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Among all conformal classes of Riemannian metrics on CP2, that 
of the Fubini-Study metric is shown to have the largest Yamabe 
constant. The proof, which involves perturbations of the Seiberg- 
Witten equations, also yields new total scalar curvature bounds for 
other 4-manifolds. 

1. Introduction. 

One may define an interesting and natural diffeomorphism invariant of 
a compact smooth n-manifold M as a minimax of the total scalar curva- 
ture over all unit volume Riemannian metrics on M. To be precise, for 
each Riemannian metric g on M, one may first define an invariant of the 
corresponding conformal class [g] = {vg \ v : M —> R4"} by setting 

JM S9 dflg 
Yl9}=   ^   ,  r     '        n=2 » 

where Sg and d/jbg respectively denote the scalar curvature and volume n- 
form of g. The number Yj^ is called the Yamabe constant of the conformal 
class of metrics, and a remarkable theorem [1, 14, 19] of Yamabe, Trudinger, 
Aubin, and Schoen states that any conformal class [g] contains a constant- 
scalar-curvature metric which achieves this infimum. We may now define an 
invariant 

Y(M) = supyM = sup inf    -k''^, 

which we will call the Yamabe invariant of M. 
For 2-manifolds, this invariant is easy to compute; the Gauss-Bonnet 

theorem tells us that the Yamabe invariant of a compact surface of genus p is 

Supported in part by NSF grant DMS-9505744. 

535 



536 Claude LeBrun 

just 87r(l— p). But relatively few precise computations of Yamabe invariants 
have proved tractable for manifolds of higher dimension. One important 
general fact, due to Aubin, is that for any compact n-manifold one has 
Y(M) < Y(Sn) = n(n—l)Vn , where Vn is the volume of the unit n^sphere. 
It has also been known for some time [8, 20] that the n-torus and certain 
other manifolds with Ricci-flat metrics have Y = 0, and the very first result 
in this direction [16] crucially depended on the introduction of the Dirac 
operator. It was nonetheless a revolutionary development when Witten [25] 
observed that a non-linear Dirac system called the Seiberg- Witten equations 
can allow one to distinguish different smooth structures on a topological 
4-manifold by virtue of the fact that the corresponding Yama.be invariants 
are distinct. Pushing this insight to its logical conclusion results in a precise 
computation [13] of the Yamabe invariant for a large class of 4-manifolds 
with Y(M) < 0. 

The usual Seiberg-Witten invariant vanishes, however, when Y(M) > 
0, so it might seem hopeless to try to use such techniques to show that 
certain 4-manifolds have 0 < Y(M) < Y(S4) = SVETT. For 4-manifolds with 
6+ = 1, however, it turns out that a perturbed version of the equations 
[23, 11, 15] gives rise to an invariant which is often non-trivigJ even in the 
presence of metrics of positive scalar curvature. Extracting; information 
about the scalar curvature becomes more complicated, however, since the 
perturbation dominates the metric terms in the corresponding Weitzenbock 
formula. Nonetheless, if the perturbed Seiberg-Witten equations pn (M4,^) 
have a solution when the perturbation term is any large multiple of the 
self-dual harmonic form a;, then one obtains (§2) the basic estimate 

/ 
s—^d/j, < 47rci • [a;], 

v2 

with equality if g is Kahler. The presence of ut in this estimate exactly 
compensates for the fact that the Yamabe functional is not bounded above. 
One eventually estimates the Yamabe constants Y^j by (§4) representing 
each conformal class by metrics for which the size of CJ is nearly constant. 
The main application is the following: 

Theorem A.  The Yamabe invariant of the complex projective plane is 
given by 

y(CP2) = 12\/27r. 

Moreover, a conformal class [g] on CP2 satisfies Yj^j = y(CP2) iff there is 
a diffeomorphism $ : CP2 —► CP2 such that $*[g] is the conformal class of 
the Fubini-Study metric. 
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The basic estimate, however, has other interesting applications, notably 
to the theory of almost-Kahler 4-manifolds. 

