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Yamabe Constants and the Perturbed
Seiberg-Witten Equations

CLAUDE LEBRUN!

Among all conformal classes of Riemannian metrics on CP5, that
of the Fubini-Study metric is shown to have the largest Yamabe
constant. The proof, which involves perturbations of the Seiberg-
Witten equations, also yields new total scalar curvature bounds for
other 4-manifolds.

1. Introduction.

One may define an interesting and natural diffeomorphism invariant of
a compact smooth n-manifold M as a minimax of the total scalar curva-
ture over all unit volume Riemannian metrics on M. To be precise, for
each Riemannian metric g on M, one may first define an invariant of the
corresponding conformal class [g] = {vg | v: M — R*} by setting

. Sg Ay
Y = inf —f'u"—n_g—i’

9<UL (far dg) ™

where sy and dpg respectively denote the scalar curvature and volume n-
form of g. The number Y[ is called the Yamabe constant of the conformal
class of metrics, and a remarkable theorem [1, 14, 19] of Yamabe, Trudinger,
Aubin, and Schoen states that any conformal class [g] contains a constant-
scalar-curvature metric which achieves this infimum. We may now define an
invariant

d
Y (M) = sup Y, = sup inf __fM_ig__ﬁg_

n—2
lg] lo) 9€l9) ([, dpg) ™

which we will call the Yamabe invariant of M.
For 2-manifolds, this invariant is easy to compute; the Gauss-Bonnet
theorem tells us that the Yamabe invariant of a compact surface of genus p is
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just 8m(1—p). But relatively few precise computations of Yamabe invariants
have proved tractable for manifolds of higher dimension. One important
general fact, due to Aubin, is that for any compact n-manifold one has
Y(M)LY(S") = n(n—l)Vn2 / ", where V, is the volume of the unit n-sphere.
It has also been known for some time [8, 20] that the n-torus and certain
other manifolds with Ricci-flat metrics have Y = 0, and the very first result
in this direction [16] crucially depended on the introduction of the Dirac
operator. It was nonetheless a revolutionary development when Witten [25]
observed that a non-linear Dirac system called the Seiberg- Wiilten equations
can allow one to distinguish different smooth structures on a topological
4-manifold by virtue of the fact that the corresponding Yamabe invariants
are distinct. Pushing this insight to its logical conclusion results in a precise
computation [13] of the Yamabe invariant for a large class of 4-manifolds
with Y (M) < 0.

The usual Seiberg-Witten invariant vanishes, however, when Y (M) >
0, so it might seem hopeless to try to use such techniques to show that
certain 4-manifolds have 0 < Y (M) < Y(S*) = 8v/67. For 4-manifolds with
by = 1, however, it turns out that a perturbed version of the equations
[23, 11, 15] gives rise to an invariant which is often non-triviel even in the
presence of metrics of positive scalar curvature. Extracting information
about the scalar curvature becomes more complicated, however, since the
perturbation dominates the metric terms in the corresponding Weitzenbdck
formula. Nonetheless, if the perturbed Seiberg-Witten equations on (M 49
have a solution when the perturbation term is any large multiple of the
self-dual harmonic form w, then one obtains (§2) the basic estimate

|w]

S—

V2

with equality if g is Kahler. The presence of w in this estimate exactly

compensates for the fact that the Yamabe functional is not bounded above.

One eventually estimates the Yamabe constants Y[, by (§4) representing

each conformal class by metrics for which the size of w is nearly constant.
The main application is the following:

dp < 4dmey - (W],

Theorem A. The Yamabe invariant of the complex projective plane is
given by

Y (CP;) = 12v/2n.
Moreover, a conformal class [g] on CP; satisfies Y|y = Y (CP2) iff there is

a diffeomorphism ® : CPy — CPg such that ®*[g] is the confermal class of
the Fubini-Study metric.
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The basic estimate, however, has other interesting applications, notably
to the theory of almost-Kéhler 4-manifolds.

