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The instantons of Yang-Mills theory are localized solutions to global 
PDEs on a Riemannian 4-manifold (M, g). As the instantons become more 
localized, their shape depends on the local geometry (around the point of 
concentration) and, to a lesser extent, on the global geometry of M. The 
relative importance of these effects is reflected in the geometry of the Yang- 
Mills moduli space M(M) near its boundary. As one approaches the bound- 
ary, the solutions become more localized and simultaneously more like the 
standard solutions on the 4-sphere. Correspondingly, for SU(2) connections 
(and presumably for other unitary connections) the geometry of the natural 
"Weil-Petersson" (or "L2") metric on the moduli space becomes closer to 
the geometry of the Weil-Petersson metric on M(S4). In this way, state- 
ments about the precise shape of instantons translate into statements about 
the geometry of moduli space. 

The theorems of this paper give a variety of sharp pointwise upper 
bounds on the curvature of instantons. These yield new results about the 
geometry of moduli space. For example, they imply that for certain 4- 
manifolds the sectional curvature near the boundary of the SU(2) k = 1 
moduli space is bounded, and simplify the proof that the boundary is to- 
tally geodesic in the L2 completion M regardless of the metric g on M. 

Pointwise bounds on curvature have been important in the analysis of 
Yang-Mills fields from the beginning. Uhlenbeck observed [U] that for any 
Yang-Mills connection A and any point x G M, the curvature FA of A 
satisfies the pointwise bound 

(CD \FA\(y)  <    C{A'X) 

dist(x,y)4' 

where the constant C(A, a;) is independent of y but potentially dependent 
upon A and x. Many applications, however, require an estimate that is 
uniform in the connection.   Donaldson [D] provided such an estimate for 
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k = 1 SU(2) instantons: if the connection is centered at x E M and has 
scale A sufficiently small then 

for all y close to x. The 6 in this bound, while rather unnatural, was 
introduced in Donaldson's proof to handle the fact that the metric is not 
euclidean in a neighborhood of x. Recently the first author showed that 
(0.2) holds with 5 = 0 provided the curvature of (M,^) satisfies a certain 
positivity condition [G2]. There are also recent elegant results of R0ade 
bounding general Yang-Mills fields on E4 [R]. But the question remained 
whether one could get both the euclidean exponent (6 = 0) and a constant 
C independent of A for a general manifold (M,g). This question, we found, 
is related to the second derivatives of the metric at the boundary of moduli 
space (at least for SU(2) connections). 

The results proved here fall into two sets, roughly corresponding to im- 
provements on the bounds (0.1) and (0.2) above. The results eliminate both 
of the problems mentioned above and show that on a general Riemannian 
4-manifold one obtains estimates that have exactly the same form as on 
euclidean space; only the initial constant changes. In this sense our new 
bounds are "sharp". 

Our first set of results concerns decay estimates for Yang-Mills fields on 
three types of domains: annuli of small outer radius, annuli near infinity 
on an asymptotically flat 4-manifold, and end regions of an asymptotically 
cylindrical manifold. In each case we bound the curvature for general Yang- 
Mills fields, and show that better "one-sided" bounds hold when the con- 
nection is self-dual (SD) or anti-self-dual (ASD). In particular, we obtain 
several versions of (0.1) on that hold, on annuli $7, with a constant indepen- 
dent of x and whose only dependence on A is through the energy H-FAII^^). 

These bounds are stated in section 1 and proved in sections 2 and 3. The 
key to the proofs is keeping careful track of the metric as one works through 
the required eigenvalue estimates and some rather tricky maximum princi- 
ple arguments. It is enough to establish these bounds on one of the three 
domains mentioned above; the corresponding bounds for the other domains 
then follow by conformal invariance. 

Specifically, in section 2 we work with SD/ASD connections on an asymp- 
totically cylindrical 4-manifold, and follow Donaldson's original argument 
[D]. The new ingredient here is the observation that a simple (eigenvalue 
estimate (Lemma 2.2) obviates the need for the 6 in (0.2). 
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In section 3 we work with general Yang-Mills fields on an asymptotically 
flat manifold, adapting the comparison principle argument of R0ade [R] to 
the case of non-constant metric. Whereas R0ade compares (i^l with powers 
of the distance function, we compare it with powers of the Green's function of 
the laplacian, and then bound the Green's function. The required pointwise 
bounds on the Green's function (which unfortunately do not appear in the 
literature on asymptotically flat manifolds) are derived in the appendix. 

Our second set of results focuses on unitary SD/ASD connections near 
the boundary of moduli space. Such connections consist of a smooth "back- 
ground" connection with one or more sharply concentrated "instantons" 
superimposed on it. In section 4 we first make precise the notion of con- 
centrated connections and show that these indeed form a neighborhood of 
the boundary of moduli space. We then obtain separate bounds on li*1] in 
(i) the regions close to the instantons, (ii) the intermediate collars around 
the instantons, and (iii) the regions far from the instantons. All of these 
estimates involve sharp exponents, that is, they correspond to 6 = 0 in 
(0.2) . Moreover, for connections near the "bottom stratum" of moduli 
space (where the background connection is trivial and each concentrated 
instanton has charge 1) we obtain a global estimate that generalizes (0.2) to 
higher instanton number and general 4-manifolds (Theorem 4.7). The main 
technical difficulty in the proofs of section 4 is ensuring that the estimates 
are uniform for families of instantons where the points of concentration are 
coalescing. 

Section 5 gives applications to the geometry of the SD/ASD SU(2) mod- 
uli space M near its boundary. Previous work by the authors [G1],[G2], 
[GP1],[GP2] and P. Feehan [F] has yielded a good understanding of the 
C0 properties of this metric; for example, the metric is incomplete, so the 
Cauchy completion M has nonempty boundary dM.. In certain cases this 
boundary is particularly simple—an isometric copy of M itself. But while 
the authors cited above were able to draw no conclusions about properties 
involving derivatives of the metric on general SU{2) moduli spaces M, cal- 
culations of concrete examples (fc = 1 and M = SA or CP2) suggested that 
the first few derivatives might in fact be very well behaved at the bound- 
ary. In section 5 we show that the estimates of section 4 yield C1 and C2 

statements about the geometry of the moduli space Mi oik =1 SU(2) in- 
stantons over a simply-connected definite four-manifold M with any smooth 
metric g, near the boundary of Mi: (i) the L2 metric extends to a C1 metric 
on the completion .M, (ii) the boundary dM is totally geodesic, and (iii) 
the sectional curvature of M is bounded near dM. The new estimates of 
this paper are needed to prove (iii) in the stated generality, and simplify the 
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proofs of (i) and (ii). 
Finally, we mention the connection with physics. The L2 metric on the 

space of connections is important in physical Yang-Mills theory because its 
associated measure is the one that physicists (implicitly) use for path in- 
tegrals. In fact, the expansion of the metric at the boundary of moduli 
space is closely related to the "beta function expansions" and the notion of 
"asymptotic freedom" that play an important role in the physics of Yang- 
Mills fields. The relation between these physical quanties and the expansion 
of the metric on the SU(2) moduli space of the standard 4-sphere was de- 
scribed in [GP3]. The results of section 5 show that significant parts of that 
discussion carry over to arbitrary metrics on 54. 

1. General Decay Bounds. 

Our first set of results take the form of three theorems that give pointwise 
bounds on the curvature of Yang-Mills fields on various types of Riemannian 
4-manifolds (M,g). These are described here and proven in sections 2 and 
3. 

Below, || • ||o denotes the L2 norm taken over a region Q, C M. We use 
B(p, s) to denote the closed geodesic ball of radius s centered at p € M, and 
fi(p, ro, ri) to denote the closed annulus B(p, ri) — B(p, ro). We often fix p 
and let r denote distance to p. The curvature of a connection A is denoted 
FA (or just F), and the energy in a region Q is 

(1.1) E(n) := ^ jf |FA|2 dv§. 

Of course, when discussing self-dual (SD) or anti-self-dual (ASD) connec- 
tions we assume that M is oriented. 

The first theorem gives local decay estimates that apply when (M,g) is 
compact or, more generally, hats "bounded geometry" (positive injectivity 
radius and curvature bounded in C2). 

