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We prove that for spacetimes containing compact Cauchy horizons 
which satisfy certain conditions, the existence and differentiability 
of the horizon is stable under smooth perturbations of the met- 
ric. The arguments of the proof suggest, however, that if these 
conditions are not imposed then the Cauchy horizon and its differ- 
entiability are not necessarily stable. 

1. Introduction. 

An important global feature of spacetimes is the existence — or absence 
— of horizons of various kinds, such as Cauchy horizons, event horizons, and 
observer horizons. Their occurrence signals various dramatic properties: For 
example, a spacetime with a Cauchy horizon is generally nondeterministic 
(see, e.g., [Ch] for a review), while an event horizon implies the existence of 
a black hole. A good understanding of the properties of horizons turns out, 
therefore, to be one of the fundamental issues for understanding the global 
properties of spacetimes. 

Most results concerning horizons — e.g., the black hole area theorem 
[Hawl], the topology of black holes theorem [Haw2], Hawking's chronology 
protection results [Haw3], the isometry results for solutions with compact 
Cauchy horizons [M-I], [I-M] — are proved assuming a rather high degree of 
differentiability; typically C2 or higher is needed. It is therefore natural to 
ask whether such a degree of differentiability of horizons should be expected 
in a generic spacetime. 

Recall that, because of their achronal character, every horizon must lo- 
cally be the graph of some Lipshitz continuous function [P]. It follows from 
Rademacher's Theorem [Fe] that horizons are differentiable almost every- 
where. The tangent planes are, however, not guaranteed to vary continu- 
ously from point to point; this result does not even guarantee that a horizon 
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is almost everywhere C1.1 Yet as mentioned above, for results like the area 
theorem, at least C2 differentiability is needed. We should stress that this 
issue is rather distinct from that of the differentiability of the spacetime 
metric; for the purposes of this discussion, we shall assume that the metric 
is C00. 

In spite of the fundamental character of the issue of the differentiability 
of Cauchy horizons, very little seems to be known about it. It has been 
shown [Ch-Il] that asymptotically flat, compactly generated2 Cauchy hori- 
zons cannot be C1. Nondegenerate Killing horizons are easily shown to be 
smooth (or, at least, of the same degree of differentiability as the metric), 
but nothing is known about the differentiability of degenerate Killing hori- 
zons. It has been argued that Cauchy horizons with fountains3 are smooth 
in a neighborhood of the fountains; however this is not yet clear, and noth- 
ing is known about the differentiability of such a horizon away from the 
fountains. 

As a first step towards understanding this problem, we wish to consider 
the following: 

Question. Letm be a fixed positive integer. LetH be a Ck (forl < k < oo) 
horizon in a spacetime (M,#) with a Ck~l metric. Is it true, for all (or 
some, or most) Ck~l metrics g in a neighborhood of the metric g, that the 
corresponding horizon H = ^(ff) — if it exists — will be of differentiability 
class Cm7 

We shall show that, at least for a certain (rather restricted) class of 
spacetimes, the answer to this question is yes. The spacetimes (M,g) in 
this class are characterized by the requirement that each contains a compact 
Cauchy horizon whose null generators admit a global Poincare section. Then 
if a certain global quantity which we call Q is sufficiently large, and if the 
spacetime differentiability order k — 1 is sufficiently large as well, stability 
follows. 

This result provides a partial answer to our question. However, it is 
important to recognize its limitation. In particular, we note that while our 
argument depends on the hypothesis that the Cauchy horizon be compact 

1 Recall that a function is C1 if it is differentiable at each point and if its deriva- 
tive is a continuous function. 

2 A Cauchy horizon is compactly generated if all its generators, when followed 
into their past, enter and remain in a compact subset. See [Haw3]. 

3 A Cauchy horizon contains a fountain if at least one of its generators is closed, 
and if almost all of its generators, when followed into their past, asymptotically 
approach a closed generator. See [Th]. 
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and that the generators of this horizon admit a global Poincare section, we 
have no reason to believe that these hypotheses are needed for the stability 
of the horizon. Note, however, that if we consider a spacetime whose Cauchy 
horizon does have a Poincare section then we believe that large Q is needed 
for stability. These limitations need much further study. 

It should be pointed out that the question we have raised here, as well as 
the partial answer which our result provides, do not involve any field equa- 
tions. Hence, as we will show, it is easy to construct open sets of spacetimes 
which do satisfy our stability criterion, as well as open sets of spacetimes 
which do not. So our study is really one which concerns Lorentzian ge- 
ometry, rather than one which concerns general relativity and Einstein's 
equations. It is also relevant to the discussion of what an "arbitrarily ad- 
vanced civilization" (see [Th]), with some control of energy conditions in its 
spacetime, can do. 

If we focus on spacetimes which satisfy the Einstein (or similar) field 
equations, an appropriate question to consider is that of the stability of 
horizons with small perturbations of the Cauchy data on a partial Cauchy 
surface. However, if one takes the strong cosmic censorship conjecture se- 
riously, then one expects that most Cauchy data perturbations will lead to 
large changes of the spacetime metric in a neighborhood of the Cauchy hori- 
zon (with the horizon unlikely to survive), so that our question seems to be 
irrelevant from this point of view. Note, however, that the strong cosmic 
censorship conjecture is still an open issue. Moreover, it is of some interest to 
understand what happens to the Cauchy horizon under those, presumably 
nongeneric, perturbations of Cauchy data for which the spacetime metric 
perturbations are actually small in a neighborhood of the horizon. (Such 
perturbations are well-known to exist; see, e.g., [M], [C-I-M].) As our results 
are valid for all small perturbations of the spacetime metric, in particular 
they apply as well to those which satisfy certain field equations. Thus our 
results do have some relevance to general relativity, at least for spacetimes 
which contain a compact Cauchy horizon satisfying our structure and sta- 
bility conditions. 