2. The Basic Estimate. 

Let M4 be a compact oriented 4-manifold with b+ = 1. The open cone 

{[uj]eH2(M,R) | [w] • [w] > 0} 

then consists of two connected components, called nappes. Given such a 
nappe C+, and a Riemannian metric g on M, let UJ be a g-harmonic 2- 
form such that [OJ] G C+; of course, such a form always exists, and it is 
uniquely determined once we also specify the positive real number [UJ]

2
. If 

c is the spinc structure induced by some almost-complex structure J on M, 
then, relative to any metric p, we can define the (perturbed) Seiberg-Witten 
invariant pc(M,C+) as the number of solutions, modulo gauge and counted 
with orientations, of the perturbed Seiberg-Witten equations [10, 25] 

(2.1) DA<f>   =   0 

(2.2) «£ + *(*)   =   *, 

where e is a generic self-dual 2-form with JM e A u > 2TXCI • [a;]. Here a; is a 
^-self-dual 2-form with [a;] € C+. More generally, if c is a spinc structure for 
which k .= [c\ — (2% + 3r)(M)]/4 is non-negative and even, one can define 
[15, 22] the perturbed Seiberg-Witten invariant pc(M,C"f*) to be /xa

fc/2, 
where X is the moduli space of solutions of (2.1-2.2) for a generic e with 
Je Au > 27rci • [a;], and a G H2(X) is the first Chern class of the based 
moduli space, considered as an S^-bundle over X. For our purposes, the key 
point is simply that when this invariant is non-zero, the equations 

(2.3) DA$   =   0 

(2.4) -iF£   =   a(*)-tu/, 

have a solution with $ ^ 0 for any t S> 0. 

Theorem 1. Zre£ M4 6e a smooth compact oriented ^-manifold with 6+ = 1 
for which there is a nappe C+ and a spin0 structure c such thatpc(M,C+) ^ 
0. Let g be any Riemannian metric on M, and let u be a g-self-dual har- 
monic 2-form with [UJ] G C+ C H2(M, R). Then the scalar curvature s of g 
satisfies 

I s——dfi < 47rci • [ui\. 
v2 
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Here dfi and \ • | are respectively the volume form and point-wise norm de- 
termined by the metric g, while ci — ci(y+) is the first Chern class of the 
spin0 structure. 

Proof. The Dirac equation DA$ = 0 implies the Weitzenbock formula 

0=($)A$) + J|$|2 + 2Hi^)a($)), 

where the natural real-quadratic map a : V+ —> A+ satisfies |cr($)| = 
2-3/2|$|2. For a solution of the perturbed Seiberg-Witten equations (2.3- 
2.4), we also have — iF^ = cr($) — tu, so it follows that 

0   =     /   [4($,A$) + s|$|2 + 8(a($)-ia;,c7($))ld/i 
JM 

=    [   [\2VA$\
2
 + s\$\2 + |$|4 - 8t<a;, cr(*)>] dfx 

JM 

>   f [s|$|2 + |$|4-8tHK$)|]^ 
J M 

=   J  [s|$|2 + |$|4-2v/2tH|$|2]dAf. 

Hence 
/ (2V2t\uj\-s)\<f>\2dii> [  |$|4d// 

JM JM 
and so the Cauchy-Schwarz inequality yields 

8t2[uj]2 - 4:V2t j   s\uj\dfji   +    [ S
2

G^= l(2V2t\(ju\-s)2dfx 
JM JM J 

= Jm^ 

= 8 j | - iFX- + tu\2dn 

= 8y,(t2M2-2i(^,u;} + |iF+|2)^ 

= 8 (i2M2 - 2t(2irci) ■ [w] + f \iFZ\2dii 

> 8t2[uj]2 - 327rtci • [u] + 327r2cf. 
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for all* » 0. Hence 

327rtci • [u] + /   s2dfi>4:V2t      s|a;|d/x + 327r: 

JM JM 

2.2 

for all t » 0. Dividing by 8£ and taking the limit as t -* +oo, we therefore 
have 47rci * M ^ /^ ^^^M? as claimed. □ 

Theorem 2. Equality holds in Theorem 2 iff g is Kdhler with respect to 
some c-compatible complex structure J and u is a constant positive multiple 
of the Kdhler form of (M, 5, J). 

Proof The Weitzenbock formula for (2.3-2.4) tells us that 

0   =   2A|$|2 + |2V$|2 + 5|$|2 + |$|4-8t(cc;,(7($)) 

>   2A|$|2 + 5|$|2 + |$|4~2V/2^|a;p|2, 

so that 
|$|2 < 2V2t\u\ - s 

at the maximum of |$|. The C0 norm of the twisted spinor field ^t — ^/^i 
is therefore uniformly bounded as t —> 00: 

|*t|2 < 2v/2max|u;| -min(mins,0) Vt > 1. 

