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Introduction. 

This paper is the second in our study of harmonic mapping theory into 
general target spaces of nonpositive curvature. Our first paper [KS] was 
mainly focused on the local structure of finite energy maps to metric spaces, 
and local existence and general regularity issues. In this paper we consider 
global existence issues related to the non-local compactness of the target. 
Specifically, we consider a discrete group T which is generally assumed to be 
the fundamental group of a compact Riemannian manifold M. Some of our 
results work more generally for groups which are only finitely generated. We 
assume that the group acts isometrically on a metric space X; i.e. there is 
a group homomorphism p : T -»Isom(X). We then study the existence of 
energy minimizing p-equivariant maps from the universal covering M to X. 
We assume throughout that X is an NPC space; that is, a length space of 
nonpositive curvature in the sense of Alexandrov. (This notion is reviewed 
in Section 1.) We mainly focus on existence issues in this paper. By way 
of history we should mention that the results of this paper may be viewed 
as generalizations of the work of Eells and Sampson[ES]. One should also 
compare the results of this paper with the work of Gromov [G2]. Our first 
main existence theorem, Theorem 2.1.3, asserts the existence of a harmonic 
equivariant map under the assumption that the action of T on X is proper 
in the sense that the set of points of X which are translated by any bounded 
amount by all generators in a generating set for T is a bounded subset of X. 
(Note that X is not assumed locally compact.) A similar theorem was proved 
by J. JostjJ] in a slightly different context. Under the assumption that X 
has curvature bounded from above by a negative constant, we are able to 
prove (Theorem 2.3.1) that either there exists an equivariant harmonic map, 
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or the action fixes an equivalence of rays in X. In particular, this existence 
result holds in case X is a tree (Corollary 2.3.2). 

We then develop methods which are applicable to the improper case 
for general NPC spaces X. We prove a very general theorem, Theorem 
3.9, which asserts that for a sequence of minimizing (or almost minimizing) 
equivariant maps Uk '• M —> Xk into a sequence of NPC spaces X^ there 
is a subsequence, still denoted {iik}, an NPC space X, an action of T on 
X, and a minimizing equivariant map u : M -> X such that the pullback 
distance functions from the Xk via Uf- converge to the pullback of the dis- 
tance from X via u. We show that the infinitesimal pullback metrics, and 
the energy densities of the Uk converge in L1 norm to that of u. We also 
show that if the Xk have uniform lower curvature bounds and the property 
that geodesies are extendible, then X may be taken to have this property 
as well. The technical machinery behind these results includes a careful 
study in Section 1.5 of mollification of maps by e—approximate identities, 
and resulting energy estimates for the mollified maps. 

We then take up the study of uniform actions. By this we mean an 
action such that each point of X is translated by a fixed positive amount 
by a generator of T (for an arbitrarily chosen set of generators). We prove 
the general theorem that for a nonuniform action of T on a space X which 
does not have a fixed point, there exists a uniform action on a new NPC 
space Y arising as a limit of rescalings of X together with a (nonconstant) 
equivariant harmonic map from M to Y. In case the space X has curvature 
bounded from below, and has the property that its geodesies are extendible, 
the space Y is shown to be a Hilbert space. In particular, it follows that a 
nonuniform action of a group T which satisfies Property T on such a space 
X has a fixed point. Another corollary of this result is that if M is Kahler, 
and if T acts nonuniformly on such a space X (for example if T does not 
satisfy Property T, then such an action exists on a Hilbert space X), then 
there exists a uniform action of T on a complex Hilbert space Y, and an 
equivariant holomorphic map from M to Y. 

Finally we mention that Section 1 also contains a new Poincare inequality 
for maps from a Riemannian manifold M to any metric space X. The 
constant has sharp geometric dependence on M and is independent of X. 
The result generalizes and simplifies earlier work of Li and Yau[LY], and 
Gromov[Gl]. 
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1. Preliminaries. 

1.1. Upper and lower curvature bounds. 

As in our first paper, Sobolev spaces and harmonic maps for metric space 
targets [KS], we will use the abbreviation NPC for non-positively curved 
metric spaces. The notation CAT(O) space is also common, and is due to 
M. Gromov. Recall that an NPC space (X, d) is a complete metric space 
which satisfies the following two hypotheses: 

(i) (Length Space) For any two points xo,xi e X there is a rectifiable 
curve 7 from xo to xi such that 

(1.1.1) d(xo,xi) = Length^). 

We call such a curve 7 a geodesic. 

(ii) (Triangle Comparison) Given any three points z, #0, #1 in X, A e [0,1], 
and any geodesic 7 from xo to x\, let x\ := (1 — A)^o + A#i denote the 
point which is a fraction A of the way from XQ to xi along 7. Write 

d(z,a?o) :=do,   d(z,x\) :=di,   d{z,Xx) := d\,   d(xo,Xi\:= L. 

For an R2 comparison triangle of side lengths do, di, L we require that 
d^ be less than or equal to the distance from the vertex corresponding 
to z to the point on the opposite side A of the way from the vertex cor- 
resonding to XQ to the one corresponding to xi. The precise inequality 
is 

(1.1.2) <*£<(!- A)dg + \d\ - A(l - A)L2. 

Uniqueness of geodesies is an immediate consequence of this definition. 
Condition (i) is implied by the seemingly weaker hypotheses that any 

two points #o,#i have a midpoint xi for which 
2 

d{xo,xi) — d(xi,xi) — -d(£o,£i). 

This is because one can then use diadic subdivision to define a distance- 
realizing continuous path 7. Condition (ii) is implied by the seemingly 
weaker hypothesis that it hold just in case A = ^, as can also be checked 
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using diadic subidivision. Another way to check the equivalence is to apply 
the A = 5 case as follows: Take any geodesic arc 7(5) which is parameterized 
by arclength s and consider points Z^XQ = 7(5 — As)}xi = 7(5 + As). 
Applying the triangle comparison one obtains a finite-difference expression 
which implies that the function f(s) := d2{^{s)^z) satisfies 

(1.1.3) Ji/>2 

distributionally. Integrating this inequality yields (1.1.2). 
We will sometimes impose a lower curvature bound for our spaces X : 

An NPC space will be said to satisfy (K > «), for K = —a2, if a triangle 
comparison to the hyperbolic space of curvature K holds, i.e. if 

(1.1.4) 

cosh(ad\) > "   /    '—-cosh(ado) -\ .  T/  r'cosh(adi) 
smh(aL) sinh(aL) 

holds for all Z^XQ^XI^X as above. In case a — 0 this condition is to be 
interpreted as the implication of (1.1.4) as a —► 0+, namely the reverse 
inequality to (1.1.2). The condition (1.1.4) is implied by the seemingly 
weaker requirement that the inequality always hold for A = 5, 

cosh{ado) + cosh{adi) 
(1.1.5) cosh(adi) > —/ rx    -. y       J K    2J - 2cosh(!f) 

One way to see this equivalence is to apply (1.1.5) to a geodesic 7 parame- 
terized by arclength 5, again taking points z,xo = 7(5 — As),xi = 7(5 + As) 
as above. This time one obtains a finite-difference statement which implies 
that the function f(s) := cosh(ad(/y(s)^z)) satisfies 

(1.1.6) p<a>f 

distributionally. The statement (1.1.4) is the integrated version of this in- 
equality. 

The lower curvature bound immediately implies uniqueness of geodesic 
extensions: Let 7 be a geodesic from XQ to y, and suppose this arc extends 
geodesically past y, as arcs 71,72. Then for some 0 < A < 1 we may find 
z E 71, xi e 72 for which y is A of the way from #0 to z and from XQ to a?i. 
Applying (1.1.4) with this choice of points, multiplying through by sinh(aL) 
and recalling the sinh addition formula we deduce that cosh(adi) = 1, i.e. 
that Xi = z. 
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An NPC space X is said to be geodesically complete if every geodesic arc 
extends to a geodesic line. The following characterization of Hilbert Spaces 
must be well-known, but for completeness we include a proof. 

Proposition 1.1. Let X be an NPC space which is geodesically complete 
and which also satisfies K > 0. Then X is a Hilbert Space. 

Proof. By hypothesis X satsifies the triangle comparison 

(1.1.7) dl = (1 - X)d2
0 + Xdj - A(l - A)L2, 

where we use our previous notation. One should interpret (1.1.7) as saying 
that any one of the four quantities (the three side-lengths and the A—median) 
can be computed from the other three, and the length will agree with the 
corresponding Euclidean computation. We will say that a subset S C X 
embeds isometrically into Euclidean space if there is a map / : S —► Rn 

so that the pull-back pseudodistance equals the restriction of d to S x S. 
Consider the set Si containing S which is the set of all points on lines 
through pairs of points in S. Inductively construct S C Si c S2 C S3,  
The geodesic completion of S is the closure of US*. If 5 is separable and 
/ : S —> Rn is an isometric embedding, then / extends as an isometric 
embedding to the convex geodesic closure of S. This is because one can 
extend / to the line through si, S2 by 

/((I - X)s1 + XS2) = (1- X)f(si) + Xffa). 

It follow from (1.1.7) that this extension is an isometry. One may obtain an 
isometry from a dense subset of the geodesic completion of S to Rn by a 
countable number of these "line-extensions", and then extend the isometry 
to the full geodesic completion. 

It follows from the discussion above that any three non-colinear points 
in X have geodesic completion which is isometric to the Euclidean plane 
R2. We claim that any four non-coplanar points {Pi, P2, P3, P4} C X have 
geodesic completion which is isometric to R3. To see why, consider the two 
triangles Pi,P2,P3 and P2,P3>i:4- Construct Euclidean comparison trian- 
gles (writing Pi for the R2-points), so that both triangles share the arc 
P2P3, and so that Pi,P4 lie on the same side of this arc. Pick a point Q 
which lies in both comparison triangles and so that the perpendicular seg- 
ment from Q to P2P3 does as well. Write d for the length of this segment. 
Then Q is the isometric image of points Q11Q2 in the two X- triangles 
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(via the isometric extension maps discussed above). From the triangle in- 
equality the distance d(Qi, Q2) is between 0 and 2d. Consider the Euclidean 
plane containing the two comparison triangles as lying in R3 and rotate one 
of the two comparison triangles about the arc P2^D3 so that the Euclidean 
distance between the points Q11Q2 exactly equals d(Qi,Q2)- One has con- 
structed an isometric embedding of the four points PuP2,QhQ2- By our 
discussion above this embedding extends to the geodesic completion of these 
four points, which is the identical to the geodesic completion of the original 
points PiJP2,P3,P4. This proves the claim. 

We may now deduce that X is a Hilbert space as follows: Fix any point 
0 G X, and call it the origin. Let [/, V, W C X, A e R. Since the convex 
geodesic closure of 0,U,V is one of R,R2, U + V and XU are naturally 
defined if we consider 0 to be the origin. The vector space axioms hold 
because the geodesic completion of 0, [7, V, W is isometric to (a subspace of) 
R3. One may also define the norm of "vectors", the dot product between 
pairs of them via this isometry, and verify that all necessary axioms hold. 
□ 

1.2. Functional Analysis Lemma. 

One can interpret (1.1.2) as a statement about the uniform convexity of 
geodesic balls in an NPC space. Consequently, the following result, which 
is well-known for Banach spaces which are uniformly convex, also holds for 
NPC spaces. 

Proposition 1.2. Let {Ci} be a nested (decreasing) sequence of nonempty, 
closed bounded convex sets in an NPC space X. Then PiCi is non-empty. 

Proof. We may assume that some Ci is not all of X for otherwise all points 
of X are common to all Q. By removing the first finite number of d = X, 
there is no loss of generality in assuming that Ci is not all of X. Let Q be 
a point which is not in Ci, and let 

ri = dist(Q,Ci),        i = l,2,.... 

The sequence {r^} is increasing and bounded, and therefore has a limit which 
we denote r. Now let Di be defined by 

Di = {Pe d : d(Q, P)<r + 2^}. 
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The sequence {A} is a again a nested sequence of nonempty, closed, 
bounded, convex sets. We show that the diameter of A tends to zero. 
This implies that the Di have a common point since any sequence of points 
{Pi} with Pi € Di will be a Cauchy sequence and hence convergent since X 
is complete. Since each Di is closed, the limit is a common point to all of 
the Di, 

To bound the diameter of A, let PQ, PI € A be any two points, and let 
Pi denote the midpoint between Po,Pi. By triangle comparison we have 

2 

rf2(Q,Pi) < \d2(Po,Q) + id2(Pi,Q) - \<f(Po,Pi) 

<(r + 2-i)2-jd2(P0,P1). 

Since Pi G Ci we have dfQ, Pi) > r*, so it follows that 
2 2 

d2(Po,Pi)<4[(r + 2-i)2-rf]. 

Since the right hand side goes to zero, we have shown that the diameter of 
A goes to zero, and this completes the proof of Proposition 1.2. □ 

1.3. Quadrilateral comparisons. 

Much of the analysis related to harmonic map theory depends on strong 
convexity estimates for the distance function between geodesies. These es- 
timates are consequences of quadrilateral comparisons derived first by Y.G. 
Reshetnyak [R]. Given any ordered quadruple {P, Q,R,S} C X there is a 
(non-unique) quadruple {P, Q, i?, S} C R2 so that the resulting Euclidean 
quadrilateral is convex and so that 

d(P,Q)HP-Q|,  d(Q,R) = \Q-R\, 
(1.3.1) d(R,S) = \R-Sl d(SJP) = \S-P\, 

d(P9R)<\P-Rl d(Q9S)<\Q-S\. 