2. The Instability of Some Cauchy Horizons. 

Before stating and proving our main result concerning the stability of 
differentiability for Cauchy horizons in certain spacetimes, we wish to show 
here that without at least some restrictions on the spacetime, the existence 
of a Cauchy horizon is not a stable property under metric perturbations. We 
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do this via the following example. (See also [Be] for a similar discussion.) 
Let 2M be any compact two-dimensional manifold and set 4M = R x 

S1 x 2M. Let g be the metric on 4M which is given in local coordinates — 
for t e M, 0 e Sl, and xa e 2M — by 

(1) g = 2dtd(f) + £2#2 + habdxadxb
1 

where h = hai)dxadxb is a Riemannian metric on 2M, independent of 0 and 
t. It is easily seen that the two spacetime regions (4M±,<7|4M:t) in (4M,#), 
where 

(2 a) 4M± := {p e 4M\ ± t(p) > 0}, 

are globally hyperbolic. One also verifies that the hypersurface 

(2 b) n:={pG 4M|t(p) = 0} 

is a Cauchy horizon. 
Now consider the family of e-parametrized (for e > 0) spacetimes 

(4M)p£)) with 4M as above, and with the metric g£ given by 

(3) g£ = 2dt dcj) + {t2 + e)d<j)2 + habdxadxb. 

These spacetimes are all globally hyperbolic, with no Cauchy horizons. (This 
is easily verified by noting that gjl(dt, dt) = —(t2 + e), so that i is a time- 
function on 4M. Global hyperbolicity then immediately follows from com- 
pactness of the level sets of t.) So, taking e arbitrarily small, we see that 
there are arbitrarily small perturbations of (4M, g) which result in globally 
hyperbolic spacetimes, with no Cauchy horizon. Note, too, that if we multi- 
ply edcj)2 by a compactly-supported non-negative function ^, with ^|^ > 0, 
then we have compactly supported metric perturbations of (M, g) which also 
remove the Cauchy horizon. 

So unless one makes further restrictions, the presence of a Cauchy horizon 
in a spacetime need not be a stable property under metric perturbations. 
We shall make such restrictions in formulating our main result, in the next 
section. 

3. Main Result on Stability. 

Let us consider a Cl{i > 1) spacetime (4M,#) which contains a con- 
nected, compact (say, future) Cauchy horizon H which is a Ck(k > 1) dif- 
ferentiable submanifold of 4M. One of the conditions we will impose involves 



On the Stability of the Differentiability of Cauchy Horizons 253 

the existence of a Poineare section. We say that H has a global Poincare 
section (or, for short, a "section") if it contains a surface 2M such that 
a) every null generator of H intersects 2M at least once, and b) the gen- 
erators always intersect 2M transversally. One readily verifies that if H 
is compact, and if TC has a section as just described, then there exists a 
diffeomorphism * of 2M such that 

(4a) Ti « S1 x* 2M - ([0,1] x 2M)/ ~, 

where the equivalence "~" is defined by 

(4 b) (l,p)~(0,tt(p)). 

* is called the Poincare map of the null generators of Ti. 
The other essential condition we will need to impose for our main result 

involves a quantity we call Q. To define Q, [see equation (11)], we need some 
preliminaries: 

Given a Cauchy horizon Ti with section 2M, for p e 2M we define 
T(p) to be the path of the null generator which starts at p and ends at 
the next intersection this generator makes with 2M, at the point ^(p). So 
r(p)n2M = {pMp)}. 

Now let <p be any defining function for Ti in 4M (that is, (p(p) = 0 if and 
only if p e Ti, and d(p(p) ^ 0 for p e Ti ), and let Z be any vector field on 
4M which is transverse to Ti. There exists a neighborhood O = 0{Z,Ti) on 
which VzV is nowhere vanishing. Without loss of generality, we shall assume 
that VzV > 0 on (9(Z, y?). We will also assume (as an extra restriction), that 

(5) VVV^I     o/    <0. 

o 

Here £>(£) indicates the globally hyperbolic region4 of (4M,#) — with 
Cauchy surface S — to the past of Ti. Note that E is necessarily diffeo- 
morphic to Ti [Ch-I2], 

On (9, we consider the Z and ip dependent one-form 

(6) w(Z>V).= j^-y • 

Then for p G2 M, let us define the function 

(7) 0(P,<P):= [    w(Z,<p). 

o 
4More specifically, P(S) is the interior ofP(E), the domain of dependence of E. 
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We claim that the right-hand side of equation (7) — and hence the function 
0 — is independent of the choice of vector field Z. To see this, we first note 
that for any nowhere vanishing function % on O, we have from equation (6) 
that 

(8) a;(x^)=ii;(Z,p); 

thus u and consequently /? are independent of the scale of Z. Next, say 
that Z is any other vector field which is transverse to H. There exists a 
positive function % on O and a vector field Y on (9, with Y tangent to H, 
such that Z = xZ + Y. Since ip is a defining function of 7i and since H 
is null, one has (p\n = 0 and V'VV^Ift = 0) so V^^|^ = Vxz<p\n and 

■V£(V/WMp)|ft := VX^(VM^VM^)I/H- It also follows from the nullness of W 
that if we let ^ denote the tangent vector to r(p), then 

Z± 
7^ 

Hence we get the same value for (3 for any choice of vector field Z which is 
transverse to H. 

We now wish to analyze the dependence of (5 upon the choice of the 
defining function (p. So let </? and (p be two different defining functions for 
H. Passing to a subset of O if necessary, we find that there exists a positive 
function ^ on O such that (p = iup. We then calculate, at H, 

(9) ^)=^) + 2V>v
z;

(fa'V,). 
We may choose coordinates (5, x") on 7i in a neighborhood of p so that 
g~1(d(pi ) = -§;, with ^ tangent to the generators ofTi. Then a straightfor- 
ward calculation gives 

(10) P(p, ?) = P(p, <p) + 2ln {^^) ■ 

It follows that unless ^(p) = p for all p € 2M, (3 depends on the choice of 
the defining function (p. 

To remove this dependence, we set 

(11) Q:=sup inf /3(p,p), 

where the sup is taken over all smooth defining functions (p defined on some 
(^-dependent neighborhood of li. This is the quantity we will use in stating 
sufficient conditions for horizon stability. 
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It would be very convenient if Q were infinite for every spacetime with 
a Cauchy horizon. This, however, is not the case. In fact, one finds the 
following: 

Proposition 1. Let tp be any defining function for H. One has 

(12) Q< sup/3(p,^). 
pe2M 

Proof Suppose first that the Poincare map * is the identity. It then 
follows that p is ^-independent, as seen from equation (10), and thus (12) 
is obvious. 

