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Let (M,g) be a two-dimensional Riemannian manifold with constant
curvature -1 outside a compact set. M can be decomposed as M = MyUZ1U
-+ *UZp, where My is compact and the cusps Z; are isometric to S; X [a;, 00),
where Sj; is the unit circle and the metric on Z; is given by ds? =y; 2(d9:? +
dy]?). This is the class of admissible surfaces with m cusps considered by
W. Miiller [M]. Let A be the Laplacian on M, a selfadjoint operator with
domain equal to the Sobolev space H?(M). The spectrum of A consists of
a continuous spectrum of multiplicity m, o.(A) = [%, 00), a finite discrete
spectrum contained in [0, 1) and a (possibly empty) finite or infinite set of
eigenvalues {«;} embedded in the continuous spectrum. It was proved by
Selberg [Se] that for hyperbolic manifolds of constant negative curvature
I'\h, where h is the Poincaré halfplane and I' is a congruence subgroup of
P — SLy(R), the Laplacian has infinitely many embedded eigenvalues &;, in
fact they satisfy a Weyl law

2
#{r; < R*} = k4, 0(Rlog R)
i
where A is the area of I'\h. Moreover, the spectral counting function M(R)
defined by
1 [R5 +it)
2m Jo (5 +it)

where ¢(s) = det C(s) and C(s) is the scattering matrix, satisfies M(R) =
0(Rlog R). Selberg then conjectured that for all discrete subgroups I' of
P — SLy(R) the spectral counting function M(R) for A on I'\h satisfies
M(R) = 0(R%*%) for some 6 > 0.

In order to investigate this problem Phillips and Sarnak [P-S1]-[P-S3]
introduced the method of perturbation of the Laplacian in the Teichmiiller
space of the manifold I'\h. Let the perturbed operators A(e) have the
expansion A(g) = A + €L + 0(¢2) near ¢ = 0 and let k() = x(0) + a1 +

M(R) =

213



214 Erik Balslev

a2e? + 0(¢2) be the expansion of a simple embedded eigenvalue near ¢ = 0.
Then a; is real and as is given by the formula.

1 & 1
_Z 2 a2
Imay = o ZE=1 |(Lu, El(2 +ir))|

where k(0) = 1 + r? and Ey(s, 2) is the generalized eigenfunction of A in
the I’th cusp. If Imay # 0, k(€) is a resonance of A(e) for small € # 0. The
method of proof of Phillips and Sarnak utilizes the Lax-Phillips scattering
theory for automorphic wave equation [L-P], in particular the generator B
of the associated semigroup. The operator %I + B has a purely discrete spec-
trum consisting of eigenvalues (embedded and discrete) as well as resonances
of A and the point % This permits the application of analytic perturbation
theory to the family A(e) yielding in particular the above formula for Imas.
This formula has been known in the physics literature of Schrédinger oper-
ators for a long time under the name of Fermi’s Golden Rule. It was proved
by B. Simon [Si], utilizing the dilation-analytic theory of [B-C], which in
that case made the problem accessible to analytic perturbation theory.
The identity of this formula in the Euclidean and hyperbolic cases sug-
gests the possibility of proving it by the same method in both cases. The
basic problem is the separation of the embedded eigenvalues from the contin-
uous spectrum. In the Euclidean case the operator —A + V is transformed
by a family of unitary operators induced by dilations in the independent
variables. Analytic continuation in the scaling parameter leads to a rotation
of the continuous spectrum away from the eigenvalues, successively turn-
ing resonances into discrete eigenvalues. The analogous s in the hyperbolic
case are dilations in the hyperbolic distance or, equivalently, power U(A)
of the transformations independent variables. We use a simple version of
Hunziker’s modification of the dilation-analytic theory [Hu|. Since the con-
tinuous spectrum of A is entirely controlled by the 0-th Fourier mode and
since the exponentially decreasing cusp forms explode under complex power
transformations, these operators should be restricted to the y-coordinates in
each cusp in the 0-th Fourier mode, as was pointed out to us by M. Zworski.
The operators s U(\) are defined in section 1, and it is proved that the con-
tinuous spectrum (4, 00) of A rotates around % through the angle —2ArgA
into the continuous spectrum o.(\) = 1 + A~2R¥ of the transformed Lapla-
cian A(\) = U(NAU(MA™1). The embedded eigenvalues are unchanged for
|ArgA| < 7, and so are the isolated eigenvalues for |ArgA| < Z. Reso-
nances become discrete eigenvalues after being crossed by o.(A) (Theorem
1.1). In terms of the parameter s, related to the spectral parameter p by
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g = s(1 — s),0¢()\) in the s-plane is the line 4+ — iArg) - R, which rotates
around % through the angles Arg\ € (—m, 7). The embedded eigenvalues
remain on the line % + iR, the isolated eigenvalues remain in the interval
(%, 1] for |ArgA| < % and the resonances turn into discrete eigenvalues of
A()) located between § + iR and oc(A). The reason why o()) is the line
% —iArg) - R becomes transparent when we observe that the Eisenstein se-
ries E(s,z) transforms under U into E(),s,z) with the leading terms for
1, 1.

large y; in Z; equal to /\%(yf“m\ +C(s)y? —W/\), where s = % + Ao (cf.
(2.18)). Precisely when Argo = —Arg\ are both of these terms ”almost” in
L?(M), which is characteristic of points in the continuous spectrum. The
transformed Eisenstein series E(), s, 2) are discussed in section 2, which also
contains a deformation-analytic proof of the existence of analytic continu-
ations of the scattering matrix C(s) and the Eisenstein series E(s, z) from
Res > 1 to (C\{%} which poles contained in the set of resolvent resonances,
i.e. poles of the resolvents (A(\) — s(1 — s))~! (Theorem 2.3).

In section 3 we establish the analytic continuation of the resolvent kernel
R(s, 2,w) from Res > 1 to C\{1} and the continuation R(s) of the resolvent
R(s) up to Res > % — 6, considered as an operator in B(L(M), L? ;(M)).
Thereby the results of section 2 are completed to obtain the identity of the
poles of C(s), E(s, z), and R(s) with the resolvent resonances (Theorem 3.1).

The fact that the resonance p = % + i0 becomes a discrete eigenvalue
of A(A) for Arg\ < —Argo can be explained in terms of the asymptotics
of the properties of resonance functions. The 0-th Fourier coefficient of
the resonance function with resonance p is for large y transformed into

m

L
ResC(s)(y} oA ™ 1, which becomes a set of square-integrable eigenfunc-
tions of A(\) for ArgA < —Argo (Theorem 4.1), so the resonance p becomes
a discrete eigenvalue of A(\), when o.(A) crosses p. Similarly, the properties
of eigenfunctions corresponding to an isolated eigenvalue of A explain why
p ceases to be an eigenvalue of A(A) for |Arg)| 2 %, unless the eigenfunc-
tion is a cusp form in which case A remains an eigenvalue for |Arg\| < .
As a consequence of the separation of o.()\) from the embedded eigenval-
ues Fermi’s Golden Rule is now proved (Theorem 5.3 and 5.4) by the proof
of [Si] for the class of perturbations of A in Teichmdiller space studied by
Phillips and Sarnak [P-S1]. The transformation given there, which reduces
the problem to the study of a family of metrics varying real analytically
only in a compact set, is essential for our proof and perfectly suited for the
application of the method of complex power transformations.

