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In this paper, we obtain the classification of orientable tight contact 
structures on the 3-torus. 

0. Introduction. 

A contact structure £ on a 3-manifold M is called tight if the charac- 
teristic foliation of any embedded disc D has no limit cycle, and £ is called 
overtwisted if otherwise. 

The classification of over twisted contact structures coincides with the 
classification of homotopy classes of 2-plane fields. See [El]. 

In contrast, the classification of tight contact structures is much mor£ 
complicated. For example, it was known that T3 has at least two positive 
(resp. negative ) tight contact structures which are not isotopic, but belong 
to the same homotopy class. See [G2]. 

In this paper, we obtain the following results: 

(1) Theorem 0.1. For any positive integer n, let £n denote the tight 
contact structure on the 3-torus T3 defined by the 1-form cos 27rnz dx+ 
sm27rnzdy. There is no contact diffeomorphism between (T3,£n) and 

(2) Theorem 0.2. Any contact diffeomorphism of(T3,£n) is isotopic to 
an automorphism which preserves the 1-form dz. Conversely, any 
automorphism ofT3 which preserves dz is isotopic to a contact diffeo- 
morphism with respect to £n. 

(3) Theorem 0.3. For any tight contact structure (T3, (), there is a pos- 
itive integer n such that (T3,£) is contact diffeomorphic to (T3,£n). 

The main tools used in this paper is the theory of characteristic foliations 
and convex surfaces developed by Giroux in [Gl].   Thanks to this theory, 
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we can introduce the cut and paste method to the study of contact struc- 
tures. Fortunately, the tight contact structure on the closed 3-ball B3 is 
completely determined by the characteristic foliation induced on dB3. See 
[E2]. Therefore, we can reduce the situation to the case of B3 by finding 
"good" convex surfaces in the tight contact 3-manifold M and splitting M 
along them. 

The key in this operation is to pay great attention to simple closed 
Legendrian curves. If a simple Legendrian curve s and a contact structure 
£ are given in a small tubular neighborhood of s, there often exists a strict 
restriction to extend £ to the whole M as a tight contact structure. 

This paper is organized as follows: 

Section 1,2 and 3 are devoted to the summary of several known results. 

Section 4,5 and 6 are devoted to prepare several tools necessary in Section 8. 

In Section 7, we introduce the invariant of (T3,£n). Theorem 0.1 and 0.2 
are easily proven by using this invariant. 

In Section 8, we prove Theorem 0.3. 

Note. The author would like to thank E.Giroux who kindly sent him his 
preprint [G2]. E.Giroux informed us that he also obtained the classification 
of tight contact structures on the 3-torus and gave lectures on it in the 
international symposium in honor of Cerf in May, 1994 and in a colloquium 
at Cambridge. 

Remark. In this paper, for a set A, the symbol #A means the number of 
components of A. 

1. Contact Structures. 

A contact structure £ on a 3-manifold M is a completely non-integrable 
2-plane field. 

If a denote a locally defined 1-form which defines £ (i.e, a|^ == 0 and a is 
non-singular.), the 3-form a Ada does not vanish anywhere. If one changes 
the sign of a, a A da does not alter its sign. Therefore, there is the canonical 
orientation of M determined by £• We call £ positive if this orientation 
coincides with the given orientation of M, and negative if otherwise. 

We say that C is orientable if £ is orientable as a 2-plane field. 



The Classification of Tight Contact Structures on the 3-Torus        415 

Contact structures do not have any local invariant, i.e, for any point 
x G M ,there is a neighborhood U of x and a injective map $ : U —► E3 

such that $(a:) = 0 and that $*(C) coincides with the standard contact 
structure of M3 defined by the 1-form dz + xdy. 

2. Tight Contact Structures. 

Definition 2.1. A contact 3-manifold (M, C) is tight if the characteristic 
foliation of any embedded disc in M has no limit cycle. 

Example 2.2. (M , dz + xdy = 0) is a tight contact structure and called the 
standard contact structure of M3. 
Example 2.3. Let us identify 53 with SU(2). Take three left invariant vector 
fields X, y, Z on SU{2) such that [X, y] = Z, [y, Z] = X, [Z, X] = y. The 
2-plane field £o spanned by X and y is a tight contact structure, which is 
called the standard contact structure of 53. 
Example 2.4. Let us identify the 3-torus T3 with E3/Z3. For any positive 
integer n, the contact structure £n on T3 defined by the 1-form cos 2'irnzdx + 
sm27mzdy is a tight contact structure. See [G2]. 

Theorem 2.5 [E2]. Two positive tight contact structures on the 3-ball B3 

which induce the same characteristic foliation $ on dB3 are isotopic through 
an isotopy which preserves each leaf of #. 

3. Characteristic Foliations, Contact Vector Fields 
and Convex Surfaces. 

We summarize here several known results which we will need in the 
following sections. 

Definition 3.1. Let F be an orientable surface. A singular foliation is an 
equivalence class of flows on F where the equivalence relation is as follows: 

"Two flows X and Y are equivalent if and only if there is a positive 
function / such that X = fY" 

Let [Y] denote the equivalence class which Y belongs to, and we say that 
Y generates \Y]. 

Definition 3.2. Let F be an oriented surface embedded in an oriented 
contact 3-manifold (M, £). Let Y be the flow on F defined by the equation 
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i(Y)uj = a\F, where a is a global 1-form which defines £, and UJ is a volume 
form on F. 

