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First we prove the existence of global smooth solutions of the gra-
dient flow of the superconducting Ginzburg Landau (or Abelian
Higgs) functional on R?. It is then proved that in the case of crit-
ical coupling, for a large class of initial data of arbitrary winding
number N, each solution converges in temporal gauge to a unique
solution of the static equations of the same winding number. The
proof has two essential ingredients. Firstly a weighted energy iden-
tity is used to obtain spatial exponential decay of certain quantities
uniformly in time. This implies the strong subsequential conver-
gence to a static solution in the H? norm. Secondly, an adiabatic
approximation in the neighbourhood of the static solution space
is used to prove that the solution converges without passing to
subsequences. Thus the w-limit set of each solution is a point.
The adiabatic approximation consists of finding, at each time, the
L?-closest point to the solution on the space of static solutions of
the same winding number as the initial data. Special cases of the
result imply that two vortices of opposite sign will annihilate for a
large class of initial data and that a single vortex is asymptotically
stable with respect to a large class of perturbations.
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1. Discussion and Statement of Results.

The action for the Abelian Higgs, or superconducting Ginzburg-Landau,
functional in two dimensions is given by

(1.1)

1 ] A
E(A,®) = §/RZFA/\*FA+DA<I>/\*DA<I>—I—Z*(|<I>|2—1)2
= l/ IBI2+IDA<I>|2+3(|<I>|2-1)2dm1/\dx2.
2 Jr? 4

Here * is the Hodge duality operator, —iF4 is the curvature of an S! connec-
tion —iA and ® is a section of the associated complex line bundle. The in-
duced connection couples A and ® via the covariant derivative Dy = d —iA.
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Thus A is a real one-form and F4 = dA is a real two-form. The function
B = *Fy4 is known as the magnetic field, while @ is called either the or-
der parameter or the Higgs field. The action is invariant under an infinite
dimensional gauge group of symmetries G = C®(R?%; S1) of smooth gauge
transformations,
eX :R? — St
acting on (A4, ®) by
p(X) : (A,®) — (A+ Vx, BeX).

The quantities B, |®|, | Do®| are gauge invariant. The moduli space is de-
fined as the space of gauge equivalence classes of solutions to the variational
equations associated with the action. These variational or static equations
are

_And = §q>(1—|<1>|2)

(1.2) d*dA = (19,D49P)
where d* is the adjoint operator of d and d* = — *d*. The last equation can
also be written as dB = — * (1®, D4 ®). It is proved in [19] that solutions

(A, ®) of finite action satisfy limy_(|®|,|Da®|,|B]) = (1,0,0), in fact
exponentially fast. Because these limits are sufficiently uniform it can be
shown that the vortex number or winding number,

N = = / Fiada! Adz? = L [ Baz! pde?
27 JR? 2 Jp2

coincides with the homotopy class [®] in 71(S!) and is thus an integer (cf.
[JT]). It is commonly called charge. Except for a bounded region in space,
finite action solutions are close to their asymptotic (in space) values where
|B| = |DA®| =1—|®2 =0.

We now give some physical background to the problem. Following this
we return to the static problem and then discuss the time dependent case
before stating the results in section 1.d.

1.1. Vortices.

Strictly, vortices are defined as finite action solutions of the static varia-
tional equations (1.2) (c.f. [JT]) and the term refers mostly to non-constant
finite action solutions. It can be shown that when |®| is bounded away from
zero then the solution is constant up to gauge equivalence, that is |®| = 1
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and B = 0. In all other cases, ® must have zeros. In the event that these
are isolated they may be thought of as the “centers” of vortex solutions and
thus the term vortices also refers to the zeros of |®|. Thus the term “vortex”
will be used to refer to a zero of ® (for all \) as well as to a non-constant
finite action configuration. A multivortex solution refers to the case in which
® has more than one zero, interpreted as a nonlinear superposition of single
vortices. For solutions of the time dependent model, which we discuss be-
low, we will see that the vortex number at all times will be equal to that of
the initial data. In that case “vortex” may also refer to the location of the
zeros of the time dependent density ®. Furthermore, “vortex” is often used
only for a positive vortex number (positive charge) and “antivortex” is used
in the case of a negative vortex number. Vortices have been observed in
certain kinds of superconductors in the presence of applied magnetic fields.

According to a heuristic interpretation of vortices they interact as par-
ticles. As such they repel or attract and forces must balance for a static
configuration. It is postulated for physical reasons that vortices of opposite
charge attract for all values of A (the strength of the force varying as A
varies). Vortices of the same charge are expected to attract for A < 1 and
repel for A > 1, while at the critical value A = 1 there is no net force between
vortex-vortex pairs which then do not interact. The attraction or repulsion
of like vortices is induced by the competition between the force induced by
the vector potential (under which vortices behave like electric charges) and
the force induced by the scalar potential (which induces an attractive force
regardless of the sign of the charges). For like vortices the attraction and
repulsion balance out exactly at the value A = 1. Computer studies by Ja-
cobs and Rebbi ([23]) gave the original support to this interpretation and
Taubes’ existence result discussed below confirms it for the case A = 1. The
parameter v/ is the ratio of the rates at which ® and the magnetic field B
approach their asymptotic values as |z| — co. These rates are equal when
the forces cancel at A = 1. (This is discussed in detail in the book [19]). Also
there is a formula, which we give below, for the potential energy between
two vortices if ) is close to 1 ([37]) which supports this picture ([35]).

1.2. The static case continued.

The static case A = 1 is best understood due to the fact that the func-
tional is then a symmetric reduction of the four dimensional Yang-Mills
functional. All critical points are minima and solve (for N > 0) the follow-
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ing first order equations ([9],[19]):

1 2
=-(1-|®
B = s(1-2P)

Dy®—ixDp® = 0,

which will be written schematically as B(A, ®) = 0. These can be reduced
to a single elliptic equation for the unknown u = In|®|?,

N
(1.3) —Au+e'—-1 = —4%25(2—Zk)
k=1

for Zi, ..., Zn fixed points in the complex plane, the singularities of u which
are precisely the zeros of @, or the vortex sources. It is shown in [19] that
when A = 1 any finite action critical point is characterized completely by its
zeros; in particular any finite action solution has finitely many isolated zeros
(the centers of the vortices) and is real analytic (in an appropriate gauge).
In addition all critical points are minima. The action equals 7|N| so in the
case of zero winding number there is an essentially unique minimizer which
modulo gauge transformations satisfies || =1and A=0.

For other values of A less is proved but there are conjectures and the
a priori estimates in [19] show that all finite action critical points have
the same regularity as in the case A = 1. In addition it is expected that,
similarly to the case of A = 1, vortices occur as the isolated zeros of &
with behaviour consistent with the heuristic interpretation of vortices as
interacting particles described above. In the papers [37, 39] it was proved
that the potential energy between two like vortices is given approximately

for A close to 1 by
V(a) = u/ (e* —1)2%dzx
8 Jm2?

where u is the solution of (1.3) with Z; = —% and Zs = %. This was
computed in the paper [35] and was found to be a monotonic function of a.
This confirms the conjecture that the vortices attract for A < 1 and repel
for A > 1. Thus, for A < 1 and each N, it is conjectured that there is a
unique (up to gauge equivalence and translations in R?) critical point which
is a minimum of the action and is spherically symmetric (in an appropriate
sense) around the origin where it possesses a zero of order N. Similarly it is
conjectured in the case of A > 1, that there is a critical point, a minimum,
which is stable if V = 0,%1 and unstable in the case of |N| > 1, in which

case no stable finite action solutions exist. The idea is that like vortices
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repel so a critical point can occur only with all vortices coinciding (i.e. their
zeros at the same point) which is an unstable configuration of the solution
for [N| > 1 but is stable otherwise. For all A > 0 it can be shown that if ®
has no zeros there is a gauge transformation in which the connection A =0
and @ is a constant of modulus one. The same result in the more general
situation of zero winding number has been proved only in the case A = 1.

1.3. The time dependent case.

Time dependent models corresponding to (1.1) have been considered
in two situations: firstly the Lorentz invariant equations studied in [37]
for values of the parameter A near the critical value 1. In this paper we
consider the gradient flow equations associated to (1.1). This is a special
case of the equations which are of physical interest in superconductivity (see
for example [10, 5]). Thus we consider the equations

(1.4) 0:(A,®) = —grad€.

There is a slightly more general form of time dependent equations obtained
by introducing a time component Ay to the connection and by differentiating
covariantly in time according to D4, = 0; — i¢Ap. These equations are

Dy®—As® = %@(1-[@12)
A—VAg+d'dA = (i®,Dd).

The gauge group now consists of functions which depend upon the time
variable as well. Particular gauges are of significance: the case of Ag = 0
is called the temporal gauge and in this gauge we recover (1.4); then there
is the Coulomb gauge in which V - A = 0 and the uniformly parabolic gauge
in which Ag = —V - A. In the next section we consider all these and write
the equations in each gauge. The conjectures on the variational problem
translate into the following conjectures for the gradient flow which in the
case of A # 1 follow from the analysis in [39]:

(i) If A < 1 all solutions of the gradient flow equations converge uniformly
to a finite action critical point which is a radially symmetric vortex with
winding number equal to that of the initial data.

(ii) If A = 1 solutions of the gradient flow converge uniformly to one of
Taubes’ multi-vortex solutions. This is the main result of the present paper.
(iii) If A > 1 then if the winding number is either 0 or +1 the solution
converges uniformly to a finite action critical point which is a symmetric
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vortex with winding number equal to that of the initial data. If the winding
number is greater than one there will not generically be uniform convergence
due to the escape of vortices to infinity; however, convergence on compact
sets may still persist.

Most previous work on these equations seems to have been on bounded
domains. There has been much work on the A — oo limit of the equations
([25, 22]). In [33, 32] the stability and symmetry of minimisers is discussed.
For the case of unbounded domains a related paper is [1] where the equations
with no connection present (A = 0) are studied. Thus the static action in

this case becomes
IVuI2
w= [E5E+ 0P -1y

for u(xz) € C. The authors prove that for appropriate initial data of zero
winding number u converges uniformly to a constant. Thus in this case
there is vortex annihilation; this means that vortices of opposite charge will
eventually merge and annihilate. As mentioned above, vortex annihilation
remains open for the full Ginzburg-Landau gradient flow equations (1.4) for
general A > 0. However, our main result implies vortex annihilation for
a large class of initial data and for A = 1. The question of stability and
symmetry of the static vortices for G£ on R? has been considered in [31],
where it is shown that if the winding number is greater than one the radial
vortices are linearly unstable, while they are linearly stable otherwise. In
the paper [40] asymptotic stability of vortices in the gradient flow of GL
is established. Again our results imply this for the full system (1.4) with
A =1 for a large class of perturbations. In a relevant context, Hassell [18]
has proved existence and time asymptotic convergence to a solution of the
static equations for the heat flow of the Yang-Mills-Higgs equations in the
case of critical coupling; we use here a different method to his.

1.4. Statement of Results.

In the remainder of the paper we first describe the equations for the gra-
dient flow in the gauges mentioned above and prove ezistence and uniqueness
of a global C* solution for all A > 0. This is based on a priori L™ esti-
mates for B and D® and their derivatives using a method of Hamilton as
adapted by Hassell ([18]). By a theorem for parabolic systems stated in the
appendix, solutions decay exponentially as |z| — oo. Next we discuss time
asymptotics. We show L!(R?) estimates for B, D® and |®| independent of
time. Using the maximum principle we show that these quantities decay
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exponentially as |z| — oo and in the case of A = 1 this decay is uniform with
respect to time for a large class of initial data. This depends on a Pohozaev
type identity. Following this we show that in the Coulomb gauge (A, ®)
converges subsequentially for all A > 0 weakly in LP(R?) for p > 2 and also
in C*®(IR?) in the topology of convergence on compact sets to a solution of
the static equations. For A = 1 this convergence is improved to a strong
convergence in L2, using the Pohozaev type identity. It is then shown that
in an appropriate (time-dependent) gauge the solution gets arbitrarily close
in H? to a solution of the static equations.

So far this convergence is subsequential; the next stage is to show that
we have genuine convergence without passing to subsequences i.e., that the
w—limit set of the solution is a point. There is a general theorem due to L.
Simon which asserts that this is true for gradient flows of real analytic func-
tionals on compact manifolds satisfying a weak convexity condition ([36]).
In this paper we are working on an unbounded domain R? so this does not
apply directly. We will use a different, geometrical method to prove the
existence of a limit. This method, which seems to have more similarity with
the methods of [7], is often called an adiabatic approximation, and amounts
to tracking the point on the space of static solutions which is closest to the
solution at each time. This is done via a tubular neighbourhood construc-
tion in theorem 5.15. (This is nonstandard since we find the closest point in
the L? norm while the manifold structure is induced from the H? topology.)
In theorem 5.4 it is shown that for A = 1 and when the solution is suffi-
ciently close in H? to moduli space, it converges to a unique static solution.
This is inspired by Manton’s method ([27]) which has been extensively used
in a similar context to study scattering of vortices and monopoles. For the
Lorentz invariant Abelian Higgs equations this was justified in [37] and for
the Yang-Mills-Higgs equations in [38].

We now state the main theorems which are proved in this paper. Intro-
duce the notation

U= (A,9) U= (B,Ds® D3% VB,w)
where B = *dA and w = 1(1 — |®|?) and for r > 0, N € Z define the class
of functions
¢V = {(T,U) € C*(R?): 0<|®| <1,|®| has winding number N
3M > 0 such that |U| < Me™ "2l
U, U and all their derivatives are bounded}.

Theorem A Given initial data W(0),U(0) in C™ there ezists a unique
solution U(z,t) € C®(R? x (0,00)) N C([0, 00); L(R?)) of (1.4) (see also
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(2.5) below) with A > 0 such that
(i) limeo (| 2(2) = T(O)l|z= + [U(E) = UO)l|z= ) = 0
(it) U@ |lLr < ¢ and |DGU(E)||ze < c(e) for all t > 0 and all multi-
indices . (Here it is to be understood that the quantities Do®, D%® are to
be differentiated covariantly with D while B,V B,w are to be differentiated
in the usual way.)
This is proved in section 3, theorem 4.2 using theorems 3.6 and 3.9.
Theorem B Consider initial data as in theorem A which in addition
satisfy

(15) [B(@,0)] < 5(1 - 12(z,0)1)
(16) Da@(@,0) < (1 [8(,0)P).
Then,

(i) for X < 1, for all € € (0,1) and for all T > 0 there exists M (¢, T) > 0
such that for0 <t <T

(1.7) U(z,t)| < M(e, T)e~ VA=,

(11) for A = 1 there ezists a constant c depending only on the initial data
such that:

oup [ |w|2(|B|2 s+ 2 - |<1>|2>2)dm <c
t>0 JR? 4

and in (1.7) we can take M (e, T) = M., i.e. the exponential decay is uniform
with respect to time.

This is proved in theorems 3.8, 3.11 and 3.2 in section 3. (The existence
theorem 4.2 asserts that these a priori estimates hold for our solution).

The following is our main result:

Main Theorem For initial data as in theorem B there exists a finite
action critical point Voo = (Aco, Poo) of winding number N such that (¥(t)—
Vo) — 0 in H2(R?) ast — oo. In addition ¥o, can be obtained as follows:
there ezists a time T such that for each t > T there ezists a unique finite
action critical point of £ of winding number N which is L?-closest to W (t).
If we call this critical point P(¥(t)) then there exists a constant § > 0,
depending only on the winding number, such that

(1) = PE(E) g2 + W0 — P(X(2))l|2) < Ce™
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where C depends on the initial data.

The proof of this theorem appears in section 6.

Remarks. (i) Notice that the convergence is taking place in the tem-
poral gauge.
(ii) The condition (1.5) is essential in our approach, but (1.6) could be re-
moved. It is interesting to find out whether (1.5) is really essential or not.
(iii) The solution is also expected to decay exponentially in space for A > 1.
However this decay is conjectured to be uniform in time only for A < 1.
(iv) The final statement in the main theorem illustrates our method of proof
of the existence of a limit: we find at each time the critical point P(¥(t))
which is closest to ¥(t) and show that these approach one another exponen-
tially fast. We then show P(¥(¢)) approaches a limit exponentially fast to
complete the proof of the theorem.

2. The equations.

We now write down the equations in the various gauges which will be
needed in this work. We will use the following inner product for complex

numbers:
ab + ab

(a,b) =
We recall the Ginzburg-Landau functlonal (1.1)

1 A
£(4,9) =3 /]R 1B+ DaB + S8 — 1) dot A da?

where in the notation used in the introduction B = (01 A3 — 024;) so Bdzi A
dzy = dA and Dy;® = D;® = 9;® — iA;®. Even though the (covariant)
differential operator D depends on the connection A, this dependence will
be usually supressed. We will let Ay® = D?® + D2® and A denote the
usual Laplacian. Here d is the exterior derivative and d* is its adjoint, so
that d*(Fdzy A dzg) = 09Fdxy — 01Fdxg = 07 Fdxy + 03 Fdxa. Introducing
a time component Ao to the connection A and a corresponding covariant
derivative Do® = & — iAo®, where = dt@ we obtain the fully gauge
invariant gradient flow Abelian Higgs equations

Dy® — A ® = %@(1— |®|?)
(2.1) A—VAg+d'dA = (i®,D3).

These equations are invariant under the gauge group of symmetries e’X €
C*®(R? x R* ; S1), that is, for any real smooth function x(z,t) the transfor-
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mation p(x) (often referred to as the gauge transformation)
(2.2) ®—eXd A—A+Vxy Ay Aot+X

takes solutions into solutions. To check that this is a symmetry of the
equations, notice that

(2.3) D;j® — XD;®  Do® — eXDyd.

The equations form a degenerate parabolic system. The fully invariant equa-
tions transform under specific gauges to useful forms and there are various
ways to factor gauge equivalence out. Firstly, we obtain the heat flow equa-
tions Oy(A,®) = —grad€ which is the special choice of

Ay =0.