One constructs this convex "subembedding" using only the triangle compar- 
isons (1.1.2) for various triangles determined by choices of three points from 
{P, Q, i?, 5}. By using this subembedding and the NPC length comparison 
(1.1.2) repeatedly for triangles whose vertices lie on the geodesic edges (or 
vertices) of the quadrilateral, one derives the following inequalities [R]: 
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Proposition 1.3 (e.g. Corollary 2.1.3 [KS]). Abbreviate the distance 
function <i(T, 17) by (ITU- For an ordered sequence {P, Q, R, S} c X, define 
the geodesic interpolation points P\ = (1 — A)P + \S,, Q^ = (1 — IJ,)Q + fiR. 
Then for any 0 < a, t < 1 tAe following estimates hold. 

(1.3.2) 

- i(l - t)(a(dsp - dQR)2 + (1 - a)(d^ - dpQ)2). 

(1.3.3) 

^QtP + ^Qi-tS ^ ^PQ + ^P-S + t(dsp - dqn) + 2t dQR 

- t(a(dsp - dQR)2 + (1 - a)(dRs - dpq)2). 

In case t = 1 we obtain from (1.3.3) the quadrilateral inequality: 

(1.3.4) 
dpR + dQS < dpQ + dQR + dRS + d5p 

- a(dsp - dqn)2 - (1 - a)(dj2s - dpg)2. 

If we set a = 0 in (1.3.2) we conclude the convexity of the distance between 
geodesies, 

(1.3.5) dptQt < (1 - t)dpQ + tdns. 

(This particular estimate may also be derived more directly from the triangle 
comparison 1.1.2.) We will also have occasion to use the special case of 
(1.3.4) when a — 1, 

(1.3.6) d2pR + dgs < dpQ + d2
RS + 2dspdQR. 

For lower curvature bounds we do not know of quadrilateral comparisons 
equal in strength to Reshetnyak's. However, in as much as the NPC esti- 
mates above are in the nature of convexity statements for various distances 
between geodesic arcs, lower curvature bounds imply various concavity esti- 
mates. We will write these estimates in the case the lower curvature bound 
—a2 is —1. Because curvature scales inversely to d2, one can deduce the 
more general estimates from this special case by replacing every length with 
a times the length, as in (1.1.4). For a = 1 the lower curvature estimate 
(1.1.4) immediately impies a concavity estimate for the distance between 
geodesic rays eminating from a single vertex:  Consider the triangle with 
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vertices ^,rco,a?i, dfaxo) = do, d(z,xi) = di, d(xo,xi) = L as in §1.1. For 
0 < t < 1 define Lt to be the distance between the two points xot, Xu which 
are a fraction t of the way from z to the two Xi. If t = ^ one can apply 
(1.1.5) twice, once to the intermediate triangle spanned by z,x1i^xo and 
once to the original triangle, to deduce the estimate 

(1.3.7) ch(L) - 1 < 4chAch(^)(ch(Li) - 1). 

(We abbreviate cosh, sink with ch^sh.) For general i one uses (1.1.4) in a 
similar, but significantly more tedious computation to derive the generaliza- 
tion 

(1.3.8) cHL)-l<  ff^WL*)-!). 

Now consider a quadrilateral {P, Q, i?, S}, the points P*, Qt as in the NPC 
comparisons, and assume geodesic extendability and — 1 < K < 0. We will 
derive an upper bound for dns in terms of dpg, dptQt, dps, dqn. Let U be the 
point on the geodesic extension of the ray PQt for which Qt = (1 —t)P+tU. 
Let [T* = (1 — t)Q + if/. Then from the NPC triangle comparison or using 
(1.3.5) on the triangle UPQ one knows that 

(1.3.9) d(Qt,Ut)<(l-t)dpQ. 

Applying (1.3.8) to the triangle QRU implies 

(1.3.10) 

Using (1.3.8) on the triangle PSU implies 

(1.3.11) 

The combination of the three inequalities above and the fact that dus < 
dpu + dsu yield an estimate above for dps-   Let D be the maximum of 
1 and the pairwise distances between the four points P^Q^P^Qt, and let 
8 be the maximum of just the two distances dpQ,dptQt. Then one uses 
the triangle inequality, the functional relation f{2x) = 2f2(x) + 4/(#) for 
f(x) — chx — 1, and various crude estimates to obtain 

(1.3.12) ch(dRs) - 1 < I2exp(—)(ch(6) - 1). 
6 
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1.4. A Poincare inequality for maps to metric spaces. 

In this section we prove a general version of the Poincare inequality for 
maps to metric spaces. For functions this was first proven for p = 2 by 
Li and Yau[LY]. For p = 1 it was proven by Gromov[Gl]. Note that for 
functions, the result for one value of p implies it for all larger p. The bound 
for p = 2 is equivalent to a lower bound on the first Neumann eigenvalue 
of the Laplacian. Our method of proof is substantially simpler than the 
original proofs, and our constants, although not sharp, are explicitly given. 
Recall that the p-energy is discussed in [KS], and the p-energy density was 
denoted \Vu\p, so that | Vwfe = \du\2. We follow this notation in this section. 

Theorem 1.4.1. Let Q C (M,g) be a smooth compact domain with locally 
convex boundary. Assume that there is a constant k > 0 so that on $1 we 
have Ric(g) > —{n — l)k • g. Define the distance between points of SI as the 
infimum of path lengths for curves lying in £1, and assume that diam(Q) < D 
for a constant D. Ifu e W1,p(fi, X) where (X, d) is a complete metric space, 
then we have 

inf   / (F(u(x))Q)dfi(x) < c(n,p, fc, D) / \Vu\pdiJ, 

The constant appearing in the Poincare inequality may be taken to be 
c{n,p,k,D) = c(n,p)Dp2n-1eni1'y/*D if k > 0, and c(n,p,0,J9) = 
c(n,p)Dp2n~1, where c(n,p) is a constant which is equal to one if X is 
the real line, orifp = 2, and X has curvature bounded from above. 

Proof We consider the double integral 

(1.4.1) /   / (jF(u(xo),u{xi))dtJL(xo)dfjL(xi). 
Jn Jn 

Now for almost all pairs (xo,xi) e £1 x Q, there is a unique minimizing 
geodesic which we parametrize by constant speed, and denote {xt}o<t<i- 
Thus the tangent vector At has length d(xQ,xi). The restriction of u to 
Xt is Borel measurable, and we have for almost all (xo,xi) that u o xt € 
W^((0,1),X), and 
(1.4.2) 

dP(u(xo)Ju(x1))< [  \K(xt)\\pdt <c(n1p)dP(xo,Xi) f \Vu\p(xt)dt. 
Jo Jo 
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The constant c(n, p) can be chosen to be one if X is the real line, or if X 
has curvature bounded from above because in this case the square of the 
directional derivative is bounded by the energy(see[KS]). For general image 
spaces X, see[KS] for a discussion of c(n,p). To verify (1.4.2), first observe 
that we may assume that xo ^ xi since the diagonal of X x X is a set 
of measure zero, and we may also assume that Xo^xi are not cut points. 
Then, let f(xo,xi) be a nonnegative smooth function supported in a small 
neighborhood of such a pair (xo,Xi). The function £(£) is defined by 

C(t) = /   / d(u{xo),u(xt))f{xo,xi)d^(xo)dfjL(xi). 
Jn Jo, 

By the change of variable (xo,xi) —► (xo9Xt) on sees that £(t) is continuous 
on [0,1], and C1 on (0,1). In particular, since ((0) = 0, we have 

(1.4.3) C(l)= /Vto* 
Jo 

Now, for a fixed XQ and to, let Ft be the family of diffeomorphisms of a 
neighborhood of xt0 given by Ftfato) = xto-\-t- If we denote by Y the vector 
field which is the derivative of Ft at t — 0, then we have by a change of 
variables 

/ d(u(xo),u(xt))f{xQ}xi)dii{xi)= j d(u(xo>u(xt0)){Ffl)*(fXodfj,)(xt0) 
Jn Jn 

where fxo(y) = fixo^y). Differentiating in t and setting i = 0, we get the 
expression for the derivative of the integral on the left at t = to 

Jn 

where Cy denotes Lie diflferentiation along Y. Integration by parts then 
shows 

— / d(u{xo),u(xt))f(xQ,x\)dii(xo)diL(x\) 

= / CYd{u{x^u{xt))f{x^xi)dii{xi). 
Jn 

Now we have 

\CYd{u{xo),u(xt))\ - \—d{u{xo),u{xt))\ < ||w#(**)ll- 
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Therefore we conclude 

C'00< /   / \\u*(xt)\\f(xo,xi)diJL(xo)dtJL(xi). 
Jn Jn 

Combining this with (1.4.3) we then have 

/   / f{xoixi)[d(u(xo)Ju(xi))- /   \\u^xt)\\dt]dfjL(xo)dfi(xi) < 0 
Jn Jn Jo 

for any / as above. Since (xo,xi) were arbitrarily chosen points in an open 
set of full measure, this proves (1.4.2) with p = 1, and it follows for p > 1 
by the Holder inequality. 

Using (1.4.2) to estimate the integral (1.4.1), we therefore have 

Vol(ft) inf   f dP{u(x),Q)dii(x)< I f dP(u(xo)yu(x1))dfi(xo)dfx(x1) 
Q£x Jn Jn Jn 

<c(nJp)Dp f {[ f \Vu\p(xt)dtdfjL(xi)}dtJL(xo). 
Jn Jn Jo 

Note that we have by the change of variable (xo,xi) —► (xi,xo) we have 

m\Vu\p(xt)dtdfjL(xo)dfjL(xi) = \Vu\p(xt)dtdfi(xo)dfjL(xi). 
__   . Jn Jn J1/2 

Therefore the right hand side of the previous inequality may be replaced by 

2c{n)p)Dp I {I f   \Vu\p(xt)dtdfi(xi)}dtixo)- 
Jn Jn J1/2 

We now use the Bishop comparison theorem to obtain for t € [1/2,1] and 
£;>0 

■dfjL(xi)      smhn~1(Vkd(xo,xi)) 

dfJL(xt) ~ sinlp-^y/ktdixoiXi))' 

By elementary estimation this implies 

dli{xt) " 

for any t e [1/2,1]. If k = 0, then we get 

M%i) < 2n-i 
dfjb(xt) ~ 
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Let ci(n,fc) be e2^^ if k > 0, and ci(n,0) = 2n"1. Using this bound, 
and Pabini's theorem we then have 

Vol(ft) inf   [ dp(u(x),Q)dii(x)<c(n,p)Dpc1{nJk)Vo\(n) f \Vu\pdfi 
QeX Jo, Jn 

where we have replaced 

/       \Vu\p(xt)dfi(xt) 

with 
QXQit = {expxo(tv) : v e T^Q, d(xo,expxo(v)) = \\v\\} 

by the total integral of |Vu\p. This establishes the desired Poincare inequal- 
ity, and completes the proof of Theorem 1.4.1. 

The Poincare inequality with a rough constant can be established for 
any compact connected domain from Theorem 1.4.1. 

Corollary 1.4.2. Let Q, be a compact, smooth, connected domain in a Rie- 
mannian manifold. There is a constant c depending on p and Q, such that 
for any u € VF1,p(fi,X) with (X, d) a complete metric space, we have 

inf   / diP{u(x),Q)dii{x) <c     \Vu\pdii. 
Q^x Jo, Jn 

Proof We first make a conformal deformation of the metric g so that dQ, 
becomes locally convex. It is an easy calculation that if we let v be a smooth 
function in a neighborhood of ft, and we consider the metric g = e2vg, then 
the second fundamental form of dQ, is given by 

tlij = 6 {flij — "ffodij) 

in a local basis on 9ft, where v denotes the inward unit normal vector for 
9ft with respect to g. We see that we can choose v so that (ft, g) has locally 
convex boundary. Since ft is connected, if we choose distance to be the path 
distance for paths in ft, then the diameter is finite, and by Theorem 1.4.1 we 
have the Poincare inequality with respect g. Since the metrics g and g are 
uniformly equivalent, the p-energy of a map with respect to g is bounded 
by a constant times the p-energy with respect to g. Therefore we have 

inf   / dF(u,Q)dp, <c f \Vu\pdijL. 
QeX Jn Jo, 
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Since the volume forms for g, g are bounded in ratio, this implies the desired 
inequality. This completes the proof of Corollary 1.4.2. 

1.5. Mollification. 

It is useful to mollify maps to NPC spaces. Let 7/ e CQ
O
(B(0^ 1)) be a 

non-negative, monotone radial test function of total integral 1. Define 

(1.5.1) ife(a:)=e-B»7(|). 

For z e ^£ define u * r)£(z) to be the center of mass of u with respect to 
the push-forward of the measure r]£(x)dx induced by the exponential map 
expz : B(0,e)z -» ft. 

In §2.5-2.6 of our earlier paper [KS] we mollified maps (using normal- 
ized characteristic functions of geodesic balls instead of smooth approximate 
identitities), and derived estimates to show that mollification essentially de- 
creases the energy of Sobolev maps; the estimates we obtained can be de- 
rived quickly in the classical case (of Euclidean domains and maps to R) by 
writing 

(1.5.2) D(u * %) — Du * %. 