The characteristic foliation # on F induced by ^ is the singular foliation 
generated by Y. We will denote the characteristic foliation induced on F by 
ch^F). 

The geometric meaning of characteristic foliations is shown in the fol- 
lowing Proposition. 

Proposition 3.3 [Gl]. Suppose that ch^(F) is generated by a flow Y. 
Then Y is tangent to £ and the singularities Y coincide with the tangen- 
cies ofTFx and £x. 

Intuitively speaking, the characteristic foliation on F is the one obtained 
by integrating the line field F D £. 

Proposition 3.4 [Gl]. Let F be a closed orientable surface and denote by 
FQ the submanifold F x {0} of F x R. 

Let $ be a singular foliation on FQ.  Then: 

(1) # is induced by a germ of contact structure along FQ if and only if 
$ is generated by a flow Y whose divergence does not vanish on the 
singular set ofY. 

(2) Let Ci and £2 be germs of positive contact structures along Fo such that 
both Ci and £2 induce the same characteristic foliation $ on FQ. Then 
there is a germ of diffeomorphism ^ such that ^(Ci) = C2 and such 
that \I/ is isotopic to the identity through an isotopy which preserves 
each leaf of 5. 

Definition 3.5. A flow X on (M, Q is. contact if its 1-parameter group 
<I>^ preserves £. 

Proposition 3.6 [A],[W]. A contact flow on (M, £) is identified with a 
section of the bundle TM/C- 

Precisely speaking; Xx is determined by the 1-jet at x of the correspond- 
ing section ofTM/C 

Definition 3.7. An orientable surface F embedded in a contact 3-manifold 
(M, C) is convex if there is a contact flow X transverse to F. 

Theorem 3.8 [Gl]. Let F be a closed orientable surface embedded in 
(MX)* We can perturb F by a C00-small isotopy so that F is convex. 
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If F is a convex surface in (M, £), there is a vertically invariant contact 
structure C' on F x R such that the map ^ : F x E —> M defined by 
*(x,t) = ^W ^s a contact embedding with respect to £' and £• Thus, 
we have only to study vertically invariant contact structures to know the 
properties of convex surfaces. 

Notice that Proposition 3.4 implies that the convexity of F is completely 
determined by the characteristic foliation on F. 

Definition 3.9. Let J be a singular foliation on a closed orientable surface 
F. 

We say that an disjoint union of simple closed curves Y C F divides $ if 
F satisfies the following properties: 

(1) T divides F into two parts F+ and F" such that T = dF+ = -dF". 
We call F"1" (resp.i71") the positive (resp. negative) part of F. 

(2) r rh ff. 

(3) There are a flow Y and a volume form u on F such that: 

1. Y represents #• 

2. Lyu > 0 on F+ and < 0 on F". 

3. y|ir+ goes outward along dF+. 

Remark.    Any two dividing sets of # can be connected by a 1-parameter 
family of dividing sets of #. 

Theorem 3.10 [Gl]. A closed orientable surface F embedded in (M, Q is 
convex if and only if there exist a dividing set T of ch^(F). 

Precisely speaking, what the above theorem assarts is as follows: 
Suppose that there is a contact flow X transverse to F. 

Define the characteristic manifold C(X) by C(X) := {x G 
M | Xx is tangent to £x and Xx ^ 0}. C{X) is a submanifold of codimen- 
sion 1 of M, intersects F transversely and oriented canonically by £, X and 
F. Then c/irc(F) is divided by r£. 

Conversely, if a given set F divides c/i^(F), then there is a contact flow 
X transverse to F such that C{X) D F coincides with F including their 
orientations. 
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Notation. Let F+>x and F~>x denote the positive and the negative part 
of F determined by C(X) fl F, respectively. We omit X from these symbols 
when we need not refer to the contact flow X. 

Definition 3.11. Let X be a contact flow on (M, £) and F a convex surface 
transverse to X. 

We say an isotopy Ht of F admits X or is admissible with respect to X 
if Ht is transverse to X for all t. 

Theorem 3.12 [Gl]. Let f : F —> (M, C) be an embedding of a closed 
surface such that f(F) be convex. Let T be a dividing set of the singular 
foliation f~1(ch^(f(F))) denoted by $Q. 

Suppose that another singular foliation #1 be divided by F. Then there 
is an admissible isotopy Ht such that: 

(1) Ho = /, 

(2) if1-
1(c/ic(7mi?i))-yi; 

(3) Htl{{ImHtf) = r for all t, 

(4) // there is an open set U C F such that g^lt/ = Sllc/; then we can 
choose Ht so that Ht\u — f\u for all t. 

Notice that if X is a contact flow transverse to F, the admissible isotopy 
Ht with respect to X satisfies that ImHt C supp(X) for all t. 

Of course, {Ht} themselves cannot be taken C0-close to / in many cases 
even if supp(X) is contained in a C0-small neighborhood of F. But the 
following Proposition 3.13 gives us a way of eliminating singularities of char- 
acteristic foliations by a C0-small isotopy. 

We call a singular point p of a characteristic foliation positive (resp. 
negative) if the orientations of TF and ( coincide (resp. are opposite) at 
p. The positivity of a singular point p is equivalent to the condition that 
if a flow Y generates the characteristic foliation, div^Y is positive at p. 
Notice that any singular point of a characteristic foliation is either positive 
or negative. 

