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1. Introduction. 

In the first part of this paper we obtain a new gradient estimate for star- 
shaped hypersurfaces moving in the direction of their normals with speed 
a function of the principal curvatures. For convex hypersurfaces moving by 
their curvature normal vectors, a uniform gradient estimate for the support 
function was obtained by Chow-Gulliver [CGI]. The proof was based on 
a fixed plane version of the Aleksandrov reflection method. Furthermore, 
in Chow-Gulliver [CG2], the Aleksandrov reflection method was applied to 
embedded hypersurfaces moving by their curvature vectors. In section 2, we 
apply their reflection result to obtain a uniform gradient estimate for the 
radial function of a starshaped hypersurface moving by its curvature vec- 
tor, which holds outside a certain compact set depending only on the initial 
hypersurface. This gradient estimate should be useful in proving long-time 
existence theorems for starshaped hypersurfaces expanding by nonhomoge- 
neous functions of curvature. For homogeneous of degree one functions, 
long-time existence theorems were proved by Gerhardt [G] and Urbas [U2]. 
We also give a new geometric proof of the gradient estimate for the support 
function for evolving convex hypersurfaces in [CGI]. The gradient estimate 
for the support function was used as a first step in proving long-time ex- 
istence by Chow-Tsai [CT1] in the case of expanding convex plane curves, 
Chow-Tsai [CT2] to remove the homogeneity assumption on the speed of 
the flow in the theorems of Gerhardt [G], Huisken [H] and Urbas [Ul] for 
expanding convex hypersurfaces, and Chow-Liou-Tsai [CLT] to the equa- 
tion ut — F(Au + nu) on 5™, where F is an arbitrary increasing function. 
Finally, see Tsai [T] for the global existence and convergence of expanding 
flows of starshaped plane curves with arbitrary nonhomogeneous speeds. 
Tsai proved a uniform gradient estimate for the radial function via intricate 
maximum principle arguments. Using different methods we partially gener- 
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alize Tsai's gradient estimate to higher dimensions. Our estimate is weaker 
than his since it only holds outside a fixed set. 

In the second part we consider degenerate parabolic conformal flows 
of locally conformally flat metrics. We prove a uniform gradient estimate 
for the logarithm of the conformal factor. This result extends Ye's gra- 
dient estimate for the Yamabe flow [Y]. It is easy to see that Ye's proof 
extends verbatim to strictly parabolic conformal flows since one can apply 
the strong maximum principle and the Hopf boundary point lemma in this 
case. However, for degenerate parabolic flows, such a proof is not possible. 
To circumvent this difficulty, we apply a fixed plane reflection method di- 
rectly on S™, which only uses the weak maximum principle. This version of 
the Aleksandrov reflection method is analogous to the one used in Chow- 
Gulliver [CGI] for flows of convex hypersurfaces and also has the advantage 
that one can see geometrically how the gradient estimate for the logarithm 
of the conformal factor arises. For applications to long-time existence and 
convergence theorems for nonlinear conformal flows, see Liou [L]. 

2. Embedded and starshaped hypersurfaces. 

Let Mn C ]Rn+1 be an embedded smooth hypersurface and 11 be a 
hyperplane perpendicular to a unit vector V G ]Rn+1, i.e., there is a constant 
C such that (11, V) = C. Denote by H+Ql) = {x e IRn+1 : (a?, V) > C} 
and #-(11) = {x e lRn+l : (x,V) < C} the half-spaces to both sides 
of 11. Let Mn be the reflection of Mn about the plane 11, i.e., Mn = 
{x-2((x,V)-C)V:xeMn}. 

Definition 2.1. We say that we can 

(1) reflect Mn strictly at (11, V) if Mn f] £L(n) C int(Mn) f)H..(U) and 
V <£ TM™ for any x e Mnf]U. Here int(Mn) denotes the region 
interior to Mn. 

