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1 

For an induced subgraph 5 of a graph, we show that its Neu- 
mann eigenvalue As can be lower-bounded by using the heat kernel 
Htix^y) of the subgraph. Namely, 

As>iVinf^b^ 

where dx denotes the degree of the vertex x. In particular, we de- 
rive lower bounds of eigenvalues for convex subgraphs which con- 
sist of lattice points in an d-dimensional Riemannian manifolds M 
with convex boundary. The techniques involve both the (discrete) 
heat kernels of graphs and improved estimates of the (continuous) 
heat kernels of Riemannian manifolds. We prove eigenvalue lower 
bounds for convex subgraphs of the form ce2/(dD(M))2 where e 
denotes the distance between two closest lattice points, D(M) de- 
notes the diameter of the manifold M and c is a constant (inde- 
pendent of the dimension d and the number of vertices in 5, but 
depending on the how "dense" the lattice points are). This eigen- 
value bound is useful for bounding the rates of convergence for 
various random walk problems. Since many enumeration problems 
can be approximated by considering random walks in convex sub- 
graphs of some appropriate host graph, the eigenvalue inequalities 
here have many applications. 

1. Introduction, 

We consider the Laplacian and eigenvalues of graphs and induced sub- 
graphs. Although an induced subgraph can also be viewed as a graph in 
its own right, it is natural to consider an induced subgraph S as having a 
boundary (formed by edges joining vertices in S and vertices not in S but in 
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the " host " graph). The host graph then can be regarded as a special case 
of a subgraph with no boundary. 

This paper consists of three parts. In the first part (Section 2-5), we 
give definitions and describe basic properties for the Laplacian of graphs. 
We introduce the Neumann eigenvalues for induced subgraphs and the heat 
kernel for graphs and induced subgraphs. Then we establish the following 
lower bound for the Neumann eigenvalues of induced subgraphs. 

Theorem 1: For t > 0, 

where the detailed definitions for the eigenvalue As, the heat kernel Ht and 
the degree dv will be given later. 

In the second part (Section 6-9) of the paper, we focus upon convex 
subgraphs. Roughly speaking, a convex subgraph has vertex set consisting 
of lattice points in a Riemannian manifold with a convex boundary. Our 
plan is to use the (continuous ) heat kernel of the convex manifold to lower- 
bound the (discrete) heat kernel of the induced subgraphs. To this end, we 
will derive an improved estimate for heat kernels of Riemannian manifold 
with convex boundary. Although this result is heavily motivated by the 
discrete problems, it is of independent interest as well. As we shall see, the 
discrete problems often contain additional variables, such as the number of 
vertices. The (continuous) heat kernel estimates in the literature usually 
involve constants depending (exponentially) in the dimension of the mani- 
fold. The dimension of the manifold are intimated related to the number of 
vertices. Consequently, such lower bounds are often too weak and too small 
for applications in discrete problems. In Section 9, we derive estimates with 
constants independent of the dimension using and strengthening a theorem 
of Li and Yau [8] for lower bounds of the heat kernel of a convex manifold. 
Under some mild conditions (e. g. the lattice points are "dense enough"), 
we can use the results in the continuous case to obtain eigenvalue bounds 
for convex subgraphs: 

ce2 

As> 
(d L>(M))2 

where e denotes the distance of two closest lattice points, d is the dimension 
of the manifold M that S is embedded into, D(M) denotes the (diameter of 
M and c denotes an absolute constant (see Section 9 for details). Usually, 
the maximum degree k of the convex subgraph is about d.  The diameter 
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D(S) of the convex subgraph S is between D(M)/e and y/dD(M)/e. So, we 
have a lower bound for As of the form c/(kD(S))2 for a general graph and 
of the form c/kD(S)2 for some graphs. 

In the third part of the paper (Section 10), we discuss the relationship of 
Neumann eigenvalues to random walk problems. In particular, we introduce 
the Neumann random walk in an induced subgraph of a graph. We also 
generalize all the results to weighted graphs with loops. The eigenvalue lower 
bound then can be used to derive upper bounds for the rate of convergence 
for these random walks. 

In the last section, we briefly discuss the applications of random walk 
problems to efflcient approximation algorithms. In particular, we discuss the 
classical problems of approximating the volume of a convex body and also 
the problem of sampling matrices with non-negative integral entries having 
given row and column sums. We will use our eigenvalue inequalities to derive 
polynomial time upper bounds for the sampling problem which can then 
be used to derive efficient approximation algorithms for the enumeration 
problem. Since many sampling and enumeration problems often involve 
families of combinatorial objects which can be regarded as vertices of convex 
subgraphs of some appropriate host graphs, the eigenvalue bounds and the 
methods we describe here can be useful for many problems of this type. 
There are many recent developments [7, 10, 11] in approximating difficult 
counting problems by using the methods of random walks. The heat kernels 
and eigenvalue bounds in this paper offers a direct approach for bounding 
the eigenvalues. A number of applications in this direction will be discussed 
in [4]. 

We remark that in this paper we mainly consider Neumann eigenval- 
ues because of the relationship with random walks. Results on Dirichlet 
eigenvalues will be described in a separate paper with different applications. 

2. Preliminaries. 

We consider a graph G = (V, E) with vertex set V = V(G) and edge 
set E = E(G). Let dv denote the degree of v. Here we assume that G 
contains no isolated vertices, no loops or multiple edges (the generalizations 
to weighted graphs with loops will be discussed in Section 10). We define 
the matrix L with rows and columns indexed by vertices of G as follows. 

L(IA, v) = < 

dv      i(u = v, 

—1     if u and v are adjacent, 

0        otherwise. 
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Let T denote the diagonal matrix with the (v, ?;)-entry having vzdue dv. The 
Laplacian C of G is defined to be 

In other words, we have 

£(u,v) = < 

1 if u = v, 

 . if ^ and ?; are adjacent, 
ydudv 

0 otherwise. 

The eigenvalues of £ are denoted by 0 = AQ < Ai < • • • < An_i. When G is 
k-regular (i.e., dv — k for all v), it is easy to see that 

C=I-TA 
k 

where A is the adjacency matrix of G. 
Let g denote a function which assigns to each vertex v of G some complex 

value g(v). Then 

(9,£g) _ {g,T-WLT-Wg) 

(9,9) (9,9} 
</,Af} 

(T^f, Tll2f) 

V 

where / satisfies g  =  T1/2/ and the inner product is just (/i,/^)   = 

E,/i0»0/2(*). 
Let 1 denote the constant function which assumes the value 1 on each 

vertex. Then T1/2! is an eigenfunction of C with eigenvalue 0. Also, 

\2 E(/(«) -/(o))2 

(3) A := Ai =   inf 
^T1   E^/M2 

V 

E(/(u) - /^))2 

= mi sup -==  
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inf    ^^     ^ 

V 

Various facts about the A^ can be found in [5]. In particular, an eigenfunc- 
tion g having the eigenvalue A satisfies, for all v G V(G), 

3. The Neumann eigenvalues of a subgraph of a graph. 

Let S denote a subset of the vertex set V(G) of G. The induced subgraph 
on S has vertex set S and edges {u,v} of E(G) with u, v 6 S. We will 
often denote the induced subgraph on S also by S. There are two types of 
boundaries of S. The edge boundary, denoted by 95, consists of edges with 
one endpoint in S and the other endpoint not in 5'. The (vertex) boundary of 
S, denoted by 6S, is defined by 6S = {v G V(G) : v <£ S and {u,v} G E(G) 
for some u G V(G)}. Let Sf denote the union of edges in S and edges in 
dS. For a vertex x in 55, we let d^ denote the number of neighbors of x in 
S. We define the Neumann eigenvalue of an induced subgraph S as follows: 

(4) A5 = inf 

E (/(*)-/(y))2 

xes 

{xvyes' 
= inf sup 

In general, we define the i-th Neumann eigenvalue \s,i to be 

\s,i = inf  sup 
{^,J/}65' 

xes 
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where Ck is the subspace spanned by functions (j)j achieving Xsj, for 0 < 
j < k. Clearly, A^o = 0. We use the notation that A^i = A5. 