Proposition 3.13 [G1],[E2]. Let F be a closed orientable surface in 
(M, C) and ch^(F) generic. Let I be a separatrix whose ends consist of one 
positive elliptic point e (i. e. its index = 1) and one positive hyperbolic point 
h (i.e. its index = —1). Let U be sufficiently small neighborhood of I in F. 
Then we can perturb F with a C0-small isotopy which fixes F — U so that 
ch((U) is non-singular. 
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Figure 4.1. 

F 
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4. Embedded Tori in Tight Contact 3-Manifolds. 

If the ambient contact 3-manifold is tight, the possible forms of the 
characteristic foliations on convex surfaces are quite limited. 

Proposition 4.1 [G3]. Let F be a closed connected convex surface with 
genus(F) > 0 in a tight contact 3-manifold (M,£). Then no component of 
F — F is homeomorphic to a disc. 

Corollary. If genus(F) = 1, the dividing set consists of even number of 
parallel, non zero homotopic, simple closed curves. 

Definition 4.2. Let F be a convex torus in a tight contact 3-manifold 
(M,C). 

F is standard if the characteristic foliation ch^(F) is such that the pair 
(F,ch^(F)) is diffeomorphic to (l^/Z2, [sin2n7rx9x]) for some non zero 
integer n, where (x, y) are the natural coordinates of R2. We say that the 
simple closed curves corresponding to {0} x 51, {^} x 51,... {^p} x S1 

are horizontal Legendrian curves on the standard torus F. 
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Figure 4.2. 
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Proposition 4.3. Let F be a convex torus in a tight contact 3-manifold 
(M, £).  We can perturb F by an admissible isotopy so that it is standard. 

Proof. It is an easy consequence of Theorem 3.12 and Proposition 4.1.     □ 

5. Legendrian Curves Contained in Convex Surfaces. 

Definition 5.1. An embedded curve 5 in a contact 3-manifold (M,C) is 
Legendrian if s is tangent to the plane field £• 

Remark 5.2. A leaf of a characteristic foliation is a Legendrian curve. 

Let JB(S) denote the normal bundle of 5 in M. Then (\s gives, a natural 
trivialization of B(s). 

Proposition 5.3 [Gl], [W]. The isotopy classes of germs of positive con- 
tact structure along s are in one to one correspondence with the homotopy 
classes of trivializations of B(s). 

Lemma 5.4. Let s be a simple closed Legendrian curve in (M, Q 
Define V(s) to be the following subset of the set of sections of B(s): 

V(s) := {7T(X\S) I X is a contact flow defined near s such that X rh s} 
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where TT : TM\S —► B(s) is the natural projection. Define G(s) to be the 
following subset of the set of smooth functions on s: 

G(s) := {/ e C^is) |   */ fx = 0 then dfx + 0}. 

Then the defining 1-form otofC, gives rise to an one to one map ^a : V(s) —> 
G{s) by ^a{v) = i{y)oi\s where ^(y) — v. 

Sketch of Proof. Let / G G{s) be given. Take an arbitrary extension -^ / 
of / near s. The contact flow -^ v which satisfies i(-^ v)a =-^ / is given 
by the following equalities: 

which is solved pointwise and uniquely with respect to -^ v thanks to the 
non integrability of £. Then we may put ^^1(/) := TT^ V\S). D 

The following Proposition plays an important role in the Proof of The- 
orem 0.3. 

Proposition 5.6. Let s be a simple closed Legendrian curve contained in 
a convex surface F, and suppose that £ is positive. Denote by degfa, F) the 
degree ofTF\s to the trivialization given by £|s. Then it follows that 

deg<:(v) = -#(snrF). 

Proof. Let a be a 1-form which defines £• Take a contact flow X trans- 
verse to F. The Lemma above and its proof implies that deg^s^F) = 
#i(X)a|r1(0). On the other hand, i(X)a|s"

1(0) = C{X) n F by the very 
definition of C(X). Thus, the assartion is proven since FnC(X) is a dividing 
set. □ 

The following three Lemmas are the technical ones needed! in Section 8. 

Lemma 5.7. Let si and S2 be simple closed Legendrian curves contained 
in a closed orientable surface F embedded in (M, Q such that si iti 52 C F. 
If a regular neighborhood U C F of si U 52 is conveXj then we can perturb F 
by a C00-small isotopy which fixes si U 52 so that F is convex. 
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The Lemma above is a slightly extended version of Theorem 3.8 and is 
proven in a way similar to it. 

Definition 5.8. Let s be a simple closed Legendrian curve contained in 
an embedded orientable surface F. 

We say F is standard along s or s is a standard curve on F if there is 
a tubular neighborhood U C F of s such that the triple ([/, 5, ch^(U)) is 
diffeomorphic to (S1 x (—1,1), S1 x {0}, [cos27rn0<?0]) for some non zero 
integer, where 6 is the natural coordinate of 51. 

Lemma 5.9. Let s be a simple closed Legendrian curve contained in a 
convex surface F. Then there is an embedded annulus A which satisfies the 
following properties: 

(1) s is contained in the interior of A as a standard curve, 

(2) A rh F, 

(3) AnF = s. 

Proof Since F is convex, it is sufficient to consider only the case where 
(M,JP) is (F x R, F x {0}) and C vertically invariant. Then £ is defined by 
a 1-form 0 + udt where /? e ^(F), u e n0(F). We may take s x [-1, +1] 
as A. □ 

Lemma 5.10. Let s, F and A be as in Proposition 5.9. Then we can 
perturb F by a C®-small admissible isotopy with not destroying the properties 
(1),(2) and (3) so that F is standard along s. 

