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Let G be an abstract finitely generated torsion-free group. Our 
main result is that if a sequence of discrete, faithful, co-infinite vol- 
ume representations {ifi} of G into PSX(2, C) converges strongly 
to a geometrically finite representation ^QQ, then for each large 
index i the representation (fi is itself geometrically finite. This 
result can be strengthened if the limit representation is convex co- 
compact. If one assumes convergence of the limit sets and (only) 
geometric convergence of the groups, in addition to the limit group 
being convex co-compact, then eventually Yi is convex co-compact 
for all large index i. We finish by sharpening our main result 
to show that the volume function, when restricted to the convex 
cores, is continuous if the sequence of representations is converging 
strongly. 

1. Statement of Results. 

Denote by Jsora+(H3) the group of orientation-preserving isometries 
of H3. A Kleinian group T is a discrete subgroup of Jsora+(H3). If Y 
is torsion-free, then the quotient manifold M(r) = H3/r is a complete 
Riemannian manifold with constant sectional curvature —1. We will restrict 
ourselves in this paper to the broad class of Kleinian groups that are finitely 
generated, non-elementary and torsion-free; we also assume the quotient 
manifold associated to each Kleinian group has infinite hyperbolic volume. 

This work is about convergent sequences of Kleinian groups. For the 
purpose of describing our results, we npw present an informal discussion 
of the different kinds of convergence a sequence of Kleinian groups can ex- 
hibit. We say that a sequence of discrete faithful representations {^} of 
a group G into PSL(2,C) converges algebraically if, for each g € G, the 
sequence {(pi{g)} converges as Mobius transformations in the compact-open 
topology. A sequence of Kleinian groups {1^} converges geometrically to 
a Kleinian group Y if there exists an increasing sequence of closed balls 
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Bi C H3, such that Bi/Ti can be mapped fcj-quasi-isometrically onto its 
image in M(r), and ki —>lasi—>oo.A sequence of discrete faithful 
representations {cpi : G —> r^} converging algebraically to (^oo, so that the 
associated sequence {1^} converges geometrically to F = (poo{G), is said to 
converge strongly. See Section 3 for precise definitions of these concepts. 

Every hyperbolic 3-manifold M(r) (provided Y is non-elementary) con- 
tains a minimal convex submanifold, called the convex core, so the inclusion 
map on this submanifold is a homotopy equivalence (see Section 2). A 
geometrically finite Kleinian group is one so that, for some e > 0, the e- 
neighborhood of the convex core in the quotient manifold has finite volume. 
Our main result is: 

Main Theorem. Let {^} be a sequence of discrete faithful representa- 
tions of a finitely generated, torsion-free abstract group G into PSL(2, C). 
Suppose the sequence is converging strongly to a representation (p{X), so that 
T = (Poo(G) is geometrically finite. Then there is an index X, so that for 
each i > X the group F* = (pi(G) is geometrically finite. 

An immediate consequence of this theorem is the following: A sequence 
of degenerate groups converging algebraically to a regular B-group F on the 
boundary of a Bers' slice does not converge geometrically to F. 

It is well-known that the Main Theorem does not hold in the case where 
one assumes convergence with respect to either the algebraic structure or the 
geometric structure alone. However, we do show that if the limit group F is 
convex co-compact (i.e. F is geometrically finite and contains no parabolic 
subgroups), then the dual assumptions of geometric convergence and con- 
vergence of the associated sequence of limit sets are enough to ensure the 
result. 

Theorem (convex co-compact limit). Let {Ti} be a sequence of Kleinian 
groups converging geometrically to a convex co-compact limit F. Assume the 
sequence of limit sets {1^} is converging in the Hausdorff set metric to the 
limit set Lp- Then there is an index X so that for each i > X the group Ti 
is itself convex co-compact. 

In fact, we strengthen this result by showing that under these assump- 
tions then eventually F; is quasi-conformally conjugate to F. We also observe 
that the assumption that the limit group is convex co-compact is crucial; 
the statement does not generalize to the broader situation outlined in the 
Main Theorem. To demonstrate this, we construct (Example 6.2) a sequence 
of geometrically infinite groups converging geometrically to a geometrically 
finite limit group (containing a parabolic cyclic subgroup), such that the 
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limit sets are converging as well. 

Note that in the special case that the limit manifold is geometrically 
finite and has no cusps, the result above shows that the number of cusps in 
M(ri) for large index i is also identically 0. More generally, new parabolic 
subgroups can be formed in the limit of (algebraically, geometrically, or 
strongly) convergent sequences of Kleinian groups, so there is no hope of 
generalizing this statement. However, we show in Proposition 5.7 that if the 
sequence is converging strongly to a geometrically finite group, then even- 
tually the number of non-conjugate parabolic subgroups is non-decreasing 
in the limit. 

As an application of the above mentioned results, we will finish by prov- 
ing 

Theorem. Let {tpi} be a sequence of discrete faithful representations of G 
into PSL(21C) converging strongly to a representation (poo. Then 

lim vol C((pi(G)) = vol C(<poo(G)). 

C(r) is the smallest convex submanifold in M(T) = H3/r such that the 
inclusion map is a homotopy equivalence, and vol is the hyperbolic volume 
in the metric induced by the projection map TT : H3 —> H3/r. 

Acknowledgements: The research in this paper constitutes part of a doc- 
toral thesis written at the State University of New York at Stony Brook un- 
der the direction of Professor Bernard Maskit. We thank Professor Richard 
Canary, Professor Maskit and Professor Yair Minsky for detailed conversa- 
tions concerning this work. We also express our gratitude to the referee for 
a careful reading of this paper and especially for pointing out a gap in a 
previous version of the proof of Theorem 6.1. 

2. Basic Definitions and Properties. 

Recall that the group /sora+(H3) has a natural identification with 
P5L(2, C). Thus a Kleinian group T acts on the Riemann sphere C as 
a discrete group of conformal homeomorphisms. This action partitions C 
into two disjoint sets: the limit set and the regular set. We define the regular 
set fi(r) to be the maximal open subset of C on which F acts discontinu- 
ously. The limit set L? is C — £2(r). It is well known that the cardinality of 
Lp is either 0,1,2, or Lr is uncountable. If Lp is uncountable then T is said 
to be non-elementary] otherwise F is elementary. The reader is referred to 
[32] for a discussion of the fundamentals in the theory of Kleinian groups. 
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We work in the upper half-space model of hyperbolic 3-space; the hy- 
perbolic distance between points #, y £ H3 is denoted by p(x,y). There is a 
natural geometric model for the action of F on H3. Choose a point 0 6 H3 

not fixed by any non-trivial element of F. The Dirichlet fundamental poly- 
hedron based at 0 is the set 

Po(r) = {x E H3 : p(x, 0) < p(x, 7(0)) V 7 e r}. 

The intersection of the Euclidean closure of Po(r) with dH3 is a, fundamental 
domain (see chapter 2 in [32] for a full definition and examples) for the action 
of F on fi(r). We will use a formulation of geometric convergence: in terms 
of Dirichlet polyhedra in Section 6. 

We now focus on the geometric and topological properties of hyperbolic 
3-manifolds. Results of Margulis give us a complete understanding of the 
"thin "pieces of any complete hyperbolic 3-manifold M. Let inj : M —> R+ 

be the continuous function which assigns to x € M half the length of the 
shortest homotopically non-trivial curve through x. The injectivity radius 
inj(x) is the value of this function at the point x G M. For any e > 0, define 

M[€,oo) = ^ € M . inj^ > 6^ 

and 
M(0'e] = {x e M : injix) < e}. 

This is the thick-thin decomposition of M. A restricted version of the Mar- 
gulis Lemma (see [30] and [42]) asserts that if M is a complete hyperbolic 
3-manifold there is a constant eo > 0 (the Margulis constant) so that M^e^ 
is a disjoint union of pieces homeomorphic to 

1. T2 x [1, oo) where T2 is the torus, or 

2. Sl x Rx [l,oo), or 

3. S1 x D2, where D2 is the closed unit disk. 

Items (1) and (2) are known respectively as rank 2 cusps and rank 1 cusps. 
Objects of type (3) are neighborhoods of closed geodesies and are called 
tubes. 

Recall that we have made a standing assumption that F is non- 
elementary. We now isolate a submanifold of M(r) that "contains"the 
geometry and topology. The convex hull CH(Lr) is the smallest convex 
set in H3 containing all geodesies with endpoints in Lp. The convex core 
C(r) is realized explicitly as the quotient CH(Lr)/T. Equivalently, it is the 
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smallest convex submanifold of M(r) so that the inclusion map is a homo- 
topy equivalence. Unless the limit set is contained in a geometric circle, the 
convex core is a 3-manifold with C0-boundary. A Kleinian group is geomet- 
rically finite if there is an e > 0 so that the e-neighborhood of the convex 
core has finite volume. If the convex core is compact, then F is said to be 
convex co-compact The reader is referred to [11] and [18] for a detailed 
discussion of the topology and geometry of both convex hulls and convex 
cores. 

The following consequences of a Kleinian group being geometrically finite 
are those that will be of use to us in the proof of the Main Theorem. Let 
€ > 0, and denote by 

C[e,oo) (r) = C(r) n M[e,co) ^ 

the e-thick portion of the convex core. 

Theorem 2.1.  ([34]) Let F be a geometrically finite group. 

1. For any e > 0 the submanifold C^e,00\V) is compact, and 

2. there is a choice of injectivity radius e sufficiently small so that 
jl/f (M (r) consists only of cusps. 

In particular, for small injectivity radius e (the precise value of e depends 
on the geometrically finite group F) all closed geodesies in M(r) have non- 
trivial intersection with C^€,00\r). 

A finitely generated Kleinian group F (respectively M(r)) that is not 
geometrically finite is geometrically infinite. The existence of such groups is 
a non-trivial matter; see [4], [21] and [31] for details. Theorem 2.2 details 
the main geometric property of geometrically infinite manifolds that we will 
be exploiting. 

