, since for any two-from a;, we have 

n^j. * u; = *7y A ( L_d_u) J , 

and 
p(u) = -p(*cj), 

by the assumption that p(/iy) is the identity map on W. □ 
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5.4. The Squaring Map. 

Since the square of Clifford multiplication by 7r*(^s) is the identity map, 
this operator breaks W into its (orthogonal) +1 and —1 eigenbundles. 

Definition 5.9. S+ (resp. S~) is the bundle of spinors ^ satisfying 

(5.9) i7r*(/zs) •# = #    (resp.   iir*(nz) • ^ = -*). 

Clifford multiplication by rj preserves the splitting W = S+ © 5~, so 
Clifford multiplication by anything in r]-1 = 7r*(T*E) must reverse it. In- 
deed, it is straightforward to verify that Clifford multiplication induces an 
isometry between 7r*(T*£) and the skew-symmetric endomorphisms of S± 

which reverse chirality or, equivalently, it induces an isometry 

7r*(r*S)^Homc(5+,5-). 

We will now investigate the manner in which the bilinear map r of Equa- 
tion 4.6 behaves under this splitting. 

Lemma 5.10. Let a 6 S+, (3 G S~ be spinors. Then, 

(5.10) <«T(* + 0),»7>   =   i\{\cx?-m2) 

(5.11) IIvL»T(a + /?)   =   -(a®/3* + /3®a*). 

Proof. To see the first equation, 

farfa+ /?)>   =   -(tp(7/)te + )8),a + i0> 

=    (tp(*»7)te + /?),a + /?) 

=  H2-l/?l2. 

For the second, we have 

(rte + /3),ite*®/? + /3*®a))   =   i<te*®/? + /F®a)te + /3),a + /?> 

-   I«|2|/3|2- 

The result follows from this, together with the fact that the transformation 
tte* ® (3 + /?* ® a) 6 Homc(S'+, 5") has norm |a||/?|. D 
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The Kahler structure on E induces a canonical (orbifold) Spinc(2) struc- 
ture (see [33],[25]), C © K^1, with Clifford module structure given by the 
symbol of V2(d + d ). This in turn endows Y with a canonical Spinc(3) 
structure with Wc = C © K^1, given by defining p(r])\Q± = ±i. Moreover, 
Wc has a canonical 0V-spinorial connection Vc, whose associated Dirac op- 
erator is given by 

(5.12) (a, /?) h-> ^i Aa + v^*/?, V^a - z^-^ . 

This Spinc(3)-structure gives rise to a one-to-one correspondence between 
the Hermitian line bundles E over Y and the Spinc(3) structures over Y 
under E y-+ E ® Wc, a Spinc(3) structure whose ^-bundle (in the sense 
of Definition 5.9) is E. Indeed, tensor product with (Wc, Vc) induces an 
identification between A(E), the space of Hermitian connections in a line 
bundle 12, and A(WC ® E), the space of 0V-spinorial connections in the 
Spinc(3) structure Wc ® E1. 

5.5. The Vanishing Spinor Argument. 

We recall the Kahler vortex equations over S. Given a Hermitian orb- 
ifold line bundle EQ over E, let ao, A)> ^e orbifold sections in r(E,I?o) and 
r(E, K^1 ®EQ) respectively, and BQ be a compatible orbifold connection in 
EQ. The triple (So, ao? A)) is called a Kahler vortex in EQ if it satisfies the 
equations 

(513) 2FB0-FKV     =     i(\ao\2-\(3o\2)t^ 

(5.14) OBOUO = 0   and   9B0/?O = 0 

(5.15) Q:O = 0    or    ^0 = 0. 

Once again, these equations are preserved by the gauge group of unitary 
transformations of JEQ, SO we can form a moduli space of vortices, written 
M,(E). 

The pull-back of a Kahler vortex over E is naturally the solution of the 
Seiberg-Witten Equations 4.4 and 4.5 over Y. The holomorphicity condi- 
tions on CXQ and /?o, along with the their circle invariance, ensure that the 
pull-back spinor is harmonic, according to Equation 5.12. As explained in 
Lemma 5.10, the squaring map is equivalent to the pair of Equations 5.10 
and 5.11, the first of which is Equation 5.13, the second is automatically 
satisfied because both sides vanish: the left hand side because FB pulls up 
from E, the right because of Equation 5.15. 
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Since a gauge transformation on EQ pulls back to a gauge transformation 
of Wj we get a well-defined map on the level of moduli spaces 

Letting jMJ(S) C MV(T,) be the subspace represented by vortices for 
which ao and /?o do not simultaneously vanish, and Mlw(Y) C M,SW(Y) 
denote the moduli space of irreducible critical points, we will prove the 
following: 

Theorem 4.  The pull-back map TT*  induces a diffeomorphism between 
M*v(X)andM*sw(Y). 

Remark 5.11. Note that the spaces are identified as differentiable man- 
ifolds, not as "moduli spaces"; i.e. whereas .M*(E) is always cut out by 
a map whose differential is surjective (according to Theorem 5), Mlw(Y) 
is cut out by a map which always has index zero, as it is cut out by the 
gradient of a function (which always has a self-adjoint linearization on its 
critical set). 

The proof occupies the rest of this subsection, and Subsection 5.6. As 
a first step, we show that TT* induces a homeomorphism. First, we see that 
TT* is injective. That is, if a gauge transformation u preserves an irreducible 
solution which pulls back from S, then it must actually be the pull-back of 
a gauge transformation over EQ. Viewing u as a section of End(7r*(i?o)) = 
7r*(End(£,o)), we have, by the definition of the covariant derivative on the 
endomorphism bundle, that 

(W_d_u) * = |v_a_,u] * = 0 
\      d<p     / L      d<p        J 

But ^ 7^ 0 over a dense open subset of S, so V_d_u = 0 over all of Y. Thus 
d<p 

u is the pull-back of a section in r(E,End(£,o)), by the correspondence in 
Proposition 5.3. 

We will now show that 7r*| w* surjects onto M*  . Consider any solution 
JVlV 

(B, *). As above we can decompose * = a + (3 into its components in S±. 
Combining Equation 5.8, Equation 4.5, and Equation 5.8, we get that 

0 = (r? • V^L)
2
 * + (D2)2# - ^(iy * TTFB)*. 

Taking the inner product of the above with *, and integrating over Y, we 
get 

(5.16) 0 = IVJL#|
2
 + |D22*|2 - ^</0(iy * TVFB)*, *>. 

I        dip       I 2, 
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Clearly the first two terms are individually non-negative. To analyze the 
third term, combine 

Equation 4.4, with its interpretation from Lemma 5.10, to get that 

=  M2l/f, 
another manifestly non-negative quantity, which, by Equation 5.16 must 
vanish identically. 

Thus, we can draw the following conclusions 

(5.17) nvi(*TrFB)   =   0, 

(5.18) VJLC* = VJL/?   =   0 
dip dip 

(5.19) \a\\(3\   =   0. 

Since $ ^ 0, one of a,/? ^ 0, so Equation 5.18 shows that the fiberwise 
holonomy in EQ must be trivial. By the correspondence in Proposition 5.3, 
which we can apply thanks to Equations 5.17 and 5.18, we see that the 
sections a and (3 of S'1*1, together with the connection S, correspond to 
orbifold sections ao, /3o of the orbifold bundles EQ and K^1 (g) EQ, together 
with the connection BQ . 

Now, the Equation 4.5 together with Equation 5.18 gives us Equa- 
tion 5.14. The unique continuation theorem for the d operator, together 
with Equation 5.19 gives us Equation 5.15. 

To get an identification between actual moduli spaces, we need to show 
that TT* identifies the kernels, at each point in the respective moduli spaces, 
of the linearizations of the maps which cut out those moduli spaces. 

5.6. The Linearizations. 

We wish to describe the linearization of the map Vcs, which cuts out 
the moduli space Msw C B. First, consider the bilinear map 

f: w ®w -► (n1 ®n3)(Y,R) 

characterized by the property that for any b G (ft1 ©n3)(Y, R) and ^i, ^2 € 

{ip(b)ll>i,tl>2)w = -(ft,T(^i,V2))AieA3- 
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The O1 component of r is the bilinear form associated to the quadratic map 
r, and the Q3 component of is the imaginary part of the Hermitian inner 
product on W. Thus, the linearization of Vcs at a solution (J5, \I/) can be 
described as a map 

D[B,V] Vcs: n^y, iR) e r(y, w) -+ fi3(y, IR) e fi^y, iR) e r{y, w), 

given by the formula: 

(5.20) (6, ^) M ((*d + d*)b - ir(*, </>), (DB^) + 6 • *). 

The vortex moduli space, on the other hand, can be thought of as the 
zero set of a map defined on 

V±:Bg:-tA2(E)xar(E>S
:F)> 

V^BQ, *) = (FBo ± i|*|2, (D2Bo)*). 

Pulling back gives a map from the vortex configuration space to the 
Seiberg-Witten configuration space: 

TT* : Bfr -► B. 

We have shown that M.^ is contained in the image of this map; indeed, that 
Mlw = 7r*.M£. We will now show that TT* naturally induces identifications 

(5.21) KerL»(B>xp)Vcs = KerD(^)-i(B^)V
:t, 

when (B, *) € .M*^. More explicitly, this is saying that for any (J5, *) e 
.Mg^, if (6,^) satisfies 

(5.22) 

(5.23) 

then 

(5.24) 

(5.25) 

(5.26) 

DB^ + 6 ..* =   0 
(*d + d*)b - -i?^,^) = o, 

iTfrS*) —^ V>€ ET^S*). 
= 0 

b e 7r*(ft1(E,»R)) 
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We will assume that * G r(Y,S+); the case where * G r(Y,S~) is 
analogous. Applying D^ to Equation 5.22, and applying Equation 5.7, 
together with the fact that D^^ = 0, we see that 

(5.27) 
DBDBV + Di?(& • *) = DBDBV' + T>B(b • *) 

= D|V - (*d + d*)b - # - 2Vdb* + 2f (6, ry)// • *. 

Let ^ = a + /? be the decomposition of ^ in r(y, 5±). We will show that 
/? = 0, by taking the inner product of the above equation with /? and making 
four observations. 

1. By Equation 5.17 combined with Equation 5.8, we see that D^ pre- 
serves the grading on S^, so 

(D%^,0) = <D|/?,/?) = ((77 • VJL)
2
/?,/?) + <(D2)

2/?,/?>. 

2. Combining Equation 5.23 with the definition of r, we see that 

(-(*d + d*)b-V,P) = -(if(*,V) •*,/?) 
= (f(*,V),f(*,^)> 
=   <?(¥,/?),?(¥,/?)). 

The last equality follows from the fact that f (*, a) preserves the split- 
ting of W into S^, whereas T(\I/,/?) reverses it, so they must be or- 
thogonal. 

3. Since the splitting of W into S^ is induced by the eigenspaces of Clif- 
ford multiplication by a covariantly constant 2-form, i/is? spinoriality 
of V ensures that covariant differentiation respects the splitting. Also, 
Clifford multiplication by rj preserves the spitting, so 

(-2Va.* + 2£<a, 77)77 •*,/?) = 0. 

Taking the inner product of Equation 5.27 with /? and applying these obser- 
vations (the vanishing of four a priori non-negative terms), we can conclude 
that 

<?(*,/?),?(*,/?)) = 0; 

but this implies that (3 = 0, and we have I/J G r(Y, S+) as in Equation 5.24. 
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Next, we turn our attention to deriving Equation 5.25. Since, as we have 
just established, both \I/, -0 G r(Y, S'+), it follows that ?(*, ip) must preserve 
the splitting of S±, so that II^J.^^,^) = 0; i.e. by Equation 5.23, 

L_d_db = 0. 
dtp 

Hence, db pulls up from S, and, once again by Equation 5.23, together with 
Equation 5.3, we get that 

0 = oVjLf(#,V); 
dtp 

which implies, after taking the 77-component, that 

(5.28) 0 = — <*,</>>. 

Decompose b according to the splitting of the cotangent bundle, 

b = fri + c, 

i.e.  / € f20(Y,zR) and c € O^y^E).  Then, the 5+-componeni; of Equa- 
tion 5.22 gives us that 

(5.29) iV^_^ + if^ = 0. 
dtp 

Hitting this equation with iV_d_ and integrating against ?/>, we get 
dtp 

0=(iV**''VA*>-/<|;'H*''» 

= \iV_d_i(j,iV_d_ip) , 
\        dtp dtp     I 

by Equation 5.28, together with the fact that V_d_\I/ = 0. Hence, we have 
dtp 

obtained Equation 5.25. 
To show that the form b pulls up from S, notice that Equation 5.29 

combined with Equation 5.25 shows that / = 0 on the (dense, open) set 
where * ^ 0, so it must vanish identically. Thus, 

idb = §. 
dtp 
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Combined with the fact that db pulls up from S, we get that b itself must 
pull up, giving Equation 5.26. 

This completes the proof of Equation 5.21. 

5.7. Vortices over Orbifolds. 

The complex interpretation of irreducible solutions in Mlw(Y) appearing 
in Theorem 1 follows from Theorem 4, together with the following theorem, 
which is essentially contained in [17],[5], about vortices over orbifolds. 

Definition 5.12. A vortex with /?o = 0 (resp. ao = 0) is called a positive 
vortex (resp. negative vortex). The moduli space of positive vortices (resp. 
negative vortices) in a line bundle E over S will be denoted M+(E) (resp 
M-(E)). 

Theorem 5. Let E —> E be an orbifold line bundle with background Chem 
number e. The moduli space of vortices My(E) = MytK^QE"1) is empty 

deg(£) > **&*, 

and it is naturally diffeomorphic to the e-fold symmetric product of |£|, 
Syine(|S|), */ 

(5.30) deg(£) < M^- 

Proof For the proof, we refer to [5], [17]. We give the outline of the argument. 
The identification of M+(£, E) with .M~(E, E) arises from Serre duality, 

which gives a map 

*: r(E, E) -> r(E, K^1 (8) (Ks ® .ET1)), 

with 
d * = — * d. 

Since a line bundle with negative degree supports no holomorphic sec- 
tions, the vortex equations force any bundle E with a non-zero vortex to 
satisfy Inequality 5.30. 

When the Inequality 5.30 is satisfied, then the moduli space of vor- 
tices is identified with a moduli space of divisors, which consist of pairs 
(I?o,ao) satisfying only 9^0ao = 0, modulo the action of Map(E,C*). This 
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identification is done by showing that for each divisor (<9£0 ,ao), there is a 
unique real-valued function u on E such that eu(dB0, ao) satisfies the cur- 
vature condition of Equation 5.13, by reexpressing this latter equation as a 
Kazdan-Warner equation for u. Properties of this equation guarantee the 
existence and uniqueness of u. 

Finally, such a divisor is uniquely determined (as the name suggests) 
by the zero-set |a|~1(0), with zeros counted with appropriate multiplici- 
ties. (Here |a| denotes the holomorphic section of the desingularization of 
(E^dBo)-) Over a (one-dimensional) orbifold, the moduli space of divisors 
is always cut out transversally: it is cut out by a map whose linearization 
has kernel iJ^a-1^), £|a-i(o))j' anci and cokernel ff1(a~1(0), £|a-i(o))' The 
cokernel, being the first cohomology group of a sheaf over a zero-dimensional 
space, must vanish, and the index of the operator is given by the difference 

x(S,f)-x(S,C?E) = e> 

by the Riemann-Roch formula. □ 

5.8. Reducibles. 

We now turn our attention to the reducible critical points in Y. Re- 
ducible critical points in the Spinc(3) structure determined by E correspond 
to gauge equivalence classes of connections B whose curvature form satisfies 

(5.31) 2FB-FKx=0. 

Definition 5.13. A line bundle EQ is called an orbi-spin bundle on S if 

2deg(£o) = deg(#E), 

Not every orbifold admits an orbi-spin bundle. For example, among the 
orbifolds with cyclic topological Picard group (i.e. orbifolds for which all the 
local invariants cti are pairwise relatively prime), the ones which do admit 
an orbi-spin bundle are precisely those whose local invariants are all odd. 

Proposition 5.14. A line bundle E over Y supports a reducible solution 
if and only if E = 7r*(i?o) for some orbifold line bundle EQ over E. In 
this case, the space of reducibles in the Spinc(3) structure determined by E, 
denoted 3(E), is homeomorphic to the Jacobian torus if1(E;R)/if1(E;Z). 
A line bundle E supports a reducible solution with trivial fiberwise holonomy 
if and only ifE==- ^(EQ) for an orbi-spin bundle EQ over E. 
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Proof. Suppose E = 7r*(Z?o)- One can always find a constant curvature 
connection JBQ on E'Q. Then, the connection 

^{Bo)+* ^—^m—)ri 

satisfies Equation 5.31. Conversely, if E supports a reducible solution, then 
it follows from Equation 5.31 and Theorem 2.13 that ci(E) is a torsion class, 
hence it must be isomorphic to 7r*(J5o) for an orbifold line bundle EQ over 
E. 

