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0. Introduction.

This paper is a continuation of our effort in understanding the geometry
of the moduli space of stable vector bundles. For any polarized smooth
projective surface (X, H) and any choice of (I, d) € Pic(X)x H4(X, Z), there
is a coarse moduli space IM(I,d)° of rank two u-stable (with respect to H)
locally free sheaves € of A2 2 I and ¢3(€) = d. This moduli space has been
studied extensively recently. One important discovery is that the moduli
space M(I, d)? exhibits remarkable properties at stable range. To cite a few,
for arbitrary surface the moduli space Mt(I, d)° has the expected dimension,
is smooth at general points and is irreducible, and for a large class of surfaces
of general type M(I,d)° are of general type, all true for d sufficiently large
[Fr, GL, Li2, Do, Zh]. In this paper, we will investigate another aspect of this
moduli space. Namely, the Betti numbers of 9(I,d)°. So far, there have
been a lot of progress along this direction based on two different approaches:
Algebro-geometric approach and gauge theoretic approach. The algebraic
geometry approach is relatively new. In [ESKi,Yo|, they studied in detail
the Betti numbers of the moduli space of stable sheaves over P? (for the rank
two and higher rank cases). Beauville [Be] has a nice observation concerning
some rational surfaces and Gottsche and Huybrechts [GH] have worked out
the case for K3 surfaces. The gauge theory approach has been around for
quite a while. To begin with, let (M, g) be a compact oriented Riemannian
four-manifold and let Py be a smooth SO(3) (or SU(2))-bundle over M whose
associated vector bundle has rank 2, ¢; = I and ¢3 = d. Consider the pair

(0.1) N(Py) C B(Py)*,

where B(Py)* is the space of gauge equivalent classes of irreducible connec-
tions on P; and N (P;) is the subspace of Anti-Self-Dual connections. By a

IThis research was partially supported by NSF grant DMS-9307892 and Alfred
P. Sloan research fellowship.

625



626 Jun Li

celebrated theorem of Donaldson, when M = X is an algebraic surface with
a Kahler metric associated to the ample divisor H, 9(I,d)° is canonically
isomorphic to N (P;). The advantage of looking at the pair (0.1) is that
H,(B(Py)*) is calculable, at least modulo torsions, in terms of the homo-
topy type of X. Thus we will know H,(9(I,d)°) if we know the induced
homomorphism

(0.2) o(d); : H;(9M(I,d)°, Z) — H;(B(Py)*, 7).

In [AJ], Atiyah and Jones conjectured that for M = S§* and SU(2)-bundle
P4, there is a sequence of (explicit) integers {qx} such that for d > g, (0.2)
is an isomorphism for ¢ < k. Later, Taubes’ work [Ta] suggests that sim-
ilar conjecture should hold for arbitrary 4-manifold with possibly different
sequence {gx}. This conjecture has been confirmed for §¢, CP? and K3
surfaces, see [HB, HBM?, ES, GH, Ki, Til, Ti2, Yo.

In this paper, we will study Hy(9(I,d)°) for arbitrary algebraic surface.
Due to technical difficulties, we are unable to prove the generalized Atiyah-
Jones conjecture for all Betti numbers. Instead, we will prove thz following
theorems that will determine the first two Betti numbers of the moduli space.

Theorem 0.1. For any smooth projective surface (X,H) and any I €
Pic(X), there is an integer N depending on (X,I,H) so that whenever
d> N, then

£(d); - H;(M(I,d)°;Q) — H;(B(Py)*; Q)

is an isomorphism for i < 2, where Py is the SO(8) (or SU(2))-bundle asso-
ciated to the rank two complex vector bundle E with A2E = I and c2(E) = d.

By calculating the first and second Betti numbers of B(P;)*, we get

Theorem 0.2. With the notation as in theorem 0.1, then there is an
integer N depending on (X,I,H) so that for d > N, dim Hy(9(I,d)%)
and dim Hy (SJI(I , d)o) are by and by + %bl(bl — 1) respectively, where b; =
dim H;(X).

In algebraic geometry, there is a moduli space 9(I, d) of H-stable rank
two sheaves £ with det £ 2 I and ¢3(€) = d. M(I,d) is quasi-projective and
contains (I, d)° as a Zariski open subset. We calculate the first two Betti
numbers of M(7, d) as well.
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Theorem 0.3. With the notation as in theorem 0.1, then there is an in-
teger N depending on (X,I,H) so that for d > N, dim Hy(9(I,d)) and
dim H (9(I,d)) are by and by + 2b1(by — 1) + 1 respectively.

There is a general principle [Mu] that explains why the Betti numbers of
M(I,d) take the form in theorem 0.3. For simplicity, let us assume (7, d)
is projective and admits a universal family, say £ over X x (I, d). Then
£ is expected to contain all information of M(I,d). For instance, the co-
homology ring H*(9M(I,d)) (with rational coefficient) should be generated
by the Kunneth components of c;(£). Put it differently, each ¢;(€) defines
homomorphisms

ul: HL(X) — H%*(M(I, d))

via slant product. Then the Mumford principle states that H*(9(I,d))
is generated by the image of {4;}i>2, and that within range up to r(d)
(r(d) — oo when d — o0) their images obey no restraint other than the
obvious commutativity law of the cohomology ring. In particular, if we
look at H'(9M(I,d)), then it should be generated (freely) by the images of
p[23] : H3(X) — H(9M(I,d)), which has dimension b; by Poincare duality.
For H?(9M(I,d)), it should be generated freely by the wedge product of
HY(9M(I,d)), the image of ul : Hy(X) — H2(MM(I,d)) and the image of
,ugq : Hy(X) — H%(9M(I,d)). Together they span a linear space of total
dimension by + %bl(bl -1 +1.

One motivation of the current work is to determine the Picard group
of the moduli space M(I,d)° and M(I,d). As is known, Pic(M(I,d)) is
largely determined by dim H;(90(I,d)) and dim Hy(9M(Z,d)). In [Li3], we
have determined their Picard groups based on the information gained here.

Now we explain the strategy in establishing these Theorems. In the
following, we let ¢ = 1 or 2. According to Taubes [Ta], for large d there are
canonical homomorphisms 7(d); and 7(d); making the following diagram
commutative: 2

H;(9(I,d)°) Ak, H;(B(Pa)*)

(0.3) R |7
£(d+1);
Hy((I,d+1)°) 2% 1 (B(Pa)).
2Taubes constructed a diagram using the space of based connections. His di-

agram is identical to ours in case ¢ < 2 because SO(3) and SU(2) are rational
3-sphere.




628 Jun Li

(Here and in the remainder of this paper, all homologies are with rational
coeflicients unless otherwise is stated.) Further, 7(d); is an isomorphism,
£(d); is surjective for sufficiently large d and the composition of 7();’s

7(d,d + k)i : H;(9(I,d)°) — H;(M(I,d + k)°)
has the property that
(0.4) ker{¢(d);} C ker{r(d,d + k(d));}

for some k(d). Thus, if for large d the homomorphism 7(d); is surjective,
7(d); must be an isomorphism for sufficiently large d. Therefore by (0.4),
£(d); will be an isomorphism for sufficiently large d as well, thus establishing
theorem (0.1). (Please see section 4 for more details.)

The homomorphism

(0.5) 7(d)s : Hi(9(I,d)°) — H;(M(I,d+1)°), <2

can be defined easily in our context. Set IM(I,d)* C M(I,d) be the open
subset of p-stable sheaves. We fix an z € X and let SF9(I,d + 1)* C
IM(I,d + 1)¥ be those &€ such that EVV/E = C,. SIM(I,d + 1)* is a P1-
bundle over M(I,d)* by sending € to EYV. Let V be a general fiber. Then
the inclusion Vp C 9M(I,d + 1)* and the bundle SFM(I,d + 1)* - M(I,d)°

induce a commutative diagram
(0.6) 0 — HiV) — H(SSTLd+1)) — HO(LAY) — 0

” r(d).i

0 — HiVo) — H:(M(I,d+1)#*) — Hy(MI,d+1)°).

Let ¢ be 1 or 2. When d is sufficiently large, H;((I,d + 1)) is a direct
sum of the images of H;(Vp) and H;(9M(I,d+ 1)°). Therefore, (0.6) induces
a homomorphism H;(9M(I,d)°) — H;(M(I,d + 1)°) that is the mentioned
homomorphism 7(d);. (See Lemma 4.2 for details.)

From (0.6), 7(d); is surjective if r(d); is surjective. In this paper, we will
prove the surjectivity of r(d); by establishing the following two theorems:

Theorem 0.4. With the notation as in theorem 0.1, then there is an in-
teger N so that whenever d > N, then fori=1,2,

Hi(SIM(I,d)) — H;(M(I,d)),
is surjective, where SOM(I,d) = M(I,d) — M(I,d)°.
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Theorem 0.5. With the notation as in theorem 0.1, then there is an in-
teger N so that whenever d > N, then for i = 1,2 and closed x € X, the
image of

H;(SM(I,d)) — H;(M(I,d))

is contained in the image of
H; (SM(I,d)*) — H;(Mm(I, d)).

Clearly, Theorem 0.4 and 0.5 together implies the surjectivity of r(d);.
The strategy to establish theorem 0.4 is to apply the Lefschetz hyperplane
theorem to the moduli space. The classical Lefschetz hyperplane theorem
states that for any smooth, projective variety Z of complex dimension n
and any smooth very ample divisor Z; C Z, the pair (Z, Z1) has vanishing
homology groups up to degree m — 1. Concerning our situation, the ideal
pair to look at is (M(I,d), SM(I,d)). But Lefschetz hyperplane theorem
does not apply directly to this pair because SM(I,d) is definitely not am-
ple. Instead, we will first find an ample subvariety ) of 9(I,d) and apply
the generalized Lefschetz hyperplane theorem to the pair (9(I,d),Y) to
establish the surjectivity of

(0.7) Hi(Y,SM(1,d)NY) — H;(M(I,d), SM(I,d)), i<2.

The set Y has an explicit geometric description: let C € |[nH| be a fixed
smooth divisor for some n > 0. Then Y C (1, d) consists of those £ such
that £ is not semistable, including those where & are not locally free. By
work of [Lil], there is a morphism

(0.8) Po : M(I,d) — PM

and a codimension 3g(C)—2 linear subspace V C PV such that &5}(V) = Y.
Hence we obtain the surjectivity of (0.7) by applying the stratified Morse
theory developed in [GM] to ¥ and V C P¥V.

The next step is to show that

(0.9) H;(y,8mI,d)nY), i<2

is trivial. The tactic is to construct explicitly a homology between any class
in (0.9) with the null class by exploiting the fact that restriction to C of
sheaves in ) are not semistable. Here is an outline: for any locally free
sheaf £ € ), let £ be the destabilizing quotient sheaf of £ and let F be
the elementary transformation of £ defined by the exact sequence

0—F—E—L—0.
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Then £ can be reconstructed from F via
0—E&— FIC)=0NL—0.

If we vary o and £, we get deformations of £ within V. In certain cases, we
can deform £ to non-locally free sheaves this way. This method was used by
O’Grady in showing that Ho(Y, S9(I,d)NY) = 0 [OG1]. In this paper, we
will work out this construction in the relative case to prove the vanishing of
(0.9).

A large portion of the current work is devoted to study the singularities
of various sets. This is necessary because generalized Lefschetz hyperplane
theorem only apply to varieties with “mild” singularities. In principle, the
current approach should work for all homology groups through a range that
depends on the (local) topology of the singularities of J). For the moment,
the author can only show that ) is locally irreducible away from Sz (I, d).
Nevertheless, the local irreducibility of ) is sufficient to show the vanishing of
(0.9) and thus establishing theorem 0.4. Theorem 0.5 is proved by carefully
studying the inclusion SM(I,d) C M(1,d).

The layout of the paper is as follows: In §1, we will gather all relevant
properties of the moduli space (I, d) of which we will need. These include
discussion of singularities of algebraic sets. In §2, by studying deformation
of sheaves over curves, we will show that the set Y C 9(I,d) is locally
irreducible away from Sy (I, d). §3 is a refinement of [La, OG1] in which
we will demonstrate how one can deform a family of locally free sheaves
to non-locally free sheaves and thus deriving the vanishing of (0.9). The
theorem 0.4 and 0.5 will be proved in §5. Most of the materials concerning
singularity and Lefschetz hyperplane theorem are drawn from the book of
Goresky and MacPherson [GM].

1. Preliminaries.

In the first part of this section, we will gather results of 9(7, d) that are
important to our study. Some of them have already appeared or known to
the experts and others are improvements of the earlier results. We will give
the reference to each result and provide proof if necessary.

First, let us introduce the convention that will be used throughout this
paper. In this paper, all schemes considered are of finite type and are over
complex number field. All points of schemes are closed points. We will use
Zariski topology throughout the paper unless otherwise mentioned. Thus a
closed subset is a union of finite closed subvarieties. We will use algebraic
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subset to mean finite union of locally closed subsets. By dimension of an
algebraic set we mean complex dimension. We will only consider coherent
sheaves in this paper and will not distinguish a vector bundle from the sheaf
of its sections. In studying homology, we will use the notion of chains and
cycles. An r-chain in Z is a closed real r-dimensional piecewise smooth sub-
set with or without boundary and an r-cycle is an r-chain without boundary.
We will use 0% to denote the boundary of a chain ¥. When 0% = 0, then
we will use [X] to denote the corresponding homology class.

Throughout this paper, we fix a smooth algebraic surface X and a line
bundle I € Pic(X). Let H be an ample divisor on X. We say a rank two
sheaf £ is H-stable (resp. H-semistable) if for any proper quotient sheaf
&€ — F, (i.e. it has non-trivial kernel) we have

1 1
o Xe(n) < ——x#(n)  (resp. <)

for sufficiently large n, where xg(n) = x(€® H®") is the value of the Hilbert
polynomial of £. Note that H-semistable sheaves are necessarily torsion free.
Similarly, we say a torsion free sheaf € is H-p-stable (resp. H-p-semistable )
if for any rank one torsion free quotient sheaf &€ — F, we have p(€) < pu(F)
(resp. <), where u(€) = zci1(€) - H. We define stable and p-stable
sheaves on curves similarly. We also need the notion of e-stable. For any
constant e, a rank two sheaf £ is said to be e-stable if for any rank one torsion
free quotient sheaf &€ — F, we have u(€) < u(F) + e. One notices that H-
p-stable implies H-stable and H-semistable implies H-pu-semistable. In case
the choice of H is apparent from the context, we will simply call them stable
or u-stable. We agree that by unstable we mean not semistable. According
to [Gi], for any d € Z there is a moduli scheme My (I,d) of rank two H-
semistable sheaves £ with det€ = I and c3(€) = d (modulo equivalence
relation). My(I,d) is projective. In the following, we will freely refer a
semistable sheaf £ as a point in My (I, d).

There are several open subsets of My(I,d) that are relevant to our
study. The first collection consists of open subset My (I,d) C My (I, d) of
all H-stable sheaves (called the moduli of stable sheaves), My (I,d)* C
My (I,d) of all u-stable sheaves and My (I,d)° C My (I,d) of all p-
stable locally free sheaves. In most cases, My(I,d)? is a Zariski dense
open subset of My (I,d). We let SMy(I,d) = My(I,d) — My (I,d)°
and SMy(I,d) = My(I,d) — Mu(1,d)°. SMy(I,d) contains (a priori)
some points parameterizing locally free sheaves. For integer | > 1, we
let SMp(I,d) C SMu(I,d) be the set of non-locally free sheaves £ such
that the length £(EVV/E) = I, where £VV is the double dual of &£, and let
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S!My(1,d) € SMu(1,d) be the subset of those £ such that EYV/E sup-
ports on [ distinct points. Note that SPMy (I,d) C Sy (I, d) is open.

Usually, the algebraic subset SMy(I,d) C My(I,d) is not Cartier
(Cartier means that set-theoretically it is locally definable by one equa-
tion) which makes the study of the topology difficult. However, in some
cases they do. Namely, when H is (I, d)-generic.

Definition 1.1. 1. An ample divisor H is called (I, d)-generic if for any

strictly H-semistable sheaf £ with det £ = I and c2(€) < d, € is S-equivalent
to a direct sum (of rank one sheaves) £1 @ L2 such that ¢1(£1) = c1(L2) €
H?(X,R).
2. Let Hy be any ample divisor. An ample divisor H is called (Hy, I, d)-
suitable if not only H is (d, I)-generic but also has the property that any
H-semistable sheaves £ with det£ = I and c3(€) < d are necessarily Ho-p-
semistable.