(2) reflect Mn strictly up to (11, V) if we can reflect Mn strictly at (IT, V), 
where D7 is any hyperplane parallel to 11 such that (U.\V} > C. In 
particular, this implies V <£ TMg for any x G Mnf]H+(Ii), 

Let Pn be a closed n-dimensional differentiable manifold and X0 : Pn —> 
Rn+1 parametrize a smooth embedded hypersurface M0 = X0(P

n). Sup- 
pose that 

X :Pn x [0,T)^IRn+1 
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ff+(II) 

Figure 1. Mn reflects strictly at (11, y). 

is a solution to the evolution equation 

(2.1) 

(2.2) 

dX       Z7V 

X(0) = X, 

,Kn)N 

O) 

where KI < «2 < * * * < ^n are the principal curvatures in increasing order 
and AT is the unit inward normal to Mt := Xt(Pn). Here we assume F : 
A -> R is a C1 function, where A C {(Ai, A2,... , An) € TRn : Ai < A2 < 

- < An}, satisfies the strict parabolicity condition: 1 

OF 
— > 0, for all 1 < i < n. 

The main result that we shall apply in this section is the following, which 
was announced in Chow-Gulliver [CGI].2 

Theorem 2.2 (Chow-Gulliver).    Let X : Pn x [0,T) -» ]Rn+1 be an 
embedded C2 solution to equation (2.1)-(2.2), where F satisfies the strict 

1It is not difficult to relax the C1 assumption on F, assuming a strict monotone 
property for F as the parabolicity condition. 

2Extended versions of this theorem will appear in Chow-Gulliver [CG2]. For 
completeness, we provide a short proof. 
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parabolicity condition. If we can reflect Mo strictly at (resp., up to) (11, V), 
then for all t e [0,T) we can reflect Mt strictly at (resp., up to) (If, V). 

Proof We shall show that reflection strictly at (11, V) is preserved under the 
evolution equation (the preservation of reflection strictly up to (11, V) then 
follows immediately.) If the result is not true, then there exists to G (0, T) 
such that M/1 fl fl-(n) C int(M*) f) tf_(n) for all t e [0, t0), F ^ T^Mt for 
all a: G Mt f]n and t € [0,t0),3 and either 

(i) M£n^onff-(n)^0or 

(ii) y e T^M^, for some a?0 6 Mto fin. 

Case (i): Suppose #0 G M^QM^ n^-(n). In a space-time neighborhood 
of (a?o, *o) in lRn+1 x [0, T) f both Mj1 fl #- (H) and Mt f) ^- (H) are graphs 
of smooth functions over open sets in TXoMt0 = ra;0Mt

n, which we denote 
by 

/:tf x(t0-e,to + €)->]Ei 

and 
/n:C/x (^~€,^ + e)->]R, 

respectively, where C/ C TXoMt0 is an open neighborhood of x0 — 0 in 
TXoMt0. The functions / and /n are uniquely defined by 

x + fix, t)u e Mt        and        x + fu(x, t)v e Mj1 

for all (x, t) G U x {t0 — 6, ^0 + e), where v is the unit outward normal to Mt0 

at x0. OnU x (t0 — e, to], we have f > fu and both / and /n are solutions 
to the same strictly parabolic second order PDE. Since /(0, to) = /n(0, to),4 

by the strong maximum principle, we have / = fu on U x (to — e,t0]. This 
is a contradiction and case (i) is proved. 
Case (ii): Suppose V G TXoMt0 for some x G M^fl11- V^re have 
TXoMj* = T^M^ and near (^,t0), M*n#-(n) and M^flff-CH) are 
graphs of smooth functions / and /n : U x (to — e,to + e) —> JR., where 
(7 C T^ Af^ f) ^-(n) is a half-neighborhood of Xo = 0. Moreover, / > fn 

on U x (t0 — e,to], V^/X^ojto) — ^(Z11)^,^), and V" is the unit outward 
normal at Xo — 0 G dU. The Hopf boundary point lemma implies / = /n 

on U x (io — e,to]j which again is a contradiction and case (ii) is proved. 
3Here \nt(Mt) denotes the region interior to Mt. 
4Here we identified x0 with the origin in TXoMto. 
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TXoMto=TXoM^ 

Figure 2. Case (i): interior contact. 