2. The Basic Estimate.

Let M* be a compact oriented 4-manifold with b* = 1. The open cone
{lv] € H(M,R) | [w] - [w] > 0}

then consists of two connected components, called nappes. Given such a
nappe C*, and a Riemannian metric ¢ on M, let w be a g-harmonic 2-
form such that [w] € C*; of course, such a form always exists, and it is
uniquely determined once we also specify the positive real number [w]?. If
¢ is the spin® structure induced by some almost-complex structure J on M,
then, relative to any metric g, we can define the (perturbed) Seiberg-Witten
invariant p.(M,C") as the number of solutions, modulo gauge and counted
with orientations, of the perturbed Seiberg-Witten equations [10, 25]

(2.1) Dg® = 0
(2.2) iFT+0(®) = ¢

where ¢ is a generic self-dual 2-form with [, € Aw > 27¢; - [w]. Here w is a
g-self-dual 2-form with [w] € C*T. More generally, if ¢ is a spin® structure for
which k = [¢? — (2x + 37)(M)]/4 is non-negative and even, one can define
(15, 22] the perturbed Seiberg-Witten invariant p.(M,C*t) to be [y ak/?,
where X is the moduli space of solutions of (2.1-2.2) for a generic € with
feAw > 2me; - [w], and @ € H2(X) is the first Chern class of the based
moduli space, considered as an S'-bundle over X. For our purposes, the key
point is simply that when this invariant is non-zero, the equations

(2.3) Ds® = 0
(2.4) —iFf = o(®) —tw,

have a solution with ® # 0 for any ¢t > 0.

Theorem 1. Let M* be a smooth compact oriented 4-manifold with b+ = 1
for which there is a nappe C* and a spin® structure c such that p.(M,C*) #
0. Let g be any Riemannian metric on M, and let w be a g-self-dual har-
monic 2-form with [w] € Ct C H2(M,R). Then the scalar curvature s of g
satisfies

/s%du < 4mey - [w).
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Here dp and | - | are respectively the volume form and point-wise norm de-
termined by the metric g, while ¢y = ¢1(V4) is the first Chern class of the
spin® structure.

Proof. The Dirac equation Ds® = 0 implies the Weitzenbock formula,

0=(3,A8) + Z|<I>|2 +2(—iF},0(®)),
where the natural real-quadratic map o : V4 — AT satisfies |o(®)| =
28/ 2|®|2. For a solution of the perturbed Seiberg-Witten equations (2.3-
2.4), we also have —iFf = o(®) — tw, so it follows that

0 = / [4(3, AB) + 5|82 + 8(0(®) — tw, o())] du

M

[|2VA<I>|2 + 5@ + |@]* — 8t(w, o(®))] dp

> / 18 + 2/ — 8tlo| o(8)] du
M

/ 5|®)2 + |®|* — 22t |w| |q>]2] dp.
M

Hence
| Vel - lePdu> [ |aftdp
M M

and so the Cauchy-Schwarz inequality yields

8i2[u]? — 43t / slwldp + / Pdy = / (2v/5te| — 5)%dps
M M

[f |@|4dp)’
12l

= [1afau

= 8/|a(<1> )|?dp

= 8/|——iFj+tw]2du

= 8 [ (Pl - 2(iF] ) + iFP) do

= 8(t2[ |2 — 2t(2mcy) - | /[zF"’Izd,u,)

> 8t?[w]? — 32ntc; - [w] + 327%¢
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for all ¢ > 0. Hence
32rtc; - [w] + / s2dp > 4v/2t / s|lw|dp + 32722
M

for all £ > 0. Dividm% by 8t and taking the limit as ¢t — 400, we therefore
have 4mey - [w] > [y, s d,u, as claimed. a

Theorem 2. Equality holds in Theorem 2 iff g is Kdahler with respect to

some c-compatible complex structure J and w is a constant positive multiple
of the Kdhler form of (M, g, J).

Proof. The Weitzenbock formula for (2.3-2.4) tells us that

0 = 2A|9% + |2V®| + 5|®|* + |2|* - 8t(w, (D))
> 24|02 + 5|92 + ||t - 2v2t|w||@]%,

so that
|82 < 2v2t|w| — 5

at the maximum of |®|. The C° norm of the twisted spinor field ¥, = &//%
is therefore uniformly bounded as ¢ — oo:

|¥¢|? < 2v2max |w| — min(min s, 0) V¢ > 1.