Phillips and Sarnak showed that the perturbation in Teichmiiller space
can be considered as a perturbation g(¢) of the metric on the manifold
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M, such that g(¢) deviates from g¢(0) only in a compact set, independent
of €. This perturbation theory is valid for manifolds of constant negative
curvature. The family A(e) of Laplacians on (M, g(€)) equal A outside a
compact set for all € € (—ep,€0). Therefore it is possible to transform A(e)
for all € by the same complex power , so that gc(A()€)) = 2 + AR for
all € € (—eo, €0), setting the stage for analytic perturbation theory.

The importance of the formula for Imas known as Fermi’s Golden Rule
is that if for a given eigenvalue x and some [, (Lu, E1()\) # 0, then the
eigenvalue « gives rise to resonance. On the other hand, if k¥ remains in the
. continuous spectrum under the perturbation in Teichmiiller space, then as
an important consequence this integral is 0.

A different proof of Fermi’s Golden Rule was given by Petridis
[Pe2],utilizing the method of Faddeev [F] of analytically continuing the re-
solvent kernel together with the Lax-Phillips scattering theory [L-P]. Our
method does not treat the point % For a thorough analysis of this point see
[Pel].

1. The analytic family of operators A(}).

Let (M,g) be a two-dimensional Riemannian manifold with constant
curvature -1 outside a compact set My. M can be decomposed as

M=MUZU---Zn,
where My is compact and
Z; &2 S; x [aj,00),j =1,---,m
with a; > 0 and the metric on Z; is given by the line element

2 2
S; = D)
Y5

where (x;,y;) € S; % [aj,00) and S; is the unit circle.

We denote by A the unique self-adjoint Laplacian in L2(M) Wit121 domgin
H?(M), the Sobolev space of order 2 on M, acting in Z; as —%2'(3%2 + (,%;).
J J

The spectrum ¢(A) of A consists of

1. the essential spectrum ge(A) = [1, 00).
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2. the embedded point spectrum op(A) ={A1 <Ao< <M <---},a
finite (possibly empty) or infinite set of eigenvalues of finite multiplicity
with A1 > %

3. the discrete spectrum og(A) = {0 = p1 < p1 <--- < pg < 1}, a finite
set of eigenvalues of finite multiplicity.

4. possibly the eigenvalue 3.

In order to study the spectrum in more detail we introduce a selfadjoint,
analytic family of operators A()), defined through complex power transfor-
" mations of A in the 0-th Fourier mode.

Let ¢ be a real-valued C*°-function on (0, 0o) with ¢’ > 0 and satisfying
for fixed K and R,a < K < R, with a = max{l,a1--- ,a,}

Ofor0<y< K
o(y) =
lfor R<y<oo

Let Uy (y) = yl*A-D¢®) X\ € C. Then

Uh(y) = %%(y) = yA=DPW1 + (A = 1)(p(y) + ¢ (y)y log y)]

Let

a=[ max {p@y) + ¢ (y)ylogy} ™

Then for 1 — a < A < 0o and for ImA # 0 we have ¥, #0.
For A € (1 —,00) and a < ¢ < K define the transform U%f of f €
L?(c, 003y~ dy) by

(1.1) (U ®) = Hr) = F(@A)) (Th (1)) Ty~ A De®
Then
| i@y = [ 1 @PRe B = [ 15w P

0 {U}r>1-a is a family of unitary operators on L?(c, oo; y~2dy).
The inverse Uy~ of UY is given by

(1.2) (U2 h)(y) = h(ar(®)) (Tr(ax®))) a5 @)y

where a), is the inverse of ¥ on (0,00), Ux(ax(y)) = y.
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Consider the operator L = —y? cg in L%(c,00;9 2dy) with maximal

domain D(L) = {f € L2|y 4. f € L%}. We calculate L(\) = UILU?~! and
obtain

(1.3)
5 d2

LY = ~(T) W55 +2{(¥)" BPUWR 4 (W)) 202y~

()~ 1‘1’)\}—4—{ (WH) 4203 + (q, )2l g2
— 2(W) W TRy~ + () TRULE, — 2(W) 203y
+2( W, N 1y y‘l }

For y > R, Ux(y) = 9, and (1.3) reduces to

(1.4) (L(Nh)(y) = ( [ﬁ (L - %) + i] h) (y) fory > M

For y < K, ¥x(y) =y, so
(1.5) (L) (y) = (Lh)(y) for y < K
We now define a family U) of unitary operators on L?(M) as follows. On

each cusp Z; = S! x [aj;,00),j = 1+--m, let f; € L%(Z;) have the Fourier
expansion

(1.6) filz,y) = Z al (y)e2mite
I€EZ
and let
(1.7) (Uif) (x,y) = (U;)Ja-é) (y) + Z’ a{(y)e%’ilm
l

where U is defined by (1.1) and Y/, = >_7\{o}- Then UY is unitary on
L3(Z;) forj=1,---,m,1 —a <A< o0.
For f = ZT:O @fj, fo € L2(M0),fj € L2(Zj), let

(1.8) Usf = fo+ Y Uif;

j=1
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Here Y 7", @f; is the function f on M such that f | Mo = fo, f | Z; = f;
forj=1---m

Then {Ux}a>1-« is & family of unitary operators on L%(M). It follows
from the definition of Uy, that UxDA C D(A). Then for f € D(A)

m
Af =Y ®A;f;

j=0
where A; is the maximal operator corresponding to the formal Laplacian
acting on H?(Mp) for j = 0 and H?(Z;) for j = 1 -m. The operators
Aj act in L2(Zj7yj 2dy]) by Ajf; = (—yj3 (5;? + 347 3y ))fj: where (z;,y;) are
coordinates on Z;.

The operators A;(\) are defined for A € (1 — a, 00) by

Ao(X) =40
A;(N) =ULA;(U) ™!
By (1.7)

(1.9)
2 ' '
(A (M) fi(z,y) = (LJ(/\)ao(y) + z [( 882 - (27rl)2y32-) a‘lyjl (yj)e2mlxj

where L7()) is given by (1.3) acting in L*(a;, 00;y; 2dy;).
The operators A(\) with domain D(A) are defined by

(1.10) AN =) 8ANf

=0

The set {A(A)}ag(1-a,00) is @ family of selfadjoint operators with common
domain D(A), and each operator A()\) is unitarily equivalent to A = A(1)
via the operator U, defined by (1.1), (1.7) and (1.8).

The family {A(X)}re(1-q,00) has an analytic extension to Go = {A € C |
A ¢ (—o0,1—aql}, given by (1.3), (1.9) and (1.10), where L()) given by (1.3),
is defined and analytic for A € G, with constant domain D(L()\)) = D(L)
since ¥4 (y) # 0 for A € Go and y > 0 and since (L(A)h)(y) is given fory > R
and y < K by (1.4) and (1.5). The operators A()) satisfy A(A) = A*(}) for
A € G, since {A*(\)}aeg, is analytic and A()) = A*(}) for A € (1—a, 00).
Thus, {A(M)}rec, is a self-adjoint analytic family of type A, cf. [K].
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For A non-real the essential spectrum oe()\) separates from the point
spectrum op(A). It follows from (1.4) applied to L},j = 1---m, that for
A€ Gq

oe(N) = % + A72RT.

We refer to appendix 1 for the proof.

The set o, ()) of discrete eigenvalues in (4, co) corresponds to cusp forms
u; , which remain constant under the action of Uy, so op(A) is constant for
A € Gq, equal to op(A).