In the classical setting the equality (1.5.2) and Jensen's inequality immedi- 
ately imply 

|^*%)|2<|^|2*%. 

It is the generalization of this estimate which we derived in [KS], at least for 
characteristic function mollifiers. The estimate we derive now corresponds 
classically to one obtainable by writing 

(1.5.3) D(u * 7/e) — u * D/fe. 

This present (stronger) result gives meaningful Sobolev estimates for mol- 
lifications of L2 maps u, of the nature that the Sobolev energy of an e- 
mollification of u is bounded above by a corresponding ^-approximate energy 
for u. 

In order to derive the mollification estimate first recall elements of the 
Sobolev space theory in Chapter 1 of [KS]: Given a map u e L2(ft,X) the 
(spherically averaged) ^-approximate energy density function is given by 

(1.5.4) e£(x) = ±    f 
Un    J 

d2(u(x),u(y))da(y) 
e2 e12'1 
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(for x G fi^j i.e. for d(a?,6f2) > e). Letting u be any Borel measure on the 
interval (0,2) satisfying 

2 

(1.5.5) z/ > 0,        K(0,2)) = 1, f \-2dv{\) < oo, 
o 

one defines the approximate energy density function ue£(x) by averaging the 
spherical averages e£(x): 

(1.5.6) i,ee(x) = /   exe(x)du(X), 
Jo 

for x G ^2£ (and ^e£(a;) = 0 otherwise). Then the functions i,ee(x) are in 
L1(fi,R), and one defines the functionals vE%(f) — uEE{f) by 

(1.5.7) vEeU) = J f(x) ve£(x) d^x), 

n 

for / € Cc(fi). The map it is defined to be in W1,2(fi,X) if and only if 
(there is some u for which) 

(1.5.8) sup     (limsup l/Ee(f)) =  UE < oo. 
feCc(n) \  e-^o / 
0</<l 

In this case the expression above is finite (and the same) for all choices of u 
and the measures ve£{x)diJi all converge weakly (as e —► 0) to an absolutely 
continuous energy density measure \du\2(x)diJL. 

Let Z be a Lipschitz vector field on n, Z e r(rfl), and let x{x, t) denote 
the flow along Z at time t, starting at point a;. For points sufficiently interior 
to Ct one can define the ^-energy density function (of u in the direction Z) 
by 

(1.5.9) zee(x) = d2«x),u(x(x,s))) 
e2 

For a non-negative Borel measure u satisfying (1.5.5) we can construct other 
approximate directional energies ^e£(#), as in (1.5.6). If u G VK1'2(Q,X) 
then the measures ^ee(x)dfJL(x) all converge weakly to a directional energy, 
denoted by \u*(Z)\2diJ,. For a Riemannian domain on which there is a global 
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frame {ei,... e™}, one can identify u e S71"1 with the vector field ^e^ and 
show that 

(1.5.10) \du\2(x) = —   f \u*(u)\2Mv) 
Un    J 

Sn-1 

almost everywhere. 
Next recall the well-known fact (e.g. Lemma 2.5.1 in [KS]): 

Lemma. Let (M,v) be a probability measure space, let (X, d) be an NPC 
space, and let u e L2(.M,X). Then there exists a unique center of mass 
u — uv for u, defined as the point in X which minimizes the integral 

IuAQ)= j d2{u{m),Q)dv(m). 
M 

It follows from the quadrilateral comparison estimate (1.3.3) that one can 
estimate the distance between the center of mass u = uv of a map u with 
respect to the probability measure v, and the center of mass v = v^ of a map 
v with respect to a measure z/, in terms of the L2 distances between u, v and 
the difference of the measures z/, z/. Such estimates allow one to estimate 
energies of mollified maps. An estimate of this form appears as Proposition 
2.5.2 in [KS], and the same procedure as is employed there implies: 

Proposition 1.5.1. Let M be a measure space, and let v,!/' be two prob- 
ability measures on M. Suppose u,v are in L2(MJX) for both measure 
choices. Let u and v be the resulting centers of mass, as above. Write 
vt = (l— i)v + tu. Then 

a, N ^ 7/ N     f    7/     N 7      1 ,. f d2(v,v) — d2(v,vt),.      7 /x d (u,v) < d(u,v)    /    d{U)V)dv + -limsup I -(du — du). 
J 2    t->o    J t 

Proof Using the notation from the preceding lemma we have 

/«,!/(«) < /«,!/(%-«)),        Ivy(v) < Iv,Avt). 

Hence 

(1.5.11) 

d2(u,u) + d2(v,v) dv < j <fi(u,v^_t))+d2(v,vt) dv 

+ f[d2(v,v) - d2(v,vt)](dis - dv'). 
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Estimate the integrand which appears in the first term of the right side by 
using Euclidean distance comparison: For each m £ M we construct the 
quadrilateral with consecutive vertices ti(m))n,?J,t;(m) and apply (1.3.3) 
with a = 1: 

(1.5.12) 
d2(u,vi-t) +d2(v,vt) < d2(u,u) +d2(v,v) 

- 2td2(u,v) + 2td{u) v)d(uJv) 

+ 2t2d2(u,v). 

Integrating (1.5.12) with respect to u yields a bound for the first term on 
the right of (1.5.11). Divide the resulting inequality by 2t, cancel the order 
zero terms, and let t -* 0 in order to obtain Proposition 1.5.1 □ 

Let / G Cc^s), / > 0. Define the auxiliary function f£ by 

fe(x)=m + Lj(f)(xJe) 
(1-5-13) u>{Mx,e)=imaf \f(y) - /(a0|. 

\y-x\<e 

Theorem 1.5.2. Let Q be a compact Riemannian domain, and let u G 
L2(p,,X). Then for e > 0 small (depending on (P>,g)) the map u * r)£ is 
Lipschitz in £l£. The Lipschitz constant depends on e, on the L2 oscillation of 
u, and on the Riemannian structure of^^g). If the domain Q. is Euclidean, 
then for any non-negative test function f as above 

(1.5.14) ET^iJ) < „£?(/«). 

Here the measure dv{X) is determined from the mollifier rj, is absolutely 
continuous with repsect to dX and satisfies (1.5.5). In case Q is a general 
Riemannian domain there is a C > 0 depending only on (fi,^) so that 

(1.5.15) E^(f) < vE%Ue) + Ce^EeUe))- 

The measure v in the non-Euclidean estimate is the same as in the Euclidean 
case. The measure /x also satisfies (1.5.5). 

Proof. To motivate the calculations which follow consider the classical case 
of a real-valued function u defined on a Euclidean domain.  Then we may 
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differentiate u * 77 in the ^-direction, at the point z, and use the symmetry 
of r] to write 

(u * rj)ti(z) =    /   u(z — x)riti(x)dx 

5(0,1) 

=    /   w(^ + a;)(-77,i(a?))di 

Since ?7,i(a?) is an odd function with respect to reflection across the plane 
xl = 0, we may rewrite the integral above as 

(u * rfj^z) =   I (u(z + £) — u(z + x))riii(x)dx 

= J 2x 
(u(z + x) - u(z + x))     1     ,  ., 

 -L2xLr)ii(x)dx) 

where x is the reflection of x across the xl = 0 plane. Integrate by parts 
to notice that the measure —2xlr]ii{x) is a probability measure on the set 
xl > 0. Therefore we may use Jensen's Inequality to conclude 

(1.5.16) 
u       \   i \\2 ^    [  \u{z + x)-u{z + x)\2^ 1.     f ... 
|(u*??),i(*)|2<  J   ^— ^Y- ^a^iCaOlcte. 

a^X) 

In other words, the square of the directional derivative of the convolution is 
bounded above by a weighted average of approximate directional energies (at 
slightly displaced points). This classical estimate is the basis of the results 
stated in Theorem 1.5.2. Of course, in the setting of maps to NPC spaces, 
derivative estimates must be obtained as limits of diflference estimates, and 
final results will be in integral, not pointwise, form. 

We now begin the general proof. Consider first the case of Euclidean 
domain J7. Since both sides of (1.5.14) scale identically with respect to 
domain homotheties it suffices to show the inequality in case e = 1. In order 
to estimate the left side we consider 8 G Rn small and use Proposition 1.5.1 
to estimate d2(u * 77(2), u * r){z + 8)). We write w — z + 8 and u = u* rj. 
Rotate and translate coordinates so that z = 0 and 8 = tfgjr- Taking u = v, 

di/(x) = 7i(x)dx, di/(x) = r](x — o)dx, writing 

vt = (1 — t)u(w) + tu(z) 
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we obtain 

(1.5.17) 
<P(u(z),u{w)) < 

■ hmsup    /    —^-^-^—^-^ 1-——-(ri(x) - r](x - o))dx. 

For x = (a?1,... #n) = (o^1, y) G Rn write 5 = (—xl, y) for the reflection of x 
through the y—plane. Then since r/ is radial, 

r]{x) - <n(x - 6) = 5^1 (a;) + 0(62) 

is within 0(52) of being an odd function with respect to the reflection x —> x. 
We take advantage of this symmetry in estimating the right side of (1.5.17): 

(1.5.18) 

d2(u(z)iu(w)) < limsup— / [—d2(u(x),u(w)) + d2(ix(rc),^) 
t-+o   2t J 

BCOjlJn^X)} 

+ d2(u(x),u(w)) - d2(u(x),vt)}[-8ri}i(x)]dx 

+C82 limsup-    /   \d2(u(x),u(w)) — d2(u(x),vt)\dx. 

5(0,1) 

Applying (1.3.6) with a = 1 and P — w(^)5 Q = w(w), R = Vt,S = u(x), we 
estimate 

(1.5.19) 
-^(^(a;), w(tt;)) + dP(u(x),vt) + d2{u(x),u(w)) - d2{u{x)vt) 

< 2d(u(x)Ju(x))d(vt,u(w)) 

= 2td(^(x),^(5))d(:u(2:),n(t(;)). 

To bound the 0(62) error term in (1.5.18) we use the triangle inequality to 
estimate 

(1.5.20) 
\d2(u(x)Mw))-d2(u(x),vt))\ 

< (d(u(x),u(w)) +d(u(x),vt))td(u(z),u(w)). 
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Combining the estimates (1.5.19),(1.5.20) into (1.5.18), and dividing the 
result by 6d{u{z)^u{w)) yields 

(1.5.21) 

mzww)) < j d(u(8)>tt(g))Ma;)|d 
aj1>0 

\X 

+ C8   /   d{u, u(w)) + d(u, u(z))dx. 

Bi(0) 

As noted previously, integration by parts verifies that 

f 2x1(-ri9i)dx = l. 

x1^ 

Writing h^h for the two integrals on the right of (1.5.21) and applying 
Jensen's inequality three times we estimate (for a larger C): 

(1.5.22) 
d2(u(z),u(w))  ^       1      T2jL

1
frcT^ 

1       f d2(u(x),u(x))    1.     , ., 

x1>0 

+ C6        d2(%u(w))+d2(%u(z))dx. 

Notice the similarity between (1.5.22) and (1.5.16). The second integral on 
the right of (1.5.22) may be estimated from above very crudely via the trian- 
gle inequality and the minimizing property of convolutions, and is bounded 
by 

C I d2{u(z),Q)dn(z) 



Harmonic Maps to Non-Locally Compact Spaces 353 

for any Q e X, and so is bounded for the L2 map u. Letting / € Cc(^i), / > 
0, we integrate the pointwise estimate (1.5.22): 

(1.5.23) 

ft 

-TZTg  I    J   /(^ (2xi)2 -2^i|r/,i(a;)|d^(^) + C5|/|oo 
^Gftrc^O 

^ 131  /  M*   J   d fry   ^ "^faW** d^ + CS\f\oo. 
ten        x1^ 

The second inequality in (1.5.23) uses Fubini's Theorem and the change of 
variables ( = z + x. Notice that this last integral is an e = 1 directional 
energy functional, for the function /i(C), with approximate energy density 
function ^ei^), where we may write dx = dx1dyJ 2xl = A to express 

(1.5.24) dv{\) = A( j   \n,i{x)\dv ) Y := i/(A)dA. 

Evidently v satisfies the integrability conditions (1.5.5). Letting 8 —> 0 in 
(1.5.23) we deduce 

(1.5.25) 

J.f(z)\{uUSi)\2dKz) <Jfi(z) faWdniz). 
n n 

(In the case of a map to R this estimate would have followed immediately 
by integrating the point-wise estimate (1.5.16).) Averaging over the unit- 
sphere of directions, rescaling from 1 back to e, and applying (1.5.10), we 
obtain 

(1.5.26) 

j f(zMu^r]£)\
2(z)dfi(z) < Jfe(z) veeWdniz), 

n n 

which is exactly (1.5.14). 
We now consider a Riemannian domain (fi, #), and modify the Euclidean 

argument above accordingly. It suffices to prove (1.5.15) for a local coordi- 
nate chart. This is because Q, can be covered by a finite number of charts 
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and so one can create a smooth subordinate partition of unity {0;}, apply 
(1.5.15) to the functions 0;/, and add the resulting estimates to get the 
desired general result (for a larger value of C). 