This is called the temporal gauge, which is clearly always attainable by
applying the gauge transformation determined by x(z,t) where

In this gauge the equations are

d—ApD = %@(1—|<1>|2)
(2.5) A+d'dA = (i®,Dd)

where the dot means differentiation with respect to time.
There are other useful gauges; in particular there is the Coulomb (or
Hodge) gauge in which
V-A=0.

This is obtained by applying the gauge transformation determined by x
where

(2.6) Ax+V-A=0.

In this gauge we can write the equations as a coupled elliptic parabolic
system:
A

Do® —As2 = S2(1-|2f)

(2.7) A—AA—-VA, = (i®,Dd)
—AAy = (i®, Do®)
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Another useful gauge is the uniformly parabolic gauge in which we require
that
V-A-—Ay=0.

This is obtained by applying the gauge transformation determined by x
where

(2.9) xX—Ax=V-A-—A,.
This gauge is useful because the equations then form a uniformly parabolic
system for (A, ®):
. . A )
P-Au®-i®V-A = -2—<I>(1—|‘1>| )
(2.10) A—AA = (i®,Dd).

Let us write these in a general form by introducing ¥ = (A, As, ®1, P9),
where @1, P9 are the real and imaginary parts of ®. Then ¥ satisfies an
equation of the form

(2.11) ¥ — AU = f(¥, VD)

where f(¥, Z) is cubic with respect to ¥ and linear with respect to Z.
We will also need some identities obtained by differentiating the full
equations. Differentiating once we obtain

(2.12) B— AB+|®|?B = 2(iD;®, D;9)

(2.13)
(Do — Aa)D® + 2iBD*® + i®(i®, DD) + \d(®, D®) = %D@(l — 3%

where
D*® = Dy®dz1 — D1®dzy = Df<I>d:L'1 + D;‘I)d.'l,’z.

Differentiating a second time we find

(2.14)
(8: — A)VB + |®|*VB = —2(®, D®)B + 2V (iD19, D39)
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(Do — A4) Dy D;® + i®(i®, Dy D;®) + A®(®, Dy D;®) =
—2iBD}D;® — i0; BD;® + 2i0; BD}®

A
~2iBD; D} ® + 5 Dy Di®(1 - |®|2)

—AD;®(®, Dy®) — A®(D;®, D;®)
—iD®(i®, D;®) — i®(iDy®, D; ®)
(2.15) ~AD®(®, D;®).

An important identity is for w = (1 — |®|?), which satisfies

(2.16) W — Aw + M\ ®|*w = |D®|?.

3. A Priori Estimates.

In this section we collect together the a priori estimates. In the first
part we give energy, weighted energy and L™ estimates. In the second part
we give some estimates which are used to prove uniform convergence in
the case A = 1. Throughout this section (Ag, ¥) = (Ao, 4, ®) is a smooth
solution to (2.1) so that there exists r > 0 and K = K(Tj,.) > 0 such that
U = (B, D®, VB, D?®, w) satisfies

(3.1) (e, )] < Keap(—]zl).

for t < Tjpe and z € R2. This assumption is justified by the existence
theorem 4.1. We shall also assume that |®(z,0)| < 1; theorem 3.3 will
then ensure |®(z,t)| < 1. We shall always state what gauge condition we
are using in our estimates. However, by a slight notational abuse we shall
always write the solution as (Ag, 4, ®) in any gauge. It is convenient to
derive the estimates in the temporal gauge and then deduce from these the
general case.

3.1. Energy, Uniform Estimates and Exponential Decay.

The following results describe a priori estimates useful to obtain existence
of a smooth global solution. We start with energy identities which rely
on the locally in time uniform exponential decay assumed above. These are
the estimates of decreasing energy and a weighted energy estimate given
respectively in the next two theorems. Notice that the estimates for the
gauge invariant quantities B, |D®|,w implied by the energy estimates are
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valid in any gauge. In the following calculations all integrations by parts
are justified by the exponential decay which we assume in (3.1).

Theorem 3.1 (Energy Identity). In temporal gauge

(3.2) /0 " /R (1412 + |<i>|2) dvdt + E(T) = £(0)

and in gauge invariant form,

T

(3.3) / / (14~ VAo + Do) derdt + £(T) = £(0)
0o JR?

where

) = /]R2 (B(:L', )2 + |D®(z,t)|? + %(1 — |®(z, t)|2)2) dz.

Proof. This is a straightforward estimate obtained by multiplying the equa-
tions by ® and A respectively and integrating by parts (this is justified by
the decay properties (3.1) which also guarantee the uniform integrability
required to differentiate with respect to time under the integral sign). This
gives (3.2) for as long as the solution exists that is, up to T' < Tj,.. The
gauge invariant form follows by a gauge transformation. O

We now prove a weighted energy identity which is a generalization of an
identity in [1].

Theorem 3.2 (Weighted Energy Identity). In temporal gauge
T 2 9 )
l_’_._ {12 12 A _ 22 2 L _ f_
/0 /]R._,(2 (AP +|2*)+(1-|2*)*~B )dxdt+/Rz 5 e(T)da:_/]Rz Se(0)do

or in gauge invariant form

: (’"—2 |A = VAo|* +|D <1>|2) + 21— a2y -B2)d dt+/ ﬁe(T)da:
o Jpa\g (47 VA H D00 5 P o 2

= /]RZ 1'—2-e(O)dar:

where e is the energy demsity e(t) = e(A(t),®(t)) with e(4,®) =
1 (B?+ D% + %(1 —|®[%)2) . (In the above integrands v = |z|.)
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Proof. First we obtain a Pohozaev type estimate: multiply the first equation
in (2.5) by - D® (where D = d —iA) and integrate. We have

/]Rz(ac-D@,Bt@)—(m-D@,AAcb)—%(x-D@,@)(1—|<I>|2)dm = 0.

Upon integration the second term above gives (using the summation con-
vention on repeated indices)

/Z(x-D<I>,AA¢>)da: =
R

/Rz <_|D(I)|2 — (z:D:D;9, qu>) - (xi[Dj,Di]‘I),Dj(I’)) dz
= ‘/Rz <—|D(I)I2 - %(.’L‘ ’ V)qu)|2 - (xi[Dj, Dz]q’, DJQ)) dzx

- /R 2 <-(x,~[Dj,D,~]q>,qu>)) da.

The third term becomes,

A
- Jo 5@ V- [2P)ds
A

_ /IRZ 21— [aP)ds.

Upon substituting these two into the integral above we obtain

(3.4)

/ Xz Do, ®)(1 - [B]) do
R? 2

A
/Rz(x - D®,0;9) + (iz:By;®, D;®) — 7 (1 - |®%)%dz =0

where
—iB;; = [Di,Dj] = —’i(aiAj —8in) = —iBoyj
with o;; the antisymmetric tensor with 012 = +1. We will use this below.
Next multiply the first equation in (2.5) by 720;® and integrate to obtain

(3.5)
r’ 2 A 2\2
/2 > (|3tq’| — (0:®,A40) + =0,(1 — |2|%) ) dr = 0.
R 8

We concentrate on the second term of (3.5): upon integrating by parts it
becomes

;(D@, [D, 8,)%)) dz

2 2
- /R , (0%, A48) dz = /R (@D, 0.8)+ 8B+
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(and by substituting from (3.4) )

: A 2 2
= /]R2 (—:UiBij(l‘I),qu))+Z(l—|<I)|2)2+%(9tlD(I)|2+ %&A.(D@,@)) dx

(3.6)

2 2
— L . r . A 232, T 2
= /le :r:B/\(D<I>,'L<I>)-i-=|<38tA~(D<I>,z<I>)+/IRZ (Z(1—|<I>| ) +Z<9t|D<I>| dz
where we use (3.4), [D, 8;]® = i(8;A)® and z’ = z;dx;.
From the second equation of (2.5) we have, after multiplying by %&A

2 2
/]R , (0.4, (DB, i®)) do = /R 5 (10AP + (8.4, d"dA)) do
- ” AR + - 0,B%) d 'A8,A)B
= Rz(;lt l+zt ).'B— Rz(w/\t) .
Also using the same equation

/Rza:'B/\(DQ,z'@) _ —/Rza:'B/\BtA-i-(m'/\*dB)B

) 2
(i—y—)—g— dz! A dz?.

- - / FBAGA Y
RZ
Taking the difference of the last equalities and substituting in (3.6) and then

in (3.5) we obtain the weighted energy identity of theorem 3.2. The gauge
invariant form follows by a gauge transformation. O

The following three theorems are consequences of the maximum principle
(theorem A.4). They state that w globally controls the growth of B and D®.
This will later be used in the estimates in the time asymptotics section 3.b
(theorem 3.11) to infer the exponential decay of these quantities from the
exponential decay of w. These results are analogues of results in [19].

Theorem 3.3. For all A > 0, if |®(z,0)| < 1Vz then |®(z,t)| < 1Vz. If
in addition |®(z,,0)| < 1 for some x, € R?, then |®| < 1 on R? x (0, 00).
Equivalently, if w(z,0) > 0 then w > 0 everywhere and if also w(z«,0) > 0
at some point, then w(-,t) > 0 fort > 0.
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Proof. Let w = (1 — |®|?) > 0. By (2.16)
(3.7) w— Aw+ A1 —-2w)w >0 onR%x RT.
Assuming that the initial data satisfy w(z,0) > 0 the maximum principle

(theorem A.4) on (3.7) implies w > 0 on R? x R*. O

Theorem 3.4. If A < 1 and the initial data satisfy |B(z,0)| < w(z,0) then
for allt >0, |B(z,t)| < w(z,t).

Proof. We note from (2.12) and (2.16) that
@ —A)(B-w) +[2*(B-w) = - +(A-1)®*w < 0

where £ = 0,9 = %(qu) + ¢Dy®). A similar identity for B 4+ w completes
the proof of the theorem. O

Theorem 3.5. If A < 1 and the initial data satisfy |D®(z,0)| < 3w(z,0)
and |B(z,0)| < w(z,0) on R? then

|D®(z,t)| < 3w(z,t) onR? x RY.

Proof. Let g = D® and g* = D*®. On {|g| = 0} the theorem clearly holds.
Letting V = {|g| > 0} and applying equations (2.13), (2.16) and Kato’s
inequality,
lglAlgl > (9, Aag)
we have
910 — A)(lgl — 3w) < 1gl6lg| + (g9, Dog — 2iBg")
_(ga iq))z - )‘(g) ¢)2
(3.8) +(g, \gw) — 3gl(l91* — A @[*w).
We note
|910¢lg] — (9, Dog) = 0
(9,12)° + Mg, ®)* = (1-N)(9,i®)* + Ng’|@]> > 0 for A<1
—(9,iBg*) < lgI?|Bl < lgl*w

using theorem 3.4. Inserting these in (3.8) we obtain

l91(8: — A)(lgl = 3w) < —lgl(M@P gl wlgl + lgI? — 3A|[*w ~ 2|g|w)
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< —lgl (Al@*(lg] = 3w) + |gl(=Xw + |g| — 2w))
(3.9) < ~lgl(lgl + X@*)(lg] — 3w)
and thus
(3.10)

(@ — A)(3w — |gl) + (gl + A@)(Bw —|g]) 2 0 onV.
The result now follows from the maximum principle (theorem A.4). O

We can now establish uniform estimates. We show that all the (co-
variant) derivatives of B, D® and bounded in L°°(R?) independent of time
Tioc (and in particular independent of the time interval in which they are
assumed to exist). Since the L* norms of these quantities are gauge invari-
ant we may use the equations in the temporal gauge. The argument follows
Hassel’s ([18]) adaptation of Hamilton’s ([16]) method.

Theorem 3.6 (Uniform Estimates and Uniform Continuity). ¥ sat-
isfies estimates of the form

sup sup (|8°‘B(x,t)| + |D*DQ®(z, t)|) <
>0 zer?

C(|a|1 8(0)’ |8°‘B(x, 0) |L°°(]R2), IDaD(I)(:II, 0)|L°°(]R2))

for each multi-indez . Therefore, 8*B(x,t) and |D*®(x,t)|? are uniformly
continuous on R?2 x RY and from (2.1) the quantities 8,A—V Ay and | Do®|?
are uniformly continuous on R? x RY. (These estimates hold throughout the
time of existence).

The method of proof uses the lemma below. We let { = (B, D®) and
differentiate with the direct sum connection i.e., D;{ = (8;B, D;D®) etc.
The following differential inequalities follow from (2.12)-(2.15):

(3.11) ,
(0 — A)I¢I? + 201@[2[¢|? < ChI¢I® + Mw|¢]? - 2|D¢J?
(3.12)
(8 — A)| D¢ + 20|02 D¢J? < Co(IC121DE] + I¢11DCI?) + Aw|DEJ?

where o = min(1,\) and C,C, are constants.
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Lemma 3.7. Consider a smooth function ¢ on R? x R* which satisfies
(3.11)-(3.12) and

(3.13) sup I¢(z,t)| < K
T\—1/K<t<T.,z€R?

and assume K > 1 and Ty, > K. Then there ezxists a number Cs such that
sup sup |D¢(z,t)| < C3K3/2.
(Tw—1/2K)<t<T. z€R?
Proof. Let § = —Ilg, so Ty > § and consider the function
Q= (t—T. + )(IDCI — bK?) + al(]?
on [Ty — 6, Ty] x R?, then we find
Q-AQ < D +a(CrlCP + wl¢l - 2|D¢?) — bK®
+(t = T+ 8)(Ca(ICPIDC| + CIIDEP) + Ml DCP)
< (1—=2a+2(t—Ts+8)cK + \)|D¢|?
+(ac+ da+ (t — T, + 8)c— b)K3.

Since (t —Tx +9) <o = % we see that for a and b sufficiently large (inde-
pendent of K)

Q-AQ<0
We now apply the maximum principle on [T} — §,T}] X R? to deduce
(t = Tu + 8)(IDC]® — bK®) + al¢|* < aK>.

It follows from this that

cK 3/2

which gives the result by letting t € [T} — /2, T.]. a

From this and the energy estimates we can infer the uniform estimates:
Proof of theorem 3.6. The strategy is to assume that at some time,
Ty, |¢|L has magnitude K and use the previous lemma to show this leads
to a contradiction of the energy estimate £(T%) < £(0) for sufficiently large
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K. The next claim shows that by taking K large we can indeed apply the
previous lemma.

Claim. Let u be a positive solution of the differential inequality on
R? x Rt

d 2 2 3
—u — <
dtu Au® < au® + bu
u(:z:, 0) = uO(x)
with a,b > 0, and satisfying
lim |u(z,t)|=0
|z|—00
for all t. Define u = /1 + |uo|%, and let K > max{2y, (a + b)u}. Then for
t<Tc=GT1m>%wehave
lu] < K.
Proof of Claim. Compare u? with the solution to the ODE
fo= (a+p)f*?
f0) = 1+ Iuoﬁ,m(mz)
Noting that f > 1 we have

4

dt
and conclude that u?2 < f (or else, let ty be the first time so that (u? —
f)(zo,t0) = 0; at this point the inequality above is contradicted). Thus

(? = f) — Au? < au® + bu® — (a +b)f3

2 4

YOS B (et o

and so for t < T, = @-FIW it follows that |u| < 2u < K which proves the
claim.

Apply the above claim with |u| = 3 to conclude the theorem up to time
T,.We now apply lemma 3.7 to conclude the theorem for times in [T¢, Tjoc):
we assume that at some time T, we have sup, [((z,T)| = K and obtain a
contradiction for large K. By the previous claim we may assume T, > %
by making K large compared with |¢(0)|feo(g2). Therefore by the previous
lemma we know that for some ¢ > 0

sup |D¢(z, Ty)| < cK3/2.
x
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Since limy_,o |{(z, Tx)| = O there is a point z, at which
I¢(zs, Ti)| = K

so that there exists a number p such that

ey = [irz k< (D)

2

which gives a contradiction to £(T) < £(0) for K large compared with the
energy and satisfying the condition in the previous claim. This completes
the proof of the theorem for the case of no derivatives. The proof of the
uniform bounds for the higher derivatives is exactly as in [18]. To prove that
| D¢| is bounded notice that (3.11)-(3.12) imply that if A is large enough then

(8 — A+ 1)(AIC* +|D¢P?) < e+ 1[¢N*

From this the maximum principle implies that if [{(z, )|y (g2) is bounded
independent of time then so is |D((x,t)| o (g2). This argument can be re-
peated indefinitely to complete the proof of the theorem. (|

3.2. Estimates for Time Asymptotics.

The results in this section will be used to describe the behaviour of the
solution as time goes to infinity. Time independent LP estimates will be
valid for all values of A while the results of exponential decay following will
hold for restricted values of A\. As mentioned above, the main asymptotic
result showing that the solution converges strongly to a static solution holds
only in the case of A = 1. To begin, the next theorem gives a condition
under which vortices cannot escape to infinity. This will later be crucial in
proving the existence of a uniform limit of the solution in the case of A = 1.

Theorem 3.8. Let A =1 and assume the initial magnetic field satisfies the
condition |B(z,0)| < w(z,0). Then the weighted energy defined in theorem
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3.2 is bounded independent of time:
/ r2e(t)dz < ¢ < oo.
RZ

Moreover, for all positive € there exists a number R(e), independent of time,
such that for allt > 0 '

|z| > R(e) = |w(z,t)| + |B(z,t)| + |DB(z, t)| < e.

Proof. The first statement follows immediately from the fact (theorem 3.4)
that |B| < w and theorem 3.2. To deduce the second statement from this,
assume to the contrary that there exists e, > 0 and a sequence of points in
space-time (x;,t;) with ¢; > 0 and |z;| / +00 such that

lw(zi, ti)| > €.