Now the proof of Theorem 2 contains the inequality

8t2[w]2—4\/§t/ s|w|d,u+/ sdu > 8 (ztg[w]2 —2t(2mcy) - [w] + / |iF;{'t|2dy)
M M M

and it therefore follows that

vl
5

Since equation (2.4) stipulates that

1
—dp = 4re; - [w] = |[iFf|3: < —/ s2dp.
8 Jm

o(®) —tw _ iFS

t ot
equality in Theorem 2 implies that o(¥;) — w in L2.

On the other hand, the proof of Theorem 2 neglected the |V®| term.
Leaving it in until the Schwarz-inequality step yields

2V 4B|%dp + [ |B]4dy)?
/ (2vEtlo|—s)dp > L] |f|<1>|4 dg il / |3[4du+8 / IV 432y,

o’(\I/t)—w=
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and one therefore concludes that

t[47rc1 /SM ] [/ szd,u—327r2¢%] 2/ |V 4®|%dp,
M M

which we may rewrite as

|w| ] 1 [/ 2 2 2] / 2
4 . — s—=du| + — s*du — 32mwecy| > Va,Vel“dp.
I: TC1 [w] A \/5 15 8t o 15 1] = Ml A tl 15

It follows that

o] . _
/M o= tmer - [u] = Jim [V, ez =0,

Since o(0;) is the contraction of a parallel field with ¥; ® ¥; + ¥; ® ¥;, and
because we have a uniform C° bound for |¥|, application of the Leibniz
rule yields

Jim [Vo(¥)lz2 =0

whenever equality holds in Theorem 2. Here the connection V on self-dual 2-
forms is t-independent, and is actually the one induced by the (torsion-free)
Levi-Civita connection of g. Since w is harmonic, it follows that

Jim 1(d*)*(o(%s) — w)ll2 = Jim |V o(%)]lL2 =0,

where (d*)* = — x d is the adjoint of d* : TA! — At with respect to g.
Because the complex

0 TA® -5 TAl 25 rat+ 0
is elliptic, the Garding inequality
I¢lizz < C (@) Bllzz + lI4ll2) Yo € TAT,

applied to ¢ = (V) —w, then tells us that o(¥;) — w in the Sobolev space
L2. Tt follows that

IV6llz = Jim [Vo(%0)lz2 =0,

and hence that Vw = 0. Thus equality in Theorem 2 implies that g is
Kahler, as claimed. 0

By the same reasoning, we also get
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Theorem 3. Let M* be a smooth compact oriented 4-manifold with b+ > 1
for which there is a spin® structure ¢ such that the Seiberg-Witten invariant
ne(M) is non-zero. Let g be any Riemannian metric on M, and let w be
any g-self-dual harmonic 2-form. Then the scalar curvature s of g satisfies

/s'\%‘.du < dmey - [w).
If [w] # 0, moreover, equality is achieved iff g is Kahler with respect to some

- c-compatible complez structure J and w is a constant positive multiple of the
Kabhler form of (M, g,J).

Recall [7] that an almost-Kdhler manifold is a triple (M, g, J), where J
is an almost complex structure on M and g is a J-invariant Riemannian
metric, such that the 2-form w(-,-) = g(J-,) is closed. The symplectic form
w is then called the almost-Kdhler form of (M, g, J).

Corollary 1. Let (M%,g,J) be an almost-Kihler manifold. Then the
scalar curvature s of g satisfies

/ s dp < 4mey - (W),
M

where c1 is the first Chern class of (TM, J) and w is the almost-Kahler form.
Moreover, equality is achieved iff (M, g,J) is Kdhler.

Proof. On any almost-Kahler manifold (M?*, g, J), the almost-Kéhler form
is a harmonic self-dual form with |w| = v/2. Since Taubes [23] has shown
that the perturbed Seiberg-Witten invariant of any symplectic 4-manifold is
non-zero, the result therefore follows from the preceding theorems. 0O

For related results proved by other methods, see [4].
3. Genericity and Self-Duality.

