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First we prove the existence of global smooth solutions of the gra- 
dient flow of the superconducting Ginzburg Landau (or Abelian 
Higgs) functional on M2. It is then proved that in the case of crit- 
ical coupling, for a large class of initial data of arbitrary winding 
number AT, each solution converges in temporal gauge to a unique 
solution of the static equations of the same winding number. The 
proof has two essential ingredients. Firstly a weighted energy iden- 
tity is used to obtain spatial exponential decay of certain quantities 
uniformly in time. This implies the strong subsequential conver- 
gence to a static solution in the H2 norm. Secondly, an adiabatic 
approximation in the neighbourhood of the static solution space 
is used to prove that the solution converges without passing to 
subsequences. Thus the u;-limit set of each solution is a point. 
The adiabatic approximation consists of finding, at each time, the 
L2-closest point to the solution on the space of static solutions of 
the same winding number as the initial data. Special cases of the 
result imply that two vortices of opposite sign will annihilate for a 
large class of initial data and that a single vortex is asymptotically 
stable with respect to a large class of perturbations. 
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1. Discussion and Statement of Results. 

The action for the Abelian Higgs, or superconducting Ginzburg-Landau, 
functional in two dimensions is given by 

£(A9$)     =    i fFAA*FA + DA*A*DA* + j * (|$|2 - I)2 

(1.1) =     i /   |£|2 + \DA^ + ±m2 - 1) W A dx2. 
* Jm2 4 

Here * is the Hodge duality operator, — iFA is the curvature of an S1 connec- 
tion —iA and $ is a section of the associated complex line bundle. The in- 
duced connection couples A and $ via the covariant derivative DA = d — iA. 
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Thus A is a real one-form and FA = dA is a real two-form. The function 
B = *FA is known as the magnetic field, while $ is called either the or- 
der parameter or the Higgs field. The action is invariant under an infinite 
dimensional gauge group of symmetries Q = C00^2;,?1) of smooth gauge 
transformations, 

eix . M2 _, si 

acting on (A, $) by 

The quantities B, |$|5 j-D^I are gauge invariant. The moduli space is de- 
fined as the space of gauge equivalence classes of solutions to the variational 
equations associated with the action. These variational or static equations 
are 

-AA$   =   ^Kl-|*|2) 
(1.2) d*dA   =   (i$,DA$) 

where d* is the adjoint operator of d and d* = — *d*. The last equation can 
also be written as dB = — * (i<5>,DA$)> It is proved in [19] that solutions 
(A,$) of finite action satisfy lim^i^ood^l, \DA$\I \B\) = (1,0,0), in fact 
exponentially fast. Because these limits are sufficiently uniform it can be 
shown that the vortex number or winding number, 

N =  — f   Fudx1 A dx2  =  ^- /   Bdx1 A dx2 

coincides with the homotopy class [<&] in 7rl(S,1) and is thus an integer (cf. 
[JT]). It is commonly called charge. Except for a bounded region in space, 
finite action solutions are close to their asymptotic (in space) values where 
\B\ = \DA$\ = l-m2 = 0. 

We now give some physical background to the problem. Following this 
we return to the static problem and then discuss the time dependent case 
before stating the results in section l.d. 

1.1. Vortices. 

Strictly, vortices are defined as finite action solutions of the static varia- 
tional equations (1.2) (cf. [JT]) and the term refers mostly to non-constant 
finite action solutions. It can be shown that when |$| is bounded away from 
zero then the solution is constant up to gauge equivalence, that is |$| = 1 
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and B = 0. In all other cases, $ must have zeros. In the event that these 
are isolated they may be thought of as the "centers" of vortex solutions and 
thus the term vortices also refers to the zeros of |<fr|. Thus the term "vortex" 
will be used to refer to a zero of $ (for all A) as well as to a non-constant 
finite action configuration. A multivortex solution refers to the case in which 
$ has more than one zero, interpreted as a nonlinear superposition of single 
vortices. For solutions of the time dependent model, which we discuss be- 
low, we will see that the vortex number at all times will be equal to that of 
the initial data. In that case "vortex" may also refer to the location of the 
zeros of the time dependent density $. Furthermore, "vortex" is often used 
only for a positive vortex number (positive charge) and "antivortex" is used 
in the case of a negative vortex number. Vortices have been observed in 
certain kinds of superconductors in the presence of applied magnetic fields. 

According to a heuristic interpretation of vortices they interact as par- 
ticles. As such they repel or attract and forces must balance for a static 
configuration. It is postulated for physical reasons that vortices of opposite 
charge attract for all values of A (the strength of the force varying as A 
varies). Vortices of the same charge are expected to attract for A < 1 and 
repel for A > 1, while at the critical value A = 1 there is no net force between 
vortex-vortex pairs which then do not interact. The attraction or repulsion 
of like vortices is induced by the competition between the force induced by 
the vector potential (under which vortices behave like electric charges) and 
the force induced by the scalar potential (which induces an attractive force 
regardless of the sign of the charges). For like vortices the attraction and 
repulsion balance out exactly at the value A = 1. Computer studies by Ja- 
cobs and Rebbi ([23]) gave the original support to this interpretation and 
Taubes' existence result discussed below confirms it for the case A = 1. The 
parameter y/X is the ratio of the rates at which $ and the magnetic field B 
approach their asymptotic values as |x| —> oo. These rates are equal when 
the forces cancel at A = 1. (This is discussed in detail in the book [19]). Also 
there is a formula, which we give below, for the potential energy between 
two vortices if A is close to 1 ([37]) which supports this picture ([35]). 

1.2. The static case continued. 

The static case A = 1 is best understood due to the fact that the func- 
tional is then a symmetric reduction of the four dimensional Yang-Mills 
functional. All critical points are minima and solve (for N > 0) the follow- 
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ing first order equations ([9],[19]): 

5 = 1(1-I*!2) 

DA$-i*DA$  = 0, 

which will be written schematically as B(A, $) = 0. These can be reduced 
to a single elliptic equation for the unknown u = /n|$|2, 

N 

(1.3) -Au + eu-l  =  -An^Siz-Zk) 
k=l 

for Zi,..., ZJV fixed points in the complex plane, the singularities of u which 
are precisely the zeros of $, or the vortex sources. It is shown in [19] that 
when A = 1 any finite action critical point is characterized completely by its 
zeros; in particular any finite action solution has finitely many isolated zeros 
(the centers of the vortices) and is real analytic (in an appropriate gauge). 
In addition all critical points are minima. The action equals 7r|iV| so in the 
case of zero winding number there is an essentially unique minimizer which 
modulo gauge transformations satisfies |$| = 1 and A = 0 . 

For other values of A less is proved but there are conjectures and the 
a priori estimates in [19] show that all finite action critical points have 
the same regularity as in the case A = 1. In addition it is expected that, 
similarly to the case of A = 1, vortices occur as the isolated zeros of $ 
with behaviour consistent with the heuristic interpretation of vortices as 
interacting particles described above. In the papers [37, 39] it was proved 
that the potential energy between two like vortices is given approximately 
for A close to 1 by 

V(a) = ^-± [  (eu-l)2dx 

where u is the solution of (1.3) with Zi = -f and Z2 = f. This was 
computed in the paper [35] and was found to be a monotonic function of a. 
This confirms the conjecture that the vortices attract for A < 1 and repel 
for A > 1. Thus, for A < 1 and each A/", it is conjectured that there is a 
unique (up to gauge equivalence and translations in M2) critical point which 
is a minimum of the action and is spherically symmetric (in an appropriate 
sense) around the origin where it possesses a zero of order N. Similarly it is 
conjectured in the case of A > 1, that there is a critical point, a minimum, 
which is stable if N = 0, ±1 and unstable in the case of |iV| > 1, in which 
case no stable finite action solutions exist.   The idea is that like vortices 
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repel so a critical point can occur only with all vortices coinciding (i.e. their 
zeros at the same point) which is an unstable configuration of the solution 
for |TV| > 1 but is stable otherwise. For all A > 0 it can be shown that if $ 
has no zeros there is a gauge transformation in which the connection A = 0 
and $ is a constant of modulus one. The same result in the more general 
situation of zero winding number has been proved only in the case A = 1. 

1.3. The time dependent case. 

Time dependent models corresponding to (1.1) have been considered 
in two situations: firstly the Lorentz invariant equations studied in [37] 
for values of the parameter A near the critical value 1. In this paper we 
consider the gradient flow equations associated to (1.1). This is a special 
case of the equations which are of physical interest in superconductivity (see 
for example [10, 5]). Thus we consider the equations 

(1.4) dt(A,$) = -gradS. 

There is a slightly more general form of time dependent equations obtained 
by introducing a time component AQ to the connection and by differentiating 
covariantly in time according to DA0 = dt — IAQ. These equations are 

D^-AA*   =   ^>(1-|$|2) 

A-VAo + dTdA   =   (i$,D$). 

The gauge group now consists of functions which depend upon the time 
variable as well. Particular gauges are of significance: the case of AQ = 0 
is called the temporal gauge and in this gauge we recover (1.4); then there 
is the Coulomb gauge in which V • A = 0 and the uniformly parabolic gauge 
in which AQ = —V • A. In the next section we consider all these and write 
the equations in each gauge. The conjectures on the variational problem 
translate into the following conjectures for the gradient flow which in the 
case of A ^ 1 follow from the analysis in [39]: 
(i) If A < 1 all solutions of the gradient flow equations converge uniformly 
to a finite action critical point which is a radially symmetric vortex with 
winding number equal to that of the initial data. 
(ii) If A = 1 solutions of the gradient flow converge uniformly to one of 
Taubes' multi-vortex solutions. This is the main result of the present paper, 
(iii) If A > 1 then if the winding number is either 0 or ±1 the solution 
converges uniformly to a finite action critical point which is a symmetric 
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vortex with winding number equal to that of the initial data. If the winding 
number is greater than one there will not generically be uniform convergence 
due to the escape of vortices to infinity; however, convergence on compact 
sets may still persist. 

Most previous work on these equations seems to have been on bounded 
domains. There has been much work on the A —> oo limit of the equations 
([25, 22]). In [33, 32] the stability and symmetry of minimisers is discussed. 
For the case of unbounded domains a related paper is [1] where the equations 
with no connection present (A = 0) are studied. Thus the static action in 
this case becomes 

2 

gc(u}=jvf+\(iur-i) 
for u(x) G C The authors prove that for appropriate initial data of zero 
winding number u converges uniformly to a constant. Thus in this case 
there is vortex annihilation; this means that vortices of opposite charge will 
eventually merge and annihilate. As mentioned above, vortex annihilation 
remains open for the full Ginzburg-Landau gradient flow equations (1.4) for 
general A > 0. However, our main result implies vortex annihilation for 
a large class of initial data and for A = 1. The question of stability and 
symmetry of the static vortices for QC on M2 has been considered in [31], 
where it is shown that if the winding number is greater than one the radial 
vortices are linearly unstable, while they are linearly stable otherwise. In 
the paper [40] asymptotic stability of vortices in the gradient flow of G£ 
is established. Again our results imply this for the full system (1.4) with 
A = 1 for a large class of perturbations. In a relevant context, Hassell [18] 
has proved existence and time asymptotic convergence to a solution of the 
static equations for the heat flow of the Yang-Mills-Higgs equations in the 
case of critical coupling; we use here a different method to his. 

1.4. Statement of Results. 

In the remainder of the paper we first describe the equations for the gra- 
dient flow in the gauges mentioned above and prove existence and uniqueness 
of a global C00 solution for all A > 0. This is based on a priori L00 esti- 
mates for B and Z)$ and their derivatives using a method of Hamilton as 
adapted by Hassell ([18]). By a theorem for parabolic systems stated in the 
appendix, solutions decay exponentially as |a:| —► oo. Next we discuss time 
asymptotics. We show L1(M2) estimates for JB, D$ and |$| independent of 
time.   Using the maximum principle we show that these quantities decay 
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exponentially as |x| —> oo and in the case of A = 1 this decay is uniform with 
respect to time for a large class of initial data. This depends on a Pohozaev 
type identity. Following this we show that in the Coulomb gauge (A, $) 
converges subsequentially for all A > 0 weakly in LP(]R2) for p > 2 and also 
in C00^2) in the topology of convergence on compact sets to a solution of 
the static equations. For A = 1 this convergence is improved to a strong 
convergence in L2, using the Pohozaev type identity. It is then shown that 
in an appropriate (time-dependent) gauge the solution gets arbitrarily close 
in H2 to a solution of the static equations. 

So far this convergence is subsequential; the next stage is to show that 
we have genuine convergence without passing to subsequences i.e., that the 
u—limit set of the solution is a point. There is a general theorem due to L. 
Simon which asserts that this is true for gradient flows of real analytic func- 
tional on compact manifolds satisfying a weak convexity condition ([36]). 
In this paper we are working on an unbounded domain M2 so this does not 
apply directly. We will use a different, geometrical method to prove the 
existence of a limit. This method, which seems to have more similarity with 
the methods of [7], is often called an adiabatic approximation, and amounts 
to tracking the point on the space of static solutions which is closest to the 
solution at each time. This is done via a tubular neighbourhood construc- 
tion in theorem 5.15. (This is nonstandard since we find the closest point in 
the L2 norm while the manifold structure is induced from the H2 topology.) 
In theorem 5.4 it is shown that for A = 1 and when the solution is suffi- 
ciently close in H2 to moduli space, it converges to a unique static solution. 
This is inspired by Manton's method ([27]) which has been extensively used 
in a similar context to study scattering of vortices and monopoles. For the 
Lorentz invariant Abelian Higgs equations this was justified in [37] and for 
the Yang-Mills-Higgs equations in [38]. 

We now state the main theorems which are proved in this paper. Intro- 
duce the notation 

tf = (A, $)       U = (B, DA$, D
2

A$, V£, W) 

where B = *dA and w = ^(1 — |$|2) and for r > 0, TV G Z define the class 
of functions 

CriN = {(*,W) G C00(M2) :       0 < |$| < 1, |$| has winding number N 

3M > 0 such that \U\ < Me"7*1*1 

*,£/ and all their derivatives are bounded}. 

Theorem A Given initial data *(0), U(0) in Cr'N there exists a unique 
solution tf(x,t) G C00^2 x (0,oo)) H C([0, oo);L00(M2)) of (IA) (see also 
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(2.5) below) with A > 0 such that 

(i) limt-,o(||*(*) " *(0)||L~ + \\U{t) - W(0)||Loo) = 0 
(ii) \\U(t)\\Li  < c and H^^WIU00  - c(a) for a^ t > 0 and all multi- 
indices a. (Here it is to be understood that the quantities DA^^D\^ are to 
be differentiated covariantly with DA while B, VB, w are to be differentiated 
in the usual way.) 

This is proved in section 3, theorem 4.2 using theorems 3.6 and 3.9. 
Theorem B    Consider initial data as in theorem A which in addition 

satisfy 

(1.5) |S(a;,0)|<i(l-|$(x,0)|2) 

(1.6) U^<o)*M)|<§(iH*M)la).- 

Then, 
(i) for A < 1, for all e G (0,1) and for all T > 0 there exists M(e,T) > 0 
such thatforO<t<T 

(1.7) \U{x,t)\ < Mforje-^1-^*'; 

(ii) for A = 1 there exists a constant c depending only on the initial data 
such that: 

sup /   \x\2(\B\2 + m\2 + j(l - \$\2)2)dx < c 
t>o m2     \ 4 / 

and in (1.7) we can take M(e, T) = Me, i.e. the exponential decay is uniform 
with respect to time. 

This is proved in theorems 3.8, 3.11 and 3.2 in section 3. (The existence 
theorem 4.2 asserts that these a priori estimates hold for our solution). 

The following is our main result: 
Main Theorem For initial data as in theorem B there exists a finite 

action critical point ^oo = (Ax), $00) of winding number N such that (*(£) — 
^00) —* 0 in H2(M2) ast—>oo. In addition ^QQ can be obtained as follows: 
there exists a time T such that for each t > T there exists a unique finite 
action critical point of £ of winding number N which is L2-closest to *(£). 
// we call this critical point P($(t)) then there exists a constant 5 > 0, 
depending only on the winding number, such that 

(mt)-nm)\\H* +11*00 -iw))M < ce-5t 
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where C depends on the initial data. 
The proof of this theorem appears in section 6. 
Remarks,   (i) Notice that the convergence is taking place in the tem- 

poral gauge. 
(ii) The condition (1.5) is essential in our approach, but (1.6) could be re- 
moved. It is interesting to find out whether (1.5) is really essential or not. 
(iii) The solution is also expected to decay exponentially in space for A > 1. 
However this decay is conjectured to be uniform in time only for A < 1. 
(iv) The final statement in the main theorem illustrates our method of proof 
of the existence of a limit: we find at each time the critical point F(^(t)) 
which is closest to \I/(£) and show that these approach one another exponen- 
tially fast. We then show IP(\I/(£)) approaches a limit exponentially fast to 
complete the proof of the theorem. 

