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0. Introduction. 

Let M be an orientable complete hyperbolic 3-manifold of finite volume 
and with d ordered cusps ci,... , c^. Denote by M the collection of all mani- 
folds obtained by Dehn surgery on M i.e., if q £ Qd, q = (gi,... , qd), let Mq 

denote the manifold obtained by qi surgery on the i-th. cusp, i = 1,... ,d, 
with respect to some prechosen basis for the cuspital homology. Note that 
topologically M is contained in Mq for all q. By a Heegaard splitting for M 
we mean a decomposition of M into two compression bodies as in [CG]. 

Thurston and Jorgenson (see [Thl]) proved that the collection of com- 
plete hyperbolic manifolds with finite volume is a well ordered set. The 
limit points are the manifolds M with cusps and the manifolds Mq converge 
to M in the sense of Gromov as max{|pj|, |rj|} —> oo for all i = 1,... ,d, 
where qi = Pi/r*. Our main result shows that the Heegaard structure of the 
family of complete hyperbolic 3-manifolds of bounded volume strongly re- 
flects this well-ordering property. We will show that generically, irreducible 
Heegaard splittings of uniformly bounded genus of the manifolds Mg, with 
max{|pi|, |rj|} sufficiently large for alii = 1,... ,d, come from irreducible 
Heegaard splittings of M. This can be paraphrased as saying that irreducible 
Heegaard splittings of Mq converge to such splittings of M as Mq converge 
to M. In other words the Heegaard structure is asymtotically "rigid" as are 
many other properties of these manifolds. 

In this paragraph we define some terminology needed for our main the- 
orem: Manifolds M have a handle decomposition with one 0-handle. Let go 
be the smallest number of 1-handles in such a decomposition of M. Notice 
that all manifolds obtained by Dehn surgery on M have Heegaard splittings 
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of genus go. If g is an integer bigger than go then all manifolds in M have ir- 
reducible Heegaard splittings of genus bounded above by g. A simple closed 
curve on a handlebody H will be called a core curve of H if it is isotopic to 
a simple closed curve in the spine of the handlebody which intersects some 
essential non separating disk in a unique point. 

Our main theorem is: 

Theorem 0.1. 

a) There is a d-tuple of integers (JVi,... ,iVd) defining a sub-collection 
M7 ofM by M' = {Mq G M|max(|pi|, |ri|) > JVi, i = 1,... . d} and a 
finite collection of surfaces S1,... , Er embedded in M so that every 
irreducible Heegaard splitting surface of genus less than or equal to g 
of manifolds Mq £ M7 is isotopic to one of the £$. 

b) A surface £$ is either a Heegaard splitting for M or there is at least 
one cusp and a unique simple closed curve 0 on the boundary of a 
regular neighborhood of the cusp which is isotopic to a simple closed 
curve f3r on £$. In this case the curve ft is not isotopic to a core curve 
of any of the handlebodies determined by £$. 

Remark 0.2. Note that if £* is a Heegaard splitting for M (i.e. bounding 
compression bodies) then there are many such curves /? on the boundary of a 
regular neighborhood of each cusp. If E* is not a Heegaard splitting and /3 is 
chosen to be a (0,1) element for some basis {a, (3} of the cuspital homology of 
the cusp in question, only (1, n) surgery on this cusp give manifolds in which 
Si corresponds to a Heegaard splitting (see [Sw]). Hence the corresponding 
Dehn surgery coordinate qi in Mq must have been (1, n). 

Remark 0.3. In accordance with current terminology one can view the 
Heegaard splittings where the cusps cores of the compression bodies are 
"vertical", and the case where a cusp can be isotoped onto the surface but 
is not a core as "horizontal" Heegaard splittings. In this case we can para- 
phrase Theorem 0.1(b) as saying that bounded genus irreducible Heegaard 
splittings of the manifolds in M' are either "vertical" or "horizontal". This is 
very similar to the situation in Heegaard splittings of Seifert fibered spaces 
(see [MS]). 

Let if be a knot in any 3-manifold M, in particular S3. A tunnel system 
for if is a collection of disjoint arcs ii,... , ts properly embedded in M-N(K) 
so that M-N(K U {Uii}) is a handlebody. Alternatively it is a collection of 
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2-handles h ts so that (M - N(K)) - {U int t,} is a handlebody. If K 
is a knot, it follows immediately that the handlebody is of genus s + 1. 

Definition 0.4. The tunnel number of a knot K, denoted by t(K) is 
deimed to be the minimal cardinality of all such collections {h,...,ts}. 

As an application of Theorem 0.1 we have the following: 

Definition 0.5.    A subset of Z © Z will be called very simple if it is the 

rTvt^86^^ 0f elementS 0f the form a + nP and a fi^e subset 
A of Z © Z, where {a, /?} is a basis of Z © Z and n G Z. A subset of Z © Z 
will be called simple if it is the finite union of very simple sets. 

Let r = 2j + 1  pu... }Pr be odd integers so ^ p. = pr_i+i ^ 

^ - -«iPi,... ,PP) be a pretzel knot as in Fig. 1 with r strands and m 
crossmgs in the t-th strand. Assume also that g.c.d^px, ...tpr)=pui 
Let K'{m/n) be the manifold obtained by m/n-Dehn surgery on S3-N(K'). 

Theorem 0 6. Except for a simple subset of surgery coefficients {m/n} the 
genusofK'(m/ri)isr. J 

\ 

Pi P2 P 

A—/\- 

Figure 1. 

If Ku K2 c S3 are two knots then t(tfi#K2) < t^) + t(tf2) + x This 

can be seen by considering a short unknotted tunnel on the decomposition 
2-sphere connecting the two points in which the composite knot intersects 
the 2-sphere. 

• ^ i^ *l^f1 Str0ngly invertible with respect to the involution 
t .{£> , K ) -* (S , K ) whose axis of symmetry is described in Fie 2 It 
follows that the manifolds K'(m/n) are 2-fold branched covers of S3 (see 
IMoJ). Let K = K{K,{rn/n)) c 53 be the branch set of this particular cover 
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M -> Sz. If m is odd then if is a knot and if m is even then K is a two 
component link. 

pj-i pi-i 

Figure 2. 

Corollary 0.7. There exist infinitely many pairs of knots Ki. K2 in S3 

which are branch sets corresponding, respectively, to pairs of pretzel knots 
K'ipi,... ,pr), K'ip'i,... ,p£), as defined above, with the property that 

HKxftK*) = hiKx) + t(K2) + 1 = (r + s)/2. 

Remark 0.8. Recently Morimoto Sakuma and Yokota (see [MSY]) us- 
ing the examples of Corollary 0.7 have been able to show that for Kf = 
#'(5, -5,5) we have t{K) = 1 and t{K#K) = t(K) + t(K) + 1-3. 
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1. Negatively curved manifolds. 

Let M be a hyperbolic 3-manifold of finite volume with d cusps and M' 
be obtained from M by removing fixed open horotorus neighborhoods of 
the cusps. Let {7i,j}^i be sequences of geodesic curves on each component 
of dM1 = Tj with corresponding slopes qij G Q U {00}. Let M^., qi = 
(9i,i5--- 5<?M)> be the manifold obtained from M' by doing Dehn surgery 
along the curves 7^1,... , 7^. Denote the Euclidean length ^(7i,j) by £ij and 
assume furthermore that ^j —> 00. Let \q\ = max{|p|, |r|}, where q = p/r. 
Set \qi\ = minflg^il,... , |9i,d|} and note that |^| —> 00 <£> all ^j —> 00. 

The next Lemma is a generalization of Lemma 8 of [BH], see also Lemma 
2.1 of [GT]. 

Lemma 1.1. For \qi\ large enough there is a constant C = C'(£u • • • 5 ^d) < 
0 such that the manifold M{qi) has a metric pqi of negative sectional curva- 
ture satisfying: 

i)  The metric pqi restricted to M' is the original hyperbolic metric. 

ii)  The sectional curvatures of pqi are bounded between C ~1 and C*. 

iii) Furthermore C1 —> — 1 as t^j —> 00. 

Corollary 1.2. TTiere is a constant C < 0 swc/i ^/iat /or sufficiently large 
\qi\ the sectional curvatures of all pqi are bounded between C ~1 and C. 

Proof. For each qi and each cusp we will define a negatively curved metric 
on a solid torus V which is hyperbolic near dV and then glue dV to dM' so 
that the boundary of a meridional disk D of V is glued to 7^. This can be 
done if the values and derivatives of the metrics on M' and V agree on T 
and dV. The original hyperbolic metric on M' has a symmetric form which 
can be written in cylindrical coordinates in the neighborhood N of the cusp 
as: 

ds2 = dr2 + fo(r)dj2 + go{r)da2 

where r < 0 is the radial distance measured towards the cusp, 0 < 7 < 1 
measures the distance in the direction of the geodesic curve jij and 0 < 
a < 1 measures the distance in a direction perpendicular to 7^. In this 
form fo{r) = £ijer and go(r) = £er where £ is the length of a fixed arc in a 
direction perpendicular to 7^ meeting 7^ at its ends only, and £ij is the 
length of 7ij. For the convenience of notation, since only one cusp at a time 
needs to be considered, we drop the suffix j so £i = £ij. 
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We seek a metric ds on V of the form ds2 = dr2 + /(r)d72 + g(r)da2 so 
that /, /o and g, go agree smoothly on dV. Note that now we need to measure 
r the radial distance of a meridional disk of V from the core outwards so r = 
0 corresponds to the core of V. With this choice of coordinates the sectional 
curvatures are convex combinations of K(r, 7) = —f"/f, K(r, a) = —g/f/g 
and #(7, a) = —fg'/fg (see [BH]). If /(0) = 0 then the cone angle around 
the core of V is 

limi/1/(r)d7 = /,(0). 