Now the proof of Theorem 2 contains the inequality 

8i2[u;]2-4\/2i / s\(j\dfM+f s2dn > 8 (i2[a;]2 - 2t(27rci) • [a;] + /  |tFj |2d^ ) 
JM JM \ JM * J 

and it therefore follows that 

/ ,M^ = 4^ • M  =►  ||iF+||22 < I /" s^. 
JM    V2 oJM 

Since equation (2.4) stipulates that 

equality in Theorem 2 implies that (j{^t) —* ^ in ^2- 
On the other hand, the proof of Theorem 2 neglected the |V$| term. 

Leaving it in until the Schwarz-inequality step yields 
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and one therefore concludes that 

47rci •[«;]- f s-^dJ +l\ f s2dfj, - 327r2c?l > /  |VA*|
2
^, 

JM   v 2    J      8 [JM J      VM 

which we may rewrite as 

47rc1.H- / 5MdJ +^ [/ s2dv-32ir2cl] > [  \VAt%\2d^ 
JM   v2     J      ot UM J      JM 

It follows that 

/ 
JA 

M s—^d/i = 47rci • [a;] 
M   v2 

lim ||VAt**||L2=0. 

Since cr(*t) is the contraction of a parallel field with ^ ® ^t + ^ CS ^, and 
because we have a uniform C0 bound for |^|, application of the Leibniz 
rule yields 

lim||Vc7(*t)||L2 = 0 
t—>oo 

whenever equality holds in Theorem 2. Here the connection V on self-dual 2- 
forms is ^-independent, and is actually the one induced by the (torsion-free) 
Levi-Civita connection of g. Since UJ is harmonic, it follows that 

lim \\(d+na(%) - CJ)\\L2 = lim ||V • <r(%)\\v = 0, 
t—>oo t—+oo 

where (d+ )* = — * d is the adjoint of <i+ : FA1 —> rA"1" with respect to g. 
Because the complex 

0 -> TA0 -^ TA1 -^ rA+ -^ 0 

is elliptic, the Garding inequality 

IMIL? < c {\\(d+y<i>\\L2 + mL2) v^ e rA+, 

applied to </> = ^(^t) — CJ, then tells us that cr^t) —^ CJ in the Sobolev space 
L2. It follows that 

||Vu;||L2= lim||V(7(^)llL2=0, 
t—>oo 

and hence that Vo; = 0.   Thus equality in Theorem 2 implies that g is 
Kahler, as claimed. □ 

By the same reasoning, we also get 
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Theorem 3. Let M4 be a smooth compact oriented 4-Tnanifold with 6+ > 1 
for which there is a spin0 structure c such that the Seiberg- Witten invariant 
nc(M) is non-zero. Let g be any Riemannian metric on M, and let u be 
any g-self-dual harmonic 2-form. Then the scalar curvature s of g satisfies 

I s—7=dfj, < 47rci • [a;].. 
v2 

If [a;] =^ 0; moreoverj equality is achieved iff g is Kdhler with respect to some 
c-compatible complex structure J and w is a constant positive multiple of the 
Kdhler form of (M, 5, J). 

Recall [7] that an almost-Kdhler manifold is a triple (M,g, J), where J 
is an almost complex structure on M and g is a J-invariant Riemannian 
metric, such that the 2-form u;(-, •) = g( J-, •) is closed. The symplectic form 
u is then called the almost-Kdhler form of (M,g, J). 

Corollary 1. Let (M4,^, J)  be an almost-Kdhler manifold.     Then the 
scalar curvature s of g satisfies 

/   $ dfjb < Airci • [a;], 
JM 

where c\ is the first Chern class of(TM, J) andu is the almost-Kdhler form. 
Moreover, equality is achieved iff (M, 3, J) is Kdhler. 

Proof. On any almost-Kahler manifold (MA,g,J), the almost-Kahler form 
is a harmonic self-dual form with |a;| = y/2. Since Taubes [23] has shown 
that the perturbed Seiberg-Witten invariant of any symplectic 4-manifold is 
non-zero, the result therefore follows from the preceding theorems. □ 

For related results proved by other methods, see [4]. 