Any two connections Bi^B2 in line bundles ■Ei,E2 respectively, with 
the same curvature form must differ by tensoring with a flat line bundle. 
Thus, the identification of the reducibles with the Jacobian follows from 
Corollary 2.15. 

The final statement is a direct consequence of Proposition 5.3. □ 

We wish to investigate conditions under which the identification between 
Z{E) and the Jacobian torus of E is naturally a diffeomorphism. 

Definition 5,15. A point [5,0] G Z(E) is called a non-degenerate crit- 
ical point if the kernel of the linearization of the Seiberg-Witten equa- 
tions DtgrtVcs is isomorphic to the tangent space to the Jacobian torus. 
The reducible locus 3(E) is called non-degenerate when each reducible 
[B, 0] € 3(E) is a non-degenerate critical point. 

Around a reducible solution (B,0), the linearization of the Seiberg- 
Witten equations takes the form 

D[Bfi]V<xM) = ((*d + d*)6,DBV), 

so its kernel is isomorphic to H1^] R) 0 KerD^; so 3(E) is non-degenerate 
when for all [5,0] G 3(E), "DB has no kernel. 

Proposition 5.16. Let (E, B) be a line-bundle-with-connection over Y 
whose curvature form pulls back from E. If B has non-trivial fiberwise 
holonomy, then the Dirac operator D^ has no kernel Otherwise, by Propo- 
sition 5.3, we can push (E, B) forward to E, and we have a corresponding 
identification 

Kerps) S iI0(E, 7r*(£, B)) © H^E, ^(E, B)). 
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Proof. This follows from the Weitzenbock formula from Equation 5.8, to- 
gether with the hypothesis that FB pulls back from E and Lemma 5.8 give 
that the square of the Dirac operator splits as a pair of non-negative oper- 
ators 

MTVA) +(D2>
2
. dip 

so any kernel element must be fiberwise constant. Hence the first statement. 
The second follows from the complex interpretation of the Dirac operator, 
Equation 5.12. □ 

It follows from the above Proposition that if a line bundle E admits 
a reducible solution B whose Dirac operator has a non-trivial kernel, then 
E = 7r*(Eo) for an orbi-spin bundle EQ. When S has cyclic topological 
Picard group, the orbifold line bundles over S are uniquely specified by 
their degree. Hence, there is at most one orbi-spin bundle, which we write 
as Kj/ . 

Corollary 5.17. Suppose that Y is a Seifert fibered space over an orbifold 
S whose topological Picard group is cyclic, and E is the line bundle corre- 
sponding to a S^md^)-structure which supports reducible solutions. Then, 
the reducible locus Z(E) is not non-degenerate if and only if the following 
three conditions are satisfied: 

1. E is orbi-spin, 

2. E^ir^K1/2), and 

5. 0(E) > 0, 

Proof By Proposition 5.16, if D^ has non-trivial kernel, B must have non- 
trivial fiberwise holonomy, so that 7r*(i?, B) is a bundle-with-connection over 
E. Equation 5.31 then implies that 7r*(i?, B) lives in an orbi-spin bundle on 
E, proving Conditions 1 and 2. The Seifert invariants of the orbi-spin if1/2 

bundle are 
'    _ -i    al - 1 an- ! 
9       1?        o       '* ' * '        o 

(all these numbers are integers, since all the a; are odd); and as B ranges 
over all connections with a fixed curvature, 7r*(i5, B) ranges over all possible 
complex structures on if1/2. According to Proposition 5.16, together with 
Serre duality (Theorem 2.10), the question of whether there is a reducible 
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B on E with ker D^ ^ 0 is equivalent to the question of whether there is 
a complex structure on K1'2 with holomorphic sections. This is in turn 
is topological question: K1'2 has holomorphic sections if and only if its 
desingularization has non-negative degree (using Proposition 2.8 and the 
corresponding well-known fact for smooth curves), i.e. g — 1 > 0. □ 

Remark 5.18. If #(£) = 0 and E does not have a cyclic topological Picard 
group, Y might admit a reducible solution (J3,0) whose Dirac operator has 
non-trivial kernel. Let E be the genus zero orbifold with three marked 
points, each having multiplicity 3. Since deg{K^) = 0, the trivial bundle is 
an orbi-spin bundle with a holomorphic section. 

5.9. The critical sets of the Chern-Simons functional. 

Combining Theorem 4, Theorem 5, and Proposition 5.14, we obtain the 
following refined version of Theorem 1. 

Theorem 5.19. Let TT: Y = S(N) —► E be a Seifert fibered space corre- 
sponding to an orbifold line bundle N with non-zero degree. The Seiberg- 
Witten moduli space for the Spinc(3) structure E ® Wc is non-empty if and 
only if E = ^(EQ) for some orbifold line bundle EQ over E. The moduli 
space Msw(^(Eo) ® Wc) consists of one reducible component ^(^(Eo)), 
which is homeomorphic to the Jacobian torus of |E|; and a pair of compo- 
nents ^(E) for each isomorphism class of orbifold line bundles E over E 
with 

0 < degC*) < *S^) 

and 
[E] = [EQ]    (mod Z[N]) 

in Pict(E). The component C+(E) = C~(E) is naturally diffeomorphic to 
the moduli space of effective divisors in E. 

Remark 5.20. In the above statement, C"l"(-B) is obtained as 7r*(A^^(J5)), 
while C~(i;fs(8)-E~1) is 7r*(.M~(i?)). Sometimes (as in Section 1), we find it 
convenient to label the irreducible critical manifolds by Seifert data rather 
than isomorphism classes of line bundles (these data are equivalent, accord- 
ing to Proposition 2.12); i.e. C:t(e) denotes C:i:(J5), when e is the Seifert 
data for the line bundle E. Moreover, when it is clear from the context, 
we will drop the line bundle (indicating the Spinc(3) structure) from the 
notation for the reducible locus Z- 
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Recall the following definition from Morse theory (which is the natural 
analogue of Definition 5.15 in the irreducible case). 

Definition 5.21. A critical point [JB,*] E Mlw(E) is called a non- 
degenerate critical point if there is a neighborhood of [B, #] which is a 
submanifold of of B{E), and 

KeiD[Bm Vcs = Tp^MlviE). 

A component C C M*SW(E) is called a non-degenerate critical manifold if 
every point [5, ^j G C is a non-degenerate point. 

Corollary 5.22. The irreducible critical manifolds ^(E) are all non- 
degenerate. 

Proof This follows from the fact that the moduli space of vortices is always 
a smooth manifold, cut out transversally according to Theorem 5, together 
with the identification of the kernels in Equation 5.21. D 

The Chern-Simons invariant, cs, of a solution depends only on the com- 
ponent of that solution in the moduli space. Moreover, since only torsion 
classes arise as the first Chern class of a Spinc(3) structure for which cs has 
critical values, we see that the Chern-Simons function is naturally a real- 
valued function (we are using here the assumption that Y is associated to a 
line bundle with non-zero degree, see Remark 2.14). 

Proposition 5.23. Suppose that the function cs is normalized so that 
cs(3) = 0 for Z a* reducible solution to the Seiberg-Witten equations. Then, 

(,32, ra(e±W)=a^(deg(S,-M)2. 

Proof Suppose B is a Hermitian connection in a line bundle E over Y. We 
define the Y-degree of E, degy(i?) by the formula 

degY(B) = ^jFBAr,. 

Let Bi,B2 be two Hermitian connections in a line bundle E over Y 
whose curvature forms pull up from S.   (This condition is equivalent to 
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the condition that the fiberwise holonomy over the smooth locus of £ is 
constant, see the remarks preceding the proof of Proposition 5.3). We have 
that 

(5.33) 

f(B1-B2)ATr(FBlQWc+FB29Wc) 

= f (B1 - B2) A 7r*(2FBl + 2FB2 - 2FK^ 

(5.34) = / 7r*(J5i - B2)(2FBl + 2FB2 - 2FKJ, 

where 
TT* : Q}(X) -* fi0(S) 

denotes the operation of integration along the fibers. Now, 7r*(.Bi — B2) is a 
constant function over E, since 7r*(i?i — B2) measures the difference between 
the fiberwise holonomy of Bi and the fiberwise holonomy of B2, and both 
holonomies are constant. In fact, 

Wp       P ^ - 27rz(degy(Bi) - degy(g2)) 
**{Bl" B2) = d^v) ' 

since 
27rdeg(iV) 

dri = -   Vol(E)   ^ 

so that 

J ^{B1 - B2)/iE   =   J (Bi - S2)7r*(Ms) 

J (FB^FBJATJ 

27rdeg(iV) 
Vol(E) 

27rdeg(Ar) 

27riVol(E) 
(degy(Bi) - degY(B2)). 

deg(iV) 

Thus, we have that 

J(Bi - B2) A Tr(FBl®Wc + FB2®WC) = ^^y (degy(Bi) - degy(B2))
2 



722 Tomasz Mrowka, Peter Ozsvath and Baozhen Yu 

Equation 5.32 follows from this equation, since Chern-Weil theory gives 
us that for any line-bundle-with-connection (EQ^CQ) over E, 

degy(7r*(£;o,ao)) = deg(£:o) 

and Equation 5.31 guarantees that for any reducible solution (B, 0), 

degY{B) = . 

□ 

6. Gradient Flow Lines. 

We now turn our attention to solutions to the Seiberg-Witten equations 
(Equations 4.7, 4.8) over the cylinder R0 = R x Y, given the metric 

Qcyl = dt2 + gy 

and Spinc(4) structure p*(W) induced by some given Spinc(3) structure 
(VF, p) over Y. The configuration space now is given by 

B(p*(W)) = A(p*(W)) x r(R)
ip*(W))/Map(R,

9S
1)1 

where A(p*(W)) is the affine space of spinorial connections in p*(W), mean- 
ing those connections V which are spinorial with respect to the connection 
which is Vcy/ = d 0 0V in terms of the splitting T*R0 = R(dt) 0 T*Y. By 
elliptic regularity, the topology induced on the Seiberg-Witten moduli space 
from the C00 topology on B{p*(W)) is equivalent to the topology induced by 
the Lfc topology on the configuration space for any k > 2 (giving the gauge 
group Map(i?0,51) the Z|+ljtec topology). 

We will be interested in the moduli space of solutions to the Seiberg- 
Witten equations on the cylinder for which the Chern-Simons function cs 
has bounded variation along the slices {£} x Y. In fact, arguments from 
from [27] show that for any solution (A, <&) with bounded variation of cs 
along the slices, there are a pair of critical points [B±, Slf±] for cs for which 

tonJ{A, $)|{i}xy] ►- Tr'tBi, *±]. 

This allows us to partition the moduli space into components labeled 
by pairs of critical sets Ci, C2 for cs, M(CiiC2), of solutions to the Seiberg- 
Witten equations over R x Y which satisfy 

lim P,$)|{t}xy] = 7r*[S±,*±], 
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for some pair of critical points [!?_, \I/_] E Ci, [B+, ^4.] G C2. 
The following was observed in [19]: 

Proposition 6.1. Given a pair of critical sets for cs, C1^ there is an iden- 
tification between the moduli space of parameterized gradient flow lines for 
cs from C to C+ in B{W) and M(C+,C-). 

When TT : Y —> E is a Seifert fibered space, the cylinder R0 can be given 
a complex structure as in Section 3. We recall the following basic result 
(see [34] and [22]) about the Seiberg-Witten equations on any complex sur- 
face. 

Theorem 6.2. Let X be an almost-complex surface with a Riemannian 
metric, and denote its associated (1,1) form by u. The Spinc(4) structures 
on X naturally correspond to isomorphism classes of Hermitian line bundles 
E under the correspondence identifying 

(6.1) W+ 9* (A0'0 0 A0'2) ® E   and   W ^ (A0'1) ® E, 

where A0,0 (resp. A0'2) is the 2i (resp. —2i) eigenbundle of Clifford multi- 
plication by UJ. Let V be a connection on T*X for which 

(6.2) Vu; = 0. 

Then the Seiberg-Witten equations for V'-spinorial connections and spinors 
in W+ reduce to the following equations for a compatible connection A in 
the Hermitian line bundle E and sections 

a,/3Gn0'0(X,C),fi0'2(X,C) : 

(6.3) 2AFA-AFKx   =   i(\a\2 - |/3|2) 

(6.4) 2^'2-F^2    =   a*®/3 

(6.5) dAa + d*A(3   =   0. 

In the above, FKX denotes the curvature of the connection which V induces 
on the canonical bundle, and 

A: ft2(X,(C)-^ft0(X,C) 

denotes the operation 
F>->(F,«;). 
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Remark 6.3. For a proof of the above result, see [22]. Equations 6.3 and 
6.4 hold for any complex four-manifold. Equation 6.5 follows from the identi- 
fication of the Dirac operator with the rolled-up 9-operator, which is usually- 
stated for Levi-Civita-spinorial connections on a Kahler manifold. However, 
the proof uses only the fact that Clifford multiplication by u commutes with 
the Dirac operator, which follows from Equation 6.2. 

is: 

For (R0
ygCyi) with its complex structure as in Section 3, the (1,1) form 

cu = dt A77 + 7r*(^E), 

which is evidently covariantly constant for the connection V^/, so we can 
apply the above theorem. Moreover, note that the above decomposition of 
spinors in W+ is compatible with the decomposition of W into S*1 (Equa- 
tion 5.9), in the sense that 

(6.6) 7r*0S+) ^ A0'0(£)   and   ir*(S-) * A0>2(E). 

In the compact, Kahler case one uses Theorem 6.2, together with an 
integration-by-parts argument to show a correspondence between, solutions 
to the Seiberg-Witten equations and holomorphic data (see [34]). (This was 
also the structure of the proof of Theorem 4.) To perform this integration- 
by-parts argument on the cylinder, we need to know about the behavior at 
infinity our solution. To this end, we apply the standard exponential decay 
estimates ([27],[32]) adapted to the context of Seiberg-Witten monopoles: 

Theorem 6.4. Given any pair of non-degenerate critical manifolds C-, C+ 
for cs (definition 5.21J, there is a 6 > 0 with the property that any flow 
line between these manifolds corresponds to a solution (-A, $) to the Seiberg- 
Witten equations over R0 in the Spinc(4) structure 7r*(W) for which there 
exist [B±, ^dz] £ C±, with 

(6.7)      lim  e±St(\\vcyl^(A-7r%B±))\ 

K%(*-*-(*±))||{()><y)«o, 
{t}xY 

for all k € Z.  The norms appearing above are C0 norms on Y. 

We are now ready to apply the integration-by-parts argument, to obtain 
a correspondence between gradient flow lines and (certain) vortices over R0. 
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Proposition 6.5.  Gradient flow lines between regular critical manifolds of 
cs correspond to configurations 

[A, a, (3} e {A(R0, E) x T(R0, E) x T{R0, TT*^
1
) ® E))/G(R0) 

which satisfy satisfy the decay condition Equation 6.7; together with the gen- 
eralized vortex equations: 

2hFA-hx*FKji = i(\a\2-\P\2)^ 

F%2 = 0 

dAO: = 0 and dAP = 0 

a = 0 or 0 = 0. 

Proof. First notice that V^ = d ® d © 7r*(Vx;) with respect to the splitting 

T*R0 £ R(dt) © R{n) © 7r*(T*£), 

so that FKno = 7r*JPs; in particular, F^   = 0. Applying OA to Equation 6.5, 
and then using Equation 6.5, we see that 

0 = Fj2a + dAd*AP = |a|2/? + 0,^/3. 

Taking the inner product with (3, we get 

(6.8) 0=\a\2\(3\2 + (dATA(3,l3). 

By Stokes' theorem, for any 7 G fi0-^^ £?), fi € n0'2(y,E), T G R, 

/ 7A^- / 7A^= / d(jAp) 
J{T}xY J{-T}xY J[-T,T}xY 

=  /        5^7 A^+ /        7A^. 
J[-T,T] J[-T,T\ 

Applying this equation to the integral of Equation 6.8 over the region 
[-T,T] x Y, we get 

0=/ \a\2m2+[ (d*AM*Ap) 

J{t\xY 

,69x J[-T,T\xY J[-T,T)xY 
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But, applying Theorem 6.4 and Theorem 4, we get a convergance (of sections 
of W over y, in the C00 topology): 

lim d*AT(3T   =   dA±00P±oo 

==   0. 

Thus, the right hand side of Equation 6.9 is a sum of a priori non-negative 
terms and some terms which go to zero as T »-> oo. Hence, the non-negative 
terms must vanish, proving the theorem. □ 

Remark 6.6. It follows from the above result, along with the compatibil- 
ity condition Equation 6.6, that there are no flow lines connecting critical 
manifolds of opposite sign, i.e. C±(ei) to C:F(£,2). 