We again scale the Riemannian domain (i.e. a particular coordinate 
chart) so that e corresponds to 1. Thus if we renormalize an original or- 
thonormal frame on ft we obtain a global frame {ei,... , en} having covariant 
derivative of order e. (Also, the new domain curvature is of order e2.) As 
usual we identify x e Rn (resp. u € S71"1) with the vector field xiei (resp. 
uzei). In this scaling the statement which corresponds to (1.5.15) is 

(1.5.27) E*(f) < yEfth) + Ce ^(/i). 

Fix z € fii and write w = exp(z,6). We must first estimate 
cP(u(z),u(w)). Formally, 

(1.5.28) 

u(z) =     /    u(exp(z,x))r](x)dx,    u(w) —     \    u(exp(w,y))r)(y)dy. 

£(o,i)* B(0,1)W 

To compare these centers of mass we must understand the change of coor- 
dinates map r : x —► y between the two tangent space coordinate charts. 
Precisely this map is defined by y = T(X) if and only if exp(zJ x) = exp{w) y). 
For each tangent space TftZJ TQ,W pick Euclidean coordinate directions {<9i}, 
{di} to be consistent with the frame {ei,... , en}- That is, 

exp(z, 0)*<9i = ei,    exp(w, 0)*9t = e^ 

Identifying {di} with {<9i}in the two coordinate charts we see that r is a 
well-defined diffeomorphism on a domain ball of radius having order i. By 
studying geodesic triangles and Jacobi fields it is then possible to verify that 
for our orientation of the two tangent-space coordinate charts one has 

DT(X)=I + 0(e6) 
(1.5.29) _/ 

T(X)=X-6 +0(e6), 

uniformly for x e -8(0,1)^. Here Dr is the Jacobian matrix of the change of 
variables map r, and the second estimate in (1.5.29) follows by integrating 
the first one. Using the estimates above for the change of variables y — 
T(X) in (1.5.28) we see that we are computing centers of mass for the map 
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u(exp(z,x)) with respect to measures 

dv = r](x)dx 
(1.5.30) , . 

dv = r](x — 6)dx + 0(e8)dx. 

Proceed now as in the earlier Euclidean estimate, through steps analogous 
to (1.5.17) - (1.5.21). Because of the additional error term in dv1 (1.5.30), 
one obtains an estimate similar to (1.5.21), except that the coefficient of the 
second integral on the right side of the modified estimate is now C{8 + e) 
instead of just C8. Thus one deduces the analog of (1.5.22): 

(1.5.31) 

d2{u{z),u{w)) 1 [ d2{u{exy{z,x)),u{™v{z,x)))o„i,„ ^i^ 
J2 S l_8_£  j (2^)2 2X \W)\<to 

a?1>0 

+ C(6 + e)     /    d2(% u(w)) + d2(u, u(z))dx. 

B(0,1)X 

Writing 

d(u(exp(z}x)),u(z)) < d(u(exp(z,x)),u(exp(z,y))) +d(u(exp(z,y)),u(z))), 

multiplying by r/(y), integrating with respect to y and then x (and doing 
an analogous estimate for d(u(exp(z,x)),u(w))) one obtains an estimate for 
the second integral in (1.5.31). Because of the center of mass properties of 
u(z),u(w) one can replace these two values in the estimate with u(x) and 
maintain its validity. In this way one obtains the bound 

(1.5.32) 

C    /       /   d2(u(exp(z,x)),u(exp(z,y)))dxdy 

3(0,1) £(0,1) 

for the second integral on the right of (1.5.31). Using Theorem 1.10 in [KS] 
we have 

(1.5.33) 
riuf£\     v      f    f   tt ^d2(u(z)Ju(exp(z, 6u)))da(uj) ,  , . E (f)=li™j j f(z)       62   — ~^rdii^m 
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Applying the estimates above we obtain (for x = x — 2(x • UJ)OJ), 

(1.5.34) 

/ / / *> 
d (u(exp(z, x)), u(exp(z, x))) 

(2x • u)2 

x2^^l]r}r{x)\dx
d^ldll{z) 

n 5(0,1)5(0,1) 

Using the change of variables ( = exp(z, x), the second term in the estimate 
above is easily seen to be majorized by 

(1.5.35) CeJ   J  mdPMQMMWmtiO. 
ft B(C,2) 

Now estimate the first term on the right of (1.5.34). To this end we perform 
the following change of coordinates: Map the triple (Z,<J,X) to (£,0/, s/)? 
where ( = exp(z,x)J and u/ is the direction of the geodesic starting at 
( and passing through exp(z,x). Since w' is close to u there is a unique 
minimal Euclidean rotation R^^ taking u to u* and leaving the orthogonal 
complement fixed. Let xf be the scaling of the rotation RwjU,r(x) for which 

exp((, 2(xf • UJ
1
)U)

1
) = exp(z, x). 

By arguments similar to those of (1.5.29) this scaling factor is within 0(e) 
of 1. Write \x'\ —Tf. Note that in the Euclidean case the transformation is 
given by the volume preserving map 

C = z + x — 2{x • ui)uj) u)' = OJ, xl — x. 

(The fact that to — ujr, x — xl in the Euclidean case is the reason that the 
argument leading to (1.5.26) could be made via (1.5.25).) In our case the 
global change of variables map is within 0(e) of being volume preserving. 
Dominate f(z) by f®(C). Note that 

torfr)! < MOl + Ce 
r     —      rt 
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Combining all of these estimates gives the upper bound below for the first 
integral on the right of (1.5.34): by 

(1.5.36) 

(l+Ce)J J     J 

/iK) (2^7^)2 2—7—1^^ )\dx -^rd^) 

h{Od\u{0\ u(exp(t, (2x' • uj'Wmx'^^-dKC). 

The order 1 term in (1.5.36) is precisely uEi(fi). The first order-e error term 
is Ce vE^fi), and the second order-s error term is Ce times an approximate 
energy functional for /i(C), where the energy density measure is constructed 
from a normalizing multiple of 

da(X) = A2(l + (^)2)a?idA, 

so satisfies (1.5.5). Pick /JL to be the average of the three measures which arise 
in the order e error terms (the two above and the ball averaging measure 
in (1.5.35)). For this choice of /J, we have verified (1.5.27) and the proof of 
Theorem 1.5.2 is complete. □ 

An interesting corollary of the Euclidean-domain mollification result 
(1.5.14) is that one can prove a model geometric rigidity theorem for har- 
monic maps without the use of a Bochner-type estimate. 

Corollary 1.5.3. Let T = Zn act faithfully on Rn by translation. Let T 
also act isometrically on an NPC space X. Then any minimizing equivariant 
map u : Rn -* X is totally geodesic and flat 

Proof Working on the quotient torus Tn of the Euclidean action, we pick 
/ = 1, e = 1, and apply (1.5.14) to deduce 

Eu*ri <   ^gm 
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The map u is minimizing (hence Lipschitz [KS]), and we can explicitly ex- 
pand the expression for ^Ef to obtain the following chain of inequalities: 

(1.5.37) 
Eu < Eu*V <   ^u 

= J_ J jjdHuWMx + Xu;))^^^^ 
gn-l   0   Tn 

2 A 

<—[[[([ \u*(u)\(x + tu)j)2dx i/(X)dXda(u) 
gn-l    0   Tn     0 

2 A 

<^-   f   f [{[ \U*{UJ)\
2
(X + tu)!j)dx u(X)dXda(u) 

gn-l    0   Tn     0 

Therefore all of the inequalities in (1.5.37) are actually equalities. We first 
deduce that for almost all (re, a;, A) in R™ x Sn~l x supp{v) we have 

A 

(1.5.38) d{u{x),u{x + Xuj)) =     \u*(u)\(x + tv)dt. 
o 

Thus for these (#, a;, A) the image arcs {u(x+tXu)}, 0 < t < A, are geodesies. 
We also know from the application of Jensen's inequality in (1.5.37) that the 
function \u*(u)(x + tu)\ is constant in t for almost all (x,(j, A). Hence for 
almost all u almost all image arcs in the a;-direction are constant speed 
geodesies. Since X is NPC the local-geodesic property implies a global 
geodesic property, so for almost all u it is true that the images of almost 
all cj-direction lines are geodesic lines in X. But since u is Lipschitz the 
set of lines with geodesic image is closed, also with respect to direction u. 
Thus all lines are mapped to constant-speed geodesies. Again applying the 
Lipschitz property of the map (to arbitrarily long arcs), we see that the 
speed depends only on the direction u. Thus the map u is flat, in the sense 
that the pull-back metric tensor 11 is constant. In fact we see that the map 
u can be factored as a composition of a linear equivariant map to (a possibly 
lower dimensional) Euclidean space, followed by a metric space isometry to 
its image in X. □ 

We remark on the technical limitations of the Bochner approach in trying 
to prove Corollary 1.5.3.   It is immediate from the Remark 2.4.3 in [KS] 
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that the r-invariant function of #, d2(u(x),u(x + v)), is subharmonic and 
hence constant on Rn, for any displacement vector v. Thus one deduces 
immediately the constancy of the pull-back tensor 11, i.e. the flatness of 
the map u. Proving that the map is totally geodesic is done classically by 
showing that the second derivatives are all zero. (Flat does not automatically 
imply totally geodesic, witness the cylinder-wrapping map of R2 to R3). In 
the NPC setting this would amount to understanding the positive terms in 
the calculation of (the weak estimate for) Ad2(?z, uv)\ in the finite-difference 
Bochner-limit which is indicated in section 2.4 of [KS], this amounts to 
understanding the positive terms in the calculation of A|dii|2. Classically 
this is where domain and target curvature terms, and second derivative 
terms, enter the reasoning. The technical problem in trying to follow this 
approach to prove either the Eells-Sampson or other Bochner formulas is 
that it is technically daunting to make sense of target curvature and second 
derivative terms in the NPC setting. This remains a tantalizing problem on 
which we have made only partial progress. 

In light of Corollary 1.5.3 one might wonder whether others of the known 
vanishing theorems (of the nature that harmonic maps are totally geodesic) 
have "macroscopic" proofs such as the one exhibited therein. Such proofs 
may be easier to generalize to the NPC-mapping generality, since they don't 
rely on pointwise second derivative or curvature computations. 

2. Existence theory for manifolds without boundary. 

In our earlier paper [KS] we constructed equivariant harmonic maps 
into arbitrary (NPC) spaces provided the domain manifold has a nonempty 
boundary, and a Dirichlet boundary condition is specified. The boundary 
was needed there to anchor the maps, and thus keep them from going to 
infinity. In this section we prove existence results for manifolds without 
boundary. These require hypotheses on the action of T = 7ri(M) on the 
(NPC) space X. First recall the terminology. Let (X, d) be an (NPC) space 
as defined in Section 1.1. If M, </) is a complete Riemannian manifold, then 
an isometric action of F = 7ri(M) on X is a homomorphism p : F —► Isom(X) 
where Isom(X) denotes the isometry group of X. Assuming F is finitely 
generated with a set of generators 71, • • • ,7^, we let 6 : X —> R+ be the 
function 

S(P)=   max d(p(7i)(P),P). 
1=1,-,P 

We will call the action of F uniform if 6 is bounded below by a positive 
constant; i.e. there is a 60 > 0 so that 6(P) > 60 for all P e X. We will call 
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the action proper if the sublevel sets of the function 6 are bounded in X; 
i.e. if Po € X, then for any L > 0, there is a number R > 0 (depending on 
L, Po) so that 

{PeX:S(P)<L}CBR(Po). 

2.1. Proper actions. 

We remark that the function S is a Lipschitz convex function on X. By 
the triangle inequality we have 

\8(P1)-S(P2)\<2d(PhP2). 

To see the convexity, observe that for any F 6 Isom(X) the function 
SF(P) = d(F(P))P) is convex because, if POJ-PL are given, then F(P\) 
represents the point which is a fraction A of the way from P(Po) to P(Pi). 
By the quadrilateral comparison theorems of Section 1.3, 8F(P\) is a con- 
vex function of A e [0,1]. Since 8 is a maximum of convex functions, it is a 
convex function. We note the following corollary of Proposition 1.2.1. 

Proposition 2.1.1. A continuous convex function on an (NPC) space 
achieves its minimum on any closed bounded convex set. In particular, if an 
action p : T -* Isom(X) is proper and fixed point free, then it is uniform. 

Proof Let C be a closed bounded convex set, and let / : X —► R be a 
convex function. Let / denote the infimum of the function / taken over C 
If / = — oo, let d denote the subset of C for which / < — 2\ The sequence 
{Ci} is then a nested sequence of closed bounded convex sets. Applying 
Proposition 1.2.1, let P be a point common to all of the Ci. It follows that 
/(P) < —2l for all i which is a contradiction. Thus / > —oo, so we may set 
d = {P e C : /(P) <I + 2"*}, and a point P common to all of the Q will 
satisfy /(P) = / as required. 

We see that the function 8 achieves its minimum on any closed ball, so 
in case the action is proper, 8 achieves its infimum on all of X. Thus if the 
action has no fixed point, this infimum is positive, and the action is uniform. 
This completes the proof of Proposition 2.1.1. 