Theorem 1.1. Let (M,g) be a Riemannian manifold of bounded geometry 
and let P —> M be a principal G-bundle with G compact. There exist con- 
stants C, so? P > 0, depending on (M, g) and G, such that if0< 4ro < ri < p 
and A is a Yang-Mills connection on O = fi(p, ro,ri) with \\FA\\Q < £0; then 

(1.2) 

|^(y)l < cf^ + ^j \\FA\\n      foryenfa^nffl. 
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Moreover, if A is a SD or ASD unitary connection on B(p, ri) with \\FA\\Q < 
£Q then 

(a) If k < E(B(p, ro)) < A; + | for some keZ then 

(1.3) \FA(y)\  <  %\\FA\\a       fory€n(p,2ro,n/2). 
rf 

(b) Ifk-l< E(B(p, n)) < k for some k€Z then 

(1.4) 

1^(^)1  <  C^ll^lln       /0ryefl(pl2ro,ri/2). 

At the end of this section we comment on the distinction between cases 
(a) and (b). Letting ro —► 0 in (1.2) shows that \F\ is bounded on B(p^ ri) — 
{p}; this leads easily to a proof of the removable singularities theorem for 
YM fields (cf. [FU]). 

We can similarly describe the decay of Yang-Mills fields "at infinity". For 
this we assume that (M, g) is an asymptotically flat 4-manifold in the sense 
used in general relativity. This means that M is a disjoint union MQ U MQO, 

where MQ is compact and for some RQ > 0 there is a diffeomorphism of MQO 

with R4 —1?(0, RQ) giving coordinates {x1} in which the metric has the form 

(1.5) gij  = Sij + hij 

with r2\hij\ + r3\dkhij\ + r4\dkdihij\ < C(g) for some constant C(g) and 
r = |a:|. We then get a decay estimate as r —> oo that is entirely analogous 
to Theorem 1.1. In this theorem, J7(ro,ri) denotes the annulus ro < r < ri 
in MQO, and £,(r, oo) denotes the energy i?(fi(r, oo)). 

Theorem 1.2. Let (M, g) be an asymptotically flat 4-manifold, and let G, P 
be as in Theorem 1.1. There exists constants C, so > 0 and R > Ro, depend- 
ing on C(g) and G, such that if4:Ro < 4ro < ri < oo and A is a Yang-Mills 
connection on £1 = O(ro,ri) with \\F\\Q < So then 

(1.6) \F(y)\  <  c(^ + i)  ||F||n       for y € Q(2ro,r1/2). 

Moreover, if A is a SD or ASD unitary connection on fi(ro, oo) with 
\\FA\\1 < eo then 
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(a) Ifk< E(ri, oo) < k + i for some k G Z i/ien 

(1.7) |F(y)|  <C 4 imin       M V € n(2ro,ri/2), 

(b) If k - ^ < E(ro, oo) < k for some k € Z ^/ien 

(1.8) |F(y)|  <  ^llFlIn       /ory e n(2ro,ri/2). 

Letting n —» oo in (1.6) shows that a finite-energy Yang-Mills field 
decays as 0(l/r4). 

We can also consider the case of an asymptotically cylindrical manifold. 
Here M = MQ U MOO is a disjoint union where MQ is compact and for some 
To > 0 there is a diffeomorphism of Moo with [To, oo) x S3 giving coordinates 
{£, y} in which the metric has the form 

(1.9) g = dt2+go + h, 

where #0 is the standard metric on S3 and h is a 2-tensor on [To, 00) x 53 

satisfying \hij\ + |<9&/i| + |dfc<9//i| < C(g)e~2t. Write E(t,oo) for the energy 
in [t,oo] x 53. 

Theorem 1.3. Le£ (M,*?) be an asymptotically cylindrical ^manifold, and 
let G, P be as in Theorem 1.1. There exists constants C, SQ > 0 and T > To, 
depending on C(g) and G, such that if T < to < h — 2 < 00 and A is a 
Yang-Mills connection on fi = [£OJ£I] x 'S3 with \\F\\Q < so then 

(1.10) |F(y)|  <  ^(e-^-^ + e-2^-^)  ||F||n 

for yG[to + l^i-l]x53. 

Moreover, if A is a SD or ASD unitary connection on [to, 00] x S3 with 
\\FA\\l<eo then 

(a) // k < E{ti, 00) < k + ^ for some k G Z then 

(i.n) 
\F{y)\  < Ce-^-^HFHn   for y e [to + Mi - 1] x 53, 

(b) Ifk—\< E{tQ, oo) <k for some k € Z t/ien 

(1.12) 

|F(y)|  <  Ce-^-^HFHn   /or y € [to + l.ti - 1] x ^3. 
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Each of these theorems makes a stronger statement for SD connections 
than for general Yang-Mills fields. This is because SD connections satisfy 
a first order equation, so their values on an annulus Q can be bounded in 
terms of their values on one component of 9f&. Bounding a solution of the 
second order Yang-Mills equations, on the other hand, necessarily involves 
the values on both components of dQ,. 

In bounding SD and ASD fields, each of these theorems distinguishes two 
cases. This distinction can be understood as follows. Consider a self-dual 
connection A on the end of an asymptotically cylindrical manifold. The 
energy density \FA\

2
 may separate the end into a finite number of regions 

containing instanton "bumps", each with integral energy, lying between val- 
ues t = Tfc where .E(Tfc,oo) = k G Z. Theorem 1.3a bounds the energy 
density in a region where it is decreasing as t increases (e.g. region I in 
Figure 1), while Theorem 1.3b bounds the energy density in a region where 
it is increasing (e.g. region II in Figure 1). The interpretation of cases (a) 
and (b) in Theorems 1.1 and 1.2 is similar. Thus these theorems give decay 
rates not just outside instantons, but also between instantons. 

graph of |i^i|a 

Figure 1 

Theorems 1.1-1.3 are related by conformal diffeomorphisms. In section 
2 we prove Theorem 1.3ab and show how to use conformal transformations 
to deduce Theorem l.lab and Theorem 1.2ab. In section 3 we consider 
general Yang-Mills fields, this time proving (1.6), and then obtaining (1.2) 
and (1.10) by conformal transformations. 

2. Self-Dual/ Anti-Self-Dual Fields. 

In this section we consider SD/ASD [/(n)-connections on a rank n her- 
mitian bundle E on an asymptotically cylindrical manifold (M, g) and prove 
the decay estimates (1.11) and (1.12) of Theorem 1.3. 
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The proof is based on the properties the Chern-Simons functional. 
Specifically, given a connection form (an End(.E)-valued 1-form). we define 
the Chern-Simons 3-form 

2 
(2.1) CS(a)  = tr{a A da + -a A a A a). 

o 

If a is a connection form (determined by some gauge choice) for a connection 
A with curvature FA, then dCS{a) = tr{FA A FA). Hence for a SD/ASD 
connection on a compact domain D C M over which there exists a global 
connection form a, the energy in D is 

(2.2) 

(here and below the top sign is for SD connections, the bottom for ASD) . 
The normalization factor I/STT

2
 is choosen so that E(M) is integral — it is 

the characteristic number C2(E) — \c{(E). 
A basic property of the Chern-Simons integrand is that, given any two 

connection forms for the same connection on a fixed oriented three-manifold, 
the corresponding Chern-Simons integrals may differ as real numbers, but 
agree modulo Z. Since any four-dimensional compact domain D C M can 
be decomposed into subdomains over which a given bundle P is trivial, it 
follows that 

(2.3) E(D) = T^E /       ^te)  mod Z 

for any connection forms a* representing A on the components (dD)i of the 
boundary dD. 

We apply this to a connection A on the cylinder [to, ti] x Ss that satisfies 
the hypotheses of Theorem 1.3. Since E is a i7(n)-bundle it is trivial over 
each 3-sphere St = {t} x S'3, so we can choose a gauge near each 5t, with 
corresponding connection form Of. Thus if we set 

(2.4) J(t)  = ±±JsCS(at), 

we have 

(2.5) E(s,t) := E{[s,i\xS3)= J(s) - J{t)     mod Z. 
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At the moment, the at can vary arbitrarily (even discontinuously) with t; 
we will restrict the choice of at momentarily. Below, we will write gt for the 
metric induced on St\ these are uniformly equivalent to the standard metric 
for t>T. Also, given a 1-form a on a neighborhood of the slice St, we let 
at denote the pullback of a to St, and Ft the corresponding curvature form 
on St- As in Theorem 1.3 we assume that the energy E := E([to,ti] x 53) 
is at most so (to be determined below). 