Hence we want functions /(r) and ^(r) with the following properties: 

i) /(0) = 0,/(log4)=4, 

ii) /'(0) = 27r to ensure that the metric is non-singular around the core 
ofv,f(iogei) = eu 

iii) /"// "^ I? when i —» 00, 

iv) 0(log4) = £, 

v) 5,(log^)=^ 

vi) 9"/9 ■"* 1) when i —> 00, 

vii) /flV/fl' "^ !> wlien i "^ o0- 

Note that the metric is constructed so that for all i the radius of the merid- 
ional disk of V is log (4). 

Assume that we have found a function / with the desired properties and 
consider the equation 

(i) sf/g = flf 

hence ^ = ///' so logs = / f + C and g = AeS $. Set A = £ so 
that ^(log^i) = 1 Note also that g' = gf/f hence ^(log^) = ^(log^). 
Furthermore by differentiating equation (1) we get: 

9"/9 - {g'h? = i - ff'lif? = U/f'ff'/f 

SO 

sr/g-i+tf/ffti-fM' 
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Hence if {f/f")2 is bounded and if /"// w 1 then g"lg « 1. Set /(r) = 

er + h{r) where h{r) = ^(r- ^)2+ (27r"1
4
)log^ -1 for 0 < r < log^-1. 

For log^ — 1 < r < log^ h(r) is equal to a strictly decreasing smooth 
function a(r) such that: 

i) aW log(^ - 1) = /i(n) log(4 - 1), 0 < n < 2, 

ii) a^ log(4) = 0, 0 < n < 2, 

iii) sup |a(r)/a/(r)| < C7 for log4 — 1 < r < £i and some constant C', 

iv) sup |a//(r)/a(r)| < C" for log£i — l<r<£i and some constant C". 

It is a standard argument that such functions exist (see Fig. 3). Since 
h{\og£i - 1) = 27r - 2 - (27r ~ l)/log4 -> 27r - 2 and ^(log^ - 1) = 
—(27r —l)(l--2/log^) —> —(27r —1) as ^ —>> oo i.e., i —► oo we can find some 
integer iVo such that for all i larger than iVb we can choose fixed constants 
C and C". 

/ i 
Figure 3. 

It is straight forward to check that the function f(r) has the desired prop- 
erties (i)-(vii) and (f/f)2 is bounded. So we can find a constant C(£i) 
satisfying the lemma for some N' large enough. □ 

Lemma 1.3. For each cusp the area of meridional disks D in the surgery 
tori V grows arbitrarily large as the length of boundary dD = £ goes to 
infinity. 
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Proof, Consider now the minimal disk D of the surgery solid torus V. Again 
by the Gauss-Bonnet Theorem for bounded surfaces we have: 

/   kgds + [ KidA = 27rX(D) = 27r 
JdD JD 

where kg is the geodesic curvature of dD and s is arc length. Now dD is a 
geodesic in the metric of the boundary horotorus T which is flat and D is 
perpendicular to T. It follows that kg = 1. Hence 

/. 

so 

rvn CLS — ci 

dD 

27r - I  KidA = 4 
JD 

but 

27r - / Ki dA < 27r - / C"1 <M = 27r - C"1 Area(£>) 
7D JD 

i.e., Area(D) —> oo as £{ —> oo. Note that by definition, any other choice 
of meridional disk D' coming, say, from a general minimal surface will have 
larger area than D. □ 

Corollary 1.4. A closed orientable embedded minimal surface E of genus 
g in Mqi cannot intersect any surgery solid torus V in any meridional disk 
if\qi\ is sufficiently large. 

Proof. If the surface E intersects some surgery solid torus V in some merid- 
ional disk Df and \qi\ is sufficiently large then £{ is sufficiently large and it fol- 
lows from the proof of Lemma 1.3 that Area(.D) is bigger than any constant, 
where D is the meridional disk. However Area(E) > Area(i)/) > Area(-D). 
But by the Gauss-Bonnet theorem, since the curvatures of all surfaces are 
uniformly bounded, Area(E) is uniformly bounded by 27r(2 — 2g)/C so we 
have a contradiction. □ 

Definition 1.5. Let E be an embedded minimal surface in M. Given two 
horotori in a cusp which are a distance t apart, suppose that E intersects 
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the region of M in between the two horotori in a spanning annulus T. Then 
T will be called a tube of length t with core a if a generating loop a is 
contractible in M. 

Lemma 1.6. There is a number t so that length of tubes in M is uniformly 
bounded above by t. 

Proof. Consider the universal cover R of the region R between the two 
horotori. Lift a tube T to a surface T in R and consider a ball B of radius 
t/2 about a lift of a point in T that is midway between the horospheres of 
dR. By the Monotonicity Formula (see [Si]) there are constants /3,7 e R such 
that Area(r fl B) > /?e7t, which is the area of a totally geodesic hyperbolic 
disk of radius t/2. However by the Gauss-Bonnet theorem and Corollary 1.2, 
the area of the surface E is uniformly bounded by 27r(2 — 2g)/C, hence the 
result follows. □ 

2. On some bounded surfaces in solid tori. 

Let E be a Heegaard surface of genus g of a closed 3-manifold M sepa- 
rating M into two handlebodies H and Hf. We will say that E is strongly 
irreducible if every compressing disk for E in H intersects every compressing 
disk for E in H'. Let V be a non trivial solid torus in M (i.e. 7ri(V) injects 
into 7ri(M)). Assume that E intersects dV only in essential curves on dV 
which do not bound meridian disks of V. Denote the surface E fl V by F 
and for convenience assume first that E fl M' contains no annuli which are 
parallel to dM', where M' = M - int V. 

Lemma 2.1. The surface'F has at most one component Ff which is not an 
annulus. 

Proof We may assume that the surface F = E fl V is isotopic in V to a 
collection of annuli A connected perhaps by tubes. If F is incompressible in 
V we are done as the only incompressible surfaces in a solid torus are either 
disks or annuli and by the assumption on F we cannot have essential disks. 
If not, compress F in V as much as possible and the resulting surface is a 
collection of annuli. We can reconstruct F from these annuli by deleting 
disks and replacing them by tubes (annuli). It follows that the number of 
boundary components of F is even, say 2r. 

Since E separates M the surface F separates V into components in either 
H or Hf so we have a well defined notion of two sides of F. Furthermore 
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note that all the innnermost compression disks of the tubes (i.e. compression 
disks for F which do not intersect F in their interior) must be on one side of 
F as otherwise we contradict the fact that the Heegaard splitting is strongly- 
irreducible. 

Note next that the surface F splits V into handlebodies as dV — F is 
a collection of essential annuli -Ai,... , Ar and the handlebodies H and Hf 

cut along essential annuli split into handlebodies. Each of the annuli Ai is 
contained in one of the two handlebodies H or Hf and boundary compresses 
there. Let H denote the handlebody which contains the innermost com- 
pression disks for the tubes. Choose an outermost annulus Ai in the other 
handlebody iJ7 and a boundary compression disk D for it. The boundary 
of the disk D is the union of two arcs A U a where A denotes the arc DDE 
and a is on Ai. Note that D can be a priori on either side of dV. 

We claim that the disk D must be contained in the solid torus V. As oth- 
erwise after performing the boundary compression for the annulus Ai along 
D we will obtain a disk D* in H': Two boundary curves of F' become con- 
nected along a trivial short band in if7 n dV, giving an essential compressing 
disk for Ff and H' i.e. a compressing meridian disk for a tube. Since we 
assumed that E fl M* contains no annuli which are parallel to dMf the disk 
D* must be essential in iJ7. We have disjoint innermost tube disks in H at 
the same time, violating the strong irreducibility of the splitting. Hence D is 
contained in V and the arc A is equal to D D F. Furthermore the arc A must 
intersect all innermost tubes of F as otherwise after doing the boundary 
compression along D for A^ this time in V, we will have disjoint essential 
(meridian) disks for both H and Hf on either side of F in contradiction to 
the assumption that E is strongly irreducible. Since A does not meet dV 
other than at its end points and hence is contained in one component of F, 
all innermost tubes are on the same component F* of F as A. 