We now prove the main result of this section which is that harmonic 
equivariant maps exist under the condition that the action is proper. Recall 
that we consider finite energy maps u : M —► X, where M is the universal 
covering manifold of M, which are equivariant with respect to the action of F 
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on M by deck transformations and the action of F on X via p. For simplicity 
we assume that M is compact, and we consider the space Y = L£(M,X) of 
p-equivariant, locally I? maps. The space Y has a natural distance function 
dz given by 

d2{u, v) = ([     d2(u{x), ^))^))1/2 

JM/T 

where we note that x —> d2(u(x)Jv(x)) is F-invariant on M, and hence 
defines a function on M = M/F. We first show that (Y,^) is an (NPC) 
space. 

Lemma 2.1.2. The space (Y,^) is a length space which satisfies (NPC). 

Proof. If UQ,ui G Y we may consider the curve i^(#), 0 < t < 1 which is 
a constant speed parametrization of the geodesic from UQ(X) to ui(x). It is 
clear that the length of the curve t —> ut is equal to ^2(^0, ui). Thus (Y, efc) 
is a length space. Since the (NPC) condition is an inequality which is linear 
in squares of distance functions, and a geodesic triangle is simply a family of 
geodesic triangles parametrized on M, we may derive (NPC) by integrating. 
To be precise, suppose w,uo,ui G Y. For almost any x G M we then have 
by (NPC) on X 

111 
d2(w(x),u1/2(x)) < -d2(w(x),uo(x))+-d2(w(x),ui(x))--d2{uo(x),u1(x)). 

Integrating over M/F we then get 

which yields (NPC) for (Y, cfe). This proves Lemma 1.2.1. 

Theorem 2.1.3. Assume M is compact and p is a proper action ofT = 
7ri(M). There exists an equivariant, Lipschitz harmonic map u : M -» X. 

Proof By [KS] there exists a sequence {ui} of equivariant maps with E(ui) > 

lim E(ui) = Eo, EQ = mf{E(u) :u: M -> X  p- equivariant}. 

Moreover the sequence {ui} is locally uniformly Lipschitz. Let C*, i — 
1,2, • • • be the closed convex hull in Y of the tail end {ui, Ui+i, • • • } of the 
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sequence. The sequence {Ci} is then a nested sequence of closed convex 
subsets of Y. Since the energy is convex with respect to cfe on the subset 
of Y consisting of finite energy maps (see[KS]), and is lower semicontinuous 
with respect to cfo convergence, we have 

sup E(u) < E(ui) Mi. 
ueCi 

If there is a common point u in all of the C*, then u is a harmonic equivariant 
map. In order to find such a % we need only show (by Proposition 1.2.1) 
that Ci is bounded in Y. let PQ G X be a chosen point, and let F C M 
be a fundamental domain for the action of T on M. Let UQ G Y be the 
equivariant map such that UQ{X) = Po for x G F. Because F is compact, 
and the {ui} are uniformly locally Lipschitz we have 

rf(wi(7a(»)),w*(»)) < cd^^x)^) 

for x G F, a = 1, • • • ,p. By the equivariance of w; we then have for x G F 

d{p{la){ui{x)),Ui{x)) <c. 

Thus 5(wi(a;))) < c for a; G F and for all i. By the properness of the action 
we then have d2(ui,Uo) < c for all i. It follows that d2(uJuo) < c for all 
u G Ci, and thus Ci is bounded as required. This completes the proof of 
Theorem 2.1.3. 

Remark 2.1.4. The proof of Theorem 2.1.3 requires only that there be a 
bounded minimizing sequence in order to produce a minimizing equivariant 
map. 

Remark 2.1.5. Theorem 2.1.3 holds also under the assumption that M is 
complete, p is proper, and there exists a finite energy p-equivariant map u : 
M —► X. It is proved by taking a compact subset MQ C M , and considering 
Mo = 7r~1(Mo) where TT : M -+ M is the covering projection. The existence 
of the sequence {ui} as above is done in [KS]. Let Y = L^MQ^X), and the 
same argument as above.produces u. 

2.2. Locally compact spaces and Hilbert spaces. 

In this section we apply the main result of the previous section concerning 
proper actions to the cases when the space X is locally compact, and when 
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it is a Hilbert space. The result we prove in the locally compact case is 
essentially known. The proof given here is simplified by our construction of 
the uniformly Lipschitz minimizing sequence which is already used in the 
proof of Theorem 1.2.3. We include the result since it follows from that 
theorem quite directly. First recall that a locally compact (NPC) space 
has a compactification given in terms of geodesic rays. A ray is a geodesic 
a which may be parametrized by arclength on the interval [0, oo). Two 
geodesies cri, <T2 are said to be equivalent if the Hausdorff distance between 
them is finite. We denote by dX the set of equivalence of rays, and by X, 
the union of X with dX. There is a natural Hausdorff topology so that X 
is the closure of X, and X is compact. To describe this topology, observe 
that the (NPC) property implies that there is a unique representative of 
each equivalence class with initial point at a chosen point Q G X. If ao is 
a ray with initial point at Q, then a neighborhood basis for do consists of 
sets OaQiR for R > 1 consisting of those equivalence classes of rays whose 
representative a with initial point at Q satisfies 

HD(ao H JBfl(Q), a n BR(Q)) < 1, 

together with those points P e X - BR(Q) such that the geodesic segment 
QP satisfies 

HD(aonBR(Q)JQPnBR(Q)) < 1. 

One can check that these sets together with the balls centered at points of 
X form a basis for a topology which extends that of X, and such that X 
is compact. Furthermore, this topology is independent of the base point Q 
which was chosen. An important feature of this compactification of X is 
that if F is an isometry of X, then F extends as a homeomorphism of X. 
Thus it makes sense to ask whether an action of T on X has a fixed point 
in dX. We have the following result. 

Theorem 2.2.1. IfT is a finitely generated group and p is an action ofT 
on a locally compact (NPC) space X, then either T has a fixed point on dX, 
or the action is proper. Furthermore, if Y is the fundamental group of a 
compact Riemannian manifold M, and there is no fixed point for the action 
ofT in dX, then there is an energy minimizing equivariant map from M to 
X. 

Proof If p is not proper, then there is a sequence of points {Pi} in X with 
d(Pi,Q) —> oo for a chosen point Q, and with 6(Pi) < c. We consider the 
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geodesic segments QPi, and observe that the Hausdorff distance between 
QPi and p^aiQPi)-, 1 < a < p is at most c because of the (NPC) condition. 
Because X is locally compact, we can find a subsequence, again denoted 
{Pi} such that the QPi converge on compact subsets to a ray a with initial 
point at Q. We then have the Hausdorff distance between a and p{ia{v) 
bounded by c for 1 < a < p. This shows that the equivalence class of a 
is fixed by F, and completes the proof of the first statement. The second 
statement follows directly from Theorem 2.1.3. This completes the proof of 
Theorem 2.2.1. 

We now consider the simplest non-locally compact space, a Hilbert space 
H. Note first that an isometry F of H is of the form F(v) = A(v) + Vo 
where A is a unitary transformation, an isometry which fixes the origin. An 
action of F on H then has an associated unitary representation given by the 
unitary part of the isometries of p(T). We denote this unitary representation 
by po, and let <?>o denote the translation function associated with po. Thus 
6o(Xv) = A^ for A > 0. We say that po almost fixes a unit vector if 

inf So = 0 
Si(0) 

where ^(O) denotes the unit sphere of H. We then have the following result. 

Proposition 2.2.2. LetT be a finitely generated group, and p an isometric 
action ofT on a Hilbert space H. If po does not have an almost fixed unit 
vector, then the action p is proper. If in addition, T is the fundamental of 
a compact Riemannian manifold M, then there is a harmonic equivariant 
map from M to H. 

Proof Let vai 1 < a < p denote the translational part of the isometries 
p(7a). Let c be a number such that ||va|| < c, 1 < a < p. Let eo be the 
infimum of So taken over the unit sphere. For any v € H we then have 

S(v) > So(v) -c> eo\\v\\ - c. 

This implies that p is proper, and the second assertion follows from Theorem 
2.1.3. This completes the proof of Proposition 2.2.2. 

Recall that a group F satisfies Property T if any unitary representation 
which has an almost fixed unit vector has a fixed unit vector. It is interesting 
to note that for a group F satisfying T, it is true that any isometric action 
of F on a Hilbert space is either proper or has a fixed ray (just as in the 
case of actions on locally compact spaces). It is also known however ([H]) 
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that any such action has a fixed point, and therefore there is a (constant) 
equivariant harmonic map. We will further pursue the connection between 
property T and existence theory in Section 4 of this paper. 

2.3. Spaces of strictly negative curvature and trees. 

In this section we prove some special existence results under the assump- 
tion that X has stricly negative curvature. Without loss of generality we 
may assume that the curvature of X is less than or equal to — 1 (see Section 
1 for definitions). For simplicity, we use the standard terminology that X 
is a CAT(—l) space. In this case we are able to show that if the action 
of r does not fix an equivalence class of rays, then there exists a harmonic 
equivariant map. This is similar to the locally compact case discussed in 
Theorem 2.2.1, except we do not prove the action is proper under the as- 
sumption that no equivalence class of rays is fixed. This does not seem to 
be true, since any unitary representation can appear as the linearization of 
the action at a fixed point, and these may have almost fixed directions. 

Theorem 2.3.1. If X is a CAT(—1) space, and p is an isometric action 
of the fundamental group T of a compact Riemannian manifold on X, then 
either there is a ray in X whose equivalence class is fixed by T, or there is 
a harmonic equivariant map from M to X. 

Proof We consider a point XQ G M, and consider a ball B centered at #0 
with radius large enough that it contains a fundamental domain for the 
action of T on M. For any e > 0, let C€ C Y be the collection of locally 
Lipschitz equivariant maps from M to X whose energy is bounded by EQ+e, 
where EQ denotes the infimum of energies of equivariant maps, and whose 
Lipschitz constant on B is bounded by a constant c (which will be fixed 
throughout). The set C€ is nonempty for every e > 0 if c is chosen large 
enough, and we observe that C€ is a convex subset of Y. This is because 
the energy is convex, and the Lipschitz constant is as well. To see that the 
Lipschitz constant is convex, observe that quadrilateral comparisons imply 

d(ui(aO,ZAt(j/)) < (l-t)d(uo{x)Juo(y))+td(ui{x))ui{y)) 

for any x € M and any t € [0,1]. It follows that the Lipschitz constant of 
ut on B is bounded by c if it is so for UQ, m. Note also that the set Ce is 
closed since the energy is lower semicontinuous under convergence in V, and 
so is the Lipschitz constant since L2 convergence is equivalent to uniform 
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convergence in the presence of a Lipschitz bound, and the Lipschitz constant 
is lower semicontinuous under uniform convergence. Now we consider the 
set Ce C X which is the set of values of U{XQ) taken over maps u in Ce. The 
set Ce is then a closed convex subset of X. Fix a point Q G X. The existence 
of a harmonic equivariant map is then equivalent to the existence of R > 0 
such that Ce Pi BR(Q) ^ (j) for all e > 0. This is because, if a minimizer 
exists, then it lies in all of the C€, and conversely, if the Ce intersect a ball 
of fixed radius, then we can find a minimizing sequence which is bounded in 
y, and by Remark 2.1.4 we have a harmonic equivariant map. 

Now suppose that there is no harmonic equivariant map. By the above 
discussion we see that for any R > 0, there is eo > 0 such that C€ lies 
outside BR{Q) for all e < eo- Now let {ui} be a minimizing sequence with 
m G C2-i, and consider the triangle in X with vertices Q^u^x^^u^x^) for 
i < j. If we construct a comparison triangle in the unit disk conformal 
model of the hyperbolic plane with the vertex corresponding to Q at the 
origin, and with equal side lengths, then by the CAT(—1) condition we see 
that the shortest distance from the origin to the opposite side is at least as 
large as the distance from Q to the opposite side in X. Since, for i large, this 
distance in X is large, we see that the origin lies far from its opposite side. 
It follows that the angle of the comparison triangle at the origin is small. 
Therefore, in X, the segments Qui(xo) and QUJ(XO) are uniformly close on 
bounded subsets of X. Therefore this sequence of segments is Cauchy in the 
topology of uniform convergence on bounded subsets of X, and converges 
to a ray a. Since the Ui are equivariant and uniformly locally Lipschitz, we 
have for any 7a, 1 < a < p that 

d{p{ja)(ui(xo)), Ui(xo)) = dfai(7(2:0)), Ui{xo)) < ci 

for a constant ci. Thus 6(ui(xo)) is uniformly bounded, and hence 6 is 
bounded along the segment Qui(xo) for each i. Therefore 6 is bounded 
along a, and thus the equivalence class of a is invariant under T. This 
completes the proof of Theorem 2.3.1. 