If we take so small enough, Uhlenbeck's sup bound ([FU] Theorem 8.3) 
gives 

(2.6) sup|F|2  < ci / |F|2  < ciE < cieo- 
St 7[t-I,t-t.I]x53 

for t in the interval [t^ti] = [to + j?*! — 5]- Because the connection is SD 
or ASD its curvature satisfies |F|2 = 2|F|2 and hence 

(2.7) f \Ft\2  < c2E < c2eo. 
JSt 

A second result of Uhlenbeck (see [DK, Proposition 4.4.11]) shows that when 
(2.7) holds with £0 small there exists a gauge near St whose corresponding 
connection form at satisfies 

(2.8) 

\\d*t\\2LHSt) + INll3(st) + IMll^)  < cz f \Ft\
2 < C2C3E 

J St 

(these constants C2, C3 can be taken independent of t since the induced met- 
rics on St are uniformly equivalent by (1.9)). Henceforth we choose such a 
gauge for each t G [to)*i]- I* follows easily the Chern-Simons function (2.4) 
then satisfies 

(2.9) \J(t)\< cAE       forte [4ti] 

and that for t G [tg, t'J (2.5) holds as an equality in M, not just mod Z. 

It is important to distinguish the sign of J(t). Indeed, this is what 
separates the two cases of Theorem 1.3. Since E([t — 1, t + 1] x S'3) —► 0 as 
t —> 00, the argument leading to (2.9) shows that we can choose gauges to 
arrange limt_>oo J(t) = 0. Hence, using (2.5), for each t G [to, 00) there is an 
integer kt such that J(t) = jB(t, 00) — kt, and when t G [t^tjj (2.9) implies 
that kt is the unique integer k (independent of t) such that |E(t, 00) — k\ < 



448 David Groisser and Thomas Parker 

c^E < 1/2. We extend our gauge choices over ([£0, *o] U [ti, £1]) x S3 to make 
J(t) continuous on [to.ti] x Ss. It then follows that for all s,t G [to,ii], 
(2.5) holds as in equality in R and that J(t) = £(£, 00) — fc. Consequently, 
the hypotheses of Theorem 1.3a imply that J(ti) > 0, and the hypotheses 
of Theorem 1.3b imply that J(£o) < 0. Thus Theorem 1.3ab is a direct 
consequence of the next proposition, which establishes the decay rates of 
Theorem 1.3 without assuming that the connection extends to infinity. 

Proposition 2.1. Let (M,g) be an asymptotically cylindrical wf-raam/o/d, 
and let G, P be as in Theorem 1.3 with G a unitary group. Given a connec- 
tion on P, define J(t) £ R/Z by (2A). There exists constants T, C,£o > 0, 
depending on C{g) and G, such that any SD or ASD connection A on 
Q = [to, ti] x 53 with T < to < ti - 2 and ||F||^ < £0 then 

(a) // J(ti) G [0,1/2) mod Z then 

(2.10) 

\F(y)\  < Ce-^-^HFlb   fory e [to + Mi - 1] x S\ 

(b) IfJ(to) € (-1/2,0] mod Z then 

(2.11) 

^(y)!  <  Ce-^-^llFHn   /oryG[to + l,£i-l]x53. 

Following Donaldson [D], we will prove this by establishing a differential 
inequality for the derivative J7. The key ingredient is the eigenvalue estimate 
in the following lemma. 

Lemma 2.2. There exists a constant B such that for any 1-form u on 
(St,gt) we have 

(2.12) /  u A du    <  —— /   \du)\l dvgt 
\Jst VWtJSt 

where for t>To 

(2.13) |4-^|   <  Be-2t. 

Proof. It follows easily from Holder's inequality and the Hodge theorem that 
(2.13) holds with m equal to the first positive eigenvalue of the Laplacian on 
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coclosed 1-forms on (St^gt)- For the standard metric on S3 we have fj, = 4 
(as in [DK] Lemma 7.3.4). In general 

.    r     JIM2 
lit =    inf   Jr,   l9 d*u;=o J |a;|2 

where the norms are with respect to gt. Writing u = *</> where 0 is a 2-form, 
this becomes 

"' - & W - ^*)- 
The dependence on the metric in this last expression is purely algebraic, so 

(l-c\h\)E{<l>,gt) < Efago) <  (l + c\h\) Efagt). 

Taking the infimum over all closed 2-forms (f> and using (1.9) shows that 

|W-4|  <c\h(t)\  < Be'2'. 

D 

It is easy to check that the same constant fit works for End(i?)-valued 
1-forms u after replacing u; A du by tr (u A dw) in (2.12)). 

Remark. Our use of the strong decay in (2.13) is what distinguishes 
our proof of the SD/ASD decay estimates from those in [D] and [G2]. In 
his original proof Donaldson observed that nt could be taken arbitrarily 
close to 4, so he replaced the right-hand side of (2.13) by an arbitrary 6 > 
0, and derived (0.2) by essentially the same argument we give below. In 
[G2] the first author noted that, under a certain positivity condition on 
the Riemannian curvature, one still has lim inf^oo fit > 4, and that this 
is enough to establish (0.2) with 6 = 0. The proof below shows that the 
curvature condition is a red herring—because of (2.13), fit approaches 4 so 
fast that it doesn't matter whether fit > 4 or fit < 4; one gets the same 
sharp exponent as one would if fit were identically 4. 

With these facts in hand, we turn to the proof of Proposition 2.1a,b. 
Cases (a) and (b) are parallel but slightly different. In both cases, we lift 
J(t) to a real-valued function on [to>ti] using the gauge choices discussed 
earlier, so that (2.5) holds in K (not just E/Z) for s,t G [tojti]- Also tp,^ 
are as in our earlier discussion. 
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Case (a) When Jfa) > 0, we set E(t) = E(t, ti). Then by (2.5) and (2.9), 
for all t e. [to, ti] we have 

(2.14) 
0 < E(t) = J(i)-J(ii)  <  J(t)  < cAE < C4S0 

and, again noting that |F| = 2\Ft\ on Sj, 

(2.15) STT
2f = 8ir2Ef = -2 [ \Ft\

2
gt id/dtdv9  < 0. 

JSt 

The volume forms id/dtdvg and dvgt are generally not equal, but by (1.9) 
their ratio is 1 + 0(e~2t). Hence for large t 

STT
2
/  <  -2(1-cse-2*) /   \ddt + at A at|2 dvgt. 

Js3 

Expanding the integrand, applying Lemma 2.2 and Holder's inequality, 

STT
2
/ <  -2(1 - cse-^vT^I / CSfa) 

\Jst 

+ 2(vsil*llS + ll^ll2ll*ll2 + ll*lli) 
where these norms taken with respect to gt. Using (2.13), (2.8) and (2.15) 
this simplifies to 

/ <  -4(l-c6e-
2t)|J| + C7|J'|3/2 

with J' < 0. Writing x = | J| and y = — J7, this has the form y > ax — 6y3/2 

with a < 4. By elementary algebra this implies that y > ax — 8bx3'2 (write 
y = Arc and consider the cases A > a and A < a). Therefore 

(2.16) 

J' <  (-4 + 4c6e-2* + 8c7|J|1/2)|J| for t'0 < t < t^ 

We will integrate this twice. For this we impose the conditions that T is 
large enough and SQ are small enough that 

(2.17) 4c6e"2T < 1       and       0420 < ^"2 

Then (2.14) and (2.16) give J' < -2J as well as J > 0, so J(t) < 
J(t'o)e-2(t-t'o') with J(t?0) < (8c7)-

2 by (2.14) and (2.17). Putting this back 
into (2.16) and integrating, 

loZjnrS  ^   (-4t-2c6e-*-e-(t-to))ti   <  -4(*-<&)+/? 
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with /? < 3/2 by (2.17). Combining this with (2.14) gives 

(2.18) 
E(t)  <  J{t)  < Jit^e-^oW < 5c4Be-4^o). 

Finally, we convert this energy bound to a pointwise bound by applying 
(2.6). This yields the bound of Proposition 2.1a. 

Case (b) When J(to) < 0, we set E(t) = E{t^t). This time (2.5) and 
(2.9) give 

(2.19) 
0 < E{t) = J{to)-J(t) < -J{t) < c^E < ctfo 

for all t £ [to)*i]) and J' = —Ef < 0 is again given by (2.15). Note that 
J(t) ^ 0 now. The analysis following (2.15) still applies, giving (2.16) with 
J7 = —I*/!'. Again we impose (2.17) and integrate twice. First, (2.16) and 
(2.17) give [J]' > 2|J|, and hence \J(t)\ < |J(ti)|e2(*-*i) with (J^)! < 
(Scy)"2 by (2.19) and (2.17). Putting this back into (2.16) (with J7 replaced 
by — \J\') and integrating from t to t^ gives log|J(ti)| "" l0Sl^WI ^ ^1 ~~ 
t) — 3/2, and hence 

E(t)  <  \J(t)\  < 8|J(ti)|e-4W-*)  < 5c4E e"4^^ 

using (2.19). Again, (2.6) converts this to a pointwise bound, yielding the 
bound of Proposition 2.1b. 

