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The classification of tight contact structures on the
3-torus

KANDA YUTAKA

In this paper, we obtain the classification of orientable tight contact
structures on the 3-torus.

0. Introduction.

A contact structure ¢ on a 3-manifold M is called tight if the charac-
teristic foliation of any embedded disc D has no limit cycle, and ( is called
overtwisted if otherwise.

The classification of over twisted contact structures coincides with the
classification of homotopy classes of 2-plane fields. See [E1].

In contrast, the classification of tight contact structures is much moré
complicated. For example, it was known that T° has at least two positive
(resp. negative ) tight contact structures which are not isotopic, but belong
to the same homotopy class. See [G2].

In this paper, we obtain the following results:

(1) Theorem 0.1. For any positive integer n, let &, denote the tight
contact structure on the 3-torus T® defined by the 1-form cos 27nz dz+
sin 2rnzdy. There is no contact diffeomorphism between (T3,¢,) and

(2) Theorem 0.2. Any contact diffeomorphism of (T3,&,) is isotopic to
an automorphism which preserves the I1-form dz. Conversely, any
automorphism of T® which preserves dz is isotopic to a contact diffeo-
morphism with respect to &,.

(3) Theorem 0.3. For any tight contact structure (T3,¢), there is a pos-
itive integer n such that (T3,() is contact diffeomorphic to (T3,&,).

The main tools used in this paper is the theory of characteristic foliations
and convex surfaces developed by Giroux in [G1]. Thanks to this theory,
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we can introduce the cut and paste method to the study of cortact struc-
tures. Fortunately, the tight contact structure on the closed 3-ball B3 is
completely determined by the characteristic foliation induced on 6B3. See
[E2]. Therefore, we can reduce the situation to the case of B% by finding
"good” convex surfaces in the tight contact 3-manifold M and splitting M
along them.

The key in this operation is to pay great attention to simple closed
Legendrian curves. If a simple Legendrian curve s and a contact structure
¢ are given in a small tubular neighborhood of s, there often exists a strict
restriction to extend ¢ to the whole M as a tight contact structure.

This paper is organized as follows:

Section 1,2 and 3 are devoted to the summary of several known results.
Section 4,5 and 6 are devoted to prepare several tools necessary in Section 8.

In Section 7, we introduce the invariant of (T°3,&,). Theorem 0.1 and 0.2
are easily proven by using this invariant.

In Section 8, we prove Theorem 0.3.

Note. The author would like to thank E.Giroux who kindly sent him his
preprint [G2]. E.Giroux informed us that he also obtained the classification
of tight contact structures on the 3-torus and gave lectures on it in the
international symposium in honor of Cerf in May,1994 and in a colloquium
at Cambridge.

Remark. In this paper, for a set A, the symbol #A means the number of
components of A.

1. Contact Structures.

A contact structure ( on a 3-manifold M is a completely non-integrable
2-plane field.

If o denote a locally defined 1-form which defines ¢ (i.e, a¢ = 0 and « is
non-singular.), the 3-form a A da does not vanish anywhere. If one changes
the sign of &, @ Ada does not alter its sign. Therefore, there is the canonical
orientation of M determined by (. We call ¢ positive if this orientation
coincides with the given orientation of M, and negative if otherwise.

We say that ¢ is orientable if ( is orientable as a 2-plane field.
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Contact structures do not have any local invariant. i.e, for any point
x € M ,there is a neighborhood U of z and a injective map & : U — R3
such that ®(z) = 0 and that ®,(¢) coincides with the standard contact
structure of R® defined by the 1-form dz + z dy.

2. Tight Contact Structures.

Definition 2.1. A contact 3-manifold (M, () is tight if the characteristic
foliation of any embedded disc in M has no limit cycle.

Ezample 2.2. (R3,dz + zdy = 0) is a tight contact structure and called the
standard contact structure of R3.

Ezample 2.3. Let us identify S® with SU(2). Take three left invariant vector
fields X,Y, Z on SU(2) such that [X,Y]=Z, [Y,Z] =X, [Z,X] =Y. The
2-plane field & spanned by X and Y is a tight contact structure, which is
called the standard contact structure of S3.

Ezample 2.4. Let us identify the 3-torus T3 with R3/Z3. For any positive
integer n, the contact structure &, on T° defined by the 1-form cos 2rnzdz+
sin 27nzdy is a tight contact structure. See [G2].

Theorem 2.5 [E2]. Two positive tight contact structures on the 3-ball B3
which induce the same characteristic foliation § on B3 are isotopic through
an isotopy which preserves each leaf of §.

3. Characteristic Foliations, Contact Vector Fields
and Convex Surfaces.

We summarize here several known results which we will need in the
following sections.

Definition 3.1. Let F' be an orientable surface. A singular foliation is an
equivalence class of flows on F' where the equivalence relation is as follows:
»Two flows X and Y are equivalent if and only if there is a positive
function f such that X = fY.”
Let [Y] denote the equivalence class which Y belongs to, and we say that
Y generates [Y].

Definition 3.2. Let F' be an oriented surface embedded in an oriented
contact 3-manifold (M, (). Let Y be the flow on F' defined by the equation
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i(Y)w = a|F, where a is a global 1-form which defines ¢, and w is a volume
form on F.