Prom the discrete point of view, it is often useful to express the As^ as 
eigenvalues of a matrix £5. To achieve this, we first derive the following 
facts: 

Lemma 1. Let f denote a function f : S U 6S —> M satisfying (4) with 
eigenvalue A. Then f satisfies: 

(a) for x e S, 

y 
{x,y}es' 

(b) for x e 6S, 

Lf(x) = 0 

This is the so-called Neumann condition that x G 6S satisfies 

or, equivalently, 

y 

f(x) = ir   E   M 
"x 

{xty}edS 

(c) for any function h : S U 6S —> M, ^e ftave 

£&(*)£/(*)=   E (M^)-%))-(/(^)-/(!/)) 

We remark that the proofs of (a) and (b) follow by variational principles 
(cf. [5]) and (c) is a consequence of (b). 

Using Lemma 1 and equation (4), we can rewrite (4) as follows by con- 
sidering the operator acting on the space of functions {/ : S —* R}, or the 
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space of functions {/ : SU8S —* M and / satisfies the Neumann condition}. 

(5) A5=       inf      xeS 

T. f(x)d: L* I^w* xes 

^2g(x)Cg{x) 
=    inf     xeS 

xes 

=    inf    <*£&. 
girwi (g, g)s 

where C is the Laplacian for the host graph G and (/i, $2)8 = ^ fi(x)f2(x)- 
xeS 

For X C V, we let L^ denote the submatrix of L restricted to columns 
and rows indexed by vertices in X. We define the following matrix N with 
rows indexed by vertices in S U 6S and columns indexed by vertices in S. 

1        if x = y, 

0        if x G S and x ^ y, 
v    *'      * —     if x G 55, y G S and x ~ j/, 

dx 
0        otherwise. 

Further, we define an (S'l x |5| matrix 

Cs = T-^N^sussNT-1'2 

where AT* denotes the transpose of N. 
It is easy to see from equation (5) that the XSJ are exactly the eigenvalues 

of Ls. 

4. The heat kernel of a subgraph. 

Suppose for a graph G and an induced subgraph S of n vertices of G, 
we write the Laplacian of S in the form: 

n-l 

C = Cs = ^2XiPi 
i=0 
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where Pi is the projection of C to the z-th Neumann eigenfunction (pi of the 
induced subgraph S. The heat kernel Ht of S , for i > 0, is defined to be 
the following n x n matrix: 

% 

= I-tC, + -C?-... 

In particular, iJo = 1* In the special case that S is taken to be the vertex 
set of G, Ht is the heat kernel of the host graph G. 

For a function / : S U bS —> R, we consider 

(6) ^,2)=    J]   Ht{x,y)f{y) 
y£SU6S 

(7) = (fl-*/)(x). 

Here are some useful facts about F and iff 

Lemma 2. 

(i) F(0,x) = /(x) 

(ii) ForxeSUtfS, 

yesuss 

(hi) F satisfies the heat equation 

dt 

(iv) For any vertex x in 6S, 
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(v) For any function G : M x V —► M, we have 

Proof, (i) is obvious and (ii) follows by considering the function T1/2! as 
the function / in (6): 

YJHt{x,y)Jdy = {HtT
llH){x) 

y 

= ydx 

To see (hi) we have 

dF _ d 
~dt - diHtf 

= °-e-tcf m    J 

= -CF 

The proof of (iv) follows from the fact that all eigenfunctions ^ with 
corresponding Fi in (6) satisfy (iv). 

To prove (v), we have 

J2G(t,x)CF(t,x) = ^FfaxtT-WLT-WFfax) 
xes xes 

= ^G(t,x) 
( - ,\ 

F{t,x)     F(t,y)y 

x€S 
E 
/ 

y/dx 

i 

= E G{t,x) 

yfd~x E F(t,x)     F{t,y) 
\ 

) 

y 
{^y}eS' 

ydx \Jdy 

| (F(t,x)     F 

\[&~x        v^y / \ v^        \/^y / 

y    (Gjt^x) _ Gjyrf} (Ffa) _ FjyS)} 

by using (iv). 
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Lemma 3. For all x, y G S U 8S, we have Ht(x, y) > 0. 

Proof. The matrix M = I — C has all entries non-negative. Therefore etM 

has all non-negative entries. Since 

all entries of Ht are non-negative. Lemma 3 is proved. 

5. Arreigenvalue inequality. 

In this section, we will prove the following inequality involving the eigen- 
value A5 of an induced subgraph S with a heat kernel Ht(x,y). 

To do so, we consider a given function / : S U 8S —» R, and we define 

(8) g{x,t) = YJHt{x,y)^y(M-E^\   . 

where F(t,x) = iJ* f{x). By using Lemma 2 (ii), we have 

(9) g(x, t) = J2 Ht& V)\ldx/dyf2{y) - F2(t, x) 
yes 

By summing over x in S, we obtain 

xes xeSyes xes 
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Using Lemma 2 (i),(ii), (iv) and (v), we get 

Y^9(t,x) = Y:f2(y)-Y,F2^x) 
xes yes xes 

^ ds  tts 
= -2jtY,ns,x)jsF{s,x)ds 

= 2 I J2F(s>x)CF(s'x)ds 
10
 xes 

F(s,x)     F(s,y) 

We claim that for any t > 0, we have 

(io) =2/ Y, l^-Tp-^r) ds 

fix)  m\2 
Factl.   E (F(t^_mg\2

< E ( 

To see this, we consider 

£    y,    (F(t,x)     F(t,y)\2 

= 2 V   /-fft.^)   F&y)\(d F^x)    d Fit*v)' 
{^ff V ^       V^y )\dt ^      dt v^y . 

= 2   y.    dF(t,g)    y-    /F^x)     F(t,y)\ 

{^,?/}€5' 

xeS\J6S 

<0 
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Therefore 

E 
'F{t,x)     F(t,y)\\    ^    ^(0,^)     F(0,y)\2 

Vck {x,y}es'\  ^ V^ 

= v {m /(y)V 

Thus, Fact 1 is proved. 
Substituting the inequality of Fact 1 into (10), we obtain 

its Jo (Jtes' \  V^ ^ / 

(11) < 2* E /W    /(y) 
{x,y}eS'  \ v    " 

In the other direction, we consider the lower bound: 

E^^EE^fry)^^-^ 
xes' xeSyes 

(12) 

^Efinf^^^E (4^-^)^ 
ye5 Vdy 

H'lM) (ai:(^-.V-. 
Combining (11) and (12), we have 

sup- 
c 

{x,y}€S' 

/(*)    /(y) 
'^OJ        \/rfi 

Vinf . c Ht{x^y)y/d^ 

ye5 

2t 

From the definition in (3), the left-hand side of the above inequality is exactly 
As. Therefore we have proved the following: 
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Theorem 1.  The Neumann eigenvalue As for an induced subgraph S sat- 
isfies 

xes* 

6. Bounding eigeinvalues using the heat kernels. 

In this section, we will discuss various techniques of using the eigenvalue 
inequality in Theorem 1. To lower bound As, one approach is to find some 
other function to serve as a lower bound for Ht. We will describe several 
sufficient conditions for establishing lower bounds for Ht. 

Let k denote a function 

For convenience, we will sometimes suppress the variable y and write 

k(t,x) = k{t,x,y) 

for a fixed y. Suppose k satisfies the following three conditions (A), (B) and 
(C), for a fixed e > 0 and t > 0. 

(A) — k(t, x) < -Ck{t, x) + ek(t, x) 
Ob 

(B) ^(e', #, x) = 1 and ^(e', x, y) = 0 for x, y G S and x ^ y. 