As was mentioned, the study of the topology of My (I,d) simplifies
if SMy(I,d) C My(I,d) is Cartier. Thus we need to choose H that is
(d, I')-generic. However, in proving the main theorems we need to work on
My (I,d) inductively on d. Although for fixed (I,d) there are plenty of
(I, d)-generic ample divisors, each polarization H will cease to be (I,d)-
generic for large enough d, assuming dim H%!(X) > 1. Thus we need to
adjust H constantly as d increases. To get by this, we will work with a set
of polarizations simultaneously.

To this end, some discussion on the selection of polarizations is in order.
First, any two ample divisors H; and Hs will give rise to (canonically)
isomorphic moduli spaces My, (I,d) and My, (I,d) if c1(H1) and ¢1(Hy) lie
on the same (real) line in H?(X;R). Now let

NSg = (H*'(X,R) N H*(X,Q)) ® R,

let NS{t be the ample cone and let NSg and NS&S be the intersection with
H?%(X,Q) of the corresponding spaces. For any ¢ € NS3, we define the
moduli space M (I, d) to be My (I, d) for some ample H such that ¢;(H) =
né for some n. By abuse of notation, in the following we will use H € NS&
to mean H a Q-divisor with ¢;(H) € NS&. Next, let Ho be any ample
divisor and let Cc C NSg be an e-ball in NSq centered at Hp € NS@, after
fixing an Euclidean metric on NSg. For sufficiently small € > 0, the closure

cl(Ce) of C. in NSp is still contained in NSE. We call such C. precompact
neighborhood of Hy € Nsa and denoted by C, € NS&.
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Lemma 1.2. Let Hy be an ample line bundle and let C € N.Sa be a pre-

compact neighborhood of Hy € NS(S. Then for any choice of (I,d), we can
find an (Hy, I,d)-suitable Q-ample divisor H in C.

Proof. 1t follows from theorem 1 on page 398 of [Qi] and the Hodge index
theorem. |

From now on, we fix an Hy € NS('S and a precompact neighborhood
C e NS& of Hy € NS&. We will study moduli space My (I,d) with H
an arbitrary Q-divisor in C and derive estimate that depend on the set
C e NSE rather than individual H € C. We choose once and for all a
smooth C € |ngH|, where ng is a large even integer satisfying

(1.1) n3H? — no|Kx - H| —nol - H > 10,

and denote by g the genus of C in the remainder of this paper.
Let H € C. Since usually the moduli space My (1, d) is singular, it is
convenient to work with a smooth subset of it:

(1.2) Mg={EeMy(l,d)|E is p-stable and H2(End(EY)) = 0}.

(For any sheaf £, we let £nd®(€) be the sheaf of traceless endomorphisms
of £ and let Ext!(£, £)° be the trace-less part of Ext!(€, £).) My is smooth.
We let Mg, SMy and §iM  etc. be Mg N My (1, d)o, MgNSMy(I,d)
and My N SMy(I,d) etc. respectively. For any constant e < 0, we let
My (I,d)e C My (I,d) be the set of all e-stable sheaves. We summarize
some properties of these sets in the following lemma.

Lemma 1.3. There is an N depending on (X,I,C) so that whenever d >
N, then for any H € C,

(1) My (I,d) is normal, irreducible and has pure dimension 4d — I? —
3X(0X );.

(2) My(1,d) is a local complete intersection scheme;
(3) Both My and S1 Mgy are smooth;

4) Mu(1,d)° C Mu(1,d), Mu(I,d) C My(I,d) and My C Myu(I,d)
are dense. Furthermore, the codimension of the sets ﬁH(I ,d) —
My (I,d)e and My(I,d) — Mg in My(I,d) are at least 10g, where
e=—2n2H 2,
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(5) S!Mu(I,d) has dimension dimMg(I,d) — | and is dense in
SiMp(1,d) forl <10y

(6) There are B C My(1,d) and By C Mu,(I,d), each has codimension
at least —3x(Oac) + 29 + 14, such that

My (I,d) — B = My, (I,d) — Bo,

where each consists of sheaves that are both H and Hy stable sheaves.

Proof. (1) and (2) were proved in [GL, Li2]. (3) follows from [At] and (4)
and (5) can be found in [Do, Fr, Lil, Qi, Zu]. (6) is proved in [Qi]. O

We now introduce some subsets of My (I, d) associated to C'. Let 2C C
X be the obvious non-reduced subscheme supported on C. We define
(13) Af = {€ € My (I,d) | Extk(£¥,EY(-20))° # 0},

(14) A§ ={€ € My(I,d) | € is locally free and Ext®(Exc, Ejuc)® > 49 +
12} and

(1.5) A = {F € My(1,d) | Fioc = Epc}, where £ is a sheaf (on X)
locally free along C.

It is clear that A{ is closed and the others are locally closed in M (1, d).
Following [GL lemma 6.6], AS is a subscheme of My (I, d). 3 Let F € AS.
The Zariski tangent space of Ag at F is isomorphic to the kernel of the
restriction homomorphism Ext} (F, F)® — Extl(Fjac, Fiac)®-

Lemma 1.4. Let £ be any locally free sheaf on 2C. Then away from A§
the subscheme Ag is smooth and it meets S19Mp(1,d) transversally.

Proof. This follows from a standard deformation argument. We omit the
details here. O

Next we estimate the codimension of the sets A and A§.

Lemma 1.5. There is an integer N depending on (X, 1,C) such that when-
ever d > N and H € C, then codim(AS, My (I,d)) > 3g + 3 and

codim(AS, My (I,d)) > —3x(O2c) + 39 + 14.

3By this we mean Ag is an open subset of a closed subscheme of My (7, d).
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Proof. The proof given by [Do, Fr, Zu] can be adopted to cover the estimate
of codim(A§, My (I,d)). Now we show that by choosing N large,

codim(AS, My (I,d)) > 3g + 3.
Let £ € AS be any sheaf. Then since C2 > 0,
dim Ext®(€jpc, €j20)° < 2dim Ext®(€¢, &0)°.

Thus AS is contained in the set A’ of £ € My (I, d) such that &ic is locally
free and Ext®(€¢, €¢)° > 29 +6. Thus it suffices to show that codim(A) >
3g+3. Let £ € A'. Since dimEnd (§,¢)° > 29 + 6, &¢ is unstable. Let £,
be the destabilizing subsheaf of £ and L3 = £¢/L1. Then since

dimEnd (§;¢)° < 2+ h%(LY ® £1) < 2+ deg(LY ® L1),

deg L1 > deg L2+2g+4, and then & = L1® Lo. Since L1® L2 = Oc¢(lc),
the set {€|c | £ € A’} is isomorphic to a subset of Pic(C). Next, for stable
£ € N — AY, the tangent space of the set {£' € A’ | SI’C = Ec} at & is the
kernel of ExtL (€,€)° — Ext};(é]c, &,c)° which has dimension no more than

dim Ext% (€, £)° — dim Ext$(Ei¢, €i0)° < dim My (1, d) — (59 + 3),
using the Riemann-Roch and dim Ext$(€c, £ic)® > 29 + 6. Hence
codim (A’ — AY) > (59 + 3) — dim Pic(C) > 4g + 3.

Finally, since codim(A{) > 3g + 3, we have codim(AS) > 3g + 3 as desired.
This proves the lemma. O

In studying My (I, d), we often need to use the local tautological fam-
ily. Let w € My(I,d) be any closed point. A local tautological family of
My (I,d) at w is an analytic (or étale) neighborhood ¢ : U — My (1,d)
of w and a family of sheaves &y on X x U flat over U such that for any
u € U, the restriction sheaf y|x x (v} is represented by the p(u) € My (1, d).
By expressing My (I,d) as G.I.T. quotient of the Grothendieck’s quotient
scheme and applying the étale slicing theorem, we have

Lemma 1.6. Any point w € My (I,d) admits a local tautological family.

Now we discuss how to construct the morphism (0.8). We fix an N
given by lemma 1.3. For any d > N, let H € C be (Ho,I,d)-suitable.
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In [Lil], the author constructed a line bundle Lo over M (I,d) and the
associated morphism ¥¢ : M (I,d) — PE. The fiber of ¢ containing an
F € My (I,d) is described by the set S(F), which is

FV =gV and
(16) {8 € gﬁH(I, d) I e((j:VV/j:)x) o e((gVV/g)m) foreachcte X }

We summarize the property of this morphism as follows:

Lemma 1.7. Let N be given in lemma 1.8 and let d > N, H € C be

(Ho, I,d)-suitable. Then there is a line bundle Lo on My (I,d) of which the
following holds:

(1) For some largem > 0, H OMy(I ,d), LE™) is base point free. We now
let Uo: My (I,d) — PE be the induced morphism;

(2) For any & € My(1,d), ¥5' (Pc(€)) NMy(I,d) is identical to S(E);

(3) There is a codimension 3g — 2 linear subspace V. C P such that
s YV is exactly the set

d(Y) ={€ e My(1,d) | §¢ is either non-locally free or unstable}.

Proof. Following [Lil], away from the set W C Mtz (I, d), where W consists
of strictly H-semistable but Hp-u-unstable sheaves, one can construct a line
bundle L¢ satisfying (1) and (2). Namely, H(9M g (I,d) — W, LE™) is base
point free. (See Proposition 1.7 and 2.5 in [Lil] for the proof of (1) and
Theorem 4 in [Lil] for the proof of (2).) Since H is (Hy, I, d)-suitable, W
is empty. This proves (1) and (2). Now we prove (3). Let 9(C) be the
moduli space of semistable vector bundles over C of determinant Ijc and
let p:9My(I,d) — — — M(C) be the rational map sending £ to €c when it
is semistable. Then there is an ample line bundle Lg on M(C) such that
p*(Lc) & Lo over where p is defined. Further, for any s € H(9(C), LE™),
p*(s) extends to My (I, d) and the vanishing locus of this extension consists
of all £ that satisfy one of the following conditions: (1) ¢ is non-locally
free; (2) ¢ is locally free but unstable or (3) £¢ lies in s71(0). (See [Lil,
Proposition 2.5] or the proof of [Li2, Lemma 4.12] for proofs.) Thus, if we
choose 3g — 2 sections of L™ with no common vanishing locus, then the
extensions of their pull backs on My (I, d) will define a codimension 3g — 2
linear subspace V C P that has the desired property. O
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Note that in the proof, we only used the fact that all sheaves in g (I, d)
are Hoy-p-semistable. The extra requirement that H be (I, d)-generic will be
useful later because of the following lemma.

Lemma 1.8. Let N be as before and let d > N, H € C be (I, d)-generic.
Then the subset SMy(I,d) C My(I,d) is Cartier.

Proof. This lemma is proved in [Li3, Lemma 2.7]. Note that when d is large
and H is (I, d)-generic, any semistable but not y-stable sheaf is non-locally
free. a

A recent result of O’Grady shows that there are no complete subsets of
My (I,d)° of small codimension. As an application, we have the following
existence Lemma:

Lemma 1.9. Let C C X be as before and H € C be any polarization. As-
sume Vo is a rank 2 locally free sheaf on 2C such that dim Homac(Vo, Vo) <
4g + 12. Then there is an N such that whenever d > N, SiMy(1,d) inter-
sects each irreducible component of Ago — A, assuming it is non-empty.

Proof. We first prove the lemma in case H = Hy. We let Ago(Ho,d) be
the subset Alc,'0 C Mu,(I,d) defined in (1.5) and let R be an irreducible
component of ASO (Ho,d) —A§. Note that the codimension of R at a general
£ € R is at most

dim Ext}-(Vo, Vo)® = —3x(O2c) + 4g + 12.

By the main theorem proved in [OG2|, for large d the closure cl(R) of
R in My, (I,d) intersects SMpy,(I,d). However, since the dimension of
My, (I,d) — My, (I,d) is much less than the dimension of R for large d
by Lemma 1.3, cl(R) intersects SMp,(I,d). It remains to show that RN
S1Mp,(I,d) # 0. Indeed, by combining the deformation argument in the
proof of Theorem 6.2 of [GL] and the estimate of codim(A§), we know that
cl(R) — R can not be a codimension one subset of cl(R). Therefore, RN
SMu,(I,d) # 0 because SMp,(I,d) is a divisor. By the same deformation
argument again, one concludes that R contains sheaves £ € SMpy, (I, d) that
has length £(EVV/E) = 1. This shows that RN $1My, (I, d) # 0.

Now we prove the Lemma for arbitrary H € C. By (6) of Lemma 1.3,
there are B’ C Ago (d,H) and B} C Ago (d, Hp) such that

A$,(d, H) — B' = A} (d, Ho) — B
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and that the codimension of B’ in Ago(d, H) and that of B} in Ago(d, Hy)
are at least 2. Therefore since Alc,'0 (d, Ho) N $19Mp, (I, d) is non-empty and
is a divisor of Ago (d, Ho),

(A, (d, Ho) — By) N S190 (1,d) # 0.

This shows that Ago (d,H) N $1My(1,d) is non-empty. This proves the
Lemma. O

We close this part of discussion with a lemma concerning the normal
bundle of $;My(I,d) C My (I,d).

Lemma 1.10. Let F € S My be any sheaf and let S(F) ¢ SiMg be
defined in (1.6). Then there is a normal slice U of SiMyg C My along
S(F) such that U — S(F) has trivial first and second homology groups (with
rational coefficients).

Here by a normal slice of S; My C My we mean an analytic submanifold
U that intersect §1 M, transversally along S(F).

Proof. Let S = S(F). Clearly, S = P! since £ € S are constructed as
kernels of FVV — O, where z = supp(F"V/F). From Lemma 1.7, we
know that the morphism Yo contracts Si My to X x Mg_l whose fibers
are exactly S(€) for £ € S M. Therefore, if we choose a smocth analytic
surface N containing S(= S(F) for some F € S1My) that meets S M
transversally along S C S My, then the restriction of Yo to IV contracts
S C N. Therefore, the normal bundle of S C N is Og(—I), the line bundle
of degree —I < 0, and a tubular neighborhood U of S C N, which is a
normal slice of S My C My along S, satisfies H1(U — S) = Ho(U — S) = 0.
This proves the lemma. ‘ O

Remark 1.11. A straightforward calculation shows that S C N is indeed
a (—2)-curve. Since we do not need this information in this paper, we will
leave its proof to the readers.

In the remainder of this section, we will consider issues concerning ho-
mology of singular spaces. One type of technical results that we need in the
future says that for certain closed subset A C My (1, d),

Hy (Mg (I,d) — A, SMp(I,d) — A) — H;( Mg (I, d), SMy(I,d))

is an isomorphism. This type of results are certainly known to the experts.
Due to the lack of reference, we shall provide proofs of them.
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Lemma 1.12. Let Z C P™" be any irreducible quasi-projective variety
of pure dimension n and A,V C Z two closed algebraic subsets (V may be
empty).

(1) Assume V is Cartier, A C Z has codimension at least k and Z —V is
locally defined by at most r + | equations, then

Hi(Z - AV - A)— Hi(Z,V)
is an isomorphism fori < (k—1)—1 and is surjective for i = (k—1)—1.

(2) Assume Z C P™T7 is locally defined by at most T + | equations and
T C Z is the locus where Z is not locally irreducible. Then dimT >
n—1-2.

Proof. Let § be a Whitney stratification of Z by algebraic subsets so that
V and A are union of strata. Let Si,---,Sy be strata of A with non-
decreasing dimensions and let A; = U;j<;Sj. Then the lemma follows if the
homomorphism

H(Z - Aj,V —Aj) — Hi(Z — Aj_1,V — Aj_y)

has the stated property for all j. Because of this observation, we only need
to prove the lemma under the assumption that A is already a stratum in S.
Since A C Z is a stratum and A C Z is closed, there is a compact (in the
ordinary topology) Ag C A such that ((Z — A) U Ag, (V — A) U A) has the -
same homology group as (Z, V). Hence it suffices to show that

Hi(Z — A,V — A) — H;((Z — A) U Ao, (V — A) U Ay)

has the desired property. Let pg € Ag and let N, be a normal sliceof A C Z
at po. We claim that the pair

(1.7) (8B<(po) N Npo; dBe(po) N Npy N V')

is homologically (k — ! — 2)-connected for 0 < € < 1. Indeed, the case when
po € V follows directly from theorem 2 and the remark preceding it on page
156 of [GM]. When py ¢ V, we let (po, Np,) C (0,C®) be an embedding
and let hy,---,hy, t = R — dim Ny, + 7, be the defining equations of Np,.
Then the clalm follows from applying the same theorem in [GM] to map
m:CR — CR+t 7(2) = (2,h.(2)), and the linear subspace C® x {0} c CR+.
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Now it is easy to prove (1) of the Lemma. By Thom’s first isotopy
lemma [GM], we can find a set U C (Z — A) U Ay containing Ay with a
projection 7 : U — Ag such that the restriction of m to A is identity and
that m:U — Ag is an INp, bundle over Ag. (i.e. U is a union of normal slices
of A C Z at p € Ao, each homeomorphic to Np,.) Because (1.7) is (k—1—2)-
connected, (U — Ao, (U—Ap)NV) is (k—1—2)-connected as well. Finally, we
apply the Mayer-Vietoris sequence to pairs (Z — A,V — A) and (U, UNYV).
Because (U, UNV) has trivial homology groups and (U — Ag, (U --Ag)NV) is
(k—1—2)-connected, (1.6) is an isomorphism for 7 < k—[—1 and surjective
for i = k — I — 1. This proves the first part of the Lemma.