The characteristic foliation § on F induced by ( is the singular foliation
generated by Y. We will denote the characteristic foliation induced on F' by
Ch( (F )

The geometric meaning of characteristic foliations is shown in the fol-
lowing Proposition.

Proposition 3.3 [G1]. Suppose that ch¢(F) is generated by a flow Y.
Then Y is tangent to { and the singularities Y coincide with the tangen-
cies of TF, and (.

Intuitively speaking, the characteristic foliation on F' is the one obtained
by integrating the line field FF N ¢.

Proposition 3.4 [G1]. Let F' be a closed orientable surface and denote by
Fy the submanifold F x {0} of F x R.
Let § be a singular foliation on Fy. Then:

(1) § is induced by a germ of contact structure along Fy if and only if
S is generated by a flow Y whose divergence does not vanish on the
singular set of Y.

(2) Let (1 and (2 be germs of positive contact structures along Fy such that
both {1 and {3 induce the same characteristic foliation § on Fy. Then
there is a germ of diffeomorphism ¥ such that ¥((1) = (2 and such
that U is isotopic to the identity through an isotopy which preserves
each leaf of §.

Definition 3.5. A flow X on (M,() is. contact if its 1-parameter group
% preserves (.

Proposition 3.6 [A],[W]. A contact flow on (M, () is identified with a
section of the bundle TM/(.

Precisely speaking, X, is determined by the 1-jet at x of the correspond-
ing section of TM/(.

Definition 3.7. An orientable surface F' embedded in a contact 3-manifold
(M, ¢) is convez if there is a contact flow X transverse to F.

Theorem 3.8 [G1]. Let F be a closed orientable surface embedded in
(M, (). We can perturb F' by a C*®-small isotopy so that F' is conver.
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If F is a convex surface in (M, (), there is a vertically invariant contact
structure ¢’ on F X R such that the map ¥ : F x R — M defined by
U(z,t) = ®%(z) is a contact embedding with respect to ¢’ and ¢. Thus,
we have only to study vertically invariant contact structures to know the
properties of convex surfaces.

Notice that Proposition 3.4 implies that the convexity of F' is completely
determined by the characteristic foliation on F'.

Definition 3.9. Let § be a singular foliation on a closed orientable surface
F.

We say that an disjoint union of simple closed curves I' C F' divides § if
T satisfies the following properties:

(1) T divides F into two parts F* and F~ such that ' = 0F+ = —9F~.
We call Ft (resp.F'~) the positive (resp. negative) part of F.

(2) ©'h F.
(3) There are a flow Y and a volume form w on F' such that:

1. Y represents §.
2. Lyw>0on Ft and <0on F~.
3. Y|p+ goes outward along OF .

Remark. Any two dividing sets of § can be connected by a 1-parameter
family of dividing sets of §.

Theorem 3.10 [G1]. A closed orientable surface F' embedded in (M, () is
convez if and only if there exist a dividing set I' of ch¢(F').

Precisely speaking, what the above theorem assarts is as follows:

Suppose that there is a contact flow X transverse to F.
Define the characteristic manifold C(X) by C(X) := {z €
M | X, is tangent to {; and X # 0}. C(X) is a submanifold of codimen-
sion 1 of M, intersects F' transversely and oriented canonically by ¢, X and
F. Then chr¢(F) is divided by I'¥.

Conversely, if a given set I' divides ch¢(F), then there is a contact flow
X transverse to F' such that C(X) N F coincides with I' including their
orientations.
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Notation. Let F*% and F~X denote the positive and the negative part
of F' determined by C(X)N F, respectively. We omit X from thesz symbols
when we need not refer to the contact flow X.

Definition 3.11. Let X be a contact flow on (M, ¢) and F' a convex surface
transverse to X.
We say an isotopy H; of F' admits X or is admissible with respect to X
if Hy is transverse to X for all ¢.

Theorem 3.12 [G1]. Let f : F — (M,() be an embedding of a closed
surface such that f(F') be convex. Let I' be a dividing set of the singular
foliation f=Y(ch¢(f(F))) denoted by Fo.

Suppose that another singular foliation §1 be divided by I'. Then there
is an admissible isotopy H; such that:

(1) HO = f:
(2) Hy'(che(Im Hy)) = 1,
(3) H;Y(ImH;)®) =T for all t,

(4) If there is an open set U C F such that Foly = Filu, then we can
choose Hy so that He|ly = flu for all t.

Notice that if X is a contact flow transverse to F', the admissible isotopy
H, with respect to X satisfies that I'm H; C supp(X) for all ¢.

Of course, {H;} themselves cannot be taken C-close to f in many cases
even if supp(X) is contained in a C%small neighborhood of F. But the
following Proposition 3.13 gives us a way of eliminating singularities of char-
acteristic foliations by a C°-small isotopy.

We call a singular point p of a characteristic foliation positive (resp.
negative) if the orientations of T'F and ( coincide (resp. are opposite) at
p. The positivity of a singular point p is equivalent to the condition that
if a flow Y generates the characteristic foliation, div,Y is positive at p.
Notice that any singular point of a characteristic foliation is either positive
or negative.

