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Let (M,#) be a two-dimensional Riemannian manifold with constant 
curvature -1 outside a compact set. M can be decomposed as M — MQUZIU 

• • -UZm, where Mo is compact and the cusps Zj are isometric to Sj x [a?, oo), 
where Sj is the unit circle and the metric on Zj is given by ds? = yj2(dx?j + 
dy?). This is the class of admissible surfaces with m cusps considered by 
W. Miiller [M]. Let A be the Laplacian on M, a selfadjoint operator with 
domain equal to the Sobolev space H2{M). The spectrum of A consists of 
a continuous spectrum of multiplicity m, crc(A) = [|,oo), a finite discrete 
spectrum contained in [0, j) and a (possibly empty) finite or infinite set of 
eigenvalues {KJ} embedded in the continuous spectrum. It was proved by 
Selberg [Se] that for hyperbolic manifolds of constant negative curvature 
r\fe, where h is the Poincare halfplane and Y is a congruence subgroup of 
P — SL2 (R), the Laplacian has infinitely many embedded eigenvalues /y, in 
fact they satisfy a Weyl law 

ji{^<i?2} = ^ + 0(#logii) 
47r 

where A is the area of Y\h. Moreover, the spectral counting function M(R) 
defined by 

where (j)(s) = det C{s) and C(s) is the scattering matrix, satisfies M(i2) = 
O(jRlogjR). Selberg then conjectured that for all discrete subgroups Y of 
P — SL2(R) the spectral counting function M(Jfi) for A on Y\h satisfies 
M{R) - 0(i22-6) for some 6 > 0. 

In order to investigate this problem Phillips and Sarnak [P-S1]-[P-S3] 
introduced the method of perturbation of the Laplacian in the Teichmiiller 
space of the manifold Y\h. Let the perturbed operators A(e) have the 
expansion A(e) = A + eL + 0(e2) near e = 0 and let «(e) = K(0) + aie + 
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a2e2 + 0(£3) be the expansion of a simple embedded eigenvalue near e — 0. 
Then a\ is real and a2 is given by the formula. 

-1   m 1 
Ima2 = — ^KLu^^+ir))!5 

where K(0) = j + r2 and Ei(s,z) is the generalized eigenfunction of A in 
the rth cusp. If Ima2 ^ 0, ^(e) is a resonance of A(e) for small e ^ 0. The 
method of proof of Phillips and Sarnak utilizes the Lax-Phillips scattering 
theory for automorphic wave equation [L-P], in particular the generator B 
of the associated semigroup. The operator ^I+B has a purely discrete spec- 
trum consisting of eigenvalues (embedded and discrete) as well as resonances 
of A and the point ^. This permits the application of analytic perturbation 
theory to the family A(e) yielding in particular the above formula for Ima2. 
This formula has been known in the physics literature of Schrodinger oper- 
ators for a long time under the name of Fermi's Golden Rule. It was proved 
by B. Simon [Si], utilizing the dilation-analytic theory of [B-C], which in 
that case made the problem accessible to analytic perturbation theory. 

The identity of this formula in the Euclidean and hyperbolic cases sug- 
gests the possibility of proving it by the same method in both cases. The 
basic problem is the separation of the embedded eigenvalues from the contin- 
uous spectrum. In the Euclidean case the operator —A + V is transformed 
by a family of unitary operators induced by dilations in the independent 
variables. Analytic continuation in the scaling parameter leads to a rotation 
of the continuous spectrum away from the eigenvalues, successively turn- 
ing resonances into discrete eigenvalues. The analogous s in the hyperbolic 
case are dilations in the hyperbolic distance or, equivalently, power U(X) 
of the transformations independent variables. We use a simple version of 
Hunziker's modification of the dilation-analytic theory [Hu]. Since the con- 
tinuous spectrum of A is entirely controlled by the 0-th Fourier mode and 
since the exponentially decreasing cusp forms explode under complex power 
transformations, these operators should be restricted to the y-coordinates in 
each cusp in the 0-th Fourier mode, as was pointed out to us by M. Zworski. 
The operators s 17(A) are defined in section 1, and it is proved that the con- 
tinuous spectrum [j,oo) of A rotates around j through the angle —2ArgA 
into the continuous spectrum ac(X) = j + A~2R+ of the transformed Lapla- 
cian A(A) = U(X)AU(X~1). The embedded eigenvalues are unchanged for 
|ArgA| < TT, and so are the isolated eigenvalues for |ArgA| < f. Reso- 
nances become discrete eigenvalues after being crossed by ac(A) (Theorem 
1.1). In terms of the parameter 5, related to the spectral parameter fi by 
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/JL = s(l — s),ac(A) in the s-plane is the line ^ — iArgA • R, which rotates 
around ^ through the angles ArgA G (—TT^TT). The embedded eigenvalues 
remain on the line ^ + iR, the isolated eigenvalues remain in the interval 
(^,1] for |ArgA| < f and the resonances turn into discrete eigenvalues of 
A(A) located between ^ + iR and crc(A). The reason why <TC(A) is the line 
5 — iArgA • R becomes transparent when we observe that the Eisenstein se- 
ries E{s)z) transforms under U\ into E(\,s,z) with the leading terms for 

large yj in Zj equal to A 2 (y? ta + C{s)y^ %<J ), where s = \ + A"1^ (cf. 
(2.18)). Precisely when Arga = —ArgA are both of these terms "almost" in 
I/2(M), which is characteristic of points in the continuous spectrum. The 
transformed Eisenstein series E{\ s, z) are discussed in section 2, which also 
contains a deformation-analytic proof of the existence of analytic continu- 
ations of the scattering matrix C(s) and the Eisenstein series E(s,z) from 
Res > 1 to C\{^} which poles contained in the set of resolvent resonances, 
i.e. poles of the resolvents (A(A) - 5(1 - s))"1 (Theorem 2.3). 

In section 3 we establish the analytic continuation of the resolvent kernel 
7£(s, Zj w) from Res > 1 to C\{|} and the continuation R(s) of the resolvent 
R(s) up to Res > 5 — 6, considered as an operator in i?(L^(M),L^(M)). 
Thereby the results of section 2 are completed to obtain the identity of the 
poles of C(s), E(s, z), and R(s) with the resolvent resonances (Theorem 3.1). 

The fact that the resonance p — ^ + ia becomes a discrete eigenvalue 
of A(A) for ArgA < —Arga can be explained in terms of the asymptotics 
of the properties of resonance functions. The 0-th Fourier coefficient of 
the resonance function with resonance p is for large y transformed into 

ResC(s)(yJ )1jLii which becomes a set of square-integrable eigenfunc- 
tions of A(A) for ArgA < — Argcr (Theorem 4.1), so the resonance p becomes 
a discrete eigenvalue of A(A), when crc(A) crosses p. Similarly, the properties 
of eigenfunctions corresponding to an isolated eigenvalue of A explain why 
(i ceases to be an eigenvalue of A(A) for |ArgA| ^ f, unless the eigenfunc- 
tion is a cusp form in which case A remains an eigenvalue for |ArgA| < TT. 

As a consequence of the separation of ac(A) from the embedded eigenval- 
ues Fermi's Golden Rule is now proved (Theorem 5.3 and 5.4) by the proof 
of [Si] for the class of perturbations of A in Teichmiiller space studied by 
Phillips and Sarnak [P-Sl]. The transformation given there, which reduces 
the problem to the study of. a family of metrics varying real analytically 
only in a compact set, is essential for our proof and perfectly suited for the 
application of the method of complex power transformations. 