Proof. All germs of positive (resp. negative ) contact structure around FUA 
which induce the same characteristic foliation on F U A are isotopic if dA 
consists of two Legendrian curves. Therefore, we may assume that there is 
a contact flow X which is transverse to F and tangent to A. 

Consider the unit circle bundle U{s) associated to the normal bundle of 
s. Then X\si £|5 and TF\S determine sections of U(s) denoted by 5x, S^ 
and STFI respectively. We can easily check that: 

(1) Sx n STF = 0, 

(2) all the intersection points of Sx and Sf are transverse and have the 
same sign. 
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Therefore, we can perturb F on the axis s so that: 

(1) Sx n STF = 0, 

(2) all the intersection points of STF and S^ are transverse and have the 
same sign. 

Of course, this perturbation admits the contact flow X. 
As a result, the singular points of ch^(F) on s are finite and the signs of 

them occur alternately. Thus, if we modify the perturbation adequately in 
C1-small manner, ch^(F) is standard along s. □ 

6. Vertically Invariant Contact Structures on F x R 
and Contact Flows. 

Our aim in this section is to extend the admissible isotopy technique in 
Theorem 3.12 so that it is applicable to more generarized situation. Consider 
that two closed convex surfaces Fi and F2 intersect each other transversely. 
If we apply Theorem 3.12 directly to Fi to deforme chr(Fi) in the exterior 
of a neighborhood of Fi fli^, it is possible that the intersection of Fi and F2 
changes i.e. new intersection points of them may appear. But if there exists 
a contact flow X which has the following properties, no problem happens. 

(1) supp(X) fl F2 = 0. 

(2) X (\)Fi except near Fi fl F2. 

(3) Any orbit of X intersects Fi only once. 

Proposition 6.1 and 6.2 assert that, if the intersection consists of either a 
dividing set or the union of standard curves of Fi, such a flow X exists. 

Prom now on, We consider contact flows on F x M equipped with a 
vertically invariant contact structure. 

Let C be a vertically invariant orientable contact structure on F x R. 
Then it can be defined by a 1-form /? + udt where /? G fi^-F), u G ft0(F). 

The non integrability of £ is equivalent to the condition that the 2-form 
u d/3 + (3 A du on F is nowhere zero. 

Denote by Y the flow on F defined by the equation i(Y)u) = /?, where 
a; is a volume element on F. We regard Y both as a flow on F and as a 
vertically invariant, horizontal flow on F x R. Notice that ch^(F x {£}) is 
generated by Y for all t. 
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By an easy calculation, we obtain the identity ud(3+/3 A du = (u div^Y— 
YU)UJ. Denote by w the function udiv^Y — Yu. Since w is nowhere zero, 
we may assume that w is positive. 

Lemma 6.1. For any function $ on F x M; there is the unique contact 
flow W$ with respect to £ which satisfies the following equation: 

(a) i{W<s>)(p + udt) = $u. 

Further, W$ satisfies the following equation: 

(b) i(W<!>)dt=:--(Y$) + $. 
w 

Proof. Wfj, is contact if and only if the following equation is satisfied: 

(1) Lw<f)((3 + udt)\c = 0. 

Prom (a) and (1), we obtain: 

(2) i(W^)d(/3 + udt)^ = -d(<f>u)\c. 

The simultaneous equations (a) and (1) are equivalent to (a) and (2) which 
can be solved pointwise and uniquely. 

Write W$ in the form W + bdt where W and b are a horizontal flow and 
a function on F x E, respectively. Prom (a) we obtain: 

(3) $u = i(W)P + bu. 

Applying ^ji(Y) to the both sides of (2) and using the equations /? = i(Y)uj 
and dp = (divJY)^ we obtain: 

i(W)P = — (y*). 
w 

Applying it to (3), we obtain: 

u{b-(-^(Y$) + *)} = 0. 

Note that if ux = 0 then dux ^ 0 because w = u div^Y — Yu is nowhere 
zero. Therefore we obtain: 

6 = --(y$) + $. 
w 
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□ 
We regard FQ := F x 0 and F x R as a modell of a convex surface in a 

contact manifold. Then we can easily observe that C(dt) = {(#,£) | u(x) = 
0}, F+A = {(x,0) | u(x) > 0} and F0"'at = {(x,0) | ^(x) < 0}. 

Let T denote {a: G F | ^(x) = 0}. 

Proposition 6.2. For any non-negative function f on F such that /~1(0) 
coincides with F, there is a contact flow W such that: 

(1) W vanishes on a small tubular neighborhood NofTx {0}. 

(2) i(W)dt > 0 on FQ - Fo n N, 

(3) supp(W) C S(f), where S(f) := {(x,t) <E F x R| iti< /(x)}. 

Proo/. We have only to find a function $ G n0(F x R) such that: 

(1) 8upp{*) C S(/), 

(2) -^(y$) + $>OonJPo-FoniV, 

(3) $ = 0 on N. 

Then Lemma 5.1 implies that the contact flow W := W$ (See Lemma 6.1) 
satisfies the required properties. 

Denote by {F;} the connected components of F. Take a small tubular 
neighborhood Ui of F^ C F for each i so that the triple (UijTijYlui) is 
diffeomorphic to ((-1,1) x 51, {0} x S1, dy) where y G (-1,1) . 