(C) For all x G (55, 

'k(t,x)      k^t.x'Y Y^   i ^y^x)   K^XJ \ <0 

x'es 
{x,x'}es' 

Theorem 2. Suppose S is an induced subgraph with the heat kernel Ht. If 
k satisfies (A),(B) and (C) for fixed e and for all t > 0, then for x,y G S, 
we have 

Ht(x,y) >k{t,x,y) e"6* 

Proof. Suppose we define 

'h{t,x,y)=eetHt{x,y) 
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—h = eh — Ch 
at 

588 

Then we have 

(13) 

Using (B), we find: 

/   ■x-Ylh(t-s,x,z)k(s,z,y)ds 
Jo OS zes 

= k(t,x,y)-h(t,x,y) 

Therefore, for fixed x and y in 5, we have 

-h(t,x,y) + k{t,x,y)=  I   —1S^h{t-s,x,z)k{s,z,y)ds 
J»ds^S 

ft r    r\ r\ 

- / XJ ^(* ■"5'a;'z) * fc(5' ^' ^+^(* ~5' ^^ *) * ^5 fc(5'^, ^ 
zes 

ds 

< 5, a:, 2;) • fc(s, 2, T/) — €/i(t — s, x, z)fc(5, z, y) 

d 
+h(t-s,x,z)—k(sJz,y) ds 

- /   E ^^ "" 5'rE' ^ " fc(5' *'y) ~ S ^(* ~ 5'a:' ^ ' Czk(8, z, y) 
Jo   izes zzs 

[by (13)] 

ds 

[by (A)] 

Since the Neumann condition implies 

Cz(t — SjX^z) = 0 
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for z E <55, the above sum is equal to 

/ Jo 

-f Jo 

"^2   £*M* - s,x,z) -k(8,z9y) -^hfy- s, x, z) • Czk(s, z, y) 
Lzesuss zes 

ds 

{z^yes' 

hit — s^x^)      h(t — s,x,zf)\    fk(s1z)y)     k(SiZf,y) 

VdTz yftfe 

^2h(t- 5,x,z) • Czk(s,z,y) 
zes 

/ 

ds 

h(t — 5,0:, z) 

xfdz E 
\    z'es 
\{2,2'}eS' 

fc(s,z,y)     k(s,z',y) 

\dz vdz' 

\ 

ds 

<0 

where the last inequality follows from the fact that h > 0 and the last term 

k{s,z,y)     k(s,z',y) E 
z'es 

{z,z'}esf 
yfdz 

is < 0 by using condition (C). Therefore we have 

h{t,x}y) > k(t,x,y) 

as desired. The proof of Theorem 2 is complete. 
We now consider a modified version of (B). For some e7 > 0, 

(B')    fc(e/,x,x) = 1 and k(e\x,y) < en\Jdxdy      for x,y E S and x^y. 

Theorem 3. Suppose S is an induced subgraph with the heat kernel Ht* 
If k satisfies (A),(B') and (C) for fixed €,€',€" and for all t > e', then for 
x, y € S, we have 

Ht-ei{x, y) + e!,^dxdy > k(t, x, y) e~ et 
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Proof. We follow the proof of Theorem 2. By (B'), we have: 

/   •fl-y%2h(t-s,x,z)k(s,z,y)ds 

zeS 

> k{t) x, y) — h(t — e', x, y) — e" Y^ h{t — e', x, z) yjdydz 

z 

> k(t, x, y) - h(t - e', x, y) - e"y/d^dye^-^ 

by using the fact that ^J Ht{x, y)\Jdy = \fdx. Therefore, for fixed x and y 
y 

in 5, we have 

- h(t - e', x,y) + k(t,x,y) - e"^/d^d'ye^-^ 

< /   —^2h(t-s,x,z)k(s,z,y)ds 
^e'       zes 

- / X^ gr^ ~5, x>z) * k(s>z' y^+h^ "5'x'z)' d~k(s'z' y- 

< I   ^ \Czh{t — s, x, z) - k(s,'z, y) — eh(t — 5, x, z)k(s, z, y) 

ds 

zes 
d 

+h(t - s, x, z)—k(s, z,y) ds [by (13)] 

< 
/; 

]P   Czhit - s, x, z) - k(s, z,y)-^r h(t - s, x, z) • Czk(>, z, y) 
.zesuss zes 

[by (A)] 

ds 

-i: E 
_{z,z'}es' 

h{t — s,x,z)      h{t — s,x,z,)\    {k(s,z,y)     k(s1z\y) 

dz y/d^ V<k /a: 

^2 K1 - si x'>z)' £zHsi zi v) 
z€S 

( 

ds 

Je zess 

h(t — s,x,z) E k(s,z,y)      k(s,z',y) 
\ 

i    z'es 
\{^,}€5/ 

ds 

J 
<o 
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Therefore we have 

fli_c/(x,y) + z"y/dxdy > k(t,x,y)e et 

Next, we consider the following variation of condition (A): 

(Af)       ~Elk(t, x) < —Ckfa x) + -2-fc(t, x)      for t satisfying to>t>€f. 

Theorem 4. Suppose S is an induced subgraph with the heat kernel Ht- 
If k satisfies (A'),(B') and (C) for fixed to, eo, e', e" and for all to > t > e'. 
Then for x, y £ S, we have 

Hto-Ax, y) + e"^dy > (1 - e")fc(to,x,y) e~^le' 

Proof. We consider the following function 

h(t,x,y) = e^l^^'^Ht^y) 

Then we have 

(14) -h = 
3eo 

dt        (to + 2e! - t)2 h-Ch 

The following calculation is similar but slightly different to that in the 
proof of Theorem 3. For t satisfying to > t > e', we have 

- h(to - e', x, y) + k(to, x, y) - e"^dyd2^*1 

<  /    -K-22h(t-sJxJz)k{s,z,y)ds 

- I,   z2   -7^h{to-s,x,z) -k(s,z,y) + h(to-s,x,z) • — k(s,z,y) 
zes ds 

ds 

u'   zes 
Czh(to- s,x,z) 'k(srz,y) 

3eo 
{2ef + s)2 h(to - s,x,z)k(s,z,y) 

d 
+h(to-s,x,z)—k(s,z,y) ds 

< l52 l^zHto - 5, x, z) • k{s, z, y) - -^h{to - s, x, z)k(s, z, y) 

+h(to - 5, x, z)—k(s, z, y) ds 
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r ^J   Czh(to-s,x,z)-k( 
.zesuss 

s,z,y) 

- ^J h(to - 5, x, z) • Czk(s, z, y) 
zes 

ds 

pto 

Je' 
y^    (h{to — s, x, z)     h(to — s, x, z') 

Sz,z>}es> V       V^I                   v^ 

.{hi s,z,y)     k(s,z',y)\     ^ 
h.(f.n —  "5   -r    *} • 

zes 
ds 

= f
t0 y Hto s,x,z) 

( 

Vd~z E 
i    z'es 

k(s, z, y)     k{s, z', y) 

y/d~z y/d7f 

\ 

'e   zess 

<0 

Therefore we have 

Hto-erfa y) + e"v/4^ > fe(t, x, y)e-Ze°>e' 

and Theorem 4 is proved. 
We consider another variation of condition (C): 

ds 

) 

(C) £ k{t,x)     fcfos7) 

y/dx 
{x,x'}es' 

< **&*)&     forxeS. 

Theorem 5. Suppose k satisfies (A'), (B') and (C) for fixed to,eo,e',e" 
and all t satisfying to>t>e'. Then, we have 

Ht0.ef(x1y) + e,,^/d^> (l-^=)  , min   k(s,x,y)e-»eo/e' 

'provided for some d > 1, c'ei/V^o ^ 1/4 and /or to>t> d, 

(15) 

/or x,y € S. 

^ fc(t - 5, x, z)k(s, z, y) < -k(t, x, y) 
zeds 
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Proof. Suppose the contrary. Following the proof of Theorem 4, we have 

\ 

\h(to - e',x,y) - k(t,x,y) + e"^/d^e3eo^\ 

( 
to v^ h(to ~ s) ^ z) <-s:^ zess 

to    J 

vs; E 
\    z'es 
\{z,z'}esf 

k(s,z,y)     k{8^,y) 

y/dz fdz 
ds 

zess 

We consider 

[     1   v-^ - 
-ei / ~T zZ h(to "■5'x' ^)fc(5' z> y}ds 

\h(t,x,y)-k(t,x,y)\ 
X =     sup 

x,y,to>t>e' fc(*j ^J 1/) 

We have, by using (15) 

h(t - e7, x, y) ~ fc(t, x, y) + e^y/d^e360/6' 

fto   1   v^ 
- ei /    ~r zZ \.\h(to ~ s'x'^ "" fe(to "" s'x'^)l 

+ k(to — 5, a;, z)]fc(s7 ^, 2/)d5 

^ 6i /0 4= E ^(^ + ^fo, ^ »)^ 

<^(X + l)k(to,x,y) 

Therefore we have 

HtQ-e<{x,y) + e"^/dxdy > (l ^ )     min   k(s,x,y)t 
\       Vto /   |*o-«l<c/ 

-3eo/e' 

and Theorem 5 is proved. 

7. Convex subgraphs embedded in a manifold. 

In previous sections, we considered general graphs. In the remainder of 
this paper, we will restrict ourselves to special subgraphs of homogeneous 
graphs that are embedded in Riemannian manifolds. Such a restriction 
will allow us to derive eigenvalue bounds for graphs using known results 
for eigenvalues of Riemannian manifolds.  The restricted classes of graphs 
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still include many families of graphs which arise in various applications in 
enumeration and sampling. Roughly speaking, our plan here is to modify 
the heat kernels of the Riemannian manifolds with convex boundary which 
can then serve as lower-bound functions of &(£,#, y) in Section 3. 