2. The equations. 

We now write down the equations in the various gauges which will be 
needed in this work. We will use the following inner product for complex 
numbers: 

,    ,.      db + ab 
M) = —g—* 

We recall the Ginzburg-Landau functional (1.1) 

£ (A, *) = I [ 9 \B\2 + \DA$\2 + ±m2 - I)2  dx1 A dx2 

where in the notation used in the introduction B = (diA2 — c^Ai) so Bdxi A 
dx2 = dA and DAJ® = Dj$ = dj$ — iAj<&. Even though the (covariant) 
differential operator D depends on the connection A, this dependence will 
be usually supressed. We will let A^ = D2<f> + JD|$ and A denote the 
usual Laplacian. Here d is the exterior derivative and d* is its adjoint, so 
that d*(Fdxi A da^) = foFdxi — diFdx2 = dfFdxi + 8%Fdx2. Introducing 
a time component AQ to the connection A and a corresponding covariant 
derivative Do<& = $ - iAo<&, where <i> = ^$, we obtain the fully gauge 
invariant gradient flow Abelian Higgs equations 

D0$-AA$   =   ^(1-|$|2) 

(2.1) A-VAo + d*dA   =   (z*,£>$). 

These equations are invariant under the gauge group of symmetries elx € 
C00^2 x M+ ; S1), that is, for any real smooth function x(a;, t) the transfer- 
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mation p(x) (often referred to as the gauge transformation) 

(2.2) $ -> eix<I>        A -> A + Vx       AQ -> AQ + X 

takes solutions into solutions. To check that this is a symmetry of the 
equations, notice that 

(2.3) Dfi -> etXDfi       Do$ -> eixI>o*. 

The equations form a degenerate parabolic system. The fully invariant equa- 
tions transform under specific gauges to useful forms and there are various 
ways to factor gauge equivalence out. Firstly, we obtain the heat flow equa- 
tions dt(A, <&)  =  —gradS which is the special choice of 

Ao = 0. 

This is called the temporal gauge, which is clearly always attainable by 
applying the gauge transformation determined by x(x) *) where 

(2.4) X + Ao = 0. 

In this gauge the equations are 

$-AA$   =    ^$(1-|$|2) 

(2.5) A + dTdA   =   (i$,D$) 

where the dot means differentiation with respect to time. 
There are other useful gauges; in particular there is the Coulomb (or 

Hodge) gauge in which 
V • A = 0. 

This is obtained by applying the gauge transformation determined by x 
where 

(2.6) Ax + V • A = 0. 

In this gauge we can write the equations as a coupled elliptic parabolic 
system: 

DO$-AA*   =   ^(1-|*|2) 

(2.7) A-AA-VAo   =   (*$,£>*) 

-AAQ   =   (*$,£>()*) 
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Another useful gauge is the uniformly parabolic gauge in which we require 
that 

V • A - AQ = 0. 

This is obtained by applying the gauge transformation determined by x 
where 

(2.9) x-Ax = V-A-Ao. 

This gauge is useful because the equations then form a uniformly parabolic 
system for (A, $): 

(2.10) A-AA   =   (i$,jD<&). 

Let us write these in a general form by introducing ^ = (Ai, A.2, $i,$2)) 
where $i,$2 are the real and imaginary parts of $. Then ^ satisfies an 
equation of the form 

(2.11) *-A# = /(#,W) 

where /(*, Z) is cubic with respect to \I> and linear with respect to Z. 
We will also need some identities obtained by differentiating the full 

equations. Differentiating once we obtain 

(2.12) B - AB + \$\2B = 2(zDi$, £>2$) 

(2.13) 

(Do - AA)D<f> + 2iBD*$ + i*(i*, £>$) + A*(*, D*) = ^D$(l - |$|2) 

where 
£>*$ = D2Qdxi - DiQdxz = JDi^dxi + i?^^. 

Differentiating a second time we find 

(2.14) 
(dt - A) VS + |$|2VB = -2($, £>$)5 + 2V(zJDi$, Da*) 
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(Do - AAjDkDi® + i*(t$, DkDi®) + A*($, DkA*) = 

^iBDlDi® - idlBDi® + 2idZBD*$ 

-2iBDkD*$ + ^DkDMl - |$|2) 

-iDfc$(i$, A$) - i*(ijDfc*, A*) 

(2.15) -AZ>fc*($,A$). 

An important identity is for it; = ^(1 - |$|2), which satisfies 

(2.16) w - Aw + A|$|2^ = |D$|2. 

3. A Priori Estimates. 

In this section we collect together the a priori estimates. In the first 
part we give energy, weighted energy and L00 estimates. In the second part 
we give some estimates which are used to prove uniform convergence in 
the case A = 1. Throughout this section (Aoy^) = (AQ,A,$) is a smooth 
solution to (2.1) so that there exists r > 0 and K = K(Ti0C) > 0 such that 
U = (B, £>$, V£, D2$, w) satisfies 

(3.1) \U(x,t)\<Kexp(~\x\). 

for t < Tioc and x G M2. This assumption is justified by the existence 
theorem 4.1. We shall also assume that |$(a;,0)| < 1; theorem 3.3 will 
then ensure |$(a;,i)| < 1. We shall always state what gauge condition we 
are using in our estimates. However, by a slight notational abuse we shall 
always write the solution as (Ao,A,$) in any gauge. It is convenient to 
derive the estimates in the temporal gauge and then deduce from these the 
general case. 

3.1. Energy, Uniform Estimates and Exponential Decay. 

The following results describe a priori estimates useful to obtain existence 
of a smooth global solution. We start with energy identities which rely 
on the locally in time uniform exponential decay assumed above. These are 
the estimates of decreasing energy and a weighted energy estimate given 
respectively in the next two theorems. Notice that the estimates for the 
gauge invariant quantities B, \D$\,w implied by the energy estimates are 
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valid in any gauge.  In the following calculations all integrations by parts 
are justified by the exponential decay which we assume in (3.1). 

Theorem 3.1 (Energy Identity).    In temporal gauge 

(3-2) /X(|i|2 + l*12) dXdt + £{T) = m 

and in gauge invariant form, 

(3.3) f   f 2(\A- VAo|2 + |A)$|2) dxdt + 8{T) = 5(0) 

where 

m  = f^(B{x,t)2 + \D*{x,t)\2 + j{l-Mxtt)\2)^dx. 

Proof. This is a straightforward estimate obtained by multiplying the equa- 
tions by $ and A respectively and integrating by parts (this is justified by 
the decay properties (3.1) which also guarantee the uniform integrability 
required to differentiate with respect to time under the integral sign). This 
gives (3.2) for as long as the solution exists that is, up to T < 2)oc. The 
gauge invariant form follows by a gauge transformation. □ 

We now prove a weighted energy identity which is a generalization of an 
identity in [1]. 

Theorem 3.2 (Weighted Energy Identity).    In temporal gauge 

£L (T(l^+l*^ JP-WV-B")***J^yeff)* = h ye(0) d. 
or in gauge invariant form 

IoL (?(|i ■VAo12+IA)$|2)+^(l ■l$|2)2 ■ B2")dxdt+L Te(T)da; 

f   r2 

m2 2, 

where e is the energy density e{t) = e{A{t)^{t)) with e{A, $) = 
\ (B2 + |D$|2 + |(1 - |$|2)2). (In the above integrands r = \x\.) 
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Proof. First we obtain a Pohozaev type estimate: multiply the first equation 
in (2.5) by x • D$ (where D = d — iA) and integrate. We have 

/  (x.i)$,^$)-(x.£)$,AA$)-^(x.£)$5$)(l-|$|2)dx = 0. 

Upon integration the second term above gives (using the summation con- 
vention on repeated indices) 

/   {x - £>$, AA$) dx = 
m2 

[   (-\D$\2 - (xiDiDj^^Dj®) - (xipj, A]*,^-*)) dx 

= ^(-(xi^^A]*,^*))^- 

The third term becomes, 

[   ±(x.D<!>,m-m2)dx   =   -f   ^(x.V)(l-|*|2)2dx 

=     /2^(1-|*|2)2^ 
m2 4 

Upon substituting these two into the integral above we obtain 

(3.4) 

f 2(x ■ £>*,$$) + (ixiBifrDjQ) - j(l - |$|2)2dx = 0 

where 
—iAj  =   [AJ^DJ]  =  -i{diAj - djAi) —-iBdij 

with (jij the antisymmetric tensor with ai2 = +1. We will use this below. 
Next multiply the first equation in (2.5) by r2dt<& and integrate to obtain 

(3.5) 

f   -( Jm2 2 V 

2 / A 
|at$|2 - ($*, AA*) + -ft(l - |$|2)2 ) dx = 0. 

We concentrate on the second term of (3.5):  upon integrating by parts it 
becomes 

r        2 p 2 2 

-J 2
r-{dt$,&A®)dx = J 2((x-D$,a<$)+^|z)$|2+y(z)$,[A9t]$))dx 
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(and by substituting from (3.4) ) 

\ 2 2 
-xiBij(m,Dj$) + -(l-\$\2)2 + ?-dt\D<!>\2 + ?-dtA-(D<I>,i<!>))dx 

M2\ 

(3.6) 

= /   -a/BA(D*,i$)+*?-dtMD$,i$)+ [   (^(l-\^\2)2+7-dt\D^\2] dx 
m2 * yM2\4 4 ) 

where we use (3.4), [£>, 5t]$ = i{dtA)§ and x' = Xi&Xi. 

From the second equation of (2.5) we have, after multiplying by ^dtA 

f   r- (ft A, (£>*, t*)) rfx    =      /I- (\dtA\2 + (ft A, d*dA)) dx 
m2 * m2 * 

= L ^ldtAl2+ridtB2) dx - Lw A dtA)B- 
Also using the same equation 

/   a/BAfZXM*)      =     -[   x'BAdtA+{xf A*dB)B 
m2 m2 

=     - [   x'BA dtA + (X ' y)jB2 dx1 A dx2. 
JR2 2 

Taking the difference of the last equalities and substituting in (3.6) and then 
in (3.5) we obtain the weighted energy identity of theorem 3.2. The gauge 
invariant form follows by a gauge transformation. D 

The following three theorems are consequences of the maximum principle 
(theorem A.4). They state that w globally controls the growth of B and £)$. 
This will later be used in the estimates in the time asymptotics section 3.b 
(theorem 3.11) to infer the exponential decay of these quantities from the 
exponential decay of w. These results are analogues of results in [19]. 

Theorem 3.3. For all X > 0, if |$(x,0)| < IVx then |$(x,t)| < IVx. // 
in addition |$(a;*,0)| < 1 for some x* G M2, then |$| < 1 on M2 x (0, oo). 
Equivalently, ifw(x,0) > 0 then w > 0 everywhere and if also w(x*,0) > 0 
at some point, then w(^ t) > 0 for t > 0. 
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Proof. Let w = ±(1 - |$|2) > 0. By (2.16) 

(3.7) w- Aw + X(l-2w)w>0   onM2xM+. 

Assuming that the initial data satisfy w(x, 0) > 0 the maximum principle 
(theorem A.4) on (3.7) implies w > 0 on M2 x M+. □ 

Theorem 3.4. If X < 1 and the initial data satisfy \B(x,0)\ < w(x)0) then 
for allt > 0, \B(x,t)\ < w{x,t). 

Proof. We note from (2.12) and (2.16) that 

{dt- A)(B - w) + |$|2(B - w) =  -|£|2 + (A-1)|$|\;  < 0 

where ^ = OA® = ^(^i$ + ^2*)- A similar identity for B + w completes 
the proof of the theorem. □ 

Theorem 3.5. If X < 1 and the initial data satisfy \D$(x,0)\ < 3u>(x, 0) 
and \B(x,0)\ < w(x,0) on M2 then 

\D$(x,t)\ < 3w(x,t) onM2xM+. 

Proof Let g = D<f> and g* = £>*<!>. On {l^l = 0} the theorem clearly holds. 
Letting V = {|<7| > 0} and applying equations (2.13), (2.16) and Kato's 
inequality, 

\g\A\g\>(g,AAg) 

we have 

\g\(dt-A)(\g\-3w)    <   \g\dt\g\ + (g, D0g - 2iBg*) 
-(g,i$)2-\(g,$)2 

(3.8) +(5,A^)-3|5|(|5|2-A|$|M- 

We note 
\g\dt\g\-(g,Dog) = 0 

(g, i$)2 + \(g, $)2  =  (1 - A)(5, i$)2 + A|5|2|$|2  > 0      for A < 1 

-(g,iBg*)  <  |5|2|B|  <  \g\2w 

using theorem 3.4. Inserting these in (3.8) we obtain 

\g\(dt-A)(\g\-Sw)   <   -\g\(\\*\2\g\\w\g\ + \g\2 - SXm2w - 2\g\w) 
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<    -\9\ (m\2(\9\ - 3w) + \g\(-Xw + \g\ - 2w)) 
(3.9) <   -\g\(\g\ + m2m - 3™) 

and thus 

(3.10) 
(dt - A)(3w - \g\) + (\g\ + m2)(3w - \g\)   >   0      on V. 

The result now follows from the maximum principle (theorem A.4). □ 

We can now establish uniform estimates. We show that all the (co- 
variant) derivatives of B,D§ and bounded in L00^2) independent of time 
Tioc (and in particular independent of the time interval in which they are 
assumed to exist). Since the L00 norms of these quantities are gauge invari- 
ant we may use the equations in the temporal gauge. The argument follows 
HassePs ([18]) adaptation of Hamilton's ([16]) method. 

Theorem 3.6 (Uniform Estimates and Uniform Continuity).    * sat- 
isfies estimates of the form 

sup sup (\daB{x,t)\ + \DaD$(x,t)\) < 
t>o xem2 v y 

c(|a|,f(0),|a^(x,0)|Loo(]E2),|^^(x,0)|Loo(]R2)) 

for each multi-index a. Therefore, daB(x11) and \Da<f>(x, t)\2 are uniformly 
continuous onR2 xM"1" and from (2.1) the quantities dtA — VAo and \D^\2 

are uniformly continuous on M2 x M+. (These estimates hold throughout the 
time of existence). 

The method of proof uses the lemma below. We let £ = (i?, D§) and 
differentiate with the direct sum connection i.e., DiQ = (diB,DiD<&) etc. 
The following differential inequalities follow from (2.12)-(2.15): 

(3.11) 

(dt - A)|C|2 + 2<r|<I>|2|C|2 < Cild3 + A^ld2 - 2|JDC|2 

(3.12) 
(dt - A)\D(\2 + 2a|$|2pC|2 < C2(|C|2PC| + ICIPCI2) + A^I^CI2 

where a = min(l, A) and Ci, C2 are constants. 
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Lemma 3.7.  Consider a smooth function £ on E2 x M"1" which satisfies 
#.11>#.12; and 

(3.13) sup |C(M)|<# 
T*-l/K<t<T*,a;€M2 

and assume K > 1 and T* > if-1. T/ien f/iere exisfe a number Cs such that 

sup sup |£>C0M)l < Ca^372. 
(T*-l/2K)<t<T+x€B? 

Proof. Let 5 = -^, so T* > S and consider the function 

Q = (t - T* + (SXI^CI2 - Wf3) + a|C|2 

on [T* - 5,T*] x K2, then we find 

Q-AQ   <    |JDC|2 + a(Ci|C|3 + AHC|2-2|JDC|2)-^3 

+(t -T,+S) (c2(ici2pci + ICIPCI
2
)+Mm2) 

<    (1 - 2a + 2(t - T» + S)cK + A) pC|2 

+(ac + Aa + (t - T* + S)c - b)Kz. 

Since (t — T* + S) < d = -^ we see that for a and b sufficiently large (inde- 
pendent of K) 

Q-AQ<0 

We now apply the maximum principle on [T* — 5, T*] x M2 to deduce 

(t - T* + 5)(\D{\2 - bK3) + a|C|2 < aK2. 

It follows from this that 

WMSlt-Cwi' + W 
which gives the result by letting t G [T* - 5/2, T*]. D 

From this and the energy estimates we can infer the uniform estimates: 
Proof of theorem 3.6. The strategy is to assume that at some time, 

T*, ICIL
00
 has magnitude K and use the previous lemma to show this leads 

to a contradiction of the energy estimate £ (T*) < £(0) for sufficiently large 
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K. The next claim shows that by taking K large we can indeed apply the 
previous lemma. 