For the second part, we let p € T be a general point and N, be a normal
slice of T C Z at p. Since T is the locus of points where Z is not locally
irreducible and p € T general, B¢(p) N Ny, is not connected for 0 < e K 1.
However by the proof of (1), Ho(0B¢(p) N Np) = Q if codim(T, Z) —1—2 > 0.
Thus we have codim(T, Z) < [ + 2. This proves the Lemma. O

For T C Z that does not have the property of the previous Lemma, we
still can choose representative of any homological class that intersects T in
the “least” possible way.

Lemma 1.13. Assume A, V C Z as in the previous Lemma. Assume
dimA <n-1,dmANV <n—-2and V C Z is Cartier, then fori =1
or 2, any class in Hi(Z,V) can be represented by a cycle ¥ such that XN A
has real dimension at most i —1 and XN ANV has real dimension at most
i—2. If Z -V is locally irreducible near A, then we can choose ¥ so that
YNA and 2NANV have real dimension at most © — 2. Furthermore, if
dimANV <n-—3 and Z —V is locally irreducible, then we cen choose ¥
such that XN ANV has real dimension at most i — 3.

Proof. We prove the case where i = 2, V = () and Z is locally irreducible.
The other case is similar. Note that the only case we need in this paper is
when i = 1 and 2. Let S be a Whitney stratification of Z by subvarieties such
that A is a union of strata. Let Si,---,S, be strata in A of nor-decreasing
dimension. We pick a 2-cycle X representing a class in Hy(Z). We say X
meets A generically near A C A if there is an analytic neighborhood O4 of
the closure A of A C Z such that ENANO, is discrete. We claim that if
meets A generically near S;U---US;, then we can find a new representative
¥ so that ¥ meets A generically near S; U---U Sry1. Note that then by
induction on 7, we get a desired cycle ¥’ that intersects A at discrete points.
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We now prove the claim. Let S = S,4;. Without loss of generality we can
assume X N S is a piecewise smooth subset. Let W = ¥ N S. Since the
closure of S is contained in the union of Si,---,S;, W is compact. Thus
we can find a compact neighborhood N of W such that N is a fiber bundle
over Wy, W C Wy C S, with projection 7: N — Wy, such that whose fibers
are homeomorphic to N, N Be(p), where N, is a normal slice of S C Z at
p € S and 0 < ¢ < 1. Since Z is locally irreducible along S, r~(pt) is
non-empty and connected. Hence by a standard obstruction argument, we
can find a cycle & such that £|Z — 5 = Z|Z — 5 and £ NS is discrete,
where ;\’, is the interior of N. Not only that, by perturbing ¥ in a small
neighborhood U of £ N S we can assume NUNA = £NS. Thus & meets
S1,+ ¢+, Sr41 generically. This proves the claim and then the first part of
the Lemma. The furthermore part can be proved using the argument after
(1.7) and that of [GM]. O

Lemma 1.14. Let S € S be any stratum and let ¢ € S C Z be any point.
Then if ¥ C Z is a closed cycle contained in U;c aS;, where A is a subset of
S, and £ N S is discrete, then we can find a new representative X' C Z of
[Z] € Hi(Z) such that &' C (UjeaS; — S) U{q}.

Proof. Let U be a cone neighborhood of ¢ € Z that respects the stratification
S. Let p € ¥ NS. We choose a differentiable path p:[0,1] — S connecting
p with a p; € U and let Ny be a continuous family of normal slices of
S C Z along p([0,1]). By shrinking Njg 1) if necessary, we can assume Njg )
is homeomorphic to N, x [0,1], say by ¥ : Np x [0,1] — Njg1). Next, by
perturbing ¥ near p, we can assume ¥ N Be(p) C Np for 0 < e « 1. We
fix a sufficiently small € > 0 so that ¥((B¢(p) N Np) x {1}) C U. Now let
A; =X — B(p), A3 = ¥(T x [0,1]), where T' = 9(X N B:(p)) and Aj is the
cone over ¥(I' X {1}) in U. Then ¥/ = A; U A2 U A3 is a representative of
[X] with #(Z' N S) < #(S). By performing the above perturbation at each
p € ¥N S, we will get a desired representative of [X] € H.(Z). O

2. Unstable sheaves over curves.

The goal of this section is to investigate the local irreducibility of the
space of p-unstable sheaves over a smooth curve. This will be needed in
studying the singularity of the set Y C My (I, d) mentioned in the intro-
duction.
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We first fix the convention we will use throughout this section. Let C
be a smooth curve of genus g > 3 and £ a rank 2 p-unstable sheaf on C.
Since we will be interested in sheaves with torsions, we will generalize the
notion of p-stability to arbitrary sheaves. A sheaf F of rankF > 0 on C
is p-stable (resp. p-semistable) if for any locally free quotient sheaf F — L
with rank £ < rank F, we have u(F) < p(£) (resp. <). Note that there are
sheaves with torsions that are u-stable. As usual, u-stable and p-semistable
are open conditions. Let (A4, F4;0,€) be a versal deformation space of &
of fixed determinant of even degree. (We will recall the definition of versal
deformation space in Definition 2.3.) Here, A is a scheme containing 0 and
Fa asheaf on C x A restricting to £ along C x {0}. We define

(2.1) Ap = {w € A| Fy is p-unstable}.

Ay is closed in A. Since £ is p-unstable, 0 € Ag. As usual, we say a variety
Z is locally irreducible at z € Z if for 0 < € < 1 the smooth locus of the
e-neighborhood B.(z) N Z is connected. In this section, we shall prove the
following technical results concerning Ay C A.

Proposition 2.1. With the notation as above, then the subvariety Ay C A
has pure complex codimension g+ 1 at 0 € Ag.

Proposition 2.2. Assume & is locally free, then the subvariety Ay is locally
irreducible at 0 € Ag.

We first recall the notion of algebraic versal deformation space of &.

Definition 2.3. Let Z be a projective scheme and let £ be a rank two
sheaf over Z with det& = M. An algebraic versal deformation space of £
(resp. of fixed determinant) is a collection (A4, F4;0,E), where 0 € A is a
quasi-projective scheme and F4 is an algebraic family of sheaves on Z x A
flat over A (resp. with det F4 = p5 M, pz:Z x A — Z) such that

(1) the restriction of F4 to Z x {0}, say Jo, is isomorphic to £, and that
the Kodaira-Spencer map TyA — Ext!(Fo, Fo)? induced by the family
F4 is an isomorphism;

(2) For any pair of affine varieties Sy C S coupled with a sheaf £ on
Z x S flat over S such that Sop C S is closed, detEs = p;M and
Esjzxs, = qZ8|ZxSO, where qz : Z X Sg — Z, there is an analytic
neighborhood U of Sp C S and an analytic map 7n: (U, Sy) — (4,0)
so that the restriction of £s to Z x U is isomorphic to (1z x n)*Fa,
extending the given 1somorphlsm Fo =& and Es|zx50 = >~ g% €.
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The situation in which we need the versal deformation space is either
when Z = C, or when Z = 2C and & is locally free (2C is a subscheme
of X, where C C X is a smooth curve in |ngH|). The existence of ver-
sal deformation spaces in these settings is known for long time (see [Ar]).
Here we outline the proof for Z = C since we need some properties of this
deformation space that can not be found in literatures.

We now sketch the construction of versal deformation space of € of fixed
determinant on C. By choosing a sufficiently ample line bundle H on C,
we can express £ as a quotient sheaf of R = @VO(H™1) with N = h%(£ ®
O(H)). Let Q (resp Qp) be the Grothendieck’s Quot-scheme parameterizing
all rank 2 quotient sheaves F of R (resp. with det F = M). We fix a point
0 € 9 so that Fy = £ and the associated quotient sheaf R -2 Fo induces
isomorphism CV = H(Fy ® O(H)). Because C is a smooth curve and H
is sufficiently ample, £ is smooth at 0 [Ma, p594]. Further, the morphism
9 — Pic(C) that sends R — F to det F is a submersion. Hence Qg, which
is the preimage scheme of M € Pic(C), is smooth as well. Also, the tangent
space of Qg at 0 belongs to the exact sequence

(2.1) 0 — Hom(Fo, Fo) — Hom(R, Fo) L Tofdo — Ext!(Fo, Fo)® — 0.

Now we let A C Qg be an affine smooth subvariety containing 0 so that the
induced homomorphism

ToA — Todo — Ext! (Fo, Fo)°

is an isomorphism. Let F4 be the restriction to C x A of the universal
quotient family. Then the data (A, Fa;0,Fo) satisfies 1) of the definition
2.3.

Now, we show that they also satisfy 2) of the definition 2.3. Let Sp C
S and &s be given in (2). Since Egzxg, is isomorphic to the pull-back
of .7-'0(— £), we can express Es|zxs, as the quotient sheaf of ¢3R using
R 2% Fy. Since H is sufficiently ample, that Sy is affine and closed in
S, we can extend qzR — Eg)zxs, to a neighborhood of Sp C S. Then by
shrinking S if necessary (still containing Sp), there is a morphism g: 5 — Qo
with g(Sp) = 0 so that &g is isomorphic to the pullback of the universal
quotient family. Next we will find an analytic neighborhood U of 0 € Qg
and an analytic map 74 :U — A so that 74 o g is the desired map 7. Note
that Qg is a G-scheme with G = GL(N,C) = Hom(R,R). Let Gy be the
stabilizer of 0 € Qg and let N be a normal slice of Gog C G at 1 € Gy.
Then the orbit N - 0 is smooth at 0 and its tangent space at 0 is the image
j(Hom(R, Fo)) C ToQo. Thus N -0 and A meets transversally at 0. In
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particular, there is an analytic neighborhood V_ of 1 € N and an analytic
neighborhood V; of 0 € A so that V_ x V, — Qq, (u—,uy) — u_ - uy, is
one-to-one. Let U be the image of V_ x Vi — Qg and let

(2.2) me il — Vi

be the induced projections. Then for any analytic variety B and any analytic
map £: B - U C Qo, &(2) = m— 0&(2) - (m4 0 £(2)). Hence the sheaf £g
in the pullback quotient family hp : p;R — £p via 1¢ X £ and the sheaf
&y in the pullback quotient family bz : pER — Ef via 1g X (74 0 &) are
isomorphic (analytically). Back to g: S — Qo, we let U = g~ () and
n =m40g:U — A. The previous reasoning shows that (n, U) satisfying (2)
of the Definition.

Remark 2.4. For w € V; C A, because T,,9Q0 — Ext!(Fy, F)? is sur-
jective and Ty (V_ - w) — Ext!(Fy, Fo)? is trivial, Ty A — Ext!(Fy, Fu)°
must be surjective.

We now prove a technical lemma concerning components of germ of
0 € Ap. In the following, for any point w in an algebraic set W, we will use
germ(W, w) to denote the e-ball B.(w) of w € W, where 0 < ¢ < 1, under
some Riemannian metric.

Lemma 2.5. Let Eg, where sg € S is a smooth curve, be a family of u-
unstable sheaves satisfying Es, =2 €. Then if so € U C S and ny and n2 are
two analytic maps from (U, so) to (A,0) given by (2) of the definition 2.3
based on the family Eg, then the images m1(germ(U, so)) and n2(germ(S, so))
are contained in the same irreducible component of germ(Ay,0).

Proof. We continue to use the notation developed in the argument after
Definition 2.3. Let &y = Egicxy- Since A C Qo, the map 7;:U — A is given
by quotient sheaf homomorphism f; : pg R — &y, which is determined by
the induced isomorphism f;: &N Ocxv — pu«(Ev ® PEO(H)) (at least near
0€ ). Letj=f, 'ofi € Hom(Og]:U, ngU). g induces a homomorphism
g:PER — pER such that fi = foog. Since 71(s0) = 72(s0) as quotient
sheaves, §(sp) = c-id for some constant c. Next, let T" be a connected analytic
neighborhood of 1 € GL(N) and let ¥:T x U — Qg be the map defined by
U(h,s) = h-n(s). By shrinking T and U if necessary, we can assume the
composition of ¥ with the local projection 7 of (2.2) is well-defined. Then

i (germ(U, o)) C w4 0 ¥(germ(T x U, (1, s0))) C germ(Ap,0) for i =1,2.
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Because T is irreducible, n;(germ(U, so)) and n2(germ(U, sp)) must be con-
tained in the same irreducible component of germ(Ap,0). This completes
the proof of the lemma. O

We now turn our attention to the proof of the Proposition 2.1 and 2.2.
For simplicity we will assume deg& is even, since these are the only cases
needed in this paper. The proofs of the odd degree cases are parallel. From
now on, we assume deg& is even. Then by tensoring £ with M~1, where
M®? = det £, we can assume without loss of generality that det £ = Oc. Let
U be the set of all y-unstable sheaves of determinant O¢ whose destabilizing
(locally free) quotient sheaves have degree —1 and U be the subset of U
consisting of sheaves having no traceless automorphisms. Note that sheaves
in UY are necessarily locally free.

We first show that unstable sheaves can be deformed to sheaves in U?.
We will consider the case of locally free sheaves in Lemma 2.6 and non-locally
free case in Lemma 2.7.

Lemma 2.6. Let £ be a rank 2 locally free p-unstable sheaf with det & =

Oc, then there is a deformation of £ so that whose generic members are in
uo.

Proof. Since £ is p-unstable and locally free, we can find a degree 1 invertible
sheaf £ and possibly a 0-subscheme (divisor) z C C such that

(2.4) 0—L—E— LY -200,—0

is exact. We choose a smooth affine curve so € S and an invertible
sheaf L5 on C x § such that Lgicx(s) = £ and that for general s € S,

Ho(ﬁgzc>< (s) = 0 (note g(C) > 3). We now consider the sheaves Ls and

L5' ® T on C x S, where T is the ideal sheaf of z x {sp} € C x S. Clearly,
both sheaves are flat over S and the restriction of E_;l ®Z to C x {so} is
L71(—2) ® O,. We consider the Og-module Ext}, s(L5' ® Z, Ls) and the
restriction homomorphism

(2.5) Exthys(L5' ®Z, Ls) = Exth (L7 (—2) © O, L).

By base change and cohomology theorem, (2.5) is surjective since all higher
extension groups vanish. Therefore we can find a

vE Extéxs(ﬁgl ®Z,Ls)
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so that whose associated exact sequence
0—9£3——>€——>£§1®I-—>0

restricts to (2.4) along C x {sp}. Finally by choosing v general, we can
assume the restriction of the above exact sequence to general fibers C x {s}
does not split. Therefore for general s € § H° (Sndo(gs)) = (0. This proves
Lemma 2.6. O

Lemma 2.7. Let £ be any rank two p-unstable sheaf with torsion having
det £ = Oc¢, then there is

(1) a deformation of € so that whose general members are p-unstable and
locally free;

(2) a deformation of £ so that whose generic members &, are in Uy and
0(EL) = 1, where & is the torsion part of &,.

Proof. Let L be the (locally free) destabilizing quotient sheaf of £. Then
there is another invertible sheaf M and a torsion sheaf 7" such that

(2.6) 0 —Mp7T —E—L—0

is exact. Obviously, we can deform £ with fixed determinant so that the
general members belong to (2.6) with M (resp. L) replaced by invert-
ible sheaf M’ (resp. L') of identical degree and 7 replaced by @I_,0,,,
where z; € C are distinct. Since deformations of deformations are defor-
mations, to prove this lemma it suffices to consider those £ whose torsion
T = ®]_,0Oy;. We first prove (1). Let z = U]_;z; C C be the 0-subscheme.
Then M & 7 is the restriction to C x {sp} C C x S, where 30 € S is a
smooth affine curve, of the sheaf pf,L™! ® Z. (Z is still the ideal sheaf of
zX {so} C C x §.) Similar to the proof of Lemma 2.6, we can choose an
element in Exté.x S(p"&,C, pgﬁ‘l ® I) whose associated exact sequence

0 —pslL @I — Eg — pL — 0

restricts to (2.6) along C X {so}. (This is possible again by the base change
and cohomology theorem.) The general members of g satisfy the conclusion
of (1). Next we construct deformations satisfying (2). Let & = £/Og,.
Then using the argument for (1) we can find a deformation of £ with fixed
determinant such that whose general members are locally frec and have
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L as their destabilizing quotient sheaves. Let &, be its general member.
Note that det&, = O¢(—z1). Then following the argument in the proof
of Lemma 2.6, we can deform &, (determinant fixed) to sheaves having
degree -1 destabilizing quotient sheaves, say &,. Therefore, &, ® O, is a
deformation of £ whose general members belong to U4; and have length 1
torsions. This proves the second part of the Lemma. O

With the material prepared, it is now easy to prove the Proposition 2.1.