Observe that if we can reflect Mn strictly up to (11, V), then V <£ TxM
n 

for all x e Mnr|#+(n)- T1:lis implies Mnf]H+(U) is a graph over 11. 
Hence we have the following 

Corollary 2.3. Let X : Pn x [0,T) -> IRn+1 be an embedded solution to 
equation (2.1)-(2.2). If we can reflect Mp strictly up to (11, y), then for all 
t e [0,r)y V i TxMt for all x e Mtflff+Cn), and M^fl #+(11) is a graph 
over 11. 

Perhaps more importantly, this implies that the tangential component of a 
point on Mt is uniformly bounded. 

Corollary 2.4. Let X : Pn x [0,T) -> ]Rn+1 6e an embedded solution to 
equation (2.1)-(2.2). There exists a constant C depending only on M0 such 
that 

|a:-<a:,i\0W|<C 

for all x £ Mt, t e [0,T); where N is the unit normal to Mt at x. 

Proof Choose C > 0 so that M0 c Bc(0), where Bc(0) is the ball of radius 
C centered at the origin. By Theorem 2.2, we can reflect Mt strictly at (11, V) 
for all V e Sn and H such that (11, V) > C. Hence V <£ TxMt for all x e Mt 
such that (x,V) > C; this is equivalent to (x,W) < C for all W € TxMt 
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V    \ 

\ T  M   = T  M,n 

Figure 3. Case (ii); boundary contact. 

with \W\ - 1. If we let W = {x - (x,N)N)/\x - (x9N)N\ € TXMU
5 then 

(7 > (a:, W) — \x — (a?, A^}/^! and the corollary is proved. 
In the case where the hypersurfaces M$ are convex for all t <E [0,T), 

this corollary gives a geometric proof of the gradient estimate of Chow- 
Gulliver [CGI].6 Recall that the support function u : Sn —► R of a convex 
hypersurface M is defined by u(N) = {x,N), where a? G M is the unique 
point with N as its outward unit normal. 

Corollary 2.5. Lei u : Sn x [0,T) —► R 6e fAe support functions of the 
convex hypersurfaces AT*. T/iere ea;i5te a constant C depending only on u(0) 
such that 

\Vu(x,t)\ <C, for all fat) GSnx [0,T). 

Proof Choose the constant C as in the corollary above. Given any point 
iV G Sn, let xt G Mt, t G [0, T), be the unique point such that N is the unit 
outward normal to Mt at xt. It is a standard formula that xt — u(N)N + 
Vu(N); this implies Vw(A^) = xt - {xt,N)N and the corollary follows. 

When the hypersurfaces Mt are starshaped for all t G [0,T), we obtain 
a new gradient estimate for the radial function at points outside a certain 
compact starshaped region associated to the initial hypersurface M0. This 

5 Of course if \x — (x, TV) JV| = 0, then we are done. 
6In Chow-Gulliver [CGI], the gradient estimate is proved under the weaker 

hypothesis that the equation is degenerate parabolic. 
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XAm = x-{x,N)N 

Figure 4. The normal line always intersects Bcf(O). 

gradient estimate relies on the fact that we can reflect up to just inside the in- 
terior of the initial hypersurface.7 Suppose that X : Pn x [0, T) —> ]Rn+1 is a 
solution of (2.1)-(2.2) parametrizing embedded hypersurfaces M$, t G [0, T). 
It is clear that for any V G 5™, there exists a hyperplane 11 perpendicular to 
V such that we can reflect M0 up to (11, V) and nnint(M0) 7^ 0. Actually, 
we can reflect up to a certain fixed amount in to the interior of M0. Given 
V G Sn, there is a unique hyperplane 11^ perpendicular to V such that 
M0 fl #+(!#) = 0 and M0 fin^ ^ 0 (e.g., H^ - TXM0 for some a G M0.) 
By Theorem 2.2 and the compactness of M0, we have 

Corollary 2.6. Lei X : Pn x [0,r) -> lRn+1 be an embedded solution to 
(2.1)-(2.2). There exists e > 0 depending only on M0 such that for all 
t G [0,T) we can reflect Mt up to (11^ — eV, V) for every V e Sn, where 
11^ — eV = {x — eV : x G H^}. In particular, if Mo C BR(C), then we can 

7For this statement we only need the hypersurfaces to be embedded. 
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reflect Mt up to (11, V) provided fl+fll) fl BR-e{C) = 0. 