Assume now that there is some other component of F which is not an 
annulus. Consider an innermost tube for the surface F — F' and let F" 
denote the component of F it belongs to. Let Dn be a compressing disk 
for this tube, so chosen that the number of components of intersection of 
D n D" is minimal. We cannot have D fl D" = 0 as D" is not innermost 
so there is an innermost disk contained in D" and A C dD intersects all 
innermost disks so A fl Df/ ^ 0. If we have loops and trivial arcs of intersec- 
tion (i.e. arcs in D" with both end points on the same components of F" 
bounding a disk in .D") we can change D" by cut and paste techniques to 
reduce the number of intersection components. Therefore there must be an 
essential arc of intersection on D. The situation is indicated schematically in 
Fig. 4 below. Choose an outermost such arc on D and denote it by 7. The 



Heegard Structures of Negatively Curved 3-Manifolds 385 

arc 7 together with a sub-arc of A bounds a sub-disk Do of JD. NOW mod- 
ify D" by removing a regular neighborhood 7 x J of 7 from D" and gluing 
instead the boundary of a regular neighborhood of DQ = dN(Do) —int(7 x /). 

This also reduces the number of components of intersection which is a contra- 
diction to the choice of D". Hence we cannot have non-annular components 
other than F'. 

■•A 

01 

Figure 4. 

□ 

In the next lemma we deal with the possibility that the tubes in F' might 
be nested. 

Lemma 2.2. The non-annular component Ff of F is isotopic to a collection 
of cyclically ordered annuli A in V (i. e. no annuli are nested) connected by 
tubes. Furthermore there is a complete system of compressing disks for the 
tubes of F' so that the interior of the disks is disjoint from F'. 

Proof. Choose a system of compressing disks {Di,... ,DS} for F' so that 
the intersection of the interior of the D^'s and the boundary compressing 
disk D of -4$, as in the previous lemma, is minimal. If the intersection is 
empty we are done with the second part of the claim, so assume that it 
is not empty. Recall that dD intersects every innermost tube in F' and 
hence dD intersects every one of the innermost D^'s.  By an easy cut and 
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paste argument we can assume that the intersection does not contain triv- 
ial arcs and loops i.e., arcs and loops which bound disks on both surfaces. 

Choose an outermost arc of intersection 7 on D. We have two possible 
configurations depending on whether the arc 7 connects a disk to itself (Fig. 
5 case (a)) or two disks to each other (Fig. 5 case (b)). In both cases we 
replace a small regular neighborhood of 7 in the disk Dj denoted N{^) by 
the boundary of a regular neighborhood of the sub-disk of D bounded by 
7 and a sub-arc of A, less N(j). We now have a new disk ZX- with fewer 
components of intersection between its interior and the interior of D. This 
contradicts the choice of the disks {Di,... , -Ds}, (see Fig. 5 below). Hence 
no compressing disk can intersect an innermost tube, which is the second 
part of the claim. 

(a) W 

Figure 5. 

If the compressing disks {JDI, ... , Ds} are disjoint from Ff then we can- 
not have nested annuli. In order for annuli to be nested we must have at 
least three annuli and there must be some annulus in V with annuli on both 
sides. As F/ is connected we must have tubes connecting the annuli and 
since the compressing disks {Di,... , Ds} are disjoint from F' we have es- 
sential disks on both sides of F, thus contradicting the strong irreducibility 
of S. Thus the annuli are cyclically ordered around V, as indicated in Fig. 
6 below where we have drawn a cross section of the torus V with the annuli 
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and tubes with their meridian compressing disks indicated. 

Figure 6. 

□ 

Proposition 2.3. The surface Ff is isotopic to one annulus with one stan- 
dard tube attached or to two annuli connected by one standard tube. 

Here, the tube is standard if there is a boundary compression disk D C V 
for F' so that dD meets a meridian compressing disk for the tube in exactly 
one point. (So the tube is "boundary parallel".) 

Proof. If the surface F' is isotopic to either one annulus with one standard 
tube attached or to two annuli connected by one standard tube we are done 
so we assume that F1 has either three annuli or less than three annuli but 
at least two tubes. In any case the genus of both handlebodies H PI V and 
H' n V is greater or bigger than three. The proof is divided into three cases 
depending on the slope of the curves of dF1. 

Case 1. The curves of OF' are isotopic to the core of V. 

We claim that the surface F' also looks like a collection of tubes attached 
to cyclically ordered annuli A in H'. To be precise, in Lemma 2.2 we showed 
that if an innermost compression of a tube of F! in H is in the interior of 
V, then F' looks like cyclically ordered annuli plus tubes relative to H. 

The annuli Ai,... , Ar which are in H1 also boundary compress. After 
doing a boundary compression, two boundary curves of F' become connected 
along a trivial short band in H' fl dV, giving an essential compressing disk 
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for F' in H* i.e. a compressing meridian disk for a tube. If we push this 
compressing disk slightly into V (off dV) we obtain a compressing disk 
for F* in H' in the interior of V*. So this tube also existed, in the part of 
H' contained in V, before the boundary compression. Hence we could have 
found a collection of compressing disks for innermost tubes, as in Lemma 2.1, 
in H'. Therefore, using Lemma 2.2, up to isotopy F7 can also be expressed 
as a surface F" which is a collection of tubes attached to cyclically ordered 
annuli in iJ7. 

Consider an isotopy Fj. of F7, for 0 < t < 1, taking F, to F" with F^ 
consisting of annuli of if Pi dV with thin tubes attached and F,

l = F" equal 
to the annuli of H' n dV with thin tubes attached. Let V be a meridian 
disk for the solid torus V. The isotopy F[ can be chosen to be in general 
position relative to P, so that there is a finite number of critical levels 
0 < ti < - • • < ts < 1, where FlDV has a single non-degenerate critical 
point, which is either a saddle, a maximum or a minimum. Some values of 
t: 0, U — £, ii + £, 1 of F/ fl © are shown schematically in Fig. 7. 

compressing disk toTOdaxy compressmg disk 

t«t.+ £ t-1 

Figure 7. 

Note that for t = 0, all the innermost disks in V (as in Fig. 7) represent- 
ing compressing meridian disks for tubes and outermost 2-gons in V (as in 
Fig. 7) representing outermost boundary compressing disks for the annuli 
must be in H, whereas for t — 1 must all be in H'. As the isotopy proceeds 
we can never have such disjoint meridian disk or an outermost boundary 
compressing disk simultaneously both in H and in i?7, since this would con- 
tradict strong irreducibility. (Note that we ignore innermost disks whose 
boundary circles are inessential on F7. Also an outermost boundary com- 
pressing disk gives a meridian disk for H or H' by boundary compressing 
F7 as above.) Consequently at some critical point ti, all the innermost com- 
pressing meridian disks and outermost boundary compression disks must 
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"flip over" from H to H'. The level ti is a single saddle, maximum or a 
minimum. 

This is possible if F' has two or four boundary curves giving one or 
two outermost boundary compression disks. For if there are three or more 
outermost boundary compression disks, at least one cannot be changed at 
the critical point ti thus contradicting strong irreducibility. By Lemma 2.2 
F' is a collection of cyclically ordered annuli connected by tubes so each 
annulus contributes a outermost boundary compression hence there can be 
at most two such annuli. If there are two such annuli they must be connected 
by a tube as F1 is connected. 

It remains to prove that the tube is standard: 
If Fl has four boundary curves at the critical point U then all simple 

closed curves of FfC\V must be inessential on F'. This is because the critical 
point must involve the outermost boundary compression disks, so the loops 
remain unchanged (hence cannot be essential). We can pull all the loops off 
£>, and then F1 fl V has exactly two arcs (see Fig. 9(b)). 

If the case that F1 has two boundary curves, F' fl V has exactly one arc. 
At the critical level, essential innermost disks of F' fl V must "flip over". 
There can be at most one such disk. If there are more then two innermost 
disks then at the critical level a saddle connecting at most two innermost 
disks in Hy say, will still give an innermost disk in H. In this situation, if 
this disk is essential in H we get a contradiction to strong irreducibility, if 
the result is an inessential disk we can conclude that there is a level where 
all loops are inessential on F' and can be pushed off V. 

If there is one essential innermost disk, we would get the possibility as 
in Fig. 8. But then the outermost boundary compression disk D is disjoint 
from the essential innermost disks before and after the critical point and 
this contradicts strong irreducibility. 

Figure 8. 
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We conclude that F' D V is either one or two arcs, for a suitable choice 
of V. Now cut V open along V to get. a 3-ball B. Let F' n B denoted by F* 
(See Fig. 9. The indicated handle could be a priori knotted.) 
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Figure 9. 

In Fig. 9(a), 9F* is a single curve. The surface F* separates the 3-ball 
B into two handlebodies as V intersects the handlebodies H and Hf in a 
collection of disks (see Fig. 9). By Waldhausen's theorem on Heegaard 
splittings of S3, [Wal], since F* is a strongly irreducible Heegaard surface 
(as F/ is) we conclude that F* must be a disk. Hence the original surface 
F' is an annulus. 

In Fig. 9(b), we argue exactly as in Lemma 2.1, by strong irreducibility of 
F*, that the annulus component ofdB-dF* must be boundary compressible 
and the boundary compressing disk must be inside of B rather than outside. 
After doing this boundary compression on F^ the surface F* is replaced by 
a surface F which has the property that dF has a single component and 
F defines a Heegaard splitting of B (as the boundary compression cuts the 
handlebodies only along disks). Again we can apply Waldhausen's theorem 
to show that F must be a disk. Consequently, (reconstructing F* by gluing 
along arcs) F* is an annulus i.e. a pair of disks joined by a standard tube 
and F* is two annuli connected by a boundary parallel tube. This completes 
case 1. 