Claim.   Let u be a positive solution of the differential inequality on 
M2 x M+ 

—u2 - Au2 < au2 + bus 

at 
u(x, 0) = UQ(X) 

with a, b > 0, and satisfying 

lim  |w(a;,t)| = 0 
|x|—>oo 

for all t. Define /x = ^1 + |^o|^o aild let K > max{2/x, (a + 6)/x}. Then for 

* < Tc = (^ > Z we have 

Proo/ o/ Claim.   Compare u2 with the solution to the ODE 

/   =   (a + b)f/2 

/(o)  =  i + Klloo^) 

Noting that / > 1 we have 

4-(u2 - f) - Au2 < au2 + bu3 - (a + &)/§ 
at 

and conclude that u2 < f (or else, let to be the first time so that (u2 — 
/)(^OJ*O) = 0; at ^is point the inequality above is contradicted). Thus 

V 
u*  < 

{2-(a + b)tity 

and so for t < Tc = .Ax    it follows that |^| < 2/x < X which proves the 
claim. 

Apply the above claim with \u\ = 3 to conclude the theorem up to time 
Tc.We now apply lemma 3.7 to conclude the theorem for times in [Tc, Tioc]: 
we assume that at some time T* we have sup^ |C(a;,r*)| = K and obtain a 
contradiction for large K. By the previous claim we may assume T* > ^ 
by making K large compared with |C(0)|z,oo(ffi2). Therefore by the previous 
lemma we know that for some c > 0 

sup\D((x,T*)\<cK3/2. 
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Since lim^i^oo |C(a;,r*)| = 0 there is a point z* at which 

\ax*,Tm)\ = K 

so that there exists a number p such that 

|C(z,T*)|> —for |x-x*|<    P 

2        ^    ^ " VK' 

Prom this we obtain a lower bound for the energy 

m) > /ICI2>^2X(^) 

> ^p2* 
4 

which gives a contradiction to £(T*) < £(0) for K large compared with the 
energy and satisfying the condition in the previous claim. This completes 
the proof of the theorem for the case of no derivatives. The proof of the 
uniform bounds for the higher derivatives is exactly as in [18]. To prove that 
\DC\ is bounded notice that (3.11)-(3.12) imply that if A is large enough then 

(dt - A + i)(^|C|2 + PCI2) < c(l + i|CI)4. 

From this the maximum principle implies that if K^^OIL
00
^

2
) is bounded 

independent of time then so is \D^(x,t)\Loo^2y This argument can be re- 
peated indefinitely to complete the proof of the theorem. □ 

3.2. Estimates for Time Asymptotics. 

The results in this section will be used to describe the behaviour of the 
solution as time goes to infinity. Time independent Lp estimates will be 
valid for all values of A while the results of exponential decay following will 
hold for restricted values of A. As mentioned above, the main asymptotic 
result showing that the solution converges strongly to a static solution holds 
only in the case of A = 1. To begin, the next theorem gives a condition 
under which vortices cannot escape to infinity. This will later be crucial in 
proving the existence of a uniform limit of the solution in the case of A = 1. 

Theorem 3.8. Let A = 1 and assume the initial magnetic field satisfies the 
condition |JB(X,0)| < w(x,0).   Then the weighted energy defined in theorem 
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3.2 is bounded independent of time: 

/    r2e{t)dx < c < oo. 
JR2 

Moreover, for all positive e there exists a number R(c), independent of time, 
such that for all t > 0 

|x| > R{e) => \w{x, t)| + |JB(X,t)| + \DQ{x, t)\<e. 

Proof. The first statement follows immediately from the fact (theorem 3.4) 
that \B\ < w and theorem 3.2. To deduce the second statement from this, 
assume to the contrary that there exists e* > 0 and a sequence of points in 
space-time (x^ti) with U > 0 and \xi\ / +oo such that 

Then by the uniform continuity of w there exist balls B{xi\ p) on which \w\> 
4f, which gives an immediate contradiction to the uniform boundedness of 
the weighted energy. The same argument applies to B and D$. □ 

We continue with time independent estimates in L1 for the gauge invari- 
ant quantities JB, |Z)$|, W using the temporal gauge. 

Theorem 3.9 (L1 Estimates Uniform in Time). Assume A > 0. 
Then there exists 

c = c(|K0)||Li, ||i?ai$(0)||LlnLoo, 11^*5(0)11^00,5(0)) 

for \OLI\ < 2 and \a2\ < 1 such that 

sup {\\B(t)\\^m + ||ti;(t)||Li(R») + WDmWvm + \\D2m\\m*) 

+ ||VS(t)||Li(E2))<c 

Proof To prove this we consider /3(x,t) = etB(x,t) and observe that it 
satisfies the equation 

P-Ap   =   e*(B(l-|$|2) + 2(i£>i$,£>2$)) 

=   eth(x, t) 
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where it follows from the energy estimate that supt>0 HM^HL
1
^

2
) < C

< 
00^ 

with c depending only on 5(0). Let Kt be the heat kernel and write the 
solution as 

f3(t) = [ Kt-S * h{s)e8ds + Kt * /?(0) 

where * means spatial convolution. This leads to the estimate 

WmWiMP)    <    \\m\\LW) +j \\Ks)\\L^)esds 

<   c^-lJ + l^oL^) 
which implies the following estimate for B: 

l|B(*)llLi(E2) < 6^115(0)11^^) + C(l - C"*). 

The proof of the other results is very similar so we will be very brief. An 
identical argument applied to equation (2.16) gives the estimate for w. Next 
integrate (3.12) over M2 and estimate for each t > 0 

/lciPci2<e/|iKi2 + */iciW 

This together with the known estimates for ||I>C||L«>J IICIIL
2
 
and IMIL

1
 gives 

the inequality 

dtJ\DC\2 + 2j\DC\2<c 

from which follows the L2 boundedness of VB, JD^$ independent of time. 
Next substitute this information into (2.14) and apply the argument above 
to deduce the L1 boundedness of VB independent of time. Next write down 
equations for ($, DA$), (i$, DA®), (*, D\$), (i$, D\$) by taking the inner 
product of (2.13) and (2.15) with $ and i<b. Applying the same argument 
to these equations will complete the proof. □ 

We now restrict to the Coulomb gauge and obtain estimates for the 
connection by solving the elliptic system 

(3.14) diAi + #2^2 = 0 

(3.15) diAs - d2A1 = B. 

The solution to this system is unique only up to gauge transformation by 
a harmonic function. Thus there is a unique solution for A which has limit 
zero as \x\ —> oo. It is this solution which we investigate. 
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Theorem 3.10 (Uniform L9 estimates).    Let A > 0.   In the Coulomb 
gauge (2.1) the connection A{t) satisfies the time independent estimates 

P(*)IILP(R3) < c{v)(\\BmLim + \\B{t)\\Leo^ 

for all 2 < p < oo.   There exist constants c = c(|a|), independent of time, 
such that for each multi-index a 

sup(|VSA(M)| + |^(x,t)|) < C(|a|). 

Proof The solution of the elliptic system above is 

(3.16) Mx,t)  =  ^f JiZlLB{y,t)dy 
27r J^- \x - y\z 

where a is the antisymmetric tensor and au = +1. This is of the form A = 
K^B) where the kernel K is in the weak L2 space. The estimates for p < oo 
then follow from the convolution estimates (see for example [14, p. 232]) 
and the known estimates for B. The L00 estimate is obtained by splitting 
the integral into \x — y\ < 1 and \x — y\ > 1. To prove the boundedness 
of all derivatives of A introduce a mollifying function p(x) G CQ^M

2
), non- 

negative, equal to 1 for \x\ < 1 and equal to 0 for |a;| > 2. We can then 
write A = A1 + A2 where 

4GM)  =  ^ [2^Lp(x-y)B(y,t)dy 
in m2 \x - y\ 

= ^i [ 
27r JM 

—p(u)B(x — u, t)du 
u 

M2 W2 

x
j ~ Vj 

27r Ji 2
 \x_y^-p(x-y))B(y,t)dy. 

The boundeness of B in L1 and the uniform boundedness of all derivatives 
of B imply the uniform bound of all derivatives of A. The estimates for $ 
then follow since DA$ = V$ — iA<& and all the covariant derivatives are 
bounded in L00. □ 

We now restrict to the case of A < 1 and show that the quantities 
w, JB, D$, D2$, VB decay exponentially as \x\ —► oo. In the case of A = 1 
this decay is uniform in time. This fact depends crucially on theorem 3.8. 
Recall that w = ±(1 - |$|2) and 0 < w < ^. 
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Theorem 3.11 (Exponential Decay). Let A < 1. Assume that for 
any e € (0,1) there is a C(e) such that (w + \DkDi$\ + \VB\) (x,0) < 
C(e)e~^(1"e)|:c| on R2 and that (w,B,D^)(x,0) satisfy the hypotheses in 
theorems 3.4 and 3.5. Then for any e G (0,1) there is a constant M(e,T) 
such that 

(3.17) 

{w+\B\ + |D$| + \D2§\ + |V5|) (x,t) < AfCc.Tje-^1-6)'*' on M2 x [0,r]. 

t^/ien A = 1 t/ien M = M(e) and (3.17^ holds on M2 x M+ and implies 
exponential decay uniformly in time, that is, 

(w + \B\ + |£>*| + \DH\ + |VB|) (x,i)  <  M(e)e-VX(1-£)|x| on E2 x M+. 

Proof. Let m = m(e) = \/A(l - e) and find R = R(e, T) such that 0 < w < 

^^ on {|x| >R,t<T} and set 

t;(x)  = Mi(€)eTO(H-la;|). 

Then 
At;  =   (-r-r-H-m jv   <  m v. 

\x\ 

By (2.16) and since \g\ < 3w (cf. theorem 3.5) we have 

(dt -A)(v-w)    >   -m2v - 9w2 + A(l - 2w)w 
>   —m2(v — w) 

on {|a;| > R, t < T}. Next choose Mi > max{l, C(e)}. Notice that v-w > 0 
on {|x| = R} U{t = 0} so the maximum principle (theorem A.4) implies that 
v - w > 0 for \x\ > R and thus (3.17) follows with M = MiemR. 

When A = 1, then w —> 0 as \x\ —> oo uniformly in time by theorem 
3.8, so Mi,i? are independent of time and so M(e,T) = M(e) and (3.17) 
is valid on M2 x M+. Since |J3| < w and \DA§\ < 3w when A < 1 these 
quantities decay as w does. 

Next we let h be the matrix JD
2
$ with hfa = 0^0^ and consider equa- 

tion (2.15) and Kato's inequality ([19]) 

\h\A\h\ >(h,AAh). 

It follows that on the set V = {\h\ > 0}, 

\h\{dt-A)\h\    <    \h\dt\h\-{h,AAh) = (h,h-AAh) 
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<   -A^l2^!2 - (1 - A)|(i*, h)\2 + \h\\A\B\ + Aw) 
+|A|(3|Vi%| + (3A + 2)|$||5|2) 

(3.18) <   -\\§\2\h\2 + a{x,t)\h\2 + b{x,t)\h\ 

where a{x, t),b(x, t) are positive and decay exponentially by the above. In- 
deed since |VB| is bounded independent of time, for each e > 0 there exists 
ci(e) such that 

b(x,t) < a^e-t1-^ 

and there is R(e), independent of time, such that 

a(x, t) < e, b(x, t) < e, |$| > -        W > 0,     |x| > ^(e). 

Thus there is n(e) > 0 satisfying 

lim n(e) = 0 
e—*0 

such that on V D {|x| > R(e)}, 

(dt-A)\h\ + (l-n(e))\h\  <  c2(e)e-^-^xK 

Introduce a comparison function 

v(x) - A(e)e-k^^ 

with 

A(e) > max{^,Le^^)},        He) < min{(l - e), ^f} 

where L > ||^||Loo(ffi2xM+)- Notice that this is independent of time. Then 
Av < k(e)2v and so together with (3.18) this implies 

(dt-A)(v-\h\)    >   -k{€)2v + (l-n(e))\h\-C2(e)e-^-^ 

> -(1 + e)k(e)2(v - \h\) + (-(1 + e)k(e)2 + (1 - n(e)) \h\ 

+ek(e)2v - C2ee-(1-e)M 

> -(l + €)k(e)a(v-\h\). 

Thus by the maximum principle as in theorem 3.5 \h\ < v and the estimate 
for D2<J> follows. Using this and a similar comparison function we also infer 
the estimate for V.B. □ 
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4. Existence and Uniqueness. 

Using gauge equivalence it suffices to prove the existence and uniqueness 
of the solution of the equations in the uniformly parabolic gauge (2.10). 
General results imply local existence. From the a priori estimates derived 
in the previous section follows the existence of a unique global solution of 
the equations. Uniqueness of the fully invariant equations (2.1) is meant 
in the sense of a unique gauge equivalence class of solutions. In specific 
gauges the equations may or may not possess a single solution. In the three 
gauges under consideration, namely the uniformly parabolic, temporal and 
Coulomb gauges, there is a unique bounded smooth solution. (We restrict 
to bounded solutions which ensures solutions of (2.6) and (2.9) are unique.) 

To obtain local existence we apply theorem A.l stated in the appendix 
to (2.10) and we obtain a unique solution * = (A, $) up to time 7}oc. Using 
this solution we then regard (A, $) as known and apply theorem A.2 to 
the initial value linear system of equations (2.12)-(2.16). Thus we obtain 
exponential decay in space for U = (B, D$, V5, D2$, w) for each time 
t < Tioc. In summary we have: 

Theorem 4.1 (Local Existence). Assume that the initial data (A, <J>, £?, 
D$, VB,D2§,w) belong to the class Cr,N defined in the introduction. Then 
there exists a time T/oc (depending on the initial data) up to which an 

unique solution to equations (2.10) exists with each component in C2,1'^ (M2x 
[0, Tiod). Moreover, there exists a constant K = K(Tioc) such that U = 
{B,D§,VB,D2§,w) satisfies 

\U(x,t)\<Kexp{-r-\x\) 

for all t < Tioc and x G M2. 

We may now conclude: 

Theorem 4.2 (Global Existence and Uniqueness). Consider the ini- 
tial value problem for (2.5) in temporal gauge with initial data in Cr,N. There 
exists a unique global smooth solution (A(t), $(£)) fort > 0 which is bounded 
for each t, has winding number N and satisfies the energy identities of theo- 
rems 3.1 and 3.2, and the L00 and L1 estimates of theorem 3.6 and theorem 
3.9. Furthermore, the solution takes on the initial values in the sense that 

lim(||*(t) - *(0)||L~ + \Mt) - WCOJUico) = 0. 
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Proof. Prom theorem 4.1 it follows that in the uniformly parabolic gauge 
there exists a unique local solution in the space C2,1,2(M2 x [0,T/OC]), where 
Tioc is some time of existence, and the solution satisfies the initial condition. 
As it also satisfies the estimates of theorem 3.6 we conclude from the second 
equation in (2.10) that A — AA is uniformly bounded in (x,t) and thus for 
each t > 0, IJA^H^oo^) < c(t + 1). By differentiating the same equation 
we obtain similarly that A and all its spatial derivatives have at most linear 
growth with respect to time. Recall that in the uniformly parabolic gauge 
AQ = d*A, which together with its spatial derivatives is now uniformly 
bounded on any finite time interval, and apply the gauge transformation x 
determined by (2.4), x — AQ = d*A and x(0) = 0, to move into temporal 
gauge. Hence x and its spatial derivatives are < ct (uniform in x) and, 
therefore, limi_>o(|x(^)lLoo(i2) + MXWIL

00
^

2
)) — 0- Thus the solution in 

the temporal gauge takes on the initial values as claimed. The fact that 
U takes on the initial values uniformly follows from theorem A.2. It then 
follows by integration of (2.5) with respect to time that A, $ and their 
derivatives can grow at most linearly with respect to time. We can therefore 
continue the solution for all time to obtain a global smooth solution of the 
inital value problem, which attains the initial data. Finally the uniqueness 
of the solution in the temporal gauge follows from the uniqueness in the 
uniformly parabolic gauge and equations (2.4) and (2.9). Indeed, the gauge 
transformations determined by these equations are unique on account of the 
condition that the solution be bounded at each time which removes non- 
uniqueness of (2.9). □ 

5. Large Time Asymptotics. 

This section is divided into two parts. In the first we prove that for each 
A > 0 the solution (A, $) possesses a subsequence converging to a solution 
of the static equations in a weak topology of a suitable LP space and 
also in the compact-open topology of convergence of all derivatives (uniform 
convergence of all derivatives on compact sets of M2). This is done using 
the equations in Coulomb gauge. We then restrict further to the case 
of A = 1 and show that (after applying appropriate time-dependent gauge 
transformations) this (subsequential) convergence is strong in H2. In the 
second section using an adiabatic approximation it is proved that once 
the solution is (strongly) close to the moduli space the entire sequence 
converges in a certain gauge.  It is then finally shown that the sequence 
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converges in the temporal gauge. 