We apply this corollary to starshaped hypersurfaces. Suppose that X : Pn x 
[0,T) -^ Rn+1 is a solution to (2.1)-(2.2) parametrizing hypersurfaces Mt 
starshaped with respect to the origin. The radial function r : Sn x [0, T) —> 
]R+ is defined so that for each (z,t) e Sn x [0,T), r(j2;,t) is the unique 
positive number such that r(z,t)z G Mt. We have the following gradient 
estimate for the radial function. 

Proposition 2.7. There exists a constant C depending only on M0 such 
that for all (z, t) e Sn x [0, T) with r(z} t)z e if+(ng); ^e have8 

|VrCM)|<a 

Proo/ By Corollary 2.6, there exists a constant 6 > 0 depending only on 
M0 such that for all (z9t) e Sn x [0,T) with r(z,t)z e fl"+(ng) and all 
W G 5n such that (W, z)>l-6,we can reflect Af^ up to (Uw, W), where 
Uw = {r(z,t)z + X : (X,P7> = 0}. Hence W ^ Tr(;2)t)2Mt for all such W, 
which implies the gradient estimate 

The proposition follows from this estimate and the following 

Lemma 2.8. There exists a constant C depending only on M0 such that at 
all points (z, t) e Sn x [0, T), 

r2|Vr|2 < C(r2 + |Vrf). 

In particular, if r2 > C, then 

Cr2 

|Vr|2 < 
r2-C' 

Proof. Substituting the formulas x = r^),? and 

r(z)z — Vr(z) 
N = 

y/r(z)2 + \Vr(z)\2 

3This gradient estimate actually holds on a larger set. 
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x = r(z,t)z 

Figure 5. Tilting the plane of reflection. 

into Corollary 2.4 yields the inequality 

r2(r • z — Vr) 
r - z — <C, 

r2 + | Vr|2 

which is equivalent to 

r2|Vr|4 + r4|Vr|2 < C(r2 + \Vr\2)2, 

and the lemma follows. 

Finally, for general embedded solutions, we observe the following easy con- 
sequence of the main theorem. 

Corollary 2.9. Let X : Pn x [0, T) -* lRn+1 be a smooth embedded solution 
to equation (2.1)-(2.2); where F satisfies the strict parabolicity condition. 
Then 

(i) there exists a constant C depending only on M0 such that 

max \x\ — min \x\ < C, 
x€Mt xeMt 

for all t€ [0,r). 
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y/8{2-8) 

Figure 6.   Largest possible gradient: Ar/rAz « (1 — S)/y/8{2 — 8) 

(ii) there exists a ball B depending only on M0 such that Mt ~ B is star- 
shaped with respect to the center of B for all t GJO^T). In particular, 
one may take B to be any ball such that M0 c int(B). 

Proof As before, choose C such that M0 c Bc(0). Given t e [OjT), choose 
xi,X2 G Mt such that \xi\ — mmx£Mt \x\ and |a?2| = maxzeM* \x\* Define 
the hyperplane II by 

H = {W e IRn+1 : (W,X2 - xi) = C\X2 - xi\}. 

By Theorem 2.2, we can reflect Mt strictly up to (n, ]f^j) for all t G 
[0, T). This implies dist(#2,n) < dist(^i,n), or equivalently 

#2, 
X2 —xi 

\X2-Xi\ 

. X\ - X2    x   ,   „ 

Hence \x2^ - |^i|2 < 2C\x2 -x\\< 4C|aj2|, and thus |a?2| < |a?i| + 4C 
(ii): This follows from Corollary 2.3, we leave the details of the proof to 

the reader. 