Construct a function $ on F so that it satisfies the following properties: 

(1) ¥ = 1 on F - U, where U :=\jUi. 
i 

(2) ¥ > 0 on F- U', where 17' c tf is defined by U'nUi= [-|, |] x 51, 

(3) $ = 0 on U', 

(4)^k){^on(71:-«;sl 
I > 0 on (f,l) x S1. 
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Then we see: 

Then we may define $ by 

$(a:,t) :=¥(x)-/i(*), 

where /i is a function such that 

{=0if iti>    sup   / 

> 0 if otherwise . 

□ 

Proposition 6.3. Let s be a simple closed Legendrian curve contained in 
FQ. Suppose that FQ is standard along s. 

For any non-negative function f on F whose zero valued set coincides 
with 7r(s) where ir F x M —» Fis the natural projection, there exist a contact 
flow W such that 

(1) i(W)dt is positive on FQ — FQDN where N C F x R is a sufficiently 
small tubular neighborhood of s, 

(2) W = 0 on N, 

(3) supp(W)cS(f). 

Proof. Take a tubular neighborhood U of 7r(s) C JP SO that the triple 
(17,7r(s), y 1^) is diffeomorphic to ((-1,1) x-51, {0}xS1, [cos2n7rl98^]}, where 
(x, ^) are the coordinates of (—1,1) x 51. 

Construct a function $ on F so that it satisfies the following properties: 

(1) ¥ = 1 on F - U, 

(2) $|j7 depends only on x} 

(3) $|^ = 0 on Uf where U' := [-|, £] x 51, 

(4) ¥ > 0 on F - U1. 
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We may define the function $ on F x E in the same way as in the proof of 
Proposition 6.1. Since dy($\u) = 0, Y$ is identically zero on FQ. Therefore 
the function -—(Yd?) + $ is positive on FQ — U' x {0} and vanishes on Ul x R. 
D 

7. The Invariant of (T3,^). 

We identify T3 with R3/Z3. For each positive integer n, the contact 
structure £n is defined by the 1-form an := CQs2n'Kzdx + s\.Ti2mxzdy. Give 
the orientation of T3 by the 3-form dx A dy A cb. Then ^n is positive. 

Definition 7.1. A simple closed curve 5 in T3 is linear if s is isotopic to a 
simple closed curve given as the quotient of a "rational" line in M3 i.e. the one 
expressed by (at, 6t, cb) where t is the parameter and (a, 6, c) G Q3 — (0,0,0). 

Definition 7,2. Let 5 be a linear curve in T3, and B(s) C T3 the normal 
bundle of s. The canonical trivialization of B(s) is the one given by TF\S 

where F is an incompressible torus which contains s. This definition is 
independent of the choice of F. 

Definition 7.3. Let s be a Legendrian linear curve in (T3,^)- The twist- 
ing number tw(s) is minus the degree of C|s with respect to the canonical 
trivialization. 

Lemma 7.4. Let s be a Legendrian linear curve. For any positive integer 
m there is a Legendrian linear curve s' C0-close to s such that tw(sf) = 
tw(s) + m. 

Proposition 7.5. Let A be an element o/5L(3,Z). Let ^A denote the 
automorphism of T3 induced by A. 

If ^A preserves the 1-form dz , then ^A is isotopic to a contact auto- 
morphism of (T3, £n) for any positive integer n. 

Proof By the assumption, A is written as follows: 

A = 

where a, 6,... 6 E Z and detA = (ad — bc)6 = 1. 
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Denote \I>^(a:n) by a'n. We have only to show that £n and the contact 
structure gn defined by a!n are connected by a smooth 1-parameter family 
of contact structures. Then the isotopy between them is easily constructed 
by Moser's method. See [W]. 

Put Hnit to be a 1-form with the parameter t defined as follows: 

Hn,t : = (&(£) cos 2n7r6z + b(t) sin 2mr6z)dx 

+ (c(t) cos 2n'K6z + d(t) sin 2m:6z)dy 

+ {e(t) cos 2n/K6z + /(£) sin 2n'ir8z)dz, 

where a(i), 6(t),... f(t) satiesfy 

a(0) = a,6(0) = 6,.../(0) = / 

a(l) = 1, d(l) = (5, 6(1) = c(l) = c(l) = /(I) = 0. 

Then it follows that Hnio — 0(!n, Hnii = 6an and 

Hn9t A dHnit = 6(a(t)d(t) - b(t)c(t))dx AdyA dz. 

Since ^(2^) is connected, we can take a(t),6(t),c(t),d(i) so that they 
satisfy 6(a(t)d(t) — b(t)c(t)) = 1 for all t G [0,1]. Then Hntt gives a, contact 
homotopy between £n and £^. D 

Theorem 7.6. Let s be a Legendrian linear curve in (T3,£n) such that 
\([dz], [s])\ > 0.  Then the following inequality holds: 

tw(s)>\([dz],[s])\'n, 

where ( , ) is the Kronecker's product. Moreover this estimate is best possi- 
ble. 

Proof. Case 1. |(H,[s])| = l 
Proposition 7.5 implies that it is sufficient to consider only the case where 

s is homotopic to the curve SQ := {0} x {0} x S1 G T3. Let *a : T3 -> T3 

be the a2-fold covering map defined by ^(o;, y, ^) = (ax,ay,z). Notice 
that \I/~ 1(^n) = £n Let ^ s be one of the lifts of s with respect to ^fa. 
Then, since —> s is a 1-fold cover of 5, it follows that tw(^> s) == tw(s). 
Therefore we may assume that s is contained in the subset N€ defined by 
Ne := {(z,y, z)\y/x2 + y2 < e}/Z3, where e < i. 