Case 2. The boundary curves of F' are isotopic to a p, q-cmve on dV, |p| > 1, 
and one of the annuli, say Ay resulting from compressing the tubes of F7, 
on either the H or the H' side, is such that the solid torus component Vi of 
V — A containing the compression disk for A has intVi fl F1 ^ 0. 

Cut V open along A. Consider the component V\ of V — A containing 
F7. Then F7 in V\ satisfies the conditions of Case 1. This is because A is 
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parallel to the closure of OVi — A in Vi by assumption, so the curves of dA 
and dFf are isotopic to the core of Vi. Hence by Case 1 Ff is isotopic to 
one annulus or to two annuli connected by one standard tube. The surface 
Ff is not affected when we glue Vi back along A to V — V\. So we obtain a 
surface in V of the desired type. Only in this case dF1 are p, ^-curves. This 
completes Case 2. 

Case 3. The boundary curves of F' are isotopic to ap, g-curve on dV, |p| > 1, 
and every one of the annuli A resulting from compressing the tubes of F7, 
on either the H or the H' side, is such that the solid torus component Vi of 
V — A containing the compression disk for A has int Vi fl F' — 0. We will 
call such annuli A boundary parallel away from F'. 

We use an argument similar to the argument of [BO] in the classification 
of Heegaard splittings of lens spaces. 

Fiber the torus V so that the curves of dF1 are regular fibers. Let 
a denote the singular fiber in V. A singular annulus AQ is obtained from 
an annulus A by a p-fold identification of points on one of the boundary 
components of the annulus. Choose an embedding of a singular annulus A§ 
into V, The embedding in V is selected so that 4o H dV, the non-singular 
component of <9Ao, is a regular fiber disjoint and parallel to the curves of 
dF', The other, singular component of dA is mapped to the curve cr which 
is a core curve for V. 

Since all the annuli A are boundary parallel away from F1 the Heegaard 
splitting of V determined by F' determines a height function h : V —» [0,1] 
with the following properties: 

1. /i-1(l/2) = F/. 

2. /T^O) = Q, h-l(l) = Qf where Q is a spine of the annuli of H fl dV 
and Q' is a spine of the annuli of H' fl dV. 

3. h has g critical points of index one and g critical points of index two, 
where Ff has g tubes. 

4. h has no critical points of index zero or three. 

The height function h : V —► [0,1] induces a foliation by level curves on 
AQ and hence by pull back on A. By general position we can isotope AQ SO 

that the curve a lies in the collar between the critical points of index one 
and two, as in [BO]. 

We can isotope a to lie in a level surface of h hence in F' (here the 
annulus A fills the role of the disk A in [Bon] and [BO]) by a straightforward 
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application of the argument in Lemma 3 of [BO]: An easy way to think of 
this argument is to add a solid torus V' to the boundary of V to form a Lens 
space. The solid torus V' has a meridian disk D with dD parallel to the 
boundary of AQ and to Ff H V. Hence AQ U D is a spine of the resulting Lens 
space. Note that the surface Ff with its boundary components capped by 
copies of D is a Heegaard splitting surface S for the Lens space VU V. Now 
we use exactly the same method as in [Bon] to isotope the singular curve of 
the spine, i.e. of AQ, onto the Heegaard surface 5. It is easily checked that 
this isotopy can be done inside V. 

We now remove simple closed curves of intersection of int AQ and Ff : 
The handlebodies H and H' which are the closures of the complements of 
V — F/ (after the trivial annuli components of FnV are removed off V) have 
complete systems of meridian disks that are either boundary compressions 
of the annuli of F' or meridian disks of the tubes (Lemma 2.2). We now 
apply a version of Haken's argument, Lemma 8 of [BO], to push pieces of 
AQ across F' using innermost sub-disks of the meridians of i? and H' which 
are disjoint from dV. With respect to these moves, which take place in the 
interior of V, the Heegaard surface Ff for V behaves the same as a Heegaard 
surface of a closed lens space. We conclude that AQ fl Ff is a collection of 
arcs ao on AQ with end points on a plus a itself. An innermost arc a in A 
(the preimage of ao in A) bounds a disk D on A (Fig. 10(a)). As in Lemma 
6 of [BO] we can perturb the image of this disk in V so it is an essential disk 
which intersects a in one point. Hence this disk is a meridian disk and a is 
a core of a handle of either H or Hf, say iT, see Fig. 10(b) below. 

Figure 10. 
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We can push a slightly off F1 into H and A^F1 becomes a single simple 
closed curve. Next we define a new solid torus V obtained by removing a 
small open neighborhood iV(.Ao) of AQ from V. Let F — F' fl V. Since 
F is constructed by deleting an open annulus from F7, F has two more 
boundary components than F' does. Moreover F splits V into handlebodies 
H and Hf. The handlebody H' is constructed by splitting H1 along an 
incompressible annulus AQ fl H1, The handlebody H is obtained by first 
removing an open neghborhood of cr, which is a core of a handle, from H. 
This gives a compression body, which is then split along an incompressible 
annulus in AQ into a handlebody H. 

The surface F in V satisfies all the conditions of Case 1. Since a core 
of V (i.e., a) has been removed to form V, the boundary curves of F are 
isotopic to a core of V. By Case 1, we conclude that F must be either an 
annulus or two annuli connected by one standard tube. The first possibility 
cannot occur, as F has at least four boundary curves. In the second case, it 
follows that F1 is an annulus with a single tube attached, which is boundary 
parallel. This completes the proof of the proposition. □ 

Remark 2.4. Our initial assumption that EfliW7 contains no annuli which 
are parallel to dM1 is not necessary in Lemmas 2.1, 2.2 and Proposition 2.3, 
for such annuli can be eliminated by isotoping them into V, applying the 
arguments, and then isotoping them back into M'. 

3. Finite Heegaard structures. 

Let M,M',Mq,go and M be as in Section 0 and 1. The notation of a 
bumpy metric is discussed in [Wh]. It is shown there that any Riemannian 
metric can be approximated arbitrarily closely by such a metric. For a 
bumpy metric, any closed embedded minimal surface has no Jacobi fields, 
i.e., it is a non-degenerate critical point for the area functional. Note that 
the second variation for area has zero eigenvalues corresponding to Jacobi 
fields. The number of negative eigenvalues is called the index of instability 
of the minimal surface. 

Theorem 3.1 [PR]. Given a closed and orientable 3-manifold with a bumpy 
metric and a strongly irreducible Heegaard splitting then either the Heegaard 
surface is isotopic to a minimal surface of index one or it is isotopic to 
the boundary of a regular neighborhood of a non-orientable incompressible 
surface with a single unknotted tube attached. 
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Assume Mq is non-Haken and has no embedded nonorientable surfaces. 
Perturb the metric on Mq to be bumpy and assume that S^ is an irreducible 
Heegaard surface in Mq of genus g. By Theorem 3.1 of [CG] X^ is strongly 
irreducible. Thus we can apply the above Theorem 3.1 and conclude that 
Eg is isotopic to a minimal unstable surface denoted Eg as well. Recall that 
the manifold M' which is M truncated at a distance s from the compact 
core of M is embedded isometrically in Mq for each \q\ large enough. 

Lemma 3.2. Assume Mq has a metric which has been perturbed to be bumpy 
and let Eg be a minimal surface which is an irreducible Heegaard surface of 
genus g in Mq. Then the area of the surfaces Eg is uniformly bounded for 
all \q\ sufficiently large. In particular there is a real number s so that if 
we truncate each cusp of M at a distance s from the compact core of M 
to obtain the compact manifold M' then the area of M/ n Eg is uniformly 
bounded. 

Proof. Truncate M at each cusp at a horotorus which is at a distance s 
from the compact core of M in the bumpy metric. In each cusp we have 
now a finite set of boundary slopes on the horotorus of length smaller than 
27r + e for some e > 0. Hence we can do negative Dehn surgery eilong all 
other slopes as the results of Section 1 apply to the perturbed bumpy metric. 
Denote the truncated manifold by M' as in Section 1. We can choose, (see 
Lemma 1.1) a metric on each of the manifolds Mq in M (for |g| large enough 
i.e. bigger than restrictions on each cusp). This metric restricts to an 
approximation of the complete hyperbolic metric of M outside the horotori, 
and has strictly negative sectional curvatures inside the surgery solid tori. 
Furthermore we can choose these metrics with sectional curvatures uniformly 
bounded between the constants C-1^ < 0. Denote the curvature of the 
surface Eg induced by the metric pq by Kq. The Gauss-Bonnet theorem 
states that 

i Kq = 2Tr(2-2g). 

If H, Xig, \2q denote the mean and principal normal curvatures of Sg then, as 
the surfaces are minimal, H = Ai9 + \2q = 0. Also Kg = KMq + ^iq^'.ig where 
KMq 

are the sectional curvatures of Mq. It follows that Kq = KMq+^iq^2q < 
C - (Aig)2 < C < 0. Therefore 

2n(2-2g)= [  Kq < f  C = (AreaE(7)C 
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so 

Area Eg < 27r(2 - 2g)/C   for all such q. 