Theorem 2.2. ([7]) Suppose F is a geometrically infinite Kleinian group 
and let x G M(r) be fixed. Then there exists a sequence of closed geodesies 
{/?i} so that 

dist(a;, pi) = min{p(a;, y) : y G pi} -> oo 

as i —> oo. 

The behaviour of closed geodesies in a geometrically infinite manifold is in 
marked contrast, as noted by the comment following Theorem 2.1, with the 
behaviour of closed geodesies in a geometrically finite manifold. 
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Theorem 2.2 makes it apparent that no compact region in a geometrically 
infinite manifold exhibits all of the geometry of the manifold. However we 
can find a compact set in a geometrically infinite manifold capturing all of 
the topology. A compact submanifold AT of a 3-manifold M is a compact 
core of M if the inclusion map is a homotopy equivalence. A theorem of 
Scott [37] asserts if M is an orientable irreducible 3-manifold with finitely 
generated fundamental group, then M has a compact core. 

3. Algebraic and Geometric Convergence. 

A Kleinian group has an algebraic realization as a group presentation 
and a geometric realization as the holonomy representation of the funda- 
mental group acting discretely and isometrically on H3. Thus a sequence 
of Kleinian groups {F;} can exhibit convergence behaviour with respect to 
either (or both) the algebraic structure or the geometric structure. We 
start by considering algebraic convergence. Let G be an abstract finitely 
generated group with no finite order elements. We say a homomorphism 
(p : G —► F C PSL(2, C) is discrete and faithful if it is an isomorphism 
and F is discrete. A sequence {^} of discrete faithful representations of G 
into PSL(2, C) converges algebraically if for each g G G, then {<Pi(g)} con- 
verges in the topology on PSL(2, C) induced by the compact-open topol- 
ogy on the space of Mobius transformations. Let </?oo(#) € PSL(2,C) be 
(Poofa) = lim(pi(g). J0rgensen [23] proved that the set T = {ipoo(g) • 9 € G} 
is a Kleinian group, and there exists an isomorphism ^oo of G realizing F. 
We refer to </?oo as the algebraic limit, however sometimes we will abuse 
notation and refer to the group F = (poo{G) as the algebraic limit as well. 

We recall the definition of geometric convergence. Suppose T is a locally 
compact topological space, and let C(T) be the collection of closed subsets of 
T. The geometric topology on C(T) is characterized in the following manner: 
A collection of closed sets {Ai} in C(T) converges geometrically to a closed 
set AOQ if and only if every point aoo € Aoo is the limit of a sequence 
{a* G Ai}, and if {an^ G An^} converges to a, then a G A^. A basic 
fact (Proposition 3.2.1 in [11]) is that C(T) is compact in this topology. 
A sequence of Kleinian groups {F^} converges geometrically to F if {F^} 
converges to F in the geometric topology on the space of closed subsets 
of PSL(2, C). It was shown in [23] that the geometric limit F is either 
elementary or discrete, and if each F^ is torsion-free then the limit group is 
torsion-free as well. 
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There is an equivalent formulation of geometric convergence in terms of 
the quotient manifolds. Prom this perspective, one considers the geometric 
convergence of the quotient manifolds {M(ri) = H3/^} to M(r) = H3/r. 
Let {Ti} be a sequence of torsion-free Kleinian groups converging geometri- 
cally to a torsion-free group F. Fix a compact set ifoo C M(T). Informally, 
geometric convergence implies that, far enough out along the sequence, there 
are compact sets Ki C M(Ti) that are "nearly isometric"to ifoo- 

This version of geometric convergence is now made precise. Fix 0 G H3, 
and let S(0, f) be the closed ball of radius r about 0. Let k be some constant 
greater than 1. A k-quasi-isometry of a metric space (X, dx) to a metric 
space (Y, dy) is a mapping / : X —> Y so that for all a, b G X then 

dx(a,b)/k < dy(/(a),/(6)) < kdx(a,b). 

Some authors call such a map "fc-bi-Lipschitz". A proof of the theorem 
given below can be found in both [3] and [11], though the statement is taken 
from [13]. 

Theorem 3.1. A sequence of torsion-free Kleinian groups {Ti} converges 
geometrically to a torsion-free Kleinian group F if and only if there exists 
a sequence {f^ki} and there exists a sequence of maps fi : J3(0,fi) —» H3 

such that 

1. fi —> oo and ki —> 1. 

2. The map fi is a diffeomorphism that is ki-quasi-isometric onto its 
image, fixes 0, and for any compact set A then fi \A converges to the 
identity. 

3. The map fi descends to a map fi : Vi —► M(r), where Vi = B^^fij/Ti 
is a topological submanifold of M(Ti). Moreover, fi is also a diffeo- 
morphism that is ki-quasi-isometric onto its image. 

Suppose a sequence of discrete faithful non-elementary representations 
{(pi} has an algebraic limit tpoo] let F^ = (poo(G). By the compactness of 
C(PSL(2, C)) in the geometric topology, the sequence {Ti = (pi(G)} has a 
geometrically convergent subsequence. Denote the geometric limit by FG?. 

A basic fact ([42] among other references) is that F^ C FG. If F^ = FG?, 

then we say the sequence of representations {^} converges strongly to the 
representation ipoo. If on the other hand F^ is properly contained in FG, 

then the quotient manifolds M^A) and M^G) will be different both topo- 
logically and metrically. Many authors have studied this situation; see both 
[22] and [26] for explicit examples of this phenomena. 
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For the rest of this paper, unless otherwise specified, {tpi} is a sequence 
of discrete faithful non-elementary representations of a finitely generated 
torsion-free group G into PSX(2, C) converging strongly to a representation 
(foo- We will maintain the notation Ti = <Pi(G) and F = (poo(G). Denote 
by TTi : H3 —► H3/ri the natural projection map; the projection map for 
the limit group F is TTOQ : H3 —► H3/r. Recall that for all index i, we are 
assuming that the resulting quotient manifold Mfii) has infinite volume. 

4. Outline of the proof of the Main Theorem. 

We give a brief outline of the proof of the Main Theorem in the special 
case the limit group is convex co-compact. A stronger conclusion will be 
demonstrated, via a direct argument, using Lemma 5.4 in the next section. 
In the following, an e neighborhood of some compact set K C M(r) is 
denoted by NeK. 

The proof is by contradiction. Suppose there exists a sequence of geo- 
metrically infinite representations {(pi : G —► F*} converging strongly to a 
convex co-compact representation ^oo • G —» F. Let NQQ = .A/iC(r); be- 
cause F is convex co-compact iVoo is a compact core of M(r). Choose a 
point XQQ G iVoo, and fix 0 in H3 so that 0 G n^-feoo). 

Use the maps {ff1} defined in Theorem 3.1 to pull iVoo back to Mfii). 
Proposition 3.3 in [13] asserts that the strong convergence of the sequence 
implies the submanifold Ni = /i~

1(iV00) is a compact core of M(Vi) for all 
large i. Because the F* are assumed to be geometrically infinite, we can find 
(via Theorem 2.2) a sequence of geodesies {Pi G M(Ti)} so that 

(4.1) distfci, Pi) = min{p(xi, y) : y E Pi} -> oo, 

where Xi G Ni so that Xi = 7ri(0). The Ni are compact cores, so the geodesic 
Pi is homotopic to a curve in Ni . Using the diffeomorphism /i, map 
this curve in Ni to its homotopically non-trivial image in NQQ. We then 
"straighten " the image curve to the geodesic in the homotopy class. Be- 
cause F is convex co-compact this geodesic is in iVoo as well. 

We again use the maps {Z^"1}, this time to map the geodesies in iVoo 
we have just found to curves in Ni C MQTi) homotopic to $. These curves 
are fci-quasi-isometric images of closed geodesies with the ki —> 1. Since the 
image curves are fc^-quasi-geodesics, each Pi for large index i is in a fixed 
distance neighborhood of each quasi-geodesic (see Lemma 5.4). In particular 

(4.2) piDNi^® 
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for all i sufficiently large. This violates (1), and so the desired contradiction 
is found. 

Remarks: 

1.) We show that if a sequence of discrete faithful torsion-free represen- 
tations is converging strongly to a convex co-compact representation, then 
eventually Ti = (pi(G) is convex co-compact for all i sufficiently large. Note 
that the argument outlined above only demonstrates that Fj is eventually 
geometrically finite. A more general result, in the case the limit group is 
convex co-compact, is known. See the reference to work of Marden in [27] 
preceding the proof of the Main Theorem (special case). 

2.) A limit manifold with cusps presents difficulties. Choose e sufficiently 
small so that M^0'6' (F) consists solely of cusps. The basic issue is that there 
are geodesies in a cusped geometrically finite manifold traveling arbitrarily 
far out some (or all) of the cusps, before returning to the thick part of 
the convex core. If we follow the argument given above, the image of the 
curve in Ni homotopic to the geodesic /% might no longer be homotopic to 
a closed geodesic contained in iVoo = A/iC^'^^F). Instead, it could be a 
curve containing geodesic arcs as well as non-geodesic arcs, where each non- 
geodesic arc wraps around a component in dAfiC^0^(T). If the geodesic 
arc pieces do not penetrate far enough, and at a steep enough angle, into 
the interior of the compact core iVoo, then we lose control over whether the 
fcf-quasi-isometric image of these arcs will intersect ff (NQQ). This problem 
is handled by further refining our choice of the sequence of closed geodesies 
{A C Mpi)}. 

5. Proof of the Main Theorem. 

In this section the Main Theorem is proved: We show that a sequence 
of finitely generated, torsion-free Kleinian groups converging strongly to a 
geometrically finite group consists of at most a finite number of geometrically 
infinite groups. This result is proven in two parts: First we prove the result 
assuming that the limit group is convex co-compact, then we generalize the 
argument to allow for parabolics. Exploring the convex co-compact case 
first allows us to consider some of the basic issues without the complications 
induced by the presence of parabolics. 

We need the following two facts. The first result says that the property 
of being a compact core pulls back under strong convergence. 
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Proposition 5.1. (Proposition 3.3 in [13]) Suppose that NOQ is a compact 
core of M(r). If {tpi} is converging strongly to (foo, then there is an index 
I so that Ni = /i~

1(iV00) is a compact core of M(Ti) for all i > T. 