Now let (iS3 = iS,?7(2),^o) be the standard contact sphere described in 
Ex 2.3. 
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Let k be a closed orbit of the left invariant vector field X in SU(2). 
Then k is a topologically trivial Legendrian knot in 53. There is a tubular 
neighborhood N^ of k and a contactmorphism 0 : Ne —► N^ such that 
e(so) = k. 

Let us get a contradiction by assuming tw(s) < n. By Lemma 7.1, we 
may suppose that tw(s) = n — 1. Let 5^ denote @(s). s^ is topologically 
trivial knot in S3 and its Thurston-Bennequin invariant is zero i.e. if we 
move sT slightly along the left invariant vector field Z to a curve s*, the 
linking number of s^ and s* is zero. Therefore there exists a Seifert disc 
D of s* such that s^ is a limit cycle of ch^Q(D). But this contradicts the 
tightness of (S3,£o). 

Case 2. |([<H [s])| > 1 
Put b := \([dz], [s})\. Let $6 : T3 —> T3 be a 6-fold covering map defined 

by $&(£, y, ^) = (x, y, bz). Notice that ^^H^n) = €bn- 
Let -^ 5 be one of the lifts of s with respect to <!>&. Then it follows that 

tw(^+ s) = tw(s). On the other hand, the result of Case 1 implies that 
twl^ s) > bn. D 

Corollary 7.7, /// : (r3,^n) —> (T3,£m) is a contact diffeomorphism, 
then n = m and f is isotopic to an automorphism which preserves the 1- 
form dz. 

8. The Classification of Tight Contact Structures in T3. 

Theorem 8.1. Let C, be an orientable positive tight contact structure on 
the 3-torus T3 . Then there are a positive number n and an element f of 
Diff+(T3) such that f : (T3,C) -» (T3,£n) is a contactmorphism. 

The following two theorems are necessary for proving Theorem 8.1. 

Theorem 8.2. Let G be a solidr torus. Let $ be a singular foliation on dG 
which satisfies the following properties: 

(1)  There is a subset T of dG which divides $, 

(2)#r = 2, 

(3) Each component ofY is homotopically equivalent to G in G i.e. T is 
the disjoint union of Longitudes. 
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If two positive (resp. negative) tight contact structures on G induce the same 
characteristic foliation $ on dG, then they are isotopic relative to dG. 

Definition 8.3. Let T be a convex torus in a tight contact 3-inanifold. 
The torus division number of T denoted by td(T) is the number ^#(IY). 

By Proposition 4.1, td{T) must be an integer. 

Theorem 8.4. Let £ be an orientable tight contact structure on the 3-torus 
T3. Then there are two incompressible convex tori S and T in T3 such that 
the following properties are satisfied: 

(1) S fh T and the intersection of them consists of a Legendrian simple 
closed curve s, 

(2) Both S and T are standard, 

(3) td(S) = td(T) = tw(s), 

(4) Each component ofTs and IY is not homotopic to s. 

Proof of Theorem 8.1. Let S and T be as expressed in Theorem 8.4. There 
is a germ of contactmorphism / which maps SUT to {(0,y,^)|y, z G S1} U 
{(a;,0,;s)|x,3 e S1} C (T3,£tw(s)). We can take a sufficiently small regular 
neighborhood iV of S U T so that dN is a convex torus and so that fche solid 
torus JT

3
 — N satisfies the assumptions of Theorem 8.2. 

For example, consider an embedded circle C in the interior of [0,1] x [0,1] 
such that C is contained in a small regular neighborhood of 9([0,1] x [0,1]) 
and its normal curvature is positive. Embed (0,1) x (0,1) x S1 naturally 
in (r3,^(a)). If we take N so that ON = C x 51, N is the required one. 
Notice that in this case, the singularities of ch^.JdN) consists of two 
disjoint Legendrian simple closed curves. 

Therefore / extends to a contactmorphism from the whole T3 to T3 by 
Theorem 8.2. □ 

Proof of Theorem 8.2. Since dG is convex, there is a contact flew X on 
G which is transverse to dG and goes inward along dG. We can take an 
embedding $ : T2 x E^0 -* G so that: 

(1) $(T2 x {0}) = dG, 
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(2) $*(dt)=X, 

(3) $~1(^) is vertically invariant with respect to dt. 

If we take a positive function h on T2 approprietly, its graph H := 
{{x, h(x))} G T2 x E^0 satisfies the following: 

(1) H is a standard torus, 

(2) $(the standard Legendrian curves of H) are null homotopic in G. 

Let I be one of the standard Legendrian curves of H. Denote by G' the set 
G — ^({(x^lO < t < h(x)}). Proposition 5.9 implies that we can take a 
convex disc D C Gf so that: 

(1) <f>(l) = DndG' = dD, 

(2) D rh dG', 

(3) D is standard along dD. 

Since £ is tight, Tp consists of an arc with its ends on dD. We can perturb 
D by an admissible isotopy which is the identity near dD so that ch^(D) 
is in the form shown in Fig.8.1. Since IntG' — D is homeomorphic to the 
open 3-ball, and the germ of contact structure along dG/ U D is unique up 
to isotopy, (\G' is also unique up to isotopy by Theorem 2.5. 