Set T/q = i~l(Ytq f]Mq) where iq is the isometry M' —» Mq. In particular the 
area of all S' in M' is uniformly bounded. D 

Lemma 3.3. Assume M' (resp. M") is obtained by truncation of M 
at distance s (resp. s + e) from the compact core. Let M' be covered by 
closed convex geodesic balls E/i,... , Un of radius e, so that M" is covered by 
corresponding balls U",... , U!^ of radius 2e with the same centers. If E is 
a compact embedded minimal surface in M" with area bounded by k, then 
there is an integer N(k) so that the total number of components of E fl U" 
which meet Ui, over alii^ = 1,... ,n is at most N(k). 

Proof. Suppose i?i,... , Rm are components of EflC/f which intersect C/i, for 
some i, 1 < i < n. Since the t/i's are a cover such components always exist. 
By monotonicity (see [Si]) the area of Ri, is at least Ae7£:, for some constants 
A, 7, since Ri runs between dU" and Ui. If Ri does not meet dU" then Ri 
would be contained entirely in U" which cannot occur for a bumpy metric 
close to the complete hyperbolic metric. This is because metric spheres are 
convex in a negatively curved metric, so they cannot touch a minimal surface 
from their inside, by the maximum principle. But then we have m\e1£ < k 
and hence m < (fc/A)e~7£. So we can choose N(k) = {nk/\)e~ie. □ 

Let (iV*,... , iV*) be a vector of integers so that if Mq is a manifold with 
Q = (<?i> • • • J (Id), Qj = Pj/rj and max{|pj|, \rj\} > Nf, j = 1,... , d, then the 
requirements of Lemma 1.1, Corollary 1.4 and Lemmas 1.6, 3.2 and 3.3 are 
satisfied. The vector (AT^,... , iV^7) determines in this way a subset M* of 
M. For our purpose we can restrict our attention to the set M* instead of 

Theorem 3.4. Assume that the manifolds Mq in M* are non Haken and 
contain no non orientable surfaces and let g > go be some fixed integer. 
There is a subset M" o/M* determined, as above, by a vector (iVj7,... , AT^), 
Nj > AT*, such that if Mq is any manifold in M" and E^ an irreducible 
Heegaard splitting surface of Mq of genus smaller or equal to g then there is 
a finite collection of surfaces E1,... , Er in M so that Eg is isotopic to one 
oftheYt's. 
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Proof. As the manifolds Mq are non Haken and do not contain non orientable 
surfaces and Sg is an irreducible Heegaard surface we can apply Theorem 
3.1 of [CG] and our Theorem 3.1 and assume that E9 is a minimal surface. 
By Lemma 3.3 we can apply Theorem 3.1 of [An] only to the bounded 
number of connnected bounded components of Eg PI U" which intersect t/i, 
for each i = 1,... , n. Note that the components of Eg fl U" need not have 
a uniformly bounded number of boundary curves, as required in Theorem 
3.1 of [An]. The condition that the number of boundary curves be bounded 
is used in the proof of Theorem 3.1 of [An] to show that in the limit of a 
convergent subsequence of such surfaces the curvature cannot blow up and 
handles cannot pinch at more than a finite number of points in each Ui. This 
is also true in our case because the genus of the surfaces Eg is fixed, so if 
arbitrarily large numbers of handles do pinch in some Ui, then many planar 
surface components must exist in the limit surface, all meeting Ui. As in 
Lemma 3.3, we get a contradiction to monotonicity, since the limit surface 
must have bounded area. 

We conclude from Theorem 3.1 of [An] that on each Ui there is a conver- 
gent subsequence of the surfaces EgflZ/j. As there are only finitely many U^s 
we can piece together a subsequence Eg. of the surfaces Eg which converges 
on M7. 

Either the surfaces E^. converge smoothly to a properly embedded smoth 
compact minimal surface E7, or they converge in the weak topology on vari- 
folds to a properly embedded smooth compact minimal surface E7 of smaller 
Euler characteristic with multiplicity > 2. Convergence in the weak topology 
means that there are a finite number of tubes in the surface which pinch at 
the limit and the convergence is smooth away from these points. Moreover 
the curvature of the surfaces Eg. remains bounded except in small neigh- 
borhoods of a finite collection of points on E7 where the tubes are pinched. 

The proof will be completed by the follwing lemmas which given the fact 
that the surfaces converge describe the nature of the converging process and 
the converging surfaces. 

Lemma 3.5. Except for finitely many surfaces the sequence E^. is contained 
in a small regular neighborhood of E7. 

Proof. If the convergence is smooth we are done. So suppose that the claim 
does not hold. Then there is a subsequence of surfaces and points on them 
which converge to a point p a distance d from E7. A ball of radius d/2 about 
p intersects the surfaces in some pieces and by the monotonicity formula the 
area of each such piece is at least /?e7d, for some constants /?, 7. This is a 
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contradiction as this subsequence converges in the weak topology to 1/ and 
hence must have almost all of its area in an arbitrarily small neighborhood 
of E'. □ 

Choose 5 = 3gt where t is the bound on the length of tubes from Lemma 
1.6 and g is the genus of the surfaces Eg. 

Lemma 3.6. For each cusp there is some number r < s = 3tg so that if we 
truncate M1 in that cusp at a distance r from the compact core, to obtain a 
manifold M*, the surfaces E*. = E9j flM* intersect dM*, up to isotopy, in 
a collection of essential simple closed curves on 9M*. 

Proof. Note that any collection of more than 3<7 — 3 disjoint essential simple 
closed curves on E^. contains parallel pairs. Consider the ra-th cusp. Choose 
3g — 1 horotori 7i,... , Tzg-i in the cusp, which are a distance t apart and 
are perturbed so as to be transverse to E7 and so that % n E7 has no points 
where the converging subsequence E9. has curvature blowing up. Then for 
j large enough E^. is transverse to each % and % n E^. is a family of curves 
isotopic to a multiple of the set of curves % fl E7 on the limit surface (as the 
convergence is smooth there). 

If for some i, % fl E7 contains only essential simple closed curves on 7^, 
then we can truncate M' at % to obtain M*. So we assume in contradiction 
that % fl E7 and hence % fl E^. (for j large enough) contains loops which are 
contractible on %, for alH = 1,... ,3^ — 1. There are two cases to consider. 
Assume first that there are two horotori Tu and Tv so that all curves of 
Tu n E7 and also Tv n E7 are contractible on E7. Then for j sufficiently large, 
all the loops of Tu n E^. and Tv fl E^. are contractible on E^.. Let R be 
the region between Tu and Tv. As the surface inside R lifts to the universal 
cover of R and contains a tube of length bigger than t, we can apply the 
argument of Lemma 1.6 to give a contradiction in this case. Hence there is 
at most one horotorus Tu for which all loops of Tu fl E

7 and Tv fl E^., for j 
large, are in essential in E7 and E9. respectively. By our observation in the 
first paragraph above, there must be a pair of parallel simple closed curves 
Ci,Ck of % fl E^. and 7^ fl E^., which are contractible on % and 7^ but are 
essential on E^. respectively, so that C* U Ck bounds an annulus T on E^.. 
If T is contained in the region R between % and 7*. then we again have a 
contradiction to Lemma 1.6. Moreover the argument in Lemma 1.6 shows 
that the surface R fl Egj cannot have all its boundary curves contractible on 
either % or 7^. 
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The only other possibility is that T is not contained in R and there is a 
simple curve C on, say % flT, such that C is essential on %. Clearly, either 
C bounds a disk in T or C is parallel to Ci (and Ck) in T. As C; is inessential 
in 7^ it follows that C is null homotopic in Mq in both cases. Now %, bounds 
a solid torus Vi in Mq and the only essential simple closed curve on % = dVJ 
which is null homotopic in Mq is a meridian curve for Vf. As j —> oo, the 
minimum length £ of this curve also goes to infinity, on the fixed horotorus 

Assume without loss of generality that i < k and consider the intersection 
of T with the region R! between Tf-i and %. if some transverse horotorus 
T between 7^_i and % meets T in only inessential curves, we can enlarge R 
to the region between T and 7^ and get a contradiction by Lemma 1.6. If 
for all such horotori T, T fl T always contains essential (meridional.) curves, 
then by the coarea formula (see [Si]), the area of T in R' is at least i£ and 
ti —> oo as |g| —» oo which is a contradiction to the fact that the area of 
all surfaces is uniformly bounded. Repeating this argument in each cusp 
completes the proof of Lemma 3.6. □ 

Lemma 3.7. The points of the surface E* where the convergence is not 
smooth have neighborhoods JBI, ... , Bf* so that if \qj\ is sufficiently large the 
intersection E*.nJ5; for each surface E*., is a collection of standard, perhaps 
nested, annuli plus some disks. 

Remark 3.8. By a standard annulus in a handlebody we mean a boundary 
parallel annulus. In this case it is an annulus which has an essential arc a 
that, together with arc 6 on dBi bounds an embedded disk in cl (Bi — E*.). 