We want to assert both that a fc-quasi-isometric image of a geodesic 
segment in H3 is near the segment, and a broken curve consisting of geodesic 
segments whose geometry is sufficiently "bounded" is close to a geodesic. We 
begin with some definitions. Let k > 1, and suppose that / : [a, b] —> H3 is 
a smooth embedding that is a fc-quasi-isometry. The embedding / is called 
a k-quasi-geodesic. For k > 1 and e > 0 , a (fc, e)-quasi-geodesic is a smooth 
embedding / : [a, b] -» Y satisfying 

-d(zi, X2) - ^ < dy (/(Zl), f(x2)) < kd(x1,X2) + €, 

where #1=1,2 £ [a, 6]; see [17] chapter 3. A piece-wise geodesic curve is a curve 
composed of geodesic arcs. The angle deflection of two arcs in the piecewise 
geodesic sharing a common endpoint is the angle 6 < TT supplementary to the 
angle the arcs make with each other at that endpoint; see Figure 4.2.11 in 
[11]. Part two of the following theorem states that a piece-wise geodesic and 
a geodesic are close providing the piece-wise geodesic is not too "broken". 

Theorem 5.2 

1. (Mostow [35]) Let k > 1, and suppose that f : [a, b] —> H3 is a k- 
quasi-geodesic. Let (3 be the geodesic arc in H3 that connects /(a) to 
f(b). Then there is a constant W depending only on the distortion 
constant k ( thus not on the particular choice of quasi-geodesic f) so 
that a W-neighborhood of p contains the image of f. As k —> 1 then 

2. ([17] Theorem 11.3.4) ^x an angle deflection 6 > 0. There are num- 
bers h > 0, ki > 1 and ei > 0, depending on 8, so that the following 
holds. Let a be a piecewise geodesic in H3

; such that each geodesic 
piece has length at least li, and such that successive pieces m,eet at an 
angle of at least TT — 6. Let a be parameterized by arc-length. Then a 
is a (fci,ei)-quasi-geodesic in H3. In fact ki can be chosen to be any 
constant greater than 1; the closer ki is to 1 the larger h and ei must 
be. 

We warm-up for the proof of the Main Theorem by proving it in the 
special case that the limit representation is convex co-compact. This case 
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will be an almost direct consequence of a result concerning the geometry of 
piecewise geodesies (Theorem 5.3 and Lemma 5.4). 

There is one issue concerning the proof of Lemma 5.4 that needs to 
be noted. In particular, there is no canonical choice of a partition of 
the geodesies inside of the manifolds from which we build our piecewise 
geodesies. Thus we fix the number of partitions uniformly, and work mainly 
in the universal cover. The following special version of Theorem 5.2.2 is the 
formulation that we use in the proof of Lemma 5.4. 

Theorem 5.3 Let a(t) be any piecewise geodesic parameterized by arclength 
having a fixed number of geodesic segments AT, so that each geodesic segment 
has a length of at least L. Then there is a 6 > 0, depending on N and L, 
so that the following is true: If the geodesic segments in a(t) with common 
endpoints have an angle deflection of at most 8, then 

p(a(t)J(t)) < L, 

where /?(£) is the geodesic parameterized by arclength that connects the end- 
points of a(t). 

This fact is reasonably easy to prove: see both Theorem 4.2.10 and Figure 
4.2.11 in [11]. 

Lemma 5.4. Suppose that {1^} is converging geometrically to F, and let 
AQQ be any compact subset of M(r). There exists a L > 0, and an index X, 
so that for all i > T and for any closed geodesic (5 C A^, then 

PiCNLf-\(3), 

where Pi C M(ri) is the geodesic in the homotopy class of f^l{P>)- 

Proof. Suppose Ai = ff1(A00) and recall that the injectivity radius function 
is continuous. By the compactness of .AQO, there exists a L > 0, so that 
inj U00> 2JL. Since the fa are fc;-quasi-isometries (with fc; —► 1), there exists 
an index A/i such that for all index i > iVi, then inj [A^ L. 

Our strategy is to build a piecewise geodesic a.i{f3) C H3 "near"a lift of 
/i~

1(^) for a fixed geodesic /? C AQQ. We then deduce from the geometry 
of this piecewise geodesic that there is a closed geodesic ft that is both 
homotopic to, and in a small neighborhood of, OLi{f3) C M(ri), where oti{l3) 
is the projection under the covering map of ai(l3). In particular, we will 
show that 

ACA/^UTV)). 
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The argument is finished by observing that the construction does not depend 
on the particular choice of /?. 

We start by applying Theorem 5.3 to an arbitrary piecewise geodesic 
having N pieces (JV a fixed number to be specified later). Let a(t) be the 
arbitrary piecewise geodesic, parameterized by arclength, such that each 
geodesic segment has length greater than L/8. Let ry(t) be the geodesic 
(also parameterized by arclength) connecting the endpoints of &(t). We use 
Theorem 5.3 to find the angle deflection 6 , so that if any two geodesic arc 
pieces in a(t) sharing a common endpoint meet at an angle of at least TT — 5, 
then7J{t)cAfL/8(a(t)). 

Fix aoo G AQQ, and let 0 G Tr^faoo). Choose a radial length f > 4L so 
that Aoo C 5(0, f)/r. Let 0 be the lift of (3 so that J3 fl B(0, r) ^ 0 (observe 
that we can't assume J3 C 5(0, f), since (3 might have length greater than 
f.) 

Since inj Uoo> 2L, each closed geodesic in A^ has a length of at least 
4L. Thus we can partition ft into 8 pieces (i.e. N = 8, where N is as in 
Theorem 5.3), so that each geodesic arc in the partition has a length of at 
least L/2. Since ^4oo C 5(0, r)/r, we can find a collection of geodesic arcs 

{[ak,~ak+l}}k
kZ*cB(0,r) 

so this collection projects to /?, and the length of each segment is at least 
L/2. 

By the equivariance of the maps /f, there exists a collection of quasi- 
geodesic arcs 

{/r'aaf.af'DMcJBto.f), 
so this collection projects under the covering map to ff {(3). By the choice 
of iVi the length of each arc /i~

1([^, af"1"1]) is greater than L/4. 
Connect each pair of points /i~1(ttf),/i""1(a^+1) with the geodesic seg- 

ment defined by the points. For any choice of angle deflection 5, there exists 
a neighborhood radius W$ (i.e. the value of W$ depends on 5), so that if 
each such geodesic segment is in the W^-neighborhood of the quasi -geodesic 
arc connecting the same two points then the angle of any two geodesic arcs 
sharing the same endpoint will be greater than TT — 8. 

Fix such a We < L/8 for the angle deflection 6 specified above. Because 
the f^1 are fci-quasi-isometries with ki —> 1, we can use Theorem 5.2.1 to find 
an index Nz > Ni with the following property: The collection of geodesic 
arcs /}*(/?) C 5(0, f) constructed from connecting the points /i~

1(a^) to 
/ri(a£+1); k = 1,... ,8 is in the ^-neighborhood of {/i-

1([^,5f+1])}*z? 
for all i > N2. Note that this construction is independent of the choice of 
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/?; it depends both on the uniformity of the lower bound on the injectivity 
radius, and the fact that the /rare fc^-quasi-isometries. Project fii(P) by 
the covering map to the piecewise geodesic curve ai(/3) C A/^zX^-i)- Observe 
that the angle deflection of any two geodesic arcs of ai(/3) meeting at a 
common endpoint is no greater than 6, and each segment has length at least 
L/8. 

We form a connected piecewise geodesic by lifting ai(/3) to 6Li(f3), so that 
a.i((3) D .^(Ojf) 7^ 0. Note that Q:i(/3) has the same geometry (as a piecewise 
geodesic) as ai(/3). Let the collection of endpoints in ai{l3) be given by 
{6^}^^ and let fii(fi) be the geodesic arc connecting hi to 69. By our choice 
of index A^, we observe via Theorem 5.3 that for all i > N2, then 

Thus rji((3) projects to a closed curve r?i(/3) C A/i/(/i~
1(/?)) that is ho- 

motopic to /i~
1(/3). In fact, r]i(ft) is by construction a piecewise geodesic 

with angle deflection at most 6 at a = 7Ti(bi) = Tr^bg). Normalize so 61 lies 
on the hyperbolic plane P = {(x,y,t) € H3 : x2 + y2 + t2 = 1}. Recall 
that r]i(P) is formed by factoring the geodesic [61,69] by the action of the 
group. Since the angle deflection at a is bounded above by 6, we can choose 
8 sufficiently small so [61,69] C Ni/^lt), where k C H3 is the hyperbolic 
line {(0,0, t) : t > 0}. Thus It projects under the group action Ti to a closed 
geodesic fy in a L/4 neighborhood of 77i(/3), finishing the result. □ 

Remark: The choice of using N = 8 segments in the proof of Lemma 5.4 to 
construct a piecewise geodesic was arbitrary. When we consider the general 
case where cusps are present in M(r), we will observe that there is a natural 
partition resulting from the geodesies penetrating "deeply" into the cusps. 

We now prove the Main Theorem in the special case the limit group is 
convex co-compact. This result is well-known by deep results of Marden 
[27]. In fact, Marden showed that the space of convex co-compact repre- 
sentations is open in the algebraic topology. Independently, Thurston [42], 
Douady-Earle [15] and Riemann [36] proved that each if-quasi-conformal 
deformation of a marked convex co-compact group extends to an equivari- 
ant If-quasi-isometry in H3 (K —> 1 as K —+ 1). Therefore an algebraically 
convergent sequence of Kleinian groups, converging to a convex co-compact 
group F, actually converges strongly. 