In appendix 2 we construct a dense set F of analytic vectors for
{Uxhreq,, ie. for f € F the function Uxf from (1 — @, 00) to L3(M)
has an analytic extension to G4 = {A € C | | Argh |< 5AE(0,1—ql}. As
in [B-C] this implies that for every f,g € F the function (f, (A —2)~!g) has
an analytic continuation from C\o(A) across o.(A) with poles at resonances
and eigenvalues. This in turn implies that the spectral function (f, E(\)f)
is real analytic on R\{o,(A) Uog(A)U{3}} for every f € F and hence the
absence of singular continuous spectrum of A. Moreover, it follows that for
| ArgA |< Z,04(A)\R is contained in the angle between the half-lines 1 +R*
and 1 + A\72R* and that o4(X) NR = 04(A){1}.

We summarize the basic spectral properties of A()\) as follows.

Theorem 1.1. The set of operators {A(\)}rec, 18 a self-adjoz’ht family of
type A on D(A(N)) = D(N).
The spectrum o(\) of A(N) satisfies for A € Gq

1. The essential spectrum oc()) is the half-line § + AR,
2. aq(N) N (3,00) :=ap(N) = 0p(A).

3. The singular continuous spectrum os.(A) is empty.

4.

For | Arg) |< F,04(N)\R is contained in the angle between the half-
lines $ +RT and 1 + A"2R* and is otherwise A-independent (the set
of resonances of A).

5. 04(\) N (=00, 1) = 04(A) for | Argh |< Z. We shall return to 4 and 5
in section 8, where the restriction | Arg\ |< & will be removed.

2. Transformation of the Eisenstein series F(z,s)..

The set of generalized eigenfunctions given by the Eisenstein series
E(z,8) = {Ex(z,8)}7, has for Res > 1 the following Fourier expansion
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in Z; for y; > aj,

2.1)
, , . -
Ex(z,8) = 6Ly + Cij()y; > + ) Aly(s)y2 K, s(2r |l ) 2
1

where K

-1 (y) is the McDonald-Bessel function of order s — % which de-

creases exponentially as y — oo and ¥, is the sum over [ # 0.
E(z,s) is not in L2(M), but Ey(z,s,)) := UrEx(z,s) is well defined
and is given for Res > 1,\ € (1 — @, 00) and z € Z; with y; > a; by

(2.2)
Ex(z,8,)) := UxEg(z,8) = 5,7;Ugjy]$ + ij(s)Ugjy}‘s n Z’
l

where Uf\”y]’i is defined according to (1.1) for A € (1 — @, 00) and y; > a; by

j A— i))s —(A—
(2.3) Ug’y;f _ y§1+( De(y;)) (\Ill)\(yj))llzyj (A=1)e(y)

It follows from (2.3) that Ugjy]’i and UYy'~* and hence Ex(z,s,\) for
fixed s with Res > 1 and 2z € M have analytic extensions from A € (1 —a, 00)
to A € G,, also given by (2.2) and (2.3).

For fixed A € G, we obtain, following [CdV], the analytic continuation
in s of E(z,s,)) to {s | Re{(s — 3)A} > 0}.

Let o € C®(R"),0 < a <1, and assume

0 fory<a
a(y) =
1 fory>a+1

Define E(z,s,\) = {E‘k(z,s,k)}}f:l on Zy, for y, > a by
(2.4) Er(2,8,)) = Ex(2,5,A) — UY*(a(ye)yp)

where K is chosen such that K > a+1, and on the rest of M by Ex(z, s, \) =
Ex(z,s,)).
For Res > 1 and A € (1 — @, 00)

(2.5) (A(X) — s(1 - 8))Ex(2z,8,A) =0

By analytic continuation this holds for Res > 1,\ € G,. This follows
by integrating (2.5) with any function in C§°(M) and using the analyticity
properties of A(\) and E(z, s, \).
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This implies for Res > 1, A € G4
(AQN) = (1 = 8)) Ei(2, 8, ) = Ug(2, 5, ),
where
Ui(z, 8, X)) = —(AN) — s(1 — $))U*(a(yr)ys) for z € Zr,yr, > a

and ¥ (2,8, A) =0 on the rest of M.

The functions x(z, s, A) belong to C5°(M) and are analytic in s and
A for s € C,A € Go. The resolvent R(s,\) = (A(N) —s(1 —s))~!is a
meromorphic function of s for A € Go,Re{(s — 3)A} > 0, by Theorem 1.1.
Note that ¢()) in the s-plane is the line 3 + A~! i R. For | Arg) |[< Z by
Theorem 1.1 the poles of R(s, A) are contained in the angle between -;— +1R
and 5 + A~ !R (the resonances), in 3 +iR (embedded eigenvalues of A ) and
between % and 1 (discrete eigenvalues of A ). Here we have identified s with
s(1—5) in the notation R(s,\) = R(s(1—s), ). This yields an L?(M)-valued
analytic continuation of Ej(e, s, ) defined for A € G4, Re{(s —3)A} > 0 by

(2.6) Ey(e,5,)) = R(s, \) Uk(o, 5, \)

This function is meromorphic in s for each fixed A\ with poles contained
in the set of poles of R(s, A).

Since Ej(e,s,)) is analytic with values in H2(M) and H2(M) is con-
tinuously embedded in C(K) for every compact K C M, Ej(e,s,\) can be
developed in a power series convergent in C(K) around each (s, Ag) such
that so is not a pole of Ek(o, 8, A0). It follows that for fixed 2 € M and
X € Gq, Ey(z,5,)) is meromorphic in s for Re{(s — 2)A} > 0 with poles
contained in the set of poles of R(s, A). Since Ugj (a(yj)y;) is analytic in A

and s, we obtain an analytic continuation of Eg(z,s,\) given by (2.4) and
we have proved the following result.

Theorem 2.1. For fized z € M and \ € Gq, E(z,s,\) is meromorphic in
s for Re{(s — 4)A} > 0 with poles contained in the set of poles of R(s,\).
If s is not a resonance or eigenvalue of A, E(z,s, ) is analytic in A for
| Arg < §.

We shall now use the above result to establish the analytic continuation
of C(s) and A(s) from Res> 1 to C\{1}. It follows from the above definition
of Er(z,s,\), that these functions and hence the generalized eigenfunctions
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Ex(z, s, A) are 1-periodic in z; for y; > a; in each cusp Z;. Thus for Re{(s—
2)A} > 0, Ei(2, s, A) has a Fourier expansion in Z; of the form

Ex(z,8,\) = 65UY (y3) + Chs(s, VU (y} )

/ 1 -
+ Z Agcj(s, /\)ny _1(27(- | l | yj)e2mla:3
l

2

2.7)

where K _ 1 (y;) must decrease eéxponentially, since by construction

Ek(.’ S, ’\) - 5;CU;\)J(%S) € L2(M)

Since Ej(z,s, ) is analytic in s and A for each z € M by Theorem 2.1,
each Fourier coefficient is analytic in s and A. Since Uf\)’ (y3) are analytic
in s and A and K,_ %(271' | 1| y;) is analytic in s, it follows that Cy;(s, \)
and Aﬁcj(s, A) are analytic in s and A. For Res > 1, Ex(z, s, \) are given by
(2.2) as well as (2.7), hence Cy;(s, \) = Ci;(s) and A};(s,\) = Af;(s) are
independent of A € Go. By analytic continuation this holds for all s with
Re{(s — $)A} > 0. We have proved

Lemma 2.2. C(s) and A'(s) have analytic continuations from Res > 1 to
{s||Arg(s — 1) |< 3} with poles contained in the union of the sets o4(A) C
(3 +1],0p(A) C 1 +4R and AeG, T(A); where r(X) is the set of resonances
(discrete eigenvalues of A(N\)) contained in the angle between % + iR and
3+ ATHR,

We shall now show, that the analytic continuations of C(s) and Al(s)
from Res > § around % in the two directions agree for s € (—00, 1).