Proof The surfaces E*. converge smoothly to E* except for a finite collection 
of points of E*. These points have small neighborhoods Si,... rBk in M* 
where the curvature of E*. blows up and handles pinch out as E*. converge 
to E*. Assume that on M* — {JBi,... , BAJ the surfaces E*. converge to E* 
with multiplicity m. Hence for j large enough E*. n dBi is a collection of 
parallel circles converging to the single circle E* fl dBi. 

We can now apply a similar argument as in Proposition 2.3 inside each 
Bi. The components of dBi — E*. are two disks and a collection of annuli. 
The annuli are incompressible in the parts of the handlebodies if, E' outside 
Bi U • • • U Bk, since otherwise a compressing disk for such an annulus being 
disjoint from E*. and outside Bi would be contained between the sheets of 
E*. thus converging to E*. Hence the sheets of E*.. - (Bi U • • • UBk) would be 
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disks and S*. would be a closed surface (the disks together with the parts 
of the surface S*. which are in Bi) not meeting the horotori T at all. 

If on the other hand an annulus of dBi — E*. has a compressing disk D in 
Bi, then Bi splits along D into two 3-balls containing components of £*. DBi. 
If there is a unique compressible such annulus it, i.e. E*., splits Bi into 
handlebodies. It is readily seen by induction on the number of compressible 
annuli, that each of these 3-balls is split by E*. into handlebodies and glueing 
back along disks D gives a splitting of Bi into handlebodies. 

It is convenient to first assume that there are no annuli of E*--i?iU- • -Ui^ 
which are parallel to annuli on dBi. At the end of the argument we will see 
that this hypothesis is unnecessary as in Section 2. The two disk components 
of dBi — £*. represent innermost tubes (after throwing away trivial disk 
components of £*. HBi) which determine a handlebody H. as the annuli are 
contained in one or other of the handlebodies H, H' they must boundary 
compress there. Consider a boundary compression D' for an innermost 
annulus of dBi — £*. in H* (see Fig. 11). The disk D1 must be in Bi as 
otherwise strong irreducibility of the Heegaard splittings will be violated. 

Figure 11. 

After compressing the annulus along D1 we see a disk in dBi OH'. This disk 
cannot be essential in H' as that would violate the strong irreducibility of 
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the Heegaard splitting, as before in Section 2. Therefore the disk is parallel 
into S*. = dH1. Hence this component of £*. fl Bi meeting D1 is a standard 
annulus. We can now pull this annulus outside E*. flSi reducing the number 
of annuli and repeat the argument. Once £*. fl dBi has only two curves left 
strong irreducibility is no longer violated when we compress hence: we need 
to use Waldhausen's theorem on the uniqueness of Heegaard splittings of Sz 

[Wal] to conclude that £*. fl Bi is either two disks or a standard annulus. 
We conclude that £*. fl Bi is a collection of standard annuli and disks.    □ 

Remark 3.9. If, as j —► oo, annuli keep appearing in £*. fl Bi then these 
annuli will pinch in the limit. 

Lemma 3.10. // the surfaces £*. converge to £* with multiplicity m > 1 
then fc, the number of balls Bi, is one and the number of standard annuli at 
most [ra/2]. 

Proof. We know by Theorem 3.1 that each Tlqj is a minimal surface* of index 
one. Also by a result of Schoen, (see [Sc]), if a minimal surface in a ball 
with fixed metric has principal curvature sufficiently large then it is unstable. 
Hence for j large enough each ball contributes to the index of instability of 
Ttqy Consequently there is at most one ball B and k = 1. Finally there are 
m boundary curves of £*. fl B so by Lemma 3.8 there are at most [ra/2] 
standard annuli. □ 

Remark. Since £*. is connected, it is easy to see that if ra > 1 then in 
fact ra must be 2, in order to be able to join up the sheets of £*. — B. We 
do not use this fact here. 

Resuming the proof of Theorem 3.4. Choose now a vector of integers 
(JVJ7,... , JVSO, N? > Nj so that if max{|W|, fol} > Nj, j = 1,... ,d the 
requirements of Lemmas 3.6 and 3,7 are satisfied. 

Assume now that there are infinitely many non-isotopic surfaces £*. 
Then by Theorem 3.1 of [An] we have a sequence of surfaces £*. converging 
to a minimal surface £*. If the convergence is smooth, i.e., no tubes pinch, 
we get a contradiction as all surfaces far enough up the sub-sequence must lie 
inside a regular neighborhood of the limit surface and hence must be: isotopic. 
Hence there are only finitely many surfaces E^ up to diffeomorphism. So 
assume that some tubes pinch. Then by Lemma 3.10, the surfaces X*. are all 
isotopic to at most [ra/2] copies of £* with a bounded number of standard 
tubes hence are all isotopic to a finite collection of surfaces as well. 
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In order to finish the proof we need to show that there are only finitely 
many ways to close up the finitely many surfaces £*., in each cusp. Consider 
the surfaces E9 corresponding to £*. for some specific i. If there are only 
finitely many indices q for which S* is isotopic to S* or to two copies of £*. 
with some standard tubes attached, then we disregard this particular £*.. 
We can assume by Lemma 3.6 that the intersection of £*. with the level 
horotorus Tr is only a fixed union of essential simple closed curves. Note 
that as we vary the surgeries the slope of the boundary curves changes in V. 

We can assume that any minimal surface cannot intersect any surgery 
torus in a disk. Hence we can apply Proposition 2.3 to conclude that the 
surfaces E^ — S* are a collection of annuli with at most one standard tube 
for each cusp. Therefore there are only finitely many ways to comlete S* to 
Eg by adding annuli plus possibly one tube to the boundary curves in each 
cusp. It is clear by general position that we can isotope the tube off the core 
of each surgery torus. Thus the surfaces Eg can be pushed into M* C M 
and there are only finitely many surfaces Eg up to isotopy. This completes 
the proof of Theorem 3.4. □ 

4. Non orientable surfaces and Haken manifolds. 

In this section we prove a version of Theorem 3.4 for manifolds Mq which 
either contain non-orientable surfaces or are Haken. 

Proposition 4.1. Suppose the manifolds Mq in M" are non-Haken but 
contain non-orientable surfaces and let g > go be a fixed integer. Let E^ be 
an irreducible Heegaard splitting surface of Mq of genus smaller or equal to 
g. Then there is a finite collection of surfaces E1,... , Er in M so that Eg 
is isotopic to one of the El 's. 

Proof. If there are only finitely many manifolds Mq which contain non- 
orientable surfaces, ignore them and use Theorem 3.4. This might require 
to increase the size of the allowed \q\. Hence we assume by Theorem 3.1 (c.f. 
[PR]) that there are infinitely many manifolds Mq in which the Heegaard 
surface Eg is isotopic to the boundary of a regular neighborhood of a non- 
orientable incompressible surface Sq with a single unknotted tube attached. 
The surfaces Sq define surfaces S* in M* and by [MSY] each such surface 
is isotopic to a least area surface S* in its isotopy class. Arguing just as 
in Theorem 3.4 these surfaces converge. As there is a standard way to 
reconstruct E£ from Sq there are only finitely classes of E*. The proof is 
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finished by an application of Proposition 2.3 to close the surfaces up. Note 
that in this case there is only a single tube joining the two sheets and so we 
do not get additional tubes in V. In fact Sq cannot have any tubes in V as 
it is incompressible. □ 

In order to prove the theorem for Haken manifolds we need the following 
definition due to Schultens (see [Sh]). 

Definition 4.2. Let R be a closed surface contained in the boundary 
of a 3-manifold M. Let Ui^ty be a pair of compression bodies defining a 
Heegaard splitting for M, and assume that R C dUi. Note that there is 
some component Rf C dUi (R! can be empty) so that U\ = iV(ii' U R') U 1- 
handles. Let h be a homeomorphism h : N(R) —* Rx I and p : R x / —> R 
the projection onto the first factor. 

Let Mi,M2 be two manifolds each with non-empty boundary and with 
Heegaard splittings (C/i, 1/2), (Vi, V2) respectively. Let iJi, R2 be two home- 
omorphic surfaces such that Ri C dUi C dMi and R2 C dVi C dM2 and 
let hi,pi, i = 1,2, be the corresponding functions respectively. 

Define an equivalence relation ~ on Mi U M2 as follows: 

1) If Xi,yi are points such that x^yi G N(Ri) and Pihi(xi) = Pihi{yi) 
then Xi~yi. 

2) If x 6 iJi, y 6 R2 and g(x) = y, where g : Ri —> i?2 is the homeomor- 
phism between the surfaces, then x ~ y. 

Puthermore we can arrange that the attaching disks on Ri x /(.R2 x I) for 

the one handles in Ui(Vi) respectively, have disjoint images in Ri(R2) and 
hence they do not get identified to each other. Now set: 

M = (Mi U M2)/ ~,    Wx = (Ui U V2)/ ~,    W2 = {U2 U Vi)/ - . 

Note that Wi = V2UN(R,
l)U (1-handles) and W2 = U2UN(Rf

2)U (1-handles) 
(the 1-handles connect 9+V2 to dN(R,

1) (d+U2 to 9iV(i?2) respectively)) so 
that Wi, W2 are compression bodies defining a Heegaard splitting (Wi, W2) 
for M. 