Proof of proposition 2.1. Since every u-unstable sheaf £ admits a deforma-
tion whose general member belongs to U?, Ag NUY is dense in Ag. Thus to
prove Proposition 2.1 it suffices to show that for w € Ag NUY close to 0,
codim(AgNUY at w) = g+1. Let Fa be the family associated to the versal de-
formation space A of £, let w € AgNUY and let (A, Far; 0/, Fyy) be the versal
deformation space of F,,. Then there is an analytic neighborhood U of w € A
and an analytic map f:(U,w) — (A4,0') such that (1¢ x f)*Fa is (analyti-
cally) isomorphic to F4 restricting to C x U. Note, U NUY = f~1(A' nuY).
Therefore Proposition 2.1 follows from (a) codim(A’NUY, A’) = g+1 and (b)
f is a submersion at w. We first prove (b). Since both A and A’ are smooth,
it suffices to show that the differential df : T,yA — T A’ is surjective. But
this follows from the remark 2.4 since w € Ay is close to 0. For a), we first
note that the obvious map A’'NUY — UY is one-to-one, at least near 0’ € A'.
Hence dim(A4’' NUY) = dimU. We claim dimUP = 2g — 4. Indeed, since
sheaves in U belong to (non-splitting) exact sequences

(2.6) 0—L—E—LT1—0

with deg £ = 1 and H°(L®?) = 0, the correspondence between £ € U and
exact sequence (2.6) is one-to-one modulo automorphisms of £71. Hence
the dimension of U at £ (in (2.6)) is

dim Pic(C) + dim Ext'(£71, £) — 1,

which is g 4+ (g — 4). On the other hand, since Ext®(Fy, Fy)° is trivial, A’
is smooth at 0/ of dimension dim Ext!(F,, ), which is 3¢ — 3. Therefore
codim(A’ NUY, A') = g + 1. This completes the proof of proposition 2.1. O

We now turn our attention to the proof of proposition 2.2.

Proof of proposition 2.2. Let | be the integer so that £ has degree —(1 +1)
destabilizing quotient sheaf. Let B = germ(Ao,0). By Lemma 2.6, BNU;
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is dense in B. Since sheaves in U all have degree -1 destabilizing quotient
sheaves, we can define a morphism

p: BNU; — Pic™}(C)

that sends F to its destabilizing quotient sheaf. (Superscript —1 stands for
the degrees of bundles). Clearly, for each irreducible component R of B,
p(RNU,) is not contained in any subvariety in Pic™!(C). Hence for any two
irreducible components R; and Ry of B, we can find a smooth (analytic)
curve so € S, amorphism j5: (sg, S) — Pic™}(C) and morphisms 7;: (sg, S) —
(0, Ag), where i = 1,2, such that 7;(S — so) C U, germ(0,7;(S)) C R; and
that after restricting to ;' (R; NU) the following triangle are commutative:

ri (RiNUy) —— RN

I I
Pic™}(C) =—— Pic™}(0).

Let £ be the invertible sheaf on C x S that is the pull-back of the Poincare
bundle on C x Pic™!(C) via 1¢ x j. We need the following technical result
that will be proved shortly.

Sublemma. There is a 1-dimensional subscheme D; C C x S flat over S
with deg(D; N C X {so}) =l and a locally free sheaf G; on C x S such that
G; belongs to the exact sequence

(2.7) 0— L7YD;) — G — L —0,
and (1¢ X 13)*(Fa) and G; are related by the exact sequence
(2.8) 0— (l¢ x1;))*Fa — G — Op, — 0.

We continue our proof of the Proposition assuming this Sublemma. The
strategy is to construct a family F of p-unstable locally free sheaves on
C x Z, where Z is smooth and irreducible, that has the following properties:
(2.9) There are curves 7; : S — Z with ¢ = 1,2 such that the pull-backs
(1¢ x F,)*]T' are isomorphic to (1¢ X r;)*Fa respectively and
(2.10) there is a connected Zo C Z containing 71(so) and 72(so) such that
Ficx 2, is isomorphic to pi€, where pc:C x Zg — C.

Once we have such a family, then we take an affine T' C Z such that Tp =
TN Zy is closed in T and contains 71(so) and 72(sp). Then Tp C T' with the
family ~7:-|C><T satisfy the condition in (2) of Definition 2.3. Therefore, we get
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a morphism f:U — Ay defined over an analytic neighborhood U of Ty C T.
By Lemma 2.5, f(UN7;(S)) and r;(.S) are contained in the same irreducible
component. However, since T' is irreducible and smooth and T is connected,
BN f(U) is contained in an irreducible component of B, after shrinking U if
necessary. This is possible only if 71(S) and ro(S) are contained in the same
irreducible component of B. Since we can choose r1 and r2 general, R; and
Ry must be identical. This will complete the proof of the Proposition.

We now construct the family F on C x Z with the desired properties.
Morally speaking, Z will be a variety consisting of data {G — Op}, where
D is a degree [ effective divisor in C, G is an extension of £ by £L71(D)
for some degree —1 invertible sheaf £. Let T be an affine open subset of
Hilb!(C) containing D; N C x {sg} and Dy N C x {sp}, and let D be the
restriction to C' x T' of the universal divisor. We consider the sheaves 7, gL
and 7%, gL 71(D) on C x S x T and the relative extension sheaf

(2.11) gwté‘xSxT/SxT(’”Z‘xS‘c’WE'XSE_I(D))a

where moxs and woxr are projections from C' x S x T to its factors and
D= T5e (D). Since (2.11) is coherent, we can represent it as a quotient
sheaf of a locally free sheaf V with the quotient homomorphism g. Let V'
be the total space of the vector bundle associated to V, m:V — § X T the
projection and ¢ € H(n*V) the tautological section (i.e. for any v € V over
z€SXT, pp, =v €V). We denote pcxs (resp. pcxr) be the obvious
projection from C'x V to C'x § (resp. C' xT). Then there is a rank 2 locally
free sheaf G on C x V belonging to the exact sequence

0— pz'xS‘C—l(pE';T(D)) I g — pz’xS[' —0

defined by the extension class that is the image of the (tautological) section
( under

™y 5 71'*‘c"xté'xS><T/SxT (WE'XSL’ Wéxsﬁ—l(ﬁa;T(D)))
- &L'té'xV/V (pé'xsﬁa pé’xS‘C—l(pE’iT(D))) :

(Note that V is affine since T and S are both affine.) We next construct the
family F. We consider the sheaf

W = WV*HZﬁCX‘/(g, OPE‘;T(D)), TV . C X V — V.

W is locally free since G is locally free and pE}(T(D) is flat over V. Let W
be the vector bundle associated to YW and let Z’ be the associated projective
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bundle P(W) with projection 7:Z" — V. (Here we use the convention that
P(C™) =C" — {0}/C*.) Let

H: (e x 7#)*G — (1¢ x ﬁ)*OPELT(D) ® Oz (1)

be the tautological homomorphism. We let Z C Z’ be the open subset
consisting of those z € Z’ such that the restriction H|cx{z) are surjective,
and let F be the restriction to C X Z of the kernel ker{Hcxz'}. We claim
that (Z, F) is the data we want.

We first show that F satisfies condition (2.9). Let fi, f5:S -- Hilb!(C)
be morphisms induced by divisors D; and D, respectively. After shrinking S
if necessary we can assume f; factor through T. We denote by f;:S — T the
induced morphism. Thus (1¢ x fi)~}(D) = D;. Then (2.7) asscciates to a
section a; € Extl, ¢(£, £71(D;)) that induces a curve g;: S — V commuting
with the projection V' — S. By the construction of G, (1g x gi)*g = G;.
Further the quotient homomorphism

(1o % 4)*G = Gi — Op, = O(1cxs)-1(D)
induced by (2.8) will provide us morphism 7;:.§ — Z that satisfies (1¢ x
7i)*F =2 (1¢ X r;)*Fa, as desired.
We now show that the family satisfies (2.10). Let Zs, be the fiber of Z
over so € S and let Zp be the subset of z € Z;, such that Figx(,) =E. We

claim that Zj is connected. Let z1, 20 € Zy be any two points. Let t(z;) € T
be the image in T of 2; under the obvious projection and Dy(,;) C C the

divisor corresponding to t(z;) € T. By construction, & = Fiox{z=) belongs
to the exact sequence

(2.12) 0—&—G — Op,.,, — 0
and G; belongs to the exact sequence
0— Eal(Dt(zi)) — G — Ly — 0,

where Lo = L|ox{s,}- Also the cokernel of G;(—Dy(z;)) — £ induced by (2.12)
is ODt(z,;)’ since G; has degree ! and has degree —1 destabilizing quotient
sheaf, and £ has degree 0 and has degree —(1 + [) destabilizing quotient
sheaf. Hence

(2.13) 0 — Gi(=Dy(z)) — € =5 Op,,) — 0

is exact. Obviously, one can recover (2.12) from (2.13). Now we prove the
connectivity of Zy. Since T' is irreducible, there is an irreducible and affine
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curve R C T containing z; and z9. Let Dy be the restriction of the universal
divisor D to C x R. Then since R is affine, we can find a homomorphism

(2.14) ag : € ®og Ocxr — Opy

such that its restriction to C' x {z;} is a; in (2.13). Let Gr(—Dgr) be the
kernel of ap and let Ry C R be the open subset of w € R such that Gpjox {w}
have degree —1 destabilizing quotient sheaves. Then if we let Lg, be the
sheaf on C x Ry that is the pull-back of £y via the projection C x Ry — C,
then Ggr, belongs to the exact sequence

(2.15) 0 — Lz (Dr,) — Gry — Lr, — 0,

where Dp, = (Dr N C x Ryp). From our construction of Z, (2.15) provides
us a curve Ry — Vg, where Vj, is the fiber of V over s, and then (2.14)
provides us a curve Ry — Zs, that contains 21 and 2. Since Ry is irreducible
and z1, 29 € Zy is arbitrary, Zy is irreducible. This completes the proof of
Proposition 2.2. a

We now provide the proof of the Sublemma.

Proof of the Sublemma. We let i be either 1 or 2 and let £ = (1¢ X
7;)*Fa. Because 7;(S — so) C Ao NUY and because destabilizing subsheaves
of unstable (locally free) sheaf is unique, there is an invertible sheaf £g on
C x S so that for s € § — sg, L, is the destabilizing subsheaf of €. Hence
there is a homomorphism L£g — £g that induces an exact sequence

2.16 0-———>,Cs——>85—ﬁ—>£—1®12——>0,
S

where Zy; is the ideal sheaf of a zero-scheme ¥ C C'x S supported on C x {sp}.
We claim that there is an effective divisor Dg C C X S containing 3 flat over
S such that Dg has degree [ along fibers of C x § — S, i.e. DgN(C x {so})
has degree I. Indeed, since & is locally free at each z € supp(X), Iy, is
generated by two sections, say ff, f§ € Ocxs,.. Without loss of generality,
we can assume

(2.17) fflox{so} generates the locally free part of Zs|ox (s} at 2-

Then the union of {ff =0} C C x S for z € supp(X) form a divisor Dg flat
over S near the fiber C x {so}. By shrinking S if necessary, we can assume
Dg is flat over S. We now check that it has degree [ along the fiber C' x {s¢}.
Because of (2.17), by restricting (2.16) to C x {so} we get

0 -_— ﬁsO i 830 Es'ﬁ) S—ol(_DSO) @ T — 0,
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where Dy = Dg N (C X {so}) and 7 is a torsion sheaf. From this we see
deg Ds, = [ since £, = £ has destabilizing quotient sheaf of degree —(1 +1)
and deg L, = 1.

Now by taking the preimage of L5'(—Dg) C L5'®Ts under 3 in (2.16),
we get a locally free sheaf Fg that belongs to the exact sequence

(2.18) 0— Lg — Fs — L5'(—=Ds) —0
and the exact sequence
0 —Fs—Es—T —0,

where 7 = Cgl ® Ix/L5' (—Ds). Since Iy, is generated by f7 and f§ and
ngl(—Ds) is generated by f{ at z € supp(X), 7 = Opg. Therefore, we can
recover Eg by

(2.19) 0 — Es — Fs(Ds) 25 Ops — 0.

Thus G; = Fs(Dg) with exact sequence (2.18) and (2.19) is the data required
in the Sublemma. This finishes the proof of the Sublemma. O

3. Deformation of locally free sheaves.

In this section, we will construct the homology mentioned in the intro-
duction that will lead us to the proof of the vanishing of (0.9).

We fix (Ho,I), a C € |ngHp| as in (1.1), a precompact neighborhood
Cce NS&S of Hy € NSB and the integer N given in Lemma 1.3 and 1.5. We
let W C My (I, d) be the subset consisting of £ such that & ¢ is locally free
and unstable. In this section, we will prove

Proposition 3.1. Letd > N and let H € C be (Ho, I, d)-suitable, then we
have
Hi(W,WﬂSQJTH(I,d)) =0, 1<2.

To prove this proposition, we need to show that every homology cycle
(Zt,0%H) — W, WNSMy(I,d)) is homologous to zero. We will construct
such homology directly by using the deformation of sheaves that will be
constructed shortly.

We will construct such deformation of sheaves following [La, OG1]. The
idea is as follows: Let £ be any rank 2 locally free sheaf on X of determinant
I such that its restriction to C has destabilizing quotient sheaf £ of degree
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%I -C — 1. (Note I - C is even.) By abuse of notation, we will view L as
a sheaf of Ox-modules by the inclusion C C X. Let F be the kernel of
€ — L. Then &€ and F are related by the exact sequence

(3.1) 0—F —E&—L—0.

Since the composite £(—C) — € — L is trivial, we have £(—C) C F, which
induces the exact sequence

(3.2) 0— &(-C) — F— L@ Oc(lic) — 0.

By replacing £7! ® O¢(I¢) with a degree 1I-C + 1 invertible sheaf of
Oc¢-modules L', we obtain £ based on the exact sequence

0—&(-C)—F—L —0

that are deformations of £. Note that the £’ so constructed depend only on
the homomorphism Fjc — L.

We now carry out this construction in details. First note that the re-
striction of F to C is an extension of the degree r; = %I - C + 1 sheaf
L7 ® Oc¢(Iic) by the degree rg = 1I- C — C? — 1 sheaf L(—C). Accord-
ingly, we will let Y be the subset in the moduli space of stable rank two
locally free sheaves on C consisting of sheaves that are extensions of degree
r1 invertible sheaves by degree ry invertible sheaves. Y is a quasi-projective
scheme (with the reduced scheme structure). Let y € Y be any point and
let y € U C Y be an (analytic or etéle) neighborhood of y € Y such that
there is a tautological family Vi on C x U. By shrinking U if necessary, we
can assume that there is an integer m such that (Vy)V belongs to the exact
sequence

(3.3) 0— W) — Ny — T —0,

where Ny = OgiU(mpo x U) and 7 is a family of torsion sheaves on C x
U flat over U. Let J = Pic"(C) (the component containing degree r;
line bundles) and let P be the normalized Poincare line bundle on C x J
(considered as a sheaf) so that P, s = O, where pg € C is fixed. (For
A € J, we will use Py to denote the restriction sheaf Picx(y}.) Let poxu,
pexg and pyx g be projections from C xU x JtoCx U, Cx Jand U x J
respectively. We consider the following direct image sheaves on U X J:

Avxs = puxix0exuNu ® pox s P);

BuxJ = puxi«@exvT ® pexsP)
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and

Cuxs = pUxJ*(pz'xU(VU)V ® PoxsP)-
Both Apyxs and Byxy are locally free. We let A be the vector bundle
associated to Ay and let Op(—1) be the tautological line bundle of the
projective bundle P(A) of A. (We use the convention adapted in §2.) Let
m:P(A) — U x J be the projection. Then composed with the induced
homomorphism 7*Ayx s — 7 Byx.s, we get

(3.4) f:0p(-1) — 7" Byxy.

Since both A and B are locally free, for any z € P(A) over (y,)) € U x J,
z corresponds to a section (unique up to scalars) ¢ € HO(OE2(mpo) ® P)).
Further, the restriction of f to Op(—1)®k(z) is trivial if and only if the image
of ¢ in H O(’]|'Cx{y} ® P, ) is trivial. By the exactness of (3.3), shis occurs

exactly when ¢ can be lifted to a homomorphism ¢ € Homc(Vy, Pa), Vy =
Vuiox{y}- Hence, the set of all non-trivial homomorphisms Horac(Vy, Py)

modulo scalars is parameterized by the scheme f~1(0) ¢ P(A). We let Z
be f~1(0) endowed with reduced scheme structure.