3. Conformal flows on Sn. 

In this section we consider degenerate parabolic second order confor- 
mal flows invariant under the conformal diffeomorphism group of S™.   As 
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Figure 7. Mt reflects strictly up to (11, jf^j)- 

remarked in the introduction, it is easy to see that Ye's proof of the gradi- 
ent estimate for the conformal factor of the metric under the Yamabe flow 
[Y] extends to uniformly parabolic flows since the strong maximum princi- 
ple and the Hopf boundary point lemma may be used. We observe that a 
fixed plane reflection method applies to conformal flows. This method is 
essentially equivalent to the Aleksandrov moving plane method pioneered 
by Gidas-Ni-Nirenberg [GNN], Schoen [S1],[S2] for scalar curvature prob- 
lems, and Ye's extension to the Yamabe flow. However, for the parabolic 
flow our fixed plane method has the advantage that only the weak maxi- 
mum principle is used, which allows for degenerate parabolic flows. We also 
apply the reflection method directly on Sn instead of the usual practice of 
stereographically projecting the equation to R™. This makes Ye's gradient 
estimate (and our extension) more transparent geometrically. 

Let N e Sn C ]Rn+1 be an arbitrary point, which we shall consider as the 
north pole, that is, we rotate coordinates on Mn+1 so that N — (0,... , 0,1). 
The south pole shall be denoted by S = —N. Stereographic projection 

a : Sn - N -> nn 

is defined by 

<Kyi,--- >yn+i) - ' 
1 - J/n+l ' " " ' 1 - S/n+l 
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and its inverse is given by 

a    {xu ...,xn)- y^2 + 1,---, ^ja + 1, ^2 + lJ ■ 

We also have the reflection about the equator 

p : 5" -* Sn 

defined by 
p{y)=y-2{y,N)N. 

Finally, we introduce the conformal diffeomorphisms corresponding \ria a to 
dilations in IRn. Given a > 0, define 

<Pa=<T-1oaoa:Sn-+Sn, 

where a : JRn —> IRn is multiplication by a. In particular, (pa fixes both 
N and S, and <pi is the identity. Moreover, (pa takes points closer to S for 
a < 1, and takes points closer to N for a > 1. Hence, for any metric g 
on Sn, cp^g is concentrated more near N for a < 1, and concentrated more 
near S for a > 1. 

We now consider an arbitrary metric g conformal to gsn. Let u : S™ —► 1R 
be the conformal factor defined by 

It is somewhat clear geometrically that if we concentrate the metric g enough 
near N by pulling back by <£>a, it will be greater than its reflection on the 
northern hemisphere. However, to prove this in detail requires a compu- 
tation, which we shall carry out below. Let S^ = {y e Sn : (y, N) > 0} 
denote the northern hemisphere. 

Proposition 3.1.  There exists a constant a0 e (0,1) such that for all a € 

<P*a9 > P*<P*a9 on S%. 

Moreover, a0 may be chosen independent of N e Sn. 

Proof The formula for the pull-back by cr-"1 to ]Rn of an arbitrary metric 
conformally related to gsn is 
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Using the formula |0-(y)|2 = i-^"1"* > we compute that the pull-back by a to 
Sn of an arbitrary metric conformally related to gRn is given by 

oH?9*>m = (1_^+i)2^^gsn(y),       y E S". 

Finally, we observe that 

a*(ewgRn)(x) = a2ewWgRn(x). 