If * is not the identity, then for any p € 2M, equation (10) implies that 
for repeated iterations of the map *, one has 

(13) 

n + ̂
g^(p)iW)^g^(p),,)+_iTte(m) 

If there is some point p* e 2M such that ipn(p*) = p* for some n, then (12) 
follows from (13), evaluated at p = p*. If however no such point exists, then 
from equation (13) we calculate 

/max 
(14) inf pip, w) < sup Pip, ip) + ——In   -^- 

PG
2
M p£2M n +1      I mm 

Then letting n —> oo in (14), we obtain condition (12). D 

This proposition shows that Q is always finite. Our main result will 
guarantee that the horizon is stable so long as Q is greater than a certain 
quantity. This quantity involves the C1 norm of the Poincare map, which 
we write as ||*||i, and define as follows: Fix some arbitrary Riemannian 
metric h on 2M, and let d(p, q) denote the associated distance function. For 
any (Poincare) map * : 2M —» 2M, we set 

(14a) ||*||o : = sup d(*(p),p), 
pe2M 

and then 

(14b) 11*11! = 11*110 + 1*1! 
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where 

|*|i= sup(trfc**/i)(p) 
p62M 

Higher order norms H^Hn of * can be defined in a similar way, using appro- 
priately defined covariant derivatives of *. 

To show that the inequality involving Q and ||*||i in the hypothesis of 
our main result (stated below) can be achieved — and hence our result is not 
empty — we wish to show that the quantities Q and ||*||i are independent in 
a certain sense (so long as no field equations are imposed). More specifically, 
we want to show that for a given compact submanifold H of 4M, with a given 
set of orbits on H and a given return map *, there exist many metrics g 
on 4M for which H is a Cauchy horizon with those given orbits as null 
generators, and for which Q takes on arbitrarily large values. 

To see this, consider 4M, W, and * as just described. As shown in 
[Ch-Il], one can find a metric g for which H is a Cauchy horizon and for 
which * is the Poincare map of the flow of the generators on H. Generally Q 
may be small. Let us now modify g so that Q becomes arbitrarily large: We 
need (i) a C2 defining function ip for W, (ii) a C2 timelike vector field T, and 
(iii) a C2 non-negative function v which is equal to one in a neighborhood U 
of 7Y, and zero outside of some larger neighborhood V D U. We claim that 
for all positive constants A, the metrics g defined by the equation 

(A) 

(15) gap := gap - XipvTaTp 
(A) 

are spacetime metrics on 4M, with H a Cauchy horizon for each spacetime 

(4M, g ) . To verify this, note that every timelike vector field in (4M,#) 

remains timelike in all [ 4M, g  I , note that 7i is a null hypersurface in 
V   wj 

all  [ 4M, g I , and note that any time function defined on the globally 

hyperbolic region t>(S) of (4M, g) is a time function in all I £>(£), g 
P(S), 
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We also claim that as A increases, Q increases as well.  Indeed, it follows 
from equations (6), (7), (11) and (15) that limA-^oo Q 9 = +oo. Meanwhile, 

(A) 

= 9\H, Mh is since ||*||i involves only the metric on Ti and since  g 
(A)    _ 

unaffected by changes in A. So, we see that the inequality involving Q and 
||*||i can be achieved by construction (so long as no field equations are 
imposed). 

We now state our main result: 

Theorem 2. There exist constants ki and fo such that the following holds: 
Let 2M be a two-dimensional manifold and let * : 2M —> 2M be a Ck 

diffeomorphism, for k > Maxjfci, A^}. Consider any spacetime (?M,g) with 
a C^"-1 metric and with a compact embedded Ck Cauchy horizon H admitting 
a section with Poincare map *. There exists a constant ^(fc, ||*||i) such that 
if Q > K, then there is a differentiable map 

(16) L{k):g->H 

which assigns, to every Ck~1 metric g in a neighborhood O^^ c Cfc~1(4M) 
0f 9i a Cauchy horizon H for the spacetime (4M,</), with Ti a compact 
embedded Ck~~k2 submanifoldofAM. 

Remarks. 
1) The neighborhood ©(fc-i) of metrics g near g may be characterized as 

follows: For some conditionally compact neighborhood U of H in 4M, there 
exists some e > 0 such that 

(17) O(fc-i) = {g | \\g - g\\ck-i<j7) < ^} • 

2) One may verify that the example given in §2 of a spacetime with an 
unstable Cauchy horizon fails to satisfy the hypothesis of this theorem. In 
particular, one finds that Q for this spacetime is zero, while K is positive. 

3) The condition (6) V^tpV^lonvcz) < 0 cited as a needed restriction 
for proving stability is implicit in the inequality Q > n. 

4) This theorem, together with our results elsewhere [Ch-Il], implies 
"topological stability" of H as well as "locational stability" of H in the 
sense of Beem [Be]. 

5) In recent studies of the behavior of chronology horizons and the "Foun- 
tain Conjecture" [Haw3], [Th], [Ch-Il], the question of the stability of cer- 
tain global properties of the flow of generators of a Cauchy horizon has been 
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raised. A result relevant to these studies can be inferred from Theorem 2 
and its proof as follows: As we show in the proof below, under appropriate 
conditions, a defining function tp of the horizon Ti is a differentiable func- 
tion of the metric g. Moreover, if Q > n{k — Max(A;i, fo + 1) then V<p is a 
differentiable function of g as well. Since VV is tangent to the generators of 
7i, the flow of these generators is also a differentiable function of the metric 
g, so long as the dynamics of the generators of H is structurally stable, and 
so long as Q > n(k ■= Max(fti, k2 + 2). 

6) The proof below suggests very strongly (but fails to prove) that for 
any k > 1, if Q is smaller than AC(A;, H^HI), then generic perturbations of the 
metric, no matter how small, either destroy the horizon or lead to a horizon 
which is not of differentiability class Ck. We present a result supporting this 
expectation (in the case k — 1) in §4 below. 

Proof of the theorem. The idea of the proof is to use an implicit function 
theorem type argument to construct the map we will call L^ : g h-> l-t(g). 
While we have not been able to find a direct formulation of this problem in 
terms of Banach spaces, we have been able to carry through this idea using 
the machinery of the Nash-Moser Theorem. In showing that the Nash-Moser 
Theorem works here, we. shall use the terminology of [Ham], although the 
specific version of Nash-Moser we apply is that presented in [Horl]. Note 
that we use the letter c to denote a generic constant. (Its value may vary 
from line to line.) 