Proposition 3.13 [G1],[E2]. Let F be a closed orientable surface in
(M,¢) and ch¢(F) generic. Letl be a separatriz whose ends consist of one
positive elliptic point e (i.e. its index = 1) and one positive hyperbolic point
h (i.e. its index = —1). Let U be sufficiently small neighborhood of l in F.
Then we can perturb F with a C°-small isotopy which fizes F — U so that
che(U) is non-singular.
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4. Embedded Tori in Tight Contact 3-Manifolds.

If the ambient contact 3-manifold is tight, the possible forms of the
characteristic foliations on convex surfaces are quite limited.

Proposition 4.1 [G3]. Let F be a closed connected convex surface with
genus(F) > 0 in a tight contact 3-manifold (M, (). Then no component of
F —T is homeomorphic to a disc.

Corollary. If genus(F) = 1, the dividing set consists of even number of,
parallel, non zero homotopic, simple closed curves.

Definition 4.2. Let F' be a convex torus in a tight contact 3-manifold
(M, Q).

F is standard if the characteristic foliation ch¢(F) is such that the pair
(F,ch¢(F)) is diffeomorphic to (R2,Z2, [sin2nnz dz]) for some non zero
integer n, where (z,y) are the natural coordinates of R2. We say that the
simple closed curves corresponding to {0} x %, {#} x St,... {#=2} x §!
are horizontal Legendrian curves on the standard torus F'.
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Figure 4.2.
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Proposition 4.3. Let F' be a convex torus in a tight contact 3-manifold
(M,¢). We can perturb F' by an admissible isotopy so that it is standard.

Proof. It is an easy consequence of Theorem 3.12 and Proposition 4.1. [

5. Legendrian Curves Contained in Convex Surfaces.

Definition 5.1. An embedded curve s in a contact 3-manifold. (M, () is
Legendrian if s is tangent to the plane field (.

Remark 5.2. A leaf of a characteristic foliation is a Legendrian curve.

Let B(s) denote the normal bundle of s in M. Then (|s gives a natural
trivialization of B(s).

Proposition 5.3 [G1], [W]. The isotopy classes of germs of positive con-

tact structure along s are in one to one correspondence with the homotopy
classes of trivializations of B(s).

Lemma 5.4. Let s be a simple closed Legendrian curve in (M, ()
Define V(s) to be the following subset of the set of sections of B(s):

V(s) :={m(X|s) | X is a contact flow defined near s such that X th s}
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where m : TM|s — B(s) is the natural projection. Define G(s) to be the
following subset of the set of smooth functions on s:

G(s) :={f € C®(s)| if fz =0 then dfy # 0}.

Then the defining 1-form a of { gives rise to an one to one map ¥y : V(s) —
G(s) by ¥qo(v) = i(V)c|s where (V) = v.

Sketch of Proof. Let f € G(s) be given. Take an arbitrary extension = f
of f near s. The contact flow — v which satisfies i(= v)a == f is given
by the following equalities:

{ (S va=>f
i(= v)de|c = —d > flc,

which is solved pointwise and uniquely with respect to — v thanks to the
non integrability of (. Then we may put U3 (f) := n(> vls). ]

The following Proposition plays an important role in the Proof of The-
orem 0.3.

Proposition 5.6. Let s be a simple closed Legendrian curve contained in
a convez surface F', and suppose that ¢ is positive. Denote by degc(s, F) the
degree of TF|s to the trivialization given by (|s. Then it follows that.

dege(v) = %#(s NTr).

Proof. Let o be a 1-form which defines (. Take a contact flow X trans-
verse to F. The Lemma above and its proof implies that deg¢(s,F) =
#i(X)als71(0). On the other hand, i(X)als~1(0) = C(X) N F by the very
definition of C(X). Thus, the assartion is proven since FNC(X) is a dividing
set. a

The following three Lemmas are the technical ones needed: in Section 8.

Lemma 5.7. Let s; and so be simple closed Legendrian curves contained
in a closed orientable surface F' embedded in (M, () such that sy h sg C F.
If a regular neighborhood U C F' of s1 U sy is convex, then we can perturb F
by a C*°-small isotopy which fizes s1 U s2 so that F is convez.
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The Lemma above is a slightly extended version of Theorem 3.8 and is
proven in a way similar to it.

Definition 5.8. Let s be a simple closed Legendrian curve contained in
an embedded orientable surface F.

We say F' is standard along s or s is a standard curve on F' if there is
a tubular neighborhood U C F' of s such that the triple (U, s, cii¢(U)) is
diffeomorphic to (S x (=1,1), ST x {0}, [cos 27rnf §y]) for some non zero
integer, where  is the natural coordinate of S*.

Lemma 5.9. Let s be a simple closed Legendrian curve contained in a
convez surface F'. Then there is an embedded annulus A which satisfies the
following properties:

(1) s is contained in the interior of A as a standard curve,
(2) AhF,
3) ANF =s.