Remark 6.7. The Serre duality operator on R0 induces an identification 
between the space of flows from C+(Ei) to C+ (E2) with the space of flows 
from C~(Ei) to C~(E2). Similarly for flows between C

±
(JBI) and the re- 

ducible locus 3- 

7. Extending Holomorphic Data. 

Our goal in this section is to pass from the decaying vortex data over 
the cylinder R0 from Proposition 6.5, to data over the closed ruled surface 
i?. 

In light of the duality between positive and negative vortices (Re- 
mark 6.7), we can assume without loss of generality that all Kahler vor- 
tices over curves are positive, i.e. vortices for which the a-component does 
not vanish identically (hence /? = 0). We return to the reducible case in 
Section 10. 

Let E0 —> R0 be a (Hermitian) orbifold line bundle over the cylinder 
R x Y", and E± be a pair of Hermitian orbifold bundles over S, containing 
vortices (-A±,a±). 

Definition 7.1. A pair 

(A,a)eA{E0)xr(R0,E0) 

is said to connect the vortex (A_, a-) to (A+, a+) if there are isomorphisms 

j±:ir*(E±)\Ro^E° 



Seiberg-Witten Monopoles on Seifert Fibered Spaces 727 

and a real number 6 > 0, so that for all k E Z with k > 0, 

(7.1)      lim  e ±6t 
VcyiwVUA)-**{A±)) {t}xY 

+ r(*) V^tiiW-TT^ai)) 
{t}xy 

0. 

Definition 7.2. A pair (A, a) is called a generalized vortex if it satisfies: 

2A*U-A7r*(FjrIJ)    =   i\a\2 

p0,2 
A 

OAOC   =   0. 

F"/   =   0 

The moduli space of generalized vortices connecting E- to E+ is obtained 
by dividing out the space of generalized vortex pairs which connect vortices 
in E- to vortices in .E+ by the action of the gauge group of Hermitian 
transformations whose derivatives exponentially decay to zero. When 

0 < deg(.E±) < 
deg(tfs) 

results of Section 6, allow us to view this space as the moduli space of flows 
M{C+{El),C

+{E2)) 
Let E be a Hermitian vector bundle over the closed ruled surface i?, with 

E\v_ = E-   and   E\v+ = E+. 

Note that the isomorphism type of E is uniquely determined by E- and E+. 

Definition 7,3. A pair (A, a) € A(E) x r(i2, E) is called a holomorphic 
pair connecting E- to E+ if it satisfies the equations 

Ff   =   0, 

SAOL   =   0. 

The moduli space of effective divisors connecting E- to E+, denoted 
'D(E-,E+), is obtained by dividing out the space of such holomorphic pairs 
by the natural action of the complex gauge group Map(i?, C*). 

Remark 7.4. Strictly speaking, the above definition endows the space of 
divisors with a topology, but not a deformation theory. The moduli space of 
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divisors can be given a deformation theory, locally modeling a neighborhood 
of the divisor [A, a] on the zeros of a map 

iJV^W^L-ico)) - ^(a-HOj.SL-ip,)). 

We will return to this point in Section 9. 

Definition 7.5. Given a subset C C R, a divisor [A, a] G V(E-,E+) is 
said to contain C if it is represented by a pair (i4, a) for which ct\c = 0. 

Theorem 7.6. T/iere is a natural identification between the moduli space 
of generalized vortices connecting EL to E+, with the open subset of divisors 
in V(E-.^E+) which do not contain £_ or £+. 

We break this theorem up into two parts. First (Theorem 7.7), we show 
that a generalized vortex which connects the vortex (A_,a_) to (i4+,a+) 
completes canonically to a holomorphic pair interpolating between these 
two vortices. The methods are essentially in [15] and [3]. In fact;, since the 
structure group in question here is 17(1) rather than SU(2) bundles, the 
arguments are rather simpler; but we include them for completeness. Then, 
in Section 8, we will describe how to invert this operation. 

The rest of this section will focus on the following analogue of Guo's 
theorem [15]: 

Theorem 7.7. Let (A, a) be a generalized vortex in R0 connecting (A_, a_) 
to (i4+, a+). Then (A, a) admits a canonical extension to a holomorphic pair 
in R which connects (A_,a_) to (i4+,a!+). 

First, we concentrate on the easier problem of canonically extending the 
section a. 

Lemma 7.8. Given a generalized vortex (A, a) in the line bundle E0 over 

R0 which connects vortices (A±,a±) in E±, there is a line bundle E over 
R, a continuous section a G T(RJE)j and an isomorphism 

k:E\Ro->E 

with 
k*(a) = 2|^o. 

The isomorphism class of the triple (E, a, k) is uniquely determined by the 
isomorphism class of the generalized vortex (A, a). 
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Proof. Let E be the bundle obtained by gluing 'K*{E±) to E0 using the 
isomorphisms j±. The section is defined to be a away from E± and it is a± 
over E-fc. Continuity of a is an easy consequence of Equation 7.1. 

To verify uniqueness of the construction, let (A1, a1), (A2, a2) be a pair of 
generalized vortices in line bundles El,E2 which connect vortices (A±, a4) 
i = 1,2, and let (J£l,a2,fcl) i = 1,2 be the respective extensions. Suppose 
moreover that E1 = I?2 via an isomorphism £: E1 -+ E2. Then there is a 
continuous isomorphism 

?: E1 -* JS2 

which extends the isomorphism 

and is compatible with the sections, in the sense that 

r(s2) = Si. 

It suffices to prove that the bundle map 

Tr*(El)\Ro-.ir*(El)\Ro 

defined by 
A = j-1 o £ o j1 

extends continuously over E+ C R. Viewing A as a section of the Hermitian 
line bundle with connection IT*((E+)* ® E+) (the connections induced by 
A+ i = 1,2), Equation 7.1 implies that 

^m^llVAll^^O. 

This latter condition ensures that A extends as a continuous section over i?— 
E_. Repeating this construction over E_, we get the required isomorphism 
£. The compatibility of the sections follows from the fact that i*(ai) and 
S2 are continuous sections which agree on the dense subset R0 C R. □ 

We turn our attention to extending the holomorphic structure from from 
E0 to E in such a way as to make a holomorphic. Once again, this holomor- 
phic structure is canonically determined by the original generalized vortex 
(A, a). Suppose that (I?i,Si,fci), (£2? S^,/^) are extensions of generalized 
vortices (Ai, ai), (A2, #2) in bundles Ei,E2, which are identified by a bundle 
isomorphism 

i: Ei -► E2. 
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Then, Si = £*(a2) is holomorphic with respect to both connections Ai and 
r(A2). Thus, 

(A1-t(A2)y'l®a1=0, 

forcing Ai — £*(A2) = 0 on the dense open set where Si ^ 0, so that 
Ai = £*(A2) everywhere. 

For notational simplicity, we will discuss the extension from R0 = Y xsi 
(C - 0) across its zero-section, £_, to Y xsi C = R — £+. (Though the 
discussion applies to both ends of i?0, giving the requisite extension to all 
of R.) 

Let g0 be the metric on on M x Y given by the formula 

9o=r2(dt2 + r]2)+g^ 

where r = e*. Let Vo be the connection on T*R0 characteri2;ed by the 
properties that 

V0dt = -dt ®dt + r)®ri, 

VoV ~ —dt ® rj — r] <g> dt, 

Vo7r*^ = 7r*(Vs0). 

Then, we have the following: 

Lemma 7.9.   Under the natural holomorphic identification 

R0^Yxsi (C-0), 

the metric g0 and the compatible connection Vo extend as an orbifold metric 
and compatible connection overT*(Y X51C), with orbifold singularities only 
at the orbifold points ofYxsiC. 

Proof The connection on TT : Y —> S induces an splitting 

TyY9*T<y)T;®TQC. 

The metric g0 and connection Vo are the metric and connection induced by 
this splitting. □ 

Remark 7.10. There is a considerable amount of leeway in the choices here 
- there are many metrics and compatible connections which extend over S; 
we have made choices which require a minimum of calculation. 
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Given a T G R, let MT denote subset of R0 given by 

NT = {{t,y)\t<T}). 

Lemma 7.11.  Given k € N, T 6 R, i/iere is a constant C such that for any 
a £ Ql(J\fT,C), we have 

Vifc)a 
cy/ 

iifere, ||o and H^/ indicate the pointwise metrics go and g^i induce on the 
spaces of tensors, and 

v^, v<g: n^c) - r (ArT; (A1)®0^) 
are the operators induced by iterating the covariant derivatives. 

Proof It is clear from the formulas for gCyi and go that there exists a constant 

Ci (depending on j) such that for any a G T I N'T] (A1)       ), we have 

(7.2) Ho<Cir-^|a|C2/Z. 

We have that Vo — Vcyi is a zeroth order operator 

r (Afr; (A1
)®

00
) - r (MT; (A

1
)®

0
^). 

When .7 = 1, the operator is given by 

a h-> (a, d^cyi^-dt ® dt + 77 <8> 77) + (a, r])Cyi(-dt ® ry - 77 (8) dt); 

so for any j there is a constant C2 such that for any a G T iNr] (A1)       J, 

\(Vo-Vcyi)a\Cyl<C2\a\Cyl. 

Since TJ and dt are VC2//-constant forms, we see that there is a constant C3 
such that 

ItV^Vo-V^al^^CalV^al- 

Thus, we have 

= |(Vcj + (V„-VC!,I))Wa Vlfe)a 
cy/ cy/ 

i=o 
cy/ 
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The formula now follows from this together with Equation 7.2. □ 

Suppose for simplicity that S has no marked points. The bundle struc- 
ture of TT : Y —► E provides us with an open cover {Ui} of E, a corresponding 
cover {Ui} of Y xsi C, and complex trivializations 

n: UiXC->Ui. 

Consider now the m-fold branched cover 

where U™ is the complex space Ui x C, and (/)m is given by the formula 

<f>m(w,z) = (w,zTn). 

The space Ui x S1 x R admits two canonical metrics, a cylindrical metric 
given by the formula 

gcyl = dt2+ l—<t>mv)   +5E, 

and a disk metric 

^o = r2(cK2+(^v)   )+9^ 

which completes over W™ under the natural holomorphic identification 

Ui x Sl x R ^ Ui x (C - 0) C Wf1. 

Since ^(r) = rm, if a E f21(Z^,C), satisfies a 6 Lj^ with respect to the 
cylindrical metric for some real 6 > 0 and integral fc > 0, then ^a G L| m5. 
Thus, given any fc, a G ^(iZ^C), with 

Lemma 7.11 guarantees that we can find m large enough that for each open 
set UP, 

rm{a)eLilocmur,c)y 
Moreover, when k > 2, ^(a) continuously extends over Ui x {0} C Wf1 by 
vanishing on this subset, thanks the inclusion L| loc C C0. 

Recall the following version of the 9-Poincare lemma: 
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Theorem 7.12. Let X be a complex manifold. If a E ^(^(X^C)) for 
k > dimcX satisfies da0,1 = 0, then there is an open cover {Vj} of X and 
a collection of invertible functions {gj G ^|+i(^j)} with the property that 

(7.3) dgj = -a^gj. 

J/E C X is a complex submanifold with the property that a|s = 0, then we 
can arrange that the gi satisfy 

(7-4) #|E = 1. 

Proof The existence of invertible functions gj satisfying Equation 7.3 is 
standard (see for example [6]). Since a|s = 0, the gj are holomorphic over 
S, so we can find holomorphic functions hj defined over the Vj which hit 
S such that hj = gj1 over S fl Vj. The functions hjQj now satisfy both 
Equations 7.3 and 7.4. □ 

Given the generalized vortex (A, a) from Theorem 7.7, we have that the 
difference one-form a = j* {A) — 7r*(A_) lies in the Sobolev space L^^R0) 
for any k G Z. Combining Lemma 7.11 (and the discussion following it), 
together with Theorem 7.12, we see that there is a natural number m, an 
open cover Ui of a neighborhood of E (obtained by shrinking the original Ui, 
and possibly reindexing), a collection of holomorphic maps 

<t>m--U{rl-*Uu 

which are ra-fold branched covers branching over Ui fl E, and invertible 
functions 

satisfying 

(7.5) % = -a^gt 

and 

(7.6) giluynx = 1. 

The Z/raZ action on the ZYf1 lifts naturally to an action on ^(.E); in- 
deed, as the connections A and A- pull back from Ui C i?, both connections, 
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and their difference a, are invariant under the Z/raZ action. So, replacing 
gi by its average 

-yeZ/mZ 

we get a new collection of smooth functions, still denoted pi? satisfying Equa- 
tions 7.5 and 7.6, but which are now Z/mZ-invariant. By Equation 7.6, we 
see that, after perhaps shrinking the ZY^, we can arrange that these functions 
gi are invertible over Ui. Since the Z/mZ-invariant continuous functions 
on Wf1 correspond to the continuous functions on the quotient Z^, we can 
think of the {(W/*1, <#)} as defining a Cech cochain {(Ui,gi)} defined over a 
neighborhood ofEcyx^iCci? with values in the continuous invertible 
functions. Since the Z/raZ action on U™ is free away from E HZY™, we have 
that the pi are smooth away from Ui fl E. Equation 7.5 translates into the 
equation over Ui — Ui fl E 

(7.7) 8% = -agi 

and Equation 7.6 translates into 

(7.8) &kn£EEl. 

Lemma 7.13. The coboundary of the cochain {(Wf,^)} takes values in the 
sheaf of invertible holomorphic functions, i. e. 

«{(%,&)} ez1^},^). 

Proof. The functions g^j 

9i,j = 9rl9j 

are holomorphic over all of Ui DUj, because they are continuous, and they 
satisfy 

over Ui D Uj fl (R — E), by Equation 7.7. So they are holomorphic over all 
of Ui n Z//j by the regularity of the d operator. □ 

Thus, the cocycle 8{(Ui,gi)} naturally induces a holomorphic line bun- 
dle F over Y xsi C, and the cochain {(££,#)} glues together to induce a 
continuous trivialization g of F. 
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Lemma 7.14.  The topological isomorphism 

j- (8) g: 7r*(£_) <g) F\Ro -+ E0 

induces an isomorphism of holomorphic bundles 

(E,dA) = (^*(^-)®i?^7r*(A_)^F)|i?o. 

Proof. This is an easy consequence of Equation 7.7: 

gjodA-ogJ1 -OA = a0'1 +gj(dgj1) 

= a0'1 - (dgj)^ 

=   0. 

a 

The pull-back of a to 7r*(jE_) <g> F via the isomorphism induced by g is a 
continuous section of 7r*(i?_) ® F which is holomorphic away from XL. The 
regularity of dA-.®F) in fact, ensures that it is a holomorphic section over 
allofyx^iC. 

The above discussion easily generalizes in the presence of orbifold points 
on S. The key point is that the construction of the gi can be made Z/c^Z- 
equivariantly, by averaging over this group. 

This concludes the proof of Theorem 7.7. Our results can be rephrased 
as follows: 

Theorem 7.15. Let Ei, E2 be a pair of orbifold line bundles over E with 

The canonical extension procedure used in Theorem 7.7 induces a continuous 
map 

M(C+(E1),C
+(E2))^V(EUE2). 

Proof. The fact that the map induces a well-defined map on the level of gauge 
equivalence classes follows immediately from the uniqueness statement in 
Theorem 7.7. 

Continuity follows from a corresponding continuity statement in the so- 
lution to the d-problem from Theorem 7.12. □ 
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8. Vortices over Cylinders. 

In Section 7, we showed how a generalized vortex could be canonically 
completed to give a divisor in the ruled surface R. Presently, we turn our 
attention to the converse problem: 

Theorem 8.1. Let E-, E+ be a pair of orbifold bundles over E; with 

0<deg(£±)<MM. 

Suppose that (A, a) is a holomorphic pair connecting E- to E+ such that 
^|s_ ^0 and a|s+ ^ 0, then there is a complex gauge transformation, 
g, defined over R0 which carries the restriction {A,a)\fio to a generalized 
vortex connecting E- to E+. The complex gauge transformation g is unique 
up to unitary gauge tranformations defined on the cylinder. 

The first step in the proof is to show that a holomorphic pair as in the 
thoerem gives rise to a holomorphic pair on the cylinder which connects 
the corresponding vortices. Indeed, we can arrange, after a complex gauge 
transformation, that the restriction of (A, Q;)|S± satisfies the Kahler vortex 
equations over Si, according to Theorem 5. Furthermore, any two such 
complex gauge transformation differ over E± by a unitary gauge transfor- 
mation. The first step is completed by the following lemma. 

Lemma 8.2. Let (A, a) be a pair in E —> R, whose restrictions {A±, a±) to 
E± satisfy the Kahler vortex equations. Then there is a real number 7 > 0 
such that the pair (A, a)|^o connects (yl_,a_) to (A+,a+) with exponent 
one. 