5.1. Extraction of Convergent Subsequence. 

We will now show weak subsequential convergence to a solution of the 
static equations in the Coulomb gauge. 

Theorem 5.1 (Weak Convergence). Consider the solution (A(t),<f>(t)) 
given by theorem 4.2 in the Coulomb gauge and let A > 0. For any 2 < p < 
oo there is a subsequence tv / +oo and a weak limit (AQ^ $00) such that 

Atyv) —^ AOQ        weakly in Lp 

weak* in L00 and in C00(i;C) for all compact sets K 

®{tv) —^ $00 weak * mL00 and in C0O(JK') for all compact sets K 

The quantities Do<&, A — VAQ are uniformly continuous and 

(5.1) lim   (A)$, A-VAo) =  (0,0). 
|a:|+t—»oo 

Thus the weak limit (AQO, $00) is a weak solution of the static problem. 

Proof The statement of weak convergence follows from weak compactness of 
bounded sets in LP for p G (2,00) and theorem 3.10. Similarly, recall from 
theorem 3.3 that |$|(x,t) < 1 and thus weak* compactness follows. The 
uniform estimates of theorems 3.6 and 3.10 and the Ascoli-Arzela theorem 
imply compactness in the compact-open topology in C00(R2). Since in the 
Coulomb gauge A is uniformly bounded (c.f. theorem 3.10) then theorem 3.6 
also implies the uniform continuity of Da$ (and not only of |Z)a$|2) as well 
of daB] hence by equations (2.1), the quantities Do$, A—VAQ are uniformly 
continuous on M2 xM+. By the energy identity (3.3) we infer that (5.1) holds: 
for if not, then for some eo > 0 there is a sequence of points Pi = (xi^U) 
and balls Bi = B(Pi, p) e M2 x M+ on which |A)$|2 + \A- VAo\2\ > eo (by 
uniform continuity p is independent of Pi). Therefore, 

/ (|A)$|2 + \A-VAo\2\) dxdt > yZeo\Bi\ = 00 

contradicting the energy estimate (??). Thus (.AQC^OO) satisfies the static 
equations (1.2). □ 
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Consider the winding number of the solution which as mentioned 
above is given by JR2 Bdx and is an integer multiple of 2TT. By the smooth- 
ness of B and the exponential decay of theorem 4.1 we know that the winding 
number is constant for all time. In the case of A = 1 we also know the uni- 
form exponential decay estimate of theorem 3.11. In fact, this implies that 
the limiting static solution (-AQC^OO) has the same winding number as the 
initial data. This is done by improving the weak convergence of the subse- 
quence to a strong convergence. We will write .Boo = *GL4OO for the magnetic 
field of the weak limit. 

Theorem 5.2 (Strong Convergence I).   Let A = 1 and let {A, $) be the 
solution in Coulomb gauge. Assume the initial data satisfy 

\B{x,Q)\ < w{x,Q)       and      \DA{fi)^{x,G)\ < 3Ti/(a;,0). 

Then for (ty) the subsequence in the previous lemma, 

B(tu) —► i?oo strongly in L1 fl L00 

and thus the limiting static solution possesses the same winding number as 
the initial data, 

DA(u)$(U) -> ^Aoo^oo strongly in L1 n L00 

w{tu) —> Woo strongly in L1 n L00 

VB(U) -> VJBOO strongly in L1 fl L00 

D2
A{u)<f>(U) -> ^$00 strongly in L1 n L00. 

In addition, for the same sequence (tv)^, 

(5.2) ll-A(*i/) "" ^oo||Lr(]^2) —*■ 0 for each 2 < r < oo , 

(5.3) liin||(A(tl/)-i400)||H2(M2)=a 

(Recall that in the Coulomb gauge A(t), AOQ G 27(M2) only for 2 < r < oo 
(c.f. theorems 3.10 and 5.1); however, the differences converge as above for 
2 < r < oo.) 

Proof The strong convergence in L1 fl L00 follows from the uniform con- 
vergence on compact sets of these quantities together with their uniform 
exponential decay as \x\ —> oo given by theorem 3.11. The convergence in 
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(5.2) for r > 2 follows from the convolution estimates for the integral (3.16) 
giving A (see [14, p. 232]). For the case r = 2 and (5.3) we use the fact that 

(5.4) [2W»)- 
m2 Bo^dx = 0 

which is true since B(tI/) -> B^ in L^M2) and / B(tu)dx = 2'KN where N G 
Z (see [19, Chaper Two]). The integral formula for A{tu) - Aoo (see (3.16)) 
involves convolutions of the following type 

r £ — y 
QfaU) = /    -j 7oU{y)dy 

m2 F - y\ 

where fj, = B(tu) — BOQ. Using (5.4) we can write this as 

Jm2 \x-y\2     \x\2' 

Next we claim that 

\x\2\Q(x,tu)\ < cxI^lV^lle^l/.H^^) + 0211(1 + \y\2)fv\\mdy)- 

To prove this we split up the integral into two parts Qi,Q2 on the inner 
region / = {\x — y\ < -y-} and outer region O = {\x — y\>  2} respectively: 

Qi = Ar-ia - rvi)Mv)dv Ji \x-y\2     \x\2/ 

Q2= f (7^4 - As)My)dy. 
Jo \x-y\2     \x\2' 

To estimate the first term we use the fact that y € I implies \y\ > ^ so 

that e~r 2 er|2/l > 1. To estimate the second term we use the fact that on O 

1 1      F i \x — y\ > —      and so 
\x\\x-V)-\x-V\*x   = 0(M2) a8 w ^ ^ 

k-y|2 

Notice that if r < 1 then erl:cl(B(tI/) — BQO) = er^fu(x) goes to zero as 
1/ —> 00 uniformly as a function of rr by the uniform in time exponential 
decay of B (as A = 1). Therefore lim^-.oo \x\'2Q(x^tl/) = 0 uniformly in x 
and so also Q —> 0 in L2. This gives the convergence of A(£j,) —> AQQ in L2. 
By once more differentiating the elliptic system for A in (3.14) we obtain 
(5.3). □ 
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We now ensure that (for A = 1 and in the Coulomb gauge) along the 
subsequence (i^)^ there exist gauge transformations x(tI/), Xoo such that 
pixiUKAfa), $(*i/)) -pOcooXAx), $00) becomes arbitrarily small in H2(R2) 
as v —> 00. 

Theorem 5.3 (Strong Convergence II). Let A = 1, (-A,*) be the so- 
lution in Coulomb gauge and tu as before. There exist gauge trans- 
formations XviXoo € C00^2) such that if #'(*„) = (A'(U),&(tu)) = 
p(Xv)(A(tv),$(U)) and^* = p(xoo)(^oo,*oo) then 

lim   ||*%)-** 11^2^2) =0. 

In addition, ^'(U), ** belong to W^'00^2) for all positive integers k and 
dXvi dxoo He in IIk(R2) for fc = 0,1,... 

Proof On bounded sets $ and its derivatives converge uniformly by the 
Arzela-Ascoli theorem. Therefore, the function 1 — |$| converges in H2 

since its first two derivatives converge uniformly on bounded sets and have 
exponential decay uniformly in time. Thus the issue is the behaviour of 
arg$ as \x\ —> 00. Restricting to the set {|$| > ^} we may write $ = |$|e^ 
where / = arg<f> is well defined. Then 

D<f> = (V|*| + i(V/ - A)\$\)eif. 

Using this and the similar formula for Z)2$ we see that $ converges in H2 if 
/ does. Since ll}0^! for |a| = 1,2 and w decay exponentially fast uniformly 
in time (cf. theorem 3.11), we have 

sup IV/ -A\ + |V2/ - VA|  <  c(€)e-(1-e)|rc|. 

Thus as 1/ —> 00. 

(Vf-A){tv)  —>  (V/oo-^oo)      inF^M2) 

so that V/ converges in if1. Thus we are left to investigate the convergence 
of / in L2. It turns out that it is necessary to apply a gauge transformation to 
ensure that / converges in L2. To see this write out the convolution integral 
(3.16) for A and collect terms in powers of l^l"1 to obtain an asymptotic 
expansion for A as |a;| —> 00. This is proved as in [19, Chap 6] or [38]. The 
components of A are expressed using polar coordinates (r, 9) as 

Afat)  = AW(x,t) + AW(x,t) + AW{x,t) 
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3 

= -^ESL1*^')* 
and 

K^^^I^Y^p- 
Here iV is the winding number and aij the antisymmetric tensor with an = 1 
for i, j — 1,2. Along t^, 

||A(3)(^) - ^||L2(l2) —> 0     as i/ -> oo. 

Since V/ — A decays exponentially independent of time we obtain by inte- 
gration 

/(*„)  = Nd + fQ\tv) + fW{tv) + k(tv) 

/(oo)  = ^ + /(2)(oo) + /^(oo) + A;(oo) 

for constants A;(t^) and k(oo) where f^(tv) < 1 ? .^ and converges to /£/ 

in L2(M2) and 

Since f^(U) + kfo) is not L2-convergent we change to a different gauge 
to annihilate it: we define a gauge transformation by truncating f^ to 
guarantee smoothness. At time ^ we let 
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where 77 is smooth, equal to zero in a neighbourhood iV"i of the origin and 
equal to one outside JV2, a larger neighbourhood of the origin (containing 
iVi). Define Xoo similarly. Then /(£„) + x(U) - HU) -foo-Xoo + fe(oo) can 
be made arbitrarily small in L2 by making tj, large enough. After applying 
these gauge transformations A'fo) still converges in H2. Finally the I^00 

estimates follow from those of theorem 3.10. □ 

5.2. The Adiabatic Approximation. 

Let ^(t) be the solution to the initial value problem for (2.5) with 
A = 1. For any fixed e > 0 theorem 5.3 provides a time To, a gauge 
transformation g G C00(M2) and ** (a critical point of 5), such that 
||/?(5)^r(To) — 1Er*||iy2(K2) < e. At this time To we change back to the tempo- 
ral gauge and consider *(£) the solution of (2.5) with initial data p(g)^(To), 
i.e. ^f(t — To) = p(5)^r(t). For notational convenience we start measuring 
time at To, or equivalently we relabel ^(t) as $(*) for the remainder of this 
section. We will revert to calling it \I/(£) in section 6. 

In this section we describe a method to prove that in the case of A = 1, 
>?(£) converges to a static solution without passing to subsequences in 
time. The difficulty here is that there is an infinite dimensional manifold of 
equilibria and different subsequences might converge to different limits. The 
adiabatic approximation which we use to overcome this difficulty has a very 
clear geometrical interpretation which we now explain. Let SN be the of 
space smooth, finite action critical points (static solutions) of £ which have 
winding number N. We will find at each time the point F{9(t)) G SN which 
best approximates (in L2) the solution *(*). The existence and uniqueness 
of P(\I>(£)) follows from theorem 5.15. One then obtains estimates which 
show that *(£) approaches IP(*(t)) and that P(*(t)) has a limit as t —► 00 
which will be the limit of our solution. These estimates follow from the fact 
SN is energy minimizing. We prove the following theorem, which is the main 
result of this section: 

Theorem 5.4 (Asymptotics in a Neighbourhoodof the Solution Space). 
Let A = 1. There exists a number e* = €*(N) such that if e < e* the follow- 
ing is true. Let * G C00(M2 x (0,00); M2 x C) f] C(M2 x [0,00); M2 x C) be the 
solution of (2.5) with smooth initial data *(0) = (A(0),$(0)) and satisfy 
the conditions 
(i) £(A(0),$(0)) < +00 and (A(0),4>(0)) has winding number N. 
(ii) there exists ** G SWH/ceN W^00^2^2 x C) such that ||*(0)-**||H2 < 
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6 and 
(in) *(t) G PlfceN W*'00^2;!*2 x C) n {** + iJ2(M2;IR2 x C)} /or all t > 0. 
T/ien the curve ^(t) projects to a curve P(*(t)) in SN and the two curves 
converge in H2 to a unique limit in Sjy as t —» oo. Precisely, there exist in 
SNf]ke^ WktCO(R2]R2 x C) H {#* + fr2(M2;M2 x C)} a unique ^oo, and for 
allt>0 a unique ]P(\l/(£)) such that 

(5.5) ||*(t) - P(*(t))||ia =   inf   ||*(t) - *O||L2 
voebN 

(5.6) mt)-Hm)\\H2<ce-5t 

(5.7) HlPWJJ-^ooll^^Ce-** 

for some positive numbers C, 5. 

The proof of this theorem appears in section S.b.iv after some preliminary 
results. It is more convenient to work with a gauge transform \I/#(£) = 
p(x(t))^(t) and then move back to the temporal gauge at the end. Thus we 
will show that there exists a time-dependent gauge transformation p(x(t)) 
such that >!/#(£) = p(x(t))^{t) converges in H2 to a finite action solution 
of the static equations \I/So. We will write $#(£) = *o(^) + ^(t) where 
^oit) G SN- The basic idea behind the proof is to show that the Hessian of 
£ acts as a Liapunov functional and so ^(t) —> 0 as t —» oo exponentially 
fast. There are difficulties with this, however, which we now discuss: 

(i) Gauge Invariance. The gauge group Q = C00(M2]S1) acts as an 
infinite dimensional symmetry group on SN- The Hessian inherits from this 
an infinite dimensional null space (the tangent space to the orbit of G). This 
is a difficulty which can be removed by use of appropriate gauge conditions 
which are described in sections 5.b.i and S.b.iii. To this end it is convenient 
to introduce the Sobolev completions SN (static solutions) and G^ (gauge 
transformations) defined in (5.24) and (5.10). The gauge conditions amount 
to requiring that ^(t) be orthogonal to the tangent space to the orbit of \I/o 
under G^\ which is written as T^C/t3) • \I/o)- This is possible by lemmas 
5.7-5.9 which prove the existence of slices of the action of the gauge group. 

(ii) The Moduli Space. Define the quotient MN = sff/G^ which is 
called the moduli space of gauge equivalence classes of the static solutions 
and let TT : SN —> MJV be the natural projection. S^ is a principal bundle 
over MN with structure group G^) and Mjy is a 27V-dimensional manifold 
(see [19] and section S.b.ii). Even after factoring out the gauge symmetry 
we must deal with the degeneracy of the critical points of £; this is reflected 
in the kernel of an elliptic operator L^0 defined in (5.22) which defines the 
Hessian of £ at \I/o- Dealing with this degeneracy amounts to choosing \I/o(£) 
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correctly as follows: 

we seek a curve ^ro(^) € Sjy   so ^ai ^C*) ~ ^C*) — *o(*) ^ L2-orthogonal 
to the tangent space to SN   at ^oC*)- 
Lemma 5.12 tells us that this tangent space is given by 

r(tfo) = KerLvt 0 T^ (^ • *o) 

where KerLy0 forms a horizontal subspace at ^o and (lemma 5.11) can 
be identified with the tangent space to MJV at 7r(^o)- So in addition to 
the condition that tj; be orthogonal to T^0(G^ • ^o) mentioned in (i) above, 
this leads to the condition that ip be orthogonal to KerLq/0. The differential 
operator i^0(t) defines the Hessian of the functional (1.1) on the subspace 
orthogonal to the gauge flow. Thus these orthogonality conditions ensure 
the nondegeneracy of the Hessian, which can therefore be used as a Liapunov 
functional. In addition the orthogonality of ip with respect to KerL^0 is 
equivalent to determining the curve q{t) = 7r(^fo(^)) € M^ as a solution of 
a suitable ordinary differential equation (lemma 5.18). Then in lemma 5.13 
\I/o(£) is determined as the horizontal lift of q(t). This means that ^a is 
L2-orthogonal to Tq,0(G^ • #o). 

Finally we draw the reader's attention to theorem 5.15. This is a tubular 
neighbourhood theorem which states that for a point * close enough to 5]y 

there is a unique point on SN' which is L2 closest to \I/. We denote this point 
IP(^r). The result is non-standard because the closest point is found in L2 

while the ambient space has norm H2. The proof of the result depends on 
the fact that SK

N is defined by an elliptic system of equations (modulo gauge 
invariance). This leads to a regularity result (lemma 5.14) which allows us 
to effect the usual existence proof for tubular neighbourhoods (see e.g. [12, 
XVI.25]). Theorem 5.15 allows us to identify *o(^) as the closest point on 
SN to ^(t). We then apply the gauge transformation —x(*) to go back to 
temporal gauge and obtain the result stated in theorem 5.4 using the fact 
that F commutes with the action of the gauge group. 