Phillips and Sarnak showed that the perturbation in Teichmiiller space 
can be considered as a perturbation g(e) of the metric on the manifold 
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M, such that g(e) deviates from g(0) only in a compact set, independent 
of e. This perturbation theory is valid for manifolds of constant negative 
curvature. The family A(e) of Laplacians on (M, g(e)) equal A outside a 
compact set for all e e (—£o,£o)- Therefore it is possible to transform A(e) 
for all e by the same complex power , so that ac(A(\,e)) = 5 + A~*2R for 
all e G (—£0)£o)} setting the stage for analytic perturbation theory. 

The importance of the formula for Ima2 known as Fermi's Golden Rule 
is that if for a given eigenvalue n and some /,(Lw,-E?i(A) ^ 0, then the 
eigenvalue « gives rise to resonance. On the other hand, if K remains in the 
continuous spectrum under the perturbation in Teichmiiller space, then as 
an important consequence this integral is 0. 

A different proof of Fermi's Golden Rule was given by Petridis 
[Pe2],utilizing the method of Faddeev [F] of analytically continuing the re- 
solvent kernel together with the Lax-Phillips scattering theory [L-P]. Our 
method does not treat the point 5. For a thorough analysis of this point see 
[Pel]. 

1. The analytic family of operators A (A). 

Let (M,#) be a two-dimensional Riemannian manifold with constant 
curvature -1 outside a compact set MQ. M can be decomposed as 

M = Mo U Zi U • • • Zm 

where MQ is compact and 

Zj^Sj x [a^oo),; = I,--- ,ra 

with aj > 0 and the metric on Zj is given by the line element 

ds2 = <tij+dv$ 
j Vj 

where (^, yj) G Sj x [aj, 00) and Sj is the unit circle. 

We denote by A the unique self-adjoint Laplacian in L2(M) with domain 
H2(M), the Sobolev space of order 2 on M, acting in Zj as -y|(^r + J^r)• 

The spectrum cr(A) of A consists of 

1. the essential spectrum cre(A) = [T,OO). 
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2. the embedded point spectrum ap(A) = {Ai < A2 < • • • < An < • • • }, a 
finite (possibly empty) or infinite set of eigenvalues of finite multiplicity 
with Ai >■ j. 

3. the discrete spectrum crd(A) = {0 = fii < /xi < • • • < /j* < j}, a finite 
set of eigenvalues of finite multiplicity. 

4. possibly the eigenvalue |. 

In order to study the spectrum in more detail we introduce a selfadjoint, 
analytic family of operators A(A), defined through complex power transfor- 
mations of A in the 0-th Fourier mode. 

Let (p be a real-valued C00-function on (0,00) with tp' > 0 and satisfying 
for fixed K and R,a < K < R, with a = max{l,ai • • • ,an} 

, ,      f0for0<2/<ii: 
[ 1 for R < y < 00 

Let *A(y) = yi+^-iMy), A e C. Then 

*'x(y) = ^*A(y) - ytA-iMrtu + (A . 1)(v(y) + ^(y)y\ogy)} 

Let 
a = [max My) + ^(^yiogy}]"1 

K<y<ii 

Then for 1 — a < A < oo and for ImA 7^ 0 we have ^f'x ^ 0. 
For A G (1 — a, 00) and a < c < K define the transform 17°/ of / € 

L2{c,oo]y-2dy) by 

(1.1) (c/A
0/)(y) = A(») = /(*A(y))(*,A(2/))^-(A-1)^) 

Then 
rOO rOO roo 

I   \fx(y)\2y-2dy - jf   |/(*A(?/))|2*2A(y)*'A(y)% - jf   |/(n)|2«-2d« 

so {C/^}A>i-a is a family of unitary operators on L2(c, oo\y~2dy). 
The inverse C/^"1 of C/J is given by 

(1.2) K-Xh){y) = /i(aA(y))(*'A(aA(y)))-i^1(y)y 

where Q^A is the inverse of *A on (0, oo), ^\{ot\{y)) = y> 
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Consider the operator L = -y2-^ in L2(c,oo;y~2dy) with maximal 

domain D(L) = {/ e L^-^f e L2}. We calculate L(\) = U^LU^1 and 
obtain 

(1.3) 

A2 

"dy 

- 2(*/
A)-M^»"1 + WM** - 2(«/

A)-
8*j[r2 

+2(*'A)-
1*Aj/-1   } 

For y > R, ^xiy) = yA, and (1.3) reduces to 

(1.4) (L(A)ft)(y) = -2'-^)+i /i) (y) for y > M 

For y < K, \fA(y) = y, so 

(1.5) (£(A)fc)(y) = (L/i)(y) for y < K 

We now define a family U\ of unitary operators on L2(M) as follows. On 
each cusp Zj = 51 x [a^;, oo), j = 1 • • • m, let ft e L2(Zj) have the Fourier 
expansion 

(i.6) /i(*,»)=E^)ea,r* 
«27rzZa: 

^z vi/;^ 
Z6Z 

and let 

(1.7) (^(x,») = (C^aj) (y) + ^af(y)e2 

where U^f is defined by (1.1) and ^ = X)z\{o}- Then C/^ is unitary on 
L2(Zj) for j = 1, • • • , m, 1 — a < X < oo. 

For / = £™ 0 ©/,-, /o G L2(Mo), ft e L2(^), let 

771 

(1-8) Uxf = fo + ,£uifj 
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Here ^^o ®fi is the Unction / on M such that f\Mo = foJ\Zj = ft 
for j =51 • • • m. 

Then {£/A}A>i-a is a family of unitary operators on L2(M). It follows 
from the definition of U\, that U\VA c ©(A). Then for / e 2?(A) 

m 

i=o 

where Aj- is the maximal operator corresponding to the formal Laplacian 
acting on if2(Mo) for j = 0 and H2(Zj) for j = l---m. The operators 
Aj- act in tf&jWjHyj) by AJ/J = (-y|(£r + fe))/i, where {x^yj) are 
coordinates on Zj. 

The operators Aj-(A) are defined for A € (1 — a, oo) by 

Ao(A)=Ao 

A^A) ^{^{uir1 

By (1.7) 

(1.9) 

{AjMffav) = (^(A)aJ(») + ^ -^-(^O2^ (%)e: ,2irilxj 

where LJ(A) is given by (1,3) acting in ^(aj^oojy. 2dyj)- 
The operators A(A) with domain 2?(A) are defined by 

(1.10) A(A)/-X®A^A)^ 
i=o 

The set {A(A)}A€(i-a,oo) is a family of selfadjoint operators with common 
domain P(A), and each operator A (A) is unitarily equivalent to A = A(l) 
via the operator U\ defined by (1.1), (1.7) and (1.8). 

The family {A(A)}A€(i-a,oo) has an analytic extension to Ga = {A e C \ 
A ^ (-oo, 1-a]}, given by (LS), (1.9) and (1.10), where L(A) given by (1.3), 
is defined and analytic for A e Ga with constant domain V(L(X)) = T>(L) 
since ^(y) 7^ 0 for A e Ga and y > 0 and since (L(X)h)(y) is given for y > R 
and y < K by (1.4)_and (1.5). The operators A(A) satisfy A(A) = A*(A) for 
A G Ga, since {A*(A)}AGGa is analytic and A(A) = A*(A) for A e (1—a, oo). 
Thus, {A(A)}A€Ga Is a self-adjoint analytic family of type A, cf. [K]. 
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For A non-real the essential spectrum ae(X) separates from the point 
spectrum ap(A).  It follows from (1.4) applied to L^, j = 1 •••ra, that for 
XeGa 

ac(X) = ] + A-21+. 
4 

We refer to appendix 1 for the proof. 
The set <Jp(A) of discrete eigenvalues in (j, oo) corresponds to cusp forms 

Uj , which remain constant under the action of U\, so <Xp(A) is constant for 
XeGa, equal to <Tp(A). 