We start with some definitions. Let T = (V, E) denote a graph with 
vertex set V = V(r) and edge set E = E(r). We say that F is a homoge- 
neous graph with an associated group H acting on V if the following two 
conditions are satisfied: 

(i) for any g G 7Y, {gu, gv} 6 E if and only if {u, v} E E, 

(ii) for any two vertices u and v, there is a g € H such that gu == v. 

Thus F is vertex-transitive under the action of H and the vertex set V 
can be identified with the coset space H/X where X = {g G H : gv = v} , 
for a fixed vertex v, is the isotropy group. We note that a Cayley graph is 
the special case of a homogeneous graph with X trivial. The edge set of a 
homogeneous graph F can be described by an edge generating set K C H 
such that each edge of F is of the form {v, gv} for some v G V, and g G K. 
We also require the generating set K to be symmetric, i.e., g G K if and 
only if g"1 G K. 

We will first define a simple version of a lattice graph. Suppose the 
vertices of F can be embedded into a flat Riemannian manifold ,M with a 
distance function fj, such that 

(16) nix, gx) = /x.(j/, g'y) < n{x, y) 

for any #, g' G K and x, y G V(r) with x ^ y. Then F is called a simple 
lattice graph. We say that F is a lattice graph if for a vertex x, every vertex 
of F in the convex hull formed by the set {gx, g G K} is adjacent to x. Here 
we assume that Ai is flat, although very similar approaches can be used for 
manifolds with non-negative Ricci curvature. 

An induced subgraph on a subset S of a lattice graph F is said to be 
convex if there is a submanifold M C M with a convex boundary dM ^ 0 
such that S consists of all vertices of F in the interior of M. Furthermore, 
we require that for any vertex re, the Voronoi region Rx = {y : fj,(y, x) < 
^(y, z) for all z G F D M} is contained in M. 

Example  1. We consider the space S of all m x n matrices with 
non-negative integral entries having column sums ci,... , Cn, and row sums 
^i5 • • -T"™-  First, we construct a homogeneous graph F with the vertex set 
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consisting of all raxn matrices with integral (possibly negative) entries. Two 
vertices u and v are adjacent if they differ at four entries in some submatrix 
determined by two columns i,j and rows fc, m satisfying 

Uik ^ Vik ~r I? Ujfc = Vjk — 1, Uim = Virn — 1, UjfYi = Vjm + 1 

It is easy to see that F is a homogeneous graph with the edge generating set 
(     I   -l\ consisting of all 2 x 2 submatrices . , . Obviously, V can be viewed 

as being embedded in the mn-dimensional Euclidean space M = Emn. In 
fact, F is embedded in the submanifold M of the (ran—m—n+l)-dimensional 
subspace containing the vertices of F. M is determined by 

3 

/ j xij := ci 
i 

It is easy to verify that 5 is a convex subgraph of the lattice graph F. 

Remark 1. In [3], the authors consider a "strongly" convex subgraph 
S of a homogeneous graph. An eigenvalue bound was derived by using an 
entirely different approach. Namely, the following Harnack inequality was 
established for an eigenfunction / of S and for any vertex x, 

£(/(*) -/(y))2<8AmjDc/2(y) 

This can be used to show 

X-8kDl 
where k is the maximum degree of T and D denotes the diameter of T. The 
differences between the two definitions of convexity can be described as fol- 
lows: In [3], a strongly convex subgraph T requires that for any two vertices u 
and v in T, all shortest paths joining u and v in the homogeneous graph must 
be contained in T. Here, the convexity condition requires the embedding 
of the subgraph into a Riemannian manifold with a convex boundary. We 
remark that various applications involving random walks on graphs which 
can often be interpreted as occurring in convex subgraphs (but not strongly 
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convex subgraphs) of some appropriate homogeneous graph. For example, 
the convex subgraphs mentioned in Example 1 are not strongly convex. 

8. Bounding the discrete heat kernel by 
the continuous heat kernel. 

Let S denote a convex subgraph of a lattice graph F with edge-generating 
set K. Let M denote the associated d-dimensional manifold M with a convex 
boundary and let fj, denote the distance function on M. In this section, we 
restrict ourselves to the case of convex subgraphs of simple lattice graphs so 
that the discussions are simpler but contain the essence of the general case. 

Let /i(£, re, y) denote the heat kernel of M and suppose n(i, x) = /&(£, #, y) 
satisfies the heat equation 

u{t,x) = 0 
dt 

with the Neumann boundary condition 

(17) — u(t,x) = 0 

where A denotes the Laplace operator of the form 

d2 A = I>>, J dxi dxj 

and dij depends on the edge generating set K as described later in (19). 
We remark that the convexity condition (17) is later on used to give heat 
kernel estimates. Our results can be applied to subgraphs corresponding 
to manifolds with weaker convexity conditions as long as the heat kernel 
estimates for manifolds can still be derived. 

We assume that ^(a;, gx) = e for all x G V(r) and g G K. To proceed, 
we define the function fc(£, x,y) which will be used later with Theorem 2. 
(In a neighborhood of a point x in M, we use the simplified notation of 
associating the points with the corresponding normal cordinates so that the 
expression, (e.g., x — z) in the following definition makes sense.) 

k(t ,x,y) = ci   /   h(c2t,x-z,y)(p(z)dz 
JM 

where ip is a bell-shaped function (such as a modified Gaussian function 
exp(—c'lz/e]2) ) with compact support, say, {\z\ < e/4}, and which satisfies 

ci   / ip(z)dz = C3 (c4e)d 
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where C3 and C4 are chosen so that the above quantity is within a con- 
stant factor of the volume of the Voronoi region Rx = {y : /x(y, x) < 
fj,(y, z) for all z G T fl M}, for a vertex x. So, fc(£, x, y) can be approximated 
by h(c2t,x,y)U or 

(18) /   /i(c2t,^ 
J Rx 

y)dz 

when t is not too small,  by using the gradient estimates of h in the next 
section. Here U denotes the maximum over x of the volume of Rx* 

In order to use Theorem 2, we need to verify conditions (A'), (B') and 
(C). First we want to show: 

—fc(t, x) < -Ck(t, x) + -2 fc(t, x) 

for io > t > e' = dlog yol£. where eo = ^-^- Here we suppress y and write 
fc(t, x, y) = k{t, x). Note that we have 

d_ 
dt 

k{t,x) = 01       w:h(c2 t,x — z)ip(z)dz 
JM ot 

= Ci  /   C2 A/i(c2 *, a: — 2:)y?(2:)d2; 

Also, 

= ci   /   Chfot, x — z)ip(z)dz 
JM 

Here we use the convention of identifying a vertex with the associated point 
in the d-dimensional manifold M. For simplicity, we write gx = g + x. 
(Formally we should use an appropriate mapping a from V to M so that 
cr(gx) = a(g) + cr(x). For a fixed g € if, we consider the two terms in the 
sum involving g and g-1: 

b(y) - ¥>(s/+9)} + [</?(y) - ¥>(i/ -9)] = - [v{y+5) - ¥>(y)] + b(i/) - v(y - 5)] 

which can be approximated by the second partial derivative in the direction 
of g scaled by a factor of €2. Therefore the Laplace operator involves coef- 
ficients a^j's depending on the edge generating set K. Namely, the Laplace 
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operator A satisfies 

h3 J 

2d  y^   d2 

" ]K\ *-Z W I    I geK*   V 

2d 

Here we use K* to denote a subset of K so that at most one of a and a"1 is 
in K* for each a in K. The edge generators should be "evenly distributed" 
in the sense that the matrix (dij) satisfies 

Cil < (ay) < C2I 

for some constants Ci and C2 where / denotes the identity matrices. By 
choosing 

we have 

\c2Ah + Ch\<c2e
4-£-Yl i*U 

94 * 

Note that in the Taylor series expansion, the J^- terms cancel since the 

generators g and g~l are simultaneously in K. After substituting for tth, 
we get 

\c2&h + Ch\ < -2  

where C5 depends on C\ and C2. 
For the general case of lattice graphs (without the condition that 

fjL(x,gx) = e for all vertex x and edge generator 5), the Laplacian of the 
lattice graph is related to the Laplace-Beltrami operator as follows: 

2d,      2d   v^ /      c      \2 d2 

^ U(^i e2 \K\gfg*\l*fa9x)J   dg2 

x-       a2 

'3 dxi dxj 

where e = min{/x(x, ^x) : # G K}. Then, we have 

C5 < minfCi,^1} 
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Hence, we have 

d_ 
dt 

k(t, x) + £fc(t, x) < ^— /   h(c2 t, x — z)(p(z)dz 
C2tz    JM 

C5 e4d. 