Proof. Since F is convex, it is sufficient to consider only the case where
(M, F)is (F x R, F x {0}) and ¢ vertically invariant. Then ( is defined by
a 1-form (3 + udt where 8 € Q}(F), u € QO(F). We may take s X [—1, +1]
as A. a

Lemma 5.10. Let s, F and A be as in Proposition 5.9. Then we can
perturb F by a C°-small admissible isotopy with not destroying the properties
(1),(2) and (8) so that F' is standard along s.

Proof. All germs of positive (resp. negative ) contact structure around FFUA
which induce the same characteristic foliation on F'U A are isotopic if 04
consists of two Legendrian curves. Therefore, we may assume that there is
a contact flow X which is transverse to F' and tangent to A.

Consider the unit circle bundle U(s) associated to the normal bundle of
s. Then X|s, ¢|s and TF|s; determine sections of U(s) denoted by Sx, S¢
and Stp, respectively. We can easily check that:

(1) Sx N Strp =0,

(2) all the intersection points of Sx and S are transverse and have the
same sign.
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Therefore, we can perturb F on the axis s so that:
(1) SxNSrr =10,

(2) all the intersection points of Str and S¢ are transverse and have the
same sign.

Of course, this perturbation admits the contact flow X.

As a result, the singular points of ch¢(F) on s are finite and the signs of
them occur alternately. Thus, if we modify the perturbation adequately in
C'-small manner, ch¢(F) is standard along s. O

6. Vertically Invariant Contact Structures on F' x R
and Contact Flows.

Our aim in this section is to extend the admissible isotopy technique in
Theorem 3.12 so that it is applicable to more generarized situation. Consider
that two closed convex surfaces F1 and F5 intersect each other transversely.
If we apply Theorem 3.12 directly to Fj to deforme chr(F}) in the exterior
of a neighborhood of Fj N Fy, it is possible that the intersection of F} and F;
changes i.e. new intersection points of them may appear. But if there exists
a contact flow X which has the following properties, no problem happens.

(1) supp(X) N Fy = 0.
(2) X th Fy except near Fj N F.
(3) Any orbit of X intersects Fj only once.

Proposition 6.1 and 6.2 assert that, if the intersection consists of either a
dividing set or the union of standard curves of Fi, such a flow X exists.

From now on, We consider contact flows on F' X R equipped with a
vertically invariant contact structure.

Let ¢ be a vertically invariant orientable contact structure on F' x R.
Then it can be defined by a 1-form (3 + udt where 8 € Q(F), u € QO(F).

The non integrability of ¢ is equivalent to the condition that the 2-form
wdf + B A du on F' is nowhere zero.

Denote by Y the flow on F' defined by the equation (Y )w = [, where
w is a volume element on F. We regard Y both as a flow on F and as a
vertically invariant, horizontal flow on F' x R. Notice that ch¢(F X {t}) is
generated by Y for all ¢.
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By an easy calculation, we obtain the identity v df+B8Adu = (u div,Y —
Yu)w. Denote by w the function udiv,Y — Yu. Since w is nowhere zero,
we may assume that w is positive.

Lemma 6.1. For any function ® on F X R, there is the unique contact
flow Wy with respect to { which satisfies the following equation:

(a) i(Ws)(B + udt) = du.
Further, Wg satisfies the following equation:

(b) i(Wa)dt = —g(m) +3.

Proof. Wy is contact if and only if the following equation is satisfied:
€y Lw, (8 + udt)|c = 0.

From (a) and (1), we obtain:

(2) i(Wa)d(B + udt)]c = —d(Bu)|;.

The simultaneous equations (a) and (1) are equivalent to (a) and (2) which
can be solved pointwise and uniquely.

Write W in the form W + b0; where W and b are a horizontal flow and
a function on F' x R, respectively. From (a) we obtain:

(3) Bu = i(W)B + bu.

Applying 2i(Y’) to the both sides of (2) and using the equations 8 = i(Y)w
and df = (div,Y)w, we obtain:

. u?
(W) =—(Yo).
w
Applying it to (3), we obtain:

u {b - (—%(Y@) + <1>)} =0.

Note that if u, = 0 then duy, # 0 because w = udiv,Y — Yu is nowhere
zero. Therefore we obtain:

u
- (V® .
b (Y2)+ &



The Classification of Tight Contact Structures on the 3-Torus 425

a

We regard Fp := F X 0 and F' X R as a modell of a convex surface in a
contact manifold. Then we can easily observe that C(0;) = {(z,t) | u(z) =
0}, F0+’a° = {(z,0) | u(z) > 0} and Fo_’a‘ = {(z,0) | u(z) < 0}.

Let I' denote {z € F | u(z) = 0}.

Proposition 6.2. For any non-negative function f on F such that f~(0)
coincides with T, there is a contact flow W such that:

(1) W wvanishes on a small tubular neighborhood N of T x {0}.
(2) i(W)dt >0 on Fo — FoN N,

(3) supp(W) C S(f), where S(f) := {(z,t) € F x Rl 1t:i< f(z)}.

Proof. We have only to find a function & € Q°(F x R) such that:
(1) supp(®) C S(f),
(2) —%(Y®)+ & >0on Fy— FyNN,
(3) =0o0n N.

Then Lemma 5.1 implies that the contact flow W := W5 (See Lemma 6.1)
satisfies the required properties.