Looking over the above proof one sees that the constants T, C, SQ depend 
only on the constant C(g) used in the definition (1.9) of the asymptotically 
cylindrical metric. This completes the proof of Proposition 2.1. □ 

As noted after equation (2.9) Theorem 1.3ab follows immediately from 
Proposition 2.1. 

Theorem l.lab now follows from Theorem 1.3 by applying a conformal 
transformation. Specifically, using normal coordinates {x1} on B = B(p,p) 
and coordinates (£, {y1}) on R x S3 C E x R4, define a diffeomorphism 
0 : [T,oo] x S3 -> B - {0} by x* = ftfay) = pe^V- Then r = \x\ = 
peT~*. The metric on B has a normal coordinate expansion gij = Sij + 
hijkixkxl where h is bounded in C2, uniformly inp E M since M has bounded 
geometry. Noting that dxl = r(dyl — yldt) and that ^2yldy% = 0 (since 
Y, yV = 1 on R x S3) we find that 

0*(r-2
5)  = ffr-tgijdx'dat) = ^(dy*)2 + dt2 + e"21 R 
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where R is bounded in C2. Thus g' = (/)*(r~2g) is an asymptotically cylin- 
drical metric on R x S3. 

Now suppose that A is a SD (resp. ASD) connection on B as in Theorem 
1.1. Then A is also SD (resp. ASD) with respect to the metric r~'2g on B — 
{0} and satisfies ||-F||Bjr-2^ < SQ since the Yang-Mills energy is conformally 
invariant. Since </) reverses orientation, (f)*A is ASD (resp. SD) on [T, oo] x53, 
and for t > T the energy of ^*A on [t, oo] x Ss is the energy E(B(p, r)) of 
A where r = peT~*. Thus if A satisfies the hypotheses of Theorem 1.1a 
then (f)*A satisfies the hypotheses of Theorem 1.3a with to = T + log(p/ri) 
and ti = T + log(/?/ro). Therefore (jfF satisfies (1.11) for the metric g1'. 
In fact, a slight modification of the proof of Theorem 1.3 shows that (1.11) 
holds (with a different constant) on the larger region [to + 51*1 — 5] x 53, 
which corresponds under (f) to an annulus containing fi(p, 2ro,ri/2). The 
dependence of |F| on the metric is clear from the local expression |F|2 = 
—tx{g^gklFikFji), so for y € 0(p, 2ro, ri/2) (1.11) translates into 

\FA{y)\g = r-V^y)!*'  <  Cr-2e-^-^WF\\[tQM]^  =   ° ||F||Q, 
ri 

which is (1.3). Similarly, (1.12) translates into (1.4). 

The proof that Theorem 1.3ab implies Theorem 1.2ab is completely 
parallel, this time using the diffeomorphism 0 : [T, 00] -+ fi(.Z?, 00) by 
^(*>y2) =: R^t~Tyl and the metric g' = <fi*(r~~2g). The details are left to 
the reader. 

3. General Yang-Mills Fields. 

We now consider Yang-Mills fields that are not necessarily SD or ASD 
and establish the pointwise bounds (1.2), (1.6), and (1.10). For the main 
part of the argument we work on an asymptotically flat manifold, proving 
(1.6) by adapting the technique of R0ade [R]. The inequalities (1.2) and 
(1.10) then follow by conformal transformations. 

The key to the proof is to use the "Kato-Yau" inequality to obtain a 
sharp pointwise differential inequality for |F|. The Kato-Yau inequality 
is a strengthened version of the inequality |rf|F|| < \VAF\ that is usually 
employed in this context (cf. [U]); the strengthening is possible because 
some of the components of VF vanish by the Yang-Mills equations d^F = 
d^F = 0. For a simple proof see [R]. 



Sharp Decay for Yang-Mills Fields 453 

Lemma 3.1 (Kato-Yau inequality). If A is a Yang-Mills connection 
and F = FA then 

(3-1) \d\F\\2 < ||VAF|
2 

D 

The Yang-Mills equations also mean that AAF = (dAd\ + d\dA)F van- 
ishes, so by the Weitzenbock formula 

(3.2) 0 = AF = V*AVAF + KF+[F,F] 

where V is the covariant derivative of the connection A, and 1Z = s/3 + W 
is an endomorphism constructed from the scalar curvature s and the Weyl 
curvature W. Using (3.1) and (3.2), it = jF]1^ satisfies 

Au   =   ^U-
3
[2(F,V*AVAF}-2\VF\

2
 + 3\d\F\ |2] 

<   ±u-3(F,KF+[F,F\), 

SO 

(3.3) Au <  \n\u + cius. 

As in Theorem 1.2 we fix an asymptotically flat manifold (M, g) and an 
annulus fi(ro,ri) in the asymptotic end. We will prove the bound (1.2) by 
repeatedly integrating (3.3). 

First, if the energy is sufficiently small, Uhlenbeck's pointwise bound 
gives 

(3.4) 

u <  ^-^-    onQ(2ro,ri/2)       where       £ = ||-£1ln(ro,ri) 

([U] Theorem 3.5). Putting this into (3.3) and noting that \K\ < car""4 by 
the asymptotically flat condition, we have 

(3.5) Au <  (csr-4 + CEr^2)u   on ft(2ro,ri/2). 

The second ingredient is the following comparison principle, which is 
essentially due to J. R0ade [R]. 
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Lemma 3.2, Let h be a positive harmonic function on a domain Q in a 

Riemannian manifold. Set £ = \d(logy/h)\2. Then for any a > —1 the 
operator L = A + a£ satisfies the comparison principle on Q. Specifically, if 
u, w E L1'2(fi) with u < w weakly on dVt and Lu < Lw weakly on Q,, then 
u<wa.e. on fi. 

Proof. If (j) vanishes on dVt then, squaring and integrating by parts, 

0<   /  #-jMlog/i)     dv =   f \d<t)\2-\<t)2d*d{\ogh) + £<l>2 dv. 

But d*d(logh) = d^h^dh) = h-2\dh\2 = 4^ since d*dh = 0. Thus 

(3.6) 0 <   / |#|2 - ty2 dv 
JQ 

with equality if and only if (j) = 0. Now take </> = u — w. By hypothesis 
(/)+ = max{0, (/)} vanishes on dQ, and Lc/) < 0 weakly on O. Hence 

0 >   / ((/>+, Lcf)) dv =   [ (#+, #) + a^+cj) dv >   [ |#+|2 - £<^ dv. 
Jn Jn Jsi 

Therefore (/)_|_ = 0. The lemma follows. □ 

To apply Lemma 3.2, we need a positive harmonic function h where both 
h and £ = |d(logV7i)|2 are essentially 1/r2 near infinity. The existence of 
such a function is ensured by the following proposition, which is proved in 
the appendix. 

Proposition 3.3. Let (M,g) be an asymptotically fiat four-manifold. Then 
there is an RQ such that for each R > RQ there is a positive harmonic 
function h on D = MQO - B{R) with h — 1/R2 on dD, 

(3.7) _L </,<_!        and       h<^ 

□ 

Now fix an annulus ft = fi(2ro, ri/2) with 4i?o < 4ro < ri where i^o > 1 
is large enough that Proposition 3.3 applies. Suppose that A is a Yang-Mills 
connection on ft with 

(3.8) e = ||F||n < £o = 1/16C. 
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Then using (3.4), (3.5), (3.7), and (3.8) 

u<                  y/c2s/2ro       on       dB(2ro), 
(3.9)              < u<                  2^/c2£/ri       on       0B(ri/2), 

,(A-|0«<    0               on       fi. 

On the other hand, 

(3.10) 
Aha = d*dha = aiX-a^h^brHhY = 4a(l - a)£/ia, 

so (A - I^Jfe* = -4(a - 3/4)(a - l/4)£/iQ. Consequently, the function 

to =  J2CE *$) +m 1/4- 

satisfies 

'to > y/c^jIrQ       on       0B(2ro), 
(3.11) ^«;> 2v/cie/ri       on       dB(ri/2), 

l(A-|0«'=    0. 

Applying Lemma 3.2, we conclude that w < w on 17. 

Returning to the differential inequality (3.3) we now have Aw < \1Z\w + 
cii«3 < V2CEip, where, using (3.8) and noting that \1Z\ < car-4 < czh2 

and ha < S^'1 by (3.7), 

(3.12) 

il> = £{llc4^7/4 + lO^r-^ + c^72)^/4 + Scir"372/*-1/4}. 