Our more limited result is included to demonstrate how much easier the 
proof of the Main Theorem is when there are no parabolic subgroups in the 
limit group, and also to motivate results in Section 6. 
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Main Theorem (special case): Suppose {ipi} is a sequence of discrete 
faithful representations converging strongly to a limit representation ip^. 
Assume T = (poo(G) is convex co-compact Then there exists an index X so 
that for each i > I the group Ff = <Pi(G) is convex co-compact 

Proof We start with an observation. Let M(r) be a hyperbolic manifold, 
and suppose there is a compact set A in M(r) so that every closed geodesic 
is contained in A. Then we claim that there exists a K > 0 so that C(r) C 
AfK(A). To show this fix 0 G H3 and form Po(r). Let C C CH{LTlnPo(r) 
be so that C/Y = C(T). Let A C Po(r) be a compact set so that A/T = A. 
Clearly C H A ^ 0. 

We claim that C must be compact as well: For suppose not. Then the 
Euclidean closure of C intersect with the Riemann sphere is a non-empty 
subset of Lp- Fix a point in this intersection; there exists a sequence of 
attracting and repelling fixed points of loxodromic elements converging to 
this point ([32] Proposition V.E.5.). The axis connecting the fixed points 
has non-trivial intersection with C — A, a contradiction. 

Since F = (poo(G) is convex co-compact, then iVoo = AfiC(r) is a compact 
core of M(r). The sequence {cpi} is converging strongly to (poo, so there is 
an index Xi such that for all i > 2i, then Ni = /j""1(Aroo) is a compact core 
of M(ri). Thus for each closed geodesic /3 C M(r), the curve Ci == f^iP) 
is both contained in Ni and homotopically non-trivial. 

Let /3i be the closed geodesic in [Q] G TTIM^). Lemma 5.4 implies that 
there is an index J2 so that Pi is contained in Ni for all i > J2. By the 
definition of the compact core, Ni carries the homotopy of M(r.i) for all 
i > max{Zi,Z2}- Thus we have shown that there exists a K > 0 so that 
C(Ti) C NxiNi) for all large index i. In particular, F* = (pi(G) is convex 
co-compact. □ 

We are ready to prove the Main Theorem in the case that the strong 
limit F is geometrically finite and contains at least one conjugacy class of 
parabolic subgroups. Choose an e > 0 so that M(0'2e](r) consists solely of 
rank 1 and/or rank 2 cusps. Let iVoo = C'6'00)^); observe that iVoo is a 
compact core of the manifold M(r). It is important to note that the first 
part of the following argument holds for any such choice of injectivity radius 
e; in the course of the proof we make a particular choice of e so that Theorem 
5.2.2 can be invoked. 
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Proof of the Main Theorem. The proof is by contradiction: Suppose there 
exists a sequence of geometrically infinite representations {(fi} converging 
strongly to a geometrically finite limit representation ^QQ. Fix 0 € H3 and 
let Xi = 7ri(0). We can find, using a diagonalization argument if necessary, 
a sequence of closed geodesies Pi C M(ri) such that dist(xi,/3i) —► oo. 
(Recall that F* = (pi(G) and F = (poo(G).) Since NQQ is a compact core of 
M(r), then for all large index Ni = /j~1(iV00) is a compact core of Mfti) 
by Proposition 5.1. 

We start with a discussion of certain issues that are not particular to the 
choice of injectivity radius. Let ai be a curve in Ni homotopic to Pi. The 
curve cti is mapped, via /i, to a homotopically non-trivial curve Sj in JVOQ. 

Denote the geodesic representative in [Si] € 7riM(r) by Pi. We will refer 
to Pi as the push-forward in N^ of Pi. If the strong limit F were convex 
co-compact, then Pi would be properly contained in N^. However, since 
we are assuming the existence of at least one conjugacy class of parabolic 
elements in F, it is possible the sequence of push-forwards {Pi} exhibits the 
property 

(5.1) Dist(a;0o, A) = max{/K::coo,y) • y € Pi} —> oo 

as i —> oo, where XQO = ^00(0). If, for our choice of sequence {Pi C M(ri)}, 
there exists a RQQ > 0 such that Dist(a;oo,A) < Roo ioi all i, then the 
proof of the Main Theorem is completed immediately with an application 
of Lemma 5.4. Henceforth we assume we are dealing with the situation 
described by (5.1). 

Our first difficulty caused by the presence of cusps in M(r) is that (in- 
finitely often) the push-forward of Pi to JVQO might be homotopic to some 
curve in ONQQ fl M(0'e](r). Because F is geometrically finite, it contains only 
finitely many inequivalent conjugacy classes of parabolic elements. Since 
{Ti = (pi(G)} converges strongly to F = ipoo(G), there exists at most a 
finite number of closed geodesies in each M(Ti) that are being pinched 
down to cusps in the limit manifold. Let V = {51,52) •• • > Ss} be the sub- 
set of gen G so that <Pi(gj) € F* is a loxodromic element being pinched 

down to a cusp. Let pf* C M^Ti) be the geodesic associated to <Pi(gj). 

Each such geodesic has a tubular neighborhood of radius R{p\3') that is 

precisely invariant under < ^Pi{gj) > in Ti. Let Ri = maxj=iv..)Si?(/3^) 
(note that by [10] lim^ooi^ = 00.) Thus there exists an R(i) > Ri so if 
Pi C Mfii) — B(xi, -R(i)), then the push-forward of Pi will not be homotopic 
to any curve on ONQQ fl M^0^(T). Since F; is assumed to be geometrically 
infinite for all index i, such a closed geodesic can be found in each M(ri). 
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Thus we can replace any geodesic in our original sequence {A}, so that 
the push-forward $ is not homotopic to any curve on annular or toroidal 
boundary components of iVoo. 

The basic construction is described. Replace the geodesic /% with a 
broken curve Q C iVoo homotopic to /%. Recall the criterion for our choice 
of injectivity radius: e is chosen small enough so that M^0,2e\r) consists 
solely of rank 1 and/or rank 2 cusps. Thus each closed geodesic y3 C M(r) 
has the property that C^€i00\r) D {3 ^ 0. Therefore a "long"closed geodesic 
goes out some cusp, wrapping around this cusp some number of times, then 
returns to travel through the e-thick part of the core, possibly going out 
some other cusp and wrapping around it some number of times, and so 
forth. 

For any such choice of injectivity radius e, we can construct a broken 
curve Ci from /% by letting 

Q n c^r) = fc n c^r), 
and then replacing the remaining segments with non-geodesic arcs that wrap 
around components in JVQO fl C(0,e](r). The number of times these non- 
geodesic arcs are "wrapped" around each component in iVoonC(0'€l(r) is the 
same as the number of times the geodesic wraps around the same component 
during each visit to C(0'€)(r). The observation that Q is homotopic to $ is 
immediate from the fact that NQQ is a compact core, and by the construction. 

We emphasize that we will refine this construction by choosing injectivity 
radii sufficiently small, so as to be able to construct a broken geodesic in 
M(Fi) with a desired fixed geometry. 

To simplify our description of Q , we refer to the non-geodesic: pieces as 
cusp arcs. Let 

Ci = ^UK?U...U/^(i), 

where /c| : 1 < j < n(i) is either a geodesic arc or a cusp arc. Recall the 
choice of the sequence {pi : /?; C M(ri)} has been refined so the push- 
forward of each geodesic is not homotopic to any curve on the annuli or tori 
on the boundary of NOQ] thus we are assured that for each i there exists at 

least one j(i) € [1,.... > ^(0] so ^at i^w is a geodesic arc. 
Let Ci = /r^O), and note & G [fy] in TTIMQU) SO that Q € [A]. The 

broken curve Q C Ni also has the form 

Ci = «i
1u«?u...u«l

B(*). 

Here the pieces K! : 1 < j < n(i) are either 
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1. a quasi-isometric image of a geodesic arc, or 

2. a quasi-isometric image of a cusp arc. 

Following our nomenclature for the segments of £*, segments of Q of type (1) 
are called quasi-geodesic arcs, and segments of type 2 are called quasi-cusp 
arcs. 

Fix an angle deflection 6 > 0, and let li be as in Theorem 5.2.2. Recall 
that the choice of injectivity radius e was made so that M^0,2^ (F) consists 
solely of rank 1 and or rank 2 cusps. We will specify two choices of in- 
jectivity radii e > e^ > 6$ from which we will build our broken geodesic. 
In particular, we will consider sequences of closed geodesies {$ C M(Ti)} 
so that dist (xi,fii) -+ oo, and so that for all index i sufficiently large, the 
push-forwards will have the property that 

AnM(o'€*)(r)^0. 

We let iVoo = C[c*,00)(r), and then build the broken curve Ci in the manner 
explained above, by replacing any piece of /% n M^66* (F) with a cusp arc 
on the appropriate toroidal or annular boundary component of JVOQ. By 
choosing e^ and €# appropriately, we will construct a piecewise geodesic 
built from £* = /i~

1(0) that hats angle deflection bounded above by 5, and 
so the length of any geodesic piece is bounded below by Zi. 

First we bound the length of the geodesic arc pieces. Specifically, we fix 
a choice of injectivity radius e^ < e so that the length of each component 
of % H Ct6'00^) is greater than 2Zi if A n M^'i^F) ^ 0. The choice of 
^ C Af(ri) is refined so in fact $ n M^'i^F) ^ 0 for all large index 
i Observe that if we can't find such a choice of sequence then /% stays a 
bounded distance from the basepoint XQO, and therefore the proof of the 
theorem again would follow from an application of Lemma 5.4. 

Temporarily let iVoo = C'€'i,00)(r) and let C; be constructed from /% so 
that it consists of geodesic pieces in iVoo, and cusp arcs on dC^^^T) coming 
from ^ fl M(0'€'i)(r) ^ 0. Fix R > 4Zi so that JV* C 5(0,5)/^, where 
Ni = /^(iVoo). We can find such a radial length because F is geometrically 
finite. Lift Q = /i~1(Cz) to the connected component Q C H3 so that 
(i fl 5(0, R) 7^ 0. Explicitly, Q consists of quasi-geodesic arcs and quasi- 
cusp arcs. We will assemble a piecewise geodesic from Q with the desired 
geometry (i.e. all segments have length at least Zi and the angle deflection 
is bounded below by 6), refining the argument as necessary. Note that each 
quasi-geodesic arc in Q is the fci-quasi-geodesic image of a geodesic arc in 
Ci, and in particular each such geodesic arc has a length of at least 2Zi. 
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Replace each quasi-geodesic arc in Q with a geodesic replacement arc: be- 
cause /~ are fci-quasi-isometries with hi —> 1, then for all index i sufficiently 
large the geodesic replacement arcs have length at least Zi. "Unwrap" each 
quasi-cusp arc in Q and replace each with the geodesic arc that, connects 
its endpoints. We bound the length of the geodesic replacement eircs of the 
quasi-cusp arcs from below by Zi. There exists a choice of injectivity radius 
€2 < e^ < 6, so that if /% fl C^0'62) (F) =£ 0, then the distance the geodesic has 
traveled in each component of M^F) from dC[eii,°°\r) n M^h^T) to 
dCte'^iT) n M(0'€2](r) is at least 2lv Thus eventually, because the ft are 
fci-quasi-isometries with ki —> 1, we deduce that the length of each geodesic 
replacement arc of a quasi-cusp arc in Q has a length greater than Zi. 