Combining all of the considerations above, we And that 

By the formula above, the proposition is equivalent to showing that for a 
sufficiently small, 

a2 + 1 + (1 - a2)yn+i       ^M^opfeH-u^fo))] 
c^ + l-Cl-a2)^!- 

for all y e Sft. First observe that using the formula above and the inequality 

osCsnix := maxifc — mmu > u((pa 0 p{y)) — u((pa(y)), Sn Sn 

we find that if y G Sn satisfies 

eoscsnu/2_l   a2 + 1 

yn-^i > 
eoscsnu/2 + 1   i-a

2' 

then (p^g(y) > P*(Pa9(y)-   ^n particular, if a < e  oscsnu/2^ then for all 
y e Sn such that 

l+eoscsnu 
2/71+1 - (1 + eOSCsnU/2)2' 

we have (Pa9(y) ^ P*(Pa9(y)' That is, for a sufficiently small and y suffi- 
ciently close to N (depending only on #), the metric is greater than or equal 
to its reflection. 

On the other hand, using the previous formulas for a, a-1, and a, we 
compute that 

/o i\ /   \ a2 - 1 + (a2 + l)j/n+l an 
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Let L = sup^y \u(x) — u(y)\/dists"(x,y) be the Lipschitz constant of u on 
Sn. To prove the proposition, it is sufficient to show that for any e > 0, 
there exists Q!0 G (0,1) such that for all a € (0, Q!0], we have 

a2 + 1 + (1 - a2)yn+l       e%distSn{Vaop(y),9a{y)) 

a2 +1 - (1 - Q!2)yn+i 

for all y € Spj with yn+i < 1 — e, where 

distant o p^), ^(y)) = S1n    ^2 + 1 + (a2_1)j/n+J 

_       , /a2-l-(a2 + l)yre+1\ 
^2 + 1_(a2_1)2/n+1;- 

If we let z = yn+i, 0 = OL
2
, and C = L/2, then the inequality above is 

equivalent to showing that for all e > 0 there exists /30 € (0,1) such that for 
all p e (0, j30] and z e [0,1 - e] 

*(M<1, 

where 

sin 
t^-i + C/g + i^ 

p + 1 + (/? - l)z 

— sin 

Observe that # : (0,1] x [0,1] -> R is differentiable and $(/?, 0) = 1. One 
computes that9 

■'»•&».*> = ('-1 + $^) 

Hence, we have 

2(l + )9) 
(l + /? + ^-^)(l+/3-2 + ^)' 

if and only if 

— ln*GM<0 

'--^^ 
9We first computed this using mathematica and subsequently easily verified the 

formula by hand. 
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which is equivalent to 

■ t<Al~w 
(1-/3)2- 

Since $(/?, 0) = 1, we have ®(f3,z) < 1 for all ([3,z) such that z < 

y 1 — (i-gvs • Combining this with our previous inequality, we obtain that 
$(/?, z) < 1 for all (/?, 2) such that /? is sufficiently small. The proposition 
follows. 

Let Ua : Sn —> R denote the conformal factor of the metric </?* y: 

Clearly 

<P*a9 = eUa9sn- 

p*ip*ag = eu"°rgsn. 

The proposition may then be rephrased as saying 

Ua>Ua°p On Sjy 

for all a e (0,ao}. Let dS% = {y e Sn : (y,N) = 0} denote the equator. 
We then have for all y e dS^f, 

{Vua(y),N)>0, 

noting that N G TS™. By the formula for </?„<?(?/), we have 

4a2 

ua(y) = u o My) + in [a2 + 1_(1_a2)yn+i]2,     V € S». 

Hence 

2(l-a2)(V^+i,7V} 
(VMa(l/), A0 - (V(ix o ^(y), N) + 

a2 + 1 - (1 - a2)yn+1' 

Extend the vector field JV, defined on the equator, to a vector field N on 
Sn ~ {A", S} by parallel translating N along great circles passing through 
AT and S. By the formula above, we have for y e dS^ (the equator), 

(Vti«(y), JV> = -^-(Vu(My)),N) + 2(1 " f), 
a* + 1 a* + 1 

where we used yn+i = 0, (Vj/n+i,iV) = 1, and |(</?a)*V| = ^f|F| for all 
V G TS1^. Since (Vua(y),N) > 0, we have 
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x = Vn+l 

exp{oscsn u}-tl 
(exp{oscsnu/2}+l)'2 

exp{—oscsnu} 
-n2 •0 = a 

Figure 8. '$(/?, z) < 1 in the shaded region. 

for all a € (0, a0]. Noting that the only assumption on y and N is (y, N) = 0, 
we conclude that for every y, z e Sn such that (y, z) = 0, 

(3.2) <Vu«(v)),s>>    1    ao 

Oio 

where ^o = ^ao is the conformal diffeomorphism as before except with z 
as the north pole, and z is extended to a vector field I on S™ ~ {2, -2} in 
the same way we extended JV to ~N on Sn ~ {N, S}. 