In appendix 2 we construct a dense set J7 of analytic vectors for 
{UxjxeGa, i.e. fovfef the function U\f from (1 - a,oo) to L2(M) 
has an analytic extension to Ga = {X e C \ | ArgA |< f, A ^ (0,1 — a]}. As 
in [B-C] this implies that for every f,g € j7 the function (/, (A — z)~~lg) has 
an analytic continuation from C\<J(A) across crc(A) with poles at resonances 
and eigenvalues. This in turn implies that the spectral function (/, E(X)f) 
is real analytic on R\{<Tp(A) U <Td(A) u {j}} for every / e J7 and hence the 
absence of singular continuous spectrum of A. Moreover, it follows that for 
| ArgA |< f, ad(A)\R is contained in the angle between the half-lines £ + R+ 

and i + A-2R+ and that ad(X) OR = ad(A){±}. 
We summarize the basic spectral properties of A(A) as follows. 

Theorem 1.1. The set of operators {A(A)}AeGa is a self-adjoint family of 
type A onV(A(X)) = V(X). 

The spectrum a(X) of A(A) satisfies for XeGa 

1. The essential spectrum cre(A) is the half-line \ + A~2R"}". 

2. ad(X) H (i, oo) := <TP(\) = ap(A). 

3. The singular continuous spectrum cr5c(A) is empty. 

4. For I ArgA |< |,(Jd(A)\R is contained in the angle between the half- 
lines j+ R+ and j + A"2R+ and is otherwise X-independent (the set 
of resonances of A). 

5. (Td(X) n (—00, \) — crd(A) for I ArgA |< |. We shall return to 4 and 5 
in section 3, where the restriction \ ArgA |< f will be removed. 

2. Transformation of the Eisenstein series E(z,s).. 

The set of generalized eigenfunctions given by the Eisenstein series 
E(zys) = {Ek(zys)}7^=l has for Res > 1 the following Fourier expansion 
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in Zj for %• > ay, 

(2.1) 

Ek{z,s) = tfa + Ckj{s)y}-S + Yl^Mv)KS_I(2K 111 %)e2^ 

where Ks_i{y) is the McDonald-Bessel function of order s — ^ which de- 

creases exponentially as y —► oo and Y^i is the sum over / ^ 0. 
Ek{z,s) is not in L2(M), but Ek(z,s,\) := U\Ek(z,s) is well defined 

and is given for Res > 1, A G (1 — a, oo) and z G Zj with %• > a^ by 

(2.2) 

Ek{z, s, A) := UxEk(z, s) = SJJtjVy! + Ck^U0^-' + J^ 
I 

where U^fy? is defined according to (1.1) for A € (1 — a, oo) and %• > %• by 

(2.3) ^=yf+(^^^^^ 

It follows from (2.3) that C/^y| and C/^y1"5 and hence Ek(z,s,\) for 
fixed 5 with Res > 1 and z e M have analytic extensions from A G (1 — a, oo) 
to A G Gaj also given by (2.2) and (2.3). 

For fixed A G Ga we obtain, following [CdV], the analytic continuation 
in s of Eiz, 5, A) to {5 | Re{(5 - i)A} > 0}. 

Let a G C00(R+), 0 < a < 1, and assume 

(0     fory <a 
II     for y > a + 1 

Define ilfyz, 5, A) = {^(2;, s, k)}f=1 on Zfc for yk > a by 

(2.4) £*(*,*, A) = ^(^«, A) - C/A0fcW^)y|) 

where K is chosen such that K > a+1, and on the rest of M by Ek(z, 5, A) = 
^(2;, 5, A). 

For Res > 1 and A G (1 — a, 00) 

(2.5) (A(\)-s(l-s))Ek(z,s,\)=0 

By analytic continuation this holds for Res > 1,A G Ga. This follows 
by integrating (2.5) with any function in CQ^M) and using the analyticity 
properties of A(A) and E(z, s, A). 
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This implies for Res > 1, A e Ga 

(A(A) - 5(1 - s))Ek{z, s, A) = tffc(z, s, A), 

where 

*ife(z, s, A) = -(A(A) - 5(1 - s))Ulk(a{yk)ys
k) for zeZk,yk>a 

and **;(£> 5, A) = 0 on the rest of M. 
The functions ty^z^s, A) belong to CQ^M) and are analytic in s and 

A for s G C, A G Ga. The resolvent #(*, A) =.(A(A) - 5(1 - s))"1 is a 
meromorphic function of s for A G Gf

a,Re{(5 — |)A} > 0, by Theorem 1.1. 
Note that <Je(A) in the s-plane is the line ^ + A""1 i R. For | ArgA |< § by 
Theorem 1.1 the poles of if!(s, A) are contained in the angle between i + iR 
and ^ + X~1iR (the resonances), in ^ + iR (embedded eigenvalues of A ) and 
between | and 1 (discrete eigenvalues of A ). Here we have identified s with 
5(1—5) in the notation R(s, A) = i?(5(l-5), A). This yields an L2(M)-valued 
analytic continuation of £*(•, 5, A) defined for A G Ga, Re{(5 — ^)A} > 0 by 

(2.6) Ek(; 5, A) = R(s, A)*ib(#, 5, A) 

This function is meromorphic in 5 for each fixed A with poles contained 
in the set of poles of #(5, A). 

Since E^jSyX) is analytic with values in H2{M) and H2(M) is con- 
tinuously embedded in C(K) for every compact K c M,£k(«,5, A) can be 
developed in a power series convergent in C{K) around each (50, Ao) such 
that 5o is not a pole of Ek(;s,\o). It follows that for fixed z G M and 
A G GajEk(ZjSjX) is meromorphic in 5 for Re{(5 — ^)A} > 0 with poles 

contained in the set of poles of i?(5, A). Since UX
J (^(yj)y|j is analytic in A 

and 5, we obtain an analytic continuation of Ek(z, 5, A) given by (2.4) and 
we have proved the following result. 

Theorem 2.1. For fixed z G M and A G Ga,E(z,s,\) is meromorphic in 
s for Re{(5 — |)A} > 0 with poles contained in the set of poles o/i?(5, A). 
// 5 is not a resonance or eigenvalue of A, E(zJ 5, A) is analytic in A for 
I ArgA |< f. 

We shall now use the above result to establish the analytic continuation 
of C(s) and Al(s) from Res> 1 to CXI^}. It follows from the above definition 
of Ek(z, 5, A), that these functions and hence the generalized eigenfunctions 
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Ek(z, 5, A) are 1-periodic in Xj for yj > aj in each cusp Zj. Thus for Re{(5 — 
i) A} > 0, Ek(z, 5, A) has a Fourier expansion in Zj of the form 

Ek{z, s, A) = ^U?(^) + Ckj(s, A)C/A
oi(yj-s) 

(2-7) + E' AUS>^y]Ks_i(2ir | 11 %0e27ri^ 
z 

where Ks_i(yj) must decrease Exponentially, since by construction 

Ek(.,s,X)-6^U0
x
j(ys

j)eL2(M). 

Since Ek(z, 5, A) is analytic in 5 and A for each z e M by Theorem 2.1, 
each Fourier coefficient is analytic in 5 and A. Since U^dj?) are analytic 
in s and A and Ks_i(27r \ I \ yj) is analytic in s, it follows that Ckj(s,\) 

and Ajy(s, A) are analytic in s and A. For Res > 1, Ek(z, 5, A) are given by 
(2.2) as well as (2.7), hence Ckj(s,\) = Ckj(s) and Al

kj(s,\)'= Al
kj(s) are 

independent of A € Ga- By analytic continuation this holds for all s with 
Re{(s — 7})\} > 0. We have proved 

Lemma 2.2. C(s) and Al(s) have analytic continuations from Res > 1 to 
{s||Arg(s — ~) |< ^} with poles contained in the union of the sets ^(A) c 
(i +1], ap(A) C ^ + iR and UAEG 

r(^)> where r(^) ^ ^e sei of resonances 
(discrete eigenvalues of A(A)j contained in the angle between 5 + iR and 
\ + A"1*. 