Lemma 3.2. (8.4) induces a homomorphism
(3.5) Bz :Op(-1)z — (W*CUxJ)|Z
so that for any closed z € Z over (y,A\) € U x J, the image
Im(;) C Home(Fy, Py)

induced by the restriction homomorphism

Bz : Op(—1) ® k(2) — 7*Cyxs @ k(z) — Home(Fy, P.)
is non-trivial.
Proof. Since 7 is flat, 7*Ayxs, 7*Byxs and 7*Cyxs belong to the exact
sequence
(3.6) 0 — " Cyxg — ™ Auxs i>7r*l§’U><J.

Because the composition of Op(—l)' 5 — T (.AUXJ)l 5 with f is trivial, it
lifts to a unique homomorphism (3 in (3.5). The non-triviality of Im(3;)
for z € Z is obvious. This proves the Lemma. a
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In the following, we will use the section (; to construct a family of
homomorphisms of sheaves on C' x Z. Let TexU, ToxJ and 75 be projections
from Cx Z to CxU, CxJ and Z respectively. Then the section 8 provides
us a homomorphism of sheaves

(3.7) agz oy Vv — m5(0p(1)2) ® mox P

on C x Z. Intuitively, B is the the one whose restriction to each C x {z} C
C x Z is the image of 3, in Homc¢ (Vy, Py), where z lies over (y,\) € U x J.
We denote the right hand side of (3.7) by L, which is an invertible sheaf on
C x Z. For technical reason, we let Z C Z be the union of those irreducible
components A C Z such that the restriction of ayz to general fibers of
C x A — A are surjective. We let az and Lz be restriction of a; and
L to C x Z respectively. We let ¥ C C x Z be the subscheme so that
Im(az) = Lz ®Is, where Ty is the ideal sheaf of ¥ C C' x Z. We now show
that Zy, is flat over Z.

Lemma 3.3. The ideal sheaf Iy, is flat over Z.

Proof. Since Lz ® Iy, is a quotient sheaf of the rank two locally free sheaf
TaxyV, % is locally defined by at most two equations. Also by our choice
of Z, ¥ does not meet general fibers of C x Z — Z and does not contain
any fiber of C x Z — Z. Therefore, codim(X) > 2. Thus ¥ € C x U is
a local complete intersection scheme of codimension 2. Let p € ¥ be any
point. Since Iy, is generated by two sections, say fi, f2, it belongs to the
exact sequence

(3.8) 0— IchCxZ,p — IE,p I ID2CD1,:D — 0,

where D is the divisor {f1 = 0} in C x Z and Dy is the divisor {f2 = 0}
in Dy1. Here Zp,ccoxzp and Ip,cp,p are ideal sheaves of D1 C C x Z
and D C D; at p respectively, which are isomorphic to O¢xzp and Op, p.
Without loss of generality, we can assume D; is a divisor flat over Z (because
supp(X) contains no fibers of C' x Z — Z). Therefore, Zp,ccxzp and
ZIp,cp,,p are both flat over Z. Hence by (3.8), Ix, is flat over Z as desired.

We have the following lemma which states that the previous construction
is independent of the choices made.
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Lemma 3.4. The scheme Z = f~1(0), Z C Z and the family (3.7) are
independent of the choice of the inclusions (Vy)¥ — Ny.

Proof. We only need to check the following: Assume (Vy)¥ — 082, (m'pg x
U) is another inclusion with cokernel 7" flat over U that makes the diagram

0 —— (V)Y —— O&iy(mpo x U) > T 0
0 —— (Vy)V —— OZiy(m'po x V) T —— 0

commutative and such that the vertical arrows are injective, and assume
Z CZcP(A)and Z' ¢ Z' C P(A') are the corresponding subschemes,
then there is an isomorphism between Z C Z and Z’ C Z' (non-canonically)
and isomorphism between the corresponding pairs (3.7) (locally and non-
canonically). This is obvious because A is a subbundle of A’, and that
under the inclusion P(A) C P(A’) we have Z' C P(A). We shall omit the
details here. O

Our next step is to introduce a subset of Z that will provide us non-
locally free sheaves: We keep pg € C and define ZP° C Z be the the vanishing
locus of the restriction to {po} x Z of (3.7):

(3.9) azp, : ™ Vo — Op(1))z,

where 7:Z — U is the projection and Vo = Vy|(p,}xu is viewed as a sheaf
on U. Note that ZP° C Z has codimension at most two. Also, by our choice
of ng in (1.1), dim7~1(y) > 10 for any y € U [La, p45]. Since Op(1) is
m-relatively ample [La,p46], and that ZPo N7~ 1(y) is the vanishing locus of
two sections of the ample line bundle Op(1)|,-1(), by the theorem on page
150 and remarks on page 152 of [GM] we can find a Riemannian metric on
Z so that

(3.10) Hy (77 (y)regy 2P N1 (y)reg) =0 for i < 3,

where the subscript reg stands for the regular locus of the set, and that Zpob
is the 6-neighborhood of ZP° C Z.

We now extend this construction to Y. We cover Y by (analytic or etéle)
open U, each of which admits a tautological family V, fitting into the exact
sequence (3.3) for some m,. Then by the previous argument, we can find
the family Z, — U,, the family of homomorphisms

(3.11) az, : Toxy,Va — Ty, (Opu_(l)lza) ® Hx P
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and subschemes ¥, C C x Z, and Z5° C Z,. By Lemma 3.4, the schemes
Z, glue together to form Z " U. Also over C x (U, N Up) we can find
(non-canonical) isomorphism V, 2 V, that will provide us isomorphism (non-
canonical) over Z,NZj, of the corresponding families (3.11). This guarantees
that that the subschemes X, glue together to form a subscheme ¥ C C' x Z
and that subschemes Z5° will glue together to form a subscheme ZP°. Note
that Z — Y and ZP° — Y are projective.

Now we construct the deformation needed to prove the vanishing of ho-
mology groups in Proposition 3.1. First, note that each £ € W associates to
a sheaf Fg that is the kernel of £ — L, where L is the destabilizing quotient
sheaf of £|¢ (see (3.1)). (W consists of sheaves in J whose restriction to C
is locally free.) We let e = —2n2HZ and
(3.12)

W= { Eew l & is 2e-stable, Fg|c is stable and the destabilizing }
quotient sheaf of £ has degree %I -C—1. )

We define p: W — Y to be the map sending £ € W to Fg|c. We now show
that p is a morphism: We first cover W by (analytic or etéle) open sets
W, so that each of them admits tautological family &, on X x W,. We let
&, — L, be the quotient sheaf such that its restriction to each C x {w} is
the destabilizing quotient sheaf of yjox {w}- Let Fy be its kernel. Note that
Fo belongs to the exact sequence

(3.13) 0 — E(=C x W,) — Fy — Lo ® p;Oc(Ijic) — 0,

where pc : C x W, — C, similar to (3.2). Then the family Fgoxw, will
induce a morphism g, : W, — Y. The collection p,’s glue together to form
the morphism p: W — Y. We let Aj,---, Ax be irreducible components
of W and let Y’ be the disjoint union of p(4;): Y’ = ]_[f;_l p(A;). Now let
W' = W — Uizj(A; N Aj). Then p induces a morphism p: W’ — Y’ whose
restriction to A; — Ujx;A; factor through p(A;) CY'. Let Z/ =Y xy Z
with 7’ the first projection and let Z,, be the Zariski open subset of Z’ over
which 7/: Z’ — Y’ is smooth. Next we let Yy C Y’ be a Zariski open subset
such that Zo = 7'"1(Yp), Zoreg = ©' 1 (Y0) N Z}eg and 75 = 7'~1(Yy) N ZPo
are topological fiber bundles over Yp:

Zoregy Z2° C Zog —=— 7' > Z

! O

Y, SHN 7 .Y
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Such Yp can be found as follows: Since 7’ : Z’ — Y’ is projective, there -
are Whitney stratification Sz of Z’ and Sy of Y’ by algebraic subvarieties
such that 7’ is a stratified map (see [GM] for definition). Without loss of
generality, we can assume Z;,, and ZP° N Z' are union of strata of Sz:. Let
Yp be the union of open strata in Y’ and let Zy = 7/~}(¥p). Yo C Y’ must
be dense. Then by Thom’s first isotopy lemma, Zo, Zoreg = Zo N Zye, and
ZE° = ZyN ZPo are topological fiber bundles over Yy. We let Wp = p“%(Yo).
Finally we form the fiber product

V= Zo XYp Wo,
and its subspaces Vieg = Zoreg Xv, Wo and VP = ZI° xy, Wp.

Remark 3.5. The reason we choose Y’ to be the disjoint union of 5(4;)
is because in doing so we can be sure that Wy C W is dense. Note that this
may not necessarily be the case if we use Y rather than Y’ when some 5(A;)
is a proper subvariety of 5(4;).

Our next step is to form a family of sheaves over V' that will be the
deformations promised at the beginning of this section. We still work with
a covering W, of Wy and families £, and F,. By shrinking W, if necessarily,
we can assume p(W,) is contained in Uy C Yp for some b, wherz U, is an
open set satisfying conditions spelled out before (3.3). Let

(3.14) oz, :ﬂE'XUbe — Lp® Iy,

be the family of homomorphism as in (3.11). By shrinking W, further if
necessarily, we can assume that there is an isomorphism

o7

¢a : Fajoxw, — ((1c % Pba)*vb)|CxWa’

where ppo = pw, : Wo — Up. Then composed with az, in (3.14), we get a
surjective homomorphism

(3.15) ¢: (1x X mwp)*Fa — (1o % Ty,) Vs — (1o % 7y )" (Ly ®Is,)

of sheaves on V, = Zy xy, W,, where my, is the second projection of V,
and 7y, : V, — Y is the obvious projection. Let G, be the kernel of this
homomorphism: Namely

(3.16) 0 —> Go — (1x X T, ) Fu — (1o X myp)* (Lo ® Is,) — O

is exact. Since (3.14) is surjective and Ly ® Iy, is flat over Y3 (Lemma
3.3), G, is a family of torsion free sheaves on X x V. Also since sheaves
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in Wy are 2e-H-stable, G, is indeed a family of H-stable sheaves on X.
From the construction, it is clear that member of the family G, tensored
by 8xxv,(C x V) has determinant I and second Chern class d. Thus it
induces a morphism 7, :V, — 9My(I,d) by the universality of the moduli
scheme. By Lemma 3.4, morphisms 7, glue together to fo7rr£1V1 a morphism
n:V — My (I,d). We list the properties of the family V —3 Wy and the
morphism 1:V — 9My(I,d) in the following proposition.

Proposition 3.6. Let Hy, Ho € C € NSf), C C X and N be given at the
beginning of this section. Then for anyd > N and (Hy, I, d)-suitable H € C,
the subset W C Mp(I,d) has pure codimension of g + 1, where g = g(C),
and is locally irreducible. Further, the family V —3 Wy has the following
properties:

(1) n(V) C W, where W is the closure of W C My (I,d);

(2) If £ € Wy, then all 2e-H-stable sheaves £ € My(I,d) satisfying
Elac & 8|/2C belong to Wy as well;

(3) There is a section s: Wy — V (of VmWo) such that m o s coin-
cides with the inclusion Wy C My (I,d). Further, if we let WO =
571 (Vyeg) then WO is dense in W and WO N SMy(I,d) is dense in
WnSMmy(I,d);

(4) Both VP° and Vi are topological bundles over Wy. Further, if we let
VPod = (ZPo:d N Zy) Xy, Wo, then for any w € Wy the pair

(Vreg Nt (w), VPO N Vg N s (w))
is homologically 3-connected;

(5) We have n(VP°) C SMy(1,d). Also for any w € Wy associated to
non-locally free sheaf, n(w;l%('w)) C SMy(1,d).

Proof. We first prove that W has pure codimension g+ 1. Let p € W be any
point corresponding to € and let U C My (I, d) be an analytic neighborhood
of p so that the restriction of the local tautological family £y to C'xU induces
a map

(3.17) ¢ : (U,p) — (A,0)

provided by Definition 2.3, where (A4, 0) is the versal deformation space of
&|c of fixed determinant. Since ¢™!(Ao) = UNW and codim(Ag, A) = g+1,
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the codimension of each component of W at p is at most g + 1. However,
when p & A{ (cf. (1.3)), ¢ is a submersion at p and the codimension of W
at p is exactly g + 1. On the other hand, dim A§ < dim Mg (I, d) — 3g, by
Lemma 1.5 and codim W > 3g, by Lemma 1.7 (3). Thus W — AY is dense
in W and therefore W has pure codimension g + 1 as claimed. Next, we
show that W is locally irreducible. Let T' C W be the subset over which
W is not locally irreducible. Since Mg (I,d) is a local complete intersection
and W C My (I, d) is defined by 3g — 2 equations (Lemma 1.7), T is either
empty or codim(T, My (I, d)) can at most be 2g + 1, by (2) of Lemma 1.12.
Thus if T # 0 then T — A§ # 0. Let p € T — A{ be corresponding to £
and let p € U C My (I, d) be an analytic neighborhood so that we have the
map (3.17) provided by Definition 2.3, where (A4, 0) is the versal deformation
space of & of fixed determinant. Since ¢ is a submersion at p and Ap C A
is locally irreducible by Proposition 2.2, U N W = ¢~1(Ap) will be locally
irreducible at p as well. This contradicts to the assumption that p € T.
Hence T = () and thus W is locally irreducible.

Next, we prove the properties listed in the proposition. First, by re-
stricting the exact sequence (3.16) to C' x {v}, where v € V, is any general
element, we see that Gy ox{v}(C) is an extension of a degree %I -C—1in-
vertible sheaf by a degree %I - C + 1 invertible sheaf. Hence n(v) € W and
thus n(V) C W. This proves (1).

The property (2) follows from the fact that if £ and & € W such that
8!0 = glC” then fg|o ]:S'IC

Now we prove (3). Over Wy, the sheaf L, ® pOc(|c) in (3.13) will
induce a morphism ¢ : W, — Pic™(C) and the homomorphism ¢ in (3.16)
will induce a section of the sheaf (p x £)*Cy, xs. Here we have assumed that
p(W,) C Up. Combined with (3.6), we obtain a section of the locally free
sheaf (p x &)*Ay,xs, which will provide us the desired section sq : W, —
Z xy W,. This section factor through Z xy W, because the ¢ in (3.16) is
surjective. Further because we can recover G, from the ¢ in (3.1€) and vice
versa, 10 8 = id and s, 0 n(v) = v if n(v) € Wy. Therefore by Lemma 3.4,
84’s glue together to form the desired section s: W — V. Note that property
(2) still holds for W°.

To complete the proof of (3), we need to check the density of W° c W
and of WO NSMy(I,d) C WN SMy(I,d). Note that Wy C W is dense
by Remark 3.5. Now we show that W C W is dense. Let £ € W be a
general sheaf. By Lemma 1.3, £ is 2e-stable and Ext?(£,£(—C))? = 0. Let
L be the destabilizing quotient sheaf of £|¢ and F be the kernel of £ — L.
Then Fic is the extension of L7! ® O¢(l|c) by L(—C). Let Vs, s € S is an
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affine curve, be a deformation of Fic such that each V; belongs to the exact
sequence

(3.18) 0 — L(-C) — V2 £ @ 06(Iic) — 0

and for general s € S the sheaf V; is stable. Since Ext?(£,£(—2C))° =0, we
have Ext?(F, F(—C))? = 0. Hence there is a family F,, s € S, of sheaves
on X such that Fyc = V,. Using the § in (3.18), we have a surjective
homomorphism Fs — V, — L™1 ® O¢(I |c) whose kernel we denote by &s.
It is easy to check that & is a deformation of £ and for general s € S the
sheaf £ € W because F is stable. This shows that W is dense in W.

To show that W0 C W is dense it suffices to show that WO N A # () for
each irreducible component A of Wy. Let £ € A be a general element and
let v € Wﬁ,}) (€) N Vieg be a general element, where my, : V — Wy. Then
n(v) € W9 since s o n(v) = v. n(v) will be in A if we choose v so that v
and s(£) are in the same irreducible component of w;‘,ﬁ (£), which is possible
because Viee — Wo and V' — Wy are stratified maps, and Vieg is dense in
V and £ € A is general. Thus W°N A # (. This proves W° C W is dense.
Next we prove

WoNnSMmy(I,d) c WnSMy(I,d)

is dense. By dimension count, it is clear that (W — A{) N SMy(I,d) is
dense in WNSMy (I,d). Let £ € (W—AY)NSMy(I,d) be a general sheaf
. Because H%(End%(€)(—2C)) = 0, following the deformation argument in
[GL, p86-87] we see that the subset in W consisting of sheaves non-locally
free along C has codimension at least 2 in W. Therefore &\ is locally free
because £ is general in W N SMy(I,d) and that SMy(I,d) C My(I,d) is
a divisor. It remains to show that £ € WO9. Because W% C W is dense,
we can find deformation F; of € such that F; € WO for general t. Because
H°(End®(€)(—2C)) = 0, we can find deformation &; of £ such that Fyec =
Eyoc and & € SMy (I, d), following the same deformation argument in [GL].
Because (2) holds for W°, & € W°NSMy(I,d). This proves (3).