C2t2 
-k(t,x) 

And, 

— fc(t, X) + £fc(t, X) < 72 fc(t, x) 

where €0 = ^^. 
To establish (B') for e' < c'd/log ?;oi 5 and e" = ^/(volS1 1^1), we can 

choose ci so that 

and for x 7^ y, we use the heat kernel estimates in Theorem 8 and 9 (proved 
later), to get 

k(ef,x,y) = ci   /   hfaefyX-zyy)<p(z)dz 
JM 

< exp(-j^)k(ef,x,x) 

< 
d1 

vol S 

We remark that we can make c" arbitrarily small by adjusting d in d. 
To prove (C), we need to show that 

Y^    kit.x^-k^x'.y) 
{x^es1 

< 
ei l-RTl fc(t,x,y) 

where 61 = ed/y^l-K"!. The above inequality follows from that fact that 
|/x(rr, xf)\ = e and the following estimate for the gradient of the heat kernel 
which will be proved later in the next section: 

|V/i|(t, x, y) < CG-rh(t, x, y) 
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We consider 

Y^    k(t,x,y)-k(t,x',y) 

{avr'}eS' 

<Ci Y^     j [h(c2t, x, y - z) - h(c2t, x\ y - z)\^[z) clz 

{xy}€S' 

< c\e\Jdx \ |V/i|(c2t,a;,y — z)(p(z) dz 

-7=^(02*, x, y - z)ip(z) dz 
Vc2t 

ey/d^ d 

V&rt 
-k{t,x,y) 

Now, we need to estimate ^ k{t — s, x, z)k(s, z, y). First we consider 
zeds 

\k(t,x,y)-U h(t,x,y)\ 

= |ci / hfat, x,y- z)(p(z)dz - hfat, x, y)ci I w(z)dz\ 

<ci     \h(c2t,x,y- z) -h(c2t,x,y)\cp(z)dz 

ci / e|V/i|(c2t,a:, y — z)(p(z)dz 

ci / -=h{c2t, x,y- z)(p(z)dz 

ed 
k(tyx,y) 

We will use the fact that \k(t, x,y) — U h(t, x,y)\ is small when ctf is large. 
Now we consider YJ k{t — 5, x, z)k(s, z, y) for a fixed s. Without loss of 

zedS 
generality, we may assume that s < 1/2. We have 

Y^ k{t-s,x,z)k{s,z,y) 
zeds 

< Y2 Uh{c2{t- s),x,z)ci I hfas, z- z\y)(p(z')dzf + l.o.t. 
zeds J 
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< ciU / h(c2(t — 5), x, z — z^hfas, z — z', y)(p(z')dz/ + l.o.t. 
Jz'eUzzdsUz 

< U—'h(c2t,x,y) + l.o.t. 

< —k(t,x,y) + l.o.t. 
€21 

Here l.o.t. denotes a small fraction of the first term. Prom Theorem 5, we 
have 

(20) 

Ht(x,y) > (l - ^i) ^ mm ;fc^x.y) - 6"|K|)exp(-3eo/6' 

where if is the heat kernel of the convex subgraph S. 
In [8], Li and Yau proved the following lower bound for h. 

Theorem [Li-Yau]. Let M denote a d-dimensional compact manifold with 
boundary dM. Suppose the Ricci curvature of M is nonnegative, and if 
dM ^ </>, we assume that dM is convex. Then the fundamental solution 
of the heat equation with the Neumann boundary condition ^)u(t^x) = 0, 
satisfies 

for some constant C depending on d and e'. Here, Bx(r) denotes the volume 
of the intersection of M and the ball of radius r centered at x. 

However, the above version of the usual estimates for the heat kernel 
can not be directly used for our purposes here since the constant C is expo- 
nentially small depending on d. A more careful analysis of the heat kernel 
is needed. We will give a complete proof of the heat kernel estimates in a 
general terms in the next section. The proofs are partly based on the proofs 
in [8] and both the upper and lower bound estimates are given. 

To lower-bound the discrete heat kernel, we will use the following lower 
bound estimates for the (continuous) heat kernel which will be proved later 
in Section 6. For any a > 0, a > cda, 

(21) hit x v) > {1 + ^ exp -a + 'Vfoy) (21) h{t,x,y)>4B^t)exv ^ 

We choose 
1 

a = d 
aato = D1{M) 
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where D(M) denotes the diameter of M.   (We may assume D(M) > 1). 
Therefore, by using (21) we have 

h(c2to,x,y) > 
vol M 

Also, 
e"360/6' < const 

and 
h(ti,x,y) < const. • /i(£2,x,y) 

if ti > to/2 and \ti - ^l < e'. Using (20), we have 

A;(to - z', x, y) = ci   /   hfa (to - e'), x - z, y)(p(z)dz 
JM 

>  r—T-:   /     ip(z)dz 
JM 

> 

vol M , 
csU 

volM 

where c's denote some appropriate absolute constants. We then have 

*<*»>* SI? 
From 1, we then have 

y] inf Ht(x, y) exp(-36o/€/) 

A> ^^  

> 

2t 

tvolM 
eg e2 r 

" d2 £>(M)2 

where C/ denotes the volume of the Voronoi region and r denotes the ratio 
of U\S\/volM. As a consequence, we have proved the following: 

Theorem 6. Let S denote a convex subgraph of a simple lattice graph T 
and suppose S is embedded into a d-dimensional flat manifold M with a 
convex boundary and a distance function fjb. Suppose for any edge {u, v} of 
S we have ^(-u, v) = e. Then the Neumann eigenvalue X of S satisfies the 
following inequality: 

x> Cor€2 
d2D(M)2 
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where CQ is an absolute constant (depending only on T and is independent 
of S)j K is the set of edge generators of the lattice graph, 

u \s\ 
r = —— - 

vol M 

and U denotes the volume of the Voronoi region. 

To get a simpler lower bound for A, we note that the diameter D(S) of 
the convex subgraph S and the diameter of the manifold are related by 

(22) D(M) < € D{S) 

Therefore, we have the following: 

Corollary 1. Let S denote a convex subgraph of a simple lattice graph and 
suppose S is embedded into a d-dimensional flat manifold M with a convex 
boundary. Then the Neumann eigenvalue Xs of S satisfies the following 
inequality: 

x>   Cor 
d2D2(S) 

where 
U \S\ 

r — 
vol AT 

D{S) denotes the (graph) diameter ofS, K denotes the set of edge generators 
and CQ is an absolute constant depending only on the simple Lattice graph. 

For the general case of the lattice graphs, we have the following: 

Theorem 7. Let S denote a convex subgraph of a lattice graph and suppose 
S is embedded into a d-dimensional flat manifold M with a convex boundary 
and a distance function fi. Let K denote the set of edge generators and 
suppose e = min{/i(:z;, ga;) : g G K}. Assume that 

_2d 2d_ ^  /      e      \2d2 

)3 dxi dxj 
h3 J 

and 
Cxi < (oij) < C2I 
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where I is the identity matrix. 

C5 < minlCijC^1} 

Then the Neumann eigenvalue X of S satisfies the following inequality: 

x> Core2 

d2D(M)2 

where 

r = 
vol M 

U denotes the volume of the Voronoi region, and CQ is an absolute constant 
satisfying 

co < Co min{Ci, C^1} 

for an absolute constant CQ. 

Remark 2. The constant Co can be roughly estimated with a value of 
1/100. 

Remark 3. For a polytope in Erf, we can rescale and choose the lattice 
points to be dense enough to approximate the volume of the polytope. For 
example, if we have 

(23) C e < Di(M)/d 

where Di denote the diameter of M measured by the Li norm and C is 
some absolute constant, then the number of lattice points provides a good 
approximation for the volume of the polytope. This implies theit r > c for 
some constant c. The above inequality (23) can be replaced by a slightly 
simpler inequality: 

C d < D(S) 

for some constant C. These facts are useful for approximation algorithms 
for the volume of a convex body which will be discussed in the next section. 

Remark 4. There are many graphs G that can be embedded in a lattice 
graph such that the diameter of G satisfies 
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For such graphs, Theorem 6 implies a somewhat stronger result: 
_cor_ 

- d^D(G)2 

where r is as defined in Theorem 6. 