We shall now show, that the analytic continuations of C(s) and Az(s) 
from Res > | around \ in the two directions agree for s € (—00, \). 

Consider the Eisenstein series E(z,s). By Lemma 2.2, E(z,s) has an 
analytic continuation in 5 given for z € Zj by (2.1) or, in matrix form 

E(z,s) = (ys
k)f=1+C(s)(y1rs)f=1 

(2-8) + J2'As) (yJKs_h (2n\l\ Vj) e^Y 

Applying C(l — s) to E(z,s), given by (2.8), we get on replacing s by 
1-5 

(2.9) 

C(s)E(z, 1-8) = C(S)C(l - 8)W)JLi + C(S)(y)-s)f=1 + Y! 



224 Erik Balslev 

Subtracting (2.9) from (2.8), we get 

(2.10) 

E(z, s) - C(s)E(z, 1-8) = (I- C(s)C(l - 8))(vS)T'i + E' 
i 

The l.h.8. of (2.11) satisfies 

(A - 5(1 - s))[E(z, s) - C(s)E(z, 1 - s)] = 0 

For Res< 5, the r.h.s of (2.10) is in L2(M). Since s(l —s) is not an 
eigenvalue of A, it follows that the function given by the r.h.s. side of (2.10) 
is equal to 0 and hence if s is not a pole of C(s) or C(l — s) 

C(s)C(l -s)=I for  Arg ( s - i 

In particular, if 5 + p is not an eigenvalue of A, 

c(i + ^)=c(i+7*-*) = (c7Q + p))'1&rp>0 

so the two analytic continuations of C(s) around ^ agree. 
Moreover, the l.h.s. of (2.11) equal to 0 yields for s not a pole of C(s) 

or C(l - s) 
E(z, s) = C{s)E(z, 1 - 5), 5 G C\{0} 

For A > 1 and s > 1, the function ^(^,5,1) defined by (2.6) is 
real-valued, and i?(s, 1) — (A — s(A — s{l — s)))~l is self-adjoint and 
real (maps real functions into real functions), so ^(z, s, 1) and hence 
Ek(z,$) = Ek(z,8,i) is real-valued. This implies that C(s) is real for s > 1 
and hence C(s) = C(s) for 5 G C\{^}. 
Let 

^    ^ s) = l
Ek(z, s) - [Siiyj)3 + Ckjy]-3]     for yj>a,j = l-'-m 

k,a{ ' ;     \sfc(^5) on the rest of M 

By the Maass-Selberg relation [Se], for si ^ $2, si + $2 ^ 1. 

/    ^Ml^, 5l)-fcj,aU, S2)dg{z) =  ——  
JM 51+52 — 1 

51-52 
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For 5i > 52 > 1 the l.h.s and the first term on the r.h.s. have finite 
limits ss S2 -* si, hence the last term has a limit, and it follows that 
Ckj(si) = Cjk(si). Since C/y(si) = Ckj(si), we obtain Ckj(si) = Cjk{si) 
for 5i > 1. By analytic continuation 

Cjk{s) = Ckj{s) =Cjk(s) for s e C\{0}. 

In matrix notation 
C(s) = Ct(s) = C*(s) 

In particular, for s = 5 = icr, a G R - {0} 

C(5+ta) = C-1(|-ta) = C*(i-i(r) 

so C(s) is unitary on the line ^ + iR except 5. It follows that C(s) has no 
poles on this line including crp(A) and 5. 

To exclude an essential singularity at ^ requires an estimate of the re- 
solvent near ^ to show that E(z, s) and hence C(s) is bounded near i. It is 
desirable and should be possible to obtain a simple proof of this well known 
fact in the present context. 

We have proved the following result. 

Theorem 2*3. The scattering matrix 0(8), the coefficients Al(s) and the 
Eisenstein series E(z, 5), z fixed in M, have analytic continuations to C\{^} 
with poles contained in the union of the sets ^(A) c (5, l],ap(A) C 5 + iR 
and n£>o{U{r(^) I I ArgA |< f + e}. They satisfy the following equations 
for z e M, s e C\{0}, s not a pole ofC(s) or C(l - s). 

(2.11) C(s)C(l-s) = l 

(2.12) C(s) = C(i) = Cfiis) = C*(s) 

(2.13) E(z,s)=C(s)E{z,l-s) 

Consider now the Eisenstein series Ek(z,s,\) defined in Zj by (2.2) for 
s € C\{^} and A e Ga, where C(s) and Al(s) are the meromorphic functions 
in C\{^} given by Theorem 2.3. 

From (2.13) follows by applying U\ for A e (1 — a, 00) 

(2.14) E(z, 5, A) - C(s)E(z, 1 - 5, A) 

and hence by analytic continuation (2.14) holds for A e G^s e C\{^}. 
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The A-dependence of E(z,x, A) is in the first two terms. E/^'j/j ls given 
according to (1.1) by 

(2.15) U0^ = yf+{X-l)^))\^{yj))
l^X-l)^) 

By definition of ^A? for yj < K, 17%*y* — y^ and for yj > R 

(2.16) tfj'tf = A^yi+A(-i) 

(2.17) U*v}- = \1'ivf-*-i) 

The essential spectrum crc(A) of A(A) is the line ^ + A"1^ = {5 | X(s — 
i) € iM}; for 5 = i + A"1^, a e R, and y^ > i? 

(2.18) ^ = A1/^, i^yi- = A1^)"^ 

1 

so I Ek(z, s} A) |^ cy| for y^ -> 00 in Z^. 
Thus, as for A = 1, the continuous spectrum of A(A) is the set of points 

s such that E(z,s, A) is "almost" in L2(M). 
The poles of C(s) are contained in the union of the sets of resonances 

UA r(A) and ^(A). The set of poles of C(s) in Si = {s \ 0 < Res < ±} in 
fact coincides with (UAM^)) 

n Si). This will be proved in section 3. 

3. Analytic continuation of the resolvent. 

It is well-known (cf. [M]) that each of the two sets of generalized eigen- 
functions {{E^ ± it)}™=1 \ t G M+} yields a spectral resolution of the con- 
tinuous part of A. 

For / e nc(A) n CZ>(M)9g e C?{M) 

(3.1) 

and 

(3.2) 

(/.*> = hffX (f,Ej (^+it)) (Ej ^+it),g)dt 

(A^) = ^Ejf (i+*a)(/^(*4+*))(^(*.5+tt)^)* 
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Here Hc{^) is the continuous subspace of l?{M\g) with respect to A* 
For Res > 5,5 ^ <T^(A), the resolvent R(s) — (A — 5(1 - s))~l is given 

by 

(3.3) 
-1 

(^)/^) = ^E/00(i+i2-s(1-s)) 
1 
2 f,Ej^+it))[Ei[*^ + it),9)dt 

Changing variables to A = s(l — 5), the integral becomes 

Ij{lMi ± ie) = /    (JJL - /10 T ie)-1 f/, ^ f •, ^ + ft J J 

(3.4) ' _1 

where t = (/x — ^) 2,5(1 — 5) — ^0 ± fe- 
Prom (3.4) we obtain (cf. Appendix 3.(1)) 

(3.5) 
Ijipo ±i0) : = lim IJQJLQ ± ie) 

= t;.p J^iii - MO)"
1
 (/, S,- (., I + tt) ) 

(^(•^+<(/io"^)9),i')KAi0"^2 

By (3.3) and (3.5) 

(3.6) 