Proof. This follows easily from Taylor's theorem. □ 

Given a holomorphic pair (A, a) over R0 which arises as above, we wish 
to find a real-valued function u (defined over R0) so that ew(A, a) satisfies 
Equation 7.2. Watching how its terms transform under the action of ew, we 
rewrite this equation as a second-order, Kazdan-Warner type equation for 
u: 

^iAcyiu + 2AFA - ATr*(FKE) = ie2u\a\2, 

where 
Acyi = 2iAdd, 
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and A denotes the operation of inner product with the canonical (1,1) form 
for the cylindrical metric on R0. Theorem 8.1 follows immediately from 
the next proposition concerning the existence and uniqueness of such a u 
after making the subsitutions h — \a\2 and k = —2iAFA + iAir*(FKx) ~ 
h. The hypotheses are satisfied thanks to the exponential convergence in 
Lemma 8.2. 

Proposition 8.3. Suppose that Y is oriented so that deg(y) < 0. Let 

h: R0->R 

be a smoothj bounded, non-negative function which converges exponentially 
ast*-* ±oo to a pair of functions 

h±:Y -+R 

with h- ^ 0, and let N be the operator defined by 

N{u) = &cyl(u) + h{eu-l). 

Then, given any smooth function k G C™, with 7 > 0 there is an e > 0 and 
a unique function u G Cf>(R0) satisfying 

(8.1) N(u) = k. 

Remark 8.4. Recall that a smooth function u: R0 —> R is in C™ if for each 

fc, the function (V^/)e6'*' is bounded. 

Remark 8.5. If Y is given the other orientation, Equation 8.1 can be solved 
when /i+ ^E 0. Thus, for the purposes of Theorem 8.1, the orientation is 
irrelevant. 

Remark 8.6. The above proposition should be compared with [23], where 
a similar operator is solved over a closed manifold. 

The operator Acy/ can be understood quite concretely, comparing it with 
the Laplacian for the Kahler metric on M x y, see for example [15] or [20], 
where the following lemma is proved: 

Lemma 8.7.  The operator ACyi can be written 

(8.2) A^-e-^JU^I + AK, 
where Ay is the ordinary Laplacian on the three-manifold Y. 
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Here, ^ is the constant defined in Equation 5.4. 
First, we show uniqueness for the scale u which carries the pair (A, a) 

to a generalized vortex, using a lemma which will be useful in the existence 
argument as well. 

Lemma 8.8. Let u and v be smooth functions vanishing at infinity, with 
the property that 

M(u) < Ar(v) 

pointwise, then 
u < v 

pointwise, as well 

Proof. This follows easily from the maximum principle, together with the 
monotonicity of the exponential map. We wish to show that u < v globally. 
If not, then there must be a point x and a real number 6 > 0 such that 
u(x) — v(x) > 8. Consider the set 

ns = {xeR0\u-v >6}. 

Since u — v vanishes at infinity, each Qs is a bounded set. Moreover, from its 
definition and the choice of 5, we see that the function u — v cannot achieve 
its maximum on the boundary of f^. The assumption that J\f(u) < J\f(v) 
forces ACyi(u — v) < 0 on 0$, hence by the maximum principle for the 
Laplace-type operator Acy/, the function u — v must achieve its maximum 
on the boundary, a contradiction. □ 

Of course, this lemma guarantees that for any function fe, the equation 
J\f(u) = k can have at most one solution which vanishes at infinity. 

The rest of this section is devoted to the proof of the existence; statement 
in Proposition 8.3, using the continuity method. That is, we will show that 
for each s € [0,1], there is a solution us to the equation 

(8.3) jS(us) = sk, 

by showing the set of s for which a solution us exists is closed and open. 
Since the set is non-empty (at 5 = 0, the function UQ = 0 is clearly a 
solution), we conclude that our desired solution at s = 1 exists. 

We find it convenient to work in the Hilbert space L^el a weighted 
Sobolev space. This space is defined as follows. Let 

r:IR->E 
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be a positive, smooth function with 

r(i) = |t|   when   \t\ > 1. 

Now, L|€ is by definition the completion of C^(R0) under the norm 

HL?, 
= JRo (lul2 + lwl2 + lv(2)ul2 + - + I

VWM
I
2
) 

etT^R0- 

Lemma 8,9. For all e > 0, the operator J\f extends to a smooth operator 

with derivative 
DAfu(v) = (Acyl + euh)(v). 

Proof. Let gi be the analytic function on M defined by the property that 

ug1(u) = eu-l. 

We notice first that any function u € L3 € must be continuous, and must 
vanish at infinity, by the continuity of the embedding 

L|)£(fi)cC0(fi), 

valid for any bounded domain Q C R0. In fact, the geometry of the cylinder 
gives us bounds. 

HC„/2<CMIIL, 

where the Cc-norm is the weighted norm defined by 

In particular, gi(u) must be globally bounded: 

(8.4) gi(u) <   sup   01, 
[-M,M] 

where 
M = C|H|L2  . 

3,e 
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Thus, 

\\Keu-mL2   = IM0i(«)||L2   < IHIL2 \\hgi{u)\\co, 

and similarly 

so that 
u *-+ h(eu - 1) 

maps Lle to Lf €. Continuity follows at once from Inequality 8.4, together 
with the above LQ € estimates on h(eu — 1) and its first derivative. 

To verify the formula for the derivative, take one more term in the Taylor 
expansion of en, and use the same kinds of estimates. □ 

Moreover, ellipticity guarantees that any solution lying in this space is 
smooth. 

Lemma 8.10. Suppose k is a C00 function, and u € 1% c satisfies 

N{u) = k, 

then u is also C00. 

Proof. This is a standard bootstrapping argument using the usual elliptic 
estimates on AC2/j. We will see arguments of this nature in the proof of 
Lemma 8.12. 

□ 
The maximum principle from Lemma 8.8, combined with the following 

lemma, ensure bounds of the form 

U- <us < u+, 

for a pair of exponentially decaying functions u- and M+. 

Lemma 8.11. Let k G C^, then there is some eo such that for all 0 < e < eo, 
there are functions u± G Cf3 with the property that for any s G [0,1] 

N{u-) <sk<N{u+). 
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The proof of the above lemma is deferred until the end of the section. 
Fixing an e > 0 and functions u± as in the previous lemma, closedness of 

the set of s € [0,1] satisfying 8.3 now follows from the standard machinery 
of Sobolev spaces, as we see in the following lemma. 

Lemma 8.12. Let ui be a sequence of functions in L3 e with u- < ui < u+, 
and u± G C™, with 

lim N{ui) = k] 
ZH->OO 

then there is a function u G L3 e, with 

Af{u) = k. 

Proof. Bootstrapping and compact inclusions of Sobolev spaces, along with 
the a priori estimates given by u- < Ui < u+, together with the equations 
allow us to extract an L3 ^-convergent subsequence, which by continuity 
must solve J\f(u) = k. Elliptic estimates applied to the equation for u then 
allow us to conclude that u has the appropriate decay properties. We give 
the details. 

The Friedrich lemma states that for any pair ft C fV c R0 of precompact 
open sets and positive integer £ there is a constant C > 0 so that 

uhhti) * c [ MLV) 
+ '^""LLOW 

Moreover, we also have global estimates 

||ti|| r2    < C     \\u\\L2 + HA^tiH^ 

thanks to the E-invariance of AC2//, and the geometry of the cylinder. 
To be able to use compactness, we will first derive local uniform L\ 

bounds on the sequence ut. Fix a pair of pre-compact regions fi C ft' C R0. 
The equation for u^ together with the elliptic estimate gives 

ll^llLi(n') - C (H^HL2 + W^cgiiHWL*) 

= C(|M|L2 + \\Ke*-mL2 + PillL2). 

Combining this with the uniform bound on the ||fei|U2 and the uniform 

pointwise bound on ui by u±, gives us a uniform bound on ||iXi|| T2(0,y 
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The Rellich lemma then provides a subsequence of the ui which converges 
in Llffi). Hence, using the equation again, together with another elliptic 
estimate, 

< C2 (ll«*llL2(nl) + \\V™Ui)he'«\\I?m + ||*i||^(0f) 

which is uniformly bounded, as we have just established. Thus, by the 
Rellich lemma once again, we have a subsequence of the Ui, so that 

ui »-> u £ Ll(n). 

The above method constructs a convergent subsequence over any precom- 
pact region f2 C R0. Exhausting R0 by pre-compact regions, and extracting 
a diagonal subsequence, we find a subsequence ui converging in L3 loc to a 
function u. 

Thus, we have our function u] we must verify that it has i^he desired 
properties. Continuity of Af on L3 loc, gives 

jf(u) = k. 

Continuity of L3 ^> C0, shows that the pointwise bounds u- < ui < u+ hold 
in the limit as well, and u_ < u < tt+. Thus, we get that u G C® C Lge- 
Moreover, the map 

v^ev-l 

clearly extends as a map from 

These facts are enough to start the same bootstrap as above, only this time 
over the entire cylinder, to get u G L\e (and indeed, they are enough to get 
u G L|€ for any t). D 

Openness follows from an application of the inverse function theorem: 

Lemma 8.13. The set of s G [0,1] for which there is a us solving Equa- 
tion 8.3 is open. 
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Proof. Consider the linearization of A/", DN'u, given by 

v >-> Acyiv + (heu)v, 

and viewed as a map 
T2    —► T2 

where now 6 is any weight with 0 < 8 < e. The kernel of the operator is 
zero by the maximum principle. Also, its cokernel is zero for all sufficiently 
small positive weights. To see this, note that the Predholm theory of [24] 
says DNu is Predholm on the doubly-weighted spaces L\^_c (i.e. where 

the weight function looks like e^'*' for ±t > 1) for all weights <5_ and 5+ 
satisfying 

-2 ($ + V^TAI) < 8. < 2 (-£ + V^+A^) 

and 
0<(5+<4^, 

where A_ is the smallest non-zero eigenvalue of the positive operator 

.Ay+./i— 

So, provided that 

(5<min(-^+^2 + A_,2^, 

we can connect the operator acting on L| = L^ to the same acting on 
L| _£ through a family of Fredholm operators. DMU is easily seen to be 
self-adjoint on L| _£, so by the homotopy invariance of the index, DNu on 
L\ 8 has index zero. 

Thus, the inverse function theorem guarantees that around each a € [0,1] 
for which there is some Uo G L3 e solving Equation 8.3, there is a real number 
8 < € and a neighborhood of values s for which we can find us E L3 $ solving 
Equation 8.3. We must show that in fact each such us G L\ € C L3 (5. 

But this follows from the a priori estimate U- < us < it+, which forces 
ifc G Cg C L^. Now, we can proceed as in the end of the proof of Lemma 8.12. 

□ 

The proof of Proposition 8.3 and hence Theorem 8.1 will be complete 
once we prove Lemma 8.11. 
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Proof. Fix a smooth, non-decreasing cut-off function A on K such that X(t) = 
0 for t < 0 and X(t) = 1 for t > 1. and a smooth, non-negative function b 
supported in [0, ^] with total integral 1. 

We begin with two constructions which are used in the definition of U-. 

Construction 8.14. Given M > 0, there is a function ^i G CC0(R) with 

V>i<0, 

-(i'^i)*" 
and 

r    Me-*       *>0 

^i(0 = < 
-y + Mi   t<-l 

The two functions we are attempting to glue together (the linear function 
and the exponential) agree up to first order at t = 0. So, we smooth out the 
two derivatives using the bump function A, and then integrate this smooth 
function to get ifji. Integrating the smoothing process decreases the value, 
which we compensate for by integrating the bump function b. 

In terms of formulas, define 

^ (a, t) = -M f    (\(st + s)e-^ + (1 - X(st + s))) 

For all s > 1, we have that 

where 

M 
Ms,t) = -— + Mt-6(s), 

lira S(s) = 0. 
SI—►OO 

So, for large enough 5, we can arrange that 

cr ^ ( M M   \ bis) < max     —« —, —    . 
^sup((| + 20fe) 'sup(6)y 

If s > 2 is large enough to satisfy the above inequalities for S(s), then 

Mi) = Ms,t) + 6(s)J   b(t + l) 

satisfies all requisite properties. 
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Construction 8.15. Given C, M, e positive reals, there is a function V'a € 
C0O(M) with 

ih(t) < -Ceet, 

and, for t > 0, 
ip2(t) = -C + Mt. 

Given 8, there is a unique value of s such that the integral 

- f    (Cee€*(l - \{st + «)) + MX{st + s)) dt 
J — OO 

satisfies the requirements for ^ • 
Now, we make a few preliminary choices. 
Letting m = supy/i_, we can find a function / E C00(F) with the 

property that on the set where h- < ^, As/ > 5£. This can be done since 
As has a one-dimensional cokernel consisting of constant functions; we just 
have to find a function g which is larger than 5£ on the given subset and 
has total integral 0 over S, and we can solve / = A^/-1^. We can find such 
a function g because we have assumed that h- =£ 0. 

By translating towards — oo, we can assume without loss of generality 
that 

TTl 
(8-5) {h-h-)\{_oofi]xY<j. 

Since k 6 C°, there is some constant K > 0 with the property that 

(8.6) |fc| < Ke-^l'l. 

Our goal is to construct a function u- which satisfies 

AA(tt_) < -Ke-7|t| < k. 

Let C: (0,1) —* (0, oo) be any function satisfying 

(8.7) lim C(e)e = 0 

and 

(8.8) lim fQ = -oo 
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(for example, C(e) = -]^1). 
Letting 

21og(#)     1 
(8.9) T(e) = ^^- + i 

fix e > 0 small enough that it satisfies each of the following inequalities: 

(8.10) r(e) > 2 + j 

(8.11) 

log (|) > e 

(8.12) C(e) > log (V8) 

(8.13) ^ > e, 

(8.14) |>e, 

(8.15) 
1 

>e, 
3supy |/| 

(8.16) ^ > e, 

(8.17) £^>K+   sup   leA^A/e^l+suplA^Ae6*], 
t-1 le) [1,2] xy [o,i] 

(8.18) j > (|c(e) + l) (e2 + fe) + C(e)e |sup A^/l 

(Conditions 8.18 and 8.17 are satisfied for any e sufficiently small, thanks 
to Equations 8.7 and 8.8 respectively.) Let C = C(e),T = T(e) for the 
chosen value of e, let Vi be the function provided by Construction 8.14, 
with M = C/2T, and let ^2 be the function provided by Construction 8.15. 
We will now verify that the function 

«_(^) = -A(()e--Ce/(x),^)A(T-t) + { ^"^   ^° 

satisfies 

We divide the problem into four cases, corresponding to four regions which 
cover R0. 
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1. On the set where h > y and t < —T, we have that 

M(u-) < Acyi (-(C + 1 + eCf)e<t+T^ + CeA^fe^^ 

-{{tc+0(e2+&+ce| sup Acyifi)e£(t+T) 
,    m   /   _20   e(t+T) \ 

(The first step follows from the assumption that h > y, together with 
the properties of Construction 8.15; the second step involves Inequal- 
ity 8.15 and Inequality 8.18.) The above quantity is in turn bounded 
by — ^ec(t+T\ since the function 

X (   _2C \ 
x H^ - + f e   3 x - IJ 

is negative on x € [0,1], thanks to Inequality 8.12. In turn, combining 
the above inequalities with Inequalities 8.16, 8.14, and 8.6, we have 
that 

^(tt_) < -^e^+r) < -^ < -Me* 
8 8 2 

The desired inequality over this region then follows from the above, 
together with the observation that for |t| < T — i, 

(8.19) -^e-el*l<-tte-^l. 

This is true because for t in this range, Inequality 8.14 and 8.9 give 

eMiti > ci* > ew-\) = ii. 
2K 

2. When £ < — T and ft < ^J 
we have that A^// > 5£, due to our choice 

of /and Inequality 8.5. Combining Inequalities 8.15 and 8.13, we have 

(62 + 2£6)(l + e/)<4£e. 

Combining this with Inequality 8.14, we get that over this region, 

JV(u_)    <   C((e
2 + 260(1 + €/)-eAcy//)e£(<+T) 

<   -£eerf. 
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(The last step follows from the fact that T > 0 and C > 1, which 
are of course weaker than Inequalities 8.10 and 8.12.) Once again, the 
desired inequality then follows from Inequality 8.19. 

3. Over the region [—T, T— i] x Y, U- is a pointwise non-positive function. 

This is clear over [—T + 1, T — i], since each term in the definition for 
u- is non-positive. For t G [—T, — T + l],we use InequaHty 8.15 to get 

\Ce\fe^\ < °f < |. 

On the other hand, ^2 in the region [—T, 0] is a linear function with 
slope M and value — C at — T, so in this region, 

fc(*) < -f; 
i.e. over all of [-T,T - |] x y, 

«- <o, 

and therefore 

Now, the function which is Vi (t - T) for t > 0 and ^(t + T) for t < 0 
is a linear function with slope M, so 

Ar(w_) < Aq,i(u_) < -M + sup (A^ (eA/ete)) + suptA^/A) 

< —K, 

which is exactly Inequality 8.17. 