Now we bound the angle deflection. The issue is the angle deflection 
between the geodesic replacement of a quasi-cusp arc and the geodesic re- 
placement quasi-geodesic arc sharing a common endpoint. In the Figure 1, 
© < TT is the angle that a quasi-cusp arc makes with a quasi-geodesic arc 
sharing the same endpoint in Q. 

Figure 1: Broken curve Q consisting of quasi-geodesic and quasi-cusp arcs. 

There is a choice of injectivity radius es < 62, so that the angle that 
the geodesic replacement arc of a quasi-cusp arc makes with the geodesic 
replacement of a quasi-geodesic arc is bounded above by TT — 6. One can 
visualize this by choosing es sufficiently small so that 0 is close to 7r/2; the 
point is that we want the geodesic to travel a large bounded distance beyond 
dC^,00\r) in any cusp, and then use the fact that the quasi-isometries 
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are nearly isometric for all large index i. The geodesic replacement arc 
of the quasi-geodesic arc is nearly vertical with respect to any component 
of dC(0'€](r), and the geodesic replacement arc to a quasi-cusp arc will be 
nearly vertical as well. The angle deflection bound follows immediately. 

Note also that if 0 is sufficiently close to 7r/2, then we are guaranteed that 
there will be at least one geodesic replacement arc of some quasi-geodesic 
arc in Q that has non-trivial intersection with Ni for all large index i. We 
choose the injectivity radius 6$ sufficiently small to ensure that this happens. 

Let iVoo = C^6,00\r). We let {Q} be the sequence of broken curves built 
from the sequence of pushforwards {fii C M(r)}, so that the geodesic pieces 
come from the intersection of fy fl C^,00)(r), and the cusp arcs consist of 
curves on dC^l00\r) nM(0'e](r) that are constructed from pieces having the 
property that $ nM(0,€6)(r) ^ 0. Once again, we can find a choice of closed 
geodesies {pi C M(ri)}, so that the associated sequence of push-forwards 
jpi C M(r)} has the property that eventually for all large index i, then 
pi fl M^€6\T) ^ 0. If not, we are can conclude using Lemma 5.4 that Pi 
stays a bounded distance from Xi ; the desired contradiction. 

We finish the argument by using Theorem 5.2.2. Normalize the piecewise 
geodesic we have just constructed so that one of its endpoints lies on the 
hyperbolic plane P = {(a;, j/,t) G H3 : x2 + y2 +12 = 1} and let k be the 
hyperbolic line (0,0, i) : t > 0. By choosing 6 small enough, we can appeal 
to Theorem 5.2.2 to demonstrate that lt projects under the group action Ti 
to the closed geodesic Pi homotopic to Q, and so that the minimum distance 
between Q and Pi is bounded by some constant for all large index i. Thus 
dist (xi,Pi) is not converging to infinity, a contradiction. 

□ 

We now use the Main Theorem to resolve whether certain algebraically 
convergent sequences of representations are in fact converging strongly. Re- 
call that a Fuchsian group is a Kleinian group that preserves a closed round 
disc D C C. More generally, a quasi-Fuchsian group F is a Kleinian group 
that is a quasi-conformal deformation of a Fuchsian group G of the first 
kind (i.e. LQ = dD.) The study of quasi-Fuchsian groups was initiated in 
the foundational papers of Bers [4] and Maskit [31]. In the following, as- 
sume that the Fuchsian group G is isomorphic to the fundamental group of 
a closed surface Sg of genus g. Thus the quotient space (H3 U n(G))/G is 
topologically Sg x [0,1]. If we fix a discrete faithful isomorphism of 7ri(Sg) 
into PSX(2, C), then this isomorphism determines an ordered pair of points 
(Z, s) in the Teichmuller space Tg of Sg. 
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Let TT = 7ri(Sg), and denote by V(7r) the set of discrete representations 
of TT into PSL{2, C), where the identification is defined up to conjugation 
by Mobius transformations. Endow V(7r) with the algebraic topology, and 
note that Tg x Tg is identified with the open subset of V(7r) consisting of 
faithful representations of TT whose images are quasi-Fuchsian groups. If we 
fix the first factor, then there is a holomorphic embedding of Tg into V(7r). 
Such an embedding is called a Bers' slice [4]; we denote a Bers' slice by 
Tg{l), where I is the fixed conformal structure in the first factor. 

The closure of a Bers' slice (denoted Tg[l) ) in V(7r) is compact; we call 
the closure the Bers' compactification. A cusp [T] G dTg(l) is an equiva- 
lence class of Kleinian groups where each marking in the class isomorphic 
to G, and so that there exists a hyperbolic element g G G such that the 
isomorphism takes g to a parabolic element 7 G F. ([1],[16], see also [27]). 
Heuristically, one can view a cusp as being formed by contracting one or 
more homotopically non-trivial curves in the surface D0/G; where D0 is the 
interior of D. A maximal cusp is a boundary point of Tg(l) so that a maximal 
number (explicitly 3<7 — 3) of disjoint, non-peripheral curves in D0/G have 
been contracted. A maximal cusp, i.e. a marking in the equivalence class, is 
geometrically finite as a Kleinian group [25]. Note that the non-fixed surface 
in the conformal boundary at infinity of a maximal cusp has been reduced 
to a finite collection of thrice punctured spheres. We will use maximal cusps 
in Example 5.8. 

A B-group is a finitely generated Kleinian group T that has a simply 
connected invariant component AQ C f2(r). In particular, quasi-Fuchsian 
groups are examples of B-groups. Bers [4] showed that the boundary of each 
compactified slice contains B-groups whose region of discontinuity consists 
of exactly one connected and simply connected component. Such a Kleinian 
group is called a degenerate group. Degenerate groups axe known to be 
geometrically infinite [21]. 

A B-group F is regular if it is neither quasi-Fuchsian nor degenerate, 
and satisfies a condition on the horocycles of its primary parabolic elements 
(see [1] page 212 for the full definition of regular B-group). A regular B- 
group is geometrically finite and resides on the boundary of some Bers' 
compactification ([1],[28]). 

We can use the Main Theorem to show that degenerate groups do not 
converge strongly to regular B-groups on the boundary of a compactified 
Bers' slice. This result has content, since the set of degenerate groups is a 
dense G$ set in the algebraic topology on the boundary of a Bers' compact- 
ification (see [4]). 
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Corollary 5.5, Let cpi : G —> 1^ be a sequence of degenerate groups con- 
verging algebraically to a regular B-group poo : G —> F on the boundary of 
some Bers' compactification Tg(l). Then the convergence is not strong. 

We assume familiarity with the concept of Hausdorff dimension [19]. 
Results in [6] show that the limit set of any geometrically infinite group 
has Hausdorff dimension 2. Sullivan [39] and Tukia [43] have shown the 
Hausdorff dimension of the limit set of a geometrically finite group is strictly 
less than 2. C. Bishop and P. Jones (Corollary 10.1 of [6]) cite the example 
of a sequence of degenerate groups converging to a regular B-group on the 
boundary of some Bers' compactification as demonstrating that Hausdorff 
dimension is not in general continuous in the algebraic topology. However, 
a long-standing conjecture is: 

Conjecture 5.6. The Hausdorff dimension of the limit set is continuous 
with respect to strong convergence. 

Corollary 5.5 is indirect evidence the conjecture is true. We refer the reader 
to Corollary 6.4 for a result related to this conjecture. 

Often new parabolic subgroups are being formed in the limit group of a 
convergent sequence of Kleinian groups. Assume that the sequence {Ti = 
(pi(G)} is converging strongly to a geometrically finite group F = (poo(G). 
The following proposition shows that, far enough out along the sequence, 
the number of cusps in Mfii) is bounded above by the number of cusps in 
M(r). 

Fix a basepoint Xoo G M(r) , and suppose 0 G H3 is fixed so that 
0 G TTttfaoo)' Let gen G be a generating set of G so ^00(3) • 3 £ gen G 
is a side-pairing of Po(r). Choose an injectivity radius e > 0 sufficiently 
small, so that M^0'6' (F) consists solely of cusps. The collection of cusps of 
M(r) will be given by {E^}^00. Since F is geometrically finite, it is clear 
that SQO is finite (more generally, a finitely generated group has only a finite 
number of inequivalent parabolic subgroups, see [38]). 

Proposition 5.7. Suppose that {Ti = (pi(G)} converges strongly to a ge- 
ometrically finite group F = tyooiG), and assume that M(r) has Soo > 1 
cusps. Then for all index i sufficiently large, M(Ti) has 0 < si < Soo cusps. 

We remark that the case SQO = 0 (i-e-  T is convex co-compact) has been 
handled by the special case of the Main Theorem. 
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Proof. Suppose not; assume there exists a subsequence {Fj}^"^0 C {1^} so 
that M(rj) has Sj > SOQ cusps. 

Let V = {51,525 • • • j dr)} (?? < SSQO) be the sub-collection of genG so that 
Wooign)} generate the subgroups in F that uniformize {E^}^^00. Since 
{(^j} is converging strongly to </?oo > observe that (pj(gn) —* y>oo{9n), where 
1 < n < 77. Thus there is a sequence of convex sets {£# C M(rj), 0 < 

k < SQQ}, so that each JBJ
5
 is converging to E^.  We denote by JB?00+1 a 

component in {-Ey }fcl^+i' Let G(V) C G be the collection of elements 
in G so that <Ax>(flO • 5 ^ G(V) is parabolic in F. Note that because F is 
non-elementary, then G — G(V) 7^ 0. 