Now we consider the case in which X is a tree. Assume that for any 
two points of X there is a unique embedded continuous path joining the 
points. Since we also assume that X is NPC, this curve must be the geodesic 
joining the points. We will refer to such a space X as a tree. We claim 
that a tree is a CAT(—1) space. (In fact, it is CAT(k) for any k < 0.) 
To see this, let A,B,C be three points in X, and consider the triangle 
they determine. The geodesic AB must intersect the interior of BC since 
otherwise ABUBC would be a second embedded path from A to C. If C lies 
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on the geodesic AB, then the triangle determined by A, B, C is isometrically 
embedded in the real line. Since the real line can be embedded as a geodesic 
in the hyperbolic plane, we see that the CAT{—1) inequality is satisfied with 
equality in this case. Therefore it must be true that the intersection of the 
geodesies AB and BC is a segment DB for some point D between A and 
B. If we parametrize the geodesic BC by arclength we have a geodesic cr(s) 
for 0 < s < a with a(0) = B, a{L) = C, and a = d(J3, C). Let so 6 (0, a) be 
such that a(so) = D. We may then describe the function d(s) = d(A,a(s)) 
explicitly. For s G [0, so] we have d(s) = c — s where c — d(A, B), while for 
s € [so9a] we have d(s) —b-a + s where b = d(A,C). If f(s) = cosh(d(5)), 
then we see that the equality / (s) = /(s) for 5 6 (0, so) U (so, a), and the 
first derivative jumps up at so. It follows that the inequality f'^s) > f(s) is 
satisfied distributionally on (0,a). This shows that X is a CAT(-l) space. 
Therefore, the following result is a consequence of Theorem 2.3.1. 

Corollary 2.3.2. IfX is a tree, and p is an isometric action of the funda- 
mental group F of a compact Riemannian manifold on X, then either there 
is a ray in X whose equivalence class is fixed byT, or there is a harmonic 
equivariant map from M to X. 

Remark 2.3.3. On might hope that for trees it would be true that there 
is either a fixed equivalence class of rays, or the action is proper as holds in 
the case of locally compact X. We describe an example which shows that 
this is not generally true. Consider a combinatorial tree T with a central 
vertex Q, and a countable number of adjoining edges {£?»} indexed on the 
positive integers. Let Pi denote the remaining vertex adjoining Ei, and add 
two additional edges E^i^Ei^ to Pi. Consider the automorphism F which 
fixes Q and all of the P*, but maps E^i to E^- Choose a metric on T so 
that Ei has length i, and E^i^E^ have infinite length. The automorphism 
is then an isometry, and for the group it generates we see that there is no 
fixed equivalence class of rays, but the action is not proper (since points 
arbitrarily far from Q are fixed). 

3. Limit space constructions. 

Let Q, be a set, let (X, d) be an NPC space, and let u : fi —► X be a map. 
Denote the closed convex hull of u's image by C(u(Q)). (The closed convex 
hull of S is the smallest closed convex set containing S.) A dense subset of 
C(w(fi)) is parameterized naturally by a set Qoo which is constructed induc- 
tively from products of Q, with intervals I — [0,1], The map u extends to 
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^oo : Qoo —► X and C(u(Q)) can be reconstructed from Qoo and the resulting 
pull-back pseudodistance doo. Thus one is led to a characterization of those 
pseudodistances on Q which arise as pull-backs for maps to NPC spaces. 
Further, this leads to a useful notion of convergence for maps Uk : fl —> Xk, 
namely the pointwise convergence of the corresponding d^oo- A similar con- 
struction allows one to consider convergence of maps to NPC spaces which 
are geodesically complete and which have uniform lower curvature bounds. 

In the present section we examine these characterizations of maps to 
NPC spaces. We show local C0 precompactness for sequences of maps hav- 
ing local uniform modulus of continuity control. These considerations will 
be used in the next section to study actions of discrete groups. Energy- 
minimizing properties are preserved under this convergence. Thus, for ex- 
ample, in an equivariant problem which cannot be solved for a harmonic 
mapping (because all minimizing sequences approach infinity), it is still true 
that locally uniformly Lipschitz minimizing sequences have subsequences 
which converge to a limit harmonic map, to a limit NPC space. 

Recall that a pseudodistance on Q is a non-negative function p{x,y) 
defined on $1 x ft which satisifies the triangle inequality and which is zero 
whenever x — y. By identifying points in ft via the equivalence relation of 
zero pseudodistance, one obtains an actual distance function on the quotient 
set. Now, let X^u be as above, define fto to be ft, let UQ := u and let do be 
the pullback pseudodistance induced on fto x fto by w, 

do(x,y) :=d(u(x),u(y)). 

Let I be the unit interval [0,1]. Inductively define ft;+i to be ft* x ft* x /. 
Identify ft; with a subset of ft;+i via the inclusion map 

(3.1) xt-tfaXjO). 

Extend m to Ui+i : ft;+i '-* X by 

(3.2) tti+i(a,y, A) := (1 - X)ui(x) + Xui(y)9 

and let di+i be the corresponding pull-back pseudodistance. Note that ^, di 
agree with Mt+i,di+i on the subset ft; defined by (3.1). In fact, letting 
rr, y e ft;, z G ft;-t-i, A, /x G / it follows immediately that 

(3.3) 
di+1((x,x,0),(y,y,0)) =di(x,y), 

di+i((x, y, A), (x, y, fi)) =\X - fi\di(x, y), 

di+i(z, (x, y, A)) <(1 - \)<%+1(z,x) + \dl+l(z,y) - A(l - A)df {x,y). 
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Define 

There is a natural map Uoo : f^oo -»• -X" given by ^oo := Wi on fli, and so 
there is the corresponding pseudodistance doo defined on Q,^. Construct the 
quotient metric space from (fioo>doo)j and denote its completion by (Z,d). 
Using only the properties (3.3) one can show that that (Z,d) is an NPC 
space, and deduce that in this case it is isometric to the closed convex hull 
C(/u(fi)). In fact, (3.3) characterizes those pseudodistances on £1 which arise 
as pullback pseudodistances from maps to NPC spaces: 

Lemma 3.1. Let H be a set and let p be a pseudodistance defined on Q. 
Then p is a pullback pseudodistance for some map u from O to an NPC space 
if and only if p = do for some pseudodistance doc defined on Qoo x Q,oo and 
satisfying (3.3). In this case, the completed quotient space (Z, d) is isometric 
toClu(Q)). 

Proof. The construction above shows that pullback pseudodistances from 
NPC spaces satisfy (3.3) on fioo so we must study the converse. The main 
step is to show that whenever ($loo>doo) satisfies (3.3), then the completed 
quotient space (Z, d) is NPC. 

From (3.3) we deduce that geodesic convexity (1.3.5) holds on fioo. Now 
let z,w e (Z,d). Pick 

{Zi}, {Wi} C ftoo, N -* z, [Wi] -> w. 

Geodesic convexity applied to quadrilaterals {zi, Zj, Wj, Wi} immediately im- 
plies that the sequence of midpoints Zit,Wi is Cauchy and must converge to 
the midpoint of z and w. Hence every two points in (Z, d) have a midpoint, 
and by standard diadic subdivision arguments there is a connecting curve 
of distance-realizing length. 

The NPC property (for the sufficient case A = -g) follows by the same 
argument: Any collection of three points in (Z, d) can be approximated 
by a sequence of (equivalence classes of) triples in fioo For each triple the 
NPC inequality for the distance from the first point to the midpoint of the 
other two holds. Since these midpoints converge to the corresponding limit 
midpoint, the desired NPC estimate is the limit of these Qoo inequalities. 

Since (Z, d) is NPC we may consider the natural map u : fi —► Z given by 
the composition of the natural inclusion of ft into ftoo (via (3.1)), followed 
by projection onto the completed quotient metric space Z. It is easy to see 
that p = do is the pullback pseudometric of this map. 
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In case doo is the pullback of a map Uoo to an NPC space we see that the 
map Uoo descends to a well-defined map from the quotient metric space, since 
points of zero pseudodistance have the same image point. This mapping on 
the quotient metric space is an isometry by construction, and so extends 
uniquely to be an isometry of the completion (Z, d). The image set is closed 
because (Z, d) is complete and the map is an isometry. The image set is 
convex because (Z, d) is NPC and because the map is an isometry. Thus the 
image set contains C(^(f])). Conversely, it follows by induction on the Uk 
that Uooi^too) C C(iz(fl)), so that also u(Z) C C(u(Q)). Thus the two sets 
coincide. □ 

Now suppose that X is NPC, satisfies K > —a2 (1.1.4), and is geodesi- 
cally complete (i.e. every geodesic arc extends to a geodesic line). Then 
the construction above can be modified by replacing the interval / with the 
entire real line R. In addition to the estimates (3.3) one has 

(3.4) 
di+i((x,y,\),(x,y,iJ,)) =\\-ij\di(x,y),   A,^GR 

ur i    i   i       ,,s ^sinh((l - \)adi(x,y))     ,,   ,     ,     u cosh(adi+i(z, {x,y, A)) >  "        '     K —'-cosh(adi+i{z,x)) 

, sinhiXaddx, y))      , .   ,     .     ..     „ 

In this case we will denote the underlying set by ft^. We arrive at a char- 
acterization of those pseudodistances which arise as pullbacks from target 
spaces which are geodesically complete, NPC, and satisfy (K > a2): 

Lemma 3.2. Let Q be a set and let p be a pseudodistance defined on Q. 
Then p is the pullback pseudodistance for some map u from ft to a geodesi- 
cally complete NPC space satisfying K > —a2 if and only if p = do for some 
pseudodistance doo on fi^, where doo satisfies (3.3), (3.4)- In this case, the 
space (Z, d) is isometric to the geodesic completion ofu^), i.e. the smallest 
geodesically complete set containing u(£l). 

Proof. By the same reasoning as in Lemma 3.1 it suffices to show that if 
(f^doo) satisfies (3.3),(3.4), then the completed quotient space and the 
natural map to it have the desired properties. Of these, only the geodesic 
completeness of (Z, d) needs to be shown, since the curvature inequalities 
will follow by the argument of Lemma 3.1. By the usual diadic subdivi- 
sion techniques it suffices to show that given any two points in (Z, d) there 
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is a third point so that the second point is the midpoint of the first and 
third ones. The proof proceeds analogously to the midpoint construction in 
Lemma 3.1, except one uses the lower curvature bound: By hypothesis we 
may assume the existence of 

{ttiMyihte} C ftco, 

{N}-+a:,{[2/i]}->i/, 

and with each yi the midpoint of Xi and Zi. Applying the consequence 
(1.3.12) of (1.3.4) (or in our case of (3.4)) to the quadrilaterals {x^ Xj, Zi, Zj} 
with t = 5 we deduce immediately that that {zi} is Cauchy, and hence that 
it converges to the desired z. 

If doo is the pullback pseudodistance obtained from a map u to a space 
satisfying the hypothesized conditions, then the argument that (Z, d) is iso- 
metric to the geodesic closure of ii(fl) follows the ideas in the proof of Lemma 
3.1. □ 

Definition 3.3. Let {uk : fl —► Xk} be a sequence of maps to NPC spaces 
Xk- We will say that Uk —> u in the pullback sense if the corresponding 
pullback pseudodistances dk,oo converge pointwise to a limit doo, and if the 
map u is the natural projection of Q, onto the completed quotient space 
(Z,d) which is constructed from the limit doo- We may specify either ftoo 
or fi^ in using this definition. 

The following result is immediate from the considerations above: 

Proposition 3.4. Let {uk : O —> Xk} be a sequence of maps to NPC spaces 
Xk- Ifuk-*u in the pullback sense on Qoo, then u is also a map to an NPC 
space. If each Xk is geodesically complete, has K > —a2 and if Uk —» u in 
the pullback sense on Q,^, then the limit NPC space is geodesically complete 
and has K > —a2. 

We now specialize to Riemannian domains (ft, 5). In this case each Qi has 
a Riemannian structure arising from the canonical product metric and we 
shall use the notation (il^g) to refer to this structure. We are interested 
in local problems, for which Q is a compact Riemannian domain, as well as 
in global problems, in which ft is the universal cover M of a Riemannian 
manifold M having fundamental group F. 

If ft = M then each ft; is a product of intervals with copies of ft, so the 
action of T by isometry on M extends to one on each (ft;, g) by the diagonal 
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action, i.e. via the inductive formula 

(3.5) 7((a:J y, A)) := (7a?, yy, A). 

If F also acts by isometry on an NPC space X, via the homomorphism p : 
F —> isom(X), and if u : M -» X is T-equivariant, then it follows inductively 
from (3.2),(3.5) that also tico : QQO —► X is F-equivariant. Therefore the pull- 
back pseudodistance doo on ficc is F-invariant. This condition characterizes 
those doo's arising as pullbacks from equivariant mappings: 

Lemma 3.5. Let Q = M as above and let p be a pseudodistance defined 
on ft. Then p is a pullback pseudodistance for some equivariant map u to 
an NPC space if and only if p — do for some T-invariant pseudodistance 
d^ defined on fioo, where doo satisfies (3.3). p is a pullback pseudodistance 
for some equivariant map u to a geodesically complete NPC space having 
K > —a2 if and only if p = do for some T-invariant pseudodistance doo 
defined on Q,^, where doo satisfies (3.3), (3.4)- 

In fact, if doo is invariant (on either ftoo orQ**), thenT acts naturally 
on the completed quotient space (Z, d) and the natural projection map u from 
f] to (Z, d) is equivariant, with pull-back pseudodistance p. Therefore if we 
have Uk —> u in the pull-back sense (on either Sloo or ti^), and if each Uk 
is an equivariant map, then so is u. 