In light of Corollary 2, it is easy to see that Theorem 2 gives rise to
an estimate of Yamabe invariants whenever the harmonic 2-form has empty
zero locus. To generalize this, we will need to understand the manner in
which harmonic forms vanish for generic metrics. The needed information
is provided by the following result, the essence of which is contained in
unpublished work of Taubes [22, Lemma B.3].
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Proposition 1 (Taubes). Let M be a smooth oriented 4-manifold with
by > 1, and let M denote the space of C** Riemannian metrics g on
M for some k > 2, o € (0,1). Choose a codimension-(by — 1) subspace
V C H?(M,R) on which the intersection form has Lorentzian signature, and
let Vi be a connected component of the hyperboloid {[w] € V | [w]? = 1}. For
each g € M, let wy be the unique self-dual g-harmonic form with [w,] € V1.
Then
{ 9 | wy is transverse to the zero section of Af} C M

is a subset of the second Baire category.

Proof. Let AT — M x M be the C* rank-3 vector bundle whose restriction
to any slice M x {g} is the bundle Al — M of self-dual 2-forms determined
by the metric g. Let  denote the section of AT defined by

Qlprx{g} = wy-

By a straight-forward application of the Banach-space inverse function the-
orem and the interior Schauder estimates [6], the map M > g — wy €
C*2(A?) can be seen to be smooth, and this implies that  is a C* section
of AT.

Now 2 turns out to actually be transverse to the zero section of A%.
To see this, let ¢ € M and observe that for any other § € M, the bundle
/\3’ C A? may be thought of as the graph of a homomorphism h : /\3r — Ay
and so in particular may be identified with A} via the projection A2 N IE
g is conformally rescaled so as to have the same volume form of g, moreover,
and is we identify Hom(AT,A™) with ®3T*M in the usual way, then one
has § = g+ h+O(|h|?). Using these identifications, one can then check that

d .
Swgrn| = —2G[dd"h(w)

t=0
by simply using only the facts that wj is closed and depends differentiably
on §; here G is the Green’s operator of the Hodge Laplacian dd* + d*d of
g on 2-forms. If w vanishes at p € M, it therefore suffices to show that
h € THom(AT,A”) = T ©3 T*M may be chosen so that G[dTd*h(w)]|p
is any desired element ¢ of /\3‘ |lp- If é is the delta-function-like 2-current
() = (¥|p, ¢)g corresponding to a non-zero ¢ € Af|,, however, this is
equivalent to the assertion that the current d"d*GqAS is not identically zero
on the open subset of M where wy # 0. Now the latter open subset is also



Yamabe Constants and the Perturbed Seiberg-Witten Equations 543

dense in M by unique continuation. Since GpisC2on M —p by elliptic
regularity, it therefore suffices to show that dd*G¢ is not identically zero on
M —p. But in geodesic normal coordinates z7 about p, one has an expansion

(5] L g
G(¢) = proYpD

where the Hessian of the O(log|z|) term is O(1/|z|?); here ¢ has been ex-
tended as tensor field such that V¢|, = 0. Assuming without loss of gen-
erality that || = /2 and rotating our coordinates as necessary, we may
arrange, after transplanting the standard complex structure J and complex
codinates (2!, 2%) on on R* = C? to our coordinate chart, that ¢ = g(J-,"),
so that

+ O(log |z])

5 1 1 1
* panaed — —— —— —
dd*G(¢) = 471'2de(1"2) + O(rz)
(222 = |2Y)?)(d2t A dZt — d2® A dZ?) + 4Sm(Zt22d2! A dZ?)
- 2726
1
+ 0(3)

is indeed non-zero. Thus (2 is transverse to the zero section, as claimed.
Consequently, the zero locus Z C M x M of Q is a C¥ Banach submani-
fold of codimension 3, and the induced projection p : Z — My, is Fredholm,
of index 4 —3 = 1. Since p is a C*¥ map, and k& > max(index(p),0), the
Smale-Sard Theorem [21] tells us that the set of regular values of g is a set
of the second Baire category. But this set of regular values is precisely the
set of C** metrics for which wy is transverse to the zero section. O

This immediately implies the technical result we’ll actually use:

Corollary 2. Let g be a C? Riemannian metric on a compact oriented 4-
manifold M, and let w #Z 0 be a self-dual harmonic form on (M,g). Then
for any integer r > 2 there is a sequence {g;} of C" metrics on M and a
sequence {w;} of closed 2-forms such that

(a) lim g; = g in the C2 topology;
j—00
(b) w; is self-dual with respect to g;;
(c) wj is transverse to the zero section of /\;‘j — M; and