Denote by {I';} the connected components of I'. Take a small tubular
neighborhood U; of T'; C F for each i so that the triple (U;, I, Y|y,) is
diffeomorphic to ((—1,1) x S, {0} x S%,8,) where y € (—1,1) .

Construct a function ® on F so that it satisfies the following properties:

(1) ®=1o0n F — U, where U :=JU;.
i

(2) @>0on F—U', where U’ C U is defined by U'NU; = [—3, 3] x S,

(3 @=0o0nU’,

— <0o
4) 8,(®ly)< ~ 2
( ) y( |Uz) {ZOOII (%,1) x St,
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Then we see:
>0on F-U'

U . — —
——(Y® 0]
w( )+ {=00n U’

Then we may define ¢ by
where h is a function such that
=0if 1t1> sup f
h(t) zeF-U'
> 0 if otherwise .

O

Proposition 6.3. Let s be a simple closed Legendrian curve contained in
Fy. Suppose that Fy is standard along s.
For any non-negative function f on F' whose zero valued set coincides
with w(s) where m F' x R — F'is the natural projection, there exist a contact
flow W such that

(1) ¢«(W)dt is positive on Fy — Fo N N where N C F X R is a sufficiently
small tubular neighborhood of s,

(2) W=0onN,

(3) supp(W) C S(f).
Proof. Take a tubular neighborhood U of w(s) C F so that the triple
(U, n(s),Y|v) is diffeomorphic to ((—1,1)xS*, {0} x S, [cos 2n7 ), where
(z,0) are the coordinates of (—1,1) x S1.

Construct a function @ on F so that it satisfies the following properties:

(1) @=1on F-U,

(2) @|y depends only on z,

(3) ®|y =0 on U’ where U’ := [-3,1] x S,

(4) @>0o0n F-U".
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We may define the function ® on F x R in the same way as in the proof of
Proposition 6.1. Since 0y(®|y) = 0, Y'® is identically zero on Fy. Therefore
the function —%(Y'®)+ @ is positive on Fo—U’ x {0} and vanishes on U’ x R.
O

7. The Invariant of (T73,&,).

We identify T2 with R3/Z3. For each positive integer n, the contact
structure &, is defined by the 1-form oy, := cos2n7mz dz + sin 2nmz dy. Give
the orientation of T3 by the 3-form dx A dy A dz. Then &, is positive.

Definition 7.1. A simple closed curve s in T3 is linear if s is isotopic to a
simple closed curve given as the quotient of a "rational” linein R3 i.e. the one
expressed by (at, bt, ct) where t is the parameter and (a, b, c) € Q*— (0,0, 0).

Definition 7,2. Let s be a linear curve in 7%, and B(s) C T® the normal
bundle of s. The canonical trivialization of B(s) is the one given by TF|,
where F' is an incompressible torus which contains s. This definition is
independent of the choice of F'.

Definition 7.3. Let s be a Legendrian linear curve in (73, (). The twist-
ing number tw(s) is minus the degree of (|s with respect to the canonical
trivialization.

Lemma 7.4. Let s be a Legendrian linear curve. For any positive integer
m there is a Legendrian linear curve s’ C-close to s such that tw(s') =
tw(s) +m.

Proposition 7.5. Let A be an element of SL(3,Z). Let ¥4 denote the
automorphism of T3 induced by A.

If U 4 preserves the 1-form dz , then ¥4 is isotopic to a contact auto-
morphism of (T3,&,) for any positive integer n.

Proof. By the assumption, A is written as follows:

a c e
A=|b d f},
00 6

where a,b,...6 € Z and detA = (ad — bc)6 = 1.
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Denote ¥% (o) by af,. We have only to show that &, and the contact
structure ¢, defined by o, are connected by a smooth 1-parameter family
of contact structures. Then the isotopy between them is easily constructed
by Moser’s method. See [W].

Put Hy; to be a 1-form with the parameter ¢ defined as follows:

Hy; : = (a(t) cos2nméz + b(t) sin 2nmwdz)dx
+ (c(t) cos 2nmdz + d(t) sin 2nmwdz)dy
+ (e(t) cos2nmdz + f(t) sin 2nmdz)dz,

where a(t),b(2), ... f(t) satiesfy

a(0) = a,b(0) =b,... f(0) = f
a(1) =1, d(1) = 6, b(1) = c(1) = e(1) = £(1) = 0.

Then it follows that H, o = o, Hp1 = 6o, and
Hpt NdHy,y = 8(a(t)d(t) — b(t)c(t))dz A dy A dz.

Since SL(2,R) is connected, we can take a(t),b(t),c(t),d(t) so that they
satisfy 6(a(t)d(t) — b(t)c(t)) =1 for all ¢ € [0,1]. Then Hy,; gives a contact
homotopy between &, and &. O

Theorem 7.6. Let s be a Legendrian linear curve in (T3,&,) such that
K[dz], [s])| > 0. Then the following inequality holds:

tw(s) 2 ([dz], [s]) - n,

where (, ) is the Kronecker’s product. Moreover this estimate is best possi-
ble.