Then by the uniform continuity of w there exist balls B(z;; p) on which |w| >
%, which gives an immediate contradiction to the uniform boundedness of
the weighted energy. The same argument applies to B and D®. O

We continue with time independent estimates in L! for the gauge invari-
ant quantities B, |D®|, w using the temporal gauge.

Theorem 3.9 (L! Estimates Uniform in Time). Assume A > 0.
Then there exists

¢ = c([[w(0)llLr, ID**@(0)[| L1nzeo, V2 B(0) | 2rreo» £(0))
for |a1| £ 2 and |ag| < 1 such that

Sup (1Bl (e + 1w @)l ge) + 1Dl 11 a2y + [|1D2® ()] 11 (g2

+ IVB(t)llL1z2)) < c

Proof. To prove this we consider 3(x,t) = e'B(z,t) and observe that it
satisfies the equation
b-08 = ¢(B(L- @) +2(D:®,D;2))
= e'h(z,t)
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where it follows from the energy estimate that supsg ||h(t)[| L1 @2) < ¢ < o0,
with ¢ depending only on £(0). Let K; be the heat kernel and write the
solution as

¢
B(t) = /0 K x h(s)e®ds + K * 5(0)

where * means spatial convolution. This leads to the estimate

¢
181y < [1B0O0)||L we) +/0 I1A(s)]| L1 (s2)€”ds
< (et = 1)+ [1B0)| L1 (2

which implies the following estimate for B:
1Bz @2y < e EIBO)]Lrqge) + (1 — 7).

The proof of the other results is very similar so we will be very brief. An
identical argument applied to equation (2.16) gives the estimate for w. Next
integrate (3.12) over R? and estimate for each t > 0

Jictingp < [ 1pek+ 2 [1ePinee

This together with the known estimates for || D¢]| e, ||{||z2 and ||w| 1 gives
the inequality

o [0 +2 [ Do < c

from which follows the L? boundedness of VB, D4® independent of time.
Next substitute this information into (2.14) and apply the argument above
to deduce the L! boundedness of VB independent of time. Next write down
equations for (@, Da®), (i®, Da®), (®, D4 ®), (i®, D% ®) by taking the inner
product of (2.13) and (2.15) with ® and i®. Applying the same argument
to these equations will complete the proof. O

We now restrict to the Coulomb gauge and obtain estimates for the
connection by solving the elliptic system

(3.14) 0141 + 0,42 =0
(3.15) 0145 — 02A; = B.
The solution to this system is unique only up to gauge transformation by

a harmonic function. Thus there is a unique solution for A which has limit
zero as |z| — oo. It is this solution which we investigate.
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Theorem 3.10 (Uniform L? estimates). Let A\ > 0. In the Coulomb
gauge (2.7) the connection A(t) satisfies the time independent estimates

1A zoga) < (o) (IBO @) + IBO] zon(e) )

for all 2 < p < oo. There exist constants ¢ = c(|a|), independent of time,
such that for each multi-indez «

sgp(w;';A(w, t)] +1652(z,1)]) < cllal).

Proof. The solution of the elliptic system above is

0'1']
2r Jp? IﬂC yl2

(316) Ai(m’t) = (y’ )

where ¢ is the antisymmetric tensor and o9 = +1. This is of the form A =
K * B, where the kernel K is in the weak L? space. The estimates for p < 0o
then follow from the convolution estimates (see for example [14, p. 232])
and the known estimates for B. The L* estimate is obtained by splitting
the integral into |z — y| < 1 and |z — y| > 1. To prove the boundedness
of all derivatives of A introduce a mollifying function p(z) € C§°(R?), non-
negative, equal to 1 for |z] < 1 and equal to 0 for |z| > 2. We can then
write A = Al + A? where

1 Tij 3

Az(mat) o \/]R2 |ZII |2,0(.'1? )B(y,t)dy
O'
ZJ |u|2 p(u)B(x —u,t)du

2 _ & Yiq oo

A= o /]R o (1= p(e = 9)B(y, )dy.

The boundeness of B in L' and the uniform boundedness of all derivatives
of B imply the uniform bound of all derivatives of A. The estimates for ¢
then follow since Dg® = V® — iA® and all the covariant derivatives are
bounded in L*°. O

We now restrict to the case of A < 1 and show that the quantities
w, B, D®, D?®, VB decay exponentially as |z| — co. In the case of A =1
this decay is uniform in time. This fact depends crucially on theorem 3.8.
Recall that w = (1 — |®|?) and 0 < w < 1.
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Theorem 3.11 (Exponential Decay). Let A < 1. Assume that for
any ¢ € (0,1) there is a C(e) such that (w+ |DyD;®|+ |VB|)(x,0) <
C’(e)e_*/x(l‘e)l”c| on R? and that (w, B, D®)(z,0) satisfy the hypotheses in
theorems 3.4 and 3.5. Then for any € € (0,1) there is a constant M (e, T)
such that

(3.17)
(w+ |B| + D3| + |D2®| + |VB|) (z,t) < M(e, T)eV 19l on B2 x [0, 7).

When X = 1 then M = M(e) and (3.17) holds on R? x R and implies
exponential decay uniformly in time, that s,

(w+|B| + |D®| + |D*®| + |VB|) (z,t) < M(e)e VX1~ o B2 x Y.

Proof. Let m = m(e) = VA(1 — ¢€) and find R = R(e, T) such that 0 < w <

Ag(f;;) on {|z| > R, t < T} and set
v(z) = M(e)e™ B,
Then

Av = (% +m?v < miu.
By (2.16) and since |g| < 3w (cf. theorem 3.5) we have

By —A)w—w) > —m?v—9w?+ A1 - 2w)w
> —m’(v—w)

on {|z| > R, t < T}. Next choose M; > max{1,C(e)}. Notice that v—w >0
on {|z| = R} U{t = 0} so the maximum principle (theorem A.4) implies that
v—w > 0 for [z| > R and thus (3.17) follows with M = M;e™E.

When \ = 1, then w — 0 as |z| — oo uniformly in time by theorem
3.8, so M1, R are independent of time and so M(¢,T) = M(e) and (3.17)
is valid on R? x R*. Since |B| < w and |Ds®| < 3w when X < 1 these
quantities decay as w does.

Next we let h be the matrix D?® with hy; = DiD;® and consider equa-
tion (2.15) and Kato’s inequality ([19])

IRIAIR] > (h, Aa).
It follows that on the set V = {|h| > 0},
B8 — A)IR| < |hlBelh| = (h, Aah) = (h,h— Agh)
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< =X@PIAP = (1— N)|(i®, h)[* + |h[*(4] B| + Aw)
+|h|(3|VBllg| + (3X + 2)|2||g/*)
(3.18) < =MN®P|h2 + a(z, t)|h2 + b(z, t)|A|

where a(z,t), b(z,t) are positive and decay exponentially by the above. In-
deed since |V B| is bounded independent of time, for each € > 0 there exists
c1(€) such that

b(z,t) < ci(e)e” 1l

and there is R(¢), independent of time, such that
1
a(z,t) <, b(z,t) < e, |®| > 5 YVt >0, |z|> R(e).

Thus there is n(e) > 0 satisfying

21_1)% n(e) =0
such that on V' N {|z| > R(¢)},

(@ = A)|h| + (1 = () |h] < ex(e)e” 7L,
Introduce a comparison function
v(z) = Ae)e kOl

with

Ae) > max{%,Lek“)R(e)}, Ke) < min{(1- ),/ 1(;fi§)}

where L > ||h||pcogzxg+)- Notice that this is independent of time. Then
Av < k(€)?v and so together with (3.18) this implies

0= B)w—=Ih) = —k(0 + (1= n(e)[h] - ca(e)e -
> —(1+ k() (v — |a) + (—(1+ k() + (1= n(e) ) |h]
+ek(e)?v — cpee~ (19l
> —(1+€)k(e)* (v~ |hl).

Thus by the maximum principle as in theorem 3.5 |h| < v and the estimate
for D2® follows. Using this and a similar comparison function we also infer
the estimate for VB. a
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4. Existence and Uniqueness.

Using gauge equivalence it suffices to prove the existence and uniqueness
of the solution of the equations in the uniformly parabolic gauge (2.10).
General results imply local existence. From the a priori estimates derived
in the previous section follows the existence of a unique global solution of
the equations. Uniqueness of the fully invariant equations (2.1) is meant
in the sense of a unique gauge equivalence class of solutions. In specific
gauges the equations may or may not possess a single solution. In the three
gauges under consideration, namely the uniformly parabolic, temporal and
Coulomb gauges, there is a unique bounded smooth solution. (We restrict
to bounded solutions which ensures solutions of (2.6) and (2.9) are unique.)

To obtain local existence we apply theorem A.1 stated in the appendix
to (2.10) and we obtain a unique solution ¥ = (A, ®) up to time T},.. Using
this solution we then regard (A, ®) as known and apply theorem A.2 to
the initial value linear system of equations (2.12)-(2.16). Thus we obtain
exponential decay in space for U = (B, D®, VB, D?®, w) for each time
t < Tioe- In summary we have:

Theorem 4.1 (Local Existence). Assume that the initial data (A, ®, B,
D®, VB, D?®,w) belong to the class C»Y defined in the introduction. Then
there exists a time Tjo. (depending on the initial data) up to which an
unique solution to equations (2.10) exists with each component in c2L3 (R2 x
[0,Ti0c]). Moreover, there ezists a constant K = K(Tjoc) such that U =
(B,D®,VB, D?®,w) satisfies

.
(. 1)| < Keap(—Zal)

for all t < Ty, and x € R2.

We may now conclude:

Theorem 4.2 (Global Existence and Uniqueness). Consider the ini-
tial value problem for (2.5) in temporal gauge with initial data in C™N. There
exists a unique global smooth solution (A(t), ®(t)) fort > 0 which is bounded
for each t, has winding number N and satisfies the energy identities of theo-
rems 3.1 and 3.2, and the L™ and L' estimates of theorem 3.6 and theorem
3.9. Furthermore, the solution takes on the initial values in the sense that

tim (I12(2) = (Ol + [U(2) ~U(O) 1) = 0.
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Proof. From theorem 4.1 it follows that in the umformly parabolic gauge
there exists a unique local solution in the space C% L3 (R2 x [0, Tioc)), where
Tioc is some time of existence, and the solution satlsﬁes the initial condition.
As it also satisfies the estimates of theorem 3.6 we conclude from the second
equation in (2.10) that A — AA is uniformly bounded in (z,t) and thus for
each t > 0, ||A(t)||zoo(dz) < c(t+ 1). By differentiating the same equation
we obtain similarly that A and all its spatial derivatives have at most linear
growth with respect to time. Recall that in the uniformly parabolic gauge
Ao = d*A, which together with its spatial derivatives is now uniformly
bounded on any finite time interval, and apply the gauge transformation x
determined by (2.4), x = Ag = d*A and x(0) = 0, to move into temporal
gauge. Hence x and its spatial derivatives are < ¢t (uniform in z) and,
therefore, lim;_o(|x(t)] Leo@®2) T |dx(?)] Loo(R2)) = 0. Thus the solution in
the temporal gauge takes on the initial values as claimed. The fact that
U takes on the initial values uniformly follows from theorem A.2. It then
follows by integration of (2.5) with respect to time that A, ® and their
derivatives can grow at most linearly with respect to time. We can therefore
continue the solution for all time to obtain a global smooth solution of the
inital value problem, which attains the initial data. Finally the uniqueness
of the solution in the temporal gauge follows from the uniqueness in the
uniformly parabolic gauge and equations (2.4) and (2.9). Indeed, the gauge
transformations determined by these equations are unique on account of the
condition that the solution be bounded at each time which removes non-
uniqueness of (2.9). ]

5. Large Time Asymptotics.

This section is divided into two parts. In the first we prove that for each
A > 0 the solution (A, ®) possesses a subsequence converging to a solution
of the static equations in a weak topology of a suitable LP space and
also in the compact-open topology of convergence of all derivatives (uniform
convergence of all derivatives on compact sets of R?). This is done using
the equations in Coulomb gauge. We then restrict further to the case
of A = 1 and show that (after applying appropriate time-dependent gauge
transformations) this (subsequential) convergence is strong in H 2. In the
second section using an adiabatic approximation it is proved that once
the solution is (strongly) close to the moduli space the entire sequence
converges in a certain gauge. It is then finally shown that the sequence
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converges in the temporal gauge.
5.1. Extraction of Convergent Subsequence.

We will now show weak subsequential convergence to a solution of the
static equations in the Coulomb gauge.

Theorem 5.1 (Weak Convergence). Consider the solution (A(t), ®(t))
given by theorem 4.2 in the Coulomb gauge and let A > 0. For any 2 <p <
oo there is a subsequence t, /" +0o and a weak limit (Aso, Poo) such that

Aty) = Aso weakly in LP
weak* in L™ and in C*°(K) for all compact sets K
d(t,) = P weak * inL™® and in C*®°(K) for all compact sets K

The quantities Do®, A — V Ay are uniformly continuous and

(5.1) lim (Do®, A—VA4y) = (0,0).

|z|+t—o0

Thus the weak limit (Aco, Poo) s a weak solution of the static problem.

Proof. The statement of weak convergence follows from weak compactness of
bounded sets in LP for p € (2,00) and theorem 3.10. Similarly, recall from
theorem 3.3 that |®|(z,t) < 1 and thus weak* compactness follows. The
uniform estimates of theorems 3.6 and 3.10 and the Ascoli-Arzela theorem
imply compactness in the compact-open topology in C*(R?). Since in the
Coulomb gauge A is uniformly bounded (c.f. theorem 3.10) then theorem 3.6
also implies the uniform continuity of D*® (and not only of |[D*®|?) as well
of 8 B; hence by equations (2.1), the quantities Dy®, A—V A are uniformly
continuous on R?xR*. By the energy identity (3.3) we infer that (5.1) holds:
for if not, then for some ¢y > 0 there is a sequence of points P, = (z;,t;)
and balls B; = B(P;, p) € R? x R on which |Do®|? + |A — VAo|?| > € (by
uniform continuity p is independent of P;). Therefore,

/RZ " (|D0<I>|2 +lA- VA0|2|) dedt >3 el Bil = oo
X i

contradicting the energy estimate (??). Thus (A, Poo) satisfies the static
equations (1.2). O



150 Sophia Demoulini and David Stuart

Consider the winding number of the solution which as mentioned
above is given by fRZ Bdz and is an integer multiple of 2w. By the smooth-
ness of B and the exponential decay of theorem 4.1 we know that the winding
number is constant for all time. In the case of A\ = 1 we also know the uni-
form exponential decay estimate of theorem 3.11. In fact, this implies that
the limiting static solution (Ao, Poo) has the same winding number as the
initial data. This is done by improving the weak convergence of the subse-
quence to a strong convergence. We will write Bo, = *d Ao, for the magnetic
field of the weak limit.

Theorem 5.2 (Strong Convergence I). Let A\ =1 and let (A, ®) be the
solution in Coulomb gauge. Assume the initial data satisfy

|B(z,0)| <w(z,0) and  |Dy)®(z,0)| < 3w(z,0).
Then for (t,) the subsequence in the previous lemma,
B(t,) — By strongly in L' N L™

and thus the limiting static solution possesses the same winding number as
the initial data,

D 41, ®(ty) = Da,,Peo strongly in L'NL*®

w(t,) — weo strongly in L' N L™

VB(t,) — VBy strongly in L' N L™

D31,)2(t,) = D3 Poo strongly in L' N L™,

In addition, for the same sequence (t,)y,

(5.2) |A(t,) — AoollL,(]Rz) — 0 for each2<r < o0,
(5.3 T (A(%) = Aoc)laey = .

(Recall that in the Coulomb gauge A(t), Ao € L"(IR?) only for 2 < r < co
(c.f. theorems 3.10 and 5.1); however, the differences converge as above for
2<r<o.)

Proof. The strong convergence in L' N L*® follows from the uniform con-
vergence on compact sets of these quantities together with their uniform
exponential decay as |z| — oo given by theorem 3.11. The convergence in
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(5.2) for r > 2 follows from the convolution estimates for the integral (3.16)
giving A (see [14, p. 232]). For the case r = 2 and (5.3) we use the fact that

(5.4) /R _(B(t) — Boo)dz =0

which is true since B(t,) — Boo in L!(R?) and [ B(t,)dz = 2rN where N €
Z (see [19, Chaper Two]). The integral formula for A(t,) — A (see (3.16))
involves convolutions of the following type

Q)= [, TR

where f, = B(t,) — Bso. Using (5.4) we can write this as

T—y T
t,) = _—T - dy.
At = [~ b
Next we claim that

_plzl
121%1Q (@, t)| < erlzPe™™ = [l £, [| Looqayy + e2ll (L + [91%) foll o (ay)-

To prove this we split up the integral into two parts Q1,@2 on the inner
region I = {|z—y| < |—“2i|} and outer region O = {|z —y| > %} respectively:

Q1= / (=t~ ) o)y

1z —y? -
Q2 = /O(l":_;yylz - E%)fv(y)dy-

To estimate the first term we use the fact that y € I implies |y| > %—I S0

that e‘r%leﬂ-’/| > 1. To estimate the second term we use the fact that on O

||

20— ) — | — o2
|w—y|>7 and so |z|*(z —y) — |z —y|°z

|z — y|?

= O(lyl?) as || — co.

Notice that if r < 1 then e"#/(B(t,) — By) = €'l f,(x) goes to zero as
v — oo uniformly as a function of z by the uniform in time exponential
decay of B (as A = 1). Therefore lim, o |2|2Q(z,%,) = 0 uniformly in z
and so also Q@ — 0 in L2. This gives the convergence of A(t,) — Ae in L2.
By once more differentiating the elliptic system for A in (3.14) we obtain
(5.3). a
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We now ensure that (for A = 1 and in the Coulomb gauge) along the
subsequence (¢,), there exist gauge transformations x(t,), Xco such that
p(x(ty)(A(ty), ®(tr)) = P(Xoo) (Ao, Poo) becomes arbitrarily small in H?(R?)
as v — oo.