Then the function 
i? = roh+ — 

ri 

is harmonic, and by (3.10) 

V =  |c4v^^4 + Sictr^ + dr*'2 )h^ + fc^h-V* 

satisfies Ar] = —tp. Moreover, one checks that there is a constant C5 such 
that (TJI < C5H on Q. Set CQ = cb + y/2. Then 

(/> = V2CE (ceH-r)). 
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satisfies </> > \/2-ff and, using (3.9), 

(u-(i)<      o    on     an 
\A(u-</))=   0       on       Q 

The maximum principle for the Laplacian then gives u < (fr < 2c()yfczeH, 
so with (3.7) we have 

\F\ = u* < 24CE(roh + ^2 < cE (^ + -^ . 

This establishes the bound (1.6) of Theorem 1.2. The corresponding bounds 
(1.2) and (1.10) follow easily by applying conformal transformations, just as 
we did at the end of section 2. 

4. Applications to concentrated instantons. 

We now apply Theorems 1.1 - 1.3 to obtain pointwise bounds on the 
curvature of SD/ASD connections near the boundary of moduli space. Such 
connections consist of one or more sharply concentrated "instantons" su- 
perimposed on a smooth background connection. We begin this seiction by 
giving a precise definition of concentrated connections and showing that such 
connections indeed form a neighborhood of the boundary of moduli space. 
We then use the results of section 1 to obtain pointwise bounds on the cur- 
vature |JP| of concentrated connections. In fact we obtain separate) bounds 
for the regions close to the instantons (Proposition 4.4), for the intermediate 
collars around the instantons (Lemma 4.3d), and for the regions far from 
the instantons (Proposition 4.6). 

Throughout this section we will consider SD or ASD connections on 
a fixed unitary bundle over a compact Riemannian manifold (M,g). The 
energy density / = /A = gj* \FA\

2
 dvg then satisfies 

r f = * / 
JM 

for some integer k > 0. Let p and so be as in Theorem 1.1 and set 

60 = min{^'S} 
Definition 4.1. A SD/ASD connection A is e-concentrated if there exist 

positive integers A;*, points pi G M, and numbers ei,pi > 0, with Si < e and 
32^ < pi < p such that the balls B(pi,pi) are disjoint and for each i 
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and 

(a) 

(4.1) /         f = k-60, 

(b) 

(4.2) f        f < k 
JBipupt) 

We will refer to the collection {(pi,£i,Pi,fci)} as concentration data for A. 
In general concentration data are not unique. 

Thus an e-concentrated connection has "core regions" B(pi^£i) with nearly- 
integral energy ki > 0 surrounded and isolated by low-energy annuli 
B(PuPi) — B(Pi>£i) of modulus pi/ei > 32. 

Remarks. (1) For many purposes it suffices to take pi = 32si, thereby sim- 
plifying Definition 4.1. However, by including pi as independent parameters 
we will obtain bounds that get better as the moduli pi/ei increase. 

(2) Some of the estimates below are more easily proved if one 
assumes that the points pi are separated by a fixed distance. We avoid mak- 
ing this assumption in order to get bounds that hold uniformly for families 
of concentrated connections with two or more of the points pi coalescing. 

The importance of Definition 4.1 is that the e-concentrated connections 
are a neighborhood of the boundary of moduli space. This statement is 
made precise in the next proposition. Let M denote the SD or ASD moduli 
space (on our fixed degree k unitary bundle) and let M£ C M denote the 
subset of e-concentrated connections. As is standard, we topologize M. with 
the L3 Sobolev topology. 

Proposition 4.2, M — Me is compact for each e < p/32. 

Proof. Given a sequence {[-An]} in .M, Uhlenbeck's Compactness Theorem 
says there is a subsequence that either converges, or whose energy densities 
fn converge as measures to a smooth non-negative measure /o plus a non- 
empty set of point masses at points pi G M: 

fn -+ fo + Y] kjSpj 
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where ki > 1 and ko ■= fMfo are integers ([DK] §4.4). We can therefore 
choose small numbers ej, 0 < e^ < e, set /?* = 32£^ and then choose a large 
number N such that such that the balls B(pi,pi) are disjoint and 

(4.3) 

0 <   / /o < 5o/2,        and / fn-fo-J2ki6Pi < So/2 

for each i and n> N. Then 

^o/2. 

Hence for each n> N the numbers 

e?  = inf i e > 0 X -Bto.pO 
fn   >   ki- SQ 

satisfy ef < e^ and $B,   £ns fn = ki — SQ. Furthermore, 32ef < pi and by 

(4.3) 

/ fn   <     f fn+f fn   <   (fc - *o) + «D   =   *•• 
JBfatPi) JBivueV;) J Bipup^-Bipi.ef) 

Thus {[An]} has a subsequence that either converges or eventually enters 
Me. The proposition follows since Me is open. □ 

Now suppose that A is an ^-concentrated connection, so the properties 
of Definition 4.1 hold for some data {pi,£z,Pi}. Fixing {pt,£i,/0i}, we define 
center points fy € M oi A (one for each i) to be the points with coordinates 

(4.4) Pi 
fsfatei) f 

in normal coordinates {x'} on jB(pi,4ej). We then define the scales Aj > 0 
of A by 

(4.5) Xi = inf < A > 0 /        f > ki-So 

Neither the center points nor the scales are canonically defined for two 
reasons.  First, one can replace {pi,£i,Pi} by different data {Pi,£i,Pi} for 
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which the properties of Definition 4.1 hold, obtaining different centers and 
scales. The bounds we will obtain in this section hold with uniform constants 
for any choice of data {pi^Si^pi}. Second, the constants 'AeS in (4.4) and 
c5o' in (4.5) are a convention that can be changed, for example, one could 
integrate over B(pi,8ei) in (4.4), or replace the quantity ki — So in (4.5) 
by ki — ^. The bounds below hold (after adjusting the constants) for such 
variations on definitions (4.4) and (4.5). In particular, in section 5 we will 
show that they hold for the specific choices of center and scale used in [D], 
[GP2], and [G1,G2]. 

The next lemma states some simple consequences of definitions 4.1, 4.4, 
and 4.5, and of Theorem 1.1. Write E(D) for the integral of / = /A over a 
domain D, and f2(p, a, b) for the annulus B(p, b) — B(p, a). 

Lemma 4.3. // A is s-concentrated then 

(a) there are at most j^k points pi, 

(b) the energy EQ on M — UB(pi,ei) satisfies EQ < ko + £o where fco — 

k ~~ /_> kit 

(c) distipupi) < §£i < ^pi and A* < l^ < ^pi, 

(d) writing ri = dist^p^ •), there is a constant ci such that 

(4.6) 

\FA\  =  |87r2/A|1/2  < cx-iv^       on   nfa^-pi), 
r? o 

Proof, (a) Since ki — 6 > ^ equation (4.1) gives k > J2(ki — <5o) > X) if- 

(b) Prom (4.1) we also have k > SQ + EC^-^O) with E^O < if ^o < ^o- 

(c) By (4.1), (4.2), and (4.4) the denominator of (4.4) is at least ki — <$o, 
and hence 

dist^i,^)    < 
1 

h — SQ 
ei [        f + tei I f 

ki — do o 

Then E(B(pi, fe*)) > E{B{puei)) = ki- So, so A* < |^. Finally, 32^ < pi 
by definition 4.1. 
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(d) Using (c) we have h - 1/2 < A* - 60 < E{B^ ^)) < 
E{B{puPi)) < ki and 5(0^, A*, f ft)) < E{B{puPi)) - Ei.B^Xi)) < 
ki — (ki — SQ) = <$o < ^o- Hence Theorem 1.1b applies on fi(c, Aj, ||ft), 
giving (4.6). □ 

Our goal now is to obtain pointwise bounds on \FA\ for £-concentrated 
SD/ ASD connections. Lemma 4.3d gives such a bound in the annular 
regions fiQ^, 2Ai, 4/^/5). In general there is no universal bound of this form 
inside the core regions -BQ^, Aj) because there may be "bubbles-on-bubbles". 
For example, one can have a 1-parameter family of k = 2 connections A* 
on jB(p, A) that split into two k = 1 instantons with scales £A where t —► 0; 
for such a family there is no uniform pointwise bound on \F\. However, 
this phenomenon cannot occur in any B^Xi) with ki = 1, and in that 
case a renormalization argument, essentially due to Uhlenbeck, yields the 
following pointwise bound. Because our definitions of scale and center are 
not completely standard, we give the argument in its entirety. 

Proposition 4.4. There are constants C2,£i > 0 such that if A is any ei- 
concentrated unitary SD/ASD connection then for each i with ki = 1 we 
have 

(4.7) \FA\  <  ^        on   Bfc^Xi). 