4. For alH > T - |, we have that «_ = -e_et - Me-e(*-r)j so ^^ 

Ar(u_)    <    (e2-2^)e-£t 

< -Zee-et 

< -Ke"** 

(The first step follows from the fact that u- is non-positive, the second 
follows from Inequality 8.13. and the third by Inequality 8.19.) 
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Verification that u+ = — u- is an upper solution, i.e. 

mirrors the above. The only conceptual difference occurs in Region 1, where 
we must verify an inequality of the form 

-H«*--0 *• 
for x G [0,1].  This is satisfied provided that C > | (the condition which 
takes the place of Inequality 8.12). □ 

9. Deformation Theory on the Cylinder. 

Section 7 and Section 8 together set up an identification, on the level of 
topological spaces, between the moduli space of flows on R0 and holomorphic 
curves in R. Now, we would like to compare the corresponding deformation 
theories. But before we can consider this problem, we embark on a digres- 
sion about exponentially decaying cohomology for complex manifolds with 
cylindrical ends. 

9.1. Dolbeault Cohomology of Cylinders. 

Let E be a Hermitian line bundle over J?, and let A be a compatible 
connection on E whose associated <9-operator is integrable. Denote the sheaf 
of (?A-holomorphic sections of E by 6. Given a real number 5, consider the 
presheaf over R0 of (p, g)-forms with values in E = ^|j^o, whose coefficients 
lie in 

oo 

k=l 

This can be pushed forward to R and sheafified to form a sheaf over R 
denoted by Ap

6'
q(E). Explicitly, a section of Ap

s'
q(U, E) for U C R is a form 

w G Vtp'q{U — UH £*, E) such that there is a covering {Ui} of U for which 
ujlUi-Uini:* has coefficients in L^. 

Remark 9.1. Of course, the sheaf Ap,q is a subsheaf of the sheaf of C|?2 

forms, but the containment is proper: the function e 2  is in C£y2, but it is 

not a section of A6' . 
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Let 
(E±,A±)=(E,A)\v±. 

We can define another subsheaf of the sheaf of continuous p, q forms Af^, (E) 
generated by sections of A^q(E)J (smooth sections of) 7r*(fip'9(E+))5 and 
7r*(fiP'*(E_)). A section of A^(E) is a form u G n™(U - U n E*,£?) 
such that there is a covering {Ui} oiU such that for each i, C/i hits only one 
of the curves E_, E+, and, if C/i fl E^ = 0, then 

a; = a;<5 + 7r*(a;±), 

where a;^ e A^^), and u± G ^^(C/nE±, JE?±) is a (smooth orbifold) form. 
Recall ([14]) that a sheaf JF over a topological space X is called fine 

if it admits partitions of unity.  In this case, the sheaf cohomology groups 
ir(X; JT) = 0 for all i > 0. Moreover, if 

0 —> £ —^ ^ -^ .F1 -^ ... 

is a resolution of a sheaf ^ by fine sheaves, then there is a natural isomor- 
phism between the sheaf cohomology of £ with the cohomology of the chain 
complex of sections of J71, 

ir(X;£) ^ irtixx,^*),^*). 

Proposition 9.2. Let £ Ql^ denote the kernel of the restriction map 

£->£|E.. 

For any 6 with 0 < 6 < 2, the complex (AS'P(E), OA) forms a fine resolution 
of the sheaf £ ® 1^ -  Thus, 

Hi^\R0^E)^A) = Hi{R,£®X^). 

Remark 9.3. Caution: £ ® Xs* is not the tensor product of coherent 
sheaves over R] rather, it is a tensor product of orbifold sheaves. More 
precisely, if 

(j):U-^R 

is an orbifold coordinate chart with an action of Z/pZ such that the orbifold 
sections of £ correspond to the Z/pZ-invariant sections of £, then sections 
of £ (g) JE* correspond to the Z/pZ-invariant sections of 

where I^-i^) ^s the ideal sheaf in Og of the pre-image of E*. 
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Corollary 9,4. For sufficiently 0 < 6 < 2, the complex (A^ ,9A) forms a 
fine resolution of the sheaf £, so that 

Hi(A0
s^,dA)^Hi(R,S). 

Proof The pair (Aj^ (E), <9A) is a clearly a complex of fine sheaves. More- 
over, it naturally fits into a short exact sequence of sheaves 

0 ■ > A%*(E)  > A0
S^(E)  > A0'*(£*,£|£*)  > 0. 

Since both A6
i*(E) and A0>*(11*^1^) are acyclic complexes of sheaves 

(Proposition 9.2), so is A0
6^m(E). 

It remains therefore to identify the kernel K of 

^41(£)-4i(£)- 
Restricting holomorphic sections of £ from i? to R0 C R induces a sheaf 
map 

since £ is generated by the subsheaves of holomorphic functions which vanish 
along E*, £ <8) T^, and the sheaf of holomorphic functions which are pull- 
backs of holomorphic functions defined over E*. It follows then that K = £, 
from the short exact sequence above and the proposition. □ 

The proof of Proposition 9.2 is tantamount to showing a version of the d- 
Poincare lemma, which we build to in the following sequence of lemmas. But 
first, some notation. Let Dr denote the disk of radius r in the complex plane, 
and CT = [T, oo) x S1 be the cylinder with its natural complex structure. 

Given T € R, let 7is(Dr x CT) denote the space of holomorphic functions 
which lie in L^ 6 (i.e. functions in L^ g(Dr x CT) which can be holomorphi- 
cally extended to Drf x Cjv for some rf > r, Tr < T). By elliptic regularity, 
a holomorphic function lies in this space if and only if it lies in LQ 6. Let 

e~ c: Dr x CT —>-Dr x D{ 

given by 
(w, z) i-» (w,e~~z). 

Lemma 9.5. The space Hs(Dr x CT) is identified via precomposition with 
c with the space of holomorphic functions on Dr x De-T which vanish to 
order greater than 8/2 along the subspace Dr x {0}. 
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Proof. Suppose / € Hs(Dr x Cr). Then, by the Rellich lemma, 

lim   |/|e^2 = 0, 

so the function / we get by extending c*f by zero over Dr x {0} is continuous 
over Dr x De-T and holomorphic away from Dr x {0}. By the removable 
singularities theorem of complex analysis, it follows then that / is holomor- 
phic over all of Dr x De-T. In fact, the same argument says that if n < |, 

then f(z)/zn extends over all of Dr x De-T as a function which vanishes at 
along Dr x {0}. 

Conversely, by Taylor's theorem, if / is a holomorphic function defined 
over Dr x De-T which vanishes to order greater than 6/2 along Dr x {0}, we 
can write / = zng for n > 8/2 and g a holomorphic function over Dr x Gr- 
it follows then that 

||/|IL2 < 7rr2N|Loo (jrV****) < oo. 

Definition 9.6. Given a smooth function 

g: Dr x Cr^C, 

let 
Qzg: DrxCT-^C 

denote the function given by 

Q 
1    f   f(w, 7])dr} A d/rj 

CT       i - e2"" 

whenever the above integral makes sense. 

Lemma 9.7. J/1 ^ Z, i/ien Qz induces a bounded map 

Qz: 2&itf(A. x Cr) - L^(£>r x Or) 

with the property that 

-7jzQzf(w,z) = f(w,z). 
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Proof. For /: CT -» C, define 

/(r/)d7/ A d7/ 

Write the Fourier expansion for a function / as 

Using Cauchy's integral formula, we have for any a G C with |a| ^ 1 that 

-,     r p-mvM       I      a*   ^ |a| < 1 and n > 0 

^/T^H   "^   ifN>landn<0  , 
0   otherwise 

so that, writing rj = s + icp 

Qfn{t) = J_   fe-inOde (1_   f     fWV**!) 

e-ined6 

cT \^.i   et+H-v-l 

27riycT I -c l       ^XCr.t)^)   ifn<0 

{" f^fn{s)en{t-s)ds   ifn>0 

/   fn(s)en^-sUs   ifn<0 

Using the obvious isometry for each A; € Z 

given by 

we see that Q corresponds to the parametrix for ^Jf^1 acting on the 
cylinder CT with APS boundary conditions constructed in Proposition 2.5 
of [1]. It follows from this proposition, then, that Q induces a bounded map 
Q: Lls(CT) - Ll+ltS(CT) whenever f £ Z. 

Since 

J»Dr(w)Jnc>r(z)\Qzf(w,z)\2ets < C J^Dr(w) J^zMw^^e*6, 
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we have by Fubini's theorem that Qz maps LQ 6{Dr x CT) to Lls{Dr x C^). 
Similarly, since Qz commutes with differentiation, we have that Q extends 
to a map from Z| g to itself for each fc, and hence a map from L^ s to itself. 
□ 

We now prove Proposition 9.2 

Proof. Clearly, As'p is a fine sheaf. We must show that given U C i?, 

u G ty^(E7, E\u) with OAW = 0, and x eU, there is an open neighborhood 

V C C/ of x and a form ryy G ft^J1^; -S|y) such that 

When x 0 E*, this follows from the 9-Poincare lemma. When x G E*, 
we imitate the usual proof of the this lemma. 

Suppose that x G E*, but x is not a singular point. Then, there is a 
neighborhood of x G i? of the form Dr x De-T with respect to which x cor- 
responds to the origin, E* corresponds to Dr x {0}, holomorphic isections of 
E correspond to holomorphic functions (under a holomorphic trivialization 
of € IvrxCr)^ and ^|i)rxDe_T_0 corresponds to a form in L^(J9r x CT] A

0
'
P
) 

satisfying <9u; = 0. We would like to find a form rj G L^ g(Dr x Cr) with 

dr) = a;. 
When p — 2, write a; = /dtU A dJ, and let r) = —Qzfdw. The fact 

that 77 lies in the requisite Sobolev spaces and satisfies dr] = cu follows from 
Lemma 9.7. 

When p = 1, write a; = gdw + /i<£z. We reduce to the case where h — 0 
by subtracting dQzh. 

When p = 1, and u; is of the form 

u = gdw, 

let 

Qw9{w,z) = ±:  f   ^^-d^Adl 
Zni JDr t-w 

By Cauchy's integral formula, Qwg is a smooth function with ^Qwg = 
g. The condition that duj = 0 is equivalent to the condition that 5 is 
holomorphic in the z variable, a property which is clearly preserved by the 
operator Qw\ thus, dQwg = u. 

To verify the integrability condition on Qwg, recall Young's convolution 
inequality 

||/*5||L2<||/||LiN|L2, 
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which gives us that 

/    \Qw9(^^)\2dw A dw < 2r2 /    |^(iy, z)\2dw A dw. 
JDr JDr 

Thus, by Fubini's theorem, Qwg G LQ6. Using elliptic regularity for d gives 

us then that rj G L^ ^(-Dr' x CT), for any r7 < r. 
Thus, we have verified the exactness of the sequence of sheaves 

(9.1) A0
s
fi(E) -^ A0/{E) ^ A0/(E) —^ 0 

over the smooth locus of R. 
When # is a singular point, we can identify a neighborhood U of x with 

the quotient of Dr x De-T by the Z/pZ action 

For each j = 0, ...,p — 1, we can identify 

with the space of Z/pZ-equivariant sections of 

Llo,S(
Dr >< Or), 

i.e. those functions which satisfy 

C3f(w,z) = f(CWiZ-qlogC)- 

This is true because the Z/pZ acts by isometries which do not change the 
t coordinate. Letting C* denote pull-back (of forms) under the map which 
defines the Z/pZ action, and letting w, z denote the Dr and CT coordinates 
on Dr x CT respectively, note that 

Cdw = C"1^ 

and 
£*dz = dz. 

Exactness of the Diagram 9.1 then follows once we have demonstrated that 
the parametrices Qw and Qz constructed earlier commute with the Z/pZ 
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action: 

= — / 2-KK JD, 

eQz(fdz)(w,z) = ±-iJ 

m,z-q\og(0)dZAdS 
w — € 

f(tw,r]-qlog(0)dr]Adn 

CT 1 " e2"" 

= (Qt?f)C{dz) 

The fact that Sequence 9.1 is a resolution of the sheaf £ ® 1^ when 
0 < | < 1 is an immediate consequence of Lemma 9.5. □ 

Remark 9.8. More generally, for | 0 Z, the above sequence provides a 

resolution of £ ® J^ , the subsheaf of 5 generated by sections which vanish 

to order f |] along Js* • 

Remark 9.9. Of course, the arguments given above generalize in an ob- 
vious way to any dimension, replacing the curve £* by a (complex) 
codimension-one sub-orbifold. 

Example 9.10. If X is a compact, complex curve, and P C X is a finite 
collection of points, then we can give X - P a complete metric with finitely 
many cylindrical ends. The above shows that the Z^-index of the d operator 
acting on Ox-P is the holomorphic Euler characteristic x(X, Jp), which is 
easily computed via the short exact sequence 

0 —► XP —► Ox —> ®veP^p —► 0 

to be 1 — g - |P|. This agrees with the computation appearing in [1] of the 
extended L2-index of the d operator. 

In Section 10, we need a version of Proposition 9.2 in the raise where 
(EJ^A) does not quite extend over R. Assume rather that we are given 
(25, A), a Hermitian line bundle with connection over R0, which naturally 
extends over 2? — E+, together with an isomorphism 

3-'K*{E+)\K>-*E\K> 
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such that 
j*(A) = A+ + i6or), 

where 60 G (0,1), E+ is an orbifold bundle over S, and A+ is a connection 
which extends over R — S_. Then, we can form the line bundle £0 over R 
given by patching A to A+ using the complex gauge transformation t i-> 
e"^ot; i.e. the c^-holomorphic section $ of 7r*(£,

+) is identified with the 
d^-holomorphie section e~t6oj*($) of E\[Ti00y 

Corollary 9.11. For any real 6 e (0,5o), ^e complex (A°
,P

(£7),9A) /orms 
a /me resolution of the sheaf SQ ® ^S- • 

Proof. We must prove the following analogue of Lemma 9.5: Consider the 
complex structure <9A on the trivial bundle LV x CT induced by the connec- 
tion d — iSodO. Then, for any real 6 G (0,60), the map which takes a function 
(f) over Dr x De-T to the function on Dr x CT defined by 

(w,z)^e-t6o(l)(w,e-z) 

induces an identification between the space of holomorphic functions on 
Dr x De-T and the space of ^A-holomorphic function on Dr x CT which lie 
in L^. This implies that the complex (A^*^),^), which was shown to be 
a resolution, resolves £0 ® ^E. • d 

9.2. Comparison of Deformation Theories. 

With this background in place, we turn to the identification of the de- 
formation theories. 

Definition 9.12. Let UUU2 C C00(y) be a pair of subsets, 6 € M, k G 
ZUoo, k > 2. The space of C/i, U2-extended L| ^ functions, denoted L| su1U2^ 
is the space of functions which can be written as 

/0 + /1 + /2, 

where jfo G 1/^, /i(t,y) = A(%i(i/), /2(t,y) = K-t)92{y), for ^ G C/i, and 
A a cut-off function with A = 0 for t < 0, A = 1 for t > 1. 

Example 9.13. The global sections of Af^ (E) are the L^ 6 sections of the 
bundle A™ extended by the smooth form's in ir*(QP>(*(E-))]n*(SP>«(E+)). 
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Let Ci and C2 be a pair of non-degenerate, irreducible critical manifolds 
(Definition 5.21) for cs and let [A, $] € M(Ci,C2) correspond to a gradient 
flow line between them; i.e. 

t2gJA,*]\{t}xY = [B±,9±] 

with [i?_, ^-j G Ci, [-B+, $+] G C2 (we return to the case of flows to the triv- 
ial connection in Subsection 10.1). A neighborhood of [A, 3>] in M{Ci,C2) 
can be described as follows. Choose spaces Ui,U2 of (5+,^+) (£_,*_) 
in C(y) which project to open neighborhoods of [S+,^+], [i?-,1^-] in 
Ci,C2 C S(y) respectively, and consider the configuration space B of 
L\6U U2 perturbations of (-4,$), modulo the action of the gauge group 
L|+1 ^-gauge transformations which are 1 at infinity. The Seiberg-Witten 
equations, viewed as a section of a bundle over i3, cut out a neighborhood 
of [A, $] G A1(Ci, C2). The tangent space of B is the quotient of the space of 
T(B-si)-)Uu T(B-,ip-)C/2-extended Lls sections of A1(ilR) x W by the image 
of £fc+i s under the derivative of the gauge group action. The linearization 

D[At*]w> T[A^]S -> fi+(j?V]R) er(i?0, w), 

given by 
(a, 0) >-> (d+ + 5^, $), DA^ + a • #), 

where the range is given the L^_1 ^ topology, is Predholm for all suffi- 
ciently small S > 0 (and even when 6 = 0, if the two critical manifolds 
are non-degenerate, isolated points). Here, a denotes the bilinear form cor- 
responding to the quadratic function a appearing in the four-dimensional 
Seiberg-Witten Equaitons (Equation 4.7). Thus, the deformation complex, 
(C*w,d*sw),£orM(CuC2)is 

(9.2) 
n0(Ro, iR) —^ Cl^R0, iR) © FsiR0, W+) —> 0+(i?0, iR) © r6(R

0, W"), 

This complex is graded so that the middle term in the above sequence has 
degree zero. The terms in degree i ^ 0 are required to lie in the Sobolev space 
L'sk-v while the term in degree zero lies in L^k extended by T^^Ui © 

The Morse theory of [27] adapted to the Seiberg-Witten context reads 
as follows: 

Theorem 9.14. LetCi,C2 be a pair of non-degenerate critical manifolds for 
cs. Given any (-4,$) G A/f(Ci,C2), with 

lim [i4,%}xy = 7r*[J5±,*±], 
ti—►it 00 
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there is a Kuranishi map 

I/J; H (C*w,d*sw) -» H (C^d^) 

describing a neighborhood of [A, <£] in M.(Ci,C2). 