The property (4) follows from (3.10) and the fact that Zy, Z!° and Zo,reg
are fiber bundles over Y. The second statement of (5) is apparent because
if w € W associates to a non-locally free sheaf, say £, then £ is non-locally
free away from C. However, all sheaves in n(w;‘% (w)) are isomorphic to £
over X — C. Thus they must belong to S9y(I,d). Now let v € VP0 be over
a point in Ws. Then the restriction of (3.16) to X x {v}:

0 = Gayxx{v} = (Lo X Ty,) Vyx x o} = (1o X Ty,)* (Lo ® I, )| xx (v} — 0
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is exact. Since the third (non-zero) term above has torsion supported at
Po € X, Gy xx{v} is non-locally free at pp. Hence n(v) € SMy(I,d). This
completes the proof of the proposition. O

In the following, we will show how to use the pair (W0, Z;) to get the
desired vanishing result in Proposition 3.1. We begin with the following
lemma:

Lemma 3.7. Let the notation be as before, then for i < 2,
(3.19) H,(W°,W°nSmy(I,d)) — H;(W,WnSMy(I,d)

is trivial. (i.e. its image is {0}.)

Proof. Let ¢ € H; (WO, W°NSMy(I,d)) be any element represented by a
cycle (X,0%) c (WO, WONSMg(I,d)). By using section s: WO — Vg we
get a cycle (s(X),05(X)) C (Vieg, Vieg N1~ H(SMu(I,d))). Because of (3)
and (4) in Proposition 3.6, for each 0 < § < 1 we can find an (¢ + 1)-chain
T’ C Vieg such that the boundary 87" is the union of s(X) with A} and A,
where A} C Vieg N (ZP0° xy W) and

(3.20) 2 C U{mip (w) | w € 5(88)} € 17 (SMu (I, d)).

Because V' — W) is proper and § is arbitrarily small, we can find T C V
so that T = ¥/ U A; U Ay with 41 C VP and Ay C n~H(SMg(I,d)).
Thus d(n(T")) = X modulo SMy(I,d). In particular, the image of £ in
HW,WnSMy(I,d)) is trivial. a

Next we show that (3.19) is surjective. We remark that we will use
ordinary topology in the rest of this section unless otherwise is mentioned.
Note that this will prove Proposition 3.1. We first divide W — W? into
two subsets: We let By be (W — W°) N SMy(I,d) and let By = (W —
W0 — SMy(I,d). Since My (I,d) is quasi-projective, there is a Whitney-
stratification of M (I,d) so that the subsets W, W0, SMy(I,d), AY, B
and Bj are unions of strata. To simplify the notation, in the following we
will denote W; = W — B; and Wy = W) — By. Note that Wy = wo.

We first show that

(321) H;Wi,WinSMy(I,d)) — HW,WnNSEMu(I,d)), i<2,

is surjective. Let Ki,..., K, be open strata of By and let K~ = B; —
U;?=1K j. Since W is locally irreducible away from S g(I,d) and has pure
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codimension g + 1, and that Sy (I,d) C My (I,d) is a Cartier divisor, by
the furthermore part of Lemma 1.13,

HW-K-,W-K)nSMy(I,d)) — HHWWNNSMy(I,d)), i<2

is surjective, since codim(K~, W NSMy(I,d)) > 2. Let =W - K~ —
U§-=1K ;- To prove the surjectivity of (3.21), it suffices to show that

Hi(‘/l+1yvz+l ﬁSQRH(Ia d)) - Hi(‘/l, Vi nSW{H(I,d)), 1< 2

is surjective for [ = 1,--- ,n. Now let A; C K; be any non-empty compact
subset. Then by Lemma 1.14, we have
(3.22)

Hi(Viga U Ay, (Vi UA) N My, d)) — Hy(V,, iNSMu(l,d)), i<2
is surjective. Now we show that the image of
(3.23) H;(Vix1,VigiNSMy(1, d)) — H;(V,,ViN SmH(I,d)), 1< 2

is the same as the image of (3.22). The strategy in proving this is to find
an analytic component of SMMy(I,d), say U, such that U intersects K;
transversally at some points. Then if we choose A; close to U N K, we can
show that (3.22) and (3.23) have same images.

Now we provide the details of this argument. Let £ € K be a general
point. Because codim(K;) = g + 3, £ is 2e-H-stable and

(3.24) H?(End®(£)(-2C)) = 0.

We claim that either £¢ is not locally free and £(EVV/E) = 1, or & is
locally free and £ € S19My(I,d) USIMy(I,d). Indeed, following the proof
of (3) of Proposition 3.6, we know that the set of £ € W that are non-
locally free along C has codimension at least 2 in WW. For the same reason,
the set of £ € W that are non-locally free along C' and have £(EVV/E) > 2
has codimension at least 3 in W. Therefore if & c is not locally free then
£(EVV/E) = 1. When &g is locally free, then € € §;{My(I,d)USIMy (1, d),
because its compliment in W N SMy (I, d) has codimension 3 in W. Next,
we estimate dim ExtJo((€YY)2c, (EYY)j2c)?. When € ¢ is not locally free,
we claim that the destabilizing quotient sheaf of (E,'VV)|C has degree at least
%I -C'—3. If not, then proof of Lemma 2.7 we can find deformation &; of £ so
that & ¢ is locally free and has degree %I - C — 2 destabilizing quotient sheaf
for general ¢. Then K; will be contained in the closure of Wy in My (I, d),
where W) consists of F such that F|¢ is locally free and has degree %I -C-2
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destabilizing quotient sheaf. Since sheaves in K are non-locally free along
C, K; C Wy has codimension at least 2. (See proof of (3) of Proposition
3.6.) However, Wy C W has codimension at least 1. Hence the codimension
of K; in My (I,d) will be bigger than g + 3. A contradiction. For the same
reason, if €| is locally free, then the destabilizing quotient sheaf of £¢ has
degree at least %I - C — 3. In particular, we have

(3.25)

dim Ext36((€YY)j2¢, (€YY)120)° < 2dimExt®((EYY)jc, (EVV)i0)° < 18.

Now let a = £(EVV/E). Note that a = 1 or 2. We consider the set
Q= {.7-' € My(I,d— a) | F locally free and Fjoc = (EVV)IQC}
and the set
Qk, = {F € Q| there is an &’ € K; such that £ is a subsheaf of F}.

We claim that Qx, C @ contains a neighborhood of €YY € Q. Indeed, let
F: be any deformation of £YV in Q. In case & c is locally free, then F will
induce a deformation & in SMy(I,d) of € such that £V = F;. Because
Epc = Ejpc and € € WO, by (2) of Proposition 3.6 we know that & belongs
to WNSMy(I,d) — WO. However, since all open strata of WN STy (I,d)
are contained in W0, & must be in K; since K; C WNSMy(I,d) — WO is
open. Thus F; belong to Qk,. Now assume €|¢ is not locally {ree. Then
we can find deformation &; of € such that £V = F; while Eyc = &c- By
applying the deformation argument on page 95-98 of [GL] we know that
E € WNSMy(I,d). Because sheaves in open strata of W N Sy (1, d)
are locally free along C, & must belong to K;. Therefore, F; belong to Q.
This proves the claim. As a consequence, the dimension of Qg, at £VV is
identical to the dimension of Q at £VV. Hence

codim (Qk,, Mu(I,d—a)) < Extye((€YV)2c, (EVV)|2C)0 < =3x(0a¢) + 18,

using (3.25). Now let Qo C Qk, be the irreducible component containing
EVV. Applying Lemma 1.9, we obtain a non-locally free sheaf Fy € Qg such
that FyV/Fo = O, for some p € X — C in general position. Consequently
we can find a sheaf & € K; C My (I, d) such that & C Fy and Fo/E = O,
with £(2) = 1 or 2 and p & supp(z). The key observation is that since
EV /€ = 0p®O,, SMu(I,d) at & is (analytically) a union of at least two
irreducible components. We now choose one such component: Let p € U, C
X —supp(z) be an analytic neighborhood and let Sy, Mg (I,d) C SMy (1, d)
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be the set of those £ such that &y, is not locally free. Sy, Mu(I,d) is an
analytic divisor of Mgy (I,d) smooth at &, because of (3.24). Now if we

let (A,0) be a versal deformation space of fixed determinant of &ac, let
U Cc My(I,d) be an analytic neighborhood of & and

w: (U, &) — (4,0)

be the map provided by Definition 2.3, then the restriction of ¢ to
o+ (UNSy,Mu(I,d),E) — (4,0)

will be a submersion, because of (3.24). Because both My (I,d) and
Su,Mu(I,d) are smooth at & and A is smooth at 0, by shrinking U/ if
necessarily, we can find a homeomorphism

d:Dx (UHSUPWZH(I,d)) — U,

where D C C is the unit disk, such that after restricting to {0} x (U N
Su, Mg (I,d)), the map ®(0,-) is the identity map onto U NSy, My (I,d) C
U, and that for each z € U N Sy,Mu(I,d) the set &(D x {z}) is con-
tained in the fiber o~ 1(p(z)). ® induces a deformation retract ¥ defined
by ¥(r, ®(c,z)) = ®(rc,z) for z € U N Su,Mpu(I,d), c € D and r € [0,1].
By (2) of Proposition 3.6, W° and W are preserved under the retraction ®.
Here we have assumed that I/ is small enough so that all sheaves in U are
2e-H-stable.

Now we prove that (3.22) and (3.23) have same images. Let p € K;NU
be a general point and let W 3 p be a closed neighborhood of p, contained
in U, such that A; = W N K] is contractible. Let 7T; = ¥([0, 1], W). Because
the retraction ¥ preserves W° and K; C SMy(I,d), the image of (3.22)
must be the same as the image of (3.23). Since the former is surjective,
(3.23) is surjective as well. This proves that (3.21) is surjective for i = 1
and 2.

In the remainder of this section, we shall prove the surjectivity of

(3.26) H;(Wy, Wa N SMy(I,d)) — HiWi, Wi nSMy(I,d)), i<2.

We will adapt the same strategy as we did for the surjectivity of (3.21).
We still keep the Whitney stratification of My (I,d). Since Wy C My (1, d)
has pure codimension g + 1 and is defined by 3g — 2 equations, and since
My (1,d) is a local complete intersection, by Lemma 1.12

(3.27)

H(W —T, W —T)NSMu(1,d)) — HHWi, Wi NSMy(I,d)), <2,
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is surjective, where T is the union of all strata in Bo C W; of codimension
at least 3g+ 1. Note that A N\ W; C T because AS is a union of strata and
codim(A§) > 3g + 2. Now let

(e Hi(W1 - T, (W1 - T) ﬂSf)ﬁH(I, d))

be any element represented by a cycle (£,0%). Since W) — T is locally
irreducible, by Lemma 1.12 we can assume that X N By is discrete. Let
€ € ¥ N By and let R be an irreducible component of Ag containing £.
Then by Lemma 1.9 we can find a sheaf & € AY such that ()Y /&) =
1. Because of dimension reason, we can assume Ext?(&, & (—2C))° = 0.
Hence R is transversal to SMy(I,d) at &. Now we pick a differentiable
path p:[0,1] — R connecting p and & so that all sheaves & in p([0,1])
have vanishing H2(End®(£’)(—2C)). Let U be a (classical) neighborhood of
p([0,1]) in My (I, d). Without loss of generality, we can assume that there is
a tautological family &; on X xU. Now let 0 € A be the versal deformation
space of &y of fixed determinant. According to Definition 2.3, there is an
analytic map
©:(U, p([0,1])) — (4,0)

induced by the family &, after shrinking I/ if necessary. By further shrinking
U if necessary, we can assume ¢ is a submersion and it realizes U/ as a product
(—&,1+¢) x Up such that ¢ factor through ¢g:Uy — A. (Note that {t} xUo
is a normal slice of p([0, 1]) at p(t).) Also if we choose the path p([0, 1]) not
to tangent to SMy(I,d) at & = p(1), we can choose the fiber structure so
that ({1} x Up) C SMu(I,d). Therefore we get a deformation retract ¥
of p([0,1] x Up) to w({1} x Up) defined by

lIl(r,go(t, z)) =p(l—(1-r)(1-t),2), forr€[0,1],¢t€ (—¢ 1] and z € Up.

As in the proof of the surjectivity of (3.21), this deformation retract will
provide us a new cycle (£1,0%;) € (W — T, (W), — T) N SMy (1, d)) such
that X1 N By is one point less than N By. By repeating of this argument, we
eventually get a cycle (X2, 0%2) C (W, WaNSMy (I, d)) that represent the
element ¢. This proves the surjectivity of (3.27) and thus proves Proposition
3.1.

4. Proof of the main theorems.
In this section, we will first prove theorem 0.4 by using Lefschetz hyper-

plane theorem. After that, we will study the pair Sy (H) C My(H) in
detail to establish both theorem 0.5 and 0.1.
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We shall continue to use the notation developed in the previous sections.
For instance, we will denote by M, the open subset of My (I, d) consisting
of all H-y-stable sheaves £ with H2(End®(£)) = 0 and SMy the set My N
SMy(1,d), etc., and Bs(p) will be the §-neighborhood of p, after fixing an
analytic metric of the ambient space. In this section, we will consider only
homologies with rational coefficients. To avoid any confusion, for any subset
Z C My(I,d) we will use the overline, i.e. Z, to denote the closure of Z
in My(I,d) and use cl(Z) to denote its closure in My (I,d). (The only
exception is My (I, d) that is the moduli of semistable sheaves.) We fix Hy,
HyeCe NS& and the N given in lemma 1.3, 1.5 and 1.9. For d > N, we
pick an (Hy, I, d)-suitable H € C.

Recall that by Lemma 1.3, My, (I,d)° is birational to My (I,d)°, for
d > N. Because the set By C Mpy,(I,d)° and B C Mg(I,d)°, where B
and By were introduced in (6) of Lemma 1.3, have codimensions at least
8 and because both My, (I,d)° and My (I,d)° are local complete intersec-

tion varieties, by Lemma 1.12 H;(9My,(I,d)%) is canonically isomorphic to
H;(Mpu(I,d")°) and the square

Hy(Mp,(1,d)°) ——  Hy(M(I,d)°)

r(d)il f(d)zl

Hy(Mu,(I,d+1)%) —— H;(My(I,d+1)°),

which was introduced in the introduction, is commutative, both for ¢ < 2.
Following the discussion there theorem 0.1 will follow from the surjectivity
of 7(d)i, which is equivalent to the surjectivity of 7(d);.

Theorem 4.1. Let d > N and H € C be (Ho,I,d)-suitable. Then the
homomorphism 7(d); : H;(Mg(I,d)°) — Hy(My(I,d +1)°) is surjective for
1< 2.

Before we prove this theorem, let us first fill in the details of the definition
of the homomorphism 7(d);. For any z € X, we let STMy C S1. M, be the
set of £ € §; My such that £ is not locally free at z. Note that STMg is a
Pl-bundle over Mg_l, where Mg_l C M_1 is the open subset of all locally
free sheaves. Let Vj be a general fiber of this bundle. Then the inclusion
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Vo C 8 M, and the bundle SFMy4 — MJ_, induce a commutative diagram
(4.1)
0 — H,(Vo) — Hz(Sich) _— Hz(Mg_l) — ‘D

“ r(d)il i=1,2.
0 — Hi(Vo) —— Hi(Mg) —— H;(M))
In the following, whenever a space Z admits an obvious map Z — My,

we will denote by H;(Z)™ the image of H;(Z) — H;(My).

Lemma 4.2. Letd > N and i =1 or 2. Then the induced homomorphism
Hy(MY) — H;(Mg) is injective and its image H;(M9)™ is a complement
of Hy(Vo)™™.