Proof. Case 1. [([d2],[s])| =1

Proposition 7.5 implies that it is sufficient to consider only the case where
s is homotopic to the curve so := {0} x {0} x S € T3. Let ¥, : 7% — T3
be the a?-fold covering map defined by ¥,(z,y,z) = (az,ay,z). Notice
that U;1(&,) = & Let = s be one of the lifts of s with respect to ¥,.
Then, since = s is a 1-fold cover of s, it follows that tw(— s) = tw(s).
Therefore we may assume that s is contained in the subset N, defined by
Ne == {(z, 9, 2)| /72 + 32 < €}/Z3, where € < 3.

Now let (S3 = SU(2),&) be the standard contact sphere described in
Ex 2.3.



The Classification of Tight Contact Structures on the 3-Torus 429

Let k£ be a closed orbit of the left invariant vector field X in SU(2).
Then k is a topologically trivial Legendrian knot in $3. There is a tubular
neighborhood NT of k and a contactmorphism © : N, — NT such that
@(80) =k.

Let us get a contradiction by assuming tw(s) < n. By Lemma 7.1, we
may suppose that tw(s) = n — 1. Let s denote ©(s). s' is topologically
trivial knot in S3 and its Thurston-Bennequin invariant is zero i.e. if we
move s' slightly along the left invariant vector field Z to a curve s*, the
linking number of st and st is zero. Therefore there exists a Seifert disc
D of s' such that s' is a limit cycle of chg,(D). But this contradicts the
tightness of (S3, &).

Case 2. [([dz],[s])| > 1

Put b := [([d2], [s])|. Let ®; : T — T3 be a b-fold covering map defined
by ®p(z,y, 2) = (z,y, bz). Notice that @gl(fn) = &pn-

Let = s be one of the lifts of s with respect to ®;. Then it follows that
tw(= s) = tw(s). On the other hand, the result of Case 1 implies that
tw(> s) > bn. O

Corollary 7.7. If f : (T3,&,) — (T3,&m) is a contact diffeomorphism,
then n = m and f is isotopic to an automorphism which preserves the 1-
form dz.

8. The Classification of Tight Contact Structures in T3.

Theorem 8.1. Let { be an orientable positive tight contact structure on
the 3-torus T3 . Then there are a positive number n and an element f of
Diff*(T®) such that f : (T?,{) = (T3,&n) is a contactmorphism.

The following two theorems are necessary for proving Theorem 8.1.

Theorem 8.2. Let G be a solid torus. Let § be a singular foliation on 0G
which satisfies the following properties:

(1) There is a subset ' of 0G which divides §,
(2) #I'=2,

(3) Each component of I' is homotopically equivalent to G in G i.e. T is
the disjoint union of Longitudes.
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If two positive (resp. negative) tight contact structures on G induce the same
characteristic foliation § on 0G, then they are isotopic relative to 0G.

Definition 8.3. Let T be a convex torus in a tight contact 3-manifold.
The torus division number of T denoted by td(T’) is the number 1#(I'r).

By Proposition 4.1, td(T) must be an integer.

Theorem 8.4. Let { be an orientable tight contact structure on the 3-torus
T3. Then there are two incompressible convez tori S and T in T3 such that
the following properties are satisfied:

(1) S th T and the intersection of them consists of a Legendrian simple
closed curve s,

(2) Both S and T are standard,
(3) td(S) =td(T) = tw(s),

(4) Each component of I's and I'r is not homotopic to s.

Proof of Theorem 8.1. Let S and T be as expressed in Theorem 8.4. There
is a germ of contactmorphism f which maps SUT to {(0,y, z)|y,z € S'}U
{(,0,2)|z,z € S} C (T?,&uy(s)). We can take a sufficiently small regular
neighborhood N of SUT so that N is a convex torus and so that the solid
torus T2 — N satisfies the assumptions of Theorem 8.2.

For example, consider an embedded circle C' in the interior of [0, 1] x [0, 1]
such that C is contained in a small regular neighborhood of 9([0, 1] x [0, 1])
and its normal curvature is positive. Embed (0,1) x (0,1) x S! naturally
in (T3,£tw(s)). If we take N so that ON = C x S, N is the required one.
Notice that in this case, the singularities of che,, , (ON) consists of two
disjoint Legendrian simple closed curves.

Therefore f extends to a contactmorphism from the whole T2 to T by
Theorem 8.2. a

Proof of Theorem 8.2. Since dG is convex, there is a contact flow X on
G which is transverse to G and goes inward along 8G. We can take an
embedding ® : T2 x R2% — G so that:

(1) ®(T? x {0}) = 4G,
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(2) 0.(8) = X,
(3) ®@71(¢) is vertically invariant with respect to ;.

If we take a positive function h on T2 approprietly, its graph H :=
{(z, h(z))} € T? x R20 satisfies the following:

(1) H is a standard torus,
(2) ®(the standard Legendrian curves of H) are null homotopic in G.

Let ! be one of the standard Legendrian curves of H. Denote by G’ the set
G — 9({(z,t)|0 < t < h(z)}). Proposition 5.9 implies that we can take a
convex disc D C G’ so that:

(1) ®(1) =DNdG =0dD,
(2) D oG,
(3) D is standard along dD.