Definition 9.15. Let Ci,C2 be a pair of non-degenerate critical manifolds 
for cs. The formal dimension of the space of flows from Ci to C2, written 
e-dim(.M(Ci,C2)) is the quantity defined by the formula: 

e-dim(A/t(Ci,C2)) := x(H*(C*sw,d*J). 

When Ci i = 1,2 are both non-degenerate, isolated points, the above 
quantity is the relative degree appearing in the Floer complex (see Sec- 
tion 13). 

We have given an identification between the space of flows 

M(C+(E1),C
+(E2)) 

and an open subset of the space of divisors V(Ei^E2) interpolating between 
Ei and i?2- In this section, we compare Kuranishi descriptions of these 
spaces. 

Theorem 9.16. Suppose that Ei i = 1,2 correspond to irreducible criti- 
cal manifolds C+(Ei). Then, like the moduli space of divisors, the mod- 
uli space A/l(C"f'(jEi),C"f(£,2)) is locally modeled about any point (A, $) G 
M(C+(Ei),C+(E2)) on the zeros of a map 

H\D,S\D)^Hl{D,£\D), 

where £ is the holomorphic structure induced by (A, $) on the line bundle 
interpolating Ei and E2, and D = a~1(0) is the zero locus of the associated 
section. In particular, 

(9.3) e-6imM{C^{E1),C
+{E2)) = e-dim2?(£i, £2). 

Remark 9.17. Given a section a over an orbifold line bundle £, the sheaf 
£/aOR is supported along D = a_1(0). Indeed, the pair (D,£/aOR) is 
naturally a (possibly singular) orbifold curve equipped with an orbifold line 
bundle, which we write as (D,£\D). 
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Using the identifications of Isomorphism 6.1, together with the identifi- 
cations ([6]) 

fli(iR) -J-^ ft+(tR) 

o0'1    Q^(iImA^aa). n0eoQ>2? 

we get a natural map of complexes from the Seiberg-Witten deformation 
complex (Diagram 9.2) to the complex (C*,d*) defined by: 

(9.4) ft0'0 —-► ft0'1 0 (Q0'0 © ft0'2)(£) —> ft0'2 © n0'1^), 

where once again, the terms in degree i ^ 0 lie in I/^_i ^, while the term in 
degree 0 lies in Ll_i6 is extended by T^^Ui © T^^Ui. 

To identify the cohomology groups of (C*, d*) and (C*^, dj^), we appeal 
to the following standard fact from homological algebra. 

Lemma 9,18. Let (C*, rf*) 6e a cochain complex, i eZ, and A, B be Abelian 
groups together with maps 

fiA-^C1    and   g-.C^B 

with the properties that 

diof = go d1'1 = 0 

and 
fog:A-+B 

is an isomorphism. Then the natural map of chain complexes 

... >    c*-1     -^ & -i^- BeC7*+1 —-.... 

I 
> A®^'1 ^-^ & -Z-*     Ci+l 

induces an isomorphism in cohomology. 

Lemma 9.19, The natural map from the Seiberg-Witten deformation com- 
plex (C*w,dlw) to the complex (C*,d*) induces an isomorphism in cohomol- 
ogy- 
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Proof. We appeal to Lemma 9.18, with A = ReL^^Q^ and B = 
L^_1(5fi0a; C Jl^(jR0,i]R). We must verify that the map induced from A 
to B by Adlw o d® is an isomorphism. But 

Mlw4f = Adlw(2dfJ®$) 
= 2(iImAdd+\$\2)f, 

which is (half) the differential of the operator flf encountered in Section 8. 
This was shown to be an isomorphism in Lemma 8.13. □ 

Lemma 9.20. The natural map from the complex appearing in Diagram 9.4 
to the complex (C^d^) given by 

(9.5) 
^0,0 , n0.1 © fi0'0(£?) > fa0'2©^0'1^) ► n^iE), 

with the conventions for Sobolev completion the same as for the complex 
(CgW,d*w), induces an isomorphism in cohomology. 

Proof of Theorem 9.16. Once again, we appeal to Lemma 9.18, this time 
with A = Lln0

s'
2(E) and B = Ll_2n

0
s'
2(E). Note that 

4 o dl\A = 4 o (dlT: Llsn
0>\E) - Llsn

0'2(E), 

where 
(dly-.q^w^ck 

denotes the formal (L2) adjoint of the differential operator defining d^,. 
To see injectivity of d^ o (d^)*, use integration by parts to identify its 

kernel with 
Ker(d£)* = Ker£)[A^]Sw|5_; 

but we have shown in Section 6 that the ^"-component of any element in 
the kernel of -D[A,^]

SW
 vanishes, when $ is a non-vanishing section of 5+. 

To see surjectivity, note that as a map from L2
0 to L^_2o> ^c 0 (^c)* ^s 

Predholm, as it asymptotically approaches 

\dfi + (D(B±>*±)SW3) 

2 

(where (B±, ^-t) are the limiting values at ±00 of the pair (A, <&)) and the 
operator ^(B±J^±)SW3 has no kernel in 5~, since i&± are nonvanishing sec- 
tions of S+. Moreover, when 6 = 0, d^ o (d^)* is formally self-adjoint, hence 
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it has index zero. Thus, for small S > 0, the operator remains Predholm of 
index zero. □ 

Proof. A subcomplex of a complex is said to carry the cohomology if the 
inclusion map induces an isomorphism in cohomology. Consider the sub- 
complex (C|, d|) = (CJ, d£) nL|, the subcomplex consisting of un-extended 
Sobolev sections. For small 6, this is a Fredholm complex, so its cohomology 
is carried by harmonic representatives. In particular, elliptic regularity tells 
us that the cohomology is carried by the subcomplex of sections which lie 
in L^ £. Moreover, we have a short exact sequence of complexes 

0  > (Cld*s)  ► (C£,d£)  > 

 ► T(B-.,ij-)Ui®T{B+^+)U2  > 0, 

where the tangent space above is to be thought of as a complex concen- 
trated in degree zero. Thus, by an easy application of the five-lemma, the 
cohomology of the complex (CJ,d^) is carried by 1/^'$ forms (appropri- 
ately extended in degree zero). We have seen (Subsection 5.6 together with 
Subsection 5.7) that the tangent space to the critical manifolds carries the 
cohomology of the deformation complex for divisors in E*, (C^d^.): 

ft0>0(£*) > ^^(s^eo0'1^*,^*) > n0'1^*,^*). 
This tells us that the extended L^o6 subcomplex of (C*^,^*^), thought of 
as a subcomplex of 

O0,o  y n0'1©^0'0^)  > SIMQOP'HE)  > n0'2(E), 

consisting of all n0'*(£*)-extended L^Qg forms, carries the cohomology of 
this complex. 

But this latter complex is the mapping cone for the map 

$. QP>*->Qp>*(E) 

induced by 

viewed as a map between complexes of £70'*(I]*)-extended L^ 6 forms. Thus, 
by the isomorphisms in Lemmas 9.19 and 9.20, together with Corollary 9.4, 
we have that 

H*(C*sw,d*sw) Si IHC&dJ) « H* (j^jP) = H*{SlaOR)n 
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10. Flows to the Reducible Locus. 

In this section, we will investigate the analogue of Theorem 7.6 for flows 
to the reducible locus. 

Throughout this section we make the following assumptions. Let Y = 
S{N) be the unit sphere bundle over an orbifold bundle over E with 

deg(A0 < 0. 

Fix a line bundle E over Y which is the pull-back of an orbifold line bundle 
over E, i.e. ci(E) is a torsion class. Moreover, assume that the reducible 
locus Z{E) in the corresponding Spinc(3) structure is non-degenerate. (See 
Proposition 5.16 and Corollary 5.17.) 

Definition 10.1. Let [yj be the orbifold line bundle over E of maximal 
degree among all orbifold line bundles whose degree is less than ^ deg{K^) 
and whose pull-back is isomorphic to E. 

Moreover, let 

<5o = 
deg(Lf])-^deg(irs) 

deg(iV) 

Remark 10.2. Given E = 7r*(i?o) for some orbifold line bundle EQ over E, 
there is a unique line bundle [yj which satisfies the above properties. This 
is clear, since the set of all orbifold line bundles over E whose pull-back is 
isomorphic to E is the set of all bundles of the form Eo®Nk, for k G Z; and 

deg(£o ® Nk) = deg(E0) + kdeg{N). 

Note that the definition of [yj depends on the choice of E. 

Fix an orbifold line bundle EQ with 7r*(Eo)   =   E,  and deg(Eo)   < 
^deg(K^). In fact, fix isomorphisms 

j-.:n*(Eo)^E 

and 
i+:^(LfJ)-^ 

Throughout this section, E will denote the bundle over R obtained by gluing 
7r*(2?o) to /7r*(L;f-J) (viewed as bundles over R— E+ and R — E_ respectively) 
using the transition function e^j^1 oj_ over the overlap R0 C R. Note that 
by construction the restrictions E\^_ and E\^+ are canonically identified 
with the bundles EQ and [^J respectively. 
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Definition 10.3. Consider the space of generalized vortex pairs (A, a) 
which connect vortices in EQ with reducibles in 7r*(L:jJ) via the given iso- 
morphisms j±. The moduli space of generalized vortices which connect EQ 

to 3(E), denoted M(Eo,3(E)), is the quotient of this space of pairs by the 
gauge automorphisms whose derivatives exponentially decay to zero. Di- 
viding the space of generalized vortex pairs by the smaller goup of gauge 
transformations which exponentially decay to 1, we obtain a larger space, 
the based moduli space, which is denoted M0

(EQ,3(E)). This space is a 
circle bundle over the (unbased) moduli space. 

There is a corresponding notion for the moduli space of divisors. 

Definition 10.4. Pick a reference point x £ R. The based moduli space of 

divisors connecting EQ to [yj, denoted V0(Eo) LTJ)> *
S
 ^e Quotient of the 

space of holomorphic pairs in E by the subgroup of the complex gauge group 
which fixes the fiber E\x. The C* action on this fiber induces a C* action 
on V0(Eo, LirJ)' whose quotient is V(EQ, LYJ)- Over the points represented 
by sections which do not vanish identically, the C* action on V0(Eo, |_irJ) 
is free. 

Remark 10.5. The space V0(Eo1 [^J) inherits a deformation theory from 
2?(Eb, [f J) (see Remark 7.4). 

A gradient flow line in the based moduli space from the critical manifold 
corresponding to EQ, C

+
(EO), to the reducible locus 3(E) induces, as in 

Section 7, a holomorphic pair over £,|^_s+. Indeed, the following; analogue 
of Theorem 7.6 tells us that this data naturally extends over all of E over 
R: 

Theorem 10.6. If C+
(EQ) is a critical manifold in the Spinc(3) structure 

determined by E, whose reducible critical manifold 3(E) is non-degenerate, 
then there is a natural identification between the based moduli space of 
flows connecting C"l"(£,o) to 3(E) with the open subset of based divisors in 
V

0
(EQ, LTJ) which do not contain E_. 

Remark 10.7. In particular, it is an easy consequence of this theorem that 
this space of flows is non-empty. Given a divisor Do C £ corresponding to 
a critical point in C+(Eo), the divisor 

7r*(A>) + (deg(A)) - deg ([f J)) [£+] 

corresponds to a divisor in T>(EQ, [yj)- 
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Remark 10.8. The space of flows from 3(E) to C
+
(EQ) is empty, while all 

flows from 3(E) to 3(E) are stationary. This statement follows easily from 
Proposition 5.23. 

The proof of this theorem follows the same lines as Theorem 7.6 and has 
two parts corresponding to the discussions in Sections 7 and 8 respectively. 

To exhibit a map from the M0 to V0 we will use an alternative descrip- 
tion of V0. Fix a vortex (J4_, a-) in EQ and a constant curvature connection 
BQ in LyJ- Consider the space <S of holomorphic pairs (A, a) in E so that: 

(A, a) = (A_,a_) 

• A|E+ = BQ. 

The quotient, Q, of this space by the action of the group of complex 
gauge transformations which are the identity over S± is naturally identi- 
fied with the based moduli space of divisors with [A,3]|i;_ = [A_,a_] and 

[A]|s+ = [-BQ] (as complex gauge equivalence classes). We will now obtain an 
element of Q from a based flow line connecting the critical point in C+(Eo) 
corresponding to [A_,a_] to the reducible corresponding to 7r*(jE?o). 

Lemma 10.9.  The real number 6o > 0 defined above is the smallest eigen- 
value of the operator iW%_  acting on r(Y,S'+).    Let 6i  be the smallest 

non-negative eigenvalue of TL>B belonging to any eigenvector in r(Y, 3+) C 
r(Y,W), then So < 6!. 

Proof. Given 6 G R, the <5-eigenspace of iV_a_ for the is the kernel of iV a    
r7. 

Thus, pushing B + i8r) forward (according to Proposition 5.3), we identify 
the 5-eigenspace of iV^_ with sections of a bundle over E whose curvature 

dip 

form is 
FB + 6FN. 

This proves the first claim. The second follows from the fact that iV%_ 
dip 

is the S^-component of the Dirac operator, acting on S'+. D 

Proposition 10.10. Let (A,a) be a flow on R x Y which converges expo- 
nentially to a reducible solution [5,0] as t H-> +OO; then the pair 

rJ6odAe-tSo,et6oo^ 
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converges exponentially to a the pull-back of a holomorphic pair (i?o, ^o) in 
LyJ, where BQ has constant curvature. 

Proof. There are constants fii > 0, 62 > 81 > 0 such that for any gradient 
flow line (A, a) as above, there is an asymptotic expansion (for t » 0) of 
the form 

(A, a) = (B + 0(6"^), e-**ai + 0(6-**)). 

Here, 61 is the constant from Lemma 10.9, so that 6Q < 61. If ()o < <5i, let 
ao = 0, otherwise, let ao = 0^1. In either case, we see that etSoa converges 
exponentially to ao- 

The section etSoa is harmonic for the Dirac operator 

etSo-DAe-t60 = BA- 6op(dt), 

which is the same as D^+f^, when restricted to S+. Moreover, the con- 
nection A + iSor] converges as t H-> +00 to B + iSorj = 7r*(i?o), so we see that 
ao corresponds to a holomorphic section of [^J. □ 

As an immediate consequence, we see that the sections et6oa over 7r*(£,o), 
and ao over S+ glue together to give a continuous section a of E. We 
can apply Theorem 7.7 to extend the holomorphic structure 84+160 over 

Tr^LyJ), giving us a holomorphic structure on all of E with respect to 
which a is holomorphic. Indeed the complex gauge transformation obtained 
in Theorem 7.7 is the idenity over £± and hence we obtain an element of Q. 

Thus, we have constructed a map from the moduli space of flows to the 
space of divisors. To invert this map, as before (Section 8), we have to solve 
a Kazdan-Warner equation for a complex gauge transformation. First, we 
solve the problem "at infinity": 

Lemma 10.11. Let E be the line bundle over R defined as above. Suppose 

that (A, a) is a holomorphic pair in S. Then, there is a complex gauge 
transformation eu on E which takes the restriction of (A, S)|^ to a pair 
(A, a) such that 

1. (A, a) converges exponentially as t 1—> —00 to the vortex in EQ with 
section S|s_, and 

2. (A, a)  converges exponentially as t >—>  +00 to a reducible solution 
[B,0]. 
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Proof. The hypothesis that (A, 2) E <S gives us that 

(2AFA-AFKs-i|S|2)|s_=0 

and 

W.-Aft,)-^2^-^^"' = 0. 

Suppose that deg(L:|-J) = \ deg^KY), then Q:|E+ is a holomorphic section 
of an orbifold bundle whose degree is ^ deg(iiTx;) and whose pull-back to Y 
is E. Thus, a|.£+ = 0, by our assumption that Z{E) is non-degenerate (see 
Proposition 5.16). Now, the restriction (A, a) of (A, a) to i?0 satisfies the 
requirements (by Lemma 8.2). 