(/, flOio ± *0)^) := limt/, £(/«> ± te)ff) = — ^ /(JUO ± iO) 
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It follows from (2.1) that Ej(; %+it) € L2_S(M) for every 6 > 0. This implies 
that /(po ± ie) is defined and (3.5) holds for /, g e L2

6{M), f e ftc(A). 
Hence R(no±io) is defined by (3.6) as an operator in B(L2(M), l?.g(M)) 

&ndR(iA)±iO) = w—limeio R(ijio±ie). The kernel K(fjio±iO]Z,w) of R(iJ,±iO) 
is given by 

(3.7) 

1   m        f°° If       1 
K(Lio±iO;z,w): = —Y,v.pJi   (^-^o)'1- I ft - ^ 

Ej lz, - + i (n - - j 2 j Ej f w, - + if n - - j 2 j dn 

1     ./       l\*\ Ej I «>, g + * I » - - 

From (3.7) we obtain the kernel £(no;z, w) of the spectral density P'(no), 
given by 

(3.8) 

£(fjio[z, w) =-—(71(1X0 + z0; z, w) - 7^(^o - ^0; z, tt;)) 
2m 

-hfa-k) 2]tEi{z>i+i{«>-\y) 

In terms of the variable t = (/i — |)2, we have for t e K\{0} 

(3.9) 

n(^ + it; z, w) = 11 Q - »t; z, tt; J + ir ^i UI + it J Ej (w, i + it J 

The resolvent kernel 7?.(|+it; z, to) is defined for Imt < 0 by (3.3) and for 
t € R\{0} by (3.7) with t = ±0*0-3)* • For Imt > 0 we define ft(±+it; z, w) 
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by 

(3.10) 

ft(i + it; z, w) = K Q - it; z, wj + tt"1^ (z, | + it) Ej (w, i + ttj 

where by (2.14) 

(3.11) 

{Ej (z, I + ft) }- ! = C Q + ft) {^ (z, i - ft) }- ! 

By (3.9) and Theorem 2.3, n(^ + it;z,w) as given by (3.10) and (3.11) 
defines an analytic continuation of the resolvent kernel from C~ across M\{0} 
to C+. 1 

Since Ej(z,^ + ft) ~ y? for yj —»• oo in the cusp Zj, where 
r = Imt > 0, the kernel TZ(^ + it;z,w) defines an operator R(^ + it) in 

B ((L2T+5)(M)),Li(T+6)(M)) for every S > 0. 
We show in Appendix 3 that 

R ( I + it < C for Imt < 0, |t| > K > 0. 
£(Li>L2-«) 

This together with the weak analyticity of R(^ + ft) in |Imi| < 6 implies 
that R(^ + it) is analytic in {t \ \lmt\ < 6}\{0} as a function with values in 

By (3.10) and (3.11), the set of poles of R(± + it) e £(L^(M),L^(M)) 
is precisely the set of poles of C(^ + it) in {t \ 0 < Imt < 6}. (We are 
restricting to 7ic(A) and hence omitting <7d(A)). 

From this section and the results of section 2 we obtain 

Theorem 3.1. In the strip Ss = {s \ ^ — 6 < Res < ^}, where 0 < 6 ^ 5, 
the poles ofC{s), the poles of R(s) e B(L|(M),Li^(M)) and the resolvent 
resonances Uo<ArgA<7r{0*rf(^) n Ss) coincide. 

Proof. We have seen above that the poles of C(s) and R{S) coincide. A 
point p is a resolvent resonance in Ss iff for some /, g in the dense set F of 
analytic vectors the analytic continuation of (fiR(s)g) across 5 + iR to S^ 
has a pole at p. 
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Since all functions in T lie in L|(/x) for 8 < 5, it follows that this holds iff 
p is a pole of the analytically continued resolvent R(s) e )B(L|(M), L^(M)). 

4. Resonances and resonance functions. 

Let p be a pole of C(s). Then p is also a pole of E(zJ s), and ®pk(z) = 
Resp£?A;(^).«) is a solution of 

A$pfc(xO = p(l - p)&pk(z) 

The functions <$>pk(z)jk = 1, ••• ,m are called the resonance functions 
corresponding to p . By (2.1), ^(z) has for z € Zj,^ > a?, the Fourier 
expansion 

{<M*)}£li = Res/7(s) {v}^}^ + Res, ^ 

where Res, J]^ = 0(e~cyj) as %• -»► 00 and U\(TteSp J^i) = R^Sp X^V 
The components yj~p of the leading terms transform under U®j into 

U\Jyj~Pi which for yj > Rj are given according to (2.17) by 

^yj-^A^j-^-^-^--^ = \iy] /»-2=«/*. 

For 0 > ArgA > -Arg/x, the function U^y)~p and hence *pfc(A) = 
U\§pk are not in L2(M). For —Avgp, > ArgA > — TT, the functions 
^pA;(A),fc = I,--- ,m, are in L2(M), so they are eigenfunctions of A(A) 
with eigenvalue p(l — p). 

As ArgA —> —TT, all poles of C(s) become eigenvalues of some A(A). By 
Theorem 2.3, the poles of C(s) are symmetric with respect to the #-axis. 
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If A = e^,,ju =| P "- 2  I e%V> *^e modulus of $pA;(A) in Zk approaches 

cy ^       2        - cynep as ^ -> -TT. 

We have proved 

Theorem 4.1* Lei p be a pole of C{s) with resonance functions Qpkik = 
1,..., m. Then the functions $pA;(A) defined for A G (1 — a, oo) by $pk(\) = 
U\<&pk have analytic extensions to A € GQ,, and for k = 1,..., m and \ £ Ga 

A(\)<f>pk(z, A) = p(l - p)$,fc(z, A) 

For — Argr; > ArgA > — TT, $pfc(A) is an eigenfunction of A(A) w/iere p = 

For ArgA —> -TT, | ^(^J A) |—> q/^ep /or z € Z^. T/ie poles ofC(s) are 
symmetric with respect to the x-axis. 

We finally discuss the discrete eigenvalues jij, j = 1,..., fc, of A. These 
eigenvalues either correspond to cusp forms, in which case they remain eigen- 
values of A(A) for all A £ Ga, or the associated eigenfunctions Ujk are not 
cusp forms, in which case the /ij are poles of C(s) and 2?(s, z) and we can 
carry out a similar analysis to the one given above for resonance functions. 
We obtain for the leading term of Ujk in the fc-th cusp Z^ 

This implies 

Theorem 4.2* Let fij G (^, 1) be a discrete eigenvalue of A with eigen- 
functions Ujk<> k = 1,..., m. Then the functions Uji{z, A), j = 1,..., fc, I = 
1,..., m, defined for A G (1 — a, oo) by 

Uji(z,X) = U\Uji(z) 

have analytic extensions to A G Ga, and for XeGa 

A(A)Miz(^, A) = Mi(l - Vj)uji(z, A). 

For | Arg |< ^,w^(«, A) zs an eigenfunction o/A(A). 
/f^z is a rasp /orra, i/ien ^7(2;, A) is independent of X and hence an 

eigenfunction of A(A) /or | ArgA |< TT. 
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5. Analytic Perturbation of A and Fermi's golden rule. 