9. Estimates for the continuous heat kernel. 

In this section, we will analyze the (continuous ) heat kernel. We remark 
that there is a large literature on the estimates of the heat kernel. However, 
in such estimates, the dimension d is usually taken as a constant and the 
approximations are often crude. Here, we will give upper and lower bound 
estimates which are quite sharp in a general setting. The methods here are 
partly based on the proofs in [8]. It is anticipated that these estimates can 
be useful for many other problems as well. We will first prove an upper 
bound for the heat kernel. This bound will be used later for establishing the 
lower bounds. 

Throughout this section, we use the following notation: 
Let M denote a d-dimensional compact manifold with boundary dM. 

Suppose the Ricci curvature of M is nonnegative, and if dM ^ 0, we assume 
that dM is convex. The fundamental solution h of the heat equation satisfies 
the Neumann boundary condition J^t^i, x) = 0 for x G dM. We let ^(r) 
denote the ball centered at x of radius r. For simplicity, the volume of Bx(r) 
is also denoted by Bx(r). 

Theorem 8. For any a > 0 andt> 0, 

h^ x, y) < (1 + a)d B-1'2 (>/a(2 + a)t)  By1'2 (>/5t) 

-/x2(x,j/) /3 1 \ 
eXP 4(1 + 2a)(l + aft eXP V4 + 4(1 + 2a)(1 + a)) 

Proof. We follow from the proof of Theorem 3.1 on p. 175 of [8] with the 
value for a, r and 6 in [8] to be a = 1, r = 0,6 = 0, in order to derive the 
following inequality: 

h(t, x, y) < (1 + a)d B-ll2{Si) B"^(^ exp (2 /5(x, S2, a(l + a)*)) 

exp (p(y, Si, at)) exp (p(x, Si, (1 + 2a)(l + a)t)) 

Here we choose Si and S2 as follows: 

Si= J9y(\/ai),        S2= Bx (y/oL{2 + a)t) 
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Then 
2p(y,S2,a(2 + a)t)<± 

p(x,Si,at)) < - 

We define W to be 

fj,2(x,z) 
W = p(x,Su(l + 2a)(l + a)t)=      inf 

xeByiVZi) 4(1 + 2a)(1 + a)t 

If a; € By(y/cd), then we have 

W = 0> ^^'^ 2  
- 4(1 + 2a)(l + a)H     4(1 + 2a)(1 + a)2 

If x $ By(y/od), then //(x, y) > \/cd and 

w> (»(x,y)-VM) 
-4(l + 2a)(l + a)t 

Since 

we have 
fi(x,y)2 1 

W> 
4(1 + 2a)(l + a)2t     4(l + 2a)(H-a) 

Therefore, from Theorem 3.1 (ii) in [8], we have 

h(t,x,y) < (1 + a)d B-ll2 (Va(2 + a)i) By1'2 (>/S«) 

-/x2(a:,y) /3 1        \ 
eXP 4(1 + 2a)(l + a)H eXP \A + 4(1 + 2a)(1 + a)) 

as claimed. 
Before proceeding to prove the lower bound, we need the following as- 

sumption: 

(24) c^By (>/at) < Bx (y/rt) < cnBy (yfcty 

for some constant en. We note that the above assumption holds for en = 1 
if at is larger than the square of the diameter of M. 
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Theorem 9. For any a > 0, t > 0, and a satisfying a > cda, 

(l + a)-<*/2 
/i(i, a:, y) > —        .—    exp 

provided (24) holds. 

Proof. Using (24), we have 

h(t, x, y) < c-?/2(l + a)d BZ112 (^(2+ <*)*) S"1/2 (V^i) 

4(l + 2a)(l + a)2t "^ V4 ' 4(1 
eXP---     - eXp^+-+2a)(l + a)j 

Since 

/ h(t,x,y)dy = l, 

we have 

1 <  / h{t, x, y)dy 
J li(x,y)<>f(Ti 

+ ^12(1 + a)d S"^ (v^T^jt) BJ1^ (VS) 

/3 1 \ /■ -»7(x,y) 
eXP U + 4(1 + 2a)(l + a) J iMa:)J/)>^eXP 4(1 + 2a)(l + a)2*^ 

<  / h(t,x,y)dy 
J ix(x,y)<y/ai 

+ c^a + a)d Ifc-Va (V«(2 + a)t) B-V^ (VS) 

-P (l+ 4(l + 2a)(1 + a)J /^eXI,4(l + 2a)(l + ^'iB« 

Assume for r2 > ri, the following holds: 

■6(^2) < r2 

Bin) ~ n 

we obtain 
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< 1 f50 -r2 r B(r) 
- 2(1 + 2a)(l + a)2 J^*** 4(1 + 2a)(l + a)2i     t    'd * 

B(s/cd) f00 -r2 r2 

- 2(1 + 2a)(l + a)2^ Jj**** 4(1 + 2a)(1 + a)2t^7td r 

J3(>/crf) Z100 -r2 r     rf 
- 4(l + 2a)(l + a)2

v^y^eXP4(l + 2a)(l + a)2i^d t 

^ 2B (Vrt)VT+te(l + a)  f°° 
< i —y=  / exp(—rjvra r 

V® J 2 T 4(l+2c<)(l+a)^ 

Therefore we have 

c^/2(l + a)d B-'l2 (v^(2T^) B-"2 (V5) 

eXP (! + 4(1 + 2a
1)(l + a)) /IeXP 4(1 + 2«)r(2l + a)2tdB^ 

-i/2(l + a)<H-1>/r+25 
C — 

eXP (! + 4(l + 2a
1)(l + «)) I"    ,      , exP(-^ T 

' 4(l+2a)(l+a)^ 

We choose a > cda so that the above term is no more than 1/2. Hence 

1 

But 

/ h{t,x,y) > ^ 

Hence 

/i(2£, x, x) =  /   h2{t,x,y). 
JM 

t,x,x) >  / h2(t,x,y) 

^B-UV^jlf h(t,X,y) 

> ! 

This implies 

h(t,x, x) > 
4B: f*(7f) 
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By the Harnack inequality in Theorem 2.3 in [8], we have 

(25) Hh,x, x) < h(h, x,y) (|)   2 exp (^^y) 

for t2 > ti. Hence for any a > 0, we have 

"4B,(Vf)      ^ *- > 

This completes the proof of Theorem 9. 
We will also need estimates for the gradient of h. First, we will prove a 

useful Fact. 

Theorem 10. For any r > 0 and a > 0, we have 

f      |V/i|2 (t, x, s)<fc < f-^ + £) / ft2(*? ^5 «)^ 

Proof. We start with the following inequality which was established on page 
163, as Theorem 1.3 of [8] (for the special case of r = 0 = 6 = q). 

|V/f <hht + ^h2 

Therefore we have 

/ p2(z)\Vh\2(t,x,z)dz <  / p2(z)h(t,x,z)ht{t,x,z)dz 

+ -Jp2(z)h2(t,x,z)dz 

=     p2(z)h(t,x,z)Ah(t,x,z)dz 

+ -jp2{z)h2(t,x,z)dz 

Here we define 
(i   if, 
\o    if, 1 "     "^(y,^ > (l + <T)r 
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and 

1^1 * i ar 
We note that 

/ p2(z)h(t,x,z)Ah(t,x,z)dz 

= - / p2(^)|V/i|2(t5a;,^)^-2 / p(z)h(t,x,z)Vp(z)Vh(t,x,z)d 

=  I \Vp\2h2(t,x,z)dz 

Hence, we have 

jp\z)m2{t,x,z)dz < J (W|2 + |p2) h2(t,x,z)dz 

Therefore, 

/       |V/^l2^, a;, z)(te < f-lj + 4) / ^2(t, x, «)<te 
JBy(r) V0" r 2*/ 7Bl,((l+<r)r) 

Theorem 11. For a > 0, a > 0, 

/I d \ 1/2 

|V/i|(<,ar,y) < 3(1 + a)2d {-— + -)      h((l + a)t,x,y) 
yr2     2t) 

if (1 + 0-)2r2 < aH and a < 1/d. 