3. Genericity and Self-Duality. 

In light of Corollary 2, it is easy to see that Theorem 2 gives rise to 
an estimate of Yamabe invariants whenever the harmonic 2-form has empty 
zero locus. To generalize this, we will need to understand the manner in 
which harmonic forms vanish for generic metrics. The needed information 
is provided by the following result, the essence of which is contained in 
unpublished work of Taubes [22, Lemma B.3]. 
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Proposition 1 (Taubes). Let M be a smooth oriented 4-ma>nifold with 
b+ > 1, and let M denote the space of Ckia Riemannian metrics g on 
M for some k > 2, a G (0,1). Choose a codimension-(b+ — 1) subspace 
V C H2{M, R) on which the intersection form has Lorentzian signature, and 
let Vi be a connected component of the hyperboloid {[UJ] G V \ [a;]2 = 1}. For 
each g G M, let ujg be the unique self-dual g-harmonic form with [cog] G Vi. 
Then 

{ g | Ug is transverse to the zero section of A+} C M 

is a subset of the second Baire category. 

Proof. Let /\"f —> M x M be the Ck rank-3 vector bundle whose restriction 
to any slice M x {g} is the bundle A+ —> M of self-dual 2-forms determined 
by the metric g. Let fi denote the section of /\+ defined by 

By a straight-forward application of the Banach-space inverse function the- 
orem and the interior Schauder estimates [6], the map M. 3 g i—> ojg G 
Ck'a(A2) can be seen to be smooth, and this implies that Q is a Ck section 
ofA+. 

Now Q turns out to actually be transverse to the zero section of /\+. 
To see this, let g G M and observe that for any other g G A4, the bundle 
A~" C A2 may be thought of as the graph of a homomorphism h : A'g —* A~, 
and so in particular may be identified with A^" via the projection A2 —> A+. If 
g is conformally rescaled so as to have the same volume form of g, moreover, 
and is we identify Wora^A"1', A"") with OQT*M in the usual way, then one 
has g = g + h + 0(\h\2). Using these identifications, one can then check that 

d 
= -2G[d+cr/i(u;)] 

by simply using only the facts that Wg is closed and depends differ entiably 
on g\ here G is the Green's operator of the Hodge Laplacian dd* + d*d of 
g on 2-forms. If UJ vanishes at p G M, it therefore suflBces to show that 
h G rHom(A+, A") = Y QQ T*M may be chosen so that G[d+d?h{u))}\p 

is any desired element (j> of A^|p. If ^ is the delta-function-like 2 -current 
0(^) = (^|p,0)p corresponding to a non-zero (j) G A^"|p, however, this is 

equivalent to the assertion that the current d~d*G4> is not identically zero 
on the open subset of M where ujg ^ 0. Now the latter open subsest is also 
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dense in M by unique continuation. Since G0 is C2 on M — p by elliptic 
regularity, it therefore suflSces to show that dd*G(f) is not identically zero on 
M—p. But in geodesic normal coordinates x^ about p, one has an expansion 

[5] 

G(^ = 4^ + 0(l0g|a;|) 

where the Hessian of the 0(log|2;|) term is 0(1/|x|2); here 0 has been ex- 
tended as tensor field such that V0|p = 0. Assuming without loss of gen- 
erality that |</>| = \/2 and rotating our coordinates as necessary, we may 
arrange, after transplanting the standard complex structure J and complex 
codinates {zl,z2) on on R4 = C2 to our coordinate chart, that <j> = g{J-, •), 
so that 

MGifo   =   -JLdJ<*(l) + 0(l) 

i{\z2\2 - l-z1!2)^1 A dzl - dz2 A dz2) + A^m{zlz2dz1 A dz2) 
27r2r6 

+ o(l) 
is indeed non-zero. Thus ft is transverse to the zero section, as claimed. 

Consequently, the zero locus Z C M x M, of O is a Ck Banach submani- 
fold of codimension 3, and the induced projection p : Z —> M^] is Predholm, 
of index 4 — 3 = 1. Since p is a Ck map, and k > max(index(p),0), the 
Smale-Sard Theorem [21] tells us that the set of regular values of p is a set 
of the second Baire category. But this set of regular values is precisely the 
set of Ck'a metrics for which ujg is transverse to the zero section. □ 

This immediately implies the technical result we'll actually use: 

Corollary 2. Let g be a C2 Riemannian metric on a compact oriented 4- 
manifold M, and let u ^ 0 be a self-dual harmonic form on (M,g). Then 
for any integer r > 2 there is a sequence {gj} of Cr metrics on M and a 
sequence {ujj} of closed 2-forms such that 