Theorem 5.3 (Strong Convergence II). Let A = 1, (A, ®) be the so-
lution in Coulomb gauge and t, as before. There exist gauge trans-
formations Xu,Xco € C®(R?) such that if V'(t,) = (A'(t,),®'(t,)) =
P(xv)(A(ty), ®(ty)) and ¥y = p(Xoo)(Acos Poo) then

Jm [[W(t) = Wl r2(az) = 0.
In addition, W'(t,), U, belong to W5 (R2) for all positive integers k and
dxv,dXco lie in H*(R?) for k=0,1,...

Proof. On bounded sets ® and its derivatives converge uniformly by the
Arzela-Ascoli theorem. Therefore, the function 1 — |®| converges in H?
since its first two derivatives converge uniformly on bounded sets and have
exponential decay uniformly in time. Thus the issue is the behaviour of
arg® as |z| — co. Restricting to the set {|®| > 1} we may write ® = |®|e*f
where f = arg® is well defined. Then

D® = (V|®| +i(Vf — A)|®|)eV.

Using this and the similar formula for D?® we see that ® converges in H? if
f does. Since |D*®| for |a| = 1,2 and w decay exponentially fast uniformly
in time (cf. theorem 3.11), we have

sup |Vf — A + |[V2f — VA| < c(e)e=(-9lel,
t>0

Thus as v — oco.
(Vf=A)ty) — (Vo — Ax) in HI(R2)

so that V f converges in H!. Thus we are left to investigate the convergence
of fin L2. It turns out that it is necessary to apply a gauge transformation to
ensure that f converges in L2. To see this write out the convolution integral
(3.16) for A and collect terms in powers of |z|~! to obtain an asymptotic
expansion for A as |z| — oo. This is proved as in [19, Chap 6] or [38]. The
components of A are expressed using polar coordinates (r, ) as

Alz,t) = AV (z,t) + A@(z,t) + A®(x, 1)
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ey [ m-y
aGwt) = 32 [ IW B,y
1 1 06(x,t)
o - A%y
2
Uz :ZI y -y
APy = S5 [ I by
2z — Oz
= ZUU_L—&T“L_ /]R2 Yk B(y,t)dy
Jk

0%0(z, t)
= 2WZ T / , yeB(y, t)dy

and

Here N is the winding number and o;; the antisymmetric tensor with o192 = 1
for 4,7 =1,2. Along t,,

A®) t,) — A9 |22y — 0 as v — oo.
oo HL2(R?)

Since V f — A decays exponentially independent of time we obtain by inte-
gration

fty) = No+ fO1) + fOt) +k(ty)
f(o0) = NO+ fP(c0) + f®(c0) + k(co)

for constants k(t,) and k(co) where f3(t,) < i‘ﬁg and converges to fég,”)
in L2(R?) and

1 00

@)= -+ 9

() or Oz Jp? YeB(y, tv)dy
1 69

@(o0) = —— 2

F(e) = =5 5a /R , UeB(y, 00)dy

Since f(t,) + k(t,) is not L2-convergent we change to a different gauge
to annihilate it: we define a gauge transformation by truncating f to
guarantee smoothness. At time ¢, we let

n(z) 86

xwt) = B [ Bty € @)
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where 7) is smooth, equal to zero in a neighbourhood N; of the origin and
equal to one outside N3, a larger neighbourhood of the origin (containing
N1). Define x similarly. Then f(t,)+ x(ts) —k(ty) — foo — Xoo + k(00) can
be made arbitrarily small in L? by making t, large enough. After applying
these gauge transformations A’(t,) still converges in H2. Finally the W>
estimates follow from those of theorem 3.10. O

5.2. The Adiabatic Approximation.

Let W(t) be the solution to the initial value problem for (2.5) with
A = 1. For any fixed € > 0 theorem 5.3 provides a time Ty, a gauge
transformation ¢ € C*®(R?) and ¥, (a critical point of £), such that
lo(9)¥(To) — Vullg2(m2) < €. At this time Tp we change back to the tempo-
ral gauge and consider ¥(t) the solution of (2.5) with initial data p(g)¥(Tp),
ie. U(t—Tp) = p(g)¥(t). For notational convenience we start measuring
time at Ty, or equivalently we relabel ¥(t) as W¥(t) for the remainder of this
section. We will revert to calling it ¥(¢) in section 6.

In this section we describe a method to prove that in the case of A =1,
¥(t) converges to a static solution without passing to subsequences in
time. The difficulty here is that there is an infinite dimensional manifold of
equilibria and different subsequences might converge to different limits. The
adiabatic approximation which we use to overcome this difficulty has a very
clear geometrical interpretation which we now explain. Let Sy be the of
space smooth, finite action critical points (static solutions) of £ which have
winding number N. We will find at each time the point P(¥(¢)) € Sy which
best approximates (in L?) the solution ¥(t). The existence and uniqueness
of P(¥(t)) follows from theorem 5.15. One then obtains estimates which
show that W(t) approaches P(¥(t)) and that P(¥(¢)) has a limit as t — oo
which will be the limit of our solution. These estimates follow from the fact
Sy is energy minimizing. We prove the following theorem, which is the main
result of this section:

Theorem 5.4 (Asymptotics in a Neighbourhoodof the Solution Space).
Let A = 1. There exists a number €, = €x(N) such that if € < e the follow-

ing is true. Let ¥ € C®(R? x (0,00); R? x C) N C(R? x [0, 00); R2 x C) be the
solution of (2.5) with smooth initial data ¥(0) = (A(0), ®(0)) and satisfy

the conditions

(1) E(A(0), ®(0)) < +oo and (A(0), ®(0)) has winding number N.

(ii) there exists U, € Snpey WP (R%R? X C) such that [|U(0) — W g2 <
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€ and

(1) (t) € Ngey WP (R%R? x C) N { ¥, + H2(R%;R? X C)} for all t > 0.
Then the curve ¥ (t) projects to a curve P(¥(t)) in Sy and the two curves
converge in H? to a unique limit in Sy as t — co. Precisely, there exist in
SNNken WP (R%R? x €) N {T, + H*(R%;R? x C)} a unique Yoo, and for
allt > 0 a unique P(¥(t)) such that

(5-5) 12 (®) — ()22 = nf [[¥(E) - Lollrz
(5.6) () ~ P(E®)]|g2 < Ce™
(5.7) IP(¥(2)) ~ Yool 2 < Ce™

for some positive numbers C, 4.

The proof of this theorem appears in section 5.b.iv after some preliminary
results. It is more convenient to work with a gauge transform ¥#(t) =
p(x(t))¥(t) and then move back to the temporal gauge at the end. Thus we
will show that there exists a time-dependent gauge transformation p(x(¢))
such that ¥#(t) = p(x(t))¥(t) converges in H? to a finite action solution
of the static equations U¥,. We will write U#(t) = Wo(t) + 1(t) where
Uy(t) € Sy. The basic idea behind the proof is to show that the Hessian of
£ acts as a Liapunov functional and so ¥(¢f) — 0 as t — oo exponentially
fast. There are difficulties with this, however, which we now discuss:

(i) Gauge Invariance. The gauge group G = C*°(R?;S') acts as an
infinite dimensional symmetry group on Sy. The Hessian inherits from this
an infinite dimensional null space (the tangent space to the orbit of G). This
is a difficulty which can be removed by use of appropriate gauge conditions
which are described in sections 5.b.i and 5.b.iii. To this end it is convenient
to introduce the Sobolev completions Sﬁ) (static solutions) and G (gauge
transformations) defined in (5.24) and (5.10). The gauge conditions amount
to requiring that 1 (t) be orthogonal to the tangent space to the orbit of ¥y
under G®), which is written as Ty, (9(3) - Wp). This is possible by lemmas
5.7-5.9 which prove the existence of slices of the action of the gauge group.

(ii) The Moduli Space. Define the quotient My = S](\?) /G® which is
called the moduli space of gauge equivalence classes of the static solutions
and let 7 : SJ(\?) — My be the natural projection. S'](?) is a principal bundle
over My with structure group 9(3)) and My is a 2N-dimensional manifold
(see [19] and section 5.b.ii). Even after factoring out the gauge symmetry
we must deal with the degeneracy of the critical points of £; this is reflected
in the kernel of an elliptic operator Ly, defined in (5.22) which defines the
Hessian of £ at ¥y. Dealing with this degeneracy amounts to choosing ¥ (t)
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correctly as follows:

we seek a curve Wo(t) € S](\?) s0 that (t) = U#(t) — Wo(t) is L2-orthogonal
to the tangent space to 51(3) at Wo(t).

Lemma 5.12 tells us that this tangent space is given by

T(¥o) = KerLy, ® Ty () - ¥p)

where KerLy, forms a horizontal subspace at ¥y and (lemma 5.11) can
be identified with the tangent space to My at m(¥p). So in addition to
the condition that ¢ be orthogonal to Ty, (G® - ¥o) mentioned in (i) above,
this leads to the condition that 1 be orthogonal to KerLy,. The differential
operator Ly, ;) defines the Hessian of the functional (1.1) on the subspace
orthogonal to the gauge flow. Thus these orthogonality conditions ensure
the nondegeneracy of the Hessian, which can therefore be used as a Liapunov
functional. In addition the orthogonality of 1) with respect to KerLy, is
equivalent to determining the curve q(t) = 7(¥o(t)) € My as a solution of
a suitable ordinary differential equation (lemma 5.18). Then in lemma 5.13
Wy(t) is determined as the horizontal lift of ¢(¢). This means that %Q is

L?-orthogonal to Ty,(G® - @y).

Finally we draw the reader’s attention to theorem 5.15. This is a tubular
neighbourhood theorem which states that for a point ¥ close enough to SI(\?)

there is a unique point on .5'1(3) which is L? closest to ¥. We denote this point
P(T¥). The result is non-standard because the closest point is found in L?
while the ambient space has norm H?2. The proof of the result depends on
the fact that 51(\?) is defined by an elliptic system of equations (modulo gauge
invariance). This leads to a regularity result (lemma 5.14) which allows us
to effect the usual existence proof for tubular neighbourhoods (see e.g. [12,
XVI.25]). Theorem 5.15 allows us to identify ¥o(t) as the closest point on
Sn to U#(t). We then apply the gauge transformation —x(t) to go back to
temporal gauge and obtain the result stated in theorem 5.4 using the fact
that P commutes with the action of the gauge group.

The remainder of this section is divided up as follows. In section 5.b.i
we describe slices and gauge conditions. Next in section 5.b.ii we describe
the manifold structure of the moduli space. We then give an ansatz for the
solution and prove some preparatory lemmas in section 5.b.iii before giving
the proof of theorem 5.4 in section 5.b.iv. Throughout section 5.b let ¥,
denote the point in Sy described in theorem 5.4.
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5.2.i. Gauge Orthogonality and Slices. Recall that we have defined
Sy = {¥(4,®) € COO(Rz;]R2 x C) :

¥y is a finite action critical point of £
with A = 1 of winding number N}.

The gauge group G = C®(R?; S') acts on Sy and the orbit through ¥y is
defined by
G-y = {p(x)To : X € C®(R% S}

The space of orbits is called the moduli space, denoted by My = Sy /G
which is identified with SI(\?) / G® by lemma 5.10. The space My possesses a
manifold structure of dimension 2N (c.f. [19]). We let 7 : Sy — My be the
natural projection. To obtain good estimates we must factor out the gauge
symmetry. The standard way to do this is to find a slice of the action of
G (see [11, 15]). This is most conveniently done in a Sobolev space setting,
which explains the prevalence of Sobolev norms throughout this section. In
the C® setting we define a slice through ¥ = (a, ¢) to be the affine space
¥y + SLy, where

SLag = SLu, = {(B,1) € C°(R%R? x C) : V- B — (ig,n) = 0}.
Based on this we may define gauge orthogonality as follows:

Definition 1. We say that (3,7n) € C®(R?;R? x C) is gauge orthogonal
with respect to (a, $) € C®(R%;R? x C) if (8,7) € SLqp-

Remarks. (i) Formally this means that (3,n) is L?-orthogonal to the
tangent space to the orbit of the action of the gauge group G on Sy at the
point (a, ¢), since for any compactly supported smooth function x(z) we
would then have

/mzﬂ'Vx+(n,ix¢)=0-

(ii) Notice that if ¥, ¥’ € C*°(R%;R? x C) then (¥ — IP) is gauge orthogo-
nal with respect to ¥ if and only if it is gauge orthogonal with respect to ¥°.

We introduce a Sobolev space structure: there is a slight complication
in that the boundary condition limz|—, |®(z)| = 1 means that the static
solutions are not contained in the usual Sobolev spaces. So instead let ¥, =
(ax, $+) € SNNken WP (R%R? x C) be as in theorem 5.4 and introduce

(5.8) A® = {0, 4+ : p € HXR%:R? x C)}.
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This is an affine space with tangent space at all points ¥y € A® given by
(5.9) Ty, A? = { € H2(R%;R? x C)}.

Next introduce the gauge group in this context as

(5.10) G® = {X : x € H3(R?)}.

Notice that this may be identified with the space of maps s : R — C such
that s — 1 € H® and |1 + s| = 1 everywhere (see the proof of lemma 5.16).
The manifold structure of G® is determined by the exponential map

Exp : H3®R?) — ¢®

x — ex

Lemma 5.5 (Smoothness of the action). The action of the gauge
group

G® x A® _  A?
(0 (4,9)) = (A+dy, 2e¥)

is a smooth free group action whose orbits have closed graphs in the sense
that if (A, ®n) — (A, ®) in H? and (A, + dxn, PeX*) — (a,9) in H?
where (xn)n C H® then there exists x € H 3 such that xn — X in H® and
(a,¢) = (A + dx, De™).

Proof. Since limy| o |®| = 1, the relation p(x)(4,®) = (A,®) implies
eX = 1. Let (4,®) = (ax+ B, ¢« +n). The map (B3, x) — B+ dx is smooth.
Thus we are left to consider (n,x) +— (¢« + n)eX. Since we assume that
T, is in W2 the map X — ¢.(e’X — 1) is smooth into H?. The map
(n,x) +— n(e¥X — 1) is smooth by the Sobolev multiplication theorem. (The
required estimates are given for example in [26]). To prove that the graphs
of the orbits are closed notice first that dx, — a— A in H? and so ||dxn|| L
are bounded. But also the fact that |#|, |®| have limit one as |z| — oo
implies, together with Rellich’s theorem, that eX» — 1 converge in H2. This
implies that the x, tend to zero as |z| — oo uniformly in n from which one
deduces immediately that xn, — x in H® where (a, ) = (A + dx, ®eX). O

The space A® introduced above is in fact the total space of a principal
fibre bundle under the gauge group action by G® and base space

M3 = A(2)/g(3).
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Endowed with the quotient topology which arises from the natural surjec-
tion, (which by a slight abuse of notation we write = : A2 — M(Q)), it is
Hausdorff (see the argument in [15] or [11]). In fact M?) inherits the struc-
ture of a smooth Hilbert manifold which we show by the next lemmas. (We
also remark that using the Sobolev structure as above we obtain ultimately
the same moduli space Mpy. This is explained in section 5.b.ii.) We first
define two spaces:

The tangent space to the orbit at ¥ = (a, ¢) is the closed subspace
of Ty, AP given by

(5.11)
Tyo(G¥ - Wo) = {(dx, igx) € Ty, A? : x € H3(R?)}

and the slice through ¥ is the affine space ¥g + Sﬁgg, where
SLG) = { = (B,m) € HX(R%R x C): V- B - (ig,n) = 0}

which is also a closed subspace of T\I,OA(Q). The terminology slice is in the
sense of the usual definition of a submanifold of the total space on which
is given a smooth group action (see [11, 15], Chapter 3). That is, there
exists a neighbourhood O of ¥y in A® such that (¥o + Sﬁgg) NO isa
submanifold everywhere transverse to the action G®) on which the restriction
of ™ is a continuous open injection. The transversality to the action is in
the sense that (locally) the tangent space to A®) (at each ¥) has a direct
sum decomposition into the tangent space of the orbit (at ¥) and that of the
slice through Wy. The content of lemma 5.6 is precisely this decomposition,
stated however only for Wy (which is all needed later on). For a general
point V¥ close to ¥y a similar statement holds, namely,

TyA? = Ty(6® - ¥) @ 5.

The subsequent lemma 5.7 shows that the projection 7 is locally a continuous
injection. Finally as a corollary follows the manifold structure of M3,

Lemma 5.6 (Existence of Slice I). There exist L?-orthogonal decompo-
sitions at Wg,

T\pOA(Q) = TPsio (9(3)'\110)6986553 (and Tpsio(g(s) . \I’o) ﬂSﬁgg = {0}) .

The L2-projection operator Oy, : T@OA(Q) — Sﬁgg varies continuously in
the operator norm with respect to ¥o € AP ie., there ezists ¢ such that
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for || W8 — \I/E,H g2 small enough

1(©gs = ©gr) (B, )11 < cl|¥h — Tl 22118, m)l| 2

for all (B,n) € H?*(R%;R? x C). Finally @W%(ﬂ, n) € H*(R%;R? x C) varies

smoothly as a function of (B,n) € H*R%;R? x C) and ¥ in an H2-
neighbourhood of ¥y.