The Heegaard splitting.(Wi, W2) of M is called the amalgamation of the 
Heegaard splittings (#1, {72) of Mi and (Vi, T^) of M2 along Ri, R2 via the 
homeomorphism g. 

Theorem 4.3. Suppose the manifolds Mq in M" are Haken or contain 
non-orientable surfaces and let g > go be a fixed integer.  There is a subset 
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ofM" determined, as above, by a vector (iV{,... ,iV^)iVj > iVj', such 
that if Mq is any manifold in M0 and E^ is an irreducible genus g Heegaard 
splitting surface of Mq forg > go, then there is a finite collection of surf aces 
E1,... , Er in M so that Eg is isotopic to one of the Ez 's. 

Proof. In the case that Eg is strongly irreducible regardless of whether it is 
Haken or contains non-orientable surfaces, we can apply Theorem 3.4 and 
Proposition 4.1 to obtain the claim. This is because the only place that 
we used the fact that Mq is non-Haken in the proof of Theorem 3.4 is to 
conclude that Eg is strongly irreducible. 

If Eg is weakly reducible (i.e. not strongly irreducible) there is a maxi- 
mal system of disks A in each Mq so that after compressing Eg along A 
and throwing away any trivial 2-sphere components we obtain a closed 
incompressible surface L in Mq. As Mq has a negatively curved metric, 
L cannot have any essential 2-sphere or torus components. The sur- 
face L can be isotoped to a least area surface, again denoted by L (by 
[MSY]). Since genus (L) < genus(Eg) — 2 = g — 2, then by Lemma 3.2 
Area(L) < 27r(2 - 2(g - 2))/C. Hence as in Corollary 1.4, for \q\ large 
enough, L cannot intersect any of surgery solid tori V, attached at the cusp, 
in meridian disks. Since L is minimal and has bounded area we can choose a 
horotorus Tr for each cusp of M, as in Theorem 3.6 so that Tr DL is composed 
only of essential curves. Therefore, since L is incompressible, it follows that 
at this cusp V D L must consist entirely of annuli. Now it is easy to check 
that in a negatively curved solid torus with pinched curvature close to —1, 
a least area annulus must be very close to the boundary. (For example, use 
the coarea formula, (see [Si]) to compare a "long" annulus with one near the 
boundary.) So we can find a smaller solid torus inside V which is disjoint 
from L. Hence L is contained in M* which is Mf with cusps truncated at a 
suitable choice of horotori T. Notice that by Haken's finiteness theorem (see 
[Ha]), since M* is negatively curved and hence irreducible and atoroidal and 
genus (L) < g — 2 is bounded, there are only finitely many isotopy classes 
for such incompressible surfaces L in M*. 

Since L is homologous to Eg in Mq it follows that L separates Mq. We can 
split Mq along L into several components Mj,... , Mq and there are only 
finitely many possibilities to do so. Since L is contained in M* the surgery 
solid tori on cusps of M are contained in the components Mq,... , Mq. The 
Heegaard surface Eg of Mq induces Heegaard splittings on the components 
Mg1,... ,M* as follows: 
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Let (Hi ,#2) be the handlebodies of M with splitting surface E^. As 
Eg is weakly reducible let A be a maximal system of disjoint non parallel 
compressing disks. Consider M* the closure of a component of M — L. 
We can assume that M* C Hi U JV(A2), where A = Ai U A2 and A* is 
the sub-collection of A consisting of compression disks for E9 in Hi. Set 
Ui — Hi HMg. We can obtain M* from Ui by attaching 2-handles and hence 
one can obtain Ui from M* by removing 2-handles (i.e., by drilling out 
tunnels), thus Ui is connected. So Ui is a single component of Hi — N(Ai) 
and hence is a compression body. Now U2 = Mg—Ui is obtained from a collar 
of M^ n E* by attaching 1-handles. It is connected because d+Ui = d+U2 
and therefore it is also a compression body. Thus (U^U^) is a Heegaard 
splitting for M*. It is called the induced Heegaard splitting on M*. Denote 
the induced Heegaard surface dU[ = dU^ by E^. Note that the component 
of L which is M* is contained either entirely in d-Ui or entirely in d-U2- 

Conversely, assume that the components M^,... ,M^ have Heegaard 
splittings E^. We glue the components M^,... , M™ together along the com- 
ponents of L to obtain Mq. Then since regular neighborhoods are unique up 
to isotopy, we can amalgamate the Heegaard splittings E^ via the identity 
map on the components of L to a well defined Heegaard splitting E9 of Mq. 
Each E^ has genus less than p, but the total genus of all the surfaces E^ is 
at most g + (g — 2) = 2g — 2, since an "extra copy" of all the components of 
L is used in this process. 

As L is a minimal surface, each component of L forms a barrier needed 
for applying the minimax method of [PR] so we can apply Theorem 3.1. 
So if E^ is strongly irreducible, either it is isotopic to an unstable minimal 
surface in M* or it is isotopic to the boundary of a regular neighborhood 
of an incompressible non-orientable surface with a single unknotted tube 
attached. In either case, we can use Theorem 3.4 or Proposition 4.1 to show 
that the number of isotopy classes of E^, for \q\ sufficiently large in each of 
components Mq is finite: This is because Theorem 3.1 of [An] is also true in 
the case of 3-manifold with boundary which is a minimal surface (which is 
the case here as we have arranged L to be minimal). 

Now choose integers JV{,... , JV^ determining a sub set M0 of M so that 
if qj = Pj/rj and max{|pj|, |r^|} > ATj, j = 1,... ,d, then the require- 
ments of Theorem 3.4 and Proposition 4.1 hold for each of the components 
Mj,... , M™. As there are finitely many surfaces in each of the components 
there are finitely many amalgamated surfaces Eg in Mq up tp isotopy. By 
Proposition 2.8 of [Sh] the original Heegaard surface Eg is isotopic to one of 
the finitely many amalgamated surfaces. 
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Finally, if E* is not strongly irreducible, then it can be compressed fur- 
ther using disjoint disks in both its compression bodies, to give a new in- 
compressible surface 1/ in M* which is not boundary parallel. We split M* 
along 1/ and apply the argument again to get a new Heegaard splitting for 
the components of M* — L. Again by Haken's finiteness results (see [Ha]), 
this process can occur only a bounded number of times, so that eventually 
we must get strongly irreducible splittings. That is Mq is split along a max- 
imal system of incompressible surfaces coming from T,q. Note that we need 
to adjust the vector N^... ,N'd of integers and the set M0 each time we 
apply the above argument. This conpletes the proof of Theorem 4.3.        □ 

5. Proof of Theorem 0.1. 

Proof of Theorem 0.1. Choose a d-tuple of integers (iVi,... , iV^) so 
that for all |g| bigger than \q0\ = min{|gi|,... , |^|} where Qj = Pj/rj and 
max{|pj|, \rj\} > Nj, .7 = 1,... , d the requirements of Theorems 3.4, 4.3 and 
Proposition 4.3 are satisfied and let g > go be some positive integer. Then 
it follows that any irreducible Heegaard surface E9 of genus < g of Mq is 
isotopic to some surface Ei in a finite collection {E1,... , Er}. Denote this 
surface also by E^. It follows from the proof of Theorem 3.4 that for each 
cusp in any of the manifolds in M' we can isotope the surface Eg off the 
core of the surgery torus. Furthermore this isotopy can be taken to be the 
identity map outside a small torus neighborhood of the core. 

Consider a handlebody H bounded by Eg, and assume it contains 
geodesies, corresponding to a subset {c^,... ,Cit} of the cusps, forming a 
link £ C H. Compress Eg as much as possible in the complement of £. Let 
E^ be a component of the resulting surface, (possibly disconnected), bound- 
ing a handlebody H' (after surgery) containing a sublink Cf of C so that 
Eg is incompressible in H' — £. As H' — £ is a Haken manifold it has a 
unique torus decomposition into manifolds whose interiors admit geometric 
structures (see [Th2]). 

We consider the various possibilities. 
a) Assume H' — £ contains no incompressible annuli. If H' — £ does 

not contain nonboundary parallel incompressible tori then it is hyperbolic. 
By doing negatively curved Dehn surgery on the cusps {c^,... ,Cjt} we 
obtain a handlebody with a complete metric of negative curvature and fi- 
nite volume. The boundary is a totally geodesic surface in a handlebody 
so it must compress and this is a contradiction.   If H' — £ does contain 
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non-boundary parallel incompressible tori these tori must compress after 
appropriate surgery on C!. This is because all these Dehn surgeries yield 
handlebodies which do not contain incompressible tori. Splitting W — £ 
along these tori we obtain manifolds with no non-peripheral incompressible 
tori. Hence by Thurston [Th2] we have manifolds which admit a complete 
hyperbolic metric. Choose an innermost disk D' on any of the compressing 
disks D for the tori. The disk Dl must be contained in a hyperbolic com- 
ponent N of the manifold which also contains one of the original cusps and 
it bounds a non-trivial curve on one of the tori, say TQ. This would imply 
that we have a compressible simple closed curve on a horotorus in the cusp 
of the hyperbolic manifold iV determined by TQ, which is a contradiction. 

b) Assume H'—£ contains incompressible non-boundary parallel annuli. 
Hence it contains Seifert fibered pieces, (see [JS]). Suppose a component of 
the Seifert characteristic variety contains more than one component of the 
link £. Then either there is an incompressible annulus between two cusps 
which is embedded in M, contradicting the fact that M is hyperbolic, or if 
this annulus is compressible in M then a cusp bounds a disk in M, which is 
also impossible. 