Consider the Eisenstein series E(z,s). By Lemma 2.2, E(z,s) has an
analytic continuation in s given for z € Z; by (2.1) or, in matrix form

E(z,8) = (Yi)k=1 + C(8)(y;7%) 71

' 1 -
+ X 46) (s Koy om |15
I

m

(2.8)

j=1

Applying C(1 — s) to E(z,s), given by (2.8), we get on replacing s by
1-s
(2.9)
/
C(8)E(z,1—s) = C(s)C(1 = 8)(y)Fer + C() (™" Fr + Y
1
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Subtracting (2.9) from (2.8), we get

(2.10)
E(z,5) — C()B(z,1—3) = (I —C(s)C(1 — ) ) + >
l

The Lh.s. of (2.11) satisfies
(A —5s(1-35))[E(z,8)—C(s)E(2,1—8)]=0

For Res< %, the r.h.s of (2.10) is in L?(M). Since s(1 —s) is not an
eigenvalue of A, it follows that the function given by the r.h.s. side of (2.10)
is equal to 0 and hence if s is not a pole of C(s) or C(1 — s)

1 3
Arg(s—§>’ <-2—.

In particular, if % + p is not an eigenvalue of A,

-1
c(-;-+pe"“> _—_c(-;-+pe—i”> = (C (%er)) for p>0

s0 the two analytic continuations of C(s) around % agree.
Moreover, the Lh.s. of (2.11) equal to 0 yields for s not a pole of C(s)
or C(1—s)

C(s)C(1—s) =1 for

E(z,8) =C(s)E(2,1 —s),s € C\{0}

For A > 1 and s > 1, the function ¥g(z,s,1) defined by (2.6) is
real-valued, and R(s,1) = (A — s(A — s(1 — 5)))~! is self-adjoint and
real (maps real functions into real functions), so Ey(z,s,1) and hence
Ex(z,s) = Eg(2,s,1) is real-valued. This implies that C(s) is real for s > 1
and hence C(3) = C(s) for s € C\{3}.

Let

Ex(2,5) — [61(y)* + Crjy; ] fory; >a,j=1---m

Era(z,8) =
k,a(Z, 8) {Ek(z, s) on the rest of M

By the Maass-Selberg relation [Se], for s; # 82,51 + 82 # 1.

6£a31+§2—1 — al=(a1482) S~ Chi(s1)Cii(s)
s1+5852—-1
Ojk(82)a31’§2 — ij(sl)a§2"31
+ 81— 82 '

M
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For s; > s2 > 1 the L.h.s and the first term on the r.h.s. have finite
limits as s — s, hence the last term has a limit, and it follows that
Crj(s1) = Cjk(s1). Since Cj(s1) = Ckj(s1), we obtain Cr;(s1) = Cji(s1)
for s; > 1. By analytic continuation

Cjk(s) = Crj(s) = j[c(g) for s € C\{0}.

In matrix notation
C(s) = C'(s) = C*(3)

In particular, for s = 3 =i0,0 € R — {0}
]- o _ -1 1 . _ * 1 .
C’(§+w)—0 (2 w)-(](2 io)

so C(s) is unitary on the line 1 + iR except 2. It follows that C(s) has no
poles on this line including o,(A) and 2.

To exclude an essential singularity at % 5 requires an estimate of the re-
solvent near 1 to show that E(z, s) and hence C(s) is bounded near i Ttis
desirable and should be possible to obtain a simple proof of this well known
fact in the present context.

We have proved the following result.

Theorem 2.3. The scattering matriz C(s), the coefficients A'(s) and the
Fisenstein series E(z, s), z fixed in M, have analytic continuations to (C\{ }
with poles contained in the union of the sets oq(A) C (3,1],0p(A) C 2+ z]R
and Neso{U{r(N) | | Arg) |< § +¢€}. They satisfy the following equatwns
for z € M,s € C\{0},s not a pole of C(s) or C(1 — s).

(2.11) C(s)C(1—-s)=1
(2.12) C(s) = C(5) = C¥(s) = C*(s)
(2.13) E(z,8) = C(s)E(z,1—35)

Consider now the Eisenstein series Fx(z, s, A) defined in Z; by (2.2) for
s € <C\{ } and A € G4, where C(s) and A(s) are the meromorphlc functions
in C\{} } given by Theorem 2.3.

From (2.13) follows by applying U for A € (1 — o, 00)

(2.14) E(z,s,\) =C(s)E(z,1—s5,))

and hence by analytic continuation (2.14) holds for A € G4, s € C\{%}.
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The A-dependence of E(z,z,A) is in the first two terms. Ugj y; is given
according to (1.1) by
(2.15) Ugjy;. - y§,1+('\—1)<ﬂ(yj))s(\1,/ (y; ))1/2 —(A=1e(y;)

By definition of ¥y, for y; < K, Ugj y;=yjandfory; >R

(2.16) UYys = A/2ypTC=2)
(2.17) U;)J 1-s )\1/2 ‘—)‘(3_‘)

The essential spectrum () of A()) is the line £ + \"1iR = {s | A(s —
e} fors=3+Alig,ceR, andy; >R

(2.18) UYys = \/2ya 7 gliyl-s _ y1/237%

1
s0 | Ex(2,8, ) |~ cy? for yr — oo in Z.
Thus, as for A = 1, the continuous spectrum of A()) is the set of points
s such that E(z,s,)) is ”almost” in L?(M).
The poles of C(s) are contained in the union of the sets of resonances
U, r(X) and o4(A). The set of poles of C(s) in S% ={s|0<Res< i}in
fact coincides with (|J,(r(A\)) NS %). This will be proved in section 3.

3. Analytic continuation of the resolvent.

It is well-known (cf. [M]) that each of the two sets of generalized eigen-
functions {{Ex(5 £ it)}, | t € Rt} yields a spectral resolution of the con-
tinuous part of A.

For f € He(A) N C§°(M), g € C(M)

(3.1)

(f,9) = %i/ow (f,Ej (.,%Jrit)) (Ej (o,%-{—it) ,g) dt
3=

and

(3.2)

(Af,9) = Z / ( +t2> <f, E; (0,%+it>) <Ej <0,%+it> : g> dt
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Here H,(A) is the continuous subspace of L2(M;g) with respect to A.
For Res > %,s ¢ a4(A), the resolvent R(s) = (A — s(1 —s))~ ! is given
by

(3.3)

(R(s)f,9) = Z / ( +t2—s<1—s))_l

(s 20) (5 )

Changing variables to A = s(1 — s), the integral becomes

Ii(po % ie) = /: (b= po Fie)™" (f, Ej (-, é + zt))

1
1. 1 1\ 2
(Ej (‘,§+zt> ,g) 3 (u— Z) ap

where t = (u — %)%,s(l — 8) = pp €.
From (3.4) we obtain (cf. Appendix 3.(1))

(3.4)

(3.5)
Ii(uo £10) : = lim Ii(po £ i€)

—vp/ (- uo)l(f, (
(5, (3 4).0)
wi(f,Ej(o,-;-+i(uo_i>%)

By (3.3) and (3.5)
(3.6)

(f, Rlo %i0)g) = lim(f, Rlso + ic)g) = - ]:Zl I(yio £0)
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It follows from (2.1) that Ej(e, 2+it) € L2 (M) for every § > 0. This implies

that I(po % i€) is defined and (3.5) holds for f,g € L2(M), f € H(A).
Hence R(uo+i0) is defined by (3.6) as an operator in B(L2(M), L2 (M)

and R(uo+i0) = w—limgjo R(po=+ic). The kernel R(uop=+:0; 2, w) of R(u=+10)

is given by

(3.7)