We can find, using a diagonalization argument if necessary, a sequence 
of closed geodesies {fij C Mfij)} so that 

(5.2) Di&t(xj,Pj) ->oo 

as j —> 00; as before Zj = 7rj(0). (Recall Dist (XJ,(3J) = max{p(a;j,y) : y G 

/%}•) 
We further specify the homotopy type of each (3j. Recall a closed geodesic 

has the form 0 = -A/7, where ^4 is the axis of some loxodromic element 7. 

Choose 77 = nj^i^VjCflfc) so gk G gen G - ^(P), and let fy = Aj/^j. 
We explicitly form the sequence by finding a collection of geodesies, each of 
which has the property that for large index j 

One readily sees that such a choice of geodesies can be found: Recall that 
by assumption there is at least one cusp E?00*1 that is not in the set that 

is converging to the collection {EJ^}. 
Let Noo = .A/iC[c,00)(r), by our choice of injectivity radius 6 it is a 

compact core of M(r). By Proposition 5.1, we observe that Nj = /r1(iV0o) 
is a compact core of Mfij) for all index j sufficiently large. 

For all such index j, let etj C Nj be a curve homotopic to f3j. Map 
ay to aj = fjipij) in NQQ. The curve ay is homotopically non-trivial in 
7ri(M(r)), so there is a geodesic (3j C M^Tj) homotopic to ay . Since this 
geodesic travels at most a bounded distance in any of the ££, (else it picks 
up homotopy from the cusp), we conclude fij is properly contained in N^ . 
Now apply Lemma 5.4, and observe that eventually (3j is contained in Nj. 
As this contradicts (4), we are done. □ 
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Example 5.8. We give a collection of examples showing that the state- 
ment and conclusion of Proposition 5.7 can not be weakened. 

The following shows that the conclusion of Proposition 5.7 is not true if 
the limit is geometrically infinite. Let F = (poo(G) be a degenerate group 
without parabolics on the boundary of a Bers' slice Tg. By a result of 
McMullen [33], there exists a sequence of maximal cusps ipi G dTg converging 
in the algebraic topology to </?oo- Using the covering theorem of Thurston 
(see Canary [12] and [42]), we observe that {Ti = (pi(G)} is in fact converging 
strongly to F = ipoo{G). Note that si = 35 — 3 for all index i, but SQO = 0. 

The assumption of algebraic convergence alone is not enough to assert the 
conclusion of the proposition. Fix a regular B-group F in dTg^ so that there is 
only one equivalence class of parabolics in F. In particular F is geometrically 
finite. Since maximal cusps are dense, we can find a sequence of these 
that converge to F in the algebraic topology. One shows this sequence 
is not converging strongly by implementing the argument in the proof of 
Proposition 5.7. 

We construct an example of a geometrically convergent sequence, with no 
algebraic limit, so that liminf Si > SQO- Fix ^wo disjoint round closed discs 
-Di=i,2 C {z G C : re z < 0}, and let 7 be a loxodromic element that takes 
the exterior of D2 to the interior of Di. Likewise, fix two round closed discs 
-01=3,4 C {z G C : rez > 0}, so {c} = DsHD^ (necessarily re c > 0). Let p be 
a parabolic Mobius transformation that fixes c and takes the exterior of D3 
to the interior of D4. By an application of the Klein Combination Theorem 
(Theorem VII.A.13 in [32]) the group F generated by Gi =< 7 > and G2 =< 
p > is discrete, and F = (C- (D1UD2))n(C- (D3UD4)) is a fundamental 
domain for F. In particular, F contains one conjugacy class of parabolics and 
00 G O(r). Let G2,i =< w% °poUJ~

%
 >, where wl(z) = z + i for i G Z+. For 

each index i, an application of the Klein Combination Theorem implies that 
Ti =< Gi, G2,z > is discrete and Fi = (C - (JDi U D2)) fl (C - UJ^DZ U DA)) 

is a fundamental domain for Fi. By construction F^ contains one conjugacy 
class of parabolic elements. We form the sequence {Fi}. One observes 
that {Fi} is converging geometrically to G\ (see the definition of polyhedral 
convergence, and its equivalence to geometric convergence, given in the next 
section.) The sequence is not converging algebraically. 

6.   Geometric Convergence and Convex Co-compact Limits. 

We assume familiarity with the definition of the Hausdorff set metric 
ai9],[24]). 
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The main result of this section is: 

Theorem 6.1. Let {Ti} be a sequence of Kleinian groups converging geo- 
metrically to a convex co-compact limit F. Further, assume the associated 
sequence of limit sets {Lr*} is converging in the Hausdorff set metric to the 
limit set Lp. Then there is an index 1 so that for each i > X the group Ti 
is convex co-compact 

Proof. Since F is convex co-compact, the 1-neighborhood of the convex core is 
a compact and the manifold M(r) —NiC(T) is homeomorphic to dJ\fiC(r) x 
[0,00) ([34],[42]). Fix a point Xoo G Affl?), and let 0 G TT"

1
^). Form the 

Dirichlet polyhedron Po(r), and let A^ = Po(r)nir^(C(r)). We also fix, 
for now, a radial length f sufficiently large so that A/iC(r) C iroo(B(0,f)). 

Assume that the index i is large enough so that fi(Vi) D J\fi(C(r)) (see 
Theorem 3.1 (3)), and consider the submanifolds C* = f^WiCtJ1)). We 
claim that eventually each d is a compact core of M(ri). 

For suppose not. Then for all large index i, there exists homotopically 
non-trivial curve a1 G 7ri(M(ri)) so that the (unique) geodesic fii in the 
homotopy class [a1] has non-trivial intersection with Mfii) — 7ri(B(0, f)). If 
no such geodesic fa existed, then clearly for all large index i the submanifold 
7ri(J3(0,f)) would contain all of the closed geodesies in M(ri), and as such 
is a compact core of M(ri) as desired. 

Now we claim that the existence of such a close geodesic fa is enough 
to show that {Lri} is not converging to Lp- Because /% fl (M(Ti) — 
7ri(-B(0,f))) 7^ 0, there is a lift of fa that has non-trivial intersection with 
Po(T) — 5(0, f). By making the radial length f larger, if necessary, one (or 
both) of the endpoints (i.e. loxodromic fixed points in LpJ of this lift lie 
in Po(r) fl C; here Po(r) is the Euclidean closure of Po^). (If we must in- 
crease the value of r then we might have to amend our choice of the closed 
geodesic fa. However, regardless of how large the fixed value of f is, such 
a pi must exist, else we can assert that all of the closed geodesies in Mfr1*) 
are contained in 7ri(J5(0,f)).) Since F is convex co-compact the closed set 
Po(r)nC is properly contained in Sl(T). Thus at least one of the loxodromic 
fixed points in L^ associated to the closed geodesic Pi remains a bounded 
distance away from Lr for all large index i. This contradicts the assumption 
of limit set convergence; explicitly, for large index i, each Ci is a compact 
core of M{Ti) and so Fj is isomorphic to F. 

We now show that Ci contains the convex core of M(Ti). Recall that 
{hPi} is assumed to be converging in the Hausdorff set metric to Lp; thus 
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CHiLrJnBfi, r) is converging to CH(Lr)nB(Q, f) (see [9]) in the Hausdorff 
set metric in H3. Let Ai = CH(LTi) nS(0,f), then TT^) C C(Ti). Since 
the d are compact cores each [7,] G 7ri(M(ri)) — [1] has a representative 
in d. But each such curve in d is a ^-quasi-isometric image of a closed 
geodesic, hence by Lemma 5.4 we observe that all of the closed geodesies in 
M(rj) lie within a bounded distance of /i~

1(C(r)) C d- Since the fc are 
diffeomorphisms, we can conclude that all of the closed geodesies in M(ri) 
are in d. Thus via the observation at the beginning of the Main Theorem 
(special case), we can conclude 7ri(Aj) D C^Ti)- Therefore TT^AJ) = C^), 
and because ir%(Ai) is compact (as the continuous image of a compact set), 
we are done. □ 

Remark: It is not true that a sequence {Ff} of Kleinian groups converging 
geometrically to a geometrically finite group F with cusps, so that the limit 
sets converge, implies that eventually the F* is geometrically finite for all 
large index i. Example 6.2 illustrates this phenomena. The basic problem in 
the presence of parabolics is that the assumptions of limit set convergence 
and geometric convergence does not guarantee that the d (as defined in the 
argument above) are eventually compact cores. Non-trivial topology might 
be "pushed out" the cusp, and thus disappear in the limit while still having 
the limit sets converge. 

The following example shows it is possible to have a sequence of geo- 
metrically infinite groups converging geometrically to a geometrically finite 
limit group with parabolics, so the limit sets converge as well. 

We start with the definition of polyhedral convergence. A sequence of 
discrete groups {r^} converges polyhedrally (see [24]) to a group F if F is 
discrete, and for a fixed 0 E H3 the sequence of Dirichlet polyhedra {Po^Ti}} 
converge uniformly to Po(T) on compact subsets of H3. We express this more 
concretely: Fix a radial length f > 0 and let .6(0, f) be the closed ball about 
0 of radius f. Polyhedral convergence means there exists an index iV(f) so 
that 

1. for each face pairing transformation of ..Po(F) H 5(0, f) there exists for 
all i > N(r) a face pairing transformation 7$ of Po(ri)nJ3(0, f) so that 
lim7i = 7, and 

2. if 7i G Fi is a face-pairing transformation of Po(Ti) fl J5(0, f), then the 
limit of any convergent subsequence of {7^} is a face, edge or vertex 
pairing transformation of Po(r) fl B(0, f). 
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J0rgensen and Marden [24] showed that a sequence {Ff} of Kleinian groups 
converges geometrically to a Kleinian group F if and only if {F*} converges 
polyhedrally to F. 