(d) lim w; = w in the C! topology.
j—o0
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Proof. Let V C H?(M,R) be spanned by [w] and the cohomological image
of the anti-self-dual g-harmonic forms; and let V5 be the sheet of the unit
hyperboloid in V which contains A[w] for some A > 0. For each C? metric
g we then have a unique self-dual harmonic 2-form w; with [w;] € V;. By
Proposition 3, wy is transverse to the zero section for a dense set of C™*
metrics §, and this set is automatically also dense in the space of C? metrics.
Let g; be a sequence of such metrics converging to g in the C? topology, and
set wj = wg; /\. Now, for any a € (0,1), § — wj is a smooth map from CH®
metrics to C1® forms, so w;j — w in the C1@ topology, and hence in the C?
topology, as claimed. O

4. Yamabe Invariants.

Let M be a smooth compact oriented 4-manifold, and let [g] bz a con-
formal class of metrics on M. The Yamabe constant of the conformal class
is then defined by

d
Y[g] = inf —————fM i /»"g.

g¢€ld] /fM dug

Since Hodge star operator % : A2 — A2 is conformally invariant, the corre-
sponding eigenspace decomposition

N =ATOA
of the 2-forms into self-dual and anti-self-dual parts is independent of a

choice of g € [g].

Theorem 4. Let (M,[g]) be an oriented conformal Riemannian 4-
manifold, and let w # 0 be a closed 2-form which is self-dual with respect to
[g]. Suppose that bt (M) =1 and that the perturbed Seiberg- Witten invariant
po(M,Ct) is non-zero for some spin’ structure c, where C* C H*(M,R) is
the nappe containing [w]. Then the Yamabe constant of [g] satisfies

Y 4rey - [w]
R )

where c; is the first Chern class of c.

Proof. We may assume that the graph of the [g]-harmonic 2-form w is trans-
verse to the zero section of AT. Indeed, Corollary 3 tells us that the set of
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conformal classes with this property is dense, and both sides of the inequality
are continuous functions with respect to the C2-topology [3].
Let ¢ : R — R be a smooth function with

e p(z) =3 whenz < %;
e o(z) =z when z > 1; and
e 0 < ¢(z) <1 for all z.

Let g be any representative of [g], and for each § > 0 define a smooth positive
function by v = vs = d¢p(|w|g/6) < |w|g. Let

Us = {pe M| luly < 6).
Notice that
o |dv|y < C;
. % <wv <6 on Us;
o v= % on Us/y; and
® v = |w|g on M —Us,

where C' is some constant independent of §. Moreover, there is a number
8 € (0,1) such that for all é € (0, éo)

e Us is a smooth manifold with boundary; and
e Voly(Us) < C83.

Notice that we are now exploiting the hypothesis that [g] is generic.
For any 6 € (0, 6p), consider the smooth conformal metric § = vg € [g].
One has
|wlg = v_1|w|g <1

and |w|g =1 on M — Us. Moreover, the continuous function
¥ =v"wlg = |wlg: M — [0,1]

is smooth on M — U4, with |dy|, < 4C67! on this set, so

‘/ Sgdug—/ s5lwl|gdpg
M M

= | [ st vy
Us

/Uﬁ(l—w)

dvl?
3Av + squ+ gl Zlg] dug
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< (1 —¢)Avdug
Us
do|?
+ / (1 —9)squdpg| + l lgduy
Us v
< 3l[ -y,
Us—Usys
dv|?
+/ |sg['udpg+§/ l—ﬁdp,g
Us 2 Us v
< 3[  egedot [ (adoledy
OUsUU; /4 Us—Us/a
+(max |s4|)C6* + 02—2063
< 30450053 + C(max|sg|)6* + 3C6% < C6?

because 9 = 1 on OUs and dv = 0 on 0Usy4. On the other hand,

[ dng= [ oldng = [ wnw=lui2
M M M

So given € > 0, consider the metric § corresponding to some 8§ with €62 <
€+/[w]?. By Theorem 2, this metric satisfies

Jar Sadhg fM sglwlgdig < 4v/2mc; - [uw]

Sdns . VP TTVWP

Hence f . : ]
Y, = inf M 54 < oW
[g] ge [g] [f d’u /[w]2
as claimed. ad

Theorem 5. Equality is achieved in Theorem 4 iff there is a Yamabe min-
imizer g € [g] which is Kdhler, with Kdhler form w.