Since ( is tight, I'p consists of an arc with its ends on D. We can perturb
D by an admissible isotopy which is the identity near 0D so that ch¢(D)
is in the form shown in Fig.8.1. Since Int G’ — D is homeomorphic to the
open 3-ball, and the germ of contact structure along G’ U D is unique up
to isotopy, (|¢ is also unique up to isotopy by Theorem 2.5.

Obviously, we can choose (', h and ch¢(D) to be an fixed model with
respect to the given §. Therefore the tight contact structure on G is unique
up to isotopy to the given F. O

Proof of Theorem 8.4. Let E be an incompressible torus in (73,¢) and
have the least torus division number of all such tori. We may assume by
Proposition 4.3 that E is standard.

Let s; be a linear Legendrian curve in (T3,() which intersect E only
once and transversely such that it has the least non negative twist number
of all such curves.

Take an incompressible torus F' so that

(1) F contains si,
(2) F intersects E transversely,

(3) ENF consists of a Legendrian curve sg which is one of the standard
Legendrian curves on E.
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Figure 8.1.

Then we can make F' convex in the following way:

Since FE is convex, there is a contact flow X defined only near F so that
X i E. By choosing X generic, we may assume that X is not tangent to
s1. We can perturb F' on the axis sp so that F' th X. Since tw(s1) > 0, we
can extend X to along s; so that X h s; and so that X|;, may give the
canonical trivialization to the normal bundle of s;. We can perturb F' on
the axis s; so that F' th X|s,. Proposition 5.7 implies that we can rnake the
whole F' convex through C'*°-small isotopy.

Case 1) Each component of I'r is not homotopic to so.

We will show that td(E) = td(F'). Since each component of I'r intersects

so at least once by the assumption, we see that tw(sg) = —#(I‘F N so) >

LuTr) = td(F) (See Proposition 5.6.) On the other hand, tw(so) =
% (TeNso) = 3#g = td(E). Remember that td(E) is minimal. Therefore,
td(E) = td(F).

Since FE is standard, Proposition 5.10 implies that F' can be perturbed so
that it is standard at least near sq. Then Proposition 6.3 and Theorem 3.2
implies that the whole F' can be perturbed so that it is standard. Therefore,
E and F satisfy the required properties.

Case 2) Each component of I'r is homotopic to sp.
Step 1) We will show that td(F) = 1.

Let us get a contradiction by assuming td(E) > 1.

Make F standard along sg by Proposition 5.10. There is a component
A of F — sg UT'r such that A is homeomorphic to a disc and such that
#(0ANSso) = #(0ANTF) = 1. We may suppose that A is contained in F+.
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Figure 8.2.
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There is a contact flow X such that:
(1) Xt (F-V),
(2) X vanishes on V,
(3) supp(X)NE =0,

where V' C F denotes a sufficiently small tubular neighborhood of sy. (See
Proposition 6.3.) Denote by p; and p; the two singular points of ch¢(F”)
on sp that neighbors the only one singular point on sp N A. Deform F to
F' by an admissible isotopy with respect to X so that (F')~ contains a
Legendrian arc b which connects p; and ps. See Fig 8.2. Since the number
of leaves of ch¢(F") on 50 1s equal to 2tw(so) = 2td(E) > 4 and only two of
them, denoted by s§ and sZ, intersect A, we can chose a leaf s§ on s such
that 30 NA = (. Denote by k the horizontal Legendrian curve on E which
intersect s.

Denote by s, the closed Legendrian curve with corners bU (so — s U s2).
We can deform it in a C%-small manner to a curve with no corner so that
tw(sp) = tw(sg) — 1.

Take an incompressible torus E’ which contains sy Uk. We can make E’
convex in a neighborhood of sp Uk in the following way.
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Since tw(sp) > 0 and tw(k) = 0, we can take a contact flow X along
so U k so that:

(1) X th (spUk),

(2) X|g and X|i give the canonical trivializations to the normal bundles
of sy and k, respectively.

Perturb E’ so that E’ h X near s Uk. Then, Proposition 5.7 implies that
we can deform the whole E’ to a convex torus.

Since tw(k) = 0, k does not intersect I'gr, Therefore, td(E') =
1#Tp) < 24T Nsh) = tw(sh) = td(E) — 1. But this contradicts the
minimality of td(FE).

Step 2) We will show that td(F') = tw(sy).

Since each component of I'r is homotopic to sp, we obtain td(F) <
t'w(sl).

Let us get a contradiction by assuming td(F') < tw(s;). From Step 1) it
follows that only one component fy of I'r intersects so and #(so N fo) = 2.
Therefore, there is a (not Legendrian in general) simple closed curve s} on
F' such that

(1) ) M T and #(s} N (each component of I'r)) = 1,
(2) s} thsp and #(s] Nsp) =1,

(3) I V C F'is a sufficiently small tubular neighborhood of so, V' N s} is
a Legendrian arc which connects the two component of V.

Proposition 6.3 implies that we can take a contact flow X so that:
(1) XhF -V,
(2) X=00nV’,
(3) supp(X)NE =0,

where V! C V is a tubular neighborhood of sg such that V' < V. By
an admissible isotopy with respect to X, we can perturb F' so that s} is
realized as a Legendrian simple closed curve contained in F'. Then it follows
that tw(s}) = $#(si NTr) = td(F) < tw(s1). But this contradicts the
minimality of tw(s1).