The remainder of this section is divided up as follows. In section 5.b.i 
we describe slices and gauge conditions. Next in section 5.b.ii we describe 
the manifold structure of the moduli space. We then give an ansatz for the 
solution and prove some preparatory lemmas in section 5.b.iii before giving 
the proof of theorem 5.4 in section 5.b.iv. Throughout section 5.b let $* 
denote the point in SN described in theorem 5.4. 
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5.2.i. Gauge Orthogonality and Slices.    Recall that we have defined 

SN    =    {#o(A,$)eC^(M2;M2xC): 

\I>0 is a finite action critical point of £ 

with A = 1 of winding number AT}. 

The gauge group G = C00^2; S1) acts on SN and the orbit through \I>o is 
defined by 

The space of orbits is called the moduli space, denoted by M/v = SN/G 

which is identified with S^ /G^ by lemma 5.10. The space MN possesses a 
manifold structure of dimension 2iV (c.f. [19]). We let TT : SN —» MN be the 
natural projection. To obtain good estimates we must factor out the gauge 
symmetry. The standard way to do this is to find a slice of the action of 
G (see [11, 15]). This is most conveniently done in a Sobolev space setting, 
which explains the prevalence of Sobolev norms throughout this section. In 
the C00 setting we define a slice through *o = (a, 0) to be the affine space 
\&o + SC^0 where 

SCaj = SU0 = {(/?,7?) G C00^2;]^2 x C) : V • 0 - (ifrv) = 0}. 

Based on this we may define gauge orthogonality as follows: 

Definition 1. We say that (/3,7?) G C00^2;^2 x C) is gauge orthogonal 
with respect to (a,</>) G C00(M2;M2 x C) if (/3,r?) G <S£a,0. 

Remarks, (i) Formally this means that (/3,77) is L2-orthogonal to the 
tangent space to the orbit of the action of the gauge group G on SN at the 
point (a, 0), since for any compactly supported smooth function x(x) we 

would then have 
/?-VX+(TMX^) = 0. 

A2 

(ii) Notice that if #, *b G C00(]R2;M2 x C) then (* - *b) is gauge orthogo- 
nal with respect to ^ if and only if it is gauge orthogonal with respect to ^. 

We introduce a Sobolev space structure: there is a slight complication 
in that the boundary condition lim|a.|_>00 |$(x)| = 1 means that the static 
solutions are not contained in the usual Sobolev spaces. So instead let >&* = 
(a*, </>*) G 'S'TVPUGN Wki00(R2]R2 x C) be as in theorem 5.4 and introduce 

(5.8) A{2) = {** + rl> : </> G #2(M2;M2 x C)}. 
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This is an affine space with tangent space at all points *o € A^ given by 

(5.9) r*0 A
{2) = {^e #2(M2; M2 x C)}. 

Next introduce the gauge group in this context as 

(5.10) £(3) = {e* : x G i?3(M2)}. 

Notice that this may be identified with the space of maps s : M2 —> C such 
that s — 1 G H3 and |1 + s| = 1 everywhere (see the proof of lemma 5.16). 
The manifold structure of G^ is determined by the exponential map 

Exp : if3(M2)    -+   £(3) 

X   ^   elX 

Lemma 5.5 (Smoothness of the action). The action of the gauge 
group 

0(3) x ,4(2)     _     ,4(2) 

(X,(A$))   ^   (A + dx,$Jx) 

is a smooth free group action whose orbits have closed graphs in the sense 
that if (An^n) -> (A,*) in H2 and (An + dxn,$eiXn) -> (a,0) in H2 

where (xn)n C i?3 ^en ^/iere exzs^ % G i?3 s^c/i ^/ia^ xn —> x in H3 and 
(a,<f>) = (A + dx^eix). 

Proof Since lim^i^oo |$| = 1, the relation p(x)(A,$) = (A,$) implies 
eix = 1. Let (A, $) = (a* + /?, ^* + r?). The map (/?, x) »-> /? + ^X is smooth. 
Thus we are left to consider (r/,x) h-> ((/)* + v)elx- Since we assume that 
** is in VF2'00 the map x "-^ ^*(^x — 1) is smooth into H2. The map 
(ViX) "-^ ^(eix — 1) is smooth by the Sobolev multiplication theorem. (The 
required estimates are given for example in [26]). To prove that the graphs 
of the orbits are closed notice first that dxn —► o, — A in H2 and so H^XnllL00 

are bounded. But also the fact that |0|, |$| have limit one as |a;| —» oo 
implies, together with Rellich's theorem, that elXn - 1 converge in H2. This 
implies that the Xn tend to zero as |x| —> oo uniformly in n from which one 
deduces immediately that Xn -> X in ^3 where (a, 0) = (A + dx, *e*x).   □ 

The space A^ introduced above is in fact the total space of a principal 
fibre bundle under the gauge group action by Q^ and base space 

M(2)= ^(2)^(3). 
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Endowed with the quotient topology which arises from the natural surjec- 
tion, (which by a slight abuse of notation we write TT : A^ —► A^2)), it is 
Hausdorff (see the argument in [15] or [11]). In fact M^ inherits the struc- 
ture of a smooth Hilbert manifold which we show by the next lemmas. (We 
also remark that using the Sobolev structure as above we obtain ultimately 
the same moduli space MAT. This is explained in section 5.b.ii.) We first 
define two spaces: 

The tangent space to the orbit at *o = (a, </>) is the closed subspace 
of T^QAW given by 

(5.11) 

T„0(gW . tf0) = {(dX) ifa) e T*0 A® : X e tf3(M2)} 

and the slice through ^o is the affine space ^o + SC^,\ where 

SC® = {iJ = (/?, v) e i?2(M2;M2 x C) : V • /? - (^, r,) = 0} 

which is also a closed subspace of T^QA^. The terminology slice is in the 
sense of the usual definition of a submanifold of the total space on which 
is given a smooth group action (see [11, 15], Chapter 3). That is, there 

exists a neighbourhood O of \I>o in A^ such that (\I/o + SC^/) fl O is a 
submanifold everywhere transverse to the action Q^ on which the restriction 
of TT is a continuous open injection. The transversality to the action is in 
the sense that (locally) the tangent space to A^ (at each \I/) has a direct 
sum decomposition into the tangent space of the orbit (at \I>) and that of the 
slice through ^o- The content of lemma 5.6 is precisely this decomposition, 
stated however only for ^o (which is all needed later on). For a general 
point \I/ close to \I/o a similar statement holds, namely, 

The subsequent lemma 5.7 shows that the projection TT is locally a continuous 
injection. Finally as a corollary follows the manifold structure of M.^. 

Lemma 5,6 (Existence of Slice I). There exist L2-orthogonal decompo- 
sitions at \I/0; 

T*0AW = TPsio(g^^0)®SC^o   [and TPsi,{g^ • ^H^S = w) • 

The L2-projection operator 0^o : T^QA^ —► SC^   varies continuously i\ ^o m 
the operator norm with respect to \I/o € A^2\ i.e., there exists c such that 
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for \\^Q~^Q\\H2 small enough 

ll(en - e^K/?, 17)11*2 < c||^- ^IMKMH^ 

for all (IS.TI) E #2(M2;M2 x C). Finally ©^(/3,T/) G if2(M2;M2 x C) varies 

smoothly as a function of (/?,r/)   G  if2(M2;M2 x C)  and ^ in an H2- 
neighbourhood of^Q. 

Proof Let *o = (a,0), *b = (ab,</>b). Given (^,77) G T^^2) we decompose 
,(2) fi = ft + dx and 77 = r/7 + i</>bx and determine x such that (/^T/) G 5£^2) 

This leads to the equation 

-Ax+|/|2X = (^b^) + ^ 

Consider this equation as a function F(x, *b, (P->?))) = 0 where F : if3 x 
H2 x H2 —> H1 is smooth and implicitly determines x = 5(*b> (Z^7?))- The 
Frechet derivative ^^(0,^0,0) = (-A + |0|2) : H3 -► iJ1 is a bounded 
linear isomorphism since lim^i^oo |^(a;)| = 1. Therefore, by the implicit 
function theorem ([24]) we can write the solution of this equation as 

X = g{*\((3,r,)) 

where g : U x if2(M2;M2 x C) -> jgr3(R2) is a smooth function for *b in some 
open set C/ = {||*b - *o||//2 < 5} C A^ and linear in (/3,77). Also g is linear 
with respect to (/?, 77). This implies by the uniform boundedness principle 
||Di^(*b

5(/3,77))||£(H2)i/3) < c||(/?,77)||tf2 for *b G O. From this we deduce 
(by the fundamental theorem of calculus) 

\\g(&Mv))-9(&Mv))\\H><c\\&-*Hir>MM\\H' 

which implies the continuity of 0#o as required. □ 

Lemma 5.7 (Existence of Slice II). Let #0 = (a,<£) G A(2), * = 
(A,$) G ^(2) 6e 5wc/i ^/ia^ ||* - *o||ff2 < e. For c > 0 smaM eno^/i * 
can fee mapped by a gauge transformation uniquely onto the slice through 
^o- That is, there exist positive numbers M, e\ depending only on ^0 such 
that if e < ei there exists a unique gauge transformation x G H3(R2) such 
that if y# = (A*, $#) = p{x){A, $) then 

*# - *o G SC™ 
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and ||*# - ^o\\H2   <   Me.    If also *o   €   C00(M2;M2 x C)   and *   G 

n^N^'00^2^2 x c) then also *# ^ fl^N ^^(M^M2 x C). The map- 
ping 

(5.12) (* - *o) ^ (*# - *o) 

between neighbourhoods of the origin in H2 and SC\,' is smooth. Further- 
more, the orbits through points close to \I/o locally intersect the slice through 
^0 at most once. That is, there exists 8 > 0 such that if & ^ ^ (both in 
A^) satisfy 

(i) ||#-#o||tf2 + ||^-#o||tf2<£ 

(ii) {¥ - *o) G SC® and (^ - *o) e <S£(2) 

Proof. Let #0 = (a, </>) and * = *o + (A 7/). We wish to find a real valued 
function x such that 

{p + dx, (0 + 17)6* - 0) = (/? + dx, ^X + f/e* + 0(e^ - 1 - %x)) 

is gauge orthogonal with respect to (a, </>). This leads to the following equa- 
tion 

(5.13) 

-Ax + \<t>\2X = -(<& t/c^) - (t^, ^(e* - 1 - ix)) + V • /3. 

Consider this equation as the function F(x, (3,r)) = 0 where F : H3 x H2 x 
H2 -> H1 is smooth and implicitly determines x = 9(0, w)- The Prechet 
derivative DxF(050,0) = (-A + |0|2) : if3 -> if1 is a bounded linear 
isomorphism since lim^i^oo \(j)\ — 1. Therefore, by the implicit function the- 
orem ([24]) there is a smooth function g between neighbourhood Ui of the 
origin in i?2(M2;M2 x C) and U2 in #3(M2) 

(5.14) g-.U!    —>    U2 

(5.15) (AT?)     »    gfarj) 

such that F(g(P,ri),/3,ri) = 0 and g(0,0) = 0. Since g is smooth it has a 
bounded derivative #'(0,0) : H2 -► if3, let ^(OjO)!! < K. Then 3ei > 0 
such that 

1109,^)11^2 < 6! implies MMWH* < {l + K)\\(P,n)\\Hi. 
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By the smoothness of the gauge group action (lemma 5.5) this implies that 

<   c(l + K)e + e 

which gives (5.12). The W^00 statement follows from lemma B.2 applied to 
(5.13). 

To prove the final part of the theorem, assume that on the contrary 
*b = (A\ $b) and ^ = p(x)^b = {Ab+dx, &€*) are both gauge orthogonal 
with respect to ^o- We will obtain a contradiction by showing that x — 0. 
It follows from the gauge orthogonality conditions that 

V-Vx-(^$b(eix-l)) = 0 

or 

(5.16) -Ax+H2sinx = -(^(^-0)(e« - 1)) 

Since both & — <$ and ezx$b — (j) are in H2, they approach zero uniformly 
as |a;| —> oo (see [19, lemma 3.7.5 and the Rellich embedding]). But |3> |, \(j)\ 
have limit one as \x\ —> oo and therefore x converges uniformly to 0 mod 27r 
as |^| —>> oo. Without loss of generality we may assume this to be zero: 
for if the limit is 2/OT then consider x — X ~~ 2/OT which has limit zero 
asymptotically and note that ^ = p(x)^ and (5.16) holds with x 'm place 
of x- Hence it suffices to show that x = 0 and this justifies our assumption 

Fix R > 0 such that on {|x| > R} we have |$b| > i and |5E2p2| > i. 
Then 

(5.17) \$\eix - 1)| > |$b|| sinxl > ^Ixl on {\x\ > R}. 

By the assumption that & and ^ are gauge equivalent, 

(5.18) H*" - *b||^ = \\dx\\„2 + W&iJ* - 1)\\H2 < 26 

where 5 > 0 is chosen small and is to be specified below. By the embedding 
H2 -> L00, \dx\ < 25 on M2. But also (5.17)- (5.18) imply |x| < 85 for 
|re| > R and altogether we have |x| < kd for some constant k on all of 
M2. We now choose S small enough so that the last estimate for x implies 
V(X) = Mfe > 0 for all x e R2t 
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Returning to the equation (5.16) rewritten as — Ax + v(x)x = / we note 
that v(x) —► 1 as \x\ —>• oo and the elliptic estimate below then holds, 

(5.19) 

MH* < CII/HL" < c'||xllioo||$b - <t>\\l2 < c"62\\x\\H2. 

So if S is further chosen so that d'S2 < 1 the above estimate yields x = 0 on 
M2 as claimed, so *b = ^. O 

Corollary 5.8 (Manifold structure on A4(2)). Fix * G A(2\ then 
there exists a neighbourhood Ui of ty in A^ and a neighbourhood U2 x C/3 
of (0, id) in SCi^   x Q^ and a diffeomorphism 

E : Ux -> U2 x [73. 

Furthermore the map G : U2 ^ G(U2) C .A/^2) ^wen 6y t/ie restriction of 
TT o S-1 to U2 x {id} 25 an injection onto an open neighbourhood of 7r(^r) 
in M.(2\ Thus M,^ inherits a smooth manifold structure under which it is 
locally diffeomorphic to the slices SC^ . Indeed, if we choose small open sets 
in M^ around 7r(^f) then G-1 gives a local chart. The transition functions 
between charts will be smooth by lemma 5.7. 

Proof This is essentially a restatement of lemma 5.7. We define 

3(tf + </>) = (Ei(tt + V), H2(* + v)) = (pfoWOX* + VO - *, 5^)) 

where ^ is as in the proof of lemma 5.7. The map S is smooth on an 
appropriate neighbourhood and has smooth inverse given by 

Z-1(v,g) = p(g)-1(v + y) 

The fact that the map G is one-to-one follows from the last statement of the 
lemma 5.7. The injectivity of the map G-1 implies that locally two points 
on the slice through \I> correspond to different orbits, i.e. map onto two 
different points of M^. From the definition of the quotient topology G is 
open and so a homeomorphism and thus gives a chart. □ 

We now show that the slices of lemma 5.7 vary smoothly with \I>o- 

Lemma 5.9 (Smooth variation of slices). Let \I>o = (a^) € 

^N flfcGN ^'^(M2;!^2 x C) and let ei be as in lemma 5.7. There exist pos- 
itive numbers 62 < ei, £2, Li, L2 (depending only on ^0) such that if 5 < 62 
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the following is true. There exist neighbourhoods of the origin Ui,U2 in 
iJ2(M2;M2 x C) and Us in HS(R2) and a smooth map 

s:UixU2   -►   Us 

((F-tfo),v)    ^   s(F-^v) 

such that 
(t)     ifx = s(F - tfo, t/) then p(x)F - (*o + v) G 5£jJo+t;). 
(ii)  Ui contains the ball {\\F — ^O\\H

2
 < 62} and U2 contains {\\v\\H2 < 62}. 

(in)   if (F - *o) € 5>C^ *feen 

11^11^2 < S implies   \\X\\H* < LiS   and   \\p{x)F ~ F\\H
2
 < ^ 

(where Li, L2 are independent of 5). 

Proof. We proceed exactly as in the proof of lemma 5.7, so let (F — ^0) = 
(/?, 77) and v = (^1,^2)- Since V2 G ii"2 it follows that lim^i^oo \v(x)\ = 0. 
The condition in (%) above leads to the following equation for x — s(F — 
*o,v): 

(-A + |0|2)x+^X+(i(0+^2)5 r?e^-7;2 + (/>(e^-l-ix))-V.(/?-^i) = 0. 