Proof. To show that H;(MY) — H;(My) is injective, we need to show that
(4.2) Hiy1(Mg) — Hip1(Ma, MQ)

is surjective. Let j = 2, 3. Because My is smooth, by Lemma 1.13 the above
homomorphism is surjective if for any real 1-dimensional subset T' C S1, My
the homomorphism

(4.3) Hj(MYUT) — Hj(MUT, MY

is surjective. Let T' C 81 M, be such subset. By perturbing T slightly, we
can assume the restriction to T of the map u:S1 Mg — X X Mg_l is one-to-
one, where y sends &€ to (supp(EVV/E),EVV). Let V(T) = p~Y(u(T)). V(T)
is a Pl-bundle over T. Now we let Ny (1) be a normal slice of S My C My
along V(T'). By the excision of homology,

Hj(M3UT, M) = Hj(Ny(r), Nyir) — V(T)).
Therefore (4.3) will be surjective if
(4.4) Hj(Ny(r)) — Hj(Ny(z), Nvir) — V(T))

is surjective. However, after shrinking Ny (7) if necessary Ny (7 is a fiber
bundle over T with fiber isomorphic to a tubular neighborhood of a (—{)-
rational curve in a smooth surface, where | > 1, and that V(T) is the
subbundle whose fiber consists of those (—!)-rational curves in the fiber of
Ny(y — T (see Lemma 1.10). From this description, it is obvious that
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(4.4) is surjective. This proves the the injectivity of H;(MY) — H;(My) for
1< 2.

We next show that H;(M3)'™ is a complement of H;(Vp)™. Based on
the previous argument, it suffices to show that the composition H;(Vp) —
H;(Mg) — H;j(Mg, MY) is an isomorphism. When i = 1, this is obvious
because both Hi(Vp) and Hi(Mg, M) are trivial. For i = 2, we have
Hy (Vo) = Q and Hz(Md,Mg) >~ Q, since SMy is an irreducible divisor.
The composition Ho(Vy) — Ha(My) — Ho(My, Mg) is non-trivial because
the intersection number of Vp with SMy in My is —I < 0 (see Lemma 1.10).
This completes the proof of the lemma. O

We now define the homomorphism
7(d—1); : Hy(Mpu(l,d—1)°) — H;(Mua(I,d)°), i<2.

Let i = 1 or 2. Because H;(M9) = H;(My(I,d)°), to construct 7(d — 1); it
suffices to construct a homomorphism

(4.5) Hy(M_;) — Hi(MY).

Let f:H;(Mgy) — H;(MY) be a homomorphism so that ker(f) = H;(Vo)™
and that the composition H;(MY) — H;(My) — H;(M)) is the identity.
This is possible because H;(MY) — H;(My) is injective and H;(MY)™
is a complement of H;(Vp)™. Then using the diagram (4.1) we obtain a
homomorphism as in (4.5) that is independent of the choice of f. This is
the homomorphism mentioned in the introduction, which coincides with the
homomorphism 7(d — 1); introduced by Taubes.

Corollary 4.3. Assume d > N and i < 2, then the homomorphism 7(d —
1); is surjective if and only if the homomorphism

(4.6) r(d)i : Hi(STMg) — Hi(My)
1S surjective.

The remainder of this section is devoted to prove the surjectivity of (4.6).
As explained in the introduction, we shall prove this in two steps: The first
step is to use the Lefschetz hyperplane theorem to prove the surjectivity of

(4.7 Hi(SMy) — Hi(Mg), i<2.
The second step is to establish the surjectivity of

(4.8) r(d)i : Hi(SfMq) — Hi(Mg), i<2
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by carefully studying the inclusion Sf My C SMg.

We now prove the surjectivity of (4.7). In the following, the index 7 will
take value 1 or 2 unless otherwise is mentioned. We first remark that since
SMy(I,d) C My (I,d) is a Cartier divisor and that the singular locus of
My (I, d) has codimension at least 8, by Lemma, 1.12 for any closed subset
A C My (I,d) of codimension at least 8

(4.9) H;(My(I,d) — A,SMu(I,d) — A) = H;(DMx(I,d), STig (I, d)).

In particular Hi(.Md,S.Md) >~ H; (ﬁH(I, d),SMu(1,d)). Thus to prove
the surjectivity of (4.7) it suffices to prove the vanishing of

Hy(My(I,d), SMu(1,d)),
which will be accomplished by first proving that
(4.10) Hi(cl(Y), l(Y) NSMy(I,d)) — Hi(Mu(I,d), SMe(1,d))
is surjective and then proving
(4.11) H;(cl(Y),cl(Y) NSMy(1,d)) =0,

where Y C My (I, d) consists of all sheaves £ whose restriction to C is either
non-locally free or unstable (See Lemma 1.7). The proof of the surjectivity
of (4.10) is based on Lefschetz hyperplane theorem and (4.11) is by applying
the vanishing of H;(W, W NSMy(I,d)).

We first prove that (4.10) is surjective. Let

(4.12) U : My(I,d) — PR

be the morphism constructed in lemma 1.7 and let V C P® be the codi-
mension 3g — 2 linear subspace such that ¥=}(V) = cl(}). For § > 0, we let
V% c PE be the §-neighborhood of V C P® under the Fubini-Study metric
and let cl(Y)® = ¥~1(V?) and Y4 = ¥~1(V%) N My (I,d). Since fibers of
¥ can have large dimensions, we shall consider the restriction of ¥ to the
open subset U C M, consisting of sheaves £ € My such that £(£VV/E) < 4.
U is smooth, the compliment of U in 9z (I, d) has codimension at least 5,
and that for any u € U we have dim U=!(¥(u)) < 15. The later is true
because for any rank 2 locally free sheaf £ the set of subsheaves F C £ with
£(E/F) = 5 has dimension 15. Then by Lemma 1.12

(4.13) H;(U,UNSMgNY?) =5 Hi(Mg,SMgn Y0).
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Because the fibers of ¥\, : U — P2 have dimension at most 15 and U
has pure dimension much bigger than 18, we can apply the stratified Morse
theory technique (exactly the same as in the proof of theorem 4.1 on page
195 of [GM]) to the map ¥|; to conclude that

H,(UNY, UNSMgNY®) — H;(U,UNSMgN Y%
is surjective. Then by (4.13), |
(4.14) Hy(UNY,, UNSMygNY®) — Hy(Mqg,SMgNY°)
is surjective. Now assuming
(4.15) H;(Mg,SMgnY?) — Hy(Mg, SMy)

is surjective, then the top line of the following commutative square

H{UNY,UNSMynYY) 2L, H; (Mg, SMy)

(4.16) l lg

H;(cl(P)8, (V) NnSMy(1,d)) —— H;(Myu(I,d),SMy(1,d))

is surjective, then so does the bottom line. Finally, because this surjectivity
holds for all 0 < § < 1, and that cl(}) and SMy(I,d) are complete, by
Proposition 4.A.1 on page 206 of [GM] we obtain the surjectivity of (4.10).

It remains to show that (4.15) is surjective. Note that for ¢ = 0, it is
true because My is irreducible and SM is non-empty. We first consider
the long exact sequence of homology of triple (SMgN Y%, SMg, My):

(4.17) H;(Mg,SMgNY°®) — Hy(Mg,SMy) — H;_1(SMg, SManY?).

Clearly, (4.15) is surjective if H;(SMg,SMgNY®) = 0 for j < 1, which
we shall prove now. We first claim that for j < 1, H;(SMg,S1:My4) = 0.
Hy = 0 because S;. My is dense in SMy following from the irreducibility of
Mgy_;. For Hy, let £:([0,1],]0,1]) — (SMg, S1Mg) be a continuous map.
Since S1 My is dense in SMy, we can assume without loss of generality
that f~1(SMy — S1My) is a finite set, say {p1,--- ,pr}. Because SMy is
a local complete intersection and the compliment of S;MyUSIM C SMy
has codimension 2, by lemma 1.12 we can choose f so that the points f(p;)
are all contained in SopMy. Let Ry = S9My and let Ry = SoMy — SQOMd.
Since Rj is irreducible and Rp is non-empty, by lemma 1.14 we can choose
f so that all f(p;) actually belong to Ry. On the other hand, because
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SMy is locally irreducible at Ry, which will be proved in Lemma 4.7, we
can perturb f within (J(Bs(f(pi)) N SMg) to obtain a representative f’
of [f] whose image is contained in S;My. Therefore, [f] = 0 and hence
H;(S8Mg4,51 M) = 0. Combined with the long exact sequence of homology
of triple (S1 Mg N Y%, S My, SM,), we see that

a: Hi(SiMg, SiMgn yé) — Hi1(SMg, SiMgN y‘s)
is surjective and hence
Hi(Si Mg, S1MgN Y% — Hi(SMg,SMgn YP)

is surjective since S; My C SM, is dense. Therefore Hy(SMg, SMgN)Y?) =
0if

(4.18) Hy(S1 Mg, SiMgn V%) = 0.

To prove the vanishing of (4.18), we will use the restriction of ¥ in (4.12)
to S1Mg:
U :SMy — PE.

Because fibers of ¥’ have dimension 1, we can apply theorem on page 153 of
[GM] to conclude that H;(S1 Mg, SiMgNY?) = 0. Hence Hy(SMy,SMyN
%) = 0. This completes the proof of the surjectivity of (4.10).

We now show that (4.11) is trivial. First, because H is (I, d)-generic, the
complement of M (I, d) in M (I, d) has codimension at least 10g, because
YV-8My(I,d) has pure codimension g+1 and is defined by 3g+2 equations,
by Lemma 1.12

Hy(Y,Y N 8My(1,d)) — H(cl(Y),cl(Y) N STy (1, d))

is surjective. Let W C y_be the set of sheaves whose restriction to C
is locally free. Since Y — W C SMgy(I,d) is open in Y, by excision of
homology

H(W,WnSMy(I,d)) = Hy(Y,Y NSMu(I,d)).

However, we know H;(W, W N SMy(I,d)) = 0 by Proposition 3.1. There-
fore both H;(Y,Y N SMy) and (4.11) vanish. This proves the vanishing of
H;(Mg,S8My) and consequently the surjectivity of (4.7).

Our next task is to prove the surjectivity of (4.8).
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Proposition 4.4. Let Hy, Hy € C € NS& be fized. Then for the N given
before, d > N and (Hy, I, d)-suitable H € C, the homomorphism

r(d); : Hi(STMy) — Hi(My)

is surjective for i < 2.

Proof. The statement for ¢ = 0 follows from [GL,0G1]. The proof that 7(d);
is surjective is similar and easier than that of 7(d)9, which we shall prove in
detail. From now on, we assume the proposition is true for i = 1. We remark
that the result of Taubes explained in the introduction and diagram (4.1)
implies that if r(d); is surjective for large d, then 7(d); is an isomorphism
for large d. Since SFMq — MY_; is a P! bundle, 7(d); is an isomorphism
for large d implies that r(d); is an isomorphism for large d, which implies
further that H;(S5'"2Mg)2H;(M,). Here z1 # z3 € X and S5 My
consists of £ in S M, such that EVV/E = Oy, @ Op,.

We now show the surjectivity of r(d)2. Because Ha(Mg,SMy) = 0,
Ho(SMg)™ = Hy(My). Hence Proposition 4.4 follows from the identities:

(4.19) Hy(SMa)™ = Hy(S1.Ma)™;
and
(4.20) Hy(S1Ma)'™ = Ha(STMg)™.

The difficulty in showing the first identity lies in the fact that SMy is
not locally irreducible along S§M,. Thus Ha(S1Mg) — Ho(SMy) is not
necessarily surjective. However, we shall show that their images in Ha(My)
coincide.

To this end, we need to introduce some spaces that will help us under-
stand the geometry of the compliment of S My C SM,. The first space is
Z; that is an algebraic space whose closed points are pairs

{FiCc Fo}: F1 € SMy and F2 € My_3.

We let 7rlz 1 7r231 and 7r)’z(1 be maps from Z; to SMy, My_1 and X respec-
tively by sending {F; C F2} to F1 € SMy, Fo € My_; and supp(F1/F2)
respectively. Note that 72! is one-to-one over (7!)~1(S1My). The second
space we need is the algebraic space consisting of filtrations {F; C Fa C F3}
such that F; € Mg_;41 and £(Fiy1/F;) = 1. We denote this space by Z;.
Similarly, we let 71'%? : Z9 — 27 be the map sending {F; C F2 C F3} to
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{F1 C F} and let 71'1.32 129 — Mg_i+1 be the map sending filtrations in 25

to the i-th term (i.e. F;) of the filtrations. w)z(zl and 71')2222 :Z9 — X are pro-

jections that send filtrations to supp(Fa/F1) and supp(F3/F;) respectively.
Before we proceed, let us first prove four technical lemmas.

Lemma 4.5. Let S§My; C SoMy — SSMd be the subset consisting of w’s
so that (m£2)~1(w) C 24 are single point sets. Then

(4.21) dim (SoMy — SIMg U ShMg) < dim My — 4.

Proof. Let £ € SeMgy. (nF2)~1(€) is a point if and only if there is a unique
filtration
ThCchch=EYY/E

such that £(7;/7j—1) = 1 for j = 1,2. When € ¢ SI My, the uniqueness of
the above filtration is equivalent to (€VV/E) ® Op = Op for some p € X.
Hence SoMy — SMy4 U ShMy consists of € such that &£ is the kernel of
EVV — O%2 for some x € X. Therefore SjMy is dense in So My — SIMy
and thus (4.21) follows from codim(S2My) = 2. O

Lemma 4.6. Z; and 22 are locally irreducible.

Proof. We will prove the second statement and leave the first to the readers.
Consider the map p = 7%, X 7%y X T2 : Zg — X X X X Mg_o. It is
obvious that the fibers of p over (X x X — A) x MY_, is isomorphic to
P! x P!, where A is the diagonal in X x X. Since (X x X —A) x MY_, is
smooth, Z5 will be locally irreducible at £ € Z; if for each &' in an analytic
neighborhood of ¢ € 25 there is a deformation £ of & in Z; such that
p(€) € (X x X — A) x MY_, for general t. Such deformation always exist
because of Proposition 6.3 in [Li2] and that MY _, C M,_5 is dense. This
shows that Z, is locally irreducible. O

Lemma 4.7. The algebraic set SMg is locally irreducible along So Mg —
SIMa.

Proof. Consider Z; and the projection 7rlz1 121 — SMy. Clearly, 7rlzl (21) =
SMyy. Because fibers of 71';31 over SeMy — S§My are connected, SMy is
locally irreducible there since 2Z; is locally irreducible. This proves of the
Lemma. O
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Let S{M C S3M be the set of sheaves € such that £((EVY/E),) < 2 and
(EV/E) E Oy ® Oy forall z € X.

Lemma 4.8. Let F € SeMgU S5 M, be any sheaf and let S(F) be the set
of all sheaves € such that EY = FV and L((EVV/E)z) = L((FVV/F)z) for
each x € X. Then

(1) Hi(S(F))™ c H;(V)™, wherei = 1 or 2 and Vo = S(E) for some
E € S1My;

(2) There is a deformation retract neighborhood U of S(F) C Mg such
that H1(U — SMy) =0.

Proof. We first introduce set similar to 2 that is a desingularization of
S(F) as topological space. Let & be any sheaf and let x € X be a point
such that & is locally free at x. We let Ri(z, &) be the set of all filtrations
&1 C & such that & /&1 = Oy, and let Ry(z, &) be the set of all filtrations
E C & C & such that &/&41 = Oyp. Let mo1 : Rg — R; be the map
sending & C & C & to & C &. Obviously, Ri(z, &) = P! and for any
z € Ri(z,&), 131 (2) & P2 Thus Ry(z, &) is a P2-bundle over P. Hence,
Ry(z, &) is simply connected and Ha(Rz(z,&)) = Q®2. Now we prove (1)
of the lemma. We will prove the case where F € SoMy — SIM, and leave
the remainder cases to readers. Let F € SoMy— SIM, and let z € X
be the support of FVV/F. Let & = FVV and let p: Ra(z, &) — S(F) be
the map sending & C & C & to &. Then p maps Ra(z, &) onto S(F).
Let w € S(F) be the sheaf that is the kernel of £ — OP2. Then p is one-
to-one away from Z = p,*(w) and Z & P'. Hence Hi(Rp) — Hi(S(¥))
is an isomorphism and p. : Hao(Ra(z, &)) — H2(S(F)) is surjective whose
kernel contains [Z]. Thus dim H2(S(F)) < 1. On the other hand, Hz(Vp)™
is one dimensional and is obviously contained in Ha(S(F))™. Therefore,
Hy(S(F))'™ = Hy(Vp)'™. This proves (1) of the lemma.

Now we prove (2) of the lemma. Let F € SoMgU S5 Mg be any sheaf
and let U be a deformation retract neighborhood of S(F) € My. Since
H;(S(F)) =0, H1(U) = 0. Because of the long exact sequence

— Hy(U,U — SMy) — H1(U — SMg) — H1(U) =0,
it suffices to show that Hy(U,U — SMy) = 0. Now let £ be any element in

Hy(U,U — SMy) represented by a cycle (D,0D) — (U,U — SMy). Since
U is smooth and since codim(Sa Mg U S5 M) > 2, we can assume without
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loss of generality that D N SMy C S1My. Further, since S(JF) is a de-
formation retract of U, we can assume D N S; My is close to S(F) so that
if {F1,---Fx} = DN S 1My then S(F;) C U. Therefore if we let U; be
neighborhood of S(F;) C U, the element ¢ will belong to the image of

& Ha(Us, Ui — SMg) — Hy(U,U — SMy).