Proof. We may assume that ¢; - [w] > 0, since otherwise the result follows
from the theory of the unperturbed Seiberg-Witten equations [12].
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Let us begin by showing that equality can only be achieved if the har-
monic form w is nowhere zero. Since Y|; > 0, we may therefore choose a
metric g of positive scalar curvature in [g]. By Corollary 3, we can find
be a sequence g; of positive-scalar-curvature metrics converging to g in the
C? topology such that the corresponding harmonic forms w;, normalized so
that [w;]?2 = [w]?, are transverse to the zero section and converge to w in the
C! topology. For each j there is an €; > 0 such that

[sgu® + 6|du|2]dp, < ')f[sgju2 + 6|dul} 1,

< (1+¢ -
\ J utdig \ J wtdng;

for every u € L%, and moreover one can take €¢; — 0 as j — oco. Now let
uj = [5j<p(|wj|gj/5j)]1/2, where ¢ is as in the proof of Theorem 4 and §; is
chosen so small that

Jlsgu® + 6|du|§j]d#g1 < 4rey - [wj]

\/ Jutdpy, VIwl?/2

for each j, and is also chosen in such a manner that lim;_.o, 6; = 0. Since
[wj] — [w], it follows that

Jlsquj + 6|deI§]dug 4mey - [wi]

V[ u5dug VIwl*/2 =

and the u; are in particular bounded in L} because [ujdy — [w]*. By
passing to a subsequence, we may therefore assume that the u; are weakly
convergent to some u € L2 But this implies that u is the unique weak limit
of the u; in L?. However, by construction, u; — 1/|w|y in C?, and hence in
L2, We therefore have u = y/|w]y, so that \/|w|, € L. Now since u is the
weak limit of the u;,

lulzz < Jim Jfusloz
whereas we also know that

lullze = IV IwllZe = [wW]* = Jhm [l 24
by construction. Hence

[lsqu® + 6|d“|§]d#g < lim f[sgu§ + 6|d”j|g]d#y

\V Jutdug e \V J widug

=Yg
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Jsg@® + 6|d|Z]dug

inf
a€L?-0 /f atdp,

so that u € L? is a minimizer of the Yamabe functional, and is automatically
a weak solution of the associated Euler-Lagrange equation

(4.1) 6Au + su = spu?,

where sg = 4@%%"{1. Since u = +/|w] € C%'/2, elliptic regularity [1],
applied to (4.1), implies that u € C21/2 and an application [1, Prop. 3.75]
of the maximum principle to (4.1) therefore shows that v > 0 must either
be strictly positive or vanish identically. Hence |w| = u% # 0, and w # 0, as
claimed.

We may therefore define an almost-Kahler metric § € [g] by § = v/2|w|,g-
Since [ dug = [w]?/2, Corollary 2 tells us that

[ sg dug < dra [w]
T g - VPR’

with equality iff g is Kéhler. Since the right-hand side is Y]; by hypothesis,
however, we also have a tautological inequality in the other direction, and
the two sides must be equal. Thus § is both a Yamabe minimizer and a
Kahler metric, as desired. O

Now recall that the Yamabe invariant (sometimes called the sigma con-
stant) of a smooth n-manifold M is defined to be

d
Y(M) = sup inf M %eWs__ o Yig
o] €91 ([, dprg) lo

where [g] is allowed to vary over the space of conformal class of smooth
Riemannian metrics on M.

Theorem 6 (Main Theorem). The Yamabe invariant of the complex
projective plane is given by

Y(CP,) = 12V/2r.

Moreover, a conformal class [g] on CPq satisfies Y|g) = Y (CPy) iff there is
a diffeomorphism ® : CPy — CPg2 such that ®*[g] is the conformal class of
the Fubini-Study metric.