We now specialize to hyperbolic manifolds M of constant curvature. In 
this case M can be represented as a quotient r\/i, where h is the upper 
half-plane with the Poincare metric ds2 = y~2(dx2 + dy2) and T a discrete 
subgroup of P - SL2(M). We consider a deformation of M in the Teichmiiller 
space T(rj, following Phillips and Sarnak [P-Sl]. A tangent vector of T(r) 
at r is given by a holomorphic cusp form Q of weight 4 for r, i.e. Q is a 
holomorphic function on h with Fourier expansion in each cusp of the form 

Q(z) = ^2 One 2ninz 

n=l 

and satisfying Qfrz) = (cz + d)4Q(z) for I j e T and z e h.  Let 

g(z, e) be the metric with line element 

ds  = gij(zy e)dx'ldx3 =y 2 dz + ey2'Q{z)dz 

with|e|<eo = ||»2Q||i1. 
We denote by Agfe) the Laplacian of M with the metric g(z,e). Aqfa) 

is given by Aqie) = A + eLq + 0(e2), where LQ = -8i2e {Q{y2$=)2). We 
utilize the following result proved in [P-Sl] as lemma 2.2: 

Lemma 5.1 (Phillips and Sarnak). There exist smooth diffeomor- 
phisms (j)£ of M onto M, depending on b, such that in each cusp neigh- 
bourhood Zj 

(i) <t>*Me))=mforyj>2b. 

(ii) <f)*£(g(e)) = g(e) for %• < 6. 

(Hi) 00 = Id; 0£ is real-analytic in e and varies smoothly in z and e, and 
| *jjs. 1= 0(1) uniformly for b < yj < 2b 

Let g(e) — 02(£(£)), ""^o < £ < SQ. Then 0£ is an isometry of M,g(e)) 
onto (M,g(e)). Let AQ(S) denote the Laplacian on M with respect to g{€). 
Then AQ(JS) — A for y > 26. Since AQ(0) = A, we have an expansion of 
the form 

(5.1) AQGO =A + SLQ + 0(e2),e € (-eo, £o) 
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The operators AQ{€) act for each e on a manifold M with a different metric 
g(e). For the purpose of applying analytic perturbation theory we map as 
in [P-Sl] L2(M; g(e)) isometrically to the fixed Hilbert space L2(M; #(())) by 
the transformations Te defined as multiplication by the function d£' , where 

d£ = detg(e)/detg(0) 

Since g(£) differs from ^(0) only on a compact set, J£ is a real-analytic 
family of operators. Then I Aqie) \ defined by 

(5.2) KQ(e)=T£AQ(e)Tr1 

is a real-analytic, self-adjoint family of operators in the Hilbert space 
L2(M;£(0))and £Q(0) = A. 

We calculate the first order coefficient LQ of AQ(S) in the expansion 
around e = 0. Inserting 

de = l + d'(Q)e + 0(€*) 

and (5.1) in (5.2), we obtain 

(5.3) 

Ac3(e) = (l + ^'(0)£ + 0(£2)) (A + eLQ + 0(e2)) (l - ^(0)6 + 0(e2) 

=A + e (LQ^ (d'(0)A - Ad'(0))) + 0(e2) 

Thus, LQ = LQ + I (d/(0)A - Ad'(0)). Note that LQ = 0 for y > 2b. 
For each e € (—£0)£o) we apply the complex power U\ of section 1 to 

AQ(e) with K >2b and obtain 

AQ(£, A) = A(A) + sLQ(X) + Ox(e2) 

where AQ(£, A) and LQ(A) are the analytic extensions of UXAQ^U^
1
 and 

UXLQU^
1
 resp. from A € (1 — a, oo) to A G Ga- 

Since 

{Uxf){xj,yj) = fipjiVj) for %• < 26, j = 1,...,TO, 

we have 
AQ(£, A) = AQ(£) for yj < 2b, j = 1,..., m. 
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Moreover, 
AQ(6) = A for yj > 26, j = 1,..., m 

and hence 
Ag(£, A) = A(A) for % > 26, j = 1,..., m. 

Thus LQ(A) = LQ and OA(e2) are independent of A € Ga, so that 

AQ(e,A)=A(A)+eLQ + 0(e2). 

Applying the family of transformations {T£} as in (5.2) to AQ(£, A), we 
obtain 

-i 
£ (5.4) AQ(£, A) = T£AQO)T£ 

and as in (5.3) 

(5.5) 

AQ(e, A) = A(A) + e(LQ + i(^(0)A(A) - A(A)d'(0))) + 0(e
2) 

with the first order perturbation 

(5.6) £Q(A) = LQ + \(d'(0)A(X) - A(A)d'(0)) 

Note that LQ and the 0(£2)-term are 0 for yj > 26, so AQ(£, A) = A(A) for 
yj >2&,j = l,...,m,e€ (-^o^o)- 

The maps 0e and Te are isometries and hence induce unitary operators 
on the corresponding L2-spaces: 

L2(M;$(e)) H L2(M;g(e)) % L2(M;ff(0)). 

Hence the spectra of AQ(£, A), Aqie, A) and AQ(6, A) are identical. We 
can therefore study the variation of the discrete eigenvalues of AQ(£, A) 

with e by studying it for Aqie, A). We denote by ae(e, A) and cr^e, A) the 
essential and discrete spectrum of AQ(£, A) resp. 

Since AQ(£, A) = AQ(A) for yj > 26, j = 1,..., m, and e e (-SQ, £Q), 

ae{e, A) == A""2R++ - for all e e (~so,£o). 

Theorem 1.1 applies to A(Q(£, A) for each e e (—so,6o). We reformulate 
this explicitly, since this is the basis for the main perturbation result, Fermi's 
golden rule. 
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Theorem 5.2. s AQ^, AH is for each e e (—eo,£o) a self-adjoint, 

analytic family of type A in L2(M;#(0)) with domain ©(A). 

For each A € Ga, AQ(£, A) is real-analytic in £ for e e (—eo, £o). 

<re(e, A) = A^21+ + <- for e e (-^o,^o), A € Ga 

0,i\ = (7lf(Ao(e)) 

For ReA >0, A g (0,1 - a] 

crd(e, A) n 

For all e e (—go>go))g
,a(g> A)\R is contained in the angular region be- 

tween \ +R+ and jA"**2M+ and otherwise independent of X. 

Prom theorem 5.2 and Kato's analytic perturbation theory [K] the proof 
of Fermi's Golden Rule is straightforward. This was observed and proved 
by B. Simon [Si] in the case of Schrodinger operators, where the analogue of 
Theorem 5.2 was provided by the dilation-analytic theory [B-C]. For the sake 
of completeness we include the proof according to [Si], adapting it to the case 
of general real-analytic perturbations and embedded eigenvalues of finite 
multiplicity, a commonly occurring case for the Laplacian on hyperbolic 
manifolds. 

Theorem 5.3. Let K > j be an embedded eigenvalue of A of multiplicity 
k>l, and let PQ be the orthogonal projection on Ker(A — K). 

Let AQ(€, A) = A + £LQ(A) + 0{£2) as in (5.3). For fixed A € Ga with 
-f < ArgA < 0, let k(e) — j SjLi ^j(^) be the average of the n-group of 

eigenvalues of h{e, X), which arise from the splitting of n when e ^ 0. Then 
k(e) is real-analytic for e e (-~£i,£i), where £1 < £0 is chosen such that 
Kj(£) remain discrete eigenvalues of A^e, A) for j = 1,..., k. Let 

fii(e) = K + ai£ + a2£2 + 0(£2) 

be the expansion of k{£) around £ = 0. Then ai is real, and Ima2 is given 
by 

(5.7) Ima2 = TT— 
dy 

1   k 

fl=K 



236 Erik Balslev 

where 

PV-M = 
P({K-6,A) for « — 6 < fi < K 

P{(K — 6, fj]) © PQ   for /i > ^ 

and P((K — 6,IJ]) is the spectral projection of A corresponding to the interval 
(K — 6,IJL],6 > 0, while {ui^..., Uk} is an orthonormal basis of ker(A — K). 

The function /(/x) under the differentiation sign on the r.h.s. of (5.7) is 
C

00
(K — 5,«, +6). Here 6 > 0 is chosen such that the interval (K — 5,«, +5) 

contains no other eigenvalues of A. 