1 & bl 1 1\~
R(po £ i0; 2,w) : = Q;Z’U-P[ (u—uo)’1§ (M— Z)
j=1 1
1 1\ 3 1 1\?
E; <2’5+Z<N_Z> )E]’ (w,§+z(u—z) )d,u
1 1\"2 1 1\ 2
:EZE(,LLO—-Z) Ej (z,-2—+z(u—z) )
1 1\2
E; (w,i—l-z’(u—z) )

From (3.7) we obtain the kernel £(uo; 2, w) of the spectral density P’(uo),
given by

N

(3.8)
1
E(po; z,w) =5 (R(po +i0; z, w) — R(uo — i0; 2, w))

1 m 1
1 1\72 1 . 1\2
—27;(“0‘2) 2 Ef<z’§“(”°“z)>
1

In terms of the variable ¢t = (p — %)%, we have for ¢t € R\{0}

(3.9)

1 1 _
R(% +it;z,w) =R (5 —it; z,w) +it™ B <z, 5+ it) E; (w, -;— + z't)

The resolvent kernel R( % +it; 2, w) is defined for Im¢ < 0 by (3.3) and for
t € R\{0} by (3.7) with t = +(ug—1)2. For Im¢ > 0 we define R(3+it; 2, w)
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by

(3.10)
1 . r 1 1 .\ = J
R(-2-+zt;z,w)=7'\’, E—zt;z,w +it™ Ej z,§+zt E; w,-2-+zt

where by (2.14)

1 1 1
{E; (z, 5+ it) T =C (5 + zt> {E; <z, 3 zt) i

By (3.9) and Theorem 2.3, R(3 + it; z,w) as given by (3.10) and (3.11)
defines an analytic continuation of the resolvent kernel from C~ across R\ {0}
to C™. .

Since E; (2,2 + it) ~ y]_+T for y; — oo in the cusp Zj, where
7 = Imt > 0, the kernel R(% + it;2,w) defines an operator R( + it) in

((L(T+6)(M)) L_(T+6)(M)) for every 6 > 0.

We show in Appendix 3 that

=G+,

This together with the weak analyticity of R(%— +it) in |Imt| < § implies
that R(2 + it) is analytic in {¢ | |[Im¢| < 6}\{0} as a function with values in
B(L3(M),L2 5(M)).

By (3.10) and (3.11), the set of poles of R(3 + it) € B(LZ(M),L2 4(M))
is precisely the set of poles of C(3 +it) in {t | 0 < Imt < §}. (We are
restricting to H.(A) and hence omitting ogq(A)).

From this section and the results of section 2 we obtain

(3.11)

<C for Imt < 0,|t| >k > 0.
B(LZ,L2 ;)

Theorem 3.1. In the strip Ss = {s| 4 =6 <Res < 1}, where 0 < 6 < 1,
the poles of C(s), the poles of R(s) € B(LZ(M), L2_5(M)) and the resolvent
resonances Joc argrar{0d(A) N S5} coincide.

Proof. We have seen above that the poles of C(s) and R(S) coincide. A
point p is a resolvent resonance in S; iff for some f, g in the dense set F of
analytic vectors the analytic continuation of (f, R(s)g) across % + iR to Ss
has a pole at p.
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Since all functions in F lie in Lg (u) for 6 < %, it follows that this holds iff
p is a pole of the analytically continued resolvent R(s) € B(LZ(M), L2 ;(M)).

4. Resonances and resonance functions.

Let p be a pole of C(s). Then p is also a pole of E(z,s), and ®,x(2) =
RespEx(z, s) is a solution of

A®(2) = p(1 — p)@pi(2)

The functions ®,x(2),k = 1,---,m are called the resonance functions
corresponding to p . By (2.1), ®,x(2) has for z € Z;,y; > a;, the Fourier
expansion

{®or(2)} 5y = Res,C(s) {y;—p}:; + Res, E/
1

where Res, 3, = O(e~%%) as y; — oo and Ux(Res, Y.";) = Res, 3',.
The components y}‘p of the leading terms transform under Ug’ into
U/(\Jj y}—p , which for y; > R; are given according to (2.17) by
1 Lo 1

i 1— 1 1-Ap-1) 11 .
Uy~ = Aay? T = 2y p - o =

For 0 > Arg\ > —Argu, the function Uf’y}—p and hence ®,,()\) =
Ux®, are not in L2(M). For —Argy > Argh > —m, the functions
®,k(A),k = 1,---,m, are in L?(M), so they are eigenfunctions of A(\)
with eigenvalue p(1 — p).

As Arg\ — —, all poles of C(s) become eigenvalues of some A()\). By
Theorem 2.3, the poles of C(s) are symmetric with respect to the z-axis.

—Arg)

D=
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If A = €%, =| p—4 | €, the modulus of ®,x()\) in Z; approaches

}=lo—lsinn _

ey} cyReP as p — —.

We have proved

Theorem 4.1. Let p be a pole of C(s) with resonance functions @,k =
1,...,m. Then the functions ®,()\) defined for A € (1 —a,00) by () =
Ur® i have analytic extensions to A € Gq, and fork =1,...,m and A € G,

A(’\)q)pk(z’ A)=p(1— P)q)pk(z’ A)

For —Argn > Argh\ > —m,®,k()\) is an eigenfunction of A(X) where p =
% +in.

For Argh — —m,| ®,k(2,N) |— cy,lze" for z € Zy. The poles of C(s) are
symmetric with respect to the x-axis.

We finally discuss the discrete eigenvalues pj,j = 1,...,k, of A. These
eigenvalues either correspond to cusp forms, in which case they remain eigen-
values of A()) for all A € G, or the associated eigenfunctions ;. are not
cusp forms, in which case the u; are poles of C(s) and E(s,z) and we can
carry out a similar analysis to the one given above for resonance functions.
We obtain for the leading term of ujx in the k-th cusp Zg

%yl — /\1/2yé+(%-ﬂk))‘
This implies
Theorem 4.2. Let y; € (%, 1) be a discrete eigenvalue of A with eigen-
functions ujg,k = 1,...,m. Then the functions uj(z,A),j = 1,..., k1 =
1,...,m, defined for A € (1 — o, c0) by

uj1(2, A) = Unuji(2)
have analytic extensions to X € G, and for A € G
AN uj(z,A) = pi(1 — py)u(z, A).

For | Arg |< §,uj(e, \) is an eigenfunction of A(N).

If uji is a cusp form, then uj(z, ) is independent of A\ and hence an
eigenfunction of A(N\) for | Argh |< 7.
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5. Analytic Perturbation of A and Fermi’s golden rule.

We now specialize to hyperbolic manifolds M of constant curvature. In
this case M can be represented as a quotient I'\h, where A is the upper
half-plane with the Poincaré metric ds? = y~2(dz? + dy?) and T a discrete
subgroup of P —SLa(R). We consider a deformation of M in the Teichmiiller
space T'(T"), following Phillips and Sarnak [P-S1]. A tangent vector of T'(I")
at I" is given by a holomorphic cusp form @ of weight 4 for T, i.e. Q is a
holomorphic function on h with Fourier expansion in each cusp of the form

w .
Q(Z) — z ane27rmz
n=1

and satisfying Q(yz) = (cz + d)*Q(2) for ( Z’ Z ) €T'and 2z € h. Let

9(z,€) be the metric with line element
o — 2
ds? = gij(z,€)datda’ = y=2 ’dz +ey?Q(2)dz ’
with | € [< &0 = [[1*Qll-
We denote by Ag(e) the Laplacian of M with the metric §(z,€). Ag(e)

is given by Ag(e) = A +¢eLq + O(¢?), where Lo = —8Re (Q(322)?). We
utilize the following result proved in [P-S1] as lemma 2.2:

Lemma 5.1 (Phillips and Sarnak). There exist smooth diffeomor-
phisms ¢ of M onto M, depending on b, such that in each cusp neigh-
bourhood Z;

(1) ¢z(4(e)) = 9(0) for y; > 2b.
(i) $2(4(e)) = §(e) for y; <.