(a) lim gj = g in the C2 topology; 
j->oo 

(b) u)j is self-dual with respect to gj; 

(c) ujj is transverse to the zero section of A* —> M; and 

(d) lim Uj = u in the Cl topology. 
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Proof. Let V C iJ2(M, R) be spanned by [a;] and the cohomological image 
of the anti-self-dual ^-harmonic forms; and let Vi be the sheet of the unit 
hyperboloid in V which contains \{u] for some A > 0. For each C2 metric 
g we then have a unique self-dual harmonic 2-form ujg with [u^] € Vi. By 
Proposition 3, u)g is transverse to the zero section for a dense set of Cr,a 

metrics 5, and this set is automatically also dense in the space of C2 metrics. 
Let gj be a sequence of such metrics converging to g in the C2 topology, and 
set ujj = uigj/X. Now, for any a € (0,1), g >-> u^ is a smooth map from C1,Q: 

metrics to C1^ forms, so u)j —> u; in the C1'01 topology, and hence in the C1 

topology, as claimed. □ 

4. Yamabe Invariants. 

Let M be a smooth compact oriented 4-manifold, and let [g] be a con- 
formal class of metrics on M. The Yamabe constant of the conformal class 
is then defined by 

JM 
S
9 df^g 

pe[ffiv/iM^r 
Since Hodge star operator * : A2 —► A2 is conformally invariant, the corre- 
sponding eigenspace decomposition 

Y[g] = inf 

A2 = A+ 0 A"" 

of the 2-forms into self-dual and anti-self-dual parts is independent of a 
choice of g 6 [g]. 

Theorem 4. Let (M, [g]) be an oriented conformal Riemannian 4" 
manifold, and letuj=£0 be a closed 2-form which is self-dual with respect to 
[g]. Suppose that b+(M) = 1 and that the perturbed Seiberg-Witten invariant 
pc(M,C+) is non-zero for some spin0 structure c; where C+ C H2(M, R) is 
the nappe containing [u]. Then the Yamabe constant of [g] satisfies 

47rci - M 

where ci is the first Chern class of c. 

Proof We may assume that the graph of the [p]-harmonic 2-form u; is trans- 
verse to the zero section of A4". Indeed, Corollary 3 tells us that the set of 
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conformal classes with this property is dense, and both sides of the inequality- 
are continuous functions with respect to the C2-topology [3]. 

Let ip : R —* R be a smooth function with 

• <p{x) = 7} when x < |; 

• (p(x) = x when x > 1; and 

• 0 < (pf(x) < 1 for all x. 

Let g be any representative of [p], and for each 6 > 0 define a smooth positive 
function by v = v§ = 6(p(\cj\g/6) < \u\g. Let 

U6 = {peM\\u,\g<8}. 

Notice that 

• \dv\g < C; 

• | < v < 6 on Us] 

• v = | on C/^/4; and 

• v = |a;|p on M — C/^, 

where C is some constant independent of 6.  Moreover, there is a number 
So G (0,1) such that for all 6 e (0, So) 

• Us is a smooth manifold with boundary; and 

• YolgiUs) < CS3. 

Notice that we are now exploiting the hypothesis that [g] is generic. 
For any S G (0,6o), consider the smooth conformal metric g = vg G [g]. 

One has 

and |ct;|^ = 1 on M — [/$. Moreover, the continuous function 

l/j = V-^tulg = \0j\g I M ->  [0,1] 

is smooth on M — L^/4, with Id^l^ ^ 4C5~1 on this set, so 

/   s9d^9-  I   s9\u\gdiig     =      /    Sg(l-^)dHg 
\JM JM \JU6 

/« (1-tf) 3Av + So?; + - 
3 H| 

(Ifig 
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<   3 

3 
+ 2 

<   3   /   (1 - ip)Avdnt 
\Jus 

+ \     (! - i>)sgvdiig 
WUs 

f (1 - V) AvdM: 
JUs-Us/4 

+ /    |ss|^fl + - /    —f-dug 

/   i1'^—   dfJ". 
JUA V 

<   3 /        _    (l — ip)*dv+ (dtp, dv)gdfit 
JdUMdUt/A JUA-UA/A tausudUs/. Us-Us/4 