Our construction of this example makes use of the polyhedral definition 
of geometric convergence; we realize a rank 1-cusp in the geometriceilly finite 
limit manifold as the polyhedral limit of a sequence of geometrically infinite 
ends. 

We show limit set convergence in Example 6.2 by demonstrating that 
the regular sets are converging in a certain way. Let {0^} be a sequence of 
open sets in C. We say that {Oi} is converging in the sense of Caratheodory 
to an open set O if 

1. every compact set K C O lies in Oi for all index i sufficiently large, 
and 

2. every open set U in Oj for infinitely many index j also lies in O. 

One can easily show that Caratheodory convergence of the sequence of reg- 
ular sets {n(ri)} to fi(r) is equivalent to Hausdorff convergence of the 
sequence of limit sets {iTi} to Lp (see [24]). 

Because we will be concerned with neighborhoods of the point at infin- 
ity on C in the following example, there is a need to introduce a special 
metric. The chordal metric is the metric on C induced by the stereographic 
projection of C onto S2 C R3. In effect, the Euclidean metric on S2 C R3 

is transferred to a metric on C. (See [2] for a more detailed exposition con- 
cerning the chordal metric.) 

Example 6.2. Let F be a degenerate group ([4],[31]) with a parabolic sub- 

group; recall that F is geometrically infinite [21]. Conjugate F so that this 
parabolic subgroup is generated by p(z) = z + 1. We can also conjugate F 
with a sufficiently high power of m(z) = z — iso that U = {z £ C : imz > 0} 
is precisely invariant under F — < p(z) > (here F = mk o F o m"k). The 
strategy is to build a geometrically finite group F containing < z —> z+1 > so 
we can form an amalgamated free product of F with F across < z —> z+1 >. 
We then push the geometrically infinite factor towards the parabolic fixed 
point oo G C. 

Let Fi be a loxodromic cyclic group and let r2 be <p(z)>. Choose the 
generator g(z) of Fi so that F =< Fi^ > is discrete and a free product 
of Fi and r2. We also impose as a condition on the choice of g(z) that 
L = {z G C : im z < 0} be precisely invariant under F — r2 (choose g(z) to 
be a loxodromic element so that the centers of its isometric circles are on the 
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positive imaginary axis and the radii of the isometric circles are sufficiently 
small). F is a generalized Schottky group of rank 2, and it is geometrically 
finite by construction. Observe that (C/, L) is a proper interactive pair, and 
U is a (< p(z) >,r )-block and L is a (< p{z) >,r)-block (see [32] pages 
136-141 for the definition of proper interactive pair and block). 

Thus we can use the Maskit Combination Theorem I (Theorem VII.C.2 
in [32]) to form the amalgamated free product 

f = r *<p(*)> r. 

f is geometrically infinite ([32] VII.C.2.xi ). 
Now push r' to infinity along the cusp. To do so, let 

r^m^r'om"*, 
where m(z) is as above and form 

M = r *<p(z)> iy 

We can apply the Combination Theorem I because by construction (C7, L) 
a proper interactive pair, and U is a (< p{z) >,ri)-block and L is a (< 
p{z) >,r)-block. Fix a basepoint z = (x,iy,t) £ H3. For any r > 0 then 
Pz(ri) converges uniformly to ^(F) on B(z, r) C H3. From the equivalence 
of polyhedral convergence and geometric convergence we deduce that {Ti} 
converges geometrically to F. 

It remains to show {IT*} converges to Lr in the Hausdorff set metric on 
C. Equivalently, we demonstrate that the sequence of regular sets {f2(ri)} 
is converging in the sense of Caratheodory to f^F). Let Fi and Fp be 
the fundamental sets formed by the intersection of the Euclidean closure 
of PzO^i) and -P^F1) respectively with C. One concludes from statement 
VII.C.2.vii in [32] that 

Fi = (F'inL)U(FrnU) 

is a fundamental set for iy Let K be a compact set in fi(r); K is a bounded 
distance (in the chordal metric) from Lp. Note that oo £ Lr and i7^ n L is 
being contracted in the chordal metric about the point oo as i —► oo. Thus 
we observe that eventually K C $1(1^). Caratheodory convergence of the 
regular sets {(7(1^)} to fi(r) follows immediately. 

Remark: J0rgensen and Marden [24] showed that a sequence of discrete 
faithful representations converging algebraically to a geometrically finite in- 
finite volume representation ^oo, so that the limit sets are converging, im- 
plies that the sequence of groups F* = (pi(G) is converging geometrically to 



524 Edward C. Taylor 

r = <Poo{G) ^ well- In Example 6.2, since the geometric limit V is prop- 
erly contained in Ti for all index i, we observe that {Ti} is not converging 
strongly to F. Thus the J0rgensen-Marden result is the best possible: One 
can not assume geometric convergence rather than algebraic convergence in 
the statement of their theorem. This observation, using a different class of 
examples, was known to both J0rgensen and Marden [29]. 

We have one more application for polyhedral convergence. By analyzing 
the proof of Theorem 6.1 in more depth, and using the polyhedral formula- 
tion of geometric convergence, we can actually prove a stronger result. The 
reader is referred to [5] for the definition of quasi-conformal conjugacy. 

Lemma 6.3. Suppose that {Ti} converges geometrically to a convex co- 
compact group F and assume that {-kr*} converges in the Hausdorff set met- 
ric to Lr- Then Ti is Ki-quasi-conformally conjugate to T for all large index 
i. In fact, Ki —> 1 as i —> oo. 

Proof. Fix 0 € H3. We have already shown that, under these hypotheses, Yi 
is eventually convex co-compact. It was also shown that for a radial length 
f large enough so MC(r) C J5(0,f)/r, then eventually C^Fi) C JB(0,f)/IV 
Let AToo = MiC{Y) and JV* = fr^Noo). 

Since F^ is eventually convex co-compact, and F is assumed to be convex 
co-compact, then C(Ti) is a compact core of M(ri) and likewise C(T) is a 
compact core of M(r). Thus for all index i large enough so that C(ri) C 
/i"

1(A/iC(r)), the diffeomorphism fi induces an isomorphism of Ff to F. 
Now consider the polyhedral convergence of {Pofii)} to PQ(T) on B(0, f), 

induced by the geometric convergence of the groups. Recall that the side- 
pairings a fundamental polyhedron generate the group ([32] IV.F.6.). Since 
Ti is eventually isomorphic to F, then the full set of side-pairings of Po{Ti) 
are converging to the full set of side-pairings of Po(r) uniformly on i?(0, f). 

Fix e > 0, and let {jj}3jZi be the (finite) collection of generators of 
F. Then we have shown that eventually (7 — (ft (7)! < e, where | • | is the 
standard norm on P5,L(2,C). We now apply Marden's Stability Theorem 
(Proposition 9.1 in [27]) to finish the proof of the lemma. The fact that 
Ki —> 1 follows by making e arbitrarily small. □ 

We return briefly to the question of continuity of Hausdorff dimension 
(see Conjecture 5.6). Using estimates on the distortion of Hausdorff di- 
mension by if-quasi-conformal mappings in Gehring-Vaisala [20], we have 
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the following immediate corollary of Lemma 6.3. We denote the Hausdorff 
dimension of a set A C C by d(A). 

Corollary 6.4. Suppose that {1^} converges geometrically to a convex co- 
compact group F and assume {ZTi} converges in the Hausdorff set metric 
to LY- Then {cf(LrJ} converges to d(Lr)- 

7.   Volumes of Convex Cores. 

It will be shown that the volume function, restricted to the convex core, 
is continuous on a strongly convergent sequence of Kleinian groups. We 
start by showing that the volume function restricted to the convex core is 
lower semi-continuous under the assumption of geometric convergence. The 
following lemma is true for an arbitrary sequence of geometrically conver- 
gent Kleinian groups with a non-elementary limit; we need not make any 
assumptions about the groups being geometrically finite or torsion-free. A 
stronger version of Lemma 7.1 is proved in [26] (Proposition 2.1). 

Lemma 7.1. Let {Ti} be a sequence of Kleinian groups converging geo- 
metrically to a non-elementary group Y. Then there exists a convergent sub- 
sequence of {iri}; and a set AC C, so that A is the limit in the Hausdorff 
set metric of the subsequence. Each such set A is closed and T-invariant; in 
particular Lr C A. 

Proof Because of the assumption that the geometric limit is non-elementary 
we know that each Fj is non-elementary for all large index i. Recall the 
definition and properties of the Hausdorff topology on the family C(C) of 
closed subsets of the Riemann sphere. Because C is locally compact there 
is a convergent subsequence {ITJ} Q {^Ti} with limit A. The set A is 
necessarily closed. 

We claim that A is non-empty. Let Xj G 1^; by the compactness of C 

there is a convergent subsequence {%} C {XJ} with limit XQO € C. Since A 
is the limit of {Lp^} in the Hausdorff topology, we observe that XQO € A. 

It remains to show that A is F-invariant. Let 7 E F, then by geometric 
convergence of the groups there exists a sequence 7^ G Tj so jj —> 7 in 
the compact-open topology. Let Xj G Lr, be converging to x G A. Then 
for j sufficiently large ^(XJ) —» ^{x). But JJ(XJ) G Lr,- because L^- is 
Fj-invariant. Hence 7(2:) G A. 
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Since the limit set of a non-elementary group is the smallest closed F- 
invariant subset of the Riemann sphere, then any closed F-invariant set A 
contains the limit set Lp. 

□ 

Let CA(r) = CH{h)/T; because LT C A it is clear that C(r) C Ch{T). 
The strategy in the proof of Theorem 7.2 is to show lower semi-continuity by 
pulling back large pieces of CA(r) to M{Ti) via the quasi-isometries induced 
by the geometric convergence. We then use the fact that L^ —► A. 