Proof. Let doo be invariant. This means that the diagonal action of T on 
^00 (^S) preserves doo, i.e. T acts isometrically on the pseudometric space 
(^00, doo) ((fi^,doo)). Any isometry on a pseudometric space descends to 
one on the quotient metric space. And any isometry on a metric space ex- 
tends uniquely to one on its completion. Therefore T acts naturally on (Z, d). 
That the projection map u : (fl, #) —► (Z, d) is equivariant follows from the 
fact that the identity may id : (ft, (/) —> (ft, do) is trivially equivariant.      □ 

We will show precompactness theorems relative to convergence in the 
pullback sense, in the setting of maps with uniform local modulus of conti- 
nuity control. 

Definition 3.6. Suppose Uk —> u in the pullback sense of Definition 3.3. 
We will say that the convergence is locally uniform if the convergence of dk,i 
to the limit d; is uniform on each compact subset of ftf x ft^. 

Proposition 3.7. Let {uk : ft —► Xk\ be a sequence of maps to NPC 
spaces for which there is uniform modulus of continuity control.   That is, 
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assume for each x e fi and R > 0 there is a positive function UJ{X,R) which 
is monotone in R, satisfying 

limufaR) = 0, 
Ft—>0 

and so that for each k € Z there holds 

(3.6) max   \d(uk(x), Uk(y)\ < a;(a;, R). 
y£:B(x,R) 

Then there is a subsequence of the {uk} which converges locally uniformly 
in the pullback sense to a limit map u, and u satisfies the same modulus of 
continuity estimates. 

If each Xk is geodesically complete and satisfies K > —a2 and if the 
convergence is for Q,*^, then the same result holds. 

Proof Consider the first case. If v : ft —► X is any map to an NPC space 
which satisfies local modulus of control (3.6), then it follows that the exten- 
sion map Vi : (£li,g) —> X also has local modulus of continuity control. This 
follows from the triangle inequality and the inductive estimates 

(3.7) 
diui+ifayyX^Ui+ifayjH) = |A - ii\d(ui(x),Ui(y)) 

d(ui+i(xi9yi, \)9Ui+i(x2>y2, A) < (1 - \)d(ui(xi,X2)) + Xd(ui(yi,y2)) 

which follow from (3.3). But local modulus of continuity control for 
Vi : £li —> X implies local modulus of continuity control for the pullback 
pseudodistance-di : £li x Qi -* R. It follows that all of the pullback pseu- 
dodistances dk,i obtained from the sequence {uk} have locally uniform modu- 
lus of continuity control. Therefore by a Cantor diagonalization with respect 
to both i and a compact exhaustion of each fi*, we obtain a subsequence of 
the dkyoo which converges locally uniformly to a limit doo- Because of the 
pointwise convergence in particular of the (subsequence of) d^o we see that 
the limit map u also satisfies the estimate (3.6). 

In the second case of the theorem, the only part of the argument which 
must be modified is the second estimate in (3.7). We need a similar bound 
valid for any A G R. From symmetry and the fact that (3.6) gives a suitable 
bound whenever 0 < A < 1, it suffices to derive one for A > 1. The desired 
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estimate follows immediately from (1.3.12), if we take 

P = Ui(xi), Q = Ui(x2),R = Ui+i(x2,2/2, A), 5 = Wt+i(a?i, j/i, A), 
1 

S = maa;(d(wi(a?i), w»(a?2)), rf(w*(j/i), Uifa))) 

D = max{d(zi,Zj)\zi,Zj G {wt(a?i),Wt(»2),Wi(j/i),Wt(y2)}}. 

The estimate is 

(3.8) ch(dRs) - 1 < 12exp(5DX)(ch(S) - 1). 

This shows inductively that all of the extension maps Uk,i obtained from the 
sequence {uk} have locally uniform modulus of continuity control, and so 
the argument can proceed as in the first case. □ 

Lemma 3.8. Let Uk —> u locally uniformly, in the pullback sense (For 
either construction of Qoo)- Suppose each Uk satisfies uniform local energy 
bounds 

(3.9) /   \duk\2dtJL<E(x,R) 

B(x,R) 

for bounded functions E(x,R). Then the limit map is locally ap — 2 Sobolev 
mapping satisfying the same estimates (3.9). In fact, the Sobolev energy 
functional and the directional energy functionals are lower semicontinuous 
with respect to this locally uniform convergence; for any f e Cc(fl),/ > 0 
and any smooth vector field Z on £1 there holds 

(3.10) / f\du\2dfi < liminf f f\duk\2d^ 
J k—KX>      J 

(3.11) f f\u*(Z)\2dn< liminf f f\{uk)*{Z)\2dii. 

Proof. Using, say, sphere averaging we have the ^-approximate energy den- 
sity functions 

e£ [X) - ujn     J s*      e-i • 



Harmonic Maps to Non-Locally Compact Spaces 375 

Because of the local uniform convergence of {dk,o} to the limit do it is clear 
that the e^k -» e^ locally uniformly. Integrating against / € Cc(£}),/ > 0 
we deduce that the £-energy functionals 

(3.12) E^(f) := j e^{x)f{x)dix - E%{f) 

as k —> oo. But by the "monotonicity" of the energy functionals [KS, The- 
orem 1.5.1] we have 

(3.13) B%kU)<E"k{f?), 

where ff — (1 + Ce)fe and j£ is defined in (1.5.13), and C depends on 
the support of /. Equations (3.12),(3.13) and the uniformity estimate (3.9) 
imply that the limit map u is locally Sobolev. Furthermore one has the 
inequalities 

EV(f)<liminfEu*(f?) 
(313) k~'00 

k-^oo 

where the support of /F lies inside B(xJ R). The semicontinuity claim (3.10) 
and hence also the estimate (3.9) for u now follow by letting e —► 0 in (3.14). 
It follows that u has finite directional energies, and one can repeat the same 
argument as above, using the e- approximate directional energies, to deduce 
(3.11). □ 

Finally, we wish to address harmonic map questions. We focus on the 
following two problems: 

(I) The equivariant mapping problem, in which Q is the universal cover 
M of a compact Riemannian manifold M having fundamental group 
r. 

(II) The Dirichlet Problem for a compact Riemannian domain (fl,flr). 

For both of these problems a map u : Q —> X is said to be within e of 
minimizing if the p = 2 Sobolev energy Eu satisfies 

Eu<infEv +6, 

where the v range through admissible competitors. 
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Theorem 3.9. Consider the equivariant problem (I). Let {uk : M -^ Xk} 
be a sequence of equivariant maps to NPC spaces Xk- Assume {uk} con- 
verges locally uniformly, in the pullback sense, to a limit map u : M —> X. 
Suppose that the energies of the Uk are uniformly bounded and that Uk is 
within Sk of minimizing, with Sk —> 0 as k —> 0. Then u is a minimizing 
equivariant map. Furthermore, the Sobolev energy density measures and the 
directional energy density measures of the Uk converge weakly to those ofu. 

Proof Let Mo C M be a compact, Lipschitz fundamental domain for M. 
Consider the equivariant harmonic map problem for the limit space X. By 
Theorem 2.6.4 in [KS] there is a uniformly Lipschitz minimizing sequence 
(and the Lipschitz constant depends only on M and on Eu). Therefore for 
any admissible map w (of which u is an example) and any 8 > 0 there is a 
uniformly Lipschitz equivariant map v so that 

(3.15) Ev <Ew + 8. 

Now fix an approximate identity ry as in §1.5, and the corresponding measure 
v. Fix e sufficiently small so that 

(3.16) ^, BE^<E
W
 + S. 

Because v is uniformly Lipschitz, it can be approximated arbitrarily closely 
in L00 by equivariant maps which are locally constant, with the added con- 
straint that the image of MQ is a finite set. Since the (equivalence classes 
of) points in Qoo are dense in (X, d) we may assume that our piecewise- 
constant approximate map factors through one of the SI*. Call this map v. 
It is straightforward to check, using the modulus of continuity control on 
v and the properties (1.13) for the u and ball measures, that if v is close 
enough in L00 to v, then also 

(3.17) „££, BEI<E
W
 + S. 

Because they factor through fif, the maps v determine natural maps Vk to 
the pre-limit spaces Xk- Because the d^i converge locally uniformly on ft; 
we deduce that for k large 

(3.18) vEl\BElk <EW +8. 

Now apply the mollification result, Proposition 1.5, with / := 1, to deduce 

(3.19) £**** < (1 + Ce){Ew + 8) 
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for k large. But the map Vk * % is a competitor for Uk, so we have the final 
estimate 

(3.20) EUk - Sk < (1 + Ce){Ew + 6) 

for k large. Letting k —> oo and then noting that e and 6 were arbitrary we 
deduce 

limsupEUk<Ew 

k—>oo 

for any competitor w in the limit equivariant problem. Combining this with 
the semicontinuity result (3.10) yields 

Eu < liminfEUk < limsupEUk < Ew. 

Hence u is minimizing, and taking w = u above we also conclude that EUk —> 
Eu. Since there is no loss in the total energy of the limit map and because 
the Sobolev and directional energy functionals are lower semicontinuous it 
follows that the corresponding measures actually converge weakly. □ 

Corollary 3.10. Consider the equivariant problem (I). Regardless of 
whether there exists a minimizing harmonic map to the original space, it 
is nevertheless true that any uniformly Lipschitz minimizing sequence {uk} 
has a subsequence which converges locally uniformly, in the pullback sense, 
to a limit harmonic map u (to a limit space). If X is geodesically complete 
and satisfies a lower curvature bound (1-14), then so does the limit space. 
The limit L1 tensor H and limit energy density function \du\2 are unique, 
and they are L1 limits of those in the sequences. In fact, 

(3.21) 

lim   /    /   ||(n)*(a;)| - \(uk)*(v)\\2dcr(u)dn(x) = 0. 

M S™-1 

Proof The existence of the limit equivariant harmonic map follows from 
Lemma 3.5, Proposition 3.7 and Theorem 3.9. The L1 convergence of the 
tensors H and of the energy densities follows from the statement (3.19). 
This statement follows from the weak convergence of the directional energy 
measures proven in Theorem 3.9, together with Proposition 2.6.3 in [KS], 
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which asserts that 

lim   /    /   11(0*0)1 - \(uj%((jj)\\2da(u)dfjL(x) = 0 
i,J-+oo J     J 

for any minimizing sequence. □ 

There is local version of Theorem 3.9, which is slightly more technical 
because one must deal with boundary values. Let Q, be a smooth compact 
Riemannian domain. Write E := d£l. For small non-negative t consider the 
subdomains fit consisting of points which are at least distance t from E, and 
write dQt:— E* for their parallel boundaries. 

Theorem 3.11. Let O be as above. Let {uk : fi -^ X^} be a sequence 
of finite energy maps to NPC spaces Xk. Assume {uk} converges locally 
uniformly, in the pullback sense, to a limit map u : fi —» X. Suppose that 
the energies of the Uk are uniformly bounded and that Uk is within Ek of 
minimizing, with Sk -* 0 as k —► 0. Additionally, assume that the energy 
densities of the Uk are uniformly controlled near E. Specifically, assume that 
there is a positive function D(t) defined for small positive t, with D(t) —> 0 
as t —> 0; and so that 

(3.22) f  \duk\2diL<D{t). 

n-Qt 

Then u is a minimizing map (for its given boundary values). Furthermore, 
the Sobolev energy density measures and the directional energy density mea- 
sures of the Uk converge weakly to those ofu. 

Proof. For each small non-negative t consider the Dirichlet Problem on £)$, 
with boundary data given by the trace of u on S$. Let E{t) be the energy 
of the minimizer wt. (There exists a unique solution, with local interior 
Lipschitz continuity control, by Theorems 2.2 and 2.4.6 of [KS].) We claim 
that E{t) is a continuous function at t = 0: For t > 0 a competitor to WQ := 
w is the map which equals Wt in ft$ and u on the complement. Therefore 

E(0) < E(t) +    /  \du\2dti. 

n-Qt 

In order to deduce a reverse inequality construct difFeomorphisms ^ : Qt —^ 
ft which are within 0(|t|) of being Riemannian isometries, and so that these 
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diffeomorphisms preserve the normal directions in a tubular neighborhood 
of S. Consider the competitor for wt obtained as follows. First reflect the 
values of u exterior to tit through £$, via the normal vector field. This 
defines the competitor in the exterior of 0,21- Then use the almost-isometry 
V>2t to reparameterize the map w from Q, to fl2t- Deduce that 

E(t) < (1 + 0(t))E(Q) + C   I  \du\2dii. 

Q-Qt 

These two inequalities imply the continuity of E at t — 0. 

Write vt to refer to the map on Q, which is given by wt inside Qt and by 
u in its complement. By the reasoning above we see that the total energy 
of vt is continuous at t = 0. By the boundary regularity theorem of T. 
Serbinowski [S] we also know that vt is globally Ca on ilt. 

We are now in a position to repeat the argument of Theorem 3.9. Let 
6 > 0. Pick t > 0 sufficiently small so that (3.15) holds, with v := vt. Define 
total approximate energies ^E^ BE% 

as the integrals of the corresponding 
density functions over fh. Then it follows as before that also (3.16) holds, 
for e sufficiently small. 

Approximate v in the sup norm by a map v, as follows: In the comple- 
ment of fit let v := v = u. Inside fi* replace v with a piecewise constant map 
having a finite number of image points, and so that the replacement map fac- 
tors through one of the £1*. (Note, u factors through QQ.) By approximating 
closely enough in the sup norm, we can satisfy (3.17). 