Let U be a neighborhood of Ti which is diffeomorphic to (—2e, 2s) x H 
for some e > 0, and let (x0, x1) be any coordinate system on U such that 
n = {p e U\x0(p) - 0} and such that the set C/_ := {p e U\x0(p) < 0} 

o 
satisfies the condition U- C 2?(S), where S is a partial Cauchy surface for 
the globally hyperbolic region of (4M,#). So long as Q > 0, we may choose 
x0 and e so that x0 is a time function on (— e, 0) x 7Y. Since x0 is a defining 
function of 7Y, note that we have, from Proposition 1, suppe2M /?(p, x0) > Q. 
Note also that the vector field 

Z = Zudu:=gta/x0
}1/dIJl 

is tangent to the generators of H. 
Now, let M^1 be the space of C^"1 Lorentz metrics on [—e, +e] x H. 

We consider the map 

F : M*-1 x Ck(n) -* C*-1^) 
(18) (5, /) .- <r (*0 = -/(a*), x^x0 + /(**)),„ (*0 + /(**)),„ • 
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For any given metric g e Mk~'ly we claim that if there is a corresponding 
function Og € Ck : H -> R such that F(g, Og) - 0, and if the C2(n) norm of 
8g is small enough, then the set 

(19) H := {p e [s, e] x n\x0(p) + 6g(P) - 0} 

is a Cauchy horizon in (4M, #). Indeed, so long as ||^||ci(^\ is small enough, 
one has that 7i from (19) is a Cl submanifold of 4M. Moreover, we also have 
that for Ppll^/^) small enough, 

(20) Jo [iTtf + 9g), ^x0 + eg), v] \H > 0 

as a consequence of the fact that H is compact, and the fact that C/_ is 
globally hyperbolic with x0 serving as a time function for {/_. Thus x0 + 9g 

is a time function for the region in which x0 + 6g < 0; and consequently 7i 
is a Cauchy horizon of the same differentiability class as 0g. 

One would be tempted to use the implicit function theorem to prove the 
existence of the map 6g. The problem, however, is that while for a fixed Ck~1 

metric the map F(g, ) maps Ck functions to Ck~l functions, the map which 
is the inverse of D2F(g, ) maps Ck~l functions to functions which are not 
generally Ck. Thus, the standard implicit function theorem does not seem to 
be able to handle our problem. We shall show that we can use Hormander's 
version of the Nash-Moser theorem to obtain the map 9g discussed above. 

Let X be the tame Frechet space of smooth Lorentz metrics on 
[- €ie]xH (See Corollaries 11.1.3.7 and II.1.3.9 in [Ham]) and let Y be the 
tame Frechet space of smooth functions / : H —> R which satisfy |/| < e. 
(See Theorem 11.1.3.6 in [Ham].) With a small abuse of notation, let us 
denote by F the map from X x Y to Y obtained by restricting F from (18) 
to the domain X x Y. 

From what is proven in Section II.2 of [Ham], it is readily seen that F as 
defined above by equation (18) is a smooth tame map. Then to apply the 
Nash-Moser Theorem to this map we need to do two things: 

1) Show that for all g in some neighborhood of 5, the map D2F — which 
is the partial derivative of F with respect to its second slot — has a "right 
inverse" in a sense which is made precise in Proposition 3. 

2) Obtain appropriate estimates for this "right inverse" of D2F. 
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Now, the derivative D2F of the map F, when acting on a function a € 
C^CH), is given by 

D2F(g, f)a = 2g»b(x0 = -fix^x^x0 + f(x% ^ 

(21) - -Zpia? = -fix'), x'Xx0 + f(x% ^x0 + fix')), „a. 

The equation 

(22) DzFa = ft 

can thus be written in the form 

(23) Y(a) + 70; = fi 

where the vector field Y is given (in component form) by 

Ybixi) = Yb[g,f}ixl) 

(24) = 2g»bix0 = -f(xf), x'Xx0 + /(**)), M 

and the function 7 is given by 

7(xj)=^[gJ}(xj) 

(25) = -^(x0 = -fix'), x^ix0 + fix% .ix0 + /(**)), v 

Note that for small /, 7 is negative. 
Prom equation (24), it follows that there exists a neighborhood O C 

M*"1 x Ck{H) of (£, 0) G ^f^"1 x C*(W), of the form O - {||^ - ^||ci + 
ll/llc1 < ^1} for some £i> such that for all (5,/) G C?, the manifold 2M is 
a global cross-section for the flow of Y — Yb-£z on W, with Poincare map 
\I%, /]. Now let &[y](p) denote the flow of F on W through a point p G 2M, 
and for each such p let t(p) be the smallest strictly positive number such that 
£t(p) [^1 (P) is contained in 2M. Replacing O by a subset thereof if necessary, 
we find for all (5, /) G 0 that 

(26) ^     7(6M(p))dS<-f. 

Thus we may now prove the following. 

Proposition 3. Suppose that Q > 0. For all (g, f) G (9, and /or aW /i G 
C00(7{)y the equation (23) has a unique solution a G C0(7Y). [We shall use 
haJ] t0 denote the map from fi to the solution a] 
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Proof of Proposition 3.   Consider the map 

?/>: [0,1] x 2M -► H 

(27) {s,V)»Zst{P)[Y]{p). 

One verifies that ^ is locally invertible on [0,1] x 2M, and that its restriction 
to (0,1) x 2M is a C*-1 difFeomorphism between (0,1) x 2M and H \ 2M. 
Moreover, ip(l, ) coincides with the Poincare map * of the flow of Y. 

Let us define 

(28a) 

(28b) 

and 

(28c) 

a := a or/;, 

7:= 70^;, 

ft := /JLOI/;. 

Then equation (23) on H is equivalent to the following boundary value 
problem on [0,1] x 2M : 

(29) 
d A    _ 
—a + 70; = fi 

(30) a(l,p)=d(0,*(p)) 

One readily solves equation (29) for a(s,p) in terms of Q:(0,p); the solution 
takes the form 

(31) 

&(s,p) =exp  - /  i(t,p)dt  la(0,p)+ /   /i(t,p)exp I / i(u,p)du  > 

To take account of the boundary condition (30), we combine equation (31) 
with equation (30) to obtain 

(32) 

where 

(33a) 

(33b) 

(33c) 

A = (Ao^)G + H, 

A(p):=a(0,p), 

G(p) :=exp    /  7(t, p)dt  , 

H(p) ••--      A(*,P)exp   /   7(u,p) 
Jo Uo 

du dt, 
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and * is the Poincare map, as before. 
We claim that there is a unique function A(p) which satisfies equation 