Theorem 7.2. Suppose {F^} converges geometrically to Y, then 

liminf volC^) > volC(r). 
i—*oo 

If vol C(r) = 0 the inequality is trivially satisfied, so assume that F is 
a non-elementary Kleinian group whose limit set does not lie on a round 
circle. Let A and {LY^} be as in Lemma 7.1, and fix points z £ C/^F) and 
0 G 7r~1(^). Truncate CA(r) with a closed ball of radius r about 2, i.e. let 
Cr

K{Y) = CK{Y) fl B{z,r). Note that lim^oo vol Cr
K{Y) = vol CA{Y). 

Using a result of Bowditch [9], we observe that {dCH^Tj) nS(0,r)} is 
converging in H3 to dCH(A) fl B(0,r) in the Hausdorff set metric. Recall 
(Theorem 3.1) that the maps {fj} are fcj-quasi-isometries with kj —> 1. It 
is an easy observation that for any 6 > 0 there is an index N so that for all 
j > N then f^HCKY)) c AfsiC^Yj)) and fjiC^Yj)) c M(CX(r)). We 
can immediately conclude that 

limvolCr(rj)=volCX(r). 

We now consider the two possible cases: vol C(r) = oo and vol C(Y) is 
bounded. Suppose vol C(r) = oo, then because A D Lr we have vol ^(F) = 
oo. Thus for any large V there exists a radial length r so that vol C£(r) > 2V. 
Hence there exists an index N so that for all j > N then vol Cr(Vj) > V. 
Since vol C(Yj) > vol Cr(rj), we observe that limvol C(Yj) = oo. 

Now suppose that lim inf^QQ vol C(Yi) < oo. There exists a subse- 
quence {Ffc} C {Yi} such that vol C(Yk) < L < oo for all fc. ]By com- 
pactness there exists a subsequence (again denoted by {Ffc}) such that 
{Ffc} converges geometrically to F. Apply Lemma 7.1 to find yet an- 
other subsequence {rs} C {F^} such that {Lrs} converges in the Haus- 
dorff set metric to a closed set A D Lr- The analysis above implies that 
lim inf^-^oo vol C(rs) = oo, a contradiction. 
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Suppose that vol CA(r) < oo (if vol CA(r) = oo we are done by the 
argument given above.) Fix e > 0, and let r be a radial length sufficiently- 
large so that vol C£(r) > vol CA{T) - e. Since limvol C^Tj) = vol CX(r), 
we observe that eventually vol Cr(Tj) > vol CA(r) — e. Thus since Lj? Q A 
then 

limin*vol £(!%•) > vol C(r). 

Now apply a similar analysis as in the vol C(r) = oo case. 

As an immediate consequence of this theorem, if the sequence {(fi : cpi : 
G —> Ti} is converging strongly to a geometrically infinite limit representa- 
tion </?oo> then the sequence of volumes {vol C(Ti)} is converging to infinity. 
Thus we can reduce the problem of showing volume continuity to the consid- 
eration of a strongly convergent sequence with a geometrically finite limit. 

One can infer information about the volumes of convex cores of certain 
algebraically convergent sequences. Recall if F is geometrically finite and 
Q(r) 7^ 0, then every finitely generated subgroup F C F is itself geometri- 
cally finite [42]. Corollary 7.3 is an immediate consequence of both this fact 
and Theorem 7.2. 

Corollary 7.3. Let {^} be a sequence of discrete faithful representations 
of a finitely generated torsion-free group G. Suppose the sequence is converg- 
ing algebraically to a representation (poo so thatT = (poo(G) is geometrically 
infinite. If {Ti = <Pi(G)} has a geometrically convergent subsequence with a 
finitely generated limit FQ SO that fi(r<3) ^ 0, then {volC(ri)} diverges. 

Remarks: 
1) It is possible to have liminf volC(ri) > vol(7(r) under the lone assump- 
tion of geometric convergence of {F^} to F. Fix a basepoint in a hyperbolic 
manifold M(r) not in the convex core and conjugate F by a sequence Mobius 
transformations so the basepoint is traveling out an end of the manifold (rel- 
ative to the convex core). One can verify using polyhedral convergence that 
the resulting sequence of Kleinian groups is converging geometrically to the 
identity, but the volumes of a e-neighborhood (e chosen arbitrarily) of the 
convex cores are a fixed value C(e) > 0 in the sequence. 

2) Theorem 7.2 has a spectral theory analogue. 

Theorem. (Taylor [41] or [14]) Let {Ti} be a sequence of discrete, torsion- 
free subgroups of Isom+(Hn), where n > 3. Suppose {Ti} is converging 
geometrically to a discrete group Foo- Then 

limsupAo(ri) < Ao(roo), 
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where Xo(ri) (including i = oo) is the infimum of the Rayleigh quotient over 
the space of smooth functions with compact support on M(ri) (see [40]). 

We finish this section with the proof of continuity of volumes under 
strong convergence. 

Theorem. Let {cpi} be a sequence of discrete faithful representations of G 
into PSL{2, C) converging strongly to a representation (PQQ. Then 

lim vol C(<pi(G)) = vol CitpooiG)). 

Proof Recall that Theorem 7.2 allows us to restrict to the case that the 
limit group T = ipoo{G) is geometrically finite. 

Since F is geometrically finite and M(r) has infinite volume, then fi(r) ^ 
0. Because the convergence of the representations is assumed to be strong, 
Theorem 4.8 in [24] implies that {IT*} converges to Lr in the Hausdorff set 
metric on C. Fix a point XOQ € M(r) and 0 6 TT^XOO). 

We start with the case that the limit group is convex co-compact. In 
particular, we are in the situation described by Theorem 6.1: {Fj = ^Pi{G)} 
is a sequence of groups converging geometrically to a convex co-compact 
group F and the sequence of limit sets {1^} is converging to Lr. Let the 
radial length f be sufficiently large so that 7roo(-B(0, f)) D C(r). The proof of 
Theorem 6.1 demonstrates that for all index i sufficiently large, the groups F* 
are convex co-compact, and in fact the lifts of the convex cores {^^{C^Ti))^ 
B(0, f)} are converging in the Hausdorff set metric to 7r^)

1(C(F)) n 5(0, f). 
The continuity of volume in this case follows immediately. 

The first case we handle is that si = Soo- Choose e > 0 so that M(0,c](rj) 
and M(0'€](r) consist of SOQ cusps. Let EOQ C M(0'e](r) be a rank 1 cusp. 
Then by the assumptions of strong convergence and Si = Soo> there exists a 
sequence of rank 1 cusps Ei C M^0^(Ti) so that {Ei} is converging to EQQ 

quasi-isometrically on compact sets. 
Let K = vol Eoo, and fix 6 > 0. Then there exists a choice of mjectivity 

radius e < e so that vol C'€ ,00) (F) n EQQ > K — 6. Because the convergence 
of {Ei} to EQO is fci-quasi-isometric on compact sets with fcj —► 1, we observe 
that eventually 

voliC^'^(Ti) HEi) > K - 6. 

Recall that any rank 1 cusp has a metric given by ds2 = e~2t(dx2+dy2)+dt2. 

Clearly Area Ei fl C(0'e,](ri) is converging to Area^oo fl C(0'e '(F), so that 
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eventually vol (Ei fl C^0'6 '(Fi)) < K + S in the volume metric derived from 
ds2. The rank 2 case is handled similar fashion. Showing the volumes of the 

cusps are converging handles the case when si = Soo> since vol C'6 '^(Fi) 

converges to C^6,00) (F) fci-quasi-isometrically. Each rank 1 and rank 2 cusp 
can be handled the same way (and there is a finite number of them), so the 
volume continuity follows in this case. 

Recall Proposition 5.7; because of this fact we can suppose that Si < s < 
Soo, i.e. cusps are being formed in the limit (but none are "disappearing"). 
Because of the strong convergence, there exists a choice of injectivity radius 
e so C^e,00\Ti) is connected for all large index i. In effect, if Ck00^!*) is not 
connected for all large index i then some topology is being lost in the limit: 
we can prove this by using a geodesic argument similar to the one used in 
the Main Theorem. 

As above, fix 6 > 0. We consider a sequence of tubes {Ei C M^e\ri)} 
converging to a rank 1 cusp EQO C M(0'e)(r). Then there exists a choice of 
injectivity radius e < e so that 

vol(Cle'^(Ti) D Ei) > K - 6, 

where K = vol EOQ. TO get the other inequality, first observe that the se- 
quence {Ei} is converging to a horoball fixed by the parabolic cyclic group 
< ^oo >C F that uniformizes the cusp EQQ (see [10] section 3). Recall that 
each such rank 1 parabolic subgroup of F is doubly cusped (see [32] Chapter 
VI), because F is geometrically finite. Because the limit sets are converging, 
there exists constants Ci so that 

vol (Ei n c<0'eVi)) < Ci vol (^oo n c^V)) 

and Ci —> 1. The result follows immediately. 
□ 

Remark: The assumption of strong convergence is the lone assumption one 
can make on the convergence of the sequence of representations, and still 
get continuity of the volumes of the convex cores. For instance, a sequence 
of degenerate groups converging to a regular B-group on the boundary of a 
Bers' compactification provides an example of an algebraically convergent 
sequence where the volumes of the convex cores are not converging. Remark 
1 following Corollary 7.3 gives a simple example of a geometrically conver- 
gent sequence so that the volumes of the convex cores are not converging. 
Example 6.2 demonstrates the assumption of geometric convergence and 
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limit set convergence is not enough to show the volumes of the convex cores 
are continuous. 

However, it might be true that if the sequence of representations is con- 
verging both algebraically and geometrically to different limits, then the 
volumes of the convex cores do exhibit some sort of convergence phenom- 
ena. Given the results of this section, we are motivated to make the following 
conjecture: 

Conjecture 7.4. Let G be an abstract, finitely generated torsion-free 
group. Let {cpi} be a sequence of discrete faithful representations of G into 
PSL{2,C), so that: 

1. for each index i the quotient manifold H3/!^ has infinite volume, 

2. {cpi} is converging algebraically to ip^^ and 

3. {Ti} is converging geometrically to a geometrically finite group Y and 
(Poo(G) is properly contained in the geometric limit F. 

Then 
limvolC(ri) = volC(r), 

and 
lim vol CfFi) > vol g((poo(G)). 

We hope to return to this conjecture in a future note. 
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