Now given any x 6 Sn, let 

^a0(^) = {yeSn : (pz
ao(y) = a? for some z e 5n with (y, z) = 0}. 

By equation (3.1) we have (^0(y),^) = (^ - l)/(a^ + 1) for all y G 5n 

such that (y, z) = 0. This implies 

which is an (n-l)-sphere centered at a;, and 

QS + 1' 

-^oC^) := {2 € 5" : y£o(y) = ar for some y € 5" with (y, ^) = 0} 
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-x 

Figure 9. The (n-l)-spheres Ea0(x) and FQ0(X). 

Since Fa^x) is an (n-l)-sphere, taking x = (pz
ao{y) fixed in equation (3.2) 

implies (^u{x)^z) > -(1 — ofy/oio for all ~z e Sn such that {z,x) = 0. 
Therefore 

|Vtt(aOi<——, x£Sn. 
Oto 

Now the discussion above may seem trivial since u is any function on S™ 
and the constant a0 depends on u. However, the key point is this. Suppose 
that g — eugSn is a solution to a parabolic second order conformal flow, 
invariant under the (conformal) diffeomorphism group of Sn. By the (weak) 
maximum principle, if {<Pa)*9 ^ P*(Va)*P on ^ :— {x e Sn : (x,z) > 0} 
at t = 0, then it remains so for t > 0. Hence, by our previous remarks, we 
have a uniform gradient estimate for the conformal factor u. We formulate 
this result in more detail below. 

Let F : S2T*Sn®m+gSn x [0, T) -> R, where S2T*Sn denotes the bun- 
dle of symmetric covariant 2-tensors on Sn and TR+gs* denotes the positive 
ray in the subbundle Rflf^n = {u • gsn(x) : u € R,rc G 5n} C S2T*Sn, 
be a function such that F{f3{x)^{x)^t) depends only on the eigenvalues of 
the symmetric 2-tensor /? with respect to the metric 7 and the time t. We 
consider the evolution equation 

(3.3) 

dt 
9(0) =go = eu°gSn 

^(x,t) = F(R[cg{t)(x),g(x,t),t) ■ g{x,t),       xeST^e [0,T), 
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where Ric^) denotes the Ricci tensor of the metric g(t). Equation (3.3) is 
invariant under the group of conformal diffeomorphisms, that is, if g(t) is a 
solution to (3.3) and ip is a conformal diffeomorphism of Sn, then ip*(g(t)) 
is also a solution of equation (3.3). We shall also assume that equation 
(3.3) is (degenerate) parabolic, that is, F satisfies the following monotone 
property: F(pi - -^±^^(^1)7,7,*) > Fife - 2(^1)^7(^2)7,7^) for all 
t G [0,T), x e Sn, 7 e TR+gsn(x), and fafo e S2T*S2 such that fa < fa- 
When n > 3, this condition arises because if gij — fgij is a conformal 
variation of tjy, then {Rij — 2(n-i)9ir)~ ~ —^^^i^jf is t^6 variation of 
Rij - 2(n-i)9i3' When n = 2 we assume instead that F is a nonincreasing 
function of R. Degenerate parabolicity of our equation will ensure that we 
can apply an Aleksandrov-type reflection argument to the solution g. We 
have the following generalization of Ye's gradient estimate for the Yamabe 
flow. 