Proof Si is a real, since otherwise £(£) and hence at least one Kj(e) would 
have negative imaginary part for some e with | e \< ei, in contradiction to 
the fact that «j(e) lies in the angle between j + R+ and j + (1 + A)~2R+ 

for ArgA < 0, | e |< ei. We have 

/w dt Im 

1 (LQ^JPOLQ^J 

TT K — t — iv 

We now apply a standard dilation-analytic argument. For A € (1—a, oo), 

(5.8) 

/=                           _i=      \      (LQUJIPOLQUJ) 
[LQUJ,(A-t-w)    Lqujj -  ^ 

■t — iv 

(LQCA)^, (A(A) -1 - ^-^QCA)^) - ^ A;_t_.i/ ^ 

By 4) of Theorem 1.1, t + iv <£ a(A(A)) for ArgA > -^Arg(i + iu), 
hence the r.h.s. of (5.8) is analytic in A for such A. Since it is constant for 
A G (1 — a, oo), it follows that it is constant for all A € Ga with ArgA > 
—^Avg(t + if), i.e. (5.8) holds for all such A. Hence (5.8) holds for u > 0 
and ArgA > 0.  Fixing A with TT > ArgA > 0, we can now let u I 0 and 
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obtain for 0 <| t — K \< 8. 

lim 
\ (~ i-      \      1 l-^Q^Jj (LQ^,POLQWJJ 

i (Lg(A)^, (A(A) - tJ-^gCA)^) - \ 

t — iv 

fc-^t 

which has a removable singularity at t = «. Hence / G C00^ — 5, K + 6). 
We now fix A with TT > ArgA > 0.   Then K is a discrete, semisimple 

eigenvalue, i.e. a simple pole of (A(A) —O"1, and Kj{e) a discrete eigenvalue 

of A(£, A) for | e |< ei,j = 1, ...fc. 
By [K] II §2 (2.33) (p79), «;(e) = i ^=i «i(^) is real-analytic in e, and 

a2 = itr (LQ2(A)Po - Lg(A)5(A)Lg(A)Po) 

where 
^ofo A) = A + £ge + Lg2^2 + 0(e3) 

and 5(A) is the reduced resolvent of A(A), given by 

(A(A) ^ (« + iv)Yx = ^ + S(X) + ^-u^JbCA) 

Thus, for small 6 > 0 

^2 = T  tr ^LQ2(^)POJ - 

The function ^(ju) = fnj,LQ(A(A) - /JL^LQUJ) has a pole term 

(U^LQPQLQUJ) —- 

at /x = K, hence by the complex transformation argument 

a24r(£Q2(A)Po)+iEHes(f^)_ 

=itr(£Q2(A)Po) 

+ % S^   (wi'LQ(A - ^J-^Qtij) - (tij.LgfbLQty—- j 
_7=1 L \ M/ 
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Note that 

tr (£Q2(A)PO) = Y^ (U
J^Q^

X
)
U

J) 
i=i 

is real. Hence, letting u = n + iv 

k 

lma2 — lim — Y^Im   iuj, LQ(A — K — iv)  1
IJQUJ J — 

1   k 

d/j, 
J ^=tt 

and the theorem is proved. 

From Theorem 5.3 we obtain 

Theorem 5.4. Let n > \ be an eigenvalue of A of multiplicity k > 1. T/ien 

(5.9) 
^    ^     k     m 

j=i«=! 

LQttj>EM g +ir 

w;/iere Ez(^ + ir) is tfte Eisenstein series corresponding to the cusp Z/ at 
I +ir, and « = j +r2. 

Proo/ We prove (5.8) in 3 steps, first with LQ replaced by LQ, then with 
LQ replaced by LQ and finally with LQ itself. 

1) By theorem 5.3 and (3.8) 

1 1 
k     m 

(5.io)    in*.-5-Ex;i; LQ^,Ez ( - + ir 

2) Introducing (5.6) with A = 1 in (5.10), we obtain 

(5.11) 

.j   1     k     m 

3=1 i=l 

Lo«i,Ej(-+ir) ) + 

i(d'(0)A-Arf'(0))tii,EJQ + :r) 
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Since Uj is an eigenfunction and Ei(^ + ir) a generalized eigenfunction 
of A with eigenvalue n = \ + r2, we obtain, using that ^'(0) has 
compact support, 

(5.12) 

Aujy (?(0)E, Q + ir H - (dfMuj, AEZ Q + i ir ) \ = 

K ^,d/(0)Ez(-+2r d,(0K,Ez(- + ir 

Introducing (5.12) in (5.11), we get 

(5.13) 
^   ^     k     m 

2rk 
j=i i=i 

LQUj,Ei [ - +ir 

3) Since cr(A(£, A)) = a f AQ(£, A)J for all 6, the curves K(e) and hence 

62 are the same for AQ(£, A) and AQ(£, A) for all b.  Thus Ima2 as 
given by (5.13) is independent of 6. In [P-Sl] it is proved that 

(5.14) 

lim 
b—>OQ 

LQui»E«( 2+ir LQUJ,EI[ - + ir 

l  1 'r-»fc      T-^m 

it follows that 

(Lgt^Ej^ + ir)) is constant equal to Ima2, 

1   1     A;     77i 

and the theorem is proved. 

LQ^>EU 2 +ir 
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Appendix 1. The essential spectrum of A(A). 

In this appendix we give the proof of 1 of Theorem 1.1. The self-adjoint 
operator 

d2 

Ai== -y2j^ + (27r/)2y2 in L2(a' ^ y~2dy) 

defined by the boundary condition /(a) = 0 is unitarily equivalent via the 
transformation V defined by 

/(y)->£(*) = (m*) =/(eVt/2 

to the operator 

VAiV-1 = ~ + (27rl)2e2t in L2(6, oo : dt) 

with boundary condition g(b) — 0, where b = in a. This operator and hence 
Ai has discrete spectrum. 

It follows from (1.3)-(1.5), that the operators iy(A),j '= l,...,m, in 
L2(aj,oo;yJ2dyj) defined by the boundary conditions /(%•) = 0 have the 

essential spectrum | + A~2R+. This can be seen as follows. A point 
z is in cre(lP(X)) if there exists a singular sequence {fn} for LJ(A) at 
Zj i.e. {fn} C V(Lj(\)),\\fn\\ = l,!/^} has no convergent subsequence 
and ||(L>"(A) - ^/nlln-.oo -^ 0. Let x € C^Co^oo) with x(yj) = 0 for 
Vj < Rjixlvj) = 1 for % > -R + 1. Then xC/^llx/nll"1 is also a singu- 
lar sequence for Aj(X) at z and also by (1.5) a singular sequence for the 
operator L-7 (with boundary condition y(aj) — 0) at (z — j)X2 + j. Since 
ae(L^) = [i, 00), it follows that (re(V(\)) = \ + A--2R+. 

Prom the above we prove that A (A) has the essential spectrum ae(X) = 
i + A~2R+ The inclusion <Je(A) 2 ^(^(A)) is seen as follows. Let {fn} be 
a singular sequence for LJ(A) at /i G cre(LJ(A)) and let x be a function as 
defined above. Then gn = (xfnlWxfnW'1 is a singular sequence for L^A) at 
JLA, which by extension to the rest of M, setting gn(z) — 0 for z ^ {ZJ e Zj \ 
Vj > R}, becomes a singular sequence for A(A) at /z, hence fx e cre(A(A)). 

Conversely, if/.* G cre(A(A)) and {gn} is a singular sequence for A(A) at y, 
let 77 G C^M) with rj(z) = 0 for 2: G MQ and z G 2,- with %■ < i?, r)(z) = 1 
for J/J > i? + 1, j = 1,..., m. Then /n = (^n)llwll"1 is a singular sequence 
for A(A) at ^, and it follows that at least in one cusp Zj, {fn} is a singular 
sequence for Aj(A). Since A^ has discrete spectrum for I G Z/{0}, we must 
have <7e(Aj(A)) = crc(LJ"(A)), so fj, G (Je(Lj(A)). 
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Appendix 2. A dense set of analytic vectors. 