Consider this as an equation G(x^F — ^o^v) = 0 where G is a smooth 
function H3 x H2 x H2 -^ H1. (Recall that #0 is fixed.) The derivative 
of this map with respect to x at the origin is the bounded isomorphism 
(—A + |</>|2) : iJ3 —> iJ1, so by the implicit function theorem there is a 
X = s(F — ^o? v) satisfying property (i). To complete the proof notice that 

by lemma 5.7 if F - #0 G «S£^ then 5(F - *o, 0) = 0. Since s is smooth 
we get the final estimates by taking 62,62 small enough. □ 

5.2.ii. The Moduli Space.    Next we are interested in obtaining a local 
(2) diffeomorphism between the moduli space M/v and the subset of SC^  which 

consists of the critical points of £ (for A = 1). We refer to images of open 
sets of M/v under this map as local families of solutions. In lemma 5.11 their 
existence is proved and they are shown to form a submanifold modelled on 
the linear space KerL^Q defined in (5.23) (which is locally diffeomorphic to 
MN). 

The moduli space MJV was defined as the space of gauge equivalence 
classes of smooth finite energy solutions of the static equations (i.e., the 
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critical points of the functional £(A, $) (with A = 1) having winding number 
N). It is known ([19]) that all the critical points of £ are minima and MN 

can be identified with iV-tuples of points in the plane (Zi,..., Zjy), which 
are the (only) zeros of $. (Notice that the zeros are gauge invariant. If a 
subset of the Zi are coincident there is a zero of higher multiplicity. The 
winding number is the total number of zeros of $ counted with multiplicity). 
The proof of existence for these solutions depends crucially on the fact ([9]) 
that when A = 1 we can, for iV > 0, decompose the functional as 

£(A,*)  =  ^2(4|9A$|2+(5 + i(|$|2-l)) )cfc + irN 

where OA® = 5CD1 + ^2)$- Thus the minima will be solutions of the first 
order BogomoPnyi, or self-dual, equations 

(5.20) dA® = 0 

(5.21) B + ±m2-l) = 0. 

(There are sign changes if N < 0.) The existence theory for these equations 
is discussed in the book [19]. We shall write these equations schematically 
as 

B(J4,$)=0. 

Since the solution is invariant under interchange of any two of these Zi 
the moduli space is a symmetric product of iV copies of the complex plane 
SN(C). It is endowed with a natural metric and complex structure which 
makes it a Kahler manifold ([3],[34]). 

Let the operator L^0 be defined in terms of the Hessian of £ at 

*o € S$ P| W^QtiPiR2 x C) 
ken 

by 

(5.22) 
d2 

for ip = (P,TJ) e CQ^M^M
2
 x C). Notice that the second term on the right 

(2) hand side is the expression occuring in the definition of SC\,^ in definition 1. 
Thus we may say that L^0 is obtained by linearising the second order static 
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equations on SC^ . Ly0 has the following properties for ^o € Wrl'00(IR2; M2x 
C) (see [37] and appendix B): 
(i) it is elliptic and the principal symbol is the Laplacian 
(ii) it is non-negative and in fact can be factorized into a product of first 
order operators 

where V^o is the formal L2-adjoint of X>#0. The operator P^0 is obtained by 
the linearisation of the first order static equations above. These both extend 
to Fredholm operators from H1 —> L2 (i.e. they have closed range and finite 
dimensional kernel and cokernel). The precise form of these operators is 
given in appendix B. 
(iii) it has a 2iV-dimensional null space 

(5.23) KerLy0 = {^ € #2(M2;M2 x C) : L*0il> = 0} 

where N is the winding number of ^o- In feet T>^0 has a 2iV-dimensional 
null space and V^Q has a trivial null space.   This space can be identified 
with the tangent space to M/v at 7r(\I/o) (see lemma 5.11). 
(iv) if (^j n)L2 = 0 Vn G KerLy0 then there exists a number 7 such that 

Definition 2. For \I>o as above let KerL^Q be the L2-orthogonal subspace 
of KerL^Q, i.e., 

KerL^0   =  {^ € L2(M2;M2 x C) : (^n)^^) = 0 V n  G  KerL^0}. 

We have defined the solution space asSN = {B(A, $) = 0}nC,oo(M2; M2 x 
C) where B is the set of BogomoPnyi equations given in (5.20-5.21). The 
moduli space was then defined by MN = SN/Q. One may instead consider 

(5.24) 8$ = {B{A, $) = 0} H A^ 

and the corresponding moduli space M^   = Sjy /£?    • 

Lemma 5.10.  There is a bijection between M^ andMK
N. For our purposes 

the manifold structure on M^ is inherited from that of M)<r
) (determined by 

the map F in lemma 5.11,) and we will use only the notation Mpj. 
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Proof. See appendix B. □ 

Our next result gives local families of static H2 solutions as a 2iV- 
(2) dimensional local submanifold of SC^ \ Recall that the BogomoPnyi equa- 

tions, which we write schematically as B(A, $) = 0, are gauge invariant and 
so descend to a set of equations on M^. As remarked above, the mod- 
uli space Mjv is precisely (B~l(fd) {^A^^/Q^. Via corollary 5.8 we can 
locally identify MM with the solutions of the Bogomol'nyi equations on a 
slice. Thus we make a definition: 

Definition 3. For ^o as above let 

M^tfo) = {* € ^(2) : B{*) - 0 and * - *o € sd£]}. 

Remark. The tangent space to MN(9Q) at the point \I>o can be iden- 
tified with KerL\£0. This is clear because the operator V^0 is obtained by 

linearisation of the equations JB(\P) = 0 on SC^ while the kernel of L^0 

coincides with that of V^Q (see appendix B). 
The next lemma gives a local diffeomorphism betweem Mjv, MN{^O) 

and an open set of the linear space KerL^0. 

Lemma 5.11 (Local Families of Solutions).    Let   ^o    =    («, (/>)    G 

^OfceN^'00^2^2 x c) and let^ : 8$ ~^ MN be the natural projection. 
Then M^, KerL^0 and M/v^o) are locally diffeomorphic as follows: there 
exist a neighbourhood Ui C M^ of-n^o), a neighbourhood U2 C KerL^Q of 
the origin and a neighbourhood Us C M/v(^o) of^o, and diffeomorphisms 

F:U1^U2 G-.Ux^Uz *o : ^2 ^ U3 

such that F(7r(*o)) = 0, G(7r(*o)) = *o, *o(0) = *o, (Go7r)|% = id|% 

and (TT O G))^ = id\u . The map 

^o:qeU2^ *o(g) 

will be referred to as a local family of solutions. It satisfies ^O(Q) € 
HfeeN^k'00^2'!*2 x C). Finally, restricting the differential of the projection 
map to KerL^Q gives an isomorphism 

which we shall use to identify these spaces. (The space T^^MN is the 
tangent space to M/v at ^(^o)-^ 
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Proof. First we will construct ^o- Starting with the static solution ^o, we 
look for solutions, elements of MJV^O)? in the form #0 + V7 and solve for I/J 

using (5.20-5.21) and the gauge orthogonality conditions. It follows that I/J 

satisfies a system of equations of the form 

(5.25) Vyrf = gty) 

where g{ip) is quadratic in components of ijj (see appendix B for an explicit 
formula). From this we get 

Lm0ilJ = V%0g(<il)). 

Claim The equation L^^ = f is uniquely solvable in KerL^of]H2 for 

/ e KerL^0. 
Proof of Claim To see this let G^0 : / •—► ip be the associated Green 

operator. By Lax-Milgram this is a bounded linear operator from KerL^o —> 
KerLqo OH1. In fact since *o 6 W1}00 it follows from the formula for L#0 

in appendix B and elliptic regularity that it is a bounded linear operator 
KerL±o-*KerL±of)H2. 

Since Vy g is automatically in KerL^o we can consider the function 

Q:H2   -   H2 

Claim. Q is a smooth function and has derivative equal to the identity at 
the origin. 

Proof of Claim. This follows from the fact that the map 

H2   -   L2 

^0 </> ■- viodW 

is smooth by the Sobolev theorems and the Green function is a bounded 
linear operator as just mentioned. 

It follows that Q is a diffeomorphism between neighbourhoods of the 
origin in H2. Since L^^^I/J = 0 if rp satisfies (5.25) all solutions of that 
equation are mapped by Q into KerLy0. This proves incidentally that if O 
is a small neighbourhood of *o in A^ then MN(1®o)r\0 is a submanifold 
of O. We then define Vo(q) = *o + O"1^)- 

Next we construct G. Recall that by corollary 5.8 we have a diffeomor- 
phism G"1 between a neighbourhood Vi of 7r(*o) in M^ and a neighbour- 

hood V2 of *o in SC^.   But by definition G(MNf]Vi) C M;v(*o) and 
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G~1(MN(^o)f]V2) C MN. Therefore since MJV(*O) is a submanifold it 
follows that MN is a submanifold of M^ and G restricts to a diffeomor- 
phism G with the required properties. F is defined by F = ^Q

1
 O G. It 

follows from this construction that G and TT are inverse to one another as 
stated; this implies the statement about TT*. The VF^'00 statement is proved 
in lemma B.3. □ 

Remark. A choice of basis e^ for the linear space KerL^Q induces 
a coordinate system on MN around 7r(\I/o) in which the point q G Mjv is 
represented by an 2iV-tuple q^ with F(q) = J2 ^eM* Hereafter we will write 

q both for the point in MN (or MJy ) and for the 2iV-tuple (q^). Locally 
points of the manifold MJV(*O) can be written as ^0(9) for q G C/2. 

Theorem 5.12. (i) 3^ C ^l^2^ is a submanifold with tangent and L2- 
normal spaces at ^0 given, respectively, by 

(5.26) T(tfo) = KerLv0 © r^0 (g® • *o) 

(5.27) N(^o) = SC^lnKerL^Q 

(ii) TT : Sff -+ MN is a principal Q^ bundle. The space N(^o) is the 
L2-orthogonal complement ofT^o) in Tii,QA^2\ 

Remark. Assertion (i) above follows immediately from the decomposi- 
tion in lemma 5.6 and the identification of the tangent space to M^ with 
KerL\$f0 (see the remark following definition 3). However, it is convenient 
for what follows to introduce the projections below (and reprove this state- 
ment). 

Proof, (i) Define the Hilbert spaces Ei = A^(*o) and E2 = T(#o) with H2 

norm. Let n^0 (resp. 1 — n#0) be the L2-projection from iy2(M2;M2 x C) 
to Ei (resp. E2). Recall from lemma 5.6 that ©#0 varies continuously in 
operator norm. Also by lemma 5.11 there is a basis of KerL^0 which varies 
smoothly in H2 as a function of *o- Therefore the operators n#0, (1 — n^0) 

are smooth in the operator norm with respect to ^0 € Spj • It follows with 
the notation of lemma 5.11 and corollary 5.8 that the map 

Ai2)   ->   Ex x E2 

* 1-   rn^0oQoSi,((i-n^0)oQoSi,Exp-1oS2)J 
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is a diffeomorphism from a neighbourhood V of ^o 6 "4^ to a neighbour- 
hood Vi x F2 of (0,0) in Ei x E2 such that Fn8$ is mapped into {0} x V2. 

This proves that Sj^  is a submanifold of A^2\ 

(ii) ^(3) acts smoothly and freely on SjJ and TT is a smooth surjective 
submersion. Lemma 5.11 proves local triviality. □ 

5.2.iii. The Ansatz. We now return to the solution of the time depen- 
dent equations. Let $(*) be the solution at time t which, as stated in the 
beginning of section 5.b, is in the temporal gauge. For subsequent times it 
will be necessary to change gauges (so a time component to the connection 
will appear). We give an ansatz for the solutions of (2.1) and define the 
gauge in which we work. We have a small parameter e which represents the 
distance of *&(£) from the solution space SN . It is convenient to introduce 
this explicitly into our ansatz; thus we will introduce a change of variable 

(5.28) r(t) - et. 

By a slight abuse of notation we will write functions /(r) = f(et) as /(r) 
and we will write 

so that / = €/'. We will use the following convention: in equations in 
which some variables have argument r and others have argument t it is to 
be understood that r = et. Recall that \I>(£) is the solution in the temporal 
gauge. We will search for a gauge transformation x(t) such that we can 
write the solution (Ajf, *#) = p(x(*))(0, *) as 

(5.30) tf #(*) = *o(ct) + ^(t) = (a(ct), ct>{et)) + e(J3(t)Mt)) 

(5.31) Afit) = e2m = ^ 

where AQ is the time-component of the connection. Theorem 5.15 will allow 

us to interpret \I/o(£) as the L2 projection of $"(£) onto S^. The terms fo, 
(3 and 77 will be shown to vanish in H2 norm as t —> 00. In addition we will 
require, as gauge conditions, that 

(5.32) |:(a(T)' ^r)) = ^*o(r) € 5£*o(T) 
(5.33) (/3(t),r?(t)) = V(*)e<S£*o(et). 
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The possibility of applying these gauge transformations will follow from 
lemma 5.7 and the following result. This states that if we regard SK

N' as 
a principal bundle over M^ with fibre Q^ then given a curve in moduli 
space MAT it can be lifted horizontally to a curve in SN SO that the vertical 
component of the velocity at each point is zero. 

Lemma 5.13 (Existence of Horizontal Lift). Let there be given a 
continuously differentiable curve in the moduli space r  i—►  ^(r)   G  M^/- 

and tfo(O) G SJ^HteN W*'
TO

(
M2

;
R2

 
X
 
C) at T = 0 such that ^(^(O)) = 

q(0).   Then there exists a continuously differentiable curve r i-» ^ro(^) = 

(a(T),</>(r)) G Stf   starting at ^Q(0) and such that 

7r(*o(r)) = q(r) 

The function r h-> (*O(T) - *o(0)) G ^((M2^2 x C)) is differentiable. 
Furthermore, for all K sufficiently small there exists a number c(n, K) such 
that 

(5.34) /    \qf(r)\dT<K 
Jo 

implies 

(5.35) 
max (||*o(r) - *o(0)||wn,oo + ||*o(r) - *o(0)||ifn+2) < c(n,K)\\q\\cH[o,s\y 

Finally let q{T),q*(T) be two Cl curves starting at 7r(^o(0)) and satisfy- 
ing (^5.34^) and let ^0(^)5 ^fo(r) be their respective lifts. Then there exist 
constants ci,C2 such that if ll^llc^lo,^]) + ll^llc^o^]) < c2 then 

Proof of lemma 5.13 Assume without loss of generality that ^(0) = 0 
(and recall the remark above theorem 5.12 regarding the notation of points 
in MJV). We will use the diffeomorphism ^0 provided by lemma 5.11 (with 
#0 = #0(0)) to obtain a curve r >-> ^^{qij)) G MJV(*O)- We now look for 
r ,_> X(T) € G^ such ^hat r H-> ^^(T) — p(x)^o{q(^)) satisfies the required 
condition. Differentiating we get (using the notation defined in (5.29)) 

, 2N       ~~ 2N       ^7 
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so that x7 must solve the equation for each r 

(5.36) 
2N 2N ~ 

This is solvable since the operator on the left is an isomorphism from 
H3 —> H1 for each r (lemma B.2). The differentiability statements fol- 
low from the elliptic estimates. Let K be small enough that (5.34) ensures 
q remains within the same coordinate chart. Lemma B.3 then implies that 
||x'(-,T)||tfn < c(n,K)\\q\\ci for all n. This implies the bound (5.35). Fi- 
nally to prove the continuity of the lifting, let C2 be small enough that 
q, q* both lie in the same coordinate chart and let x'* (x*)' be the solu- 
tions of (5.36) and the corresponding equation for q*. Then by subtracting 
the equations and applying the elliptic regularity estimate it follows that 
llx' ~" (x*/!!^3 ^ cll(7 — 9*llc1[o,5] and the result follows by integration.     □ 

Remark.      [Definition   of n^]. Let  {e^}^^   be a basis for 

T#0(o)M/v = KerLy0(0) so that a point q is given as q = X)/i^eM- Con- 
sidering a local family of solutions q \-> ^O(Q) as in lemma 5.11 note that 
uiJ' = §fa(^) ^ -^ (q)^N so^ves ^e linearised Bogomol'nyi equations. Now 
recall that KerL^ , x can be identified with KerV^, ,s, the operator de- 
scribed above and in appendix B. It follows from this description that the 
L2-projection operator defined in lemma 5.6 0^ / N restricted to T^ (q)^N 

maps into KerL^,y We may thus display a basis for T^^sM^ by forming 
for/x = l,...,2JV0 

dq^ 

The n^q) vary smoothly with respect to q in the H2 norm by lemmas 5.6 and 
5.11. Under a gauge transformation ^o -^ p(x)^ro we have nM —> (/>(x))*^/x 
where ^(xMA7?) = (Z^?7?6^)- Let g(r) and ^oM be curves as in lemma 
5.13. It follows that we can write 

, 2N 

(5-37) 5;*o(r) = E^(rKW 
/X=l 

where nM(r) = p(x(r))*(^(9(r)))- From this we see that Ly^n^r) = 0 
and for sufficiently small r the {^(T)}^ form a basis for KerL^^ since 

M9) = e*o(g)(^r)^)- 
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linear independence is an open condition. Furthermore it follows from this 
definition and the proof of lemma 5.13 that 

(5.38) omax5||nM(r)||ifn < c(n,K)\\q\\ciM). 