Proof. Let ¥o = (a, ), ¥ = (a’,¢"). Given (8,7) € TysA® we decompose
B =p +dx and n = 1’ + i¢’x and determine x such that (8,7') € S[.g,,).
This leads to the equation

—Ax+ |8 >x = (i¢",n) + d*B

Consider this equation as a function F(x, ¥’ (8,7)) = 0 where F : H® x
H? x H? — H' is smooth and implicitly determines x = g(¥”, (3,7)). The
Fréchet derivative Dy F(0,%0,0) = (—A + [¢]?) : H® — H! is a bounded
linear isomorphism since lim|y_,o [¢(2)| = 1. Therefore, by the implicit
function theorem ([24]) we can write the solution of this equation as

x =g(¥, (8,7m))

where g : U x H*(R?; R? x C) — H?3(R?) is a smooth function for ¥ in some
open set U = {||U® — Wq|| g2 < 6} € AP and linear in (8, 7). Also g is linear
with respect to (3,7n). This implies by the uniform boundedness principle
1 D1g(¥®, (B, M)l (a2, 3y < cll(B,m)l| g2 for ¥* € O. From this we deduce
(by the fundamental theorem of calculus)

lg (2%, (8,m) = g (¥, (B,m) s < cll¥® — L z2 | (B, m) | 2

which implies the continuity of ©y, as required. O

Lemma 5.7 (Existence of Slice IT). Let ¥y = (a,¢) € A®, ¥ =
(A, ®) € A® be such that |¥ — Yo||gz < €. For € > 0 small enough ¥
can be mapped by a gauge transformation uniquely onto the slice through
Uqy. That is, there exist positive numbers M, €1 depending only on ¥q such

that if € < €, there exists a unique gauge transformation x € H3(R?) such
that if U# = (A%, ®%) = p(x)(A, ®) then

v — 0y e SL§)



Ginzburg-Landau Gradient Flow 161

and |U# — Wo|lgz < Me. If also ¥y € C®R%4R2 x C) and U €
Nken WEP(R%R? x C) then also U# € oy WH®(R%R? x C). The map-
ping

(5.12) (T — Tg) — (T# — W)

between neighbourhoods of the origin in H? and S,ng is smooth. Further-
more, the orbits through points close to Wy locally intersect the slice through
o at most once. That is, there exists § > 0 such that if U° # W (both in
A®) satisfy

) — Wollg2 — Yollg2
(i) 1% = Toll gz + |2 — Lol g2 < 6

(ii) (¥ - Wo) € SLE) and (T4 — To) € SLE)
then Ui ¢ GO) . ¢°,

Proof. Let ¥y = (a,¢) and ¥ = ¥y + (8,n). We wish to find a real valued
function x such that

(B+dx, (¢+m)eX — @) = (B+dx, ipx + neX + ¢(eX — 1 —ix))

is gauge orthogonal with respect to (a, ). This leads to the following equa-
tion
(5.13)

—Ax +|o*x = —(ip, ne™) — (i, p(e* — 1 —ix)) + V - B.

Consider this equation as the function F(x, 3,n) = 0 where F : H3 x H? x
H? — H' is smooth and implicitly determines x = g(83,7). The Fréchet
derivative Dy F(0,0,0) = (—A + |¢|?) : H® — H! is a bounded linear
isomorphism since lim|;|_, |¢| = 1. Therefore, by the implicit function the-
orem ([24]) there is a smooth function g between neighbourhood U; of the
origin in H%(R2%;R? x C) and U, in H3(R?)

(5.14) g:U1 — U
(5.15) B,m) —  g(Bn)

such that F(g(8,7),6,n) = 0 and g(0,0) = 0. Since g is smooth it has a
bounded derivative ¢'(0,0) : H2 — H3, let ||¢’(0,0)|| < K. Then Je; > 0
such that

B: a2 < e implies |lg(8,n)l|g= < (1+ K)||(B,n) ||z
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By the smoothness of the gauge group action (lemma 5.5) this implies that

1% = Wollgz < ([T — g + | ¥ — To| 2
< c(1+K)e+e

which gives (5.12). The W*> statement follows from lemma B.2 applied to
(5.13).

To prove the final part of the theorem, assume that on the contrary
U = (A%, @) and U = p(x)¥® = (A°+dy, ®°eX) are both gauge orthogonal
with respect to ¥y. We will obtain a contradiction by showing that xy = 0.
It follows from the gauge orthogonality conditions that

V- Vx — (i¢, @ (X — 1)) = 0
or |
(5.16) —~Ax + |42 siny = —(ig, (3" — ¢)(eX — 1))

Since both ® — ¢ and eX®” — ¢ are in H?2, they approach zero uniformly
as |x| — oo (see [19, lemma 3.7.5 and the Rellich embedding]). But |®°|, |¢|
have limit one as |z| — oo and therefore x converges uniformly to 0 mod 2
as |z|] — oco. Without loss of generality we may assume this to be zero:
for if the limit is 2km then consider ¥ = x — 2xk7m which has limit zero
asymptotically and note that % = p(%)®® and (5.16) holds with ¥ in place
of x. Hence it suffices to show that x¥ = 0 and this justifies our assumption
on . '

Fix R > 0 such that on {|z| > R} we have |®°| > 1 and |£§—(ﬂ| > 1.
Then

4 1
(5.17) |9°(eX = 1)] > |°||sinx| > /Xl on {lz| > R}.

By the assumption that % and ! are gauge equivalent,
(5.18) %% — @52 = [ldxll 2 + 18" (€% = 1) | 2 < 26

where ¢ > 0 is chosen small and is to be specified below. By the embedding
H? «— L*, |dx| < 26 on R2. But also (5.17)- (5.18) imply |x| < 85 for
|z] > R and altogether we have |x| < k0 for some constant k on all of
R2. We now choose § small enough so that the last estimate for x implies

v(z) = ME:{—T% > 0 for all z € R2.
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Returning to the equation (5.16) rewritten as —Ayx +v(z)x = f we note
that v(z) — 1 as |z| — co and the elliptic estimate below then holds,

(5.19)
Ixllzz < ellflize < €llxlIZol12° = @lI72 < ¢"8%|Ix]l a2

So if § is further chosen so that ¢/62 < 1 the above estimate yields x = 0 on
R? as claimed, so U’ = @i, O

Corollary 5.8 (Manifold structure on M?). Fiz ¥ € A®, then
there exists a neighbourhood Uy of ¥ in A agnd a neighbourhood Uy X Us
of (0, id) in S,lel,2 ) % G®) and a diffeomorphism

=:U; —» Uy x Us.

Furthermore the map G : Uy — é’(Uz) c M2 given by the restriction of
7o 27! to Uy x {id} is an injection onto an open neighbourhood of m(¥)
in M@, Thus M) inherits a smooth manifold structure under which it is
locally diffeomorphic to the slices S,CEI?). Indeed, if we choose small open sets
in M@ around 7(¥) then G~ gives a local chart. The transition functions
between charts will be smooth by lemma 5.7.

Proof. This is essentially a restatement of lemma 5.7. We define

E(T +¢) = (Eu(¥ +9),E2(¥ +9)) = (p(g(¥))(T +¢) — T, 9(¢))

where g is as in the proof of lemma 5.7. The map = is smooth on an
appropriate neighbourhood and has smooth inverse given by

EN(v,9) = p(9) " (v + )

The fact that the map G is one-to-one follows from the last statement of the
lemma 5.7. The injectivity of the map G~! implies that locally two points
on the slice through ¥ correspond to different orbits, i.e. map onto two
different points of M(?), From the definition of the quotient topology Gis
open and so a homeomorphism and thus gives a chart. a

We now show that the slices of lemma 5.7 vary smoothly with ¥y.

Lemma 5.9 (Smooth variation of slices). Let ¥y = (a,¢) €

SJ(\?)nkeN Wko(R2%R? x C) and let €1 be as in lemma 5.7. There eist pos-
itive numbers €3 < €1, 02, L1, Ly (depending only on ¥q) such that if § < 69
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the following is true. There exist neighbourhoods of the origin Up,Us in
H%(R%,R? x C) and Us in H3(R?) and a smooth map

s: U1 xUy — Us
(F = %),v) — s(F—Tg,v)

such that )

(i) if x = s(F — o, v) then p(x)F — (Yo +v) € SLY. .

(1) U contains the ball {||F — Wo| g2 < €2} and Uz contains {||v||g2 < d2}.
(i63) if (F — Wo) € SLE) then

|vllgz < & implies ||x|lgs < L1 and ||p(x)F — F||gz < L6

(where L1, Ly are independent of §).

Proof. We proceed exactly as in the proof of lemma 5.7, so let (F — ¥y) =
(B,m) and v = (vy,v2). Since vy € H? it follows that limy|_e |[v(z)| = 0.
The condition in (7) above leads to the following equation for x = s(F —
Uy, v):

(—A+|9?)x+vadx+ (i(p+v2), neX —vy+d(eX —1—ix)) —V-(8—v1) = 0.

Consider this as an equation G(x, F — ¥p,v) = 0 where G is a smooth
function H3 x H? x H*> — H'. (Recall that ¥y is fixed.) The derivative
of this map with respect to x at the origin is the bounded isomorphism
(=A +|¢|?) : H® — H', so by the implicit function theorem there is a
Xx = s(F — Wy, v) satisfying property (i). To complete the proof notice that
by lemma 5.7 if FF — ¥q € S/Jgg then s(F' — ¥y, 0) = 0. Since s is smooth
we get the final estimates by taking ds, €5 small enough. O

5.2.ii. The Moduli Space. Next we are interested in obtaining a local
diffeomorphism between the moduli space My and the subset of S,CSI,Qg which
consists of the critical points of £ (for A = 1). We refer to images of open
sets of My under this map as local families of solutions. In lemma 5.11 their
existence is proved and they are shown to form a submanifold modelled on
the linear space KerLy, defined in (5.23) (which is locally diffeomorphic to
Mn).

The moduli space My was defined as the space of gauge equivalence
classes of smooth finite energy solutions of the static equations (i.e., the



Ginzburg-Landau Gradient Flow 165

critical points of the functional £(4, ®) (with A\ = 1) having winding number
N). It is known ([19]) that all the critical points of £ are minima and My
can be identified with N-tuples of points in the plane (Z,..., Zy), which
are the (only) zeros of ®. (Notice that the zeros are gauge invariant. If a
subset of the Z; are coincident there is a zero of higher multiplicity. The
winding number is the total number of zeros of ® counted with multiplicity).
The proof of existence for these solutions depends crucially on the fact ([9])
that when A = 1 we can, for N > 0, decompose the functional as

— 1 2
£(A,®) = %/}R (4|3A<1>|2+ (B+§(|<I>|2—1)) )dm + 7N

where 94% = %(Dl +iD3)®. Thus the minima will be solutions of the first
order Bogomol'nyi, or self-dual, equations

(5.20) 942 =0
(5.21) B+ %(|<1>|2 -1)=0.

(There are sign changes if N < 0.) The existence theory for these equations
is discussed in the book [19]. We shall write these equations schematically
as

B(A,®)=0.

Since the solution is invariant under interchange of any two of these Z;
the moduli space is a symmetric product of N copies of the complex plane
SN(C). Tt is endowed with a natural metric and complex structure which
makes it a Kahler manifold ([3],[34]).

Let the operator Ly, be defined in terms of the Hessian of £ at

T, € S}(\?) ﬂ Wk,OO(]R2;]R2 x C)
ken
by
(5.22)

d2
(¥, Lyo¥) 12 = a2

E@o+sp)+ [ (V-8 (is,m)’
s=0 R
for 1 = (B8,m) € C°(R%; R? x C). Notice that the second term on the right

hand side is the expression occuring in the definition of SLEI,zg in definition 1.
Thus we may say that Ly, is obtained by linearising the second order static
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equations on Sﬁgg. Ly, has the following properties for ¥y € W1 (R?; R2x
C) (see [37] and appendix B):

(i) it is elliptic and the principal symbol is the Laplacian

(ii) it is non-negative and in fact can be factorized into a product of first
order operators

Ly, = Dfpo Dy,

where Dy, is the formal L%-adjoint of Dyg,. The operator Dy, is obtained by
the linearisation of the first order static equations above. These both extend
to Fredholm operators from H! — L? (i.e. they have closed range and finite
dimensional kernel and cokernel). The precise form of these operators is
given in appendix B.

(iii) it has a 2N-dimensional null space

(5.23) KerLy, = {¢ € H*(R%R? x C) : Ly,% = 0}

where N is the winding number of ¥o. In fact Dy, has a 2N-dimensional
null space and Dy, has a trivial null space. This space can be identified
with the tangent space to My at m(¥p) (see lemma 5.11).

(iv) if (¢,n)2 = 0 Vn € KerLy, then there exists a number v such that

(%, Lwot) 2 > Y912

Definition 2. For ¥ as above let K erL$ , be the L2-orthogonal subspace
of KerLy,, i.e.,

KerLy, = {¢ € L*(R%R* X C) : (¥,n)r2g2) =0V n € KerLy,}.
We have defined the solution space as Sy = {B(4, ®) = 0}NC®(R?;R? x

C) where B is the set of Bogomol’'nyi equations given in (5.20-5.21). The
moduli space was then defined by My = Sy/G. One may instead consider

(5.24) S = {B(4,8) =0} nA?
and the corresponding moduli space M 1(\,2 ) = SI(\?) /G,

Lemma 5.10. There is a bijection between My and M 1(\? ). For our purposes

the manifold structure on My ts inherited from that of M 1(3) (determined by
the map F in lemma 5.11) and we will use only the notation Mpy.
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Proof. See appendix B. O

Our next result gives local families of static H? solutions as a 2N-
dimensional local submanifold of Sﬁgg. Recall that the Bogomol'nyi equa-
tions, which we write schematically as B(A, ®) = 0, are gauge invariant and
so descend to a set of equations on M. As remarked above, the mod-
uli space My is precisely (B-1(0)(.A®@)/G®. Via corollary 5.8 we can
locally identify My with the solutions of the Bogomol’'nyi equations on a
slice. Thus we make a definition:

Definition 3. For ¥, as above let

Remark. The tangent space to M ~n(%o) at the point ¥ can be iden-
tified with KerLy,. This is clear because the operator Dy, is obtained by

linearisation of the equations B(¥) = 0 on Sﬁgg while the kernel of Ly,
coincides with that of Dy, (see appendix B).

The next lemma gives a local diffeomorphism betweem My, M N (Po)
and an open set of the linear space KerLy,.

Lemma 5.11 (Local Families of Solutions). Let ¥9 = (a,¢) €
Sl(\?)ﬂkeN Wk®(R2%;,R? x C) and let T S](\?) — M be the natural projection.
Then My, KerLy, and My(%) are locally diffeomorphic as follows: there
exist a neighbourhood Uy C My of 71'(\Il~o), a neighbourhood Uy C KerLy, of
the origin and a neighbourhood Us C My(¥o) of Yo, and diffeomorphisms

F.U - U, G:U; — Us Uy : Uy — Us

such that F(m(¥o)) = 0, G(m(%o)) = Yo, ¥o(0) = o, (Gom)|,, = id|,,
and (o G)IU1 = id|U1. The map

‘ifo:quzH\io(q)

will be referred to as a local family of solutions. It satisfies Uo(q) €
Nken Wk (R2;,R? x C). Finally, restricting the differential of the projection
map to KerLy, gives an isomorphism

Ty - KCTL\pO — 7r(\I»'o)MN

which we shall use to identify these spaces. (The space Tr(yoMn is the
tangent space to My at w(¥p).)
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Proof. First we will construct Ty. Starting with the static solution ¥g, we
look for solutions, elements of My (%), in the form Wy + % and solve for
using (5.20-5.21) and the gauge orthogonality conditions. It follows that %
satisfies a system of equations of the form

(5.25) Dyop = g(¥)

where g(1) is quadratic in components of ¢ (see appendix B for an explicit
formula). From this we get

Ly, = D\*ilog("/’)'

Claim The equation Ly,y = f is uniquely solvable in K erL$0 N H? for
fekK erLéo.

Proof of Claim To see this let Gy, : f — 1 be the associated Green
operator. By Lax-Milgram this is a bounded linear operator from K erLé,o —
KerL3 ,NH 1, In fact since ¥y € WH™ it follows from the formula for Ly,
in appendix B and elliptic regularity that it is a bounded linear operator
KerLy, — KerLg (H?.

Since Dy, g is automatically in K erL$0 we can consider the function

Q:H2 — H?
Y — P — Gy, (Dy,(9(¥)).

Claim. @ is a smooth function and has derivative equal to the identity at

the origin.
Proof of Claim. This follows from the fact that the map

H2 N L2
Y — Dy,g(¥)

is smooth by the Sobolev theorems and the Green function is a bounded
linear operator as just mentioned.

It follows that @ is a diffeomorphism between neighbourhoods of the
origin in H2. Since Ly, ¥ = 0 if 9 satisfies (5.25) all solutions of that
equation are mapped by @ into KerLy,. This proves incidentally that if O
is a small neighbourhood of ¥g in A® then My (¥o) (O is a submanifold
of O. We then define Ug(q) = ¥o + Q(g).

Next we construct G. Recall that by corollary 5.8 we have a diffeomor-
phism G~ between a neighbourhood V; of 7(¥() in M@ and a neighbour-

hood V5 of ¥y in S‘CSI?Z' But by definition é(MNﬂ%) C MN(\I/O) and
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G—I(MN(\I/O)O‘/Q) C Mpy. Therefore since MN(\IIO) is a submanifold it
follows that My is a submanifold of M and G restricts to a diffeomor-
phism G with the required properties. F' is defined by F' = \i/(')' lo@. Tt
follows from this construction that G and 7 are inverse to one another as
stated; this implies the statement about m,. The W¥ statement is proved
in lemma B.3. O

Remark. A choice of basis e, for the linear space KerLy, induces
a coordinate system on My around 7(¥p) in which the point ¢ € My is
represented by an 2N-tuple g, with F(q > queu. Hereafter we will write
g both for the point in My (or M ) and for the 2N-tuple (g,). Locally
points of the manifold My (%) can be written as Wo(q) for q € U,.

Theorem 5.12. (3) SI(\?) C A® is a submanifold with tangent and L2-
normal spaces at Vg given, respectively, by

(5.26) T(¥o) = KerLy, ® Ty, (6 - ¥o)
(5.27) N(¥o) = SL N KerLy,
(i) S(z) — My is a principal GO bundle. The space N(%p) is the

Lz-m'thogonal complement of T (%) in Ty, A?.