Proof. Suppose not. Then there is a sequence {An} of ^-concentrated 
SD/ASD connections and balls B(pn,32/ri) on which the energy density 
fn of An satisfies (4.1) and (4.2) with en = 1/n, pn = 32/n, and ki = 1, and 
there are points zn 6 B(pnJ2Xn) where the curvature Fn of An satisfies 

(4.8) \Fn(zn)\  > nAj 2 
n 

(Here we are suppressing a subscript: pn = pnj etc.) Let wn be a point in 
jB(pn,2An) at which |Fn| attains its supremum. Using normal coordinates 
centered at pn we can regard the An as connections on .6(0,32/n) C M4, 
and pullback by the transformation 0n(a;) = Ln(x — Wn) where 

(4.9) Ll =  \Fn(wn)\  =      sup      |Fn|. 
B(pni2Xn) 

Since B(wn,\n) C B(pn,3Xn) C B(pni32/ri) by Lemma 4.3c the connec- 
tions A'n = (f>nAn are SD/ASD with respect to metrics g' = 0* # that con- 
verge to the euclidean metric uniformly in C2 on compact sets. In fact, by 
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(4.8) and (4.9) these balls have radii 

(4.10) LnXn  >  y/n —> oo. 

Furthermore, for each y G S(05LnAn) the curvature F^ of Af
n satisfies 

|^(y)| < L-'lFn^-'iy))] < 1 and |K(0)| = 1, while by (4.2) (with h = 1) 
the energy density /^ of A^ satisfies 

/ fn   <     I fn   <   I- 

By the Uhlenbeck Compactness Theorem ([FU]) a subsequence of the con- 
nections {A(

n} converges uniformly in C1 on compact sets to a SD/ASD 
k = 1 connection A'^ on R4 with the euclidean metric (A^ cannot have 
k = 0 since |i^(0)| = 1). Hence there are numbers L,iV > 0, depending on 
60, such that 

/        /;  >  I-60       Vn>iV. 
JB{O,L) 

But B(0, L) corresponds to B(wn, L/Ln) in the original coordinates, so using 
(4.10) 

(4.11) / fn  >  I-60       Vn>iV. 
JB(wn^Xn) 

Thus for large n most of the energy is concentrated in a ball around wn whose 
radius is much smaller than An. To complete the proof we will show that 
this implies that the center pn lies close enough to wn that (4.11) contradicts 
the definition (4.5) of An. 

Set fin = L\n/y/n. By (4.5) and (4.1) we have, in normal coordinates 
on jB(pn,32/n), 

\r- \l\ fB(pn,4/n)(X ~ Wn) fn f ._!     f f ^ 
\{Pn-wn)\   = r        7     <    (l-*0) / (X-Wnyfn. 

JB(pnA/n) Jn JB(pnA/n) 

Note that dist(pn,wn) < dist(pn,pn) + 2An < 6/n by Lemma 4.3c, so 
B(p,4en) C B(w,lO/n) C B(w,20/n) C B{pn,32/n). As in the proof of 
Lemma 4.3d these inclusions imply that 1/2 < E(B(wn,20/n)) < 1 and 
E(n(wn, /in,20/n)) < £o> so Theorem 1.1b gives 

\Fn\   <  ci—-4^  v^       onfi(^n,2Mn,10/n). 
disv (wn, - ) 
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Using this and integrating in polar coordinates on i?(pn,32/n), noting that 
the metric is uniformly equivalent to the euclidean metric, 

-(l-6o)dist(pn,wn)   <    / \x-wn\fn +   / \x-wn\fn 
z JB(pni2nn) JB(wn,10/n) 

r nlO/n 4 
(4.12) <   2Mn / fn + cs /        r • clSo^f • r3 dr. 

JB(pni2lJ,n) J2lln 
r 

Bounding the first integral by (4.2) (we have B{wn,2nn) C B(pn,32/n) for 
large n) and integrating the second gives 

32 
dist(pn,Wn)   <   — [2^n + C4<5o^n]   <C5//n. 

Hence by (4.11) 

/ fn   >     f fn   >   1-So. 
J B(pn,(l-\-C5)fln) JB{Wn^n) 

Comparing this with the definition (4.5) of An and recalling the definition 
of/in 

x    ^  M-L.    ^ 4(1 + cs)L x An   <   (1 + C5)^n   =    7= An. 

Taking n sufficiently large gives the desired contradiction. □ 

Lemma 4.3d and Proposition 4.4 provide local pointwise bounds for |F| 
near instantons. To obtain global pointwise bounds we also need estimates 
in the region outside the balls surrounding the instantons. By Lemma 4.3b 
this region has energy EQ < ko + £o> where fco = & — ]C k is the energy of 
a (non-canonical) background SD/ASD connection on M. We first consider 
the case ko = 0. 

Proposition 4.5. There are constants C, £2 > 0 such that if A is any 62- 
concentrated SD/ASD connection with concentration data for which ko = 0, 
we have 

(4.13) 

\FA(y)\  <   ^ Ef       ^ eM-UBfapiffl. 

where ri = dist(piy •) and r = mini U- 



Sharp Decay for Yang-Mills Fields 463 

Proof. Fix y € M - UBfo, Pf/2). Then the ball B(y, r/2) lies in the domain 
D = M — UJB^, pi/4) and by Lemma 4.3b the energy in D is E(D) < SQ. 

Hence we can apply Theorem 1.1a (with ro = 0 and n = r/4) to obtain 

(4.14) \FA(y)\* <%[ |if. 

Now each component of dD is a sphere Si = dB^p^ pi/4) on which we have, 
by Lemma 4.3cd 

(4.15) sup \FA\ < ci^V^o- 
Si Pi 

If we replace the metric g by the conformal metric g' = Iftp^g then (Si, </) 
is a sphere that is uniformly C2-close the the unit 3-sphere whenever e < 62- 
Thus (4.15) becomes 

A2 

(4.16) sup \FA\gf  < ci-^V^o < crV^o, 
Si Pi 

and hence 

\F\2gf dvgt   <  CSSQ. Is 9' 
Si 

After making EQ smaller if necessary we can then repeat the argument of 
equations (2.7) - (2.9), learning that there exists a gauge over {S^g') for 
which the Chern-Simons form (2.4) (which does not depend on the metric) 
satisfies (using (4.16)) 

\Ji\   <   Cg  I    |F|2, dVg*   <   Cio ( ^ )    60. Ti\   <  cgj \F\2g, 
4 

Pi 

Hence, returning to the original metric, we can apply (2.3) to (4.14), ob- 
taining 

□ 

We next extend Proposition 4.5 to the case where the 'background 
charge' ko is non-zero. In this case there are problems in choosing the 
concentration data. For example, suppose A is a k = 2 instanton consisting 
of two bumps of energy nearly 1 separated by a small distance; specifically 
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suppose there is energy exactly 1 — 60 in balls B(xi e) and jB(y, e7) and that 
dist(x,y) = 31(e + e1). Then we cannot say that A is e-concentrated with 
data {(x, £, p = 326:, k = 1), (y, el, p' = 32£/, A; = 1)} because these balls are 
not disjoint. The alternative is to think of A as a fc = 1 bump superim- 
posed on a fc = 1 background, and use either the data (x, e,p = 326:, 1) or 
(y, e*', p7,1). There is, a priori^ no reason to prefer one of these descriptions 
over the other. However, the estimates on \FA\ work out nicely if we use the 
smallest concentration data, according to the following definition. 

Definition 4.6. A set of concentration data {pi,£i,Pi,fcj)} is minimal if 
for no other set of concentration data {p7-, £7-, p7-, A:7)} do we have minj(p7) < 
imin^pi). 

It is not hard to show that, for a minimal configuration, Amin < pmin < 
512Amin, where Amin = miniAi. Hence in this case the number pmin = 
mmi(pi) records the scale of the smallest bump in the energy density. Thus 
the configuration is minimal if it explicitly isolates the smallest bump(s). In 
the viewpoint of section 5 below, there is evidence that /9min is uniformly 
equivalent to the distance to the boundary of moduli space with its L2 

Riemannian metric (the shortest path to the boundary is one where the 
smallest bump bubbles off); the equivalence was proven in [GP2] lor k = 1. 
Because sup |F^| —> 00 as A approaches the boundary of moduli space, this 
distance is the natural parameter for bounds on |JFA|. With this in mind, 
the following proposition is a counterpart of Proposition 4.5 when &o > 0. 