(32) and that it may be expressed as 

oo 

(34) A = H0 + Gotfi + J2 Go ' * • G*-!^ 

where the subscript notation refers to the following convention: For any 
/ 6 C^fM), we define /<, := /,' /i := / o i/>,... , ft := /,_! o ^ To check 
this claim, we first note that since 7 [see equation (25)] is negative, G(p) < 1. 
It follows from this, and from the compactness of 2M, that the series (34) 
converges absolutely. One verifies by substitution that A from (34) satisfies 
(32). Then to prove uniqueness, we consider any pair of solutions A and A 
of (32). One finds that 

(35) A - A = (Ai - Ai) G, 

so it follows that 

sup (Ai - Ai) < sup  (Ai—Ai)o^ supG 

(36) = sup (Ai - Ai) supG. 
2M   \ /   2M 

2M 

Since sup2M G < 1, we must have A = A. 
Now that we have an explicit expression for a(0,p) = A(p), we may 

substitute it into (31); we thereby obtain a (unique) solution to the boundary 
value problem (29) - (30). Because ip is locally invertible, we may set a := 
aoip'1, and we verify that this function solves equation (23) on H. We then 
set £[gj}fi = Qf. □ 

This proposition establishes the existence, in a certain sense, of a right 
inverse of D2F for g near g. We now need to establish certain estimates 
for this right inverse, which (as in Proposition 3) we represent as ^/j. To 
obtain these estimates, we first need a few intermediate results, which we 
prove as a sequence of lemmas. 

Lemma 4.   Let {ai\i — 1,... ,/} be a set of strictly positive constants, 
with X^=i o>i = 1. For any pair of sets of constants {bi\i = 1,... , /} and 
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{di\i = 1,... , /} which satisfy the condition Mi > 0, there exists a constant 
c(ai) such that 

i i 

(37) J]biidl'ai ^ cCoi) Y^&i/diXdKh•••dI). 
i=l i=l 

(Whenever any of the dj's vanish, (37) is to be understood in the obvious 
way.) 

Proof of Lemma 4- Since equation (37) is invariant under the transforma- 
tion 

(38) hi —► Wibi       di —> XXidi 

for any A > 0 and A* > 0, it is sufficient to verify (37) for di = 1, and 
J2iz=lbi — 1. But then the resulting condition — that there exists c(ai) 
such that Y[i=zi ^V < c(ai) — follows from the continuity of the function 
F(bi) = HLI 

bai on the compact set {bi\bi > 0 and £6; = 1}. □ 

We use Lemma 4 primarily to prove the following: 

Lemma 5. Let {fi\i = 1,... ,/} be a set of functions in Cn(2M). There 
exists a constant c(n) such that 

(39) 

ll/l ' " ' /j||o(2M) < c(n) yZ TTTTi ll/l|lcO(2M) * ' ' ll//|lcO(2M)- 
tl  WMC^M) 

Proof of Lemma 5. Let us consider the ra-th order derivatives, for 1 < 
m < n, which are included in the norm || ||C7^(

2
M)- Hence we consider multi- 

indices a = (ai, 0^2) for 2M summing to n. As a consequence of the product 
rule, for each such a we have 

(40) \da(h--fi)\ 

where the sum is over all sets of I multi-indices /31 = (/^i,^)? * *'P1 = 

(Pi,Pi)' mch that Y?j=iPi = ai and Sj=i^2 ^ a2- It now follows from 
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interpolation arguments (see, e.g.  Theorem A.5 in [Horl]) applied to the 
right hand side of equation (40), that for some constant c(n), 

(4i)  ^(/i■..//)! 

l£il i_J£iL i£il i-lili 

If we now apply Lemma 4, with bi = ||/||cn(2M)> ai = n > and di = 
\\fi\\c0(2M)j and if we then sum the results over all m for which 1 < m < n, 
then the result follows. □ 

The next lemma involves the effect of diffeomorphisms on norms of func- 
tions. So let Diffcn(M) denote the group of those diffeomorphisms of a 
manifold M which are of differentiability class Cn. We have the following: 

Lemma 6. Let ip G Diffc^M), with n > 1 and with H^Hc^M) ^ C for 

some constant (. Let f G'C^M), and define the sequence {fj} e Cn(M) by 
fo '= fi fi -— f 0^r " fj+i :— fj 0 V'- There exists a constant B(n, £) such 
that 

(42)        WfjWcHM) < (B^Oy (ll/llcn(M) + ll/llci(M)ll^llcn(M)). 

Proof of Lemma 6. We consider first the special case in which n = 1. Then 
one calculates (using the shorthand || ||n := || ||c7"(M) here and below in the 
proof of this lemma), for any z, 

I|5/<llo = ||(9/)«(a0)i-i-(^)1(^)||o 
(43) < lia/llodWHo)*, 

Here, following the convention for /j, we have (df)i := dfoip- • .-0, (dtph-i = 
i 

dipoipo --• oip, etc. Prom equation (43) and the definition of the C1 norm, 
i— 1 

we find 

ll/<lli = ll/llo + l|0/<l|o 
(44) <(1+Oil/Ill 

which is consistent with (42). 
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We next show that there exist constants ai(n, () and 6t(n, C) such that 

(45) IIMU < aiin, C)||/||n + kin, OWfhMn- 

We do this via induction on i, using the inequality (for some constant d(n)) 

(46) ||/ o g\\n < d(n) (WfUMi + ll/llilMI» + ll/llo), 

which is proven in [Hor2] — see Theorem 3.6 — as well as in [Ham]. For 
i = 1, inequality (45) follows from (46) if we choose ai — d(n)(l + (n) and 
bi — d{n). Now suppose that (45) holds for some % > 1. Inequality (46) then 
implies that 

||/i+l||n = ||/iO^||n 

(47) < d(n) [(1 + rai)ll/ll» + (! + (*+ <"WllilMIn]; 

so if we can find ai(n, £) such that 

(48 a) ai+i<d(n)(l + CX) 

and bi(n, () such that 

(48 b) bi+1<d(n)(l + C + Ch), 

then (45) holds for all values of i. 
The recurrence inequalities (48) may be rewritten as 

(49a) Oi+i < c(n, 0(1 + ai) 

and 

(49b) &i+i<c(n,C)(l + C + &i) 

for appropriate c(n, C)- From (49a), we calculate (assuming, without loss of 
generality, that c(n, () > 1) 

i-2 

(50a) 

ai<c^^ + ci-1d(n)(l + Cn) 

c(n,0 
c(w, C) 

+ d(n)(l+n- c(n, 0 
-c(n,0. 