+(max\sg\)C64 + C2j:C63 

AC 
<   ZC-jC83 + C{m^\sg\)84 + ZC62<C82 

because ij) = 1 on. dUs and dv = 0 on dUs/4. On the other hand, 

/   dfig > /   |w||d/t§ = /   u) A w = [w]2. 
7M 7M 7M 

So given e > 0, consider the metric g corresponding to some 6 with C62 < 
e\/H2- ^7 Theorem 2, this metric satisfies 

ypM^d W Vl^P 

Hence 

as claimed. 

y[9] = inf 
JM 

3g^g < 47rci • [UJ] 

'e[9]^[L^r vWT^' 
D 

Theorem 5. Equality is achieved in Theorem 4 iff there is a Yamabe min- 
imizer g G [g] which is Kdhler, with Kdhler form w. 

Proof. We may assume that ci • [OJ] > 0, since otherwise the result follows 
from the theory of the unperturbed Seiberg-Witten equations [12]. 
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Let us begin by showing that equality can only be achieved if the har- 
monic form u is nowhere zero. Since Yj^j > 0, we may therefore choose a 
metric g of positive scalar curvature in [g\. By Corollary 3, we can find 
be a sequence Qj of positive-scalar-curvature metrics converging to g in the 
C2 topology such that the corresponding harmonic forms a;j, normalized so 
that [U;J]

2
 = [a;]2, are transverse to the zero section and converge to u in the 

C1 topology. For each j there is an ej > 0 such that 

I S U + £j) I - 

for every u E L2, and moreover one can take ej —» 0 as j -+ oo. Now let 
u3 — [^^(I^U/^?)]1^2' where ip is as in the proof of Theorem 4 and 8j is 
chosen so small that 

for each j, and is also chosen in such a manner that lim:7-_>0o 8j = 0. Since 
[UJ] —» [a;], it follows that 

^ vwn   [9] 
yjfufatlg 

and the Uj are in particular bounded in L2 because ful-d/jL —> [a;]2. By 
passing to a subsequence, we may therefore assume that the Uj are weakly 
convergent to some u G L2. But this implies that u is the unique weak limit 
of the Uj in L2. However, by construction, Uj —> \/|cJf^ in C0, and hence in 
L2. We therefore have u = -y/Mp, so that \/M^ ^ ^i- Now since u is the 
weak limit of the Uj, 

< lim \\u 

whereas we also know that 

U\\L* S hm ||^||L2, 
1     3—+00 i 

IHI4L4 = ||v/HII4L4 = M2=.iim|K||t4 
J—►00 

by construction. Hence 

J[sgu2 + 6|du|g]<i/*g <        J[gflt*j + 6|dttj@]dA*g _ y 
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f{sgu2 + 6\du\j]dng 

so that u G Lf is a minimizer of the Yamabe functional, and is automatically 
a weak solution of the associated Euler-Lagrange equation 

(4.1) 6Au + su = SQU
3
, 

where SQ = 4\/27r^fci.   Since u = y/\uj\ G C0'1/2, elliptic regularity [1], 

applied to (4.1), implies that u G C2,1/2, and an application [1, Prop. 3.75] 
of the maximum principle to (4.1) therefore shows that u > 0 must either 
be strictly positive or vanish identically. Hence |a;| = v? ^ 0, and cu ^ 0, as 
claimed. 

We may therefore define an almost-Kahler metric g G [g] by g = V^M^ 
Since f d(jL§ = M2/2, Corollary 2 tells us that 

Jsgd^g < ^Trci ■ [a;] 

/j^-^HV5' 
with equality iff g is Kahler. Since the right-hand side is Yj^j by hypothesis, 
however, we also have a tautological inequality in the other direction, and 
the two sides must be equal. Thus g is both a Yamabe minimizer and a 
Kahler metric, as desired. □ ^5 

Now recall that the Yamabe invariant (sometimes called the sijpna con- 
stant) of a smooth n-manifold M is defined to be 

y(M)=supifj*i* =supyb] 

where [g] is allowed to vary over the space of conformal class of smooth 
Riemannian metrics on M. 

Theorem 6 (Main Theorem).  The Yamabe invariant of the complex 
projective plane is given by 

Y(CP2) = 12\/27r. 