(i) ¢o = Id; @e is real-analytic in € and varies smoothly in z and €, and
| 8= |= O(1) uniformly for b < y; < 2b

Let G(e) = ¢%(4(€)), —eo < € < €p. Then ¢, is an isometry of M, §(e))
onto (M, §(€)). Let Ag(e) denote the Laplacian on M with respect to j(e).
Then Ag(e) = A for y > 2b. Since Ag(0) = A, we have an expansion of
the form

(5.1) Ag(e) = A +¢elg + O(e2),€ € (—€o, €0)
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The operators Ag(e) act for each € on a manifold M with a different metric
G(e). For the purpose of applying analytic perturbation theory we map as
in [P-S1] L2(M; §(¢)) isometrically to the fixed Hilbert space L2(M; §(0)) by
the transformations 7. defined as multiplication by the function dé/ 2, where

d: = det §(e)/ det §(0)
Since §(e) differs from §(0) only on a compact set, Je is a real-analytic
family of operators. Then {Aq(e)} defined by
(5.2) Aqle) = mBq(e)?

is a real-analytic, self-adjoint family of operators in the Hilbert space
L2(M;§(0)) and Ag(0) = A. i i

We calculate the first order coefficient Lg of Ag(e) in the expansion
around € = 0. Inserting

de =1+ d'(0)e + O(e?)
and (5.1) in (5.2), we obtain
(53)
Agle) = (1 +3d (0 + 0(52)) (a+elg+0() (1 54Ok + 0(52))

“Ate (I:Q-;- (d(0)A - Ad’(O))) + O(?)

Thus, ]iQ = f,Q + % (d'(0)A — Ad'(0)). Note that EQ =0 for y > 2b.
_ For each ¢ € (—€o,e0) we apply the complex power U, of section 1 to
Ag(e) with K > 2b and obtain

Ag(e, N) = A\ +eLg(\) + Oxa(e?)

where Ag(e, A) and Lg(\) are the analytic extensions of UxAg(e)U 7! and
UsLoU; ! resp. from A € (1 — @, 00) to A € Ga.
Since

(Uxf)(@j,y5) = f(5,95) for y; <2b,5=1,...,m,

we have 3 _
Ag(e, N) = Ag(e) for y; <2b,j=1,...,m.
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Moreover, 5
Age)=Afory; >2b,j=1,...,m

and hence _
Ag(g, N) = A(N) for y; > 2b,j =1,...,m

Thus ﬁQ(A) = Lg and O,(e?) are independent of A € G, so that
Ag(e, ) = A(N) +eLlg + O(e?).

Applying the family of transformations {7.} as in (5.2) to Ag(e, \), we
obtain

(5.4) Agle,N) = rehg(e)r
~and as in (5.3)
(5.5)
Agle,N) = AN + e<iQ + %(d’(O)A(z\) - A(A)d’(O))) +0(e?)

with the first order perturbation
(5.6) Lo =g + 3 (AW - AN (0))

Note that LQ and the O(g%)-term are 0 for y; > 2b, so AQ(E /\) A(X) for
y; >2b,j=1,...,m,e € (—eo,&0).

The maps ¢E and 7. are isometries and hence induce unitary operators
on the corresponding L2-spaces:

L2(M; §(e)) 5 L3(M; §(e)) 5 L2(M; 3(0)).

Hence the spectra of Ag(e, A), AQ(e, A) and Aq(&‘, A) are identical. We
can therefore study the variation of the discrete eigenvalues of Ag(e, A)
with ¢ by studying it for Ag(e, A). We denote by oe(e, A) and a4(e, A) the
essential and discrete spectrum of Ag(e, A) resp.

Since Ag(e, \) = Ag()) for y; > 2b,j = 1,...,m, and € € (—eo, €0),

oe(g, N) = \TIRT + i for all € € (—ep, €0)-
Theorem 1.1 applies to 8Q(€, M) for each € € (—&p,&0). We reformulate

this explicitly, since this is the basis for the main perturbation result, Fermi’s
golden rule.
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Theorem 5.2. {fkq(e, )‘)},\ec is for each € € (—eo,€0) a self-adjoint,
analytic family of type A in L%(M; §(0)) with domain D(A).
For each X € Ga, Ag(e, ) is real-analytic in € for € € (—€o,€0)-

oe(e, ) = A2RT + i for € € (—eo,€0), A € Go

oa(g, A) N (-}1-, oo) =0p (5Q(6)>
For ReA > 0,\ ¢ (0,1 —q]

gale, ) N {o, %) = oq (SQ(e))

For all € € (—¢o,€0),04(¢, \)\R is contained in the angular region be-
tween % +R+ and 1)\‘2R+ and otherwise independent of \.

From theorem 5.2 and Kato’s analytic perturbation theory [K]| the proof
of Fermi’s Golden Rule is straightforward. This was observed and proved
by B. Simon [Si] in the case of Schrédinger operators, where the analogue of
Theorem 5.2 was provided by the dilation-analytic theory [B-C]. For the sake
of completeness we include the proof according to [Si], adapting it to the case
of general real-analytic perturbations and embedded eigenvalues of finite
multiplicity, a commonly occurring case for the Laplacian on hyperbolic
manifolds.

Theorem 5.3. Let > be an embedded eigenvalue of A of multiplicity
k >1, and let Py be the o~7'th0gonal projection on Ker(A — k).

Let Aq(a A=A+ eﬂq(A) + O( 2) as in (5.8). For fized \ € G, with
-5 < Argh <0, let k(e) = ¢ Z] 1 k3(€) be the average of the k-group of
eigenvalues of A(e, M), which arise from the splitting of k when € # 0. Then
#(€) is real-analytic for € € (—e1,€1), where €1 < g is chosen such that
k;(€) remain discrete eigenvalues of Ag(e, \) for j =1,...,k. Let

k(€) = K + g€ + age? 4 O(e?)

be the expansion of k(e) around € = 0. Then &, is real, and Imay is given
by

. d |1 x =
(5.7) Imas = ﬂ-d_u P Z (LQ’LL]’, P'(k -6, u)LQuj>

Jj=1 p=r
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where

P,(N__&’“):{]]Z((n—é,u]) fork—d<p<k
(k=6,u))o Ry forp > pok

and P((k — 6, p]) is the spectral projection of A corresponding to the interval
(k = 6,u],6 > 0, while {u1,...,ur} is an orthonormal basis of ker(A — k).
The function f(u) under the differentiation sign on the r.h.s. of (5.7) is
C*®(k — 6,k,+06). Here § > 0 is chosen such that the interval (k — 6, K, +8)
contains no other eigenvalues of A.