Suppose that degQ^J) ^ \ &eg{KY), so that ^o > 0. Recall that a com- 
plex gauge transformation eu acting on a connection A on E over E x Y (i.e. 
the transformation which takes sections a G r(E, R0) to ewa) transforms 
the curvature according to 

iAFeuA h-> 2iAddu + iAFA = -e~2^—e2^—u + Aytx + iAF^, 
at      at 

following Lemma 8.7. Thus, if eu is a complex gauge transformation with 

ti(t) = | 
0 if t < 0 
-Sot   ift»0   ' 

this complex gauge transformation takes the restriction of (A, a) to a pair 
(A, a) which exponentially decays as 11—► —oo a vortex in FQ, and as t \—> oo, 
it decays to a reducible solution [B,0]. D 

Thanks to this lemma, finding a flow-line then becomes equivalent to 
solving the Kazdan-Warner equation 

(10.1) Acyi(u) + h{eu - 1) = k 

for an exponentially decaying function 'u, where h = \a\2 satisfies 

1. /i>0, 

2. limtH-»-oo h = h-. exponentially, for some function /i_ ^ 0 

3. lim^+oo h = 0 exponentially. 
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Under these hypotheses, Equation 10.1 has a unique exponentially decaying 
solution u, according to Proposition 8.3. 

Suppose that (A, a) is a holomorphic pair as in Lemma 10.11. Then, a 
gauge transformation over R which is the identity over £± carries the pair 
(A, a) provided by that lemma to another pair which is equivalent to (A, a) 
by a gauge transformation which exponentially converges to 1. Thus, thanks 
to the uniqueness statement in Proposition 8.3, our construction maps Q to 
M0(Eo,3(E)) as promised. 

10.1. Deformation Theory of Flows to the Reducible Locus. 

We can slightly modify the discussion in Section 9 to obtain the following 
analogue of Theorem 9.16: 

Theorem 10.12. Let E, EQ be as in Theorem 10.6. Then, the based moduli 
space of flows to the reducible locus M.0(Eo,3(E)) is locally modeled about 
any point (A, $) G M.0(Eo,3(E)) on the zeros of a map 

C@H*(D,S\D)^Hl{D,£\D), 

where E is the holomorphic structure induced by (A, <&) on the line bundle 
interpolating EQ and [^J from Theorem 10.6, and D = a~1(0) is the zero- 
set of the associated section. In particular, 

(10.2) e-dimM(C+(Eo),3(E)) = e-dim(£>(£o, Lf J)) + 1- 

Proof. Recall that the tangent space to the reducible locus is given by 

T[B+fi]U2 = Coker (d: fi0'0(S+) - n0'1^)) . 

Bearing this in mind, the proof of Theorem 9.16 shows that the cohomology 
groups of the deformation complex are isomorphic to a mapping cone for 

where forms in fi0'* are extended by 7r*(O0'*(E_)) at — oo but only by 
T[B+fl]U2 at +oo; while forms in n0>*(E) are extended by 7r*(fi0'*(E_, £■())) 
at — oo and by nothing at +oo. 

With the above conventions on fi0'*, the cohomology groups 

#*(fi0'*>d)-j H*(R,OR)   otherwise   ' 
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which we can see by mapping this complex to the corresponding complex of 
L^ 6 forms which are extended by all smooth forms pulling back from S± 
at the ends ±00, noting that the quotient complex is merely a C in degree 
zero, and then applying Corollary 9.4. 

We wish now to identify the cohomology groups of (17°'* (E), c^), given 
the above decay conventions, with the sheaf cohomology groups H*(R,£). 
There are two cases. When 60 ^ 0, the connection A used over R0 does 
not extend over E+, but rather it satisfies the hypotheses of Corollary 9.11, 
so this corollary provides the requisite identification. When 6 = 0, Q,0>*(E) 
maps to the complex extended by fi0'*(S_,Eo),n0'*(E+, LifJ)' with quo- 
tient the complex 

^°(E+)LfJ) ^n°.i(E+)LfJ). 

But the cohomology groups of this complex must vanish by the non- 
degeneracy hypothesis on Z(E) (see Proposition 5.16). 

Putting together the above facts, we see that in either case, the coho- 
mology groups 

' C®H0{S/aOR)    * = 0 
Hl{E/aOR)       * = 1 

0 otherwise 

The theorem then follows. □ 

11. Resolving Sheaves over Orbifold Singularities. 

Given any two relatively prime integers with 0 < q < p, let a G 
act on C2 by 

ox(ti;>^) = (C0ti;,C^), 

where £ is a primitive pth root of unity. Topologically, the quotient 

Cp,q = C2/(Z/pZ) 

is a cone on a Lens space of type (p, q). 
This quotient has the structure of a complex two-dimensional orbifold. 

Its (algebraic) coordinate ring A[Cpiq] is given by the subring 

C[w,z}Z/PZcC[w,z} 
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of algebraic functions on C2 which are invariant under the action of Z/pZ; 
i.e. those functions f(w, z) for which 

/Kz) = /(Cti;,C^). 

The variety Cp,q inherits p distinct orbifold sheaves {£^}?Zo> consisting of 
those functions f{w, z) on C2 for which 

Equivalently, the representations {/?j}^~0 of Z/pZ on the one-dimensional 
complex vector space C given by 

pj{a){v) = ^v, 

along with the above action of Z/pZ on C2, give us p distinct Z/pZ- 
equivariant line bundles over C2, which we will denote by {>Cj}^~0. Now, 
the sections of Oj can be thought of as the Z/pZ-equivariant sections of the 
line bundle Cj. 

Since the action of Z/pZ on C2 is free away from the origin, the equiv- 
ariant line bundle Cj descends to give an honest line bundle on CpA — [0,0] 
so that the sheaves Oj\(j -\OQ\ 

are ^ locally free. Indeed, these p line 

bundles are all distinct topological bundles over Cp^q — [0,0], representing 
the p elements in 

H2(Cm - [0,0], Z) ££ H2{Lp,q, Z) s Z/pZ. 

The sheaves Oj (for j ^ 0) do not extend over [0,0] as locally free sheaves (as 
their first Chern classes do not extend). However, there is a canonical way 
to extend these sheaves over the resolution Cv^ Describing this procedure 
is the goal of this section. 

First, recall that the minimal resolution 

T : Cp,q —> Cp,q 

is the map which contracts the chain of two-spheres in Cp^ labeled {S^LV 

Here, m is the number of terms in the Hirzebruch-Jung continued fraction 
expansion of p/q: 

p 1 
(11.1) - = ai j— = (ai,..., am); 

q 0,2  
i 

am 
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and Si has self-intersection number — ai (see Section 3). Pulling back the 
orbifold sheaf Oj via r (as a coherent sheaf), we obtain a coherent sheaf 
r*(Oj) over Cp,q. 

In order to give a more concrete description of this sheaf, one which is 
useful in calculations, we must first introduce some terminology. Suppose 
w is in a monoid generated by elements vi,..., vm. Then the m-tuple of 
non-negative integers (rri, ...,rrm) is called a maximal decomposition ofw in 
terms of (vi,..., vm) if it is maximal, in the dictionary ordering, among all 
m-tuples (yi, ...,ym) of non-negative integers which satisfy 

w = ]PyiVi. 
i 

In particular, if (di,..., dm) is an ordered m-tuple of natural numbers, and j 
is a non-negative integer, then the minimal decomposition of j with respect 
to (di,..., dm) (if it exists) can be found inductively by a Euclidean algorithm 
letting 

3 xi 
di 

and (x2,"")xm) be the maximal decomposition of j — xidi in terms of 
(d2,...,dm). 

Proposition 11.1. For eachj = 0, ....,p—1, the sheaf r*(Oj) is an invertible 

sheaf over Cp^ for which the natural map 

is an isomorphism. Let (xi,...,a;m) be a maximal decomposition of j in 
terms of (di,...,dm); where di is the the denominator of the Hirzebruch- 
Jung continued fraction (ai,a;+i, ...,am). Then, the first Chern class of the 
line bundle corresponding to r*(Oj) is determined by 

(c1(r*(Oj)),[Si}) = xi, 

where [5J is the homology class of the ith sphere in CpS. 

Thus, this proposition gives a natural correspondence between orbifold 
sections of the sheaf Oj over Cp,q and sections of a line bundle (depending 
on j) over (7^. The result should be compared with the following theorem 
of Gonzalez-Sprinberg and Verdier [13] (see also [21]): 
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Theorem 6 (Gonzalez-Sprinberg, Verdier). Let G be a finite sub- 
group of SU{2). The resolution C2/G is obtained by inserting a configuration 
of 2—spheres which are in a one-to-one correspondence with the non-trivial 
irreducible representations of G. Given a representation 

p:G^GL(V), 

letting Op denote the sheaf of orbifold sections of of the orbifold bundle 

over C2/G, we can form 

r(Op) = r*(Op)/ToTs, 

the quotient of the pull-back sheaf by its nilpotent elements. Then, r(Op) is 
a locally free sheaf for which the natural map 

Op^rMOP)) 

is an isomorphism and 

fc.(rW),K,D-{J   1^, 
where S^ denotes the sphere corresponding to the representation a. 

The hypotheses of our Proposition are consistent with the hypotheses of 
the Gonzalez-Sprinberg and Verdier theorem exactly when q = p — 1, i.e. 
when G = Z/pZ is given by matrices of the form 

Ca    o \ 
o   c~V' 

with a G Z/pZ. There are p — 1 terms in the continued fraction expansion 
oip/p—l, and the denominators are (p— l,p — 2,..., 1), so that the maximal 
expansion of any 0 < j < p is given by coefficients Xi = S^p-j (Kronecker 
delta). Thus, in this special case, both Theorem 6 and Proposition 11.1 are 
in agreement. ^ 

The proof of Proposition 11.1 requires a concrete description of Cp^, 
which is based on elements of the theory of toric varieties (see [10]). We set 
up the notation presently. 

The map 
%: Z2 t^C^z^w'1^"1] 
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from the standard lattice to the Laurent polynomials 

X(ij) = wlz3 

sets up a correspondence between additive sub-monoids of Z2 and subrings 
of Cfw, 3, tiT"1, z~1}. Under this correspondence, the lattice A C Z2 given by 

i + qj = 0    (mod p) 

corresponds to the subring of Z/pZ-invariant Laurent polynomials. More- 
over, the upper right quadrant of A, 

A+ = {v e A|ni(v) > 0,1120;) > 0}, 

corresponds to the coordinate ring AfCp^]. In the above expression, 

Ua: Z2 -^ Z 

denotes the projection onto the at/l coordinate. 
As in [10], the monoid A_ 

A_ = {v e A|ni(i/) < o,n2(v) > 0} 

has a canonical generating set (VQ, ..., vm+i), arranged so that 

(11.2) - p = riivo < nivi < ... < nivm < nivm+i = 0. 

Consecutive pairs of vectors v^, v^+i generate the monoid of lattice points 
in the sector of A lying between those vectors. The vectors VQ = (— p,0), 
Vm+i = (0,p), and the vectors {vi,..., vm} are the lattice points appearing 
on the boundary of the convex hull of the set A_ — {(0,0)}, off the coordinate 
axes. This convexity forces 

(11.3) o = Ebvo < r^v! <... < n2vm < n2vm+i = p. 

These vectors satisfy the relations 

(11.4) Vi-i + Vi+i = aiVi, 

where the a^ appear in the continued fraction expansion in Equation 11.1. 
Moreover, 

(11.5) riiv; = -du 
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where the do = p, dm+i = 0, and di for i = 1,..., m are as in the statement 
of the Proposition 11.1. (Similarly, for i = 1, ...,ra, 112Vj is the denomi- 
nator of the Hirzebruch-Jung continued fraction expansion of (a^ ...,ai).) 
Equations 11.4, and 11.1 (along with the statement about 112v*) ^re neatly- 
summarized by the statement that, for each i = 1, ...,m, there is a matrix 
Ai £ Sl2(Z) with AiVi-i = vi, and Aw = Vj+i. 

The ordering properties expressed in Inequalities 11.2 and 11.3 give us 
a constructive technique for giving the maximal decomposition of a vector 
w G A_. 

Lemma 11.2. Suppose w 6 A_; and (XQ, ...,xm) is the maximal decompo- 
sition ofUiw with respect to (do? ~-<>dm). Then, letting 

T       n2(w-E£o^) 
P 

the (XQJ ...,a;m+i) form the maximal decomposition of the w with respect 
to the generators (VQ, ..., vm+i). In particular, we have for the maximal 
decomposition 

V = ^ XiVi 

i 

that 

(11.6) di > /^^jdj. 
j>i 

Proof Letting u = Y^Lo^^U u ^ A_ has Iliu = IIiw by Equation 11.5. 
The maximality of the rcj, combined with the ordering property in Inequal- 
ity 11.3 ensure that u has minimal 112 among all vectors in A fl ni~1niw. 
This implies the first statement. 

The inequality 11.6 follows immediately from the construction of maxi- 
mal decompositions of natural numbers. □ 

If v, w G A_, we say that v precedes w, denoted v -< w, if the maximal 
decomposition of v with respect to the generators (VQ, ..., vm) precedes that 
of w in the dictionary ordering. 

Corollary 11.3. //v, w £ A_ and IIiw < IIiv then there is a A £ A+ and 
u £ A_ with u ^ w such that 

v = u + A. 
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Proof. Let v = 2&iVj, w = Yl^i be the maximal decompositions. We 
might as well assume v -£ w (otherwise the conclusion is satisfied for A = 0). 
Thus, there must be an integer k with 6^ > c^. Let £ be the integer with 
the property that for all j < £, bj = Cj, and 6^ ^ C£. 

The condition that IIiw < Hiv, along with Inequality 11.6 implies that 
bi < Q. Let 

Clearly, u ^ w as required. Moreover, by Inequality 11.6 once again, we 
have that IIiu < Hiv. The existence of some k with bf* > Qc, along with the 
ordering property Inequality 11.3 forces 112 (u) < ^(v). Thus, v — u G A+. 
D 

The space Cp,q is covered by m + 1 affine coordinate patches {t^}£Lo> 
where 

^ = SpecC[X(-vi),x(vi+i)] 

corresponds to the submonoid Ai = (—v^, Vf+i) of A generated by — v; and 
v^+i. Moreover, the set 

Ui-! U Ui 

is the total space of a line bundle over 

S, = Spec C[x(-Vi)] U Spec C^Vi)], 

which is a projective line. Its transition function can be read off from the 
relation in Equation 11.4, so we see that ci of the line bundle is —a*. 

The ring of global functions on this variety is given by 

nc[x(-vO,x(vm)] = C[A+], 

inducing the map 

A module over the monoid A+ naturally induces a module over the ring 
C[A+]. We claim that for all j, the modules T(Cpiqi Oj) over the coordinate 
ring C[A+] arise in this way. 

Lemma 11.4.   The module 

Mj = [-j, +oo) x [0, oo) fl A C A 

over A+ induces a module over C[A+] which is isomorphic to r(Cp,q,Oj). 
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Proof. Prom its description, r(CM, Oj) is an A[Cpjg]-submodule of of the 
module C[w,z]. Multiplication by z~i is an k[Cv^ automorphism of 
Cftt;,^,?/;-1,^-1], taking the module T{CPA,Oj) to the C[A+]-module Mj. 
D 

Let Wj be the unique vector in A with 

IIiWj = —j and 0 < 112w^ ^ P- 

Lemma 11.5. The module Mj over the monoid A+ is generated by all vec- 
tors u € A_ with u ■< Wj. 

Proof. By Inequality 11.2, any u with u •< Wj must be contained in Mj. 
This fact, together with Corollary 11.3 implies the lemma. □ 

Since A+ is a submonoid of A* = (—Vi, Vi+i), we can consider the monoid 
AiMj, the Ai-submodule of A generated by Mj. 

Lemma 11.6. The A* module AiMj c A is free and generated by the single 
element Ylk<ixkvk' Equivalently, the C[hj\-module Mj ®<c[A+] C[Ai] is free 
and generated by the single element x(J2k<ixkvk)- 

Proof. We must verify that the map 

Ai -> AiMj 

taking 

A ^ A + ^2 x^k 
k<i 

is surjective (as it is clearly injective). By the ordering of the v*. (Inequal- 
ity 11.2, 11.3), we have that 

—Vfc G Ai     if    k < i, 

vke Ai     if    k > i. 

By Lemma 11.5, it sufEces to show that any vector u •< Wj lies in the 
image. Writing 

u = ^2/fcVfc, 

k 
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where 

Vk < Xk, 

we can write 

k<i k>i £<i 

where the second two terms are in A*, by the ordering property. □ 

Remark 11.7. Recall (see for example [16]) that under the composition 

the restriction of r*{Pj) corresponds to the module Mj ®c[A+] C[Ai]. 

Lemma 11.8.  The module Mj is precisely the intersection of the AIMJ; 

i=0 

Proof. Clearly, 

Given v G fXiLo AiM/, as 112 A > 0 for any A € Ao, we must have 

I^v > 0. 