Remark. Assertion (i) above follows immediately from the decomposi-
tion in lemma 5.6 and the identification of the tangent space to My with
KerLy, (see the remark following definition 3). However, it is convenient
for what follows to introduce the projections below (and reprove this state-
ment).

Proof. (i) Define the Hilbert spaces E; = N (%) and E; = T(¥,) with H?
norm. Let Iy, (resp. 1 —Ily,) be the L2-projection from H2?(R2;R? x C)
to Ey (resp. E3). Recall from lemma 5.6 that ©y, varies continuously in
operator norm. Also by lemma 5.11 there is a basis of Ker Ly, which varies
smoothly in H? as a function of ¥,. Therefore the operators Iy, (1 -1Iy,)
are smooth in the operator norm with respect to ¥q € 5'1(3). It follows with
the notation of lemma 5.11 and corollary 5.8 that the map

A® - EixE,
¥V - (HWOOQOE]_,((I—H\I/O)OQOE]_, EXP—1°E2)>
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is a diffeomorphism from a neighbourhood V of ¥y € A® to a neighbour-
hood Vi x V3 of (0,0) in E; x By such that VNS is mapped into {0} x V5.
This proves that Sﬁ) is a submanifold of A®.

(ii) G® acts smoothly and freely on Sf\?) and 7 is a smooth surjective
submersion. Lemma 5.11 proves local triviality. O

5.2.iii. The Ansatz. We now return to the solution of the time depen-
dent equations. Let U(t) be the solution at time ¢ which, as stated in the
beginning of section 5.b, is in the temporal gauge. For subsequent times it
will be necessary to change gauges (so a time component to the connection
will appear). We give an ansatz for the solutions of (2.1) and define the
gauge in which we work. We have a small parameter € which represents the
distance of ¥(¢) from the solution space 51(3). It is convenient to introduce
this explicitly into our ansatz; thus we will introduce a change of variable

(5.28) () = et.

By a slight abuse of notation we will write functions f(7) = f(et) as f(7)
and we will write

(529) fesp f=2i

so that f = ¢f’. We will use the following convention: in equations in
which some variables have argument 7 and others have argument ¢ it is to
be understood that 7 = et. Recall that ¥(¢) is the solution in the temporal
gauge. We will search for a gauge transformation x(t) such that we can
write the solution (A#, U#) = p(x(¢))(0, ¥) as

(5.30) U#(t) = Wo(et) + exb(t) = (alet), d(et)) + e(B(t), n(2))
ox

(5.31) Af0) =E6olt) = 5

where A# is the time-component of the connection. Theorem 5.15 will allow
us to interpret Wo(t) as the L? projection of ¥#(t) onto 5’1(3). The terms [y,
B and 1 will be shown to vanish in H? norm as t — co. In addition we will
require, as gauge conditions, that

(5.32) £ (a(r), 8(r) = 3-W0(r) € SLay(r

(5.33) (B(t),n(t)) = ¥(t) € SLyg(er)-
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The possibility of applying these gauge transformations will follow from
lemma 5.7 and the following result. This states that if we regard Sﬁ\?) as
a principal bundle over My with fibre G® then given a curve in moduli
space My it can be lifted horizontally to a curve in Sy so that the vertical
component of the velocity at each point is zero.

Lemma 5.13 (Existence of Horizontal Lift). Let there be given a
continuously differentiable curve in the moduli space 7 — q(T) € My
and ¥o(0) € Sﬁ)ﬂkeN Wk (R2;R? X C) at 7 = 0 such that m(¥o(0)) =
q(0). Then there ezists a continuously differentiable curve T +— Wo(T) =
(a(T),d(1)) € Sﬁ) starting at ¥o(0) and such that

r(%o(r) = o(r)
< (a(r),9(7)) € SLD, 40

The function T +— (¥o(7) — ¥o(0)) € H2((R%R? x C)) is differentiable.
Furthermore, for all K sufficiently small there ezists a number c(n, K) such
that

S
(5.34) [ @<k

0
implies
(5.35)
Tréllgg](ll‘I’O(T) — o (0)[lwn.eo + [|¥o() = To(0)| gm+2) < c(n, K)llgllca(p,sp)-
Finally let q(1),q*(7) be two C' curves starting at m(¥o(0)) and satisfy-
ing (5.34) and let Uo(T), U4(T) be their respective lifts. Then there exist
constants c1, ca such that if ||lgllc1(o,sp) + lg*llcr(po,s)) < c2 then

Jmax, [Wo(T) — 5(T)llg2 < e1Sllg — ¢*ller(jo,s-

Proof of lemma 5.13 Assume without loss of generality that ¢(0) =0
(and recall the remark above theorem 5.12 regarding the notation of points
in My). We will use the diffeomorphism ¥ provided by lemma, 5.11 (with
o = ¥y(0)) to obtain a curve 7 — ¥o(q(7)) € My(¥o). We now look for
7 — x(7) € G® such that 7 — Wo(7) = p(x)Po(q(7)) satisfies the required
condition. Differentiating we get (using the notation defined in (5.29))

d 2N 9a N 9¢
el — el ! iX r 7Y Nyt
== To() (2_: Gy, T VX O Gy, +iX $))
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so that x’ must solve the equation for each 7

(5.36)

_ 2 I & ! 8‘% 2
AX' +|$(g(7)) E qu E q,-—) € L%
8 — ' Oqy

This is solvable since the operator on the left is an isomorphism from
H3 — H! for each 7 (lemma B.2). The differentiability statements fol-
low from the elliptic estimates. Let K be small enough that (5.34) ensures
g remains within the same coordinate chart. Lemma B.3 then implies that
Ix'(- ;) le» < e(n, K)||gllc1 for all n. This implies the bound (5.35). Fi-
nally to prove the continuity of the lifting, let c; be small enough that
g,q* both lie in the same coordinate chart and let ¥/, (x*)’ be the solu-
tions of (5.36) and the corresponding equation for ¢*. Then by subtracting
the equations and applying the elliptic regularity estimate it follows that
X" = (") lgs < cllg — g*llctjo,s) and the result follows by integration. [

Remark. [Definition of n,]. Let {e,}?Y, be a basis for
TWO(O)MN = KerLy,( so that a point ¢ is given as ¢ = Zu quey. Con-
sidering a local family of solutions g — ¥o(g) as in lemma 5.11 note that

Uy = ﬁ(q) € Tgo(0) My solves the linearised Bogomol’nyi equations. Now
recall that KerLy o(q) CON be identified with KerDy, ol , the operator de-
scribed above and in appendix B. It follows from thls escrlptlon that the
L2-projection operator defined in lemma 5.6 @\i,o( a) restricted to To0) My

maps into KerLg . .. We may thus display a basis for Tj
Uo(g) v
forp=1,...,2N

o(0) My by forming

AT

(@) = Ogyq) (5, ) (@)

The 7, (g) vary smoothly with respect to g in the H 2 norm by lemmas 5.6 and
5.11. Under a gauge transformation ¥o — p(x)¥o we have 7 A = (p(X)) T
where p(x)«(8,1) = (B,m€X). Let q() and ¥y(7) be curves as in lemma
5.13. It follows that we can write

(5.37) %\Po(f) = g (r)nu(r)
=1

where n,(7) = p(x(7))«(f,(q(7))). From this we see that Lyyr)nu(r) =0
and for sufficiently small 7 the {n,(r)}2¥, form a basis for KerLy,(r) since



Ginzburg-Landau Gradient Flow 173

linear independence is an open condition. Furthermore it follows from this
definition and the proof of lemma 5.13 that

(5.389) e (7)< e, K) lgllea o.sp-

Let ny,(7) be defined in the same way for a curve ¢*(7) as in lemma 5.13,
then by the proof of lemma 5.13 for u=1,...,2N we have

(5.39) Orélax (1) = (T2 < e(K)Sllg = ¢*llorqo,s))

dny

(5.40) 022X ”( )— —(T)||H2 < c(K)llg = q*ller(o,sy)-

Next we prove theorem 5.15, a result on the existence of tubular neigh-
bourhoods. As remarked previously this is nonstandard in that SI(V) is a
submanifold of A®), which has an H? topology whereas our tubular neigh-
bourhood will be constructed with respect to L2. The possibility of doing
this follows from the following regularity result. In the next two results ¥,
is as in theorem 5.4.

Lemma 5.14 (Regularity). Assume F € S(z) and (F - ¥) € SESI?).
Then there exists a number ¢ = c¢(¥,) such that

IF = llgz < c(IIF = allgz + ¥ — Tallz2).

Proof. This is proved in appendix C. O

Theorem 5.15 (Tubular Neighbourhood). There ezist numbers L3 >
0, 8 > 0 depending only on ¥, and a smooth function P : By — 51(3) defined
on the ball

By={¥ e A : | ¥ - 0,42 < 0}

such that for all ¥ € By the point P(¥) is the unique point of S](\?) such that
either of the following two conditions hold

i) ¥ =P(T)|L2 = ian 5@ 1% = Pligz, or

(iz) (¥ - P(¥)) € SC (\I,) ﬂKerLP(\I,) and ||¥ — P(¥)| g2 < L3b.

In addition P(¥) has the following properties

(iti)  if ¥ € Nren WEP(RER? X C) then P(¥) € Npey WH®(R%R? x C)
(i)  if g € G then P(p(9)¥) = p(g)P(D).
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Proof. Step One. The L?-normal space N(¥g) to 51(3) at \Ifo was defined in
(5.27). It is endowed with the H? norm. Let Iy, : N(¥.) — N(¥g) be the

restriction of the L2-projection onto N(¥). Notice that Ily, is continuous
in the operator topology (induced from H?) with respect to ¥g € SJ(\?) (see
the proof of theorem 5.12). Results of Kato (see [21, 20]) imply the follow-
ing:

Claim For ||Ug— W, || g2 small Ily, is a bounded linear bijection from N (¥,)
onto N(¥y).

(This can also be proved directly with an implicit function theorem argu-
ment.) Now consider the map

(5.41) I.UxV —» W
(5.42) (To,n) +— o+ yg,n.

Here U x V is a neighbourhood of (¥,,0) in SI(\?) x N(¥,) and W is a
neighbourhood of ¥, € A®. The derivative of this map at (¥,,0) is the
linear map

T(T,) x N(¥,) — Ty, A®
() = P+n

This is a bounded linear bijection. Therefore by the inverse function theorem
we can choose U, V, W small so that I is a diffeomorphism. Write the inverse
diffeomorphism as I~}(¥) = (P(¥), v(¥)). This allows us to write each point
¥ € W uniquely as ¥ = P(¥) + [py) (v(¥)) with P(¥) € U, v(¥) € V. The
fact that ¥ — P(¥) satisfies condition (ii) isthen immediate.

Step Two. We next show that if ¥ is close enough to SI(\?) then the
minimisation in (i) in the theorem is attained. Thus there is a closest point
on Sﬁ) and it satisfies (ii) in the theorem. This is done in two stages. Firstly
we show that the closest point on each orbit lies on the slice ¥ + SESI,Z ). We
then show that there exists a point on (¥ + Sﬁg )) N SI(\?) which is closest to
.

Lemma 5.16. For U and ¥g in A® there exists x € G®) such that

lo(x)%o = Pllzz = inf () %o — |2

and x is such that p(x)¥o — ¥ € S[,‘(;). Also if both ¥ and ¥y lie in
Nikexy W (R?%;R? x C) then so does p(x)¥o.
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Proof. The proof of this is in appendix C. a

Lemma 5.17. There exist numbers L3 > 1,e3 > 0 such that if € < €3
the following is true. Let ¥ = (A,®) € Npey WP (R%:R? X C) satisfy
[T — U, ||z < €. Then there exists ¥g € Sﬁ)ﬂkeN Wk (R2;R? x C) such
that (¥ — Wo) € SLY N KerLy,, | ¥ — Yol g2 < Lse and

I — oll2 = inf 1P — ¥l 2.
PesPn(v+sLP)
Proof. The proof of this is in appendix C. O

STep Three. We now know that there is an L?-closest point to ¥ on

S](\?). We must show that if 8 is small enough it is unique. So assume to the
contrary that for all # > 0 it is not true that if ¥ € By then P(¥) is the
unique point which satisfies (i) in theorem 5.15. In this case there exists a
sequence of points {¥;}52; such that

(i) lim; 00 “‘I’, - ‘I’*”Hz =0

(i) ¥; = P, + n; with P; # P(¥;) and ||¥; — P2 = ||¥: — P(¥3)|| £2-

The second condition implies n; € N(F;) by the Euler-Lagrange equation.
This in turn implies n; = (¥;—F;) € SL'EIZ) by the remark following definition
1. Therefore by lemma 5.14 we have

I1P; — Tullz < (1% — Uullrz + 1P — Pall2)
But

1P — Wl 2 1% — Pillrz + [1W: — V|2

1%; — P(Z:) |2 + [[i — Pl 2

IAIA

and therefore
Jim (I = Wallgz + % = Pills + |9 = Wall2) =0.

Now define v; to be the unique element of N(¥,) such that Ip,(v;) = n;.
Such a v; exists and is unique for ||P; — ¥, || g2 sufficiently small since Ilp, :
N(¥,) — N(P;) is a bounded linear bijection by step one. Furthermore the
v; will satisfy lim;_,co ||V;]| g2 = O since

Ivillzrz < lInill 2 + (T, = . )il 2
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This now gives the desired contradiction; if we take i large we may assume
V; € W,v; € V, P € U. Therefore by the uniqueness in step one P; = P(¥;)
contrary to assumption.

5.2.iv. Proof of the Adiabatic Approximation theorem. Assume
U(t) and ¥, are as in the theorem with ||V, — ¥(0)||zz < € which will
be specified later. As explained, we show that the projection P(¥(¢)) of
U(t) on S](\?) satisfies the theorem (where P is defined in theorem 5.15); in
particular, its H2-distance from ¥(t) asymptotically vanishes and the two

curves converge to a unique limit ¥, € 51(3). To achieve this we determine
U#(t) a gauge equivalent curve to U(t) which appears in our ansatz for the
solution given in (5.30-5.31) together with gauge conditions (5.32-5.33). For
initial conditions we have U#(0) = ¥(0). We will prove that the solution
can be written in this way for all times and lim; 4 |[¢(¢)]|gz = 0. (We
will see later that Wo(et) = P(¥#(t))). First we determine an initial point
Yo (0) € SI(\?) in step one. Assuming that a curve g(et) is given in My we
determine ¥#(t) and obtain the equations satisfied for the error term t(t) in
step two. In step three we obtain the curve ¢ and in step four we show that
the Hessian can be used as a Liapunov functional to show the exponential
convergence to a limit. This is concluded in step five.

Step One. Determination of ¥o(0) Initially we take € < min{6,es/L3}
to allow application of lemmas 5.7-5.9 on some small time interval to fix
the gauge. We will make € sucessively smaller as the proof progresses. We
determine ¥q(0) as the L2-projection of ¥(0) onto SI(\?): apply theorem 5.15
with ¥ = ¥(0) and ¥, as in the statement of theorem 5.4. This provides us

with W(0) = P(¥(0)) € SPNey WH(R%; R? X C) satisfying

(5.43) [ ¥(0) — Wo(0)|| g2 < L3e
(5.44) T(0) — o(0) € (S.c(;g(o)) (N KerLs, o

Step Two. Choice of Gauge, ¥#(t) and v(t) Throughout this step
we assume that the curve g(et) = 7(¥p(et)) is given in My (starting at
m(¥p)) although we will not specify it until step three. Using the local
diffeomorphism F' in lemma 5.11 we slightly abuse notation and use q =
{qﬂ}iﬁl to designate ‘both points in a coordinate chart of 7(¥o(0)) and
points of KerLy, (as explained in the remark following the same lemma). So
let g(et) = (1) be any C* curve in the chart in My with m(¥g) = ¢(0) = 0.
We apply the map ¥ of lemma 5.11 to obtain a local family of solutions
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q — Bo(q) € Mn(T). Tp(g) varies smoothly in the H? topology with
respect to ¢ and ¥o(q) € Ngey WH®(R%R? x C). We remind the reader
of our convention regarding the slow time variable 7 defined in (5.28). By
lemma 5.13 the curve ¥o(q(7)) € My (¥o) is lifted horizontally to the curve

Uo(T) € 81(3) such that 7 — Wo(r) is differentiable into the H? topology

and for each 7 satisfies ¥o(7) € Npey WP (R%R? x C) N SI(\?). Next (5.43)
implies by continuity ||¥(t) — ¥o(et)||gz < Lse for small 7. Since Lze < €;
lemma 5.7 applies to provide a gauge transformation x(7) such that

W (t) — o(et) = (p(x(t)L(t) — Vo(et)) € SLG -

The lifted curve ¥o(-) as well as the gauge transformation x(-) depend on the
curve q(-) and to this effect we will insert this dependence in the notation
Uo(7;q) and x(t;q) respectively when it is necessary (lemma 5.19). The
dependence of ¥y and x on g will be supressed when no confusion is possible.