Obviously, we can choose £', h and ch^(D) to be an fixed model with 
respect to the given 5- Therefore the tight contact structure on G is unique 
up to isotopy to the given #. □ 

Proof of Theorem 8.4. Let E be an incompressible torus in (T3,£) and 
have the least torus division number of all such tori. We may assume by 
Proposition 4.3 that E is standard. 

Let si be a linear Legendrian curve in (T3,£) which intersect E only 
once and transversely such that it has the least non negative twist number 
of all such curves. 

Take an incompressible torus F so that 

(1) F contains si, 

(2) F intersects E transversely, 

(3) EOF consists of a Legendrian curve so which is one of the standard 
Legendrian curves on E. 
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Figure 8.1. 

Then we can make F convex in the following way: 
Since E is convex, there is a contact flow X defined only near 17 so that 

X rh E. By choosing X generic, we may assume that X is not tangent to 
si. We can perturb F on the axis SQ SO that F (h X. Since tw(si) > 0, we 
can extend X to along si so that X rh si and so that -X'|Sl may give the 
canonical trivialization to the normal bundle of si. We can perturb F on 
the axis si so that F ft\ X\Sl. Proposition 5.7 implies that we can make the 
whole F convex through C^-small isotopy. 

Case 1) Each component of Tp is not homotopic to SQ- 

We will show that td(E) = td(F). Since each component of Fp intersects 
5o at least once by the assumption, we see that tw(so) = 5#(IV H so) > 
i#(IV) ^^ td(F). (See Proposition 5.6.) On the other hand, tw(so) = 
5#(rj5n5o) = ^#TE = td(E). Remember that td(E) is minimal. Therefore, 
td(E) = td(F). 

Since E is standard, Proposition 5.10 implies that F can be perturbed so 
that it is standard at least near SQ. Then Proposition 6.3 and Theorem 3.2 
implies that the whole F can be perturbed so that it is standard. Therefore, 
E and F satisfy the required properties. 

Case 2) Each component of r^ is homotopic to SQ. 

Step 1) We will show that td(E) = 1. 
Let us get a contradiction by assuming td(E) > 1. 
Make F standard along SQ by Proposition 5.10. There is a component 

A of F — SQ U Tp such that A is homeomorphic to a disc and such that 
#(dAr)so) = #(dAnTF) = 1. We may suppose that A is contained in F+. 
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Figure 8.2. 

-fke o/t-o b 

There is a contact flow X such that: 

(1) X(h(F-V), 

(2) X vanishes on V, 

(3) supp(X)nE = Q, 

where V C F denotes a sufficiently small tubular neighborhood of SQ. (See 
Proposition 6.3.) Denote by pi and p2 the two singular points of ch^(Ff) 
on 5o that neighbors the only one singular point on SQ H A. Deform F to 
F' by an admissible isotopy with respect to X so that (F7)"" contains a 
Legendrian arc b which connects pi and p2- See Fig 8.2; Since the number 
of leaves of c/i^(F/) on SQ is equal to 2tw(so) = 2td(E) > 4 and only two of 
them, denoted by sj and SQ, intersect A, we can chose a leaf s® on SQ such 
that 5o fl A = 0. Denote by k the horizontal Legendrian curve on E which 
intersect 58. 

Denote by SQ the closed Legendrian curve with corners b U (SQ — SQ..U 5Q). 

We can deform it in a C0-small manner to a curve with no corner so that 
tw(sQ) = tw{so) — 1. 

Take an incompressible torus F' which contains SQ U fc. We can make Ef 

convex in a neighborhood of SQ U k in the following way. 
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Since tw(so) > 0 and tw(k) = 0, we can take a contact flow X along 
sf

0 U k so that: 

(1) Xfh^Ufc), 

(2) X|s/ and Xj^ give the canonical trivializations to the normal bundles 
of SQ and fe, respectively. 

Perturb E' so that E' (\) X near SQ U k. Then, Proposition 5.7 implies that 
we can deform the whole Ef to a convex torus. 

Since tw(k)   =   0,   k does not  intersect  Fg;/,   Therefore,   td(El)   = 

^{TE*) < 5#(r£?/ n ^J = M5o) = id(s) - 1- Bllt this contradicts the 
minimality of td(E). 

Step 2) We will show that td(F) = twfa). 
Since each component of r^ is homotopic to 5o, we obtain td(F) < 

tw(si). 
Let us get a contradiction by assuming td(F) < tw(si). Prom Step 1) it 

follows that only one component /o of Tp intersects so and #(so H /o) = 2. 
Therefore, there is a (not Legendrian in general) simple closed curve s^ on 
F such that 

(1) Si ft) PF and #(sj_ fl (each component of Pi?)) = 1, 

(2) s'i rh so and #(51 D SQ) = 1, 

(3) If V C F is a sufficiently small tubular neighborhood of SQ, V fl s^ is 
a Legendrian arc which connects the two component of dV. 

Proposition 6.3 implies that we can take a contact flow X so that;: 

(l)XrhF-F, 

(2) X = 0 on V7, 

(3) supp(X) H E = 0, 

where V7 C V is a tubular neighborhood of SQ such that V7 CI V. By 
an admissible isotopy with respect to X, we can perturb F so that s^ is 
realized as a Legendrian simple closed curve contained in F. Then it follows 
that tw(s'1) = ^#(si HPF) = td(F) < tw(si). But this contradicts the 
minimality of tiv(si). 