Theorem 3.2. If g(t) = eu^gsn, t G [0,T), is a solution to equation (3.3), 
then there exists a constant C depending only on g(0) (and not on F), such 
that 

\Vu(x,t)\ < C,       for allxe Sn,te [0,T). 

Proof By Proposition 3.1, there exists a constant a0 G (0,1) such that for 
all z G Sn and a G (0,ao], 

(VS) W) > P*(^) W) on St z 1 

where S% = {y G Sn : (j/, z) > 0}. By the conformal invariance of equation 
(3.3), both ((PaTdit) and P*{vltYg{~t') are solutions to the same degener- 
ate parabolic equation. Hence, by the weak maximum principle, we have 
(Va)*^) > P*{¥ZaYg(t) on 5? for all t G [0,r) and a G (0,aj. By our 
previous remarks, this implies the uniform gradient estimate 

\Vu(x,t)\ < i^^,        for all x G Sn,t G [0,r). 
Oio 

As in [Y], we can extend this theorem to conformal flows of metrics on 
a domain fi in 5n, provided the logarithm of the conformal factor tends 
to infinity at dQ, on [0,T). In particular, we obtain a uniform gradient 
estimate for u on K x [0, T), for any compact subset K c fi, depending 
only on if and the initial metric. Using the developing map theorem of 
Schoen-Yau [SY], this yields a uniform gradient estimate for the logarithm 
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of the conformal factor for degenerate parabolic conformal flows on compact 
locally conformally flat manifolds. 

Theorem 3.3* Let g(x,t) = eu^x^gsn(x) be a solution to equation (3.3) on 
ft x [0, T) such that lima.__>0Q u(x, t) = oo for all t e [0, T). For any compact 
subset K C fy there exists a constant C depending only on K and go such 
that 

\Vu(x,t)\ <C 

for allxeK andte [0,T). 

Before proving the theorem, we make some preliminary observations. Given 
x e Sn and p € (0,7r/2), the conformal diffeomorphism (with — x as the 
north pole) (p~x : Sn —> Sn maps the southern hemisphere {y e Sn : 
{y,%) > 0} onto Bp{x) if and only if a — l~^p

p-   This can be seen for 

x = -N from the formula <£a(y)n+i = ^rpj for y e dS^, which implies 

dist^n^aCy),-^) - sin-1 (sfe). 

Proof of Theorem 3.3.. Since \imx-+dQUo(x) = oo, given any x e n, there 
exists p(x) > 0 such that 

<PZ(x)({v e sn: M ^ 0}) = ^wW C n 

and 

on {y € Sn : (y,x) < 0}, where a(x) = ^^j^ > Since lim*.^ w(a;, t) = oo 
for all t G [0,T), the reflection method can be applied and we obtain 

(¥>3L))*0(*) ^ P*(^))*5(t) 

on {y € Sn : (y,x) < 0} for all t € [0,1). Hence 

(V«(y,t), i/> < 1 ~ "y   = 2cotp(aO 

for all y G dBp^(x)^ t G [0,T), and where 1/ is the unit inward normal 
to dBp(x)(x). Now let K be a compact subset of Q. Then distsn(.K, S™ ~ 
Q) := 6 > 0 and we consider the ^/2-neighborhood of K: 

NS/2(K) = {zeSn: distsn(z,K) < 6/2} 
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which is compact in Q. Hence there exists a constant p(K) > 0 such that 
for any x € N6/2{K) 

(Vw(y,t),i/> <2Q0tp{K) 

for all y e dBp(K)(x), t e [0,r). Since p(K) < 6/2, we conclude that 

\Vu(y,t)\ <2cotp(K) 

for ally G if and ^ G [0,r). 

Corollary 3.4. Let {Mn,g) be a compact locally conformally flat manifold 
with positive scalar curvature. Let g(x,t) = eu^x,t^g(x) be a solution to 
equation (3.3) on Mn x [0, T) with g(0) — g0 — eUog, an arbitrary initial 
metric. Then there exists a constant C depending only on go and g such 
that 

\Vu{x,t)\ <C 

for all(x,t) GMnx[0,T). 
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