Now we determine the equation satisfied by 1(t). Substitute the ansatz
(5.30)-(5.31), with these gauge conditions, into equations (2.1). This leads
to the following set of equations (where we show explicitly the dependence
on the scaled time variable T = et suppressing dependence on t)

(5.45)
B+ (A +16(r)*)B + 2(iDa(ry$(r),n) = —(—ld;a(r) +€f(Zo(7), B, o)

(5.46)
i1 (~Bagr) + 920 + 28 - Dogry(r) — 2 (1~ [4P(r))n =

_%q&(r) + €g(¥o(T), 8,7, Bo)

(5.47) (A + [¢(T)1*)6o = h(To(T),n,7)

where ¥o(T;q) = (a(7’),¢(r)). The nonlinear error terms f, g, h are given
by:

f = Vfo~2¢m)B+ in, Dan) — ol
g = (o +IBE)+en) + 28 Dan+i(V - Bn () ~ 5lnl*d — 3elnl’n

dg . d
o= (2in,75) + (in, ).
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Equations (5.45-5.46) can be written in the form

(548) 9+ Dugeyh = —eolr) + i (Bo(r), B, o)

where the operator Ly, is defined in (5.22) and appendix B. We will also
use the differentiated version of this equation

(5.49) ﬂ,
. d
Da® + Ly (r)(Da®) + [Da, Lyo(r)|¥ = —Da(E‘I’o(T)) + €Daj(Yo(T), B, 1, Bo)

where D, is as defined in appendix A.

Step Three. Determination of g(et) The next stage is to construct the
curve g(et) which represents a projection of ¥(t) onto the moduli space
Mpy. We will first write down an equation for ¢ which ensures that the
orthogonality condition in (5.44) holds for positive t. We will then show that
this equation has a solution by the contraction mapping theorem. From step
one we have a point ¥(0) € Sy N S](\?) such that ¥(0) — ¥((0) is orthogonal
to KerLy, and gauge orthogonal with respect to ¥y (see (5.44)). We want
to define g(7) in such a way that these orthogonality conditions persist for
t > 0; thus referring to (5.30-5.31) we require that

(%(8),nu(7))r2 =0

for all n,(7) as defined in (5.37). This requirement leads to the differential
equation (5.50) in the next lemma. First, introduce a metric g,, on the
moduli space My by the formula

gp,u(Q) E(ﬁ'u(Q)7 Ty (q))Lz'

Since g is gauge invariant it defines a metric on My . (This has been studied
in detail ([34, 3]) and is known to be a Kahler metric). Notice that the
definition of n,(7) implies

guu(‘Z(T)) = (nu(7)7 nu("'))Lz-

Lemma 5.18 (Determination of ¢(7)). Assume that q(7) is the solu-
tion of

(650 guladr) = e ena(n) o+ elmu(r), )
q(0) =0.
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Then
(5.51) (¥(t),n)r2 =0

for alln € Tq,o(et)]\ZfN, if this is true at t = 0.

Proof. Adopt the local coordinate system from lemma 5.11 and differentiate
(5.51) using (5.48) to show that this derivative is zero if and only if q satisfies
(5.50). By assumption (5.51) is valid at t = 0 and so it will be valid for all
t>0. a

Lemma 5.19 (Existence of ¢(7)). There ezists a time S > 0 and ¢4 > 0
such that for € < €4 there exists a C* solution q(7) to (5.50) on [0, S] which
satisfies (5.34).

Proof. ¥(t) is known and we wish to determine g(7). We shall apply
the contraction mapping theorem on C([0,S]; My). So assume g¢,q* €
C([0, S); My)) and let ¥o(7), T§(T) be the respective horizontal lifts. As in
step two gauge transformations x(t), x*(¢) exist to make 1 = p(x(t))¥(t) —
Uo(et) and ¥* = p(x*(¢))¥(t) — Ty(et) gauge orthogonal with respect to
Wo(et), g(et). Also it follows by (5.35) and lemma 5.9 that 1) varies contin-
wously in H? as a function of ¢ (note that x in lemma 5.9 is estimable by ¢
through its smooth dependence on ¥y):

1% — ¥*|m2 < cSllg — q*llcr (o, s3;mm)-

Next substitute for ¢ = p(x)¥ — ¥ into the right hand side of (5.50).
Using the uniform invertibility of the matrix (g,,) on the coordinate chart
this gives an equation of the form

q'(r) = J(g,q).

It follows from lemmas 5.13 and 5.9 and (5.39- 5.40) that J satisfies

max 17(0) = J(@)] < e(S + Illa = ¢”llor o,
for times .S short enough that €||¥(S) || g2x2) < min{e, e2}. (Note that since
X in lemma 5.9 is estimable in ¢ in H3 via its dependence on ¥y, the terms
in J involving By and V[ are similarly estimable in H?). Therefore for ¢, S
small enough we get a contraction in C([0, S]; My). This gives a solution
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which we call ¢(7); by making S sufficiently small we can ensure it satisfies
(5.34). O

It will follow from the analysis that this solution g(7) can be extended
indefinitely to a solution which satisfies (5.34) with S = 400 if € is sufficiently
small. Having thus determined ¢(7) we apply lemma 5.13 to define ¥o(7) as
the horizontal lift of ¢(7) with initial point ¥o(0). For as long as ||#(t) —
T, ||g2 < 6 we know by theorem 5.15 that W (et) = P(T#(t)).

Step Four. The Hessian as Liapunov Functional We will now show that
the Hessian of £ provides a good norm with which to estimate the solution
and then obtain exponential decay in time of a functional Q(t) built out of
the Hessian evaluated at (). Q(t) is equivalent to the H2 norm of .

Lemma 5.20. Assume q(7) = m(¥o(7)) satisfies (5.34). Then there exists
a positive number vy such that for 0 <7< S:

(5.52)
Y NG @e) < (% Lugr) ) 2@2) + (Pats LygryDat) 2@y < V¥l ir2e)
(5.53) Y Y@y < ILumlicm) < YNoligs

for allp € H2(R%R? x C) N KerLéo(T).

Proof. The proof appears in appendix B after lemma B.1. O

Define

Q(t) = Aa(¥(t), Lyy(ey () 2w2y + (Dat(t)s Lyg(et)Pat (b)) L2(m2)
for the constant A, to be determined later.

Lemma 5.21. Let q(7) satisfy (5.34). Let T = S/e. Then there exists
I' > 0 such that for0 <t < T

P p(Ol2 < QW) < DY)

Proof. This follows from lemma 5.20. a

We now collect together estimates of various error terms in:
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Lemma 5.22. Let q(7) satisfy (5.34) and e < 1. Then there exists a number
¢ such that at each t > 0,

1o ()12 < el @)llz2 (I ()]l + 14 (eD)]),
160(®)llas < ell(@llas (I (Ela + ' (€1)])-

Proof. This follows by elliptic regularity estimates applied to (5.47), us-
ing lemma B.1. (Notice that by (5.38) and (5.37) we have a bound
1%o(7)|lwreo < c(K) for 0 < 7 < S, so we can use the H! norm instead of
the H? norm defined in (A.1).) a

Lemma 5.23. Let q(7) satisfy (5.34) then
(i) My = [Lyqy(et), Da] is a first order differential operator satisfying

| M|l L2 < A1||9]| g

(i) Ar = ad;Lq,o(.,) is a first order differential operator satisfying

A+l 2 < elg| I3l

Proof. The first statement follows directly from calculations using the formu-
lae in appendix B. (Notice that the commutators all give rise to error terms
which are curvatures (like B) or covariant derivatives (like D®). These are
all uniformly bounded ([19])). The second statement follows from (5.37) and
(5.38). The same comment about the H'! norm applies as in the proof of
lemma 5.22. O

Lemma 5.24. Let q(7) satisfy (5.34) and assume Q(t) < 2Q(0) for 0 <
t <T = S/e. Then there ezists positive numbers €5 and Ly > 0 such that
for all € < €5

¢ (et)] < eLQ(®)
180(6) 3+ 19(8) 32 < LaQ(®)

Proof. By lemma 5.21, Q(t) < 2Q(0) implies that ||1)(t)||z~ is bounded for
0 <t < T. Using the equation for ¢’ in lemma 5.18 and (5.48) we get

(5.54) ¢/ (M1 < ec(lllen + Bollzn + l19]122)
(5.55) llze < (il +1d' (7)1 + el Boll )
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where ¢ = ¢(Q(0)). Now substitute the result of lemma 5.22 in (5.54). This
gives

¢’ ()] < ec(¥llan + 9]l 2)-

Substitute this into (5.55) and we get the estimate for . Substituting this
into the expression for fy(t) in lemma 5.22 and using (5.51) and (5.53) we
get the last estimate. O

Remark. By making T small we can assume Q(t) < 2Q(0) to be true
on a small interval by continuity. It will turn out that @ is nonincreasing for
small € so this assumption will in fact hold with T'= +00. We now obtain
exponential decay estimates for Q(t).

Lemma 5.25. Let Ay = 10A%y and assume 0 < t < T so that Q(t) < 2Q(0)
and q(7) satisfies (5.34). There exist numbers r1 > 0, Ls > 0 such that for
e<l1

Q+m1Q < Ls(ld'I* + ol + Q).

Proof. Calculate

. d
Q = —2A2“L\I/0(7-)’l/)”%2 + €A (¥, Arip) — 2A2(E‘I’0, Lyor)¥)
+ 2e45(j, Lyo(r)¥) — 2/| Lug(r)Da? I3
d
+ G(Da¢> ATDa'l)b) - 2(__1)3\110(7-), L\Ilo('r)Da'd))

dr
+  €(Daj, Lyy(r)Da®) + (Lwo(r)Dath, Mih)

where (5.48) and (5.49) are used. All terms but the third, seventh and
ninth are estimated as required directly using lemmas 5.19-5.24. The third
and seventh terms are estimated using |(a - b)| < &|a|? + 75[b|? for suitable
6. This allows us to absorb them in the first and fifth terms respectively
with a remainder which is bounded < c|¢’|?>. The final term can be removed
by applying Cauchy-Schwarz and recalling —|| Ly %[22 < =7 !||¢[|%2 and
lemma 5.23. This shows that it can be absorbed into the first and fifth
terms using the definition of Ay. Indeed this argument gives an estimate for
|Ly,Da?| 12 and hence from (5.49) we obtain

Corollary 5.26. Under the same conditions as lemma 5.25

19l + | Lao(rDatlize < (@ +1Q1+ |¢'I> + [|Bollz2)-
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Lemma 5.27 (Exponential Decay). Let q(7) satisfy (5.34) and assume
Q) £2Q(0) for 0 <t <T. Choose € < eg where

e = min{1, 6, %,64,es,r1 /(6Ls),r1/(12L2L5Q(0)),71/(6LsLs)}.

Then there exist numbers R,ry such that for0 <t < T

Q(t) < Q(0)e~"2t
' (et)] < eL4Q(0)e“T2t
1Bo@) |2 + (8]l 2 < LaQ(0)e™"2".

Proof. By lemma 5.25 and our choice of €5
Q+5Q<o.

From this we find the exponential decay result for Q(¢) with ro = r1/2. The
other two results follow from lemma, 5.24.

Step Five. Conclusion of the Proof It follows from lemma 5.27 that
Jde7 > 0 such that if € < e7 then g(7) satisfies (5.34) with S = +o0. Taking
K small we may assume that g(7) lies in the same coordinate chart for all
time. From lemmas 5.27 and 5.21 it follows that

[(®)% < TQE) <TQ(0)e™" < T?|[3h(0)[|ze 2%,
Also it follows from lemma 5.27 and (5.37-5.38) that for some Lg > 0,
[ ¥o(et) — Yo (0)ll 2 < Loe ™"
Therefore Jes < min{es, €7} such that € < eg implies

(1) [Wo(et) — Wo(0)|| g2 < &2
@) [ O# () — To(0) |2 < €2
(i3) || O#(t) — Uyl 2 < 6

for all times. Conditions (i) and (ii) allow us to continue our solution with
the gauges specified in step two for all times by lemma 5.9. We can also
deduce from (iii) and theorem 5.15 that ¥q(et) = P(T#(t)) for all ¢ > 0.
The solution can now be continued indefinitely and the results of lemma
5.25 apply for t € [0,+00). The curve q(7) € My will converge to some
point geo while 9» — 0 and By — 0 in H? at an exponential rate. This
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implies o(t) and ¥#(t) will converge in H? to the same limit ¥%. We now
wish to move back to temporal gauge and thus we apply the inverse gauge
transformation to that in step two. We obtain W(t) = p(—x(t))¥#(t) where
x(t) was determined in step two. Now by the equivariance of P

P(¥ (1)) = P(p(—x(t)) ¥ (t)) = p(=x (1)) Yo (et)

and P(¥(¢t)) € SNNgey WH™(R?;R? x C) by properties (iii) and (iv) of the-
orem 5.15. Since gauge transformations are isometries in L? we have

9% (2) — To(et) || L2 = 12 (t) — P(¥()) ]2 = inf ¥(t) = Pl
pes$

from (i) of theorem 5.15. Since P(¥(¢)) € Sﬁ) the uniquness of P(¥(t))
follows from theorem 5.15. Therefore to obtain the convergence results in
theorem 5.4 we must prove that x(t) — x(oco) in H3. To do this we estimate
|4| g1 from corollary 5.26 and then apply lemma 5.22. This implies ||Go||gs <
ce~"?* which implies the convergence of x since €28y = O;x. To complete the
proof of the theorem we must show that

g, 1900 = Pl = ik, 19(6) = Sl

Since P(¥(t)) € Nyen WH(R%R? x C) this will follow if we can show that
it is impossible that there exists P € Sy such that

(5.56) () = Pllge < inf [[¥() = S]re.
SeSy

So assume (5.56) holds for P = Q; then Q— ¥, = Q—¥(t)+¥(t)— T, € L2
But we know from the proof of lemma 5.10 that any Q € Sy is a gauge
transformation of Q € 51(3) by, say, p(x) . Since @ — ¥, € L? we have
x € H'. Let g, € H® satisfy ||g — gullgn < 27¥ for v = 1,2,... Then
S =p(g,)Q € SJ(\?) gives a contradiction to (5.56) for large v. a

6. Proof of Main Theorem.

We recall the comments at the beginning of section 5.b. Let ¥(t) be
our solution in the temporal gauge; then first we move into the Coulomb
gauge, slightly modified as in theorem 5.3. This gives a fixed gauge trans-
formation p(x) € NW**®(R?), satisfying dx € N, H® and a point ¥, €
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SNNkeny WP (R%;R? X C) so that at time Tp we have ||p(x)¥(To)— sl g2 <
€x. Also U(Tp) € (ien Wk (R2;R? x C). We now apply theorem 5.4 to
deduce that p(x)¥(t) = ¥(t — Tp) converges in H? to a limit ¥y, at an ex-
ponential rate. Therefore since ¥ is fixed we can deduce that ¥(t) will itself
converge in H? to a limit p(—x)¥ oo, which we relabel as ¥, to complete the
proof of the existence of a limit. The exponential decay result follows from
the corresponding statement in theorem 5.4 and the fact that P commutes
with the gauge transformations.

A. Appendix A.

In this section we will give some background material for the convenience
of the reader. We will use the following spaces. For complex functions
n : R? — C we introduce Sobolev norms given by

InlZe= Y 1D 73
M

where DM is the order M covariant derivative and the sum is over all partial
indices. Similarly direct sums 9 = (3,7) : R? — R? x C are differentiated
according to the direct sum connection

Dalb = (VIB’ Da’?)'

We introduce corresponding Sobolev norms:

7= > DMl

|M|<r

By a slight abuse of notation, we will denote the corresponding Sobolev
spaces which are defined by completing smooth compactly supported func-
tions with respect to these norms, by H™® in both these cases. Notice that
if ||a||px.00 < M then there exists ¢ = ¢(n, M) such that

(A.1) YA e < I8l < clllli o

The space C™*(R") is the space of (possibly vector valued) functions whose
derivatives up to m*® order are continuous, bounded and uniformly Holder
continuous of exponent a. Next let I be a closed interval of the t-axis. The
space C™*P(R™ x I) consists of (vector valued) functions whose spatial
derivatives up to m** order are continuous and bounded and are uniformly
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Hoélder continuous with respect to (z,t) with exy
The norms on these spaces | - |;,q,8 are defined b

o™ £
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onents «, § respectively.

sup |0 f(z,t)

z,

|f lm,a = Z

| + sup
[M|<m Tt

I M
sup |0 f(z,t)| +

o1

z, t) — 6Mf(y)t)l
f(fL', t) - aMf(ya t)l

lflm,a,ﬂ = Z

|M|<m

(

sup
x, z,y,t

oM

|z — y|®
|z — y|*

.f(xa t) — 8Mf(:12, S)l

+ sup

z,t,8

where OM refers to spatial derivatives given by the
have the following local existence theorem for our
form given in 2.11.

Theorem A.1 (Local Existence).

¥
¥(z,0)

AT + f(T, T
\I’()(.'D)

with o € C>1(R2). Then there exists a time Ty, =
on which there exists a unique solution u € c2ls

For the proof of the theorem we refer to [13]. T
the existence of a fundamental solution of linear p

Theorem A.2. Consider a linear parabolic syster
U= AU+ fi(z,t)VU + foz,

where f1, fo are matrix valued functions in the s
then there ezists a fundamental solution matriz Z
estimates

|0k Z (z,y,t,7)| < c1(t —T)

where the constants ci, ca depend on a, T, | filo,a,0-
can be expressed as

(A.2) U(z, ) = /0 t / Z(z,y,t, 0)U(0

and lims_o |[U(z,t) — U(z,0)|| Lo g2y = O.

_ntlkl _, lz—=y|3
2 e 27T

|t —slP >

multi-index M. We now
equation, written in the

Consider the initial value problem

)

= Tioc(|0%%o| oo, o] < 2)
R™ x [0, Tioc])-

e next theorem concerns
arabolic systems.

n of the form
13124

pace CO%O(R™ x [0,TY)),
(z,y,t,7) which satisfies

for |k| <2

This means the solution

y)dy
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For the proof see [13].

Corollary A.3. Assume [U(z,0)| < cze V. Then Jcq(T), R(T) > 0 such
that fort € [0,T],|z| > R

U(z,t)| < cse” 21

Proof. We split up the integral in (A.2) into two parts I, I on the inner
region I = {|z —y| < l—”él} and outer region O = {|z —y| > %l} Notice that
on the inner region |y| > l%' so that

|I1| < Cge—glz”ZlLl.