J-i M- 
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Then from (49b) we find 

bi^c + cC^+ch-i 

<c + cCi-1+c2(l + Ci-2 + fe«-2) 
>i-l <c + c2 + ... + ci-l+c^-l+c^ 2A-2 + + ci-1( + ci-1b1 

(50b) 

= c- 

= c 

1 
+ .••+- + dc ,i-l 

■c* d 
c  c-(      c 

It is now clear, from (50a) and (50b), that there is a constant B^C) 
such that aj < B% and bi < Bl. Inequality (42) is thus obtained, and so the 
lemma is verified. □ 

We now use Lemmas 5 and 6 to derive an estimate which we will use to 
control D2F, and to eventually show that its right inverse £[gj] is tame, and 
is a composition of tame maps. We establish the estimate in the following: 

Proposition 7. Consider the function 

(51) A = HQ + GQHI + 2^ Go • • • Gj-iHj 
J=2 

as in equation (34), where Ho and Go are C£(2M) functions, and where the 
indices on Hj and Gk refer to iterated compositions of Ho and Go with a 
smooth diffeomorphism ip, as in Proposition 3. For every integer n <£ there 
exists a positive En such that if\\G\\o < eni then A e Cn(2M). As well, for 
each i < n, there exists a constant c(i) such that 

(52)    \\A\\Ci{2M) 

< c(i) [\\H\\ci(2M) + l|G||c*(2M) + (\\H\\cH2M) + \\G\\C^M)) MIC^M)] • 

Proof of Proposition 7.   We shall verify inequality (52) for the case i = n; 
the other cases are verified essentially the same way. 

From (51) — and reverting to our notation || ||n *-* || ||c"(2M) — we have 

(53) ||A||„<||flb||» + IK7o#1||» + 
J=2 
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If we now apply Lemma 5 to each of the norms of products in (53), and if 
we recall that ||i?j||o = ||#o||o and ||Gj||o= ||Go||o = sup2MG, then we have 

(54) \\A\\n < c(n) 
oo oo   i— 1 

^^ll^iu+iiiJolloEE^-1!!0 

i=l j=0 
3\\n 

i=0 

where G := sup2M G, and c(n) is some constant. 
We may use Lemma 6 to obtain estimates for the terms ||fl»||n. and 

||Gj||n in (54). For the first of these, we have (for ( := ||^||i) 

oo oo 

(55)      ^aiiifiiu < Y,(B^om\Ho\\n+\\Hoh\mn). 
i=0 z==0 

We easily see that so long as 

(56) B(n,Qg<l 

for all n and ^, this series X^So^ll^lU converges. Applying Lemma 6 to 
||Gj||n, we have 

oo   i— 1 oo i—1 

i~l j=0 i=l j=0 i=l 
oo 

(57) = E^BMr1 (jg
D
Br) (IIGII»+iiGiuwn). 

i=i 
B-l 

This series, too, converges so long as inequality (56) holds for all n and (. 
Estimates similar to those which produce (55) and (57) show that, so 

long as i3(n, C)(? < 1, the sequence of partial sums from the right hand side 
of (51) is a Cauchy sequence in Gn(2M). Thus, if we set 

(58) £n • — B(n,ty 

and require that G = ||G||o < ^n, then the right hand side of equation (51) 
converges in Gn(2M). It follows that A from equation (51) is a Cn(2M) 
function. Inequality (52), for i = n, immediately follows as well. □ 

We need one more auxiliary result before we can proceed to finish proving 
our main result, Theorem 2. 
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Lemma 8. Let h be a C00 function on H, and let Y be a C00 vector field 
on H. Consider the map A, which to each such pair (h, Y) assigns the C00 

function 

A[*fy] : [0,1] x H -+ R 
(59) (t,p) h-> h(exptY(p)), 

where "earp" denotes the exponential map on H. This map A is tame. 

Proof of Lemma 8. Since the composition of a pair of tame maps is tame 
[Ham], this lemma is proved5 if we can derive a tame estimate for solutions 
of the following initial value problem on RN 

(60a) Ij-x = H(x) 

and 

(60b) x(0) = C 

with t e [0, T] for some T > 0. Here if is a C00 vector field on RN, and £ is 
a point in a ball Br of radius r in R^. 

Let # be a solution of (60). We may view it as a C00 function #(£,£) of 
the pair t e [0, T] and £ G Br. The estimate we seek takes the form of a set 
of inequalities for the norms ||#||cn([o,T]x£r)- To obtain this estimate, it is 
useful to first consider the collection of Revalued functions 

(61) Zn(t,0:=    £    e-M\DUx(t,0-&2 

0<\a\<n 

where n is a positive integer, A is a constant to be chosen below, and D^x in- 
dicates the multi-index a = (ai,... ajv) partial derivatives of x with respect 
to its second slot (i.e., derivatives with respect to £). Making a specific choice 
for A, we will derive an upper bound for the growth in t of these Zn(t,£) 

5 We use a partition of unity argument to go from the tame estimate for functions 
on R^, as obtained here, to a tame estimate for functions on H (cf, the composition 
inequality (46)), as required for this lemma. 

Note that the proof of this lemma essentially shows that the exponential map is 
a smooth tame map between the Prechet space of (7°° fields on a compact manifold 
M and the Frechet space of smooth diffeomorphisms of M (with the standard Ck 

gradings). 
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functions, and then use these bounds in obtaining the desired estimate for 
x. Note that for n > 0, one has 

(62) ^(0,0 = 0 

Calculating the time derivative of Zn(£,£) from its definition, we obtain 

(63) <Lzn = -\Zn + 2e-xt   Y,   (D%(x(t,0-t;)D%H). 
0<H<n 

Then applying the Schwarz inequality to the sums of inner products in (63), 
we find 

d 
(64) -Zn < -XZn + cin^Z^WHoxWcn^ 

dt 

for some constant c(n, T). To proceed from (64), we need to know something 
about || JJ o £||c"(Br)- From the composition inequality (46), we find that 

(65) \\Hox\\cn(Br) 

< c(n) (||tf llc-CR^IMISi^) + l|ff|lci(R^)lkllcn(Br) + l|ff|lc<>(R")) • 

Then, since it follows from (60a) that there is a constant c(T, n, \\H\\C^(RN), r) 
such that 

(66) Mt)\\cHBr) < c (T,n, WHWci^s^r) 

for all 0 < t < T, we may rewrite inequality (65) in the form 

(67) 

\\Hox\\cn{Br) < c (r,n, \\H\\ci^N)9rj (ll^llc-^) + ll^llc-(M^)) , 

where the constant c(T,n, ||i?||ci(R^)jr) is perhaps different in (67) and 
(66). We may now substitute this inequality for H-ffo^Hc*1^) into (64); we 

obtain (noting the relation between zj   and (||aj||cn.(.sr)) 

(68)   —Zn < -XZn + c (T,n, ||i?||ci(RJv),r) 

• \\H\\cHmZn2 (Zn/2 + lltf llc»(R") + II id WcniB,.)) , 

where id denotes the identity mapping on Br. 
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While (68) is not very useful for a general choice of A, if we pick A 
c(T, 7i, ||fl"||(71(MJV)J r) then we have 

(69) 

jtZn < c (r,n, \\H\\cim,r) (||ff||a»(R^) + || id \\cn(Br)) Z}/2. 