Proof. For a fixed x, we consider f{t,y) = |V/&|(£, x, y). Let p be defined as 
in Theorem 9. We have 

/(*. y) - / /(*ii z)Kt - *ii ^> y)p(z)dz 

^ Ids     ^S, "^ ~ S'Z' y^p^ dz ds 

= j   AA/(S, z)h{t - s, z, y)p{z) - f(s, z){Ah)(t - s, z, y)p(z)} dz ds 

= J   f[f(s, z)A(h(t - s, z, y)p(z)) - /(a, z)(Ah)(t - a, z, y)p(z)] dz ds 

= f   f f(s, z)[2Vh(t - s, z, y)Vp{z)) + h(t - s, z,y)Vp(z)] dz ds 
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= A—/ 2f(s,z)Vh(t-s,z,y) 
Jti  Vr JBy{{l+a)r) 

+ ~TT / /(s> z)h^ -s' *> y)\dz ds 
V2^ JBy((l+<7)r) 

To complete the proof, it suffices to establish upper bounds of 

1 d 1/2 

for the following three items separately, under the assumption that t — ti = 
at. 

(a) / f(ti,z)h(t-ti,z,y) dz, 
JBy((l+<T)r) 

(b) /   — / f(s,z)S7h(t — s,z,y)dzds 
Jti Vf JBy((l+<T)r) 

(c) /   -2-2 / /(s,2)ft(t-s,2,y)] d^ds 

First, we consider (a) 

/ f(ti,z)h(t-ti,z,y)dz) 
\JBy((l+<T)r) J 

<f f2(t1,z)dz   f h2(t-t1,z,y)dz 
JBja+a)r) JBja+<7)r) By((l+<7)r) JByai+<T)r 

1_ .   d 
23 2 2  •  0. , , /i2(ti,a;,2) ^/i(2(t-ti),y,y) 

ff r 2t 7 7Ba((l+<7)r) 

" (^2 + ^)(l + <*)dh2((l + CL)t1,x,y) 

f exP
{1 + ^z)2dzh(2{t-tl),y,y) 

Here we use the Harnack inequality (25) for upper bounding /i(s, xy z). Using 
the assumption that 

(l + a)2r2 <a{t-ti) 
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we have 

((l+«7)r) 

\2 

f(ti,z)h(t-t1,z,y)dz 
VBy 

- (^ + l) (i + «A2((i + tt)*i.*.»)^((i + ^)»-)*(2(*-*i),y,») 

- (^ +1) (1 + a)d/l2((1 + a)*1'a:'y) 

By((l + a)r)(l + «)d/2 B , /0 \,    , » 

- fah+1)(1+a)2^2((1+a)il'a:, y) 

Therefore we have 

/ f(ti,z)h(t-ti,z,y)dz 
JBy((l+v)r) 

/I d \ 1/2 

" (^V + 2tJ      (1 + a)^((1 + a)tl' *'V) 

/I /7 \ 1/2 

-(^ + Sj   (i+«)Mw+«)*.*.») 
To bound (b), we have 

/   — / /(s, z)Vh(t — 5,2, y) dz (is 
Ai VT JBy((l+a)r) 

ar        \}Bv{{\+a)T) ) 

f /   / Vh2(t-s,z,y) dzds) 
\Jti JByai+ryr) J 

1/2 

< {t    ^^ (4-2 + T)     W + a)ao, x, y) By({l + a)r) or        ycY-4      t J 

0'   / Vh2(t-s,z,y) dz ds J 

v  1/2 
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It can be checked that 

rt 

II Jtl   JBy 
Vh2(t — s, z, y) dz ds 

((l+ff)r) 

</   / [-T^ + 7 )h2(t-s,z,y) dzds 

f(i+<,)r ft /   1 d   x (l + a^exp^fey 

/•(l+^r /      j n-3 ^ ^n-3 \ 

" Jo (1 + ^ U^2(^-to))^2 + a(a(t-t0))"-z) dq 

Since t — ti = at, r2 < a2t we have 

/   — / f(s,z)Vh(t — s,Z)y)dzds 
Jt! W JBy((l+a)r) 

/I rl \ 1/2 

^(^+l)1/2(1+a)2d,l((1+a)i':c'y) 
Very similar arguments are used for upper bounding (c): 

/   -9-9/ f(s,z)h(t-s,z,y) dz ds 

f r r ^1/2 
[11 h(t — s, z, y) dz ds ) 
V*i JB,((l-hT)r) / 

< (^ + T) '2 (1+a)2d,l((1+a)t':r;'y) 

As a corollary of Theorem 11, by choosing a = ^, r2 = a2t, and a a 
small constant, we have 
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Corollary 2. 

\Vh\(t,x,y) Kc-^h^x.y) 

for some constant c. 

10. Neumann eigenvalues and random walks. 

This section consists of four subsections: First, we give a brief discus- 
sion on random walks and, especially, on the associated weighted graphs. 
Then, we generalize the Laplacian, and heat kernels for weighted graphs 
and induced subgraphs. All results in previous sections can be extended to 
the weighted graphs. Finally, we will illustrate the relationship between the 
eigenvalues of the Laplacian and the rate of convergence of the corresponding 
random walk. 

10.1. Random walks on graphs. 

In a graph G, a walk is just a sequence of vertices (VQ, VI, • ■ • , Vs) with 
{vi-i,Vi} E E{G), for 1 < i < s. A random walk is determined by the 
transition probability TT^, V) = Prob(xi+i = v\xi = u) which is independent 
of i. Clearly, for each vertex u 

V 

For any initial distribution / : V —» M with /J/(v) = 1, the (distribution 
V 

after k steps is just fPk (in the notation of matrix multiplication by viewing 
/ as a row vector where P is the matrix of transition probability). The 
random walk is said to be ergodic if there is a stationary distribution 7r(v) 
satisfying 

lim fPs(v) = 7r(v) 
s—>oo 

Necessary and sufficient conditions for ergodicity are (i) irreducible, i.e., for 
any u,v 6 V, there exists some s such that Ps(u,v) > 0; (ii) aperiodic, i.e., 
gcd {s : Ps(u,v) > 0} = 1. The problem of interest is to determine, from 
any initial distribution, the number of steps s required for Ps to be close to 
its stationary distribution. 

In particular, we say the ergodic random walk is reversible if 

7r(i/)7r(^, v) = 7r(?;)7r(t;, u) 
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An alternative description for a reversible random walk is given by consid- 
ering a weighted connected graph with edge weights 

w(u, v) = w(v,u) = 7r(v)7T(v^u)/c 

where c is the average of TT^TT^, U) over all (v, u) with 7r(^, u) ^ 0. A 
random walk in a weighted graph has as transition probability 

where du = ^2Z ^(^5 z) is the (weighted) degree of u. The two conditions for 
ergodicity are equivalent to (1) connectivity and (ii) that the graph is not 
bipartite. We remark that an unweighted graph has ^(u, v) either 0 or 1. A 
typical random walk has transition probability l/dv of moving from a vertex 
v to one of its neighbors. The transition matrix P = (7r(i6, v)) satisfies 

fP(v) = £ -j-/(u) 

for any / : V(G) —> R. In other words, 

' u and v are adjacent, ,      jl/du     if' 
i, v) = < J      [0 ot] 

P(ix, v) = _ 
10 otherwise. 

It is easy to check that 

p = T^A = T-V^I - C)Tll2. 

where A is the adjacency matrix. 
For an induced subgraph S of a graph G, we consider the following 

random walk: The probability of moving from a vertex v in S to a neighbor 
u of v is l/dv if u is in 5. If u is not in 5, we then move from v to each 
neighbor of u in S with the (additional) probability l/dvd

l
u where df

u denotes 
the number of neighbors of u in 5. The transition matrix P for this walk, 
whose columns and rows are indexed by 5, is defined as follows: 

(26) /P(t0 = £j-/(t»)+  E  TlKu) 

uesau ues  auaz 

z<£S 
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The stationary distribution is dv/ V^ du at a vertex v. The eigenvalues pi 
u 

of P are closely related to the Neumann eigenvalues XSJ as follows: 

pi < 1 - A^i 

In particular, we have 

(27) p = p1 < 1 - A5,i = 1 - Xs 

This can be proved by using the Neumann condition as follows: 

E (/(*) - f(y))2 +  E (f^)-f(y))2/dz 
* .   r n,y€S x.yeS^S 
1 — p = inf ==—  

/ J2f2(x)dx 
xes 

2- 

Ec/^-z^+EE d'zf
2(x)- E/(^ 

> . f x,yes     xes j \y€5 

E (/(*) - /(y))2+E E^2^) - f2 w) 

^ E/o*)** 

E (/(*) - /(y))2+E E^^) - /(*))2 

M 

/ 

E (/(*)-/(»)) 2 

^infi^^ 

a;€S 

= Xs 

where / ranges over all functions / : 6S U 5 —► E satisfying 

E/(z) = 0 
a;€5 
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and for x G 6S 

y€S,y~x 

The inequality (27) is quite useful in bounding the rate of convergence of 
random walks and the rapid mixing of Markov chains. 