Yamabe Constants and the Perturbed Seiberg-Witten Equations 549

Proof. Let ¢ be the spin® structure induced by the usual complex structure
on CPy, and let C* denote the nappe containing c;. Then the perturbed
Seiberg-Witten invariant p,(CP3,C") # 0, as may be seen in a variety of
ways [10, 11, 15, 23]. Now since b_ = 0, the class [w] = ¢; is self-dual with
respect to any conformal class [g], and we therefore always have

i -
\/021/2

with equality iff [g] is represented by a Ké&hler metric metric of constant posi-
tive scalar curvature. For such a metric, however, the Ricci form is harmonic
and since b_ = 0, this implies that the Ricci form is a constant multiple of
the Kahler form, and the metric is therefore Kahler-Einstein, with positive
scalar curvature. But it follows, for example, from the Enriques-Kodaira
classification [2] and Matsushima’s theorem on isometry and automorphism
groups [17] that any such metric on the smooth 4-manifold CPs is the stan-
dard Fubini-Study metric up to diffeomorphisms and rescaling. a

Yig < 4 = 12v2nm,

Theorem 7. Let M be a smooth compact orientable manifold with by = 0
and by = 1. Then
Y (M) < 12v/2m.

Moreover, M admits a conformal class with Y}y = 12V27 iff M is diffeo-
morphic to CPs.

Proof. If M does not admit metrics of positive scalar curvature, there is
nothing to prove. Otherwise, let ¢ be a spin°-structure with ¢? = 2x+37 =9,
and let C* be the nappe containing [w] = c;. Since there is a metric of
positive scalar curvature on M, there are no solutions of the unperturbed
Seiberg-Witten equations for any metric on M, and because ¢; - [w] > 0,
the wall-crossing formula [10, 15] therefore allows us to conclude that the
perturbed invariant p.(M,C%) is £1. As in the last proof, we therefore have

C]_‘Cl :12\/57‘(

Y <d4r

[9] 272

for every conformal class, with equality only if [g] is represented by a Kahler-
Einstein metric of positive scalar curvature. The diffeomorphism statement

therefore follows from the classification [2] of complex surfaces with ¢; >
0. O

Exactly the same reasoning also proves the following:
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Proposition 2. Let (M, J) be a compact complez surface with c¢; >> 0, and
let [g] be any conformal class on M for which c; is self-dual. Then

Y[g] < 4my/ QCf(M),

with equality iff [g] can be represented by a Kahler-Einstein metric adapted
to some deformation of J.

However, this will not help to to compute the Yamabe invariant of
manifolds other than CP;3. For example, combining our results wi_th the
connect-sum estimate of O. Kobayashi [9] tells one that Y (CP2#kCP3) >

Y(CP;) = 1227 > 471'\/ 2¢3(CP2#kCPs) for any k > 0. This of course
does not contradict the above Proposition, since c; is not self-dual for most
conformal classes as soon as by > 1. A reasonable conjecture would seem to
be that that Y (CPy#kCPs) = Y(CPs) = 12v/27 for all k.

Let us now conclude with a new, non-twistor-theoretic proof of a theo-
rem of Poon [18]. Recall that an oriented conformal Riemannian manifold
(M, [g]) is called self-dual if its Weyl curvature satisfies W_ = 0. For exam-
ple, the conformal class of the Fubini-Study metric on CPj is self-dual.

Corollary 3 (Poon). Let (M,[g]) be a self-dual 4-manifold with by = 0
and by = 1. Suppose, moreover, that Yjg) > 0. Then (M, [g]) is conformally
isometric to CPq equipped with the Fubini-Study metric.

Proof. Let g € [g] be a Yamabe minimizer. Since

1 2 2
b+‘b—=T=W/M[|W+| — [W_|*] du > 0,

and by + b_ = by = 1, we must have by =1 and b— = 0. Thus

1 2, 8 |7(2|2 1 2
= —_ = — _ —_—— < —
3=2x—-3r o /M [2|W |“ + 51 5 dp < 962 Ms i

where 7 denotes the trace-free Ricci tensor and W_ = 0. Because g was
chosen to be a Yamabe minimizer, and so has constant scalar curvature,
Theorem 4 tells us that

/ Pdp = (Yy)? < (12v/2r)? = 3(9672),
M
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so the above inequality is actually an equality, forcing
Yg= 122,

and so implying that M is diffeomeorphic to CPy. Moreover, Theorem 4
tells us that the diffeomeorphism can be chosen so that [g] is the pull-back
of the Fubini-Study conformal class. O
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