Theorem A2.. Let M be an admissible manifold M — MQ U ZI U • • • U Zm 

with m cusps, and let {t/A}Ae(i-a,oo) be the family of power transformations 
defined in section 1. There exists a dense set T of vectors f on L2(M); such 
that the functions /(A) = U\f have analytic extensions to 

Gf
a = {A € Ga | ReA > 0} - {A e C | ReA > 0}\(0,1 - a\} 

and for each XeGf
a the set {/(A) \ f eJ7} is dense in L2(M). 

Proof To simplify notation, consider the case of a manifold M = MQ U Z 
with one cusp. Let / € L2(M) and let rj e Croo(R+) be a function satisfying 

[0 for 0 < y < K - 1 

assuming K > a + 1. Let 

fjU) == fav) iov z = x + iyeZ 
[Ofor zeMo 

Let /i = /(I — 77), /2 = frj. Consider V of all polynomials P in y"1 of 
the form 

n 

Pn(y-l) = J2aky-\  n = 0,1,2,...    . 

For y > K — 1, write 

n 

P is dense in L2(K — 1,00 : y~"2dy)\ a function 5 e L2(K — 1, 00; y~2dy) can 
be approximated by a function h € Cc(K—ly 00); h(y~1) e Cc (0, (K - I)"1) 
can be approximated uniformly by a polynomial Pn(y) and hence h by 
PnCy"1) uniformly and therefore in L2(K — l,oo;y~2dy), so g is approxi- 
mated in L2^ - l,oo;y-2dy), by Pn{y~l) € V, 

Let ps € V be such that 
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Then 
M-mil 12    ,       2J   <S 

hence 

f2-Lv+J2'an(yWyy™x) 

WaoV ~ PSVllh? ,      <S (K-l.oo-.y-^dy) 

SO 

/- /i + M + Y! anivWvy2™ Ininx 

L2(M) 

Wow - PSllWi? o       <S 
(K-lyOo^y-^dy) 

where ps is ps extended by 0 to M. Thus the set of functions 

^ = I fP6 = /i + M + E' ^(y)^(y)e2^ | / G L2(M) I 

is dense in L2(M). 
We shall prove that every fP6 e T is analytic with respect to U\ in G^,. 
For y < K, (Uxf)(x, y) = /(a:, y). For y > K, fi(x, y) = 0, so Uxfi - /L 

By definition 

27rinx 

\ n J n 

Moreover, Uxpsfj) == (U^ptrj), where 

We show that 

(1) rj (y+(*-iM*/)) = r](y)   for 1 - a < A < oo 

For y > i^yi+^-iMv)  > if, since V(y) = y1^"1)^) is increas- 
ing (^'(y)   >   0)  and ip(K)   —  K.    Since 7j(y)   =   1 for y  >  K,  we 
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have q (j/i-K^-iMw))   =  1  =  v(y).    For y <  !jr,yi-K*-i)<P<»)   = y so 

V (y1"1"^-1)^)) = r)(y). Putting this together, we get (1). Moreover 

Ps 
n 

k=0 

For A G Gjj.p* (y1^-1)^)) is bounded for 0 < 8 < y < oo and analytic 
for y > 0. Finally 

M(v))* y-^-15*7^ - y-(A-lM2/)(i + (A - i)^(y) + y'C^logy)) 

is analytic for A € G'a with values in L2(5) oo;y~2dy). 
It follows that C/^(p5r?) = (^(y))* y-^-^^^p^ (yi+(^-i)*K»)) ^(y) is 

analytic in G^ with values in L2(<5,oo;y~2dy) and hence 

fAJW = /i + (uZtov)) + T! an(y)r](y)e Jl-Kinx 

is analytic in G^ with values L2(M). 
The density of {^Tx/p^} 'm L2(^) for each A G G^ is established by a 

proof similar to that given above for A — 1. 
For a manifold M = MQUZIU- -UZm with m cusps, the proof is similar. 

We approximate in each cusp the 0-th Fourier component by a polynomial 
in y"1, and a function / in L2(M) is approximated by a function / equal to 
/ on Mo and in the proximate ends of the cusps and with the 0-the Fourier 
component equal to suitable polynomial in yj1 in the distant end of each 
cusp Zj. 



244 Erik Balslev 

Appendix 3. The resolvent kernel. 

We consider the integral J(/io + is) given by (3.4), e > 0. 
Fix 6 with e < 6 < LIQ-J, let Cs be the semicircle in the upper half-plane 

with center no and radius <$, oriented counter-clockwise, and let Ts be the 
closed curve composed of the interval [/xo - S, fio + 8} and Cs- 

We write the integral as 

1(^0 + fe) =   / +  [   -  [    = Jl(e) + J2(£) + /3(e) 

We calculate the limits of Ii(e), his) and /3(e) as e | 0, where / and g are 
fixed in L^(M) for some /? > 0. Let 

^(M) = f/i^U|+*(M-J)a 

1\      \ 1 1\5\ \   1   / l\-2 
^l->i + M^-7)  I'015(^-1) 2       V       4 

Then 

(1) \\ml1(e)= {n-iio)-lFfig{ij)dv, 
ei0 ^|/*-/to|>« 

-feOO = /  (M - Mo - ie)~lFf,g{n)dn = 2TriFftg(no + ie) 
Jr6 

(2) liml2(£) = 27ixF/>ff(Mo) 
£10 

(3)    lim/3(e) = - f (fi- Mo)"1 (^(M)- 

-Ff<g(iM))) dix - FfjOio) /  (ji - Mo)-1^ = I4 + h 
JCK 
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Since Fffg(fi) is real analytic in /i near juo, we have for e < 6 < [LQ — \ the 
estimate 

(4) \h{e)\<K6 

while 

(5) h = -7riFfig(iio) 

Letting 6 I 0, we obtain 

POO 

(6) lim 7(^o + ie) = v.p. /    (ju - no^FfMdfj, + mFftg(no) 
4 

Similarly, lime^o ^(/^o — is) is given by (6) with ni replaced by — ni. 
From (3.3) and (6) we obtain for f,g € LJ|(M), / e Hc(A) 

(R((io ± i0)f,g) := lim(i?(Mo ± ie)f,g) 
£i0 

(7) __ 
~27r 

3=1 

I     m    \ foo 

Theorem A3. Le^ ^ > 0 and K > 0 be given, and let R(^ + it) be defined 

as an operator in B fL^(M),L?./?(M) J by 

BrI + trt-Ji2(3 + ft)        Imi<0 
l
2+rt;"|iJ(i+t2±io)    foriGR^ 

T/ien p(i - ft) || < C on {t \ Imt < 0}, \t\ > K. 

Proof. Let 0 < 8 < \(\+K
2
) be fixed. We use expressions (l)-(3) to estimate 

the different terms of [R{\ + it)f,gj for /,# e L|(M) and ^ e [«,oo], 

setting /xo = \+t2. 
We obtain from 

/i(0) - lim Ji(e) - / (M - ^FfMdii 
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I /i(0) | < 6-^0 - «)-* (j™ | (/, Ej (., i + ft) ) 
2        \   2 

:ri(M^ +»< ,^ 
2       \   2 

<(5   ^OiO-^)    l\\f\\LHM)M\LHM)<Cl\f\\L2{My\\g\\L2{M) 

l2(0)\<C.\\f\\LUM)MLl(M) Ej[*>2+i[^~J 

I /s(O) |< 6-K\\f\\h2{My\\g\\^{Myrmx 

and the theorem follows. 

E
J \; « + M A* - 7 

1\5 
2 

L2-. 
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