Proof. a1 is a real, since otherwise #(g) and hence at least one x;(e) would
have negative imaginary part for some ¢ with | € |< €1, in contradiction to
the fact that x;(e) lies in the angle between 4 + R and T+ 0+ M) 2RF
for Arg) < 0,] ¢ |< €1. We have

k
1 " 1 /= E
= =% Im |2 (Torws (A —t — i) o ws
f(w) kallulﬁ)l/ 5dt m[ ( Quj, (A —t—iv) LQ’u,)

1 (I:*Quj’ Poﬁczua‘)

s K—t—1iv

We now apply a standard dilation-analytic argument. For A € (1—a, 00),

(5.8) . .
(I:,Quj, (A—t— iV)_lleuj> _ (Liu—,-—, f(iLZuj) =
(f:Q(/_\)’U,j, POfJQ()‘)uj)

k—t—iv

(Ta(yus, (A — & - i) Eo(Ny;) —

By 4) of Theorem 1.1, t + iv ¢ o(A())) for Argh > —2Arg(t + iv),
hence the r.h.s. of (5.8) is analytic in A for such A. Since it is constant for
A € (1 — a,00), it follows that it is constant for all A € G, with Argh >
—LArg(t +1v), i.e. (5.8) holds for all such A. Hence (5.8) holds for v > 0
and Arg\ > 0. Fixing A with # > Arg\ > 0, we can now let v | 0 and
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obtain for 0 <| ¢t — & |< 6.

R o 1 (Tous, Pilgus) B
lim |~ (Equs, (A~ =) qus) ~ 22— | =

(LQ()\)’Uy:(A(/\)—t) Lo\ ) (Q ’k _OtQ ’)

which has a removable singularity at ¢t = k. Hence f € C*®°(k — 6,k + 6).
We now fix A with # > Arg\ > 0. Then « is a discrete, semisimple
eigenvalue, i.e. a simple pole of (A(A) —¢ )7L, and k;(€) a discrete eigenvalue
of A(e,\) for | e|<en,j=1,...k.
By [K] II §2 (2.33) (p79), &(e) = Z;?:l k;(€) is real-analytic in €, and

4 = %’cr (Eae)Po ~ Ea)SEa( )

where . . y
Ag(e, N) = A + Lge + Ligee® + O(e?)
and S()) is the reduced resolvent of A()), given by

(AN = (k+iv))~t = —ii(:/ + S\ + i(—w)’mk(x)

Thus, for small § > 0

Qo = % [tr (in(E)Po) —

au 1
= Z / i (wlea) - iEow)
The function g;(u) = (uj,I:Q(A(A) - u)—lfJQuj> has a pole term

= = 1
(uj, LQPOLQuj) P
at p = K, hence by the complex transformation argument

ao :%tr (iQZ()‘)PO) % ZR (QJ(N)) _

i (feon)

1 = 4= = z 1
+t3 ; [(Uj,LQ(A —H) ILQUJ') - (UjaLQPOLQ“jR - u)}
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Note that
tr (]:Qz()\)PO) =

J

(Uj, T:JQz(/\)uJ')

k
=1

is real. Hence, letting v = K + iv
1 k = =
Tmiy =lim 7 ;Im [(u, Lo(A -k —iv).qu;) —
= = 1
(uj,LQPoLQuj) m

d 1 k = =
= [E ; (LQUj, P'(k -4, M)LQ'U/]'):|

and the theorem is proved.

=K

From Theorem 5.3 we obtain

Theorem 5.4. Let k > % be an eigenvalue of A of multiplicity k > 1. Then

(LQU]', E; (% + ’L7‘>>

where El(% + ir) is the Eisenstein series corresponding to the cusp Z; at
1tir,and k=1 +12

k m 2

(5.9) Iméy = 2117% Z >

J 1l=1

Proof. We prove (5.8) in 3 steps, first with Lg replaced by I:JQ, then with
Lq replaced by Lg and finally with Lq itself.

1) By theorem 5.3 and (3.8)

R

(5.11) j=11=1
%(d’(O)A — Ad'(0))uj, B (é + ir)




3)
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Since u; is an eigenfunction and E;(4 +4r) a generalized eigenfunction
of A with eigenvalue K = ;i— + 72, we obtain, using that d’(0) has
compact support,

(5.12)

I

((d’(O)A - Ad’(O))u,-,El (% 4 zr))
(Auj, 4 (0)E, (% + zr)) - (d’(O)uj,AEl (-;- + zr))
K [(u_j,d,(O)El(';' +ir>) - (dI(O)Uj,El(% + zr))]

Introducing (5.12) in (5.11), we get
11| (- 1
(513)  Imip=-7> ) (LQuj,E, (5 + zr))
j=11=1

Since o (A(g,\)) = o (Aq(e, )\)) for all b, the curves x(¢) and hence
do are the same for Ag(e, \) and Ag(e, A) for all b. Thus Imay as

Il

0

2

‘given by (5.13) is independent of b. In [P-S1] it is proved that

(5.14)
. = 1 .
bll)rg| (LQU],El (—2- + zr))

Since 51 Y5—y Yty | (EQuj,El(% + ir))

it follows that
1
(LQ'U,]’,EI (5 + zr))

2

2 1
= ’ LQuj,El(§ + ir)

2
is constant equal to Imas,

1 2
52

k
Ima 1
mag = —
2
r ij=11l=1

and the theorem is proved.
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Appendix 1. The essential spectrum of A(}).

In this appendix we give the proof of 1 of Theorem 1.1. The self-adjoint

operator
2

A= —y2(-1%3 + (2r1)*y? in L?(a, 0o y~2dy)
defined by the boundary condition f(a) = 0 is unitarily equivalent via the
transformation V defined by

F@) = g(t) = (VH(Q) = f(e)e 2

to the operator
VAV = “E% + (271)%e® in L2(b, 00 : dt)

with boundary condition g(b) = 0, where b = in a. This operator and hence
A; has discrete spectrum.

It follows from (1.3)-(1.5), that the operators L7(\),5 = 1,...,m, in
L2(a;, 00; Y5 2dy;) defined by the boundary conditions f(a;) = 0 have the
essential spectrum 1 + A~2R¥. This can be seen as follows. A point
z is in oo(L7()\)) if there exists a singular sequence {f,} for L7()\) at
z, Le. {fa} C D@IN), |Ifzll = 1,{fn} has no convergent subsequence
and |[(L7(\) — 2) fallnoso — 0. Let x € C*(aj,00) with x(y;) = 0 for
y; < Rj,x(y;) =1 for y; > R+ 1. Then x(fn)llxfnll"! is also a singu-
lar sequence for A/()\) at z and also by (1.5) a singular sequence for the
operator L (with boundary condition y(a;) = 0) at (z — $)A2+ 1. Since
0e(L7) = [3, 00), it follows that oo(L7(\)) = + + A~2R+.

From the above we prove that A()) has the essential spectrum g.(\) =
1 + A~2R¥ The inclusion o.()) 2 0(L7(})) is seen as follows. Let {f,,} be
a singular sequence for L7(\) at u € o(L7()\)) and let x be a function as
defined above. Then g, = (X fn)|[xfall~! is a singular sequence for L7()) at
w, which by extension to the rest of M, setting gn(z) = 0 for 2 ¢ {z; € Zj |
y; = R}, becomes a singular sequence for A(X) at p, hence p € ge(A(N)).

Conversely, if i € ge(A(N)) and {gn} is a singular sequence for A(\) at 4,
let n € C*°(M) with n(z) =0 for z € Mp and z € Z; with y; < R,n(z) =1
fory; > R+1,j=1,...,m. Then f, = (ngn)||ng||~! is a singular sequence
for A()) at u, and it follows that at least in one cusp Zj, {f»} is a singular
sequence for A;()). Since Ag has discrete spectrum for [ € Z/{0}, we must

have 0¢(A;(N) = ge(L7(N)), s0 pi € oe(L7(N)).
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Appendix 2. A dense set of analytic vectors.