Step 3) Take an incompressible torus G such that 

(1) G(\\E, 
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(2) G n E consists of a simple closed curve 52 such that 52 iti C, 

(3) GrhFandGnF = 5i, 

(4) G is standard along si. 

Proposition 5.9 guarantees that we can take G so that it satisfies the property 

(4). 
We assert that we can perturb G so that it satisfies the following: 

(1) G is convex, 

(2) One of the components of YQ coincides with 52, 

(3) td{G) = tw(si). 

To prove the assertion above, we will divide our argument into the following 
four small steps. 

Step 1) Take a sufficiently small tubular neighborhood N of E.   We can 
identify the 5-tuple 

(AT, E, NDF, ATflG, Ck) 

with 

(S1 x 51 x (-e, e), S1 x S1 x {0}, S1 x {0} x (-c, c), 

{0} x S1 x (—e, e), cos 2'irx dy + sin 2'KX dz = 0) 

where (a;, y, z) are the coordinates of S1 x S1 x (—e, e). 
Take an incompressible torus Gf so that 

(i) G/n(r3-Ar) = Gn(T3-iV). 

(2) G/ n iV = {(0(2), £/> ^ I V € 'S,1> ^ 6 (—e, e)}, where ^ is a function such 
that 

(a) seCH-cc), 
(b) 5 is monotonically increasing (resp. decreasing) on (—|e,0) (resp. 

on (0, ie)), 

(c) supp(9)= [-5e'5e]' 
(d) 5(0) = i. 

See Fig.8.3. 
Let A denote the annulus G' D JV. Then c/i^(vl) satisfies the following: 
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Figure 8.3. 

(1) ch^(A) is induced by a Morse-Smale flow V, 

(2) Y is non singular, 

(3) Y fh dA, 

(4) Y has only two closed orbit. 

We can perturb G' through a C^-small isotopy which is the identity both 
in G' n iV and in a sufficiently small tubular neighborhood of si so that it 
is convex. Then we can choose 52 as one of the components of TQ/ 

Step 2) Let us show that td{G') > tw(si) + 1. 
Assume that td{Gl) < tw{si) + 1. Then we can perturb Gf through 

an admmisible isotopy Ht so that G1 contain a Legendrian curve I which 
satiesfies the following: 

(1) I rh FGJ/, and I intersects each component of FG?' except S2 only once, 

(2) 1 — I consists of the two closed orbit in A, 

(3) / PI diV consists of the two points expressed by (0, yo? e) and (0, yo> — c) 
for some yo € Sl with respect to the coordinates of JV, 
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Further, the isotopy Ht can be taken so that it is the identity in Gf f) A/", 
Im(Ht) fl E = S2 and H^1(s2) = 52, for all t. (See Proposition 6.2.) 

Let Si denote the linear Legendrian curve (I —I ON) U {(0, yo> 2) \M< ^}- 
Then tw(si) = t^G') — 1 since Q^ hardly rotates on si fl N and since the 
property (1) above holds. Therefore tw(si) < tw(si). But it contradicts the 
minimality of tw(si) 

Step 3) Let Ai and A2 denote the two components of G, — r^/ such that 
both dAi and dA2 contain 52. Since td(Gf) = tiu(3i) + l = td(F) + l > 2, we 
see that Ai r\A2 = S2. We will eliminate all the singularities of c/if (Ai U A2). 

We may assume that ch^G1) is generated by a Morse-Smale flow Y. 
Since each Ai contains a closed orbit of its characteristic foliation in Ai fl A, 
Ai does not have another closed orbit. Further, there is no singular points in 
Ai n A. We can eliminate all the singular points of ch^Ai) in the following 
way. 

We may assume Ai positive. Let e be an elliptic point in Ai. Of course, 
the divergence of Y at e is positive. If any orbit which comes from e does 
not reach any hyperbolic points, all such orbits must reach the boundary 
component of Ai other than 52, which implies that Ai is homeomorphic to 
a disc and gives rise to a contradiction. Therefore, at least one hyperbolic 
point denoted by h is connected with e by a separatrix b. Proposition 3.13 
implies that we can eliminate e and h together by perturbing Ai only near 
e U b U h in a C0—small way. Since the Euler number of Ai is zero, ch^Ai) 
can be made non-singular. ch^{A2) can be made non-singular in the same 
way. 

Step 4; Perturb G so that G n iVc coincides with G' n iVc. 
Let B denote the annulus ((Ai U A2) n G) U (AT n G). Then chc(G) is as 

follows: 

(1) Every leaf of ch^(B) is an arc which connects the two components of 
dB. 

(2) G — B is a convex annulus such that 

1) d(G-B)ft\ch((G-B). 
2) If y7 generates ch^(G — B), Y' goes inward along one component 

of d{G—B) which bounds the negative part of G—JS, and outward 
along the other which bounds the positive part of G — B. 

Therefore, we can choose the dividing set YQ SO that S2 is one of the com- 
ponents of r<3. Then td(G) = tdfG7) — 1 = tw{si) since si intersects each 
component of TQ at least once. 
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Step 5) Remember that G is standard along s\. Then we can make F 
standard along Si by Proposition 5.10. Then the whole G and the whole F 
can be made standard by Proposition 6.3 so that they satisfy the required 
properties. □ 
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