Let ra* (T) be defined in the same way for a curve g*(r) as in lemma 5.13, 
then by the proof of lemma 5.13 for /x = 1,..., 2JV we have 

(5.39) m^ ||n*(r) - nM(r)||H2 < c(K)S\\q - q*\\cHlo,S\) 

(5.40) max^l^M-^MII^ <C(K)||g-g*||cl([0)S]). 

Next we prove theorem 5.15, a result on the existence of tubular neigh- 
bourhoods. As remarked previously this is nonstandard in that 8^ is a 
submanifold of A^, which has an H2 topology whereas our tubular neigh- 
bourhood will be constructed with respect to L2. The possibility of doing 
this follows from the following regularity result. In the next two results \I/* 
is as in theorem 5.4. 

Lemma 5.14 (Regularity).    Assume F e S$ and (F - *) G SC^. 
Then there exists a number c = c(\I/*) such that 

\\F - ^4H2 < c(\\F - tf*||L2 + ||* - **M- 

Proof. This is proved in appendix C. □ 

Theorem 5.15 (Tubular Neighbourhood).    There exist numbers L3 > 

0, 6 > 0 depending only on #* and a smooth function P : Be —» Sjy   defined 
on the ball 

^ = {*€^(2):||*-**||^2<0} 

such that for all * 6 Be the point F(*) is the unique point of 8^   such that 
either of the following two conditions hold 
(i)        II* - P(tf)||La = inf^) II* - P\\v, or 

(ii)        (* - P(¥)) € S£® j HKerL^ and ||* - P(*)||H2 < L30. 
In addition IP(*) has the following properties 
(in)        if* G flfcewW^iR^R2 X C) ttenP(tf) G flfcew Wfc,00(]R2;K2 X C) 
(iv)       ifge g^ then ^{p{g)^) = p(g)W(V). 



174 Sophia Demoulini and David Stuart 

Proof. Step One. The L2-normal space N^o) to SN at *o was defined in 
(5.27). It is endowed with the H2 norm. Let n#0 : iV(#*) -> ^(^o) be the 
restriction of the L2-projection onto N^Q). Notice that n^0 is continuous 

in the operator topology (induced from H2) with respect to #0 € SN (see 
the proof of theorem 5.12). Results of Kato (see [21, 20]) imply the follow- 
ing: 
Claim For ||\I/o — **||#2 small n^0 is a bounded linear bijection from N(ty*) 
onto iV(*o). 
(This can also be proved directly with an implicit function theorem argu- 
ment.) Now consider the map 

(5.41) / : U x V   ->    W 

(5.42) (#o,n)   i->   *o + n^0n. 

Here U x V is a neighbourhood of (^r*,0) in S^ x iV(^) and W is a 
neighbourhood of ^ G A^. The derivative of this map at (^r*,0) is the 
linear map 

(ifj, n)   H^   if) + n. 

This is a bounded linear bijection. Therefore by the inverse function theorem 
we can choose ET, V, W small so that / is a diffeomorphism. Write the inverse 
diffeomorphism as /~1(^r) = (IP(*), K*))- This allows us to write each point 
* G W uniquely as * = P(#) + nPW(z/(#)) with P($) € C/, z/(*) € F. The 
fact that ^ — F(^r) satisfies condition (ii) isthen immediate. 

5£ep Two.   We next show that if * is close enough to S^   then the 
minimisation in (i) in the theorem is attained. Thus there is a closest point 

on Sff  and it satisfies (ii) in the theorem. This is done in two stages. Firstly 
(2) we show that the closest point on each orbit lies on the slice ^ + 80%. We 

then show that there exists a point on (* + SC^) fl SK
N  which is closest to 

Lemma 5.16. For * and #0 in A^ there exists x € Q^ such that 

IIP(X)*O-*1IL2=  infJ|P(C)*O-*||L' 

and x ^ such that p(x)^o - * € SC^ .   Also if both \I/ and *o He in 

r\k£Nwki00(R2^R2 x c)then so does P(X)^0' 
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Proof. The proof of this is in appendix C. □ 

Lemma 5.17. There exist numbers L3 > 1,63 > 0 such that if e < €3 
the following is true. Let * = (A,*) G flfeGN W*'00^2;!*2 x C) satisfy 

H^r _ ^11^ < c. Then i/iere eaasfa *o G ^fl^N ^^(R2^2 x C) sucfe 

t/iat (* - *o) e SC^lftKerL^, ||* - *o||if2 < L36 and 

II*--*O||L*=   f2 inf   (2) wp-n*- 
Pesffniv+sc™) 

Proof. The proof of this is in appendix C. □ 

STep Three. We now know that there is an L2-closest point to * on 
Sff - We must show that if 9 is small enough it is unique. So assume to the 
contrary that for all 9 > 0 it is not true that if * G Be then P(*) is the 
unique point which satisfies (i) in theorem 5.15. In this case there exists a 

sequence of points {*i}Si such ti18* 
(i) Umi_oo||*t-**llif2=0 
(ii)  *< = Pi + ni with P. ^ P(*i) and ||*i - Pi\\L2 = \\*i - P(*i)||L2. 
The second condition implies m G N(Pi) by the Euler-Lagrange equation. 

This in turn implies n* = {^i-Pi) G <S£^ by the remark following definition 
1. Therefore by lemma 5.14 we have 

But 

||P; - **||H2 < c(||tfi - *4H* + \\Pi - **\\i*) 

\\Pi-**\\*     <     ll*i-^llL» + ll*i-**llL2 
<        ||*i-P(*i)||L2 +  11^-^11^ 

and therefore 

lim (WPi - *4H2 + Htfi - PiH^ + !!*< - **||H2) = 0. 
i—>+oo 

Now define i/i to be the unique element of A/r(**) such that ILp.fa) = TH- 

Such a Ui exists and is unique for ||Pi - #*||if2 sufficiently small since npi : 
N^*) —> iV(Pt) is a bounded linear bisection by step one. Furthermore the 
ui will satisfy limi-^oo ||^||i/2 = 0 since 

\Wi\\H* < WrnWin + WQiPi - n^)i/i||H2. 
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This now gives the desired contradiction; if we take i large we may assume 
^i eW.uie V, Pi e U. Therefore by the uniqueness in step one Pi = F(*i) 
contrary to assumption. 

5.2.iv. Proof of the Adiabatic Approximation theorem. Assume 
*(£) and ** are as in the theorem with ||\I>* - *(0)||//2 < e which will 
be specified later. As explained, we show that the projection !?(#(£)) of 

#(£) on Sft satisfies the theorem (where F is defined in theorem 5.15); in 
particular, its i72-distance from ^(t) asymptotically vanishes and the two 

(2) curves converge to a unique limit ^QQ E SX
N. TO achieve this we determine 

\I>#(£) a gauge equivalent curve to ^{t) which appears in our ansatz for the 
solution given in (5.30-5.31) together with gauge conditions (5.32-5.33). For 
initial conditions we have \I>#(0) = ^(0). We will prove that the solution 
can be written in this way for all times and lim^+oo H^WH/fz = 0. (We 
will see later that *o(^) = P(\I/#(£))). First we determine an initial point 

*o(0) G S^ in step one. Assuming that a curve q{et) is given in M/v we 
determine \P#(i) and obtain the equations satisfied for the error term ^(t) in 
step two. In step three we obtain the curve q and in step four we show that 
the Hessian can be used as a Liapunov functional to show the exponential 
convergence to a limit. This is concluded in step five. 

Step One. Determination offyo(0) Initially we take e < min{0,62/^3} 
to allow application of lemmas 5.7-5.9 on some small time interval to fix 
the gauge. We will make e sucessively smaller as the proof progresses. We 
determine *o(0) as the L2-projection of \I>(0) onto S^ . apply theorem 5.15 
with * = #(0) and \I>* as in the statement of theorem 5.4. This provides us 

with tfo(0) = IP(#(0)) € 5^)nfc€NW
/c'00(M2;M2 x C) satisfying 

(5.43) ||*(0)-*o(0)||^2<L36 

(5.44) ¥(0) - *o(0) e (S^oV 0*^(0) 

Step Two. Choice of Gauge, *#(£) and ip(t) Throughout this step 
we assume that the curve q(et) = 7T(^o(et)) is given in M^v (starting at 
7r(\I/o)) although we will not specify it until step three. Using the local 
diffeomorphism F in lemma 5.11 we slightly abuse notation and use q = 
{(7/x}ji=i to designate both points in a coordinate chart of 7r(\I/o(0)) and 
points of KerL^0 (as explained in the remark following the same lemma). So 
let q(et) — <Z(T) be any C1 curve in the chart in Mjy with 7r(\I/o) = q{0) = 0. 
We apply the map *o of lemma 5.11 to obtain a local family of solutions 
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q _» ^/0(q) e MN{^O)' ^O(Q) varies smoothly in the H2 topology with 
respect to q and ^o(q) e f]keN^'^(M^M2 x C). We remind the reader 
of our convention regarding the slow time variable r defined in (5.28). By 
lemma 5.13 the curve ^o(q(T)) G M;v(*o) is lifted horizontally to the curve 

#O(T) E S$ such that r H-> *O(T) is differentiable into the H2 topology 

and for each r satisfies *o(r) G fl^N ^^(M^M2 x C) n 8$. Next (5.43) 
implies by continuity ||*(t) - *o(c*)||jf2 < Lse for sma11 r- Since L^e < ei 
lemma 5.7 applies to provide a gauge transformation x{T) such that 

«#(t) - *o(rf) = {pUmm - M^)) e sc^. 

The lifted curve *o(-) as well as the gauge transformation x(-) depend on the 
curve q(-) and to this effect we will insert this dependence in the notation 
^o{T;q) and x&q) respectively when it is necessary (lemma 5.19). The 
dependence of \&o and x on q will be supressed when no confusion is possible. 

Now we determine the equation satisfied by ip(t). Substitute the ansatz 
(5.30)-(5.31), with these gauge conditions, into equations (2.1). This leads 
to the following set of equations (where we show explicitly the dependence 
on the scaled time variable r = et suppressing dependence on t) 

(5.45) 

/?+(-A + |</»(r)|2)/3 + 2(zDa(T)^(r))r/) =-^a(r) + e/(*o(T),/3,r?,/?o) 

(5.46) 

r, + (-Aa(T) + |^(r)|2)r/ + 2i(3 ■ D^^T) - 1(1 - M2
(T)>7 = 

~^(T) + e5(*o(r)'/3'r?'/3o) 

(5.47) (-A + |</»(r)|2)/3o = M*o(r),»/,»7) 

where ^(T;^) = (a(T), </>(T)) .  The nonlinear error terms /, g, h are given 
by: 

/   =   V/3o-2(^r?)/3+(^,JDa7?)-6|r/|2^ 

g   =    (i/3o + |/?|2)(^ + er?) + 2^-r>a77 + i(V./3)r?-r?(^7?)--|r?|V--€|77|27? 
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Equations (5.45-5.46) can be written in the form 

(5.48) ^ + L*o(r)^ = ~*O(T) + ej(tf O(T), /?, 17, /?o) 

where the operator L^0 is defined in (5.22) and appendix B. We will also 
use the differentiated version of this equation 

(5.49) 

Da^ + L^o(T)(Da^) + [Da5L^o(T)]^ = -Da(—*o(r)) + €Daj(*o(r),)0,r/, A)) 

where Da is as defined in appendix A. 
Step Three. Determination of q(et) The next stage is to construct the 

curve q(et) which represents a projection of *(£) onto the moduli space 
MN. We will first write down an equation for q which ensures that the 
orthogonality condition in (5.44) holds for positive t. We will then show that 
this equation has a solution by the contraction mapping theorem. Prom step 

one we have a point *o(0) G SN fl S$ such that *(0) - *o(0) is orthogonal 
to KerLy0 and gauge orthogonal with respect to *o (see (5.44)). We want 
to define g(r) in such a way that these orthogonality conditions persist for 
t > 0; thus referring to (5.30-5.31) we require that 

(^(t),nM(r))L2=0 

for all n^r) as defined in (5.37). This requirement leads to the differential 
equation (5.50) in the next lemma. First, introduce a metric g^ on the 
moduli space MN by the formula 

9iiu{q) =(nn(q),nv(q)) L2' 

Since g is gauge invariant it defines a metric on MN- (This has been studied 
in detail ([34, 3]) and is known to be a Kahler metric). Notice that the 
definition of n^r) implies 

Lemma 5.18 (Determination of #(T)). Assume that g(r) is the solu- 
tion of 

(5.50) 9^(q(r)Wu(T) = e(V>, -^M
T

))L
2
 + €

(M
T

)^)L
2 

9(0) = 0. 
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Then 

(5.51) (^(t),n)L2=0 

for all n G T^^^MNJ if this is true at t = 0. 

Proof. Adopt the local coordinate system from lemma 5.11 and differentiate 
(5.51) using (5.48) to show that this derivative is zero if and only if q satisfies 
(5.50). By assumption (5.51) is valid at t = 0 and so it will be valid for all 
t>0. □ 

Lemma 5.19 (Existence of <7(T)). There exists a time S > 0 and €4 > 0 
such that for e < €4 there exists a C1 solution ^(r) to (5.50) on [0, S] which 
satisfies (5.34:). 

Proof \I/(£) is known and we wish to determine ^(r). We shall apply 
the contraction mapping theorem on C1([0,5];MAT). SO assume g,q* G 
C1([0,5]; MN)) and let ^oM, *o(T) be the respective horizontal lifts. As in 
step two gauge transformations XOOJ X*(*) ex^ to make ip = p(x(t))i^{t) — 
^ofc*) and il;* = p(x*{t))iif(t) - ^o(et) gauge orthogonal with respect to 
i&o(ei), ^o(e^)- Also it follows by (5.35) and lemma 5.9 that -0 varies contin- 
uously in H2 as a function of q (note that x in lemma 5.9 is estimable by q 
through its smooth dependence on ^o)- 

||t/> " ^*||H2 < cS\\q - g*||ci([0,5];M^)- 

Next substitute for ip = ^(x)* — *o into the right hand side of (5.50). 
Using the uniform invertibility of the matrix (fl^) on the coordinate chart 
this gives an equation of the form 

q'(r) = J(q,q'). 

It follows from lemmas 5.13 and 5.9 and (5.39- 5.40) that J satisfies 

for times S short enough that €||'0(5')||^2(M2) < min{ei, ^2}- (Note that since 
X in lemma 5.9 is estimable in q in H3 via its dependence on \I>o> the terms 
in J involving /?o and V/?o are similarly estimable in H2). Therefore for e, S 
small enough we get a contraction in C1([0, S]\MN). This gives a solution 
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which we call g(r); by making S sufficiently small we can ensure it satisfies 
(5.34). □ 

It will follow from the analysis that this solution q(r) can be extended 
indefinitely to a solution which satisfies (5.34) with S = +oo if e is sufficiently 
small. Having thus determined ^(T) we apply lemma 5.13 to define ^ro(^) as 
the horizontal lift of <Z(T) with initial point \I/o(0). For as long as ||**(t) — 
**||jj2 < 9 we know by theorem 5.15 that *o(c*) = IP)(*#(t)). 

Step Four. The Hessian as Liapunov Functional We will now show that 
the Hessian of 8 provides a good norm with which to estimate the solution 
and then obtain exponential decay in time of a functional Q(t) built out of 
the Hessian evaluated at i/jfy). Q{t) is equivalent to the H2 norm of -0. 

Lemma 5.20. Assume q(r) = TT^QM) satisfies (5.34).  Then there exists 
a positive number 7 such that for 0 < r < S: 

(5.52) 

T"1 IMIif2(R2) < W^oM^W*) + (Da^)^o(r)Da^)L2(M2) < 711^11^2(^2) 

(5.53) 7"111^11^2^2)      <      ||^o(r)^lli2(ffi2)      <     711^11^2^2) 

for all V> e iy2(M2;M2 x C) nKerL^o{r). 

Proof. The proof appears in appendix B after lemma B.l. □ 

Define 

Q(t) = A2(ll>(t),Lyo{et)*/j(t))L2{R2) + (Da'0W)^o(€t)D^(i))L2(M2) 

for the constant A2 to be determined later. 