This easily integrates, and so for n > 0 (for which Zn(0, ^) = 0, as noted 
above), we find 

(70) Zi/2 < c (r,rz, ||iy|bi(MiV),r) ^HWcn^Tfi + 1 

where again the constant c is perhaps different in (69) and (70). 
Based on these inequalities for Zn, together with an analysis similar to 

that which we used to derive (70), we can show that for all n > 0, and for 
all t e [0,T], there exists a constant c(T,n, \\H\\ci(RN),r) such that 

(71) Mt)\\cn(Br) < c (T,n, \\H\\cim,r) (lIHHci^) + l) . 

This is not yet what we want; we need inequalities for ||#||c"([o,T]x£r)- 
To proceed, we first note that as a consequence of standard interpolation 

inequalities (see, e.g., Theorem A5 in [Horl]), one can show that for every 
e > 0, there exists a constant c(e, n, T, r) such that 

(72) 

IMIc"([0,T]x£r) < e 
dx 
dt Cn([0,T]xBr) 

+ c(e9n9T,r)\\x\\cn(Br)- 

The ||#||cn(.Br) term on ^e right hand side of (72) is controlled by the 
inequalities (71). To control the first term, we use equation (60a) together 
with the composition inequality (46) to show that 

(73) 
dx 
dt Cn([0,T]xBr) 

= \\H\\cn([0,T\xBr) 

Now ||#||c"([o,T]x£r)  appears in (73).    However,  letting AC denote a 
constant such that ||fl"||c7i(RW) ^ ^J 

we find that we can always choose 



(74) 

On the Stability of the Differentiability of Cauchy Horizons 271 

£(«,iV,T,n,r) so that, substituting (72) into (73), we have 

dx 

dt   C»([0,T]x£r) 

< C (||flr||c-(R^)ll^llc-([0,T]xBr) + l|ff|lci(R^)ll»llc«(Br) + l) • 

Then if we use this inequality (74) for ||^||Cn(ror]XjBr) together with the 
previously obtained inequality (67) for ||2:(t)||c7i(j3r), we get from (72) — 
with 6 = 1 — the result 

(75) 

IMIc"([o,T]x£r) < c (r,n, JV,r, ||iJ||ci(R^))   ll^lla-(R^) + 1 

Thus we obtain a tame estimate for #(<,£), and thereby demonstrate that 
Ap^yj is a tame map. D 

Completion of proof of Theorem 2. Recall that the idea of the proof is 
to use a Nash-Moser type argument to establish the existence of the function 
Og : H -> R (described just below equation (18)). The argument focuses on 
the study of the function F defined in equation (18), and on the study of 
the "right inverse" a = t-\gj\li to the map D2F. 

In Proposition 3, we have shown that a exists, and we have shown that 
it may be constructed by setting 

(76)   (ao^)(s,p) 

= <exp  - /  7(t,p)dt   ><d(0,p)+ /   /i(t,p)exp   / A/(u,p)du   dt> 

for 

(77) d!(0,p) = Ho + GQGI + ^Go • • -Gi-iffi, 
i=2 

where Hi, d, ip, *, p,, and 7 are as defined in Proposition 3, and in equation 
(25). 

It follows from Proposition 7 that ||a(0,p)||crn(2M) satisfies an inequality 
of the form (52), so long as G := sup2M G is smaller than a certain constant 
en. (This Sn is essentially constructed in the course of proving Lemma 6). 
Taking G(p) — exp/0 7(i,p) dt from equation (33), with 7 = 70^, and with 

7 = ^(^ = -fix^x^x0 + f(x% ^(x0 + f(x% v, from equation 



272 Piotr Chrusciel and James Isenberg 

(25), we find that the coordinate-independent expression for the condition 
Q < 6n is exactly 

(78) Q>K(M*III), 

where Q is defined in equation (11), and k (the differentiability of the horizon 
H) replaces n. This inequality (78) is, we recall, one of the hypotheses of 
the Theorem. 

We will now show that so long as (78) is satisfied, with the constant 
«(&j 11*111) to be determined below, then 6g exists. We do this using 
Hormander's version of the Nash-Moser theorem, presented as Theorem 
2.2.2 in [Horl]. Note that to facilitate the verification of the hypotheses 
of Hormander's Theorem 2.2.2 — these hypotheses are expressed primarily 
in the inequalities (2.1.5), (2.1.6), and 2.2.24) in [Horl] — we will rename 
some of our functions to match his notation. 

Let O denote the neighborhood of (g, 0) e Mk~l x Ck{fi) defined just 
below equation (25), and for every fixed g such that (#, u) € 0, let us set 

(79) *,(*):= F(ff,t0 

with domain {u\{g^ u) € O} for F defined as in equation (18). One verifies 
(with the help of some calculations in [Ham]) that <I>5 satisfies the estimates 
(2.1.5) in [Horl] with AQ = 0, with mi = mg = • • • = m*, — 1, and with a$ = 
k — 1 (where, as above, k is the differentiability index from the hypotheses 
of Theorem 2). 

Proposition 3 shows that ^{u) — which is the same as D2F(g, u) — has 
a right inverse. Conforming to Hormander's notation, we label6 this right 
inverse tpgiu) :=^,w] 

As a consequence of Proposition 3 together with Lemma 8, so long as 
inequality (78) holds, the function ipg(u) is a composition of tame maps. 
Hence, as shown by Hamilton (see Lemma 2.1.7 in [Ham]), for certain con- 
stants fii, H2) Ai, A2, and a^, the inequality (2.1.6) in [Horl] is satisfied by 
ii)g{u). 