Moreover, a conformal class [g] on CP2 satisfies Yj^ = Y(CP2) iff there is 
a diffeomorphism $ : CP2 —> CP2 such that $*[#] is the conformal class of 
the Fubini-Study metric. 
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Proof. Let c be the spin0 structure induced by the usual complex structure 
on CP2, and let C+ denote the nappe containing ci. Then the perturbed 
Seiberg-Witten invariant pc(CP2,C"1") 7^ 0, as may be seen in a variety of 
ways [10, 11, 15, 23]. Now since 6_ = 0, the class [a;] = ci is self-dual with 
respect to any conformal class [#], and we therefore always have 

with equality iff [g] is represented by a Kahler metric metric of constant posi- 
tive scalar curvature. For such a metric, however, the Ricci form is harmonic 
and since 6_ = 0, this implies that the Ricci form is a constant multiple of 
the Kahler form, and the metric is therefore Kahler-Einstein, with positive 
scalar curvature. But it follows, for example, from the Enriques-Kodaira 
classification [2] and Matsushima's theorem on isometry and automorphism 
groups [17] that any such metric on the smooth 4-manifold CP2 is the stan- 
dard Fubini-Study metric up to diffeomorphisms and rescaling. □ 

Theorem 7. Let M be a smooth compact orientable manifold with bi = 0 
and 62 = 1. Then 

Y(M) < 12\/27r. 

Moreover, M admits a conformal class with Yj^j = 12^^ iff M is diffeo- 
morphic to CP2. 

Proof. If M does not admit metrics of positive scalar curvature, there is 
nothing to prove. Otherwise, let c be a spinc-structure with cf = 2x+3r = 9, 
and let C+ be the nappe containing [UJ] = ci- Since there is a metric of 
positive scalar curvature on M, there are no solutions of the unperturbed 
Seiberg-Witten equations for any metric on M, and because ci • [u] > 0, 
the wall-crossing formula [10, 15] therefore allows us to conclude that the 
perturbed invariant pc(M,C+) is ±1. As in the last proof, we therefore have 

for every conformal class, with equality only if [g] is represented by a Kahler- 
Einstein metric of positive scalar curvature. The diffeomorphism statement 
therefore follows from the classification [2] of complex surfaces with ci > 
0. □ 

Exactly the same reasoning also proves the following: 
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Proposition 2. Let (M, J) be a compact complex surface with ci > 0, and 
let [g] be any conformal class on M for which ci is self-dual Then 

yw < 47rv/2cf(M), 

with equality iff [g] can be represented by a Kahler-Einstein metric adapted 
to some deformation of J. 

However, this will not help to to compute the Yamabe invariant of 
manifolds other than CP2. For example, combining our results mth the 
connect-sum estimate of O. Kobayashi [9] tells one that y(CP2#fcCP2) > 

Y(CP2) = 12\/27r > 47r^2c2(CP2#fcCP2) for any k > 0. This of course 
does not contradict the above Proposition, since ci is not self-dual for most 
conformal classes as soon as 62 > 1. A reasonable conjecture would seem to 
be that that Y(CP2#fcCP2) = y(CP2) = 12\/27r for all jfe. 

Let us now conclude with a new, non-twistor-theoretic proof of a theo- 
rem of Poon [18]. Recall that an oriented conformal Riemannian manifold 
(M, [g]) is called self-dual if its Weyl curvature satisfies W- = 0. For exam- 
ple, the conformal class of the Fubini-Study metric on CP2 is self-dual. 

Corollary 3 (Poon). Let (M, [g]) be a self-dual ^-manifold with bi = 0 
and 62 = 1- Suppose, moreover, that Yj^ > 0. Then (M, [g]) is conformally 
isometric to CP2 equipped with the Fubini-Study metric. 

Proof. Let g G [g] be a Yamabe minimizer. Since 

b+ - b_ = r = JL J   [\W+F - \W.\2] dpi > 0, 

and 6+ + 6_ = 62 = 1? we must have b+ = 1 and b- = 0. Thus 

where r denotes the trace-free Ricci tensor and W- = 0. Because g was 
chosen to be a Yamabe minimizer, and so has constant scalar curvature, 
Theorem 4 tells us that 

/ s2dn = {Y[g])
2 < (12\/27r)2 = 3(967r2), 

JM 
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so the above inequality is actually an equality, forcing 

Y[g] = 12v^7r, 

and so implying that M is diffeomeorphic to CP2. Moreover, Theorem 4 
tells us that the diffeomeorphism can be chosen so that [g] is the pull-back 
of the Pubini-Study conformal class. □ 
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