Lemma 5.21. Let g(r) satisfy (5.34:).   Let T = S/e.    Then there exists 
T > 0 such that forO<t<T 

Proof. This follows from lemma 5.20. □ 

We now collect together estimates of various error terms in: 
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Lemma 5.22. Let q(T) satisfy (5.34) and e < 1. Then there exists a number 
c such that at each t > 0, 

\\m\\H><c\\m\\L>(\m\\L> + W(em, 

\\m\\m<c\\m\\m(\\m\\m + W(et)\). 

Proof. This follows by elliptic regularity estimates applied to (5.47), us- 
ing lemma B.l. (Notice that by (5.38) and (5.37) we have a bound 
ll^o^)||iyi>°c> < c(K) for 0 < r < S, so we can use the H1 norm instead of 
the H1** norm defined in (A.l).) □ 

Lemma 5.23. Let g(r) satisfy (5.34) then 
(i) Mt = [I/^0(€t)jDa] is a first order differential operator satisfying 

WMttltWv^AxMHi. 

(ii) AT = ■tffLy0(T) is a first order differential operator satisfying 

\\AM\Li<c\q'm\m- 

Proof The first statement follows directly from calculations using the formu- 
lae in appendix B. (Notice that the commutators all give rise to error terms 
which are curvatures (like B) or covariant derivatives (like D$). These are 
all uniformly bounded ([19])). The second statement follows from (5.37) and 
(5.38). The same comment about the H1 norm applies as in the proof of 
lemma 5.22. □ 

Lemma 5.24. Let g(r) satisfy (5.34:) and assume Q(t) < 2Q(0) for 0 < 
t < T = S/e. Then there exists positive numbers €5 and I/4 > 0 such that 
for all 6 < es 

|^(€t)|<6L4Q(t), 

Proof. By lemma 5.21, Q(t) < 2(5(0) implies that HV^Hz,00 is bounded for 
0 < t < T. Using the equation for q' in lemma 5.18 and (5.48) we get 

(5.54) |</(T)I < «C(|MIHI + \m\m + 1Mb) 
(5.55) |M|L2 < c{\mm + \q'{r)\ + eWMm) 
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where c = c(Q(0)). Now substitute the result of lemma 5.22 in (5.54). This 
gives 

W(r)\<ec(\mm + \mL2). 

Substitute this into (5.55) and we get the estimate for ip. Substituting this 
into the expression for Po(t) in lemma 5.22 and using (5.51) and (5.53) we 
get the last estimate. □ 

Remark. By making T small we can assume Q(t) < 2Q(0) to be true 
on a small interval by continuity. It will turn out that Q is nonincreasing for 
small e so this assumption will in fact hold with T = +oo. We now obtain 
exponential decay estimates for Q(t). 

Lemma 5.25. Let A2 = l(L4f7 and assume 0 < t < T so that Q{t) < 2(2(0) 
and qij) satisfies (5.34,). There exist numbers ri > 0, L5 > 0 such that for 
e< 1 

Q + nQ^L^qf + e^M^+eQ). 

Proof. Calculate 

Q   =   -2A2||L*0(T)^||i2 +eA2(^,ATV) - 2^2(^*0, ^*O(T)^) 

+   2eA2{j, L*o(T)^) - 2||Ltfo(T)DaV>||£2 

+   e(Da^, ArDa^) - 2(—Da*o(r), L^o(r)Da^) 

+   c(Daj, L^o(T)Da^) + (L^o(T)Da^, M^) 

where (5.48) and (5.49) are used. All terms but the third, seventh and 
ninth are estimated as required directly using lemmas 5.19-5.24. The third 
and seventh terms are estimated using |(a • b)\ < 6\a\2 + ^\b\2 for suitable 
S. This allows us to absorb them in the first and fifth terms respectively 
with a remainder which is bounded < c\q'\2. The final term can be removed 
by applying Cauchy-Schwarz and recalling — ||^oV,lli2 < —T-111^11^2 and 
lemma 5.23. This shows that it can be absorbed into the first and fifth 
terms using the definition of A2. Indeed this argument gives an estimate for 
11 L^0 Da^ 11L2 and hence from (5.49) we obtain 

Corollary 5.26.   Under the same conditions as lemma 5.25 

' ||Hi + ||L*o(T)DaV||L2 < c(Q + |Q| + \q'\2 + WMJp). 



Ginzburg-Landau Gradient Flow 183 

Lemma 5.27 (Exponential Decay).    Letq(T) satisfy (5.M) and assume 
Q(t) < 2Q(0) forO<t<T. Choose e < ee where 

ee = min{l, 9, p-, e4, e5, n/iGI*), n/iULlLsQiO)), ri/(6LALs)}. 

Then there exist numbers R, r-i such that for 0 < t < T 

Q(t) < Q(0)e-r2t 

\q'(et)\<eL4Q(0)e-r2t 

\\m\\H' + \W)\\v><LAQ(0)e-r't. 

Proof. By lemma 5.25 and our choice of CQ 

Q + JQ<0. 

From this we find the exponential decay result for Q(t) with r2 = ri/2. The 
other two results follow from lemma 5.24. 

Step Five. Conclusion of the Proof It follows from lemma 5.27 that 
Ber > 0 such that if e < €7 then ^(r) satisfies (5.34) with S = +00. Taking 
K small we may assume that q(r) lies in the same coordinate chart for all 
time. From lemmas 5.27 and 5.21 it follows that 

mmh < w) < rQ(o)e-»' < r^ivwu^e-^*. 
Also it follows from lemma 5.27 and (5.37-5.38) that for some LQ > 0, 

||tto(et)-*o(0)||Jf2<L6e-
r2t. 

Therefore Bes < min{e6,e7} such that e < eg implies 

(t)       ||*o(€t)-*o(0)||fl2<*2 

(«)      ||*#(t)-*o(0)||^<£2 

(m)    ||*#(t)-^||/f2<6l 

for all times. Conditions (i) and (ii) allow us to continue our solution with 
the gauges specified in step two for all times by lemma 5.9. We can also 
deduce from (iii) and theorem 5.15 that *o(et) = IP(*#(t)) for all t > 0. 
The solution can now be continued indefinitely and the results of lemma 
5.25 apply for t G [0,+oo). The curve ^(T) G MN will converge to some 
point qoo while ^ —> 0 and fo —> 0 in H2 at an exponential rate.   This 
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implies \I/o(*) and ##(£) will converge in H2 to the same limit #00. We now 
wish to move back to temporal gauge and thus we apply the inverse gauge 
transformation to that in step two. We obtain *(£) = p(—x(£))**(£) where 
x(t) was determined in step two. Now by the equivariance of IP 

P(tt(i)) = F(p(-x(m#(t)) = p(-x(i))*o(rf) 

and P(*(t)) € ^ArflfceN W8'00^2;]^2 x C) by properties (iii) and (iv) of the- 
orem 5.15. Since gauge transformations are isometrics in L2 we have 

||*#(t) - *o(et)||L2 = ||*(t) - n*m\i* =   inf   ||*(t) - P\\L2 
PCS™ 

from (i) of theorem 5.15. Since 1P(*(*)) € S$ the uniquness of P(*(t)) 
follows from theorem 5.15. Therefore to obtain the convergence results in 
theorem 5.4 we must prove that x(£) —* xi00) in ^3- To do this we estimate 
l^l/fi from corollary 5.26 and then apply lemma 5.22. This implies ||A)||if3 ^ 
ce~~r2t which implies the convergence of x since e2/?o = dtX- To complete the 
proof of the theorem we must show that 

inf   ||*(i)-P||L2=   inf   mt)-S\\L2. 
PeSN iSeS(2) 

Since P(*(t)) € C\keN Wfc'00(m2;M2 x C) this will follow if we can show that 
it is impossible that there exists P G SN such that 

(5.56) ||*(t)-P||L2<   inf   ||^)-5||L2. 
S€& ,(2) 

N 

So assume (5.56) holds for P = Q; then Q-#* = Q-*(*) +*(*)-*« G L2. 
But we know from the proof of lemma 5.10 that any Q G SN is a gauge 
transformation of Q € 5Jy by, say, p(x) • Since Q - #* € L2 we have 
X G -fiT1. Let ^ G if3 satisfy \\g - gu\\Hi < T-v for v = 1,2,... Then 
5 = p(g1y)Q G SJy   gives a contradiction to (5.56) for large v. D 

6.   Proof of Main Theorem. 

We recall the comments at the beginning of section 5.b. Let ty(t) be 
our solution in the temporal gauge; then first we move into the Coulomb 
gauge, slightly modified as in theorem 5.3. This gives a fixed gauge trans- 
formation p(x) G fW*'00^2), satisfying dx G n^H8 and a point #* G 
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^flfcGN W^00^2]^2 x C) so that at time To we have ||p(x)*(ro)-**||jf2 < 
6*. Also *(ro) 6 flfceN ^'^(M2;!2 x C). We now apply theorem 5.4 to 
deduce that p(x)*(t) = ^(t — To) converges in H2 to a limit \I>oo at an ex- 
ponential rate. Therefore since x is fixed we can deduce that ^(t) will itself 
converge in H2 to a limit p(—x)*oo> which we relabel as ^QQ to complete the 
proof of the existence of a limit. The exponential decay result follows from 
the corresponding statement in theorem 5.4 and the fact that P commutes 
with the gauge transformations. 

A. Appendix A. 

In this section we will give some background material for the convenience 
of the reader. We will use the following spaces. For complex functions 
77: M2 —» C we introduce Sobolev norms given by 

IMIr
2
a = J2 \\DaV\\h 

\M\<r 

where Dff is the order M covariant derivative and the sum is over all partial 
indices. Similarly direct sums ^ = (/?, 77) : E2 —> M2 x C are differentiated 
according to the direct sum connection 

Da^ = (V/3,Dar?). 

We introduce corresponding Sobolev norms: 

M^ss J2 iiDa
Mviii2. 

|M|<r 

By a slight abuse of notation, we will denote the corresponding Sobolev 
spaces which are defined by completing smooth compactly supported func- 
tions with respect to these norms, by Hr>a in both these cases. Notice that 
if |H|tyfc.oo < M then there exists c = c(n, M) such that 

(A.1) c-^lft. < Mil* < c 2 
71,0* 

The space Cm'Q:(Rri) is the space of (possibly vector valued) functions whose 
derivatives up to mth order are continuous, bounded and uniformly Holder 
continuous of exponent a. Next let / be a closed interval of the t-axis. The 
space Cm'a,^(Rn x /) consists of (vector valued) functions whose spatial 
derivatives up to mth order are continuous and bounded and are uniformly 
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Holder continuous with respect to (x^t) with exponents a,/? respectively. 
The norms on these spaces | • |m,a,^ are defined by 

l/U.a./js   Yl   (sup|9M/(a;,i)| + sup 
\dMkx,t)-dMf(y,t)\ 

|Af|<m 

+ sup 

|a;-y|a 

\dMf(x,t)-dMf(x,s)\ 
\t-s\e 

where dM refers to spatial derivatives given by the multi-index M. We now 
have the following local existence theorem for our 
form given in 2.11. 

equation, written in the 

Theorem A.l (Local Existence).    Consider the initial value problem 

*   =   A* + /(#, V*) 

#Or,0)    =   Vo(x) 

with ^o £ C2,1(R2). Then there exists a time T/0 TzoC(|d^oM,M<2) 
on which there exists a unique solution u G C2,1,2fRn x [0, Tzoc]). 

For the proof of the theorem we refer to [13].  The next theorem concerns 
the existence of a fundamental solution of linear parabolic systems. 

Theorem A.2.  Consider a linear parabolic system of the form 

W = AW + /i(M)W + /2(x, t)U 

where /i,/2 are matrix valued functions in the space C0,Q:,0(Rn x [0, T]), 
then there exists a fundamental solution matrix Z{x,y,t,T) which satisfies 
estimates 

±1*1 M-y\ 
\dk

xZ{x,y,t,T)\ < cl{t-T)—t1e-c^ 

where the constants ci,C2 depend on a,T, |/i|o,a,o- 
can be expressed as 

(A.2) U(x,t)= f   fZ(x,y,t,0)U(0 

and limt-*o ||W(a:,t) -U(x,0)\\Loo(p2) = 0. 

for \k\ < 2 

This means the solution 

y)dy 
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For the proof see [13]. 

Corollary A.3. Assume \U(x,0)\ < cae"7^!. Then 3c4(T),#(T) > 0 such 
that forte [0,r],|x| > R 

\U{x,t)\<c4e-2lxl. 

Proof. We split up the integral in (A.2) into two parts Ii, J2 on the inner 
region / = {\x — y\ < ^} and outer region O = {|£ — y\> ^}. Notice that 

on the inner region |y| > ^ so that 

|Ii|<C3e-SM|Z|Li. 

The second part of the integral is estimated as 

I/2I < C3 / Z{x - y,t)dy < C3C1 / r1exp(-C2|:r""y|  ) 
Jo Jo t 

<C5exp(-C2J—^—), 

so choosing -R > f~ gives the result. □ 

We now state a version of the maximum principle from [30]. Let Q be 
an open set in Mn+1 with coordinates (x, t). Define for P £ Q the set S(P) 
to be the set of points in i7 which can be connected to P by a curve along 
which t is nondecreasing. Let L be an operator of the form 

L = dt - ]P aij(x, t)didj + ^ ai(x, t)di + c(x, t), 
ij i 

where the coefficents are continuous and bounded in Q and satisfy for all 
(x, t) € O 
(<) EyOij^.*)^^  5\\\2,        5>0 
(ii) c(x, t) > 0. 

Theorem A.4 (Maximum Principle). Let u € C2(fi) satisfy Lu < 0 
m Jl. Assume that there exists a point PQ € ^ 5iic/i £/ia£ 

sup u = 'u(Po)- 
S{Po) 

Then either U(PQ) < 0 or u = u(Po) in 5(Po). 
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B. Appendix B. 

In this appendix we summarise a few facts from the paper [37] which 
are needed. Let \I>o = (a, <t>) and * + ^ = (a + /3, <j> + rj) both be solutions 
of the Bogomol'nyi equations (5.20-5.21) and assume that (/?, rj) satisfies 
the gauge orthogonality condition with respect to ^o- Then we find by 
subtraction that (/?, rj) must satisfy 

i/32)r? = 0 

-cri8-(t0,i7)=O. 

The part of these equations linear with respect to (/?, rj) defines the operator 
V^Q used in the text. The equations then take the form 

(B.l) 'Dvoi/j = g(ip)       with g quadratic. 

Notice that if ^o? ^o + ^ are static solutions then \(/)\ < 1 and \(/> + rj] < 1 
and so ||^(^)||L2 <c\\^\\L2. 

The second order linear operator defined by the Hessian is given by 

Explicitly L^0 is given by 

(iP,L^)L2   =    [  \VP\2 + \Dar,\2 + 
JUL2 

The operator M^0 = 2?*02?^0 is given by 

{^M^)L,=  f  |V/?|2 + l^r?!2 + H2(|/3|2 + H2). 
Jw2 

rfm2+ki2) 

^(i-H2)N2- 

Lemma B.l.  There exists 7, independent of $0 
that for all i/t e KerL^o n H1* 

(B.2) finia < W>,L*01>)V> = ll^oV'll^ < 7ll^llla 
The quadratic forms (V>, M^0i/;)L2 and J |V^|2 + |^|2|u|2 obey estimates sim- 

~ x C).   Since 

in SN (or in S^), such 

#!,*( 1)2. -[0)2 ilar to (B.2) for all ip G i71'a(]R2;M2 x C),   u G 
£^0 = V0 — ia^ we can replace the {1, a} norm (defined in appendix A) by 
the usual H1 norm if |a|£oo < oo by (A.l). 
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Proof. (B.2) in the case of SN is proved in [37, Theorem 3.1]. In the case of 
Sfr aPPly a gauge transformation to go into Coulomb gauge in which $o is 
smooth and the norms in (B.2) are invariant after such a gauge transforma- 
tion (see also the proof of lemma 5.10). The other two quadratic forms are 
defined by non-negative operators with zero kernel so the proof is obtained 
as in [37]. □ 

Proof of lemma 5.20. By (5.35) we see that H^oWllw^00 < c < oo 
and so we can use the H2 norm instead of H2'a^ by (A.l). Then (5.52) is 
obtained by applying (B.2) twice and lemma B.l implies (5.53) since 

Lemma B.2. Let 4> € C00(M2;C) be bounded and satisfy lim^i^oo \(f>(x)\ = 
1 and |l - |(/)|| e L^M2). Let f G C00(M2) n L00(M2) n L2(E2) then there 
exists a unique solution u G iJ2(M2) n ^^^(M2) fl ^^^(M2) of 

(-A + |0|2)u=:/ 

which satisfies a priori estimates 

IMI/J
2
(I

2
) < C

II/IIL
2
(I

2
) 

ll^