If a bounded component of the Seifert characteristic variety does not 
contain any component of £ it is homeomorphic to an annulus x J, since 
it is contained in H'. In this case cut H' — £ along outermost such annuli 
repeatedly and all incompressible non-boundary parallel tori. Some compo- 
nent is a manifold which, after appropriate surgery on the components of 
£\ admits a hyperbolic metric and totally geodesic compressible boundary 
and we have the same contradiction as in (a). The boundary of the cut 
up manifold is compressible regardless of whether the annulus in H' — £ 
is compressible or not in H1. Note that if the annulus x I is incompressible 
in H' then the cut up manifold after surgery is actually a handlebody. We 
conclude that a component of the relative characteristic variety of Hl — £ 
contains only one cusp. Now there are two possible cases: 

1) The relative characteristic variety of H' — £ meets the surface dH' in 
a closed surface. As the boundaries of the characteristic variety are tori or 
annuli this surface must be a torus. Hence H'—C is homeomorphic to a cable 
space, i.e., a solid torus D2 x 51 from which a regular neighborhood of a p, q- 
torus knot on a smaller concentric torus was removed. As infinitely many 
surgeries qi = mi/ni where rrii ^ nipq±l on this space give a solid torus the 
p,q-cable space must be trivial, that is a 1,0-cable (see [Go], Lemma 7.2). 
In other words £ is a core of H' and hence of H. 

2) The characteristic variety meets the surface dH' in annuli. Hence 
there is an annulus between dH' and dN(£) (take an arc in the bzise orbifold 
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between the corresponding boundary components and cross it with S1). The 
curve on 5A/"(£/) is uniquely determined by the Seifert fibration. Now repeat 
the argument for each component of the compressed handlebodies of the 
original surface which contains a component of the link £. If they are all 
cores then we are done, if not then we have at least one annulus as claimed. 

□ 

6. Super additive tunnel number knots exist. 

Proof of Theorem 0,6, The manifold K(m/n) has a genus r Heegaard 
splitting which can be seen as follows: Embed an equatorial S2 in the pair 
(53,iir) as indicated in Fig. 12. It separates the pair (53,iiT) into two 3- 
balls each with a system of r unknotted arcs. Consider the 3-ball B on 
the "inside" of S2. After removing a regular neighborhood of the knot we 
obtain a ball minus regular neighborhoods of the unknotted arcs, i.e., a 
genus r handlebody. The complement is composed of the surgery solid torus 
together with the regular neighborhood of r — 1 tunnels (i.e., 1-handles) and 
hence it is a genus r handlebody. In order to prove the Theorem we need to 
show that K^m/n), except for a simple (see section 1) subset of surgeries 
{ra/n}, do not have Heegaard splittings of smaller genus. 

The knot space S3 — Nffi') is a hyperbolic manifold, (see [Ka]), with 
one cusp hence we can apply Theorem 0.1. Assume to the contrary that 
there is a set of surgery coefficients {w!/n1} which is not simple so that 
K'(m!In') are all of smaller genus than r. For each such manifold K^m! jn1) 
consider such a Heegaard splitting surface ^{m'/n'). By Theorem 0.1 all 
these surfaces are isotopic to surfaces in some finite collection. Hence there 
is a fixed surface E in S* — N{K') and some non simple subset of surgery 
coefficients {mn/n"} so that the manifolds K(mn/n") all have a Heegaard 
splitting isotopic to E. Furthermore either there is an annulus between a 
unique simple closed curve f3 on dN^') and E or K' is a core for one of the 
handlebodies bounded by E. In the first case, by Theorem 0.1 case (b) and 
Remark 0.2, there is a basis a, (3 for the homology of dN(K') so that the 
surgery must have been along curves 7 of the form 7 = a + n/3, where n G Z. 
As the set of surgery coefficients was not simple we conclude that Kf is a 
core of a handlebody of genus smaller than r bounded by E. But this means 
that the tunnel number of K' is smaller than r. In particular the cardinality 
of a minimal generating system of 7ri(53 — N^')) is smaller than r. This is 
a contradiction since Lemma 2 of [BLM] it was proved that the cardinality 
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of a minimal generating system of TTI(S
3
 — N(Kf)) is r. 

KJX... ..x... /      \/ 

x-1 tunnels 

Figure 12. 

Proof of Corollary 0.7.    We use the proof of Theorem 1 of [BLM]. By 
Theorem 0.6 there exist infinitely many knots Ki and K2 in S6 which are 
the branch sets of 2-fold branched covers M^ and MK2 of S3 so that MKl 

and MK2 are obtained by some surgery on the pretzel knots K'(:pi,... ,pr), 

^(PIJ • • • JPS) respectively. 
In Lemma 1 of [BLM] it was proved that £(#1) < (r - l)/2 and t^) < 

(5 - l)/2. Assume also that 1(^4X2) < *(ifi) +1^)- This implies that 
53 __ N(KI#K2) has a decomposition into a handlebody ifi of genus at 
most (r + s)/2 and (genus ill - 1) 2-handles. The regular neighborhood of 
the tunnels and the knot is the complementary handlebodyj^. The pair 
Hi, H2 is a Heegaard splitting of Ss of genus < (r+s)/2. Let M be the 2-fold 
branched cover of 53 branched over Ki#K2- The above Heegaard splitting 
of Ss lifts to a Heegaard splitting of M of genus < r + s - 1. Eiowever the 
2-fold branched cover of 53 branched over Ki#K2 is equal to the connected 
sum of the two 2-fold branched covers of 53 branched over Ki and K2, i.e., 
M = MK^MK^ By Theorem 0.6 and the additivity of genus, the genus of 
M! is r + 5; hence a contradiction. As the tunnel number can go up at most 
by one it follows that: 

ttK^Ki) = t(ifi) + £(tf2) + 1 = (r + 8)12. D 
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7. Manifolds Mq of genus two. 

If the manifolds Mq in M7 all have Heegaard splittings of genus two, 
parts of the argument simplify considerably. We first notice that the genus 
two Heegaard splittings are irreducible as the manifolds Mq in M' are hyper- 
bolic. Furthermore any Heegaard splitting of genus two of Mq is strongly 
irreducible. This is because by the proof of Theorem 3.1 of [CG] if the 
Heegaard splitting is not strongly irreducible then Mq is Haken and we can 
compress the Heegaard surface to an incompressible surface S. An Euler 
characteristic argument shows that the surface S must be either a torus or a 
2-sphere, but hyperbolic manifolds do not contain such incompressible sur- 
faces. Hence we can apply Theorem 3.1. In order to prove Theorem 3.4 we 
made a crucial use of Proposition 2.3. However in the case of genus two we 
have a simpler statement and a much simpler proof for this Lemma given 
as follows: 

We use the notation of Theorem 3.4. 

Lemma 7.1. Assume that the genus of the surfaces E^ is two. Then the 
surfaces Eg — E* are collections of annuli. 

Proof. First note that 9E* is a collection of essential curves on Ts which 
are also essential curves in Eg and Mq as they are nontrivial multiples of 
geodesies. The surfaces Eg — E* are a collection of annuli connected by 
tubes. Hence the largest Euler characteristic possible of any such surface is 
—2. This occurs when two annuli are connected by one tube or as one annu- 
lus with one tube attached. One option is that E* is two or one annuli. Each 
of the annuli E* together with the annuli on 7^, which they bound, form a 
torus. This torus must be compressible as the manifold Mq is hyperbolic and 
cannot contain incompressible tori. As <9E* is a collection of essential curves 
on Ts and the torus is compressible, the annuli E* must boundary compress. 
Hence, since Mq is irreducible, the annuli E* are boundary parallel. This 
implies that Eg is isotopic into a neighborhood of a geodesic, which contra- 
dicts Eg being a Heegaard splitting. Otherwise this surface must connect to 
a surface with four boundary components. The connected surface with the 
largest Euler characteristic and four boundary components is a four times 
punctured sphere. Hence the connected surface Eg has genus three, which 
is a contradiction. □ 
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Remarks. 
1) J.Pitts and H. Rubinstein have proved in [PR] that all closed ori- 

entable 3-manifold with negative sectional curvature, have only finitely many 
irreducible Heegaard splittings of a given genus, up to isotopy. This proves 
a conjecture of Waldhausen in the negative curvature case. 

2) Note that J. Hass proved in [Hs] that genus two manifolds have finitely 
many Heegaard splittings. This also follows from Theorem 0.1 for the man- 
ifolds in M'. 

3) For the special case of manifolds with one cusp we can use a theorem 
of Ying-Qing Wu, (see [Wu]), to prove statement (b) of Theorem 0.1 and 
Remark 0.2. 
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