Proposition 4.7. There exists C > 0 such that for any A with minimal 
concentration data {(pi,£i, />;,&;)}, we have 

(4.17) \FA(y)\<Jl-       Vy€M-|J Bfaptfi). 
rmin 7 

Proof. Suppose not. Let Xn = {JiB(pnii,pnii/2). Then there exists 
a sequence of connections An G .MjL- with minimal concentration data 

{(PrM^n^PrMjfcrM)}, and points yn £ Xn for which \Fn(yn)\ > n2/p^min. 
We may assume that the maximum of |Fn| on M — Xn is achieved at yn, and 
denote this sup by i?~2; thus Rn < pn,mm/n- Let fco = fc — j] by hypothesis 
fco ^ 1- Consider the balls Bn := S(yn,pn)min/2); note that each such ball 
contains energy at most fco + fc^o < fco +1. In the metric g'n = Rn2ih Bn has 
radius at least n/2, and the metrics g'n converge uniformly to the flat metric 
on any compact subset of E4 (using (^-normal coordinates centered at yn). 
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Taking a further subsequence, as in the proof of Proposition 4.4 we obtain 
a sequence of translated, dilated connections A!n that converges, uniformly 
in C1 on compact sets, to a finite-energy SD/ASD connection A^ on R4. 
By stereographic projection and the Removable Singularities Theorem [U], 
A'QQ extends to 54, with finite energy kf G Z, smaller than fco + 1. Since 
the connections A^ have 1^(0)1^ = 1, the limit connection is not flat, so 
1 < k' < ko. Since the convergence is uniform, there is a L large enough 
that B(yn^L) contains i4n-energy > kf — So for n sufficiently large; in the 
original metric #, this is the ball B(ynjLRn). Hence there exist numbers 
Cn < £i2n/Pn,min < L/n such that jB(yn, Cnp^min) contains i4n-energy ex- 
actly k' - SQ. Let £n = Cnpn.mm and pn = 32en

/. The g-ball B(ynypn') 
has ^-radius < 32L, and hence the convergence of {A'n} is uniform on this 
ball. Since the limit energy is fc', 5(0,32L) C M4 eventually contains A^- 
energy < k\ so B(yn)p

/
n) C M contains An-energy < kf. Therefore the data 

{yn<>£n ,Pn ik') satisfy conditions (4.1) and (4.2) of Definition 4.1. 

But pn'/pn,mm ^ 32L/n —> 0, so for large enough n we can replace one 
of the sets (pn)i, enii, pn)i, knii) by (yn, Sn, pn, k') to obtain a set of concen- 
tration data with pmin smaller, contradicting minimality. □ 

The results of this section yield global bounds for connections near the 
"bottom stratum" of the compactified moduli space M. Recall that the 
bottom stratum is the stratum of M with the maximum number of bubble 
points; it consists of formal conections whose energy density is a sum of 
mass 1 ^-functions at points pi,... ,Pfc £ M. The argument used to prove 
Proposition 4.2 shows that there is a neighborhood of the bottom stratum 
consisting of ^-concentrated connections with fco = 0 and ki — 1 for all i. For 
such connections Propositions 4.4 and 4.6 both apply, giving the following 
bound. 

Theorem 4.8. There are constants C, £3 > 0 such that any £3-concentrated 
SD/ASD connection A with concentration data for which ko = 0 and ki = 
1 Vi satisfies 

\ny)\ < 

again with ri = distfa, •) and r = mini r 

A2 _ 
C (Aj+V?)2 on each B(Pii Pi) 
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5. Applications to the geometry of moduli space. 

We now specialize the results of section 4 to k = 1 SD/ASD connections. 
The resulting sharp decay bound translates into a precise statement about 
the geometry of the L2 metric on the boundary of the k = 1 moduli space. 
This improves the main results in [G2] and facilitates the proofs in [G3]. 
Since k = 1 here we will simply call a connection "concentrated at p" if 
there is a set of concentration data as in Definition 4.1 with center point p; 
we then define p, A as in §4. 

To start, we note that when k = 1 Theorem 4.7 yields the following 
particularly simple bound. 

Proposition 5.1.  There are constants C,£3 > 0 such that any ez-concen- 
trated SD/ASD k = 1 connection A concentrated at p has, for all y G M, 

A2 

(5.1) \FA{y)\   <  C    2      2 2 where r = dist fay). 

Proof. We can apply Theorem 4.7. In fact, if A is es-concentrated emd pi > 0 
then it is still ^s-concentrated with pi equal to the injectivity radius p (cf. 
Definition 4.1). Hence the first bound in Theorem 4.7 shows that (5.1) holds 
on 5(p, p/2). On the other hand, we always have r < CMP where CM is the 
diameter of M divided by p, so when y £ B(p, p/2) the second bound in 
Theorem 4.7 gives 

—— < rv2 — < rv2      4A2 
r2p2    S    OcMr4    <GcM(A2 + r2)2 \FA(y)\ < 12^2 < CC

MZA ^Cci 

D 

For our applications we must revise Proposition 5.1 slightly In (5.1) 
p and A are the center and scale defined by (4.4) and (4.5). These are 
somewhat different from the center and scale defined by Donaldson [D]. 
Roughly speaking, Donaldson's scale AJD(A) is defined as the minimal radius 
of a ball B for which JB /A = 1/2. For A sufficiently concentrated this ball 
B is unique, and Donaldson defines its center PD(A) to be the "center of 
A" (for more precise definitions see [D] or [GP2]). The following lemma 
shows that the distinction between p and pD and A and A^ is essentially 
immaterial. 
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Lemma 5.2. For k = 1 SU(2) SD/ASD connections there are positive con- 
stants ci,C2,C3,£3 such that if A is e^-concentrated at p then 

(5.2) CIXD < A < C2\D      and      dist(p,pD) < csA^. 

Hence Proposition 5.1 holds (with a different constant) withp and A replaced 
by Donaldson's center pD and scale Ajrp. 

Proof. Donaldson showed (see [D] and §3 of [GP2]) that for each So > 0 there 
are constants N > 1 and AQ > 0 such that any k = 1 SD/ASD connection 
A with XD < XQ satisfies 

(5.3) / fA < So 
JM-B(pD,NXD/32) 

and 

4V3A2, 
(5.4) sup 

B(pD,NXD) 
\FA\- (XI + 7-2)2 < A^2 

where r = dist(pD,y). Taking <!>o as in Definition 4.1, (5.3) implies that A 
is £3-concentrated with i = 1 and pi = pD and 32£i < pi = iVAp. Lemma 
4.3c then implies that A < NXD/V1 := C2XD and dist (p£>,p) < NXD/2A := 
csA^. Note that J3(p, IfATA^) C B(pD, NXD), on which (5.4) implies \FA\ < 
c^Xp2. Hence for t < 23Ar/24 we have /B^jtAD)/A < (c4A^2)2C5(iAr>)4 = 

cet4, which is smaller than 1 — <5o for t = ci sufficiently small. But then (4.5) 
implies ciA^ < A, completing the proof of (5.2). But from (5.2) we have 
dist(pD, ')2 + X^ < const(dist(p, -J2 + A2), so from (5.1) and (5.2) we have 
\FA(y)\  <CXl/(Xl + r^. D 

Henceforth we will restrict attention to k = 1 SU(2) connections, and 
when we write A we will mean Donaldson's scale. 

One consequence of Lemma 5.2 is the sharpening of [G2] concerning the 
geometry of certain moduli spaces Ad. To state this theorem, first recall that 
the L2 inner product of differential forms induces a metric g on M known as 
the "L2 metric". Specifically, the tangent space to M at a smooth point [A] 
(the gauge orbit of a connection A) is naturally identified with the harmonic 
space HA = {X e ^(AdP) \ d^X = d*AX = 0}. An Ad-invariant inner 
product on the Lie algebra of G induces a gauge invariant inner product on 
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sections of AdP®T*M, which we can integrate to obtain an inner product 
on T[A]M: 

g[4](m,m) = ^Jjx,Y)dv. 

Such L2 metrics naturally appear in other contexts; for example in Teich- 
miiller theory the analogous construction gives the Weil-Petersson metric, 
whose geometry has been extensively studied. In gauge theory the L2 metric 
has additional importance because its associated measure is the one that 
physicists use for path integrals. Work in recent years has begun to clarify 
the geometry of the L2 metric and its connection with physics ([F], [Gl- 
3],[GPl-3]). 

The most basic examples are the moduli spaces of k = 1 SU(2) instan- 
tons on compact simply-connected positive-definite manifolds (M, (/). These 
moduli spaces are 5-dimensional and have a "collar region": for sufficiently 
small AQ > 0 the set M.\0 of Ao-concentrated connections (cf. definition 4.1) 
is diffeomorphic to M x (0, AQ) (mapping an instanton to its center and scale 
provides the diifeomorphism). By examining this collar region, the authors 
proved that such moduli spaces have finite diameter and volume ([GP2]; 
this was generalized to arbitrary k in [F]), and that as A —> 0, g ~ 2d\2 + g 
in a C0 sense. As a consequence, the Cauchy completion of (.M,g) is the 
Donaldson compactification in which the boundary dM. is an isomertric copy 
of M attached as ideal instantons of scale zero. 