Suppose S is an induced subgraph of a fc-regular graph. The above 
random walk can be described as follows: At an interior vertex v of 5, the 
probability of moving to each neighbor is equal to 1/fc. (An interior vertex 
of S is a vertex not adjacent to any vertex not in 5.) At a boundary vertex 
of v € 55, the probability of moving to a neighbor u of v is 1/k unless u is 
not in S and, in this case, the (additional) probability of l/(kdr

u) is assigned 
for moving from v to each neighbor of u in S. The stationary distribution 
of the above random walk is just the uniform distribution. 

For the general case for random walks, we need to generalize the defini- 
tions for Laplacian and heat kernels to weighted graphs and subgraphs. 

10.2. Eigenvalues for weighted graphs and subgraphs. 

A weighted undirected graph G with loops allowed has associated with 
it a weight function w : V x V —» R+ U {0} satisfying 

w(u, v) = w(v,u) 

and 

w(u,v) > 0. 

We note that if {u,v} # E(G) , then wfav) = 0. Also wty^v) can be 
positive. For unweighted graphs, they are just the special case of taking the 
weights to be 0 or 1. 

The degree dv of a vertex v is just: 

dv = y^tt;(tfc, v). 
u 

We generalize the definitions of previous sections so that 

dv — w(v,v)     itu = v, 

L(u, v) = \ —w(u, v) if u and v are adjacent, 

0 otherwise. 
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In particular, for a function / : V —* R, we have 

2/ 

Let T denote the diagonal matrix with the (v, t;)-th entry having value 
dv. The Laplacian of G is defined to be 

C = T-^LT-
1
'

2
. 

In other words, we have 

'       w{v,v) 
1 ^—-      \IU = V, 

C(u,v) = < w(u, v) 

ydudv 

0 

if u and t; are adjacent, 

otherwise. 

Therefore, by using the generalized version of L and £, the previous defini- 
tions for the eigenvalues for an induced subgraph S can still be utilized: 

(28) Xs =       inf 
/ 

E f(x)dx=0 

inf 

E   (/(*)-/(y))aw(«,«) 
{s,3/}e5"  

E/^/o*) 

xeS 

=     inf     ifL^k 
5±TI/2I {g, g)s 

The Neumann condition is then 

E   (m-f(y))w(x,y) = 0 
y 

{x,y}edS 

for x € ^AS. We can define the heat kernel for weighted graphs in the same 
way as in Section 4. All the proofs in previous sections work in similar 
fashion and we obtain the same eigenvalue inequalities for weighted graphs: 
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Theorem 12. In a graph with edge weights w(x)y)f for t> 0, we have 

(29) Xs>lTM^^0^ 

10.3. Eigenvalues and the rate of convergence. 

In a random walk with the associated weighted connected graph G, the 
transition matrix P satisfies 

1TP = PT1 = Tl 

and therefore the stationary distribution is exactly Tl/vo\G where vol(G) = 
^2xdx. We want to show that when k is large enough, for any initial 
distribution / : V —► R, fPk converges to the stationary distribution 
00 = Tl/vol(G). Suppose we write 

fT-W^anlH 
i 

where fa denotes the eigenfunction associated with A^. 
We have 

||/PS - ao^o || = WfT-Wtf - CYT1'2 - Tl/vol G \\ 

= \\J2^-\)S^iT1/2\\ 

< (1 - A)s ||/|| 

< e-sA 11/11 

where A = Ai if 1 — Ai > An_i — 1 and A = 2 — An_i, otherwise. 
So, after 5 > (1/A) + log(l/e) steps, the L2 distance between fPs and 

its stationary distribution is less than e||/||. 
Although A occurs in the above upper bound for the distance between 

the stationary distribution and the s-step distribution, in fact, only Ai is 
crucial in the following sense. Note that A is either Ai or 2 — An_i. Suppose 
the latter holds (when A^-i — 1 > 1 — Ai). We can consider a modified 
random walk on the graph Gf formed by adding dv loops to each vertex v. 
The new graph has Laplacian A^ = Afc/2 < 1 which follows from equation 
(28). Therefore, 

l-.Ai>l-X-i'>0 



620 F.R.K. Chung and S.-T. Yau 

The convergence bound for the modified random walk becomes 2/Ai + 
log(l/e). The constant 2 can be further improved [5]. 

A stronger notion of convergence is measured by Li or the relative point- 
wise distance which is defined as follows (also see [11]): After s steps, the 
relative pointwise distance (r.p.d.) of P to the stationary distribution 7r(x) 
is given by 

A, , |Ps(y,a:)-7r(rr)| 
A(s) = maxJ—^   ; N—^l- 

x.y 7r(a:) 

It is not difficult to show [5] that 

A(i) < e-sMl2^ G 
mmx dx 

So, if we choose t such that 

2 ,        volG 
s>—log' 

Ai       e mmx d. x 

then after s steps, we have A(s) < e. For Neumannn walks, we can derive a 
similar inequality 

A(s)   <   p 
min^ dx 

< (l-A5)'-^ 
mina; ax 

< e-^-VOlG 

min^ dx 

10.4. Applications on random walks and rapidly 
mixing Markov chains. 

Many combinatorial and computational problems involve enumerating 
families of combinatorial objects. Such enumeration problems are often dif- 
ficult and are widely believed to be computationally intractable (e. g., the 
class of the so-called #P-complete problems [13]). An alternative approach 
is to consider approximation algorithms. In this direction, there has been 
a great deal of progress in recent years in developing efficient approxima- 
tion algorithms by using sampling algorithms. Roughly speaking, if we 
can generate a "random" member of the family in polynomial time, then 
a polynomial approximation algorithm for the enumeration problem can be 
obtained, provided that certain technical conditions are satisfied (see [11]). 
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A sampling algorithm can often be described in terms of a random walk 
on a graph. Namely, the vertex set of the graph consists of the combinatorial 
objects which we wish to sample. The edges are usually determined by some 
"local " rules. For example, from each vertex, we define its neighboring 
vertices by choosing some simple transformations of the object. The random 
walk can then be described by its transition matrix P where P(n, v) denotes 
the probability of moving from vertex u to its neighbor v at each step. The 
problem of interest is to determine how many steps are required to move from 
a starting vertex to eventually reach a "random" vertex. In other words, 
how fast can an initial distribution converge to the stationary distribution 
by repeatedly applying the transition rules? A good bound of the rate 
of convergence often leads to polynomial approximation algorithms for the 
original enumeration problem. 

To demonstrate the use of Theorem 6, we consider a classical problem of 
computing the volume of a convex body in d-dimensional Euclidean space. 
Although this problem is known to be computationally difficult, there have 
been a great deal of progress in obtaining randomized approximation al- 
gorithms based on the first polynomial time (0(d27)) algorithm by Dyer, 
Frieze and Kannan [7] (also see [10]). The main part of the algorithm is 
basically a random walk problem on the lattice points inside of the convex 
body. There have been a series of papers improving the volume algorithms 
with complexity lowered to 0(n5logn) [9]. The eigenvalue inequality of 
Theorem 5 provides a more direct way of bounding the eigenvalues and the 
rate of convergence of the random walks. 

Another example is the problem of random walks on matrices with non- 
negative integral entries having given row and column sums, arising in con- 
nection with exact inferences of contingency tables and their probability 
distributions (see [1, 6]). This problem can be reduced to a problem of 
bounding eigenvalues of convex subgraphs of the homogeneous graphs as 
described in Example 1. The diameter of the convex subgraph for contin- 
gency tables with given row and column sums can be easily evaluated and is 
bounded above by the sum of all column sums minus the maximum column 
sum. Using Theorem 6, for n x n tables with column and row sums equal 
to 5, the eigenvalue A can be upper-bounded by ^2, provided s is at least 
en2. Therefore, a random walk on the subgraph converges in cn3s2 steps. 
More details on the contingency table problem can be found in [4]. 

In a subsequent paper [4], a variety of sampling and enumeration prob- 
lems will be examined. By using the eigenvalue inequality established in 
Theorem 6, the upper bound for the convergence of the random walks on 
the corresponding convex subgraphs can often be improved by a factor of 



622 F.R.K. Chung and S.-T. Yau 

a power of n which then sometimes can lead to a better approximation 
algorithm. 
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