However because F; € S1 My, by Lemma 1.10 we can choose U; so that
H,(U;,U; — SMg) = 0. Therefore £ = 0 and hence H(U — SMy) = 0. This
proves 2) of the lemma. O

Now we prove (4.19). Let ¢ € Hy(SM,) be any element. Since My
is smooth and SM, is Cartier, by Lemma 1.12 and 1.13, we can find a
Riemann surface ¥ with X = () and a continuous map f:¥ — SM, such
that the cycle [f(X)] is a multiple of ¢ and that
(4.22): f(X) € Si My USgMd USéMd USgMd, f—l(Szon) is at most real
1-dimensional and f~1(S§MqUSIM,) is discrete.
(Recall S M is defined in Lemma 4.5.) Now let R = f~}(SIM4USIM4U
SIMy). R C X is closed. Without loss of generality, we can assume R
is piecewise smooth. By our assumption on f, R can be expressed as a
disjoint union R; U Ry, where R; is a 1-chain and R» is discrete. We let S
be the Riemann surface with boundary obtained by cutting ¥ along R;. Let
1n:S — X be the projection. Because 7rlzl : Z1 — SM, is one-to-one over
f(Z = R1U Rp), fiz—Rr,uR, lifts to a

g' : S - BSUn‘l(Rz) — Zl.

g’ extends to g:S — Z; because 71'121 is finite over f(X), since (4.22). Next,
let B = (171 0g)"}(S9M4)NBS. B is discrete and B cuts dS into 1-chains
I,--- ,I;. Because each fiber of 7r§f : Z9 — 2Z; over the interior of g(I;)
consists of single point, we can lift g7, : I; — 21 to g, :11; i — 22 such
that g1, = ﬂgf o g;- Let []I; be the disjoint union of I; and § = 1 4z
Then we have the following diagram:

L — s - %

) N

Z2 Z
Tz m !

Zy Z SMg.

Before going into details, let us first explain the strategy we will use.
We will see that Lemma 4.8 implies that (4.19) does hold if we can find a
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representative f:3 — SMy of any & € Ha(SMg) that satisfies (4.22) and
FH(SaM g U SIM,) is discrete. Such choice of f is not obvious since SMy
is not locally irreducible along the codimension 1 subset SYMy C SMy.
Our solution is to utilize the fact that Z; is locally irreducible. We first find
a chain g(S) C 2Z; covering f(X) as in (4.23). Since g(S) may not be closed,
we need to find a 2-chain T' C 2 to close S, ie. (T +S) = 0. In our
case, we will choose a 2-chain T C 2, so that its image T in Z; will have
0T = —0S. This way, we obtain a decomposition

(4.24) &= [g(T +8)] ~ [x{*(T))].

Since T'+S C 2 is closed and 2 is locally 1rreduc1ble, we can perturb T'+S
to a new cycle A) C 2Z; so that with A; = 73 21(4)), [A1] = [9(S + T)] and
- SiMg is dlscrete s0 [A1] € Hy(S1Mg)™ by Lemma 4.8. As to Ay =
2(T) C Sa My U S§ My, by choosing TC 2y generic we can assume Ag —
SOMd is discrete. Then we can show, by perturbing A, and using Lemma
4.8, that [As] € Ha(SIMy)™. Thus (4.19) follows from Ha(SIMy)™ C
Hz(SlMd)im.

Now we continue our search of the desired representatlve of £&. We first
show how to find the chain T C Z such that 75 (T) + S is closed. Since
«([I5:) C S is a closed chain, «([]9I;) = 0. Then we can index []9I; to
be py,p1 s+ s D, P such that «(pf) = (pj) = p; € 8S. We claim that
for each j we can find a path A; C 23 such that 04; = —p;' + p; and
7er 2(A;) = 0 as chain. Indeed, since (17" 0 g)(p;) € S§My, it associates to a
sheaf € such that £ is the kernel of EYY — O, & Oy, @ O,_. By rearranging
the index of z,’s, we can assume g(p;) corresponds to the filtration {£ C &},
where £ /€ = Oy, and g(p;t) corresponds to the filtration {€ C & C &4},
where £, /€1 2 Oy,. We now fix a smooth path p;:[0,1] — X connecting
z— and x4 that is contained in a smooth affine curve D C X disjoint from
zo. We fix a trivialization (£V);p = Op @ Op such that & is the kernel of

V= (&) = Op ® Op 5 0p — O, ®O04_.

We then let ¢; : [0,1] x [0,1] — D x D be the map sending (r,s) to
(pj(r), pj(s)). Associated to each w = (w1, w2) € D x D we have a filtration
of sheaves

[]:]'w = {fl,'w C -7:2,w C -7:3,10} € 227

where F3,, is the kernel of the surjective composite

(4.25) &Y — (&YV)p 25 Op — Oy,
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Fouw is the kernel of the above surjective composite with O, replaced by
On(w), Where m(w) C D is the subscheme corresponding to the image of w
via m: D x D — Hilb?(D) and Fi,, is the sheaf so that Fiw — Fow is
isomorphic to £ — & away from D. (i.e. Foq/Firw = O,.) We denote the
map w — [Flw by ¢;, where w € D x D. Now let J be the anti-diagonal:
{r+s=1} C[0,1]x[0,1] and let A; = pj0;(J) C Z3. Aj is a 1-chain with
0A; = —p;' + p; , with appropriate orientation. Since m(J) = 0 as 1-chain
in Hilb?(D), 7l‘§f (A;) = 0 as chain. Therefore

m

k
z +2A C Z9

j=1

is closed and as chain ng (") = g(09).

Lemma 4.9. There is a 2-chain T C 25 such that 0T = -I', that
lez (T) C SaMgUSEM, and ﬂfz (T) N SYMy is discrete.

Proof. As chains,
O(n3 0 g(9)) =73 09(88) =m0 mZ:(T).

Thus W)Z(l o 7Tz 2(T") represents the trivial class in Hj(X). Because 71'}%1 =
T o 7TZI, [7Z2(T)] = 0 in Hy(X). We claim [r%5(T )] is also trivial in
H;(X). To prove this we first rearrange indices of I, - , It to If: oo IF f
such that n(I;") = —n(I;"). This is possible because 77(35’) =0, at least after
we subdivide those chains having n(I;) = 0. Next, we let A; be those I; +
such that Img(I;") = Img(I;") (which means that we do not need to cut s
along I; in order to get the lifting g) and let A be the remainder I;’s. Note
that for i € Ay, g(I;}) = —g(I;"), which implies §(I;") = —g(I;"). Then we
have the following identities of chains:

“)Zczz °9(I+) + 7TX2 og(I7)=0, if If € Ay;
n% o g(IF) = —nB 0 §(IF), i IF € Ay

The second identity holds because for any z € SYMy and (772)71(2) =
{£1,&} we have 732 (€1) = 753(&). As to the l-chains Aj, - -, Am we
added on, the class

m

(4.26) (D 4] € Hi(X)

Jj=1
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certainly depends on the choices of paths p;. However, since path p; can be
chosen arbitrary so long as its end points are as prescribed, we can assume
without loss of generality that (4.26) is indeed trivial. Therefore we have

(4.27) [r23(0)] = —[xZ2 ()] = 0 € Hy(X).

Now we consider the projection 73 22. 2y — Myy_o that sends F; C Fo C
F3 to F3. Because My_5 is smooth and Z; is locally irreducible, we can
perturb I" to IV C Z5 such that 7r332 (™M c Mg_z. Let T} be the 2-chain in Z,
so that 8Ty = I'—T". By choosing I' close to I" and T1 in general position, we
canmake T7-T' C (wizz) 1(89My) since T C (7r %)~ (SgMdU%’,,Md) and Z5
is locally irreducible. (See proof of Lemma 1.13.) Let X = (7r3 2) "1 (MY_,).
It is easy to check that fibers of X over Mg_z x X x X (via 7r3 X w)z(zl X 7!‘)2{22
are connected and have trivial first homology groups. By Leray spectral
sequence, Hy(X) is isomorphic to Hi(MJ_, x X x X). Because of (4.27),
for any pair of distinct points (21, z2) € X x X there is a 1-cycle I contained
in

(%2 x 1) " (@1,82) C X C 2y

such that T is homologous to I in X, via Ty C X. Because 72*(I") C
S’“”Md and 722(I") is the boundary of n¥%(Ty + Tp) C SMd (note
that 721(g(T')) = 0 as chain), [7Z2(I"")] € H1(S5*2My) is contained in
the kernel of h: H1(85**My) — Hi(Mg). By the induction hypothesis,
h is an isomorphism, hence [#Z2(I")] = 0 € Hi(S3'**M,), and hence
[ =0 € H ((wfz)‘l(Sflszd)) Therefore, we can find a 2-chain

C (n22)71(851%2 M) such that 8T = —I". By construction, the 2-
chain T' = T + T + T3 satisfies the condition required in the lemma, since
7r‘1;32 (X) € 83 M. This completes the proof of the lemma. a

Continuation of the proof of (4.19). Let T C Z3 be the chain just con-
structed. We let By = ¢(5) + sz(T) and By = 72*(T), as chains
in Z; and SaMg U S5 My respectively. By our construction, 0B; = 0,
721(B;) C S1Mg U SaMyU SyMy and 77 (By) — St Mg U SIMy is dis-
crete. For By, we also have By = 0 and that By — SoMy C StM, is
discrete. Let u; be the image of [B;] under Hy(2;) — Ha(SMy) and ug
be [By] € Ha(SMy). Clearly, the cycle £ € Hao(SMy) we begin with has a
decomposition & = uy + us.

We now show that ui® € Ho(S;Mg)™ and ul® € Hy(SFMy)™ C
Hy (81 M), where uim is the image of u; in Ha(My). We first prove
ul™ € Hy(S1My)™. We take the representative By C Z;. By perturb-
ing By C 21, we can assume 7] 1(B1) — 81 Mg is finite and is contained in
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SaMy U S5 My, since 2 is locally irreducible. Now consider the projection
7r=7r)z(1 ><7r221 127 — X X Mg_1.

Clearly, 7(B1)—X x MY_, is discrete. Let {(z1,F1),-- -, (z1, F1)} = n(B1)—
X x MY_, and let S(F;) C SMg_1 be the closed subset defined before. (i.e.
S(F;) consists of £ such that £V = F)Y and £((EVV/E)z) = L((FY | Fi)) for
each z € X.) By Lemma 4.8, there is a deformation retract neighborhood U;
of {z;} x S(F;) C X x My4_1 such that Hy(U; — X x SMy_1) = 0. Therefore
by Mayer-Vietoris sequence

[Bi1] € Ha(n™H(X x MY_})) @ &' Hao(n~1(U3))
and hence
(4.28) ul® € Ho(S1Ma)™ @ &' Hy (n2t (n =1 (U))) ™.

Since U; is a deformation retract of {z;} x S(F;) and 2; — X X My_; is
proper,

Hy(nE (r=H(U)))™ = Ha (P (n 7} ({mi} x S(F))))™

However, 72! (1~ ({z;} x S(F))) is exactly S(%;) for any F; in this set.
Therefore because F; € SopMyU S5M, and Lemma 4.8, the right hand side
of (4.28) is contained in Ho(S1Mg4)™. This shows that ul™ € Hj(S1Mg)™.

Next, we study the class us. To do this, we need to introduce a new
set similar to Z1. We let Z3 be the set of filtrations F; C F3 such that
Fi € SsMgU S4My and £(Fy/Fi) = 2. The obvious map 773 sending any
filtration to its first factor is a map from Z3 to SoMyUS5Mg. ﬂ'fa is finite
over SeMyzUS5 My, and is one-to-one over S M. Let By C Sa My US:?Md
be the closed chain representing us. We know BaNS5 My is finite. Therefore

because 7riz3 is finite, which is true based on our choice of S5.M  before

Lemma 4.8, we can find a closed 2-chain Bz C Z3 such that 7rlz3 (Bz) = Bs.
Finally, because (7rlz3)"1(S§Md) is locally irreducible, which can be proved
similar to that of Z1, we can perturb By so that 7r123(B2) — ng\/id is finite.

We now show ug € Ho(S1Myg)™. Let
(4.29) T 23— S2X x Mg_o

be the map sending F; C F2 to {supp F2/F1, F2}. By Lemma 4.8, fibers of
7 over S2X x Mg_l are simply connected. Hence similar to the discussion
concerning (4.27),

Wl = [Bof™ € Hy(r71((S2X — A) x MY_,))™ @ (@Ha(S(F:))™),
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where the summation runs over all possible F; € wf" (B2) — SQMd.
By Lemma 4.8, the last factor is contained in Ho(S3Mg)'™. Because
T H((S2X — A) x MY_,) = SIMy, ui® will belong to Ha(S1Mg)™ if
H2(S20Md)im C Hz(SlMd)im.

In the following, we will show
(4.30)

Hy(SiMg)™ € Hy(SFMg)™ and  Ho(SIMy)™ C Hy(SEMg)™.

In particular this will imply that both 4™ and ui® and then ¢™ are in
Hy(SFM)™, We will prove the first inclusion and leave the proof of the sec-
ond inclusion to the readers. We need to show that for any n € Ha(S1My),
we can find ¢ € Hy(SFMy) such that n'™ = £™ in Hy(M,). Since S My
is a Pl-bundle over X vag_l with projection m, we have the following
commutative diagram (of exact sequences)

0 —— Hy(P') —— Hp(SiMa) —= Hy(X x MJ_)) —— 0

II | [s

0 —— Hy(P') —— Hy(SfMg) ———  Hy(M§_,) —— 0.

Clearly, 8 factor through Ho(X) ® Ha(MY_,) C Ha(X x MY_;), according
to the Kunneth decomposition

Hy(X x Mg-q) = Hy(MY_1) ® Hi(X) ® Hi(MY_;) ® Ha(X).

Now we consider the case where ax(n) € H1(X) ® H1(MY_;). We choose a
ball B C X containing = and a compact S C MY_, such that

(4.31) o H(Hi(X) ® Hy(MY_1))™ c Hy(Ws)™,

where Wy is the set of £ € S My such that £ is a subsheaf of some F € S
such that supp(F/€) N B = 0. Because H;(SiMy_1) — Hi1(Mg_1) is
an isomorphism, by induction hypothesis, we can replace S by a set S’ C
STMg-1 and still have (4.31) with S replaced by S’. Note that Wg C
SgMd. Now let S M, be the set of all sheaves £ € SYM, such that
2((EVV/E)z) = 1. Then S§M, is a smooth divisor of SFM4U SF My, and
further for any w € S§ M, there is a neighborhood U of w € S§ MyUSF M4
such that H1(U -85 M) = 0, following the proof of Lemma 1.10. Therefore
similar to the argument after (4.28)

Hy(Wg )™ C Hy(STM)™ @ Ho(Vo)™ C Ho(SEMg)™.
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Therefore the left hand side of (4.31) is contained in Hy(SFMy)™. The case
where ;! (Ha(X ))lm C H(SFM,)'™ can be proved similarly. We will omit
the proof here. This proves (4.19) and (4.20).

Now we are ready to prove the main theorems. Let Hy be any ample
divisor, let Hy € C € NS(‘S be a precompact neighborhood of Hy € N Sa and
let N be a sufficiently large constant given before. Then for any H € C and
d > N, H;(9y(I,d)°) is isomorphic to H;(9Mp,(I,d)°) (i < 2 here and in
the later discussion). However, for d > N and (Hy, I, d)-suitable H € C, by
theorem 4.1

H;(Mpu(1,d)°,Q) — H;(Mu(I,d+1)°,Q)
is surjective. Therefore,
H; (Mo (1,d)°, Q) — H; (Muy(1,d+1)°, Q)

is surjective for all d > N. Since H;(My,(I,d)°) are linear spaces, the above
chain of homomorphisms has to stabilize at finite steps. Namely, for some
N; > N, it is an isomorphism for all d > ;. Further, combined with the
work of [Ta] (see (0.3) and (0.4)), we can find N so that for d > Ny,

H;(Mu,(1,d)°, Q) = H;(B(Py)*, Q).

This proves theorem 0.1. For theorem 0.2, we simply apply the above iso-
morphism to the fact

1
dim H; (B(Pd)*) = by and dim Hy (B(Pd)*) = by + -2-b1(b1 - 1),
where b; = dim H;(X) (see page 181-182 of [DK]4). Finally, by the proof
of lemma 4.3, hi(My,(I,d)) = hi(My,(I,d)°), and ha(Mp,(I,d)) =
ho(M g, (I,d)°)+1 because SMy, (I,d) C Mu, (I, d) is an irreducible Cartier

divisor. This proves theorem 0.3.
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