Step 3) Take an incompressible torus G such that
(1) GME,
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(2) GN E consists of a simple closed curve s; such that sg th ¢,
(3) G Fand GNF = sy,
(4) G is standard along s;.

Proposition 5.9 guarantees that we can take G so that it satisfies the property

(4).

We assert that we can perturb G so that it satisfies the following:
(1) G is convex,
(2) One of the components of I coincides with sg,
(3) td(Q) = tw(s1)-

To prove the assertion above, we will divide our argument into the following
four small steps.

Step 1) Take a sufficiently small tubular neighborhood N of E. We can
identify the 5-tuple

(N’ E’ NnF’ NnG? CIN)
with
(St x St x (—¢,€), ST x St x {0}, S* x {0} x (—¢,¢),
{0} x St x (—¢,¢€), cos 2wz dy + sin 2wz dz = 0)

where (z,, 2) are the coordinates of S* x S x (—¢, €).
Take an incompressible torus G’ so that

(1) G'N (T3 = N)=Gn (T3 - N).

(2) G'NN ={(g(2),y,2) | y € S%, z € (—¢,¢€)}, where g is a function such
that

(a) g€ C5°(=¢,6),

(b) gis monotonically increasing (resp. decreasing) on (—3¢,0) (resp.

on (0, %e)),
(c) supp(g) = [~3¢, 3¢,
(d) 9(0) = 5.
See Fig.8.3.

Let A denote the annulus G’ N N. Then ch¢(A) satisfies the following:
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Figure 8.3.

(1) ch¢(A) is induced by a Morse-Smale flow Y,
(2) Y is non singular,

(3) Y h 04,

(4) Y has only two closed orbit.

We can perturb G’ through a C*-small isotopy which is the identity both
in G’ N and in a sufficiently small tubular neighborhood of s; so that it
is convex. Then we can choose s2 as one of the components of I'¢
Step 2) Let us show that td(G’) > tw(s1) + 1.

Assume that td(G’) < tw(s;) + 1. Then we can perturb G’ through
an admmisible isotopy H; so that G’ contain a Legendrian curve | which
satiesfies the following:

(1) I h T, and [ intersects each component of I'er except sz only once,
(2) 1 -1 consists of the two closed orbit in A,

(3) INON consists of the two points expressed by (0, Yo, €) and (0, yo, —€)
for some yo € S! with respect to the coordinates of N,
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Further, the isotopy H; can be taken so that it is the identity in G' N N,
Im(H;) N E = sy and H; }(s2) = s, for all . (See Proposition 6.2.)

Let $; denote the linear Legendrian curve (I —!NN)U{(0, yo, 2) |121< €}.
Then tw($1) = td(G’) — 1 since (s, hardly rotates on §; N N and since the
property (1) above holds. Therefore tw($;1) < tw(s1). But it contradicts the
minimality of tw(s1)

Step 3) Let A; and Ay denote the two components of G’ — I'r such that
both 9A; and A; contain sy. Since td(G') = tw(sy)+1 = td(F)+1 > 2, we
see that A; N Ay = so. We will eliminate all the singularities of ch¢(A1UAy).

We may assume that ch¢(G') is generated by a Morse-Smale flow Y.
Since each A; contains a closed orbit of its characteristic foliation in A; N A,
A; does not have another closed orbit. Further, there is no singular points in
A; N A. We can eliminate all the singular points of ch¢(4;) in the following
way.

We may assume A; positive. Let e be an elliptic point in A;. Of course,
the divergence of Y at e is positive. If any orbit which comes from e does
not reach any hyperbolic points, all such orbits must reach the boundary
component of A; other than sy, which implies that A; is homeomorphic to
a disc and gives rise to a contradiction. Therefore, at least one hyperbolic
point denoted by h is connected with e by a separatrix b. Proposition 3.13
implies that we can eliminate e and h together by perturbing A; only near
eUbUh in a C%—small way. Since the Euler number of A; is zero, ch¢(A;)
can be made non-singular. ch¢(As) can be made non-singular in the same
way.

Step 4) Perturb G so that G N N¢ coincides with G’ N N°.

Let B denote the annulus ((4; UA2) NG)U(NNG). Then ch¢(G) is as

follows:

1) Every leaf of ch¢(B) is an arc which connects the two components of
0B ‘

(2) G — B is a convex annulus such that

1) (G — B) th ch¢(G — B).
2) If Y’ generates ch¢(G — B), Y’ goes inward along one component

of 8(G— B) which bounds the negative part of G— B, and outward
along the other which bounds the positive part of G — B.

Therefore, we can choose the dividing set I'¢ so that sg is one of the com-
ponents of I'g. Then td(G) = td(G') — 1 = tw(s1) since s; intersects each
component of I'g at least once.
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Step 5) Remember that G is standard along s;. Then we can make F
standard along s; by Proposition 5.10. Then the whole G and the whole F
can be made standard by Proposition 6.3 so that they satisfy the required
properties. O
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