Similarly, since IIiA > 0 for any A G Am, we have that 

Hiv > -j. 

These conditions force v € Mj. 

Proposition 11.1 follows rather easily from these lemmas. 

Proof of Proposition 11.1.   We have exhibited an affine cover, the 

{Spec qAiULo, 

of Cp^q over which r*(Oj) is free by Lemma 11.6. The statement that Oi 
r*r*(C?i) follows from Lemma 11.8. 
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Restricting to S^ we have that the generator of r*(Oj) from Lemma 11.6 
over Ui n Si differs from the generator of r*(Oj) over Ui+i D 5^ by multipli- 
cation by x(yi)Xi' Thus, it follows immediately that 

(c1(r*(Oj)),Si)=xi. 

D 

Suppose now that R is a complex orbifold with finitely many C2/(Z/pZ) 
singular points, and J7 is a reflexive sheaf over R which is locally free away 
from the singular points, and is isomorphic to Oj^ near the singular point 
x £ R. Consider the minimal resolution 

r: R^>R, 

obtained by locally performing the procedure discussed above. We obtain 
the following precise statement of Theorem 3 from Section 1: 

Theorem 7. The sheaf r*(^r) is a locally free sheaf over R, with Chern 
classes determined as in Proposition 11.1. Moreover, r induces an isomor- 
phism between the moduli space of divisors in r* {T) over R with the moduli 
space of divisors in T over R. 

Proof. The fact that r*(^r) is locally free follows directly from. Proposi- 
tion 11.1, after passing to germs near the singularity. Similarly, we have 
that the natural map 

(11.7) T^r^T 

is an isomorphism. This gives us the fact that the map 
between moduli spaces is, as a map of sets, bijective. 
To check that the local models agree, take any nonzero section 

seiJo(#,r*.F)-0. 

This section induces a short exact sequence of sheaves 

0  ► 0- —2— r*^  ► r*^5-i(o)  ► 0, 

whose direct image (via the rationality of the singularities, and the fact that 
Natural Map 11.7 is an isomorphism) is the short exact sequence 

0  ► OR ^U T  ► ^s-i(0)  ► 0. 
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Rationality of the singularities implies that all 

for j > 0, so by the Leray spectral sequence 

H'(R,Wr,(on))^H^(R,Os) 

(see [1.1]), we have natural isomorphisms 

Similarly, we have natural identifications between 

because of the vanishing 

for i > 0, which we see as follows. The fibers of r have (complex) dimension 
at most 1, so the IVr* must vanish for all j > 1, by a standard result of 
sheaf theory (see [11]). The fact that 

R1r*(r*(^)) = 0 

follows from Grauert's comparison theorem (see for example [12]), together 
with the fact that 

ff1(r'rV),r*(^)|r-1(:c)) = 0 

for any x G R. This is true because the fiber is zero-dimensional over each 
non-singular point, and over each singular point, it is a wedge of projective 
lines, and the sheaf restricts over each line is a locally free sheaf with non- 
negative first Chern class (as in the Proposition 11.1), so its Hl must vanish. 
Alternatively, the vanishing of RV* follows from a more general argument 
in [13] (see also [2]). □ 

12. The Dimension Formula. 

In Section 11, we gave a correspondence between divisors in the ruled 
surface R with divisors in its desingularization R. The purpose of this section 
is to use this correspondence, together with the Riemann-Roch formula, to 



780 Tomasz Mrowka, Peter Ozsvath and Baozhen Yu 

derive the explicit formula from Section 1 (Corollary 1.4) for the expected 
dimension of the space of divisors in R in terms of Seifert data. 

Let Ei, E2 be a pair of orbifold line bundles over S. Theorem 7 gives an 
identification between the moduli space of effective divisors connecting Ei 
with ^2? T^{Ei1E2)') with the moduli space of divisors in a line bundle we 
will denote by Ei^ over R. Letting T>(Ei^) denote this latter moduli space, 
the ordinary Riemann-Roch theorem gives us that 

e-dim£>(£!, E2) = e-dim©^) = Ui (E^ + ci (#-) ci (^1,2) , [R] 

Since deg(y) 7^ 0, the intersection form of R splits (over Q) intc* the sum- 
mands corresponding to the resolutions of the line bundles Y >:si C and 
Y* X51 C, so we can naturally decompose 

e-dim ©(Si, E2) = dimy(£?i) + dimy*^), 

where dimy(E) for any Seifert fibered space Y and orbifold line bundle E 
over £ is given by the formula 

(12.1) dimy(£) = (diE)2 + diKx^E), [X]), 

where X is the smooth, non-compact complex surface obtained as; the min- 
imal resolution of X = Y xsi C, and E is the desingularization of 2£, as 
given by the procedure of Section 11. 

We will now derive a concrete formula for dimy(£?) in terms of Seifert 
data. Let g denote the genus of E, and suppose that £ has n singularities 
with multiplicities (ai, ...,an). Let (6, (3i, ...,/?n) be the Seifert invariants of 
Y. Let £ C X denote the proper transform of the zero-section £ C X, and 
for i = 1,..., n, j = 1,..., mi, let S? denote the jth sphere in the configuration 
of spheres lying over the ith singular point in £ C X. The homology classes 
induced by the curves 

S^   ol       ol      Q2 C2 on on 

form a basis OS for H2(X). With respect to the Poincare dual basis 93*, the 
intersection form for X can be written as a sparse matrix M (with zeros in 
all the entries not marked): 
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b     i 

I   -a)      \ 

781 

\ 

-«? 1 

1 -«? 

1 

I 

-< 

1 

1 

where the a3
v ...,a

3
mj are the coefEcients appearing in the Hirzebruch-Jung 

continued fraction expansion for otj/Pj. 
Let dl be given by the denominator Hirzebruch-Jung continued fraction 

di 
!_   -   InJ 

di+l 

so that 

(12.2) 

{^i 5 •••? tirrij)-) 

dl± + dJ±i 
4 di  ' 

Let E be an orbifold bundle over E with Seifert invariants (eo,ei, ...,en), 
and let £:? be the coefficients appearing in the minimal expansion of ej with 

respect to (dj, ...,6^), 

(12.3) ^ = E^- 
t=i 

It follows from Section 11, that the first Chern class of E over X, the 
resolution of 7r*(J5), is uniquely characterized by its evaluations 

(Cl(B),[E])=e„, 
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Thus, if we let S be the vector formed by concatenating eo, £!>•••> £4i5 

£i> •••>imi') •••> ^n • • • 5^mn? we can write ci(.E), in the basis 05* as the vector 

x = M^S. 

We will write this vector more explicitly, in the following Lemma. 

Lemma 12.1. Let 

v _ (T0  Tl Tl      JZ r2 n n    \ 

denote the coefficients of ci(E) in terms of the basis 55* for H2{X). Then, 

and 

(12.5) 4 = % y-E^E-M • 

Remark 12.2. In the above formulas, we have let ^Q = ay- 

Proof The equation Mx = S can be written as a system of equations: 

bx0 + x\ + Xi + ...xi = eo, 

and, for j = 1, ...9n,£ = 1, ...,mj — 1 

^rrij — l rrij ^ rrij       s rrij 5 

where we declare XQ = x0 for j = 1,..., n. This is equivalent to the system 
of equations: 

do doJ fc=1 fe=i 

X? 
dj 1 mi 
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By Equation 12.3, the first equation is equivalent to Equation 12.4. The 
other can be reexpressed as Equation 12.5. □ 

The canonical class can be described (via the adjunction formula) as the 
cohomology class with 

{c1(K),$]) = -b + 2g-2, 

(cl(K),{Si}) = ai-2, 

so, letting K, denote the vector obtained by concatenating the above values, 
the vector M-1/^ represents the coefficients of ci(K) in our basis. Now, we 
can rewrite Equation 12.1 as: 

(S - rfM-1-. 

We can combine this formula with Equation 12.2 and the results of Lem- 
ma 12.1 to get that the dimension is given by 

(12.6) 
n   m3   ( /   0       /  *■ i        mi \\ 

™=S£{fe-(§^£^)) 
(^-4-i-4+i + 24)} 

+ a:0(eo + 6 + 2-25). 

We will rewrite this formula after a few observations. 
First, notice that for a fixed j, 

rrij / rrij \ 

E^d - 4-i - 4+i+24) = E 4$) + (4 - 4) - (<■) 
£=1 V=l / 

= ej + <P1-dl
Q + l. 

Thus, dividing this last expression by dg, summing over j, and adding (eo + 
b + 2 — 2g) we see that 

(12.7) 
' n     l    rrij \ 

E-J EK^'- 4-1 - 4+1 + 24) )+(eo + b + 2-2g) 
Kj=i «o e=i / 

= (g(H-1+;t))+(e°+6+2-29) 

= deg(£;) + deg(y) - deg(ifs) 
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Moreover, by the discrete analogue of integration by parts, applied twice, 

(12.8) 

/ ™>j        1 rrtj \ mj    / / \    rrtj \ 

= (<,«-« Ey^E^l+E   7-7-)E4<i) 
\i=i ai-iai k=i       /     e=i \\a£     a£-i/ k=i       ) 

(mj rrij \ / ™>3      \ 

Substituting Equations 12.7, 12.8, and 12.4 back into Equation 12.6, we get: 

(12.9) 
n    ( (mj      \ / rrij e \ 

^) = E{(E«)-(E4?iE^) 
rrij mm(k,£) 

^,^=1 i=l      ai-iai 

+ eo + 53(f)(deg(jB)"des(^s)) 

13. Examples. 

In this section, we give some examples of the theory. We restrict for sim- 
plicity to the case of rational homology spheres, i.e. those Seifert fibrations 

TT: y-+E 

which have non-zero degree, and whose base orbifold has genus zero. These 
are the manifolds for which the reducible locus consists of isolated points. 

If the base orbifold has less than three singular points (so that the total 
space Y is a lens space), then the Euler characteristic of the base orbifold 
is positive, so that there are no irreducible critical points. This agrees with 
the calculations which can be made for the critical points of the equations 
using the Levi-Civita connection for a metric of positive curvature (see [34]). 
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Definition 13.1. An orbifold is called simply-connected if its genus is zero 
and its multiplicities are pairwise relatively prime. 

Remark 13.2. A more natural definition is to say that an orbifold is 
simply-connected if it admits no non-trivial, connected orbifold covering 
spaces. This condition is equivalent to the above definition, according to 
the general theory of orbifolds (see [9], [30]). 

For simply-connected orbifolds, the isomorphism class of an orbifold line 
bundle is uniquely specified by its degree. According to Corollary 5.17, if 

ir:Y ^E 

is a Seifert fibered space over a simply-connected orbifold S, the the re- 
ducible locus for any Spinc(3) structure is smooth. According to Theo- 
rem 2.13, these simply-connected orbifolds are precisely those which arise as 
the base spaces of integral homology Seifert fibered spaces. In fact, given a 
simply-connected orbifold S, there are exactly two Seifert fibered spaces over 
S whose underlying three-manifold is an integral homology sphere. The two 
fibrations correspond to the two generators of the topological Picard group 
of S, and the two underlying three-manifolds are naturally (orientation- 
reversing) diffeomorphic. Since E is uniquely specified by its (relatively 
prime, positive, integral) multiplicities (ai,...,an) this three-manifold can 
be unambiguously be described by the same data. It is typically denoted 
E(ai,..., an). The convention that it correspond to a line bundle with nega- 
tive degree (unambiguouisly) gives E(ai, ...,an) the additional structure of 
a Seifert fibration. 

The quantity 

'♦sEte-' 
X(E) 

gives the maximum dimension of any irreducible critical manifold. In par- 
ticular, since for any homology sphere each a^ > 2, the above result says 
that a Seifert fibered homology sphere with fewer than five singular five 
singular fibers has a discrete critical manifold. (When we allow five singu- 
lar fibers, some homology spheres, e.g. E(2,3,5, 7,11), still have discrete 
critical manifolds while others, e.g. E(3,5, 7,11,13) do not.) 

Note that these critical manifolds are always rational; indeed they are 
projective spaces. (It is interesting to compare this with the analogous 
statement for SU(2) representation varieties, see [9].) 
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When all the critical manifolds are isolated points we can proceed as 
in the classical Floer picture (see for example [7]), to form a relatively 
graded chain complex, the Seiberg- Witten Floer complex which depends on 
the Seifert fibration 

TT: y-+E 

and the Spinc(3) structure on y, (CF*(y, W),3). The underlying group is 
a free Abelian group generated by the irreducible critical points {b} of cs. 
The relative grading is defined by 

gr(a) — gr(b) = e-dimM(a, b), 

the expected dimension of the moduli space of parameterized flow lines from 
a to b. The moduli spaces of flows always have even expected dimension, 
since they are identified with moduli spaces of divisors. This says that any 
two critical points have even relative grading, so the boundary map must be 
identically zero, so that the homology groups of this complex the iiTeducible 
Seiberg-Witten Floer homology, denoted HF*rr(y, W) is, as a graded group, 
isomorphic to the Seiberg-Witten Floer chain complex. In general, these ho- 
mology groups depend the auxiliary data - the metric on Y and the choice 
of connection used on TY (choices which we have made in this paper); in 
particular they are not topological invariants of the three-manifold under- 
lying y. However, these groups enjoy certain functorial properties (product 
formulas) useful for calculating Seiberg-Witten invariants for four-manifolds 
glued along Seifert fibered spaces. According to recent work ([18] and [26]), 
they can also be applied to the problem of studying the fillable contact 
structures on these three-manifolds. 

Some sample irreducible Seiberg-Witten Floer Homology are displayed, 
for the Seifert fibered homology spheres chosen in [8]. (The relative grading 
is normalized so that the solutions with nowhere vanishing spinor lie in 
degree zero.) 

HFJ,7(E(2,3,6fc-l)) = 

HF^(S(2,3,6A; + 1)) = 

HFJ>7(E(2,5,10fc-l)= { 

Z2LfJ    ifi = 0, 

0 otherwise; 

zWJ   if 1 = 0, 
0 otherwise; 

rZ2 if0<*<fc-l, 

Z2(L|j+l)     i£i = k-l, 

0 otherwise 
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HF|7(S(2)5,10fc + l) = 

HFSr(S(2,5,10fc±3)) = 

HF|7(E(2,7,14k -!))=< 

rz2 
if 0 < i < k, 

z2^J if i = k, 

,0 otherwise 

[Fr(S(2, 5,10&±1)) 

rz2 
if 2\i and 0 < i < 2k - 2, 

z2 
if 2k - 2 < i < 3k - 3, 

Z2Lf+1J if t = 3fc-2, 

Z2^ if i = 3fc-l, 

,o otherwise; 

HFi7(S(2,7,14A; + l)) = { 

fZ2 if2|tand0<t<2fe-l) 

Z2 if2fc-2<i<3fc-2, 
Z2L^J if» = 3fc-l, 

k±l\ z2m 

HFSr(E(2,7,14fc-3))=«{ 

0 

Z2 

z2 

0 

if i = 3fc — 1, 
otherwise; 

if 2\i and0<i<2k-2, 
if 2k - 2 < i < 3k - 3, 
if » = 3k - 2, 
otherwise; 

HF|7(S(2,7,14A; + 3)) = { 

Z2 if 2\i and 0 < i < 2k, 
Z2 if 2k < i < 3k - 1, 
Z2(fc+1) if^SJfc, 

0 otherwise; 

HF^(S(2,7,14fc ± 5)) = HFr/(S(2,7,14fc ± 3)) 

HFSJr(E(3>4,12fe-l))=^ 

Z2 if.2|tandO<t<2A;-2, 
Z2 if 2fc - 2 < t < 3fc - 3, 
Z2^J iffc = 3fc-2, 
0 otherwise; 
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HP^(E(3,4,12fc + l))=^ 

HP^r(E(3>4,12fc-5))=^ 

Z2 if2|zand0<i<2fc, 

Z2 if 2k < i < 3fc, 

Z2^J ifJb = 3Jb, 

0 otherwise; 

z2 

z2 

Z2fc 

0 

if 2|iandO<i<2A;-2, 

if 2k - 2 < i < 3k - 3, 

if k = Sk - 2, 

otherwise; 

HF£p(E(3>5,15fc-2))=^ 

HFSr(S(3,5,15A; + 2)) = ^ 

fz2 

z2 

z2 

z2^J 
Z2L|J 

0 

fz2 

z2 

z2 

Z2L^J 

Z2^^ 

if 3|iand0<z<3fc-2, 

if2|zand3A;-4<i<5^- 

if 5A; - 3 < i < 6k - 4, 

if i = Qk — 3, 

if i = 6k - 2, 

otherwise; 

if 3|tand0<i<3fe + l, 

if 2|iand3A;-l <i<bk, 

i{5k<i<6k-2, 

if i = 6k — 1, 

if« = 6A;, 

otherwise. 

■3, 
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