One way to determine what «(&, ||*||i) should be in (78) is to view (2.1.6) 
in [Horl] as holding with ^1,^2, Ai, and A2 independent of k and ||^||i, but 
with Omj, depending upon k and ||*||i as a consequence of (78). So now let 
OLO be the smallest integer such that a = ao satisfies inequality (2.2.28), 
in [Horl], and let a^ be the smallest integer such that (2.2.24) in [Horl] is 

6The use of ^g{u) for this right inverse should not be confused with our use of 
^ to denote the Poincare map. 
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satisfied with a^ — a^ and a = OLQ. Note that there exists an integer fco such 
that (2.2.24) in [Horl] holds with a — a0 for all k > ko [with k affecting 
(2.2.24) via the dependence of a^ on ft]. One finds that there also exists an 

integer fti satisfying ki > m + a^ and fti > fto, and there exists a constant 
tt(fci, H^Hi) such that if ft > fti and if Q > ^(fci, ||*||i), then indeed tygiu) 

satisfies (2.1.6) in [Horl] with a^ = a^. Thus we determine «(fci, ||*||i) for 
(78). 

Now let us choose some sufficiently small a > 0 and set Ma- = (—cr, a) xli, 
in coordinates as discussed early in the proof of this theorem. We consider 
the set of metrics 

(80) Oe^{g\\\g-g\\ckl(M<T) <e}. 

Using what has been shown thus far, we find that there exists so > 0 such 
that for all e < eo, the estimates (2.1.5) and (2.1.6) in [Horl] hold, with 
constants independent of g. In particular for any 6 > 0, there exists e(6) > 0 
such that if g G 0£^s)9 then 

(81) ■|l*ir(0)ilHao+A1(rt)<& 

We now set / := F(g,0). It follows from Theorem 2.2.2 in [Horl] that 
there exists some <Si > 0 such that if ||/||jyao+M < ^i> ^^en there is a solution 
u to the equation 

**(«)= **(0) + /. 
= F(g,0)-F(5,0) 

(82a) = 0 

In other words, there exists si > 0 such that for all g satisfying 
\\9 — oWc^M,,) < eij there is a solution u to the equation 

(82b) =F(g,u) 

Setting 6(g) = w, our desired result follows. 
It follows as well from Theorem 2.2.2 in [Horl] that the map 9 is dif- 

ferentiable, and that the Cauchy horizon H defined by 6g in the spacetime 
(Ma, g) is a Ck~k2 embedded submanifold for some ft2. □ 
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4. On the Sharpness of the Main Result. 

Our main result specifies conditions on a spacetime (M, g) with a Cauchy 
horizon which are sufficient to guarantee that all Ck perturbations g of g 
admit a Cauchy horizon W, and are sufficient to guarantee that the map g —> 
L(k){g) —His differentiable. In §2, we showed that if one does not impose 
conditions, then the metric perturbations of a spacetime with a Cauchy 
horizon may not all admit Cauchy horizons. Here, we discuss an example 
which shows that there are spacetimes such that if a map g —* L^ (g) does 
exist for some k > 1, this map L^ is not a differentiable function of the 
metric. [We suspect that, in our example, the map does not in fact exist 
for k > 1, but we have not yet been able to prove this.] These results show 
that our main result, Theorem 2, is sharp. 

We consider a one-parameter family of spacetimes (4M,gq) such that 

(83) ^^(S1 x^T2) xR1 

where T2 is the two-torus represented by the standard lattice equivalence 
relation on R2 (with "[ ]" denoting the canonical projection from R2 to T2), 
where ^ is the Poincare map 

(84) y([x]) = [Bx] 

with B = (         ) , and where x^ is the twisted product defined in equation 
vl   1, 

(4); and such that 

(85) gq = 2dtd<i> - qtd<j)2 + dy2 + dz2 

where y and z are coordinates on T2, 0 is a coordinate on 51, t is a coordinate 
on R1, and q is a positive parameter. (See [Ch-Il] for a detailed discussion 
of such spacetime constructions.) 

One readily verifies that for any member of this family of spacetimes, the 
region M_ = {p € 4M\t(p) < 0} is globally hyperbolic, and the embedded 
hypersurface Tt — {p € AM\t{p) = 0} is a Cauchy horizon. Hence, if one 
fixes a particular value qo e (0, +oo) of the parameter, one finds that at 
least within the family, the existence of a Cauchy horizon is C0-stable under 
C2 perturbations of the metric, and we have a well-defined map L (o) from 

Qo 

gq (near gqo in C2 topology) to the Cauchy horizon H in (M,gq). 
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Now say there were a map L ^ (k > 1) taking all g (including gq) near 
Qo 

some fixed g = gq0 to the corresponding Cauchy horizons. If this map were 
differentiable, then it would follow that the linear map 

(86) ^[5i/]:C^)-,C0(K) 

defined as in Proposition 3 must exist, and its image must lie in Cl{H). 
We shall show that at least for some values of </0, the image of t \Q n is not 

contained in Cl(7-i), so it follows that L (!), if it exists, is not differentiable. 

It is sufficient to show that the function A : T2 —> R1 constructed as 
in equation (34) — for certain g = gqo and for certain choices of smooth 
ji : H —> R1 — is not Cl. To show this, it is convenient to focus on points 
p eT2 given by 

(87) P = [Hi 

where u is the eigenvector for the matrix B = (        ) which corresponds 

to the eigenvalue A+ = 5(3 + \/5), and where a G [0, +00). For such points, 
we obtain from (34) 

(88) A([H)=E^([A+H)- 
i=0 

The function H depends on the choice of the function /i, but from equation 
(33) we see that for certain /x we have H([0}) = 0 and H(\p]) > 0 for 
p G T2 \ {[0]}. We assume such a choice, and define the constant 

(89) ^-^ M[<TV])>Q. 

Now let a G (0, A^1]. For any such <7, there exists a positive integer is 
such that A^<7 G [1, A+], and we have from (88) 

A([au}) > q^H {[Xlau]) 

(90) > firi. 

Since A^a > 1, we have i'£n\+ > —ina, and so 

(91) qV > {7|^o|/€nA+> 
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(Here, we use the fact 0 < qo < 1). Combining (90) and (91), we see that 

(92) A([av})>ria^0WnX+; 

thence 

os) *M)-m) > ^ 
a 

for p < 0. It follows that A is not C1. 
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