Because the dk,i converge uniformly on fit we deduce that (3.18) holds 

for k large. The mollification estimate (3.19) follows as before, where the 
energy of the mollified map is being computed on fit.  The mollifed map 

2 
is not a competitor for the Uk Dirichlet problem, because even though vk 

equals Uk in a boundary strip, the mollifed map does not (and is not even 
defined near E). Therefore we "bridge" the gap between ut and Vk * rjs 
somewhere in the strip Qt —Qf The estimate we need is the following: 

Lemma 3.12. Let S be a smooth compact Riemannian manifold. Let v, w : 
E —► X be finite energy maps to an NP.C space X. Then for any p > 0 the 
map W : E x [0, p] given by 

W(x, s) = (1 - -)v(x) + -w(x) 
P P 
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has finite energy Ew bounded by 

(3.23) Ew < | [\dv\2 + \dw\2da + - I d2(v,w)da. 

Proof. It is easy to verify that the map W is a Sobolev map. The estimate in 
this lemma is true because the energy density of maps from a Riemannian 
product is the sum of the densities relative to each factor. To estimate 
(approximate) energy densities on a slice S x s one uses the quadrilateral 
inqualities of §1.3, applied to points v(x))V(y),w(x),w(y). One concludes 
that 

\dxW\2((x,8)) < (1 - -)|dt/|2 + -|dti/|2. 
r r 

Estimating in the R-direction, one has trivially 

The estimate (3.23) follows by summing and integrating the two estimates 
above. □ 

In order to use the bridging lemma we estimate 

(3.24) j     d2(uk,vk*rie)<Ce2 

T T 

(3.25) /     \duk\2 + \dvk * r]£\2 < CD(t). 

^2t-^3t 

The estimate (3.24) holds because vk is the function uk in Qt_ — Qtj so 
one is really estimating the L2 distance between a Sobolev map and its e- 
mollification. For any such function u abbreviate the mollification by u. By 
the triangle inequality 

d2(u{x), u(x)) < 2d2(u(y),u{x)) + 2d2{u{y),u{x)). 

Integrate this inequality over B(x,e), with respect to the exponential push- 
forward of the measure r]£(z)dz on TMX. Thus 

d2(u(x), u(x)) < 4e2rJee(x), 
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where the approximate energy is the one induced by 77. Integrate this ex- 
pression over il2t — flat. Because Sobolev energy dominates ^-approximate 

energy we deduce (3.24), where the constant C depends on the uniform 
energy bounds for the sequence Uk. 

The estimate 3.25 follows from the uniform energy bounds for Uk, and 
from the fact that mollification essentially decreases energy. 

From (3.24),(3.25), the average square L2 distance between Uk and Uk 
on Es is bounded by C^-? for ^ < 5 < ^. The average energy of the 

restriction of u or u to S5 is bounded by C—jp- on the same interval. We 
choose a subinterval [5, s + fit] ( //'« 1) on which to apply the bridging 
lemma, between the map Uk and the map Uk. We can make the first term 
in the energy contribution less than 6 for at least half the s in our interval, 
by taking /i small and choosing s carefully. (This part of the argument does 
not use D(t) -» 0.) For this given choice of /i we can specify e to have been 
small enough so that for at least one of these restricted s the L2 contribution 
to the energy estimate is also less that 6. Using this bridge choice we obtain 
a competitor to Uk, and hence an estimate analogous to (3.20), namely, 

EUk-ek<(l + Ce)(Ew + 8)+2S+    f  \duk\2dti. 

Now, let k —> 00, note that 5,6, t can be chosen arbitrarily small, and that 
the estimate (3.22) holds for the energy of Uk in the strip. Hence 

limsup^ <EW. 
k—>oo 

Combining the estimate above with semicontinuity, as in the proof of The- 
orem 3.9, we deduce that u is the minimizer w, and the other claims of 
Theorem 3.11 follow as well. □ 

4. Nonuniform actionSo 

This chapter deals with the situation in which the action of T on X is 
not uniform. This is the same as saying that the action almost fixes a point 
of X; that is, there is a sequence of points {Pi} in X such that 6(Pi) —> 0. Of 
course, the simplest case in which this would happen is if the action actually 
fixes a point of X. We will be interested in the case in which there is no 
fixed point. 
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4.1. A basic construction and spaces of bounded curvature. 

We first describe a technical result which is basic for the work of this 
section and the next. Suppose X is an NPC space, and p is an action 
of a finitely generated group T on X. let Pi be a point of X, and let 
ei = rf15(Pi). Assume that there is no fixed point for the action in J3ri(Pi) 
for some ri > 0. We then have the following result. 

Proposition 4.1.1.  There exists a point P2 G Bri(Pi) such that if we set 
r2 = l/2(ri — d(Pi,P2)), then we have the following conditions satisfied 

r216(P2) < 461, 6(P2) < 4'mf{S(P) :  P G 5r2(P2)}. 

Proof Since we are assuming that there is no fixed point in Bri(Pi), we 
may apply Proposition 2.1.1 to see that the function 6 achieves a positive 
minimum value in Bri(Pi). Let Si > 0 denote the minimim value of 6 on 
i?ri(Pi). We then consider the function / on Bri(Pi) given by 

m = (rl-d(Pl,P))-16(P). 

We then see that the infimum of / satsfies 

(4.1.1) rr1^ <    inf   / < ei 

where the second inequality holds because /(Pi) = 61. Since the infimum of 
/ is positive, we may choose a point P2 £ Bri(Pi) so that 

(4.1.2) /(P2)<2   inf   / 
Bri(Pi) 

We now define ^2 = l/2(ri—d(Pi, P2)) as in the statement of the proposition. 
Combining (4.1.1) and (4.1.2) we have 

/(ft) < 2ei. 

Prom the definition of / and r2, this implies r^16(P2) < 4ei which is the 
first inequality of the desired conclusion. To prove the second inequality, we 
observe if P e 5r2(P2), we have by the triangle inequality 

n - d(Pi, P) > n - d(Pu P2)) - d(P2, P) > l/2(ri - d(Pu m = ra. 
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Thus we have 
inf   / < rvT1   inf   6. 

Br2(P2) Br2{P2) 

Since /(P2) = (2r2)"1(5(P2)J we may combine this with (4.1.2) to conclude 
5(P2) < 4inf{5(P) : P E Sr2(P2)} as desired. This completes the proof of 
Proposition 4.1.1. 

We now apply this result to the case in which X has a lower curvature 
bound, and is geodesically complete in the sense discussed in the previous 
section (geodesic arcs are extendable). For such a space X we have the 
following result. 

Theorem 4.1.2. Assume X is a geodesically complete NPC space with a 
lower curvature bound. Assume T is a finitely generated group and p is an 
isometric action ofT on X. If the action is not uniform, but does not have 
a fixed point in X, then there is a uniform isometric action poo of T on 
a Hilbert space H. Moreover, if Y is the fundamental group of a compact 
Riemannian manifold M, then poo rnay be chosen so that there is a poo- 
equivariant harmonic map from M to H. 

Proof We may assume that T is the fundamental group of a complete Rie- 
mannian manifold. Let {Pi} be a sequence of points from X such that 
€i = 6(Pi) -> 0. We then apply Proposition 4.1.1 in a unit ball about Pi to 
produce a new sequence of points {Q;}, and radii {n} such that 

rZl6(Qi) < 4€i, 6(Qi) < 4inf{(5(P) : P e Bri(Qi)}. 

Now define a new NPC space Xi = (X, 8(Qi)~1d). Denote by pi the same 
action p on Xi, and let Si be the associated translation function. We then 
have 6i — 6(Qi)~16 and the ball BniQi) becomes the ball Bl

Ri(Qi) in Xi 
where Ri = 6(Qi)~1ri. Thus we have 

Ri > 1/46-1,1 = 6i(Qi) < 4inf{^(P) : P G B^iQi)}. 

Now by [KS, Proposition 2.6.1], there exists a uniformly locally Lipschitz 
sequence of maps Ui: M —> Xi which map a chosen point XQ e M to Qi. We 
then apply Theorem 3.9 to this sequence to produce a limit NPC space XQO, 

and a limit map Uoo which is equivariant with respect to a limiting action 
Poo- Note that the curvature of Xi is bounded from below by —8(Qi)2K if 
that of X is bounded below by —K. Therefore from Corollary 3.10 we see 
that Xoo has curvature bounded above and below by 0.  Moreover, Xoo is 
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geodesically complete, so by Proposition 1.1.1, Xoo is isometric to a Hilbert 
space H. Since Ri —> oo, the action p^ is uniform; in fact, \r£5oo > 1/4. 
This establishes the first part of the theorem. 

The second assertion follows by applying Theorem 3.9 to a minimizing 
sequence of poo-equivariant maps from M to H. One then obtains a new 
Hilbert space with a uniform action of T together with a minimizing equiv- 
ariant map. This completes the proof of Theorem 4.1.2. 

As a corollary of this result we prove a general fixed point for actions of 
Property T groups on NPC spaces. 

Corollary 4.1.3. Let T be a finitely generated group, and let X be a 
geodesically complete NPC space with curvature bounded from below. If T 
satisfies Property T, then any isometric action ofT on X which is not uni- 
form fixes a point of X. IfT does not satisfy Property T, then there exists 
a uniform isometric action ofT on a Hilbert space. 

Proof By Theorem 4.1.2, a nonuniform action of Y on X would produce a 
uniform isometric action of T on a Hilbert space; in particular, a fixed point 
free action. This is impossible for a Property T group (see [H]). This proves 
the first statement. On the other hand, if Y does not satisfy Property T, 
then there is a unitary representation p on a Hilbert space with em almost 
fixed unit vector, but no fixed unit vector. We can apply Proposition 4.1.1 
in balls of radius 1/2 about a sequence of unit vectors Vi with 8(vi) -* 0. 
The same argument as that above then produces a uniform isometric action 
on a Hilbert space. This completes the proof of Corollary 4.1.3. 

We may also apply the theorem to produce harmonic and holomorphic 
functions in very general situations. 

Corollary 4.1.4. Let M be a compact Riemannian manifold whose funda- 
mental Y does not satisfy Property T. There exists a uniform affine action 
ofY on a Hilbert space H together with an equivariant harmonic map from 
M to H. If M is Kahler, then H may be taken to be a complex Hilbert 
space, and the map may be taken to be holomorphic. In particular, for any 
such M, the universal cover admits harmonic (holomorphic if M is Kahler) 
functions with linear growth. 

Proof. Corollary 4.1.3 constructs a uniform isometric action p of Y on a 
Hilbert space J?, and the existence of the harmonic map u follows as in the 
proof of the second part of Theorem 4.1.2.   Classical vanishing theorems 
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imply that the map is pluriharmonic. Thus on the universal cover M, we 
can find a pluriharmonic conjugate map v : M —► H. If we normalize % v 
so that u(xo) — v(xo) = 0 for some chosen xo e M, then the map v is also 
p-equivariant since for any 7 € F, ^(7) ovcy"1 is a pluriharmonic conjugate 
to u which maps XQ to 0. Therefore this map agrees with v, and v is p- 
equivariant. The map u + yf^lv is then a holomorphic map to the complex 
Hilbert space H © yf-lH which is equivariant for the action p © V—lp. By 
the equivariance property, the gradient of the map is bounded, so it is of 
linear growth. This completes the proof of Corollary 4.1.4. 

4.2. Application of zero vanishing theorems. 

There are certain applications of this theory in which the curvature of 
the target is not bounded below, but for which one can prove certain van- 
ishing theorems which can be used to replace the lower curvature bound. 
In particular, a vanishing formula which implies that equivariant harmonic 
maps are constant can generally be used to prove that an action has a fixed 
point without knowing the existence of a harmonic map. We will refer to 
such a vanishing theorem as a 'zero vanishing theorem'. In order to carry 
this out, one needs to have a suitable approximate version of this vanishing 
theorem. In this section we abstract the necessary conclusions which need to 
be obtained from such an approximate vanishing theorem, and use these to 
prove the fixed point theorem. Let e(t) be a continuous decreasing function 
of t > 0 with e(£) > 1 for t < 1, and lim^oo e(i) = 0. Let M be a given 
complete Riemannian manifold, and we say that an NPC space X is in the 
class ZMfi if for any action p of F = 7ri(M) on X, and for any point Q e X, 
and any R > 0 we have 

(4.2.1) inf{(5(Q)-1(5(P) : P € BR(Q)} < ^(Q)"1^. 

The main result of this section is the following 

Proposition 4.2.1. Assume T is a finitely generated group which is the 
fundamental group of a complete Riemannian manifold M. Suppose X is a 
space which lies in ZM^. Then any isometric action ofT on X has a fixed 
point 

Proof Let p be any isometric action of T on X. Fixing Q in (4.2.1), and 
taking R large shows that the action is not uniform. If we take a point Pi 
for which 6(Pi) is small, then, assuming there is no fixed point, we may 
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apply Proposition 4.1.1 with n = 1, and find a point P2 and a radius r2 for 
which S(P2)~1r2 is large, and for which the infimum of 6(P2)~16 taken over 
Br2{P2) is at least 1/4. This contradicts (4.2.1) if we take Q — P2,R — ^2- 
Therefore the action must have a fixed point; in fact, there must be a fixed 
point near P\. This completes the proof of Proposition 4.2.1. 
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