Theorem A2. Let M be an admissible manifold M = MoU Z1U---U Z,,
with m cusps, and let {Ux}re(1-a,00) De the family of power transformations
defined in section 1. There exists a dense set F of vectors f on L2(M), such
that the functions f(X\) = Uxf have analytic extensions to

G, ={A€ Gy |ReX >0} ={A€C|Re)r>0}\(0,1—q]}

and for each \ € G., the set {f()\) | f € F} is dense in L2(M).

Proof. To simplify notation, consider the case of a manifold M = My U Z
with one cusp. Let f € L2(M) and let n € C*°(R™) be a function satisfying

lfor K<y<oo

0< <1, 17(y) >0, =
<n(y) <1, 17 (y) n(y) {ofor0<ySK—1

assuming K > a+ 1. Let

. n(y) forz=ax+iye Z
ii(z) = () Y
0 for z € My

Let f1 = f(1 —7), fo = f7j. Consider P of all polynomials P in y~! of
the form .
Py = Z ary™®, n=0,1,2,...
k=0
For y > K — 1, write

f@,y) = ao(y) + Y an(y)e®™™

P is dense in L2(K — 1, 00 : y~2dy); a function g € L2(K — 1, 00; y~2dy) can
be approximated by a function h € Co(K—1,00); h(y~?) € C. (0, (K —1)71)
can be approximated uniformly by a polynomial P,(y) and hence h by
P,(y~!) uniformly and therefore in L2(K — 1, 00;y~2dy), so g is approxi-
mated in L?(K — 1, 00;y~2dy), by Pa.(y~!) € P.

Let ps € P be such that

llao — pslL2 <6

(K—1,00;9~2dy)
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Then
llaon — psnl|L2 <é

(K—1,00iy~2dy)

hence

L2(K—1,00;y~2dy)
llaon — psnllL2

(K—1,00;y~2dy)

fo— (paﬂ +3 an(y)n(y)e””'"””)

SO

L2(M)
llaon — psnlly2 <é

(K—1,00;92dy)

l'f - [fl + Psi + ZI an(y)ﬁ(y)ezmm]

where ps is ps extended by 0 to M. Thus the set of functions
/ .
F= {fps = fi+Bsfi+ Y an(V)ii(y)e™™ | f € L2(M)}

is dense in L2(M).
We shall prove that every fp, € F is analytic with respect to Uy in GJ,.

For Y < K, (U/\f)(w’ y) = f(iB, y) For Y > K’ fl(x: y) = O: 50 U)\fl = fl-
By definition

U)‘ (Z/ an(y)n(y)e27rinm) = Z, an(y)n(y)e27rinz

n n

——~——

Moreover, Uxps7) = (U2(psn), where

U2 (psm)) () = (¢A(y)) y= =D, (y1+(/\—1)sa(y)) n (yl+(/\-1)¢(y)) .
We show that

(1) ( 1+(’\“1)"’(y)) (y) forl—a<A<oo

For y > K,y'tO-De®) > K, since p(y) = y*t*-D¢® is increas-
ing (4/(y) > 0) and %(K) = K. Since n(y) = 1 for y > K, we
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have n(y1+(>\—l)(p(y)) =1 = n(y). For y < K,yl'i'()\“l)‘ta(y) = 9 so
n (y1+(’\_1)9"(y)) = n(y). Putting this together, we get (1). Moreover

1+(A-1 — —k(1+(A-1
Ds <y ( )w(y)) - kz_:oaky (+A=1)p(v)

For A € Gh,ps (y'+*=1¢®)) is bounded for 0 < § < y < co and analytic
for y > 0. Finally

(W () y=OD®) = =D (1 4 (A — 1)(0(y) + ¢ )y log )

is analytic for A € G/, with values in L2((5 o0; Yy~ 2dy).

It follows that US(psm) = (¥4(y))? y~ O De0)p, (yH+O-D9) n(y) is
analytic in G’, with values in L2(§, oo; y‘2dy) and hence

Unfps = f1+ (U%y)) + Zl an(y)n(y)er e

is analytic in G, with values L2(M).

The density of {Uxfps} in L2(M) for each A € G/, is established by a
proof similar to that given above for A = 1.

For a manifold M = MpUZ;U- - -UZy, with m cusps, the proof is similar.
We approx1mate in each cusp the 0-th Fourier component by a polynomial
in y] , and a function f in L2(M) is approximated by a function f equal to
f on My and in the proximate ends of the cusps and with the 0-the Fourier
component equal to suitable polynomial in yj"l in the distant end of each
cusp Zj.
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Appendix 3. The resolvent kernel.
We consider the integral I(uo + i€) given by (3.4), € > 0.
Fix § with e < § < pg—1, let Cs be the semicircle in the upper half-plane

with center po and radius 6, oriented counter-clockwise, and let I's be the
closed curve composed of the interval [uo — 6, o + 6] and Cs.

We write the integral as

(o + i€) = /m_wm + /F - /C = 1(©) +D(e) + 150

We calculate the limits of I;(g), I(€) and I3(e) as € | 0, where f and g are
fixed in L3(M) for some 3> 0. Let

Fpo(i) = (f,E,- (% i 711'))) | |
e ) 6

Then
(1) lim I (¢) = / (b — po) ™' Frg(u)dp
elo lu—po| 26
I(e) = /r‘ (1 — po — i€) L Fy g(m)dp = 2miFy o (uo + i€)
)
(2) 13{5‘ I5(e) = 2miFy,g(po)

® i) == [ (o)™ Frali-

_Fy (o)) dis — Fyp (o) /C (= o)~ = s + I
[
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Since Fyq(u) is real analytic in p near po, we have for e < 6 < po — % the
estimate

(4) | Is(e) |< K6
while
(5) Is = —miFy (o)

Letting 6 | 0, we obtain
o0
6)  lmI(uo-+ic) = v [ (= o) Fro(u)dp +7iFyy(pio)
ry

Similarly, lim, | I(po — i€) is given by (6) with mi replaced by —i.
From (3.3) and (6) we obtain for f,g € L3(M), f € Hc(A)

(R(po £10)f,9) := lg}g(R(uo +ie) f, 9)

7 = o
) Z% > {v-p- /l (1 — o) ™' Fy g ()dp £ WiFf,g(#O)}

j=1

Theorem A3. Let B > 0 and k > 0 be given, and let R(% + it) be defined
as an operator in B (L%(M),L%(M)) by

-1 R(3 +1it) Imt < 0
R(z +it) = 2

(z i) {R(%+t2:|:i0) for t € RF
Then |R(3 —it)|| < C on {t | Imt < 0}, [t| > &.

Proof. Let 0 < 6 < %(4+x2) be fixed. We use expressions (1)-(3) to estimate
the different terms of (R(% +it)f, g) for f,g € L%(M) and t € [k,00],

setting po = 1 +t2.
We obtain from

HO=lmh@E) = [ (=) Fry(ds
el0 lu—pol>é
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| 1:(0) | £ 54%(#{) — &)1 (/000 '(f,Ej <°7% +z‘t>>

| 12(0) |< C.ll Flleaany-N9lliy any

-1
| I3(0) |[< 6 '”f”L%(M)'”g”L%(Mylr}éac‘,):

Erik Balslev

) dt)%
(/000 <E" <'é +it) , g> 2dt>§

11 _1
<675 (o — 8)72 | fllezany-lgllaany < C-ll Fllugan-lglliz any

1 1\ |°
Ej<°,§+i<ﬂo-z) )

and the theorem follows.
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