Having understood the C0 limit of the metric, one can go on to ask 
whether the curvature of the L2 metric becomes singular at the boundary. 
The analyses in [GP1] and [Gl] showed that for the manifolds M -= S4 and 
M = CP2 the curvature extends continuously to the boundary and that 
the boundary is totally geodesic. One might suspect that these are a conse- 
quences of the special symmetric space geometry. However, in [G2] the first 
author showed that the sectional curvature of the collar of the moduli space 
is bounded above and below for any (compact, simply connected, oriented, 
positive-definite) manifold whose curvature satisfies a certain positivity con- 
dition. 

The results of this paper permit us to go further; they show that the base- 
manifold curvature hypothesis in [G2] is an artifact, and that the bounded- 
ness of the moduli-space curvature is a more general phenomenon. Combin- 
ing the results of this paper, [G2], and [G3], we have the following sharpened 
result. 

Theorem 5.3. Let (M,g) a compact, simply connected oriented, positive- 
definite Riemannian ^manifold, and let M be the associated moduli space 
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of k = 1 SU(2) instantons. Then 

(a) the sectional curvature of the L2 metric on M\0 is bounded above and 
below, 

(b) the L2 metric extends to a C1 metric on the completion M., and 

(c) the boundary dAd is a totally geodesic submanifold of M. 

Proof Statement (a) was proved in [G2] under the additional assumption 
that the curvature of (M,g) satisfies the "A?, condition" ([G2, Theorem 
1.1). The sole use of that condition was that it implied (5.1). But Lemma 
5.2 establishes the same fact without the Al condition. Lemma 5.2 is used 
throughout [G3], where statements (b) and (c) are proved. □ 

Statements (a) and (b) above are almost certainly not sharp. It seems 
likely that the curvature extends continuously to the boundary, and, in fact, 
that the extension of the metric g is C2 in the right coordinate system. This 
was shown for 54 and CP2 in [G2], but, contrary to what one might expect, 
continuous curvature does not by itself imply C2 metric. 

Moreover, while Theorem 5.3 and the above "C2 conjecture" deal only 
with k = 1 instantons on a restricted set of 4-manifolds, the authors believe 
that the conclusions hold more generally. For larger fc, boundary strata of 
the moduli space Mk(M) are subsets of UKj^C^ife-j x SymJ'(M)), where 
Sym^(M) is the open manifold of j distinct points in M. For a generic 
metric on M and under suitable conditions on j and k the entire stratum 
Mk-j x SyinJ'(M) appears as part of the boundary. In this situation, the 
proof of Theorem 5.3 suggests that conclusions (a) and (b) still hold (in fact 
it seems likely that the "C2 conjecture" holds), and that (c) also holds in a 
stratified sense: the statum Mk-j x SymJ(M) should be totally geodesic in 
the L2 completion M. 

Appendix. 

In this appendix we prove Proposition 3.3. The basic point is to construct 
a harmonic function h that behaves at infinity like the Green's function of 
the laplacian. For concreteness we keep to dimension 4 throughout, but 
analogous results hold in any dimension greater than 2. Before starting we 
make two comments. 
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First, on a Riemannian 4-manifold the Green's function with pole at x 
is a positive harmonic function with a local expansion 

1 G = -j + cilogrH  

in normal coordinates around x. One might guess that the Green's function 
of an asymptotically flat 4-manifold has such an expansion at infinity; if 
so we could dispense with Proposition 3.3 and use the Green's function 
instead. However, there is no such expansion. Instead, the Green's function 
on a asymptotically flat 4-manifold behaves like G ~ j(0)/r2 where 7 —► 1 
at infinity. Thus bounds of the form (3.7) are the best that can be obtained. 

Second, there is a well-developed theory of weighted Sobolev spaces on 
asymptotically flat manifolds, but this is useless for proving Proposition 3.3. 
This is precisely because we are dealing with functions that decay at infinity 
like the Green's function; the Laplacian is not invertible on the weighted 
Sobolev space of such functions. We avoid this difficulty by producing the 
function h by variational methods, and then obtaining a decay rate using 
the maximum principle. 

As in Proposition 3.3, consider domains QR = Q(R, 00) in the asymptotic 
end. Let HR be the Hilbert space obtained by completing CQ

0
(QIR) with 

respect to the norm 
2 

JnR 
m* + (f) do,. 

Lemma A.l.  There exists constants Ci and RQ such that for all R > RQ 

(A.l) ||/||2   < ci /   \df\2 dvg       Vf € HR. 

Proof. The metric is uniformly euclidean on the asymptotic end, so it suffices 
to show (A.l) for the euclidean metric and / E C^ittR). Integrating by 
parts in polar cordinates on QR C M4 

f    ft\   rsdrdu =    [y2dr(r2)drdoj =    f ^drf r3dr<iuj 

Subtracting and rearranging yields (A.l). □ 
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Lemma A.2. For each R > RQ there is a smooth harmonic function h on 
Q, = QR with h = 1/R? on dVt and h = 0(l/r) at infinity. 

Proof. Fix $ e C00(^) with f3 = 1/R2 in a neighborhood of SO and fi(x) = 0 
for |x| > 2R. Then ^ = —A/? is smooth with compact support. The 
Lagrangian 

Hf)  =   f\df\2 - 2(/^> 
Jn 

is a smooth functional on .ff#. By Lemma A.l 

Hf) > Jw? -^V + ^(f)2 > /jMfP-^^-V 
(A.2) >   ^ll/f-Q, 

so L is coercive and bounded below. It is also strictly convex and hence 
weakly lower semicontinuous. By the calculus of variations there is a unique 
absolute minimum /o of L in HR. This minimum is a weak solution of 
the variational equation A/o = ^, so by standard regularity results ([GT] 
Chapter 6, [M] §5.6) lies in C00(fi). Then h = fi+fo is smooth and harmonic 
with h = 1/R2 on d£lR. Finally, at each point x with |a;| > AR the ball 
B = B(x,r/2) lies in the region Jl(2i?,oo) where'/? = 0. We then get a 
pointwise bound by applying [GT] Theorem 9.20 on B to get 

1/2 

and noting that ||/o||2 < 2ciL(/o) + C2 with L(/o) < L(0) = 0 by (A.2) and 
the fact that /o minimizes L. D 

We next use the maximum principle to get a better decay rate on h. First 
note that on an asymptotically flat manifold the formula for the Laplacian 
A = ^-^diy/gg^dj shows that 

(A.3) Ara  = d*dra  =  -a(a + 2)ra-2 + 0a 

where </>a = O^-4) and dcfra =■ 0(ra~5). In particular, |^_2| < C4r~6 and 
l^-sl < csr"7 on n(i?o,oo). 
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Lemma A.3. For each 0 < e < 1 there is a R£ such that for each R > R£ 

the function h obtained in Lemma A.2 satisfies 

(A-4) -?r ^ h £ — 

and if e is sufficiently small then we also have \dh\ < r*"3. 

Proof. Fix e and set Re = max{i?o, v/(c4/6: + c5}* Then the functions 

=   (ITS)  ± eR 

satisfy /+ = /_ = i?-2. Hence foTr>R>R£ (A.3), the decay A = 0(l/r), 
and our choice of i?e give 

A(h-f-)   = -(I + e)Ar-2 + sRAr-s 

< (1 + e)c4r-6 + ei?(-3r-5 + esr-7) 

< r"6(2c4 + ecs - 3ei?2) 

< 0 

Hence h < /_ < (1 + e)/r2 by the maximum principle. Similarly, one finds 
that A(/+ - h) < 0 for the same Rs, so h > f+ > (1 - g:)/r2. 

Now write h = 1/r2 + £. Since /i is harmonic A£ = — Ar~2 = ^> where 
|#| < c6r-

7, and |C| = |/i-l/r2| < e/r2 by (A.4). Applying [GT] Theorems 
6.2 and 6.6 on ft = fi(i2, oo) 

Wo <  Z sup (1^1 + r2|#|)  <  ^(^ + cer"4). 

Now take e < l/4c7 and make ^ larger is necessary to ensure that R^ > 
4C6C7 and that \dr\ > 3/4 on n(R£, oo). Then for all r > 2R, 

m = \dr-2+d^\ > ^-m > i 

D 

Proposition 3.3 follows from Lemma A.3 by fixing e < 1/4 and noting 
that 

-3 

i = \h-W > \h ( 1+'v ' >ih. 
r2     I       r6    —    8 
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