The second part of the integral is estimated as

D)
|I5] < C3/ Z(x —y,t)dy < C3c1/ 1 exp(—czlitil)
(0] [0

2
x ——
<cs exp(—62| ; yl )s

so choosing R > —2% gives the result. a

We now state a version of the maximum principle from [30]. Let Q be
an open set in R"*! with coordinates (z,t). Define for P € Q the set S(P)
to be the set of points in {2 which can be connected to P by a curve along
which ¢ is nondecreasing. Let L be an operator of the form

L=0,-) aj(z,1)0:0; + Y _ ai(z,t); + c(z, 1),
ij 7

where the coefficents are continuous and bounded in Q and satisfy for all
(z,t) € Q

(4) Zij aij(z, t)Aid; > 6|AF%, §>0

(1) c(z,t) > 0.

Theorem A.4 (Maximum Principle). Let u € C%(Q) satisfy Lu < 0
in 2. Assume that there exists a point Py € Q) such that

sup u = u(FPo).
S(Po)

Then either u(Py) < 0 or u = u(Pp) in S(Fo).
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B. Appendix B.

In this appendix we summarise a few facts fi
are needed. Let ¥p = (a,¢) and T+ ¢ = (a +

1 Stuart

rom the paper [37] which
¢+ n) both be solutions

of the Bogomol'nyi equations (5.20-5.21) and assume that (3,7n) satisfies
the gauge orthogonality condition with respect to ¥o. Then we find by

subtraction that (8,n) must satisfy
Oan — 5(P1+i02)¢ — 5(B1 +

dp+ (é,m) + %(n,n) =0
~d*B — (i¢,n) = 0.

The part of these equations linear with respect to
Dy, used in the text. The equations then take th

(B.1) Dy = g(¥)
Notice that if ¥g, Uy + ¢ are static solutions ther

and so [|g(¥)[ 2 < el 2.
The second order linear operator defined by tl

Ly, = D, Dy,

with g quadr

Explicitly Ly, is given by

(b Tuo)re = [ 1VBF+1Dunl? +

-20- (TI, -Da¢) -

The operator My, = Dy, Dy, is given by
(6. Mag)zz = [ [VBF+1Denl? + I

Lemma B.1. There ezists v, independent of ¥q
that for all ¢ € KerL$0 NnHY

(B.2) Y Hl2 < (¥, Leg®) 12 = | Daoll?

The quadratic forms (b, My,) 2 and [ |Vul?+|¢
ilar to (B.2) for all ¢y € HY*(R%;R? x C), u €
D,¢ = V¢ — iag we can replace the {1,a} norm
the usual H' norm if |a|Lo < oo by (A.1).

2 <

l,a =

if2)n =0

B,n) defines the operator
e form

ratic.

1[4 <1and|p+n| <1

1e Hessian is given by

12181 + nl?)

1 2 2
S = [6P) P

(812 + [nl?).

in Sy (or in S%), such

2 <Y1 -

|2|u|? obey estimates sim-
HL*(R?%;R? x C). Since
defined in appendiz A) by
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Proof. (B.2) in the case of Sy is proved in [37, Theorem 3.1]. In the case of
SIZV apply a gauge transformation to go into Coulomb gauge in which ¥q is
smooth and the norms in (B.2) are invariant after such a gauge transforma-
tion (see also the proof of lemma 5.10). The other two quadratic forms are

defined by non-negative operators with zero kernel so the proof is obtained
as in [37]. O

Proof of lemma 5.20. By (5.35) we see that ||Uo(t)[|lpre < ¢ < 00
and so we can use the H2 norm instead of H%%") by (A.1). Then (5.52) is
obtained by applying (B.2) twice and lemma B.1 implies (5.53) since

| Lwo¥l32 = (Dwot, MyoDuoth) L2 a

Lemma B.2. Let ¢ € C®(R%C) be bounded and satisfy limy; o |¢(z)| =
1 and |1 - |¢|| € L*(R?). Let f € C®(R?) N L®(R?) N L2(R?) then there
ezists a unique solution u € H%(R?) N C®(R2) N WL®(R?) of

(=A +[gf)u= f
which satisfies a priori estimates

lull z2 g2y < cll fllz2(m2)
lullwroo @2y < cll 1l Loom2)-

Proof. Existence follows from the Lax Milgram lemma and lemma B.1. The
second estimate follows from the representation of the solution in the form

u(z) = | K(z,y)f(y)dy.
K
Claim. The kernel K (z,y) is a smooth function of z away from z = y, decays
exponentially fast to zero as |z —y| — +o0 and satisfies || K(z,y)|lw11(ay) <
Cwhere C is independent of .
Proof of Claim. To prove this notice that K solves

(=As +|¢(2)*) K (z,y) = 8(z — y)

so that K (-,y) is strictly positive and satisfies [ |¢(z)|?|K(z,y)|dz = 1. It
has a logarithmic singularity at = y. To be precise let p(u) be a smooth
positive radial nonincreasing function equal to one for |u| < 1/2 and equal
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to zero for |u| > 3/4; then J(z,y) = K(z,y) + s=p(lz — y|) In(|z — y|) is
bounded in L*°(dz) independent of y. Indeed J satisfies the equation

(s + @)1 (@,9) = 5-pllz ~ y)) In(lz ~ 3]

and the right hand side is bounded in L?(dz) independent of y and therefore
J(z,y) is bounded in H?(dz) independent of y and so also in L®(dz). By
the assumption on ¢ we find K(z,y) is bounded in L!(dz) independent of

y:
/ K(zy)ds < / |1 - 16(@)*| K (2, )|d= + / |¢(2) K (2,y)|de
< W)l [ [1- 1o()do
+e [ Igpllo = s inlle ~ )iz

+ / 16(2) 21K (2, ) |dz
< (L4 1 (z,y)ll Lo ay))-

Self-adjointness implies K (z,y) = K(y,z) and so K(z,y) is also bounded in
L'(dy) independent of . Having proved this we can infer that the same is
true of 9, K (x,y) by differentiation of the equation for J and applying the
L' boundedness of the operator f — [ K(-,y)f(y)dy ([14, 6.3]). Thus we
deduce that 8,K(x,y) is bounded in L'(dy) independent of z. The result
now follows immediately. O

Lemma B.3. Assume ¥g € ey WP (R%;R? X C) and let ¢ — o +1(q)
be a local family of solutions as in lemma 5.11 for q in some small compact
set X inside the chart provided by the local diffeomorphism F in the lemma.
Then (|0g|lwm.co < ||0g|| gm+z < ¢(m,X) < oo for allm =1,2,...

Proof. By the construction in lemma 5.11 we know that ||8,9| g2 < c. Dif-
ferentiate (B.1) for 9 to get

D\Iloacﬂ/’v = aq(g("nb))
If we apply the covariant derivative D, defined in appendix A to this we find

Dy, (Da(alﬂ/))) = [Dyy, Da]0g% + Da0,(g()).
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The error term is a commutator and so contains curvature terms which can
be estimated a priori ([19]). They are in W% for all k. The same structure
occurs if D, is applied again. We therefore get the estimate ||Da%0g%||1,a <

c(la, %) for all multi-indices . Since ¥y € Ny WHP(R%R? x C) this
implies ||0g || gm+2 < ¢(m, %) by (A.1). a

Proof of lemma 5.10 We define a map Coul : SI(\?) — SNy by moving
into Coulomb gauge: given ¥y = (a,¢) € S,(\?) we solve for ¥ = (A +
dx, e™X) satisfying the elliptic system (3.14) with B = d1a2 — 82a;1. This
will give a smooth solution ([19]) and so maps into Sy. (This procedure
is unique only up to gauge transformation by harmonic functions; thus to
fix Coul we require that lim);_, |A(z)| = 0 and limg, 00 ®(21,0) = +1,
where x1, 9 are coordinates on the plane. The first condition cuts down the
indeterminacy to gauge transformation by constants which is then removed
by the second condition.) The gauge transformation x is determined by
solving Vx = A — a which will be in H}  as A—a € HZ .

We now show that this induces a map C : M](V?) — My which is a
bijection. First of all to see that it is well defined consider (A, ®) and

(4, 8%) in 55 such that m(4, @) = m(4%,3"), ie.

(A, ®%) = (A + dg, ®€') for some g € H®.
We must show that
(B.3) m(Coul(4, ®)) = W(Coul(Ab,CDb))

Now Coul(A, ®) = (4,®) = (A + dx, ®e™X) and Coul(A, &) = (A, &) =
(A° + dy?, ®eiX’) where

Ax+V-A=0 and AY+V-4"=0.

Then let h = g — x + x” € HJ_ and we have p(h)(4,®) = (4°, ). But
since V- A =V . A" =0 it follows that h € C® which implies (B.3). Thus
Coul induces a map on equivalence classes, which we denote by C.

We next show that the map C' is onto. Pick any ¥ € Sy and (since My
is connected) a curve (1) from 7(¥,) to m(¥). Then by lemma 5.13 we lift

this to a horizontal curve starting at ¥, and given by

v, + / (%vﬂ)n#('y(r))dr.
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The endpoint ¥ of this curve will satisfy 7(¥) = 7(¥°) and ¥’ € A by
(5.38).

Finally we show that C gives a one-to-one map. Thus consider (4, ®) and
(4*’, @b) in SI(\?) such that (4, ®) ¢ G - (4%, ") but such that p(g)(4, ®) =
(A%, ®) for g € C°. The gauge transformations x,x” are in H} so there
exists h € Hj} such that p(h)(A4, ®) = (A%, ®"). Therefore since (4, ®) and

ocC

(A° = dh+ A, @ = &) are in A?) it follows that dh € H2. But also since
(® — @) € H? and lim|y| o0 |®(2)| = 1 we see that h € L? and so h € H?
which completes the proof.

C. Appendix C.

Proof of lemma 5.14 Let F' = (f1, f2), then ¢ = F — ¥, solves the first
order elliptic equation

Dy, = g(¢) + h(¥)

where g is as in lemma 5.11 and appendix B, and h is given by
h = (O,V : (A - a*) + ('Ld)*,q) - ¢*) + (7/((1) - ¢*)a f2 - d)*))

This latter term is present because 9 ¢ Sﬁgz. It follows on account of the
inequalities |¢(z)| < 1, |®(z)| < 1 that g, h satisfy

lg(@)llzz + IRz < (1 + [[#]lz2)
@)l + 1)l < e(1 + [$lla1)

Therefore the elliptic regularity estimate in appendix B implies |[¢||g1 <
c||¥||z2. A single bootstrap completes the proof of the lemma. O

Proof of lemma 5.16 Write ¥ = (A, ®) and Vg = (a,¢). We wish to
consider

(C.1) inf{I(x) : x € H3(R?)}

where

I(x)= /(|A —a—dx|* +|® - ¢eX|*)dz.
Write s = s(x) = X — 1 and consider the minimization

(C.2) inf{I(s) : s € H*(R?C) and |1 + s| = 1 everywhere}
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where

f@)=/ﬂA—a+x1+@—MqﬂH¢—¢—¢q%m;

These two problems are equivalent for two reasons:
(i) I(x) = I(s(x))-
(ii) The function x — s(x) defines a bijection between {x € H3(R%;R)} and
the set
¥ = {s e H3R%C) : |1 + s(x)| = 1 everywhere }.

Indeed we can define an inverse to s as follows: given s(z) satisfying these
conditions define

(C.3) x(z) = —1 /Ox(l +s) s+ ¢

where x(0) € [0,27) satisfies s(0) = eX(®) — 1 and the real constant c; is
to be defined later. (The condition |1 4+ s(0)| = 1 and ¢; € R ensure that
|1 4+ s(z)| = 1 everywhere). Notice that the integrand in this path integral
is C! and by Stokes’ theorem (applied to the real and imaginary parts) the
result is independent of the path taken. The resulting function will satisfy
dx € H?, so that x is uniformly continuous and by integration we find that

s(z) = efx®)=e2) _q

for some constant c; determined freely by c;. Since Y is uniformly continuous
and s € L? it follows that lim;)_q, [X(z) — c2| = 2n7 where n is an integer.
By appropriate choice of ¢; we ensure c; = 0. But then since sin(x) € L?
we get x € L2. Therefore the constant ¢; can be chosen such that y € L?
and thus also x € H3.

We will now show that these minimisation problems have a solution.
Since |s(x)| < 2 Vz and limy,_,o |#(z)| = 1 the functional I is coercive with
respect to the H! norm, i.e.,

I(s) = elsl|% — ca.

By the convexity of the integrand in the argument ds, I (s) is weakly se-
quentially lower semicontinuous in H! and hence attains its infimum on H?.
Let (sn)n>1 € H3(R?;C) with s, = eX» — 1 be a minimising sequence for
I (s) which by coercivity is bounded in H! norm. (By the density theorem
proved in [2] we may assume that s, € H3). Extract a subsequence (not
relabeled) weakly convergent in H'! to a limit s. By Rellich’s theorem it will

converge strongly in leoc(]R2) and so, at least subsequentially, we can assume
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sp(z) — s(z) for = a.e. in R? (this being true initially for every compact
subset of R? is true on all of the plane by a diagonal argument using an
increasing sequence of compacts). Hence |1 + s(z)| = 1 a.e. To show the
regularity of this minimiser it is convenient to write this in terms of x.
Claim There exists a function x in the space

X ={x:dx € L% siny € L% (1 — cos x) € L?}

which minimises I over the space of all such functions.

To prove this notice that by Poincare’s inequality and Rellich’s lemma there
exist, for any R > 0, numbers k, such that x,—k, are strongly convergent in
L2(BR); to be precise let anBRl = fBR Xn- Since ” . ”L2(BR) S ” . ”L2(Bs)
for R < S we can, by a diagonal argument, obtain a subsequence and
a sequence of real numbers ¢, such that x, — ¢, converge in L?(K) for
any compact set K. Call the limiting function x(z). But recall also that
eiXn — 1 converges also strongly in L?(K) for compact K and therefore
¢n — 0 mod 27Z and s = X — 1. Also dxy, — dx weakly in L? and so it
follows (by lower semicontinuity) that

I(x) < liminf I(xy) and I(x) = igl{f I.

This completes the proof of the claim.

Taking smooth variations at x;, i.e., d—‘f\-| =0 (x+A{) = 0 for all ¢ smooth and
compactly supported we obtain, in the sense of distributions, the following
Euler-Lagrange equation:

—Ax = (i®,neX) + (i®, &(eX — 1)) =V - B

where U = Wy + (B,7). The right hand side lies in H'(R2) which implies
that ||| #3(B(z,r) is bounded uniformly in z. Therefore dy € L™ and so
since (1—cos x),sin x € L? we deduce that lim|y . x(2) = 0 (after possibly
adjusting x by 2n7 for some interger n) and x € L2. Thus x, s both lie in
H?3 and the two original minimisation problems have been solved. Finally
the W% statement follows from lemma B.2. a

Proof of lemma 5.17. Step One. We introduce the set

X ={F=(fi,f2) € A® :B(F) =0and (F-¥) € S} c A®

with the induced topology. Here B is the set of solutions of the Bogomol'nyi
equations given in (5.20-5.21). This is a sequentially weakly closed subset
of A®. We will minimise the function d : X — R given by

d(F) = ||F = ¥||2
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This is a sequentially weakly lower semi-continuous function.
Step Two. Claim A. The function d is coercive i.e. there exist positive
constants ¢, cg such that

d(F) > all|F = U3 — ca.

Proof of Claim. First notice that the Hilbert space inequality 2|(a, b)| <
Zla|? + 2|b|? implies d(F) > 3||F — ¥,||2, — 2€? so it remains to prove

(C4) IF = Wullpz 2 c||F — Wull gz — | — |l 2.

This follows from lemma 5.14 and the result follows since ¥ — ¥, € H2.
Step Three. Claim B The function d attains a minimum at some point

¥y € X and d(¥g) < Lze where Ly = 1+ Ly, where Ly is as in lemma 5.9.
Proof of Claim Since (¥y — V) € SESI?) it follows from remark (ii) fol-

lowing definition 1 that (¥p—¥) € S[,gg. From lemma 5.9 there exists V.,

gauge equivalent to W¥,, such that ¥, — ¥ € Sﬁg) and this will satisfy
1%, — O, |2 < Loe.
Therefore

d(Po)

%o — || £2g2)

1Ws — Pl L2(g2)

s — Vullg2mey + 1P — || r2ge)
< (14 La)e.

ININ N

Step Four. Claim C ¥g € ey WH®(R% R x C).

Proof of Claim By (C.4) we have || Vo — W, | g2 < ce. Therefore for small
enough € we can apply lemma 5.7 to gauge transform ¥q onto the local solu-
tion space M. N(%4). It then follows by lemmas B.3 and 5.7 and from the as-
sumption ¥, € N,y WH®(R%R? x €) that Tg € ey WHP(R?%;R? x C).

Step Five. Now consider the local solution space My (¥g). Choose a
local coordinate system q in My around m(¥y) with ¢ = 0 corresponding to
T, so that g — ¥o(q) € My (o) is a local diffeomorphism with ¥o(0) = ¥
as in lemma 5.11. Then lemma 5.9 provides us with gauge transformations
x(g), x(0) = 1 which give a diffeomorphism ¥o(q) — p(x(g))¥o(q) between
neighbourhoods of ¥ in My (Po) and in X. (This incidentally shows that X
is a smooth submanifold in a neighbourhood of ¥y.) Now define a function of
q given by d(q) = d (p(x(q))\ilo(q)) which is smooth and takes on a minimum
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at ¢ = 0. Therefore d'(0) = 0. To complete the proof recall that (¥ — ¥,) €
Sﬁgg so that

(¥ - W, a%@(«n%(o»)m 0.

Therefore 5
d(0) = (¥ — ¥, a—i’o(Q))Lz =0
du

which in turn implies (¥ — ¥y) is L? orthogonal to KerLy, since (¥ —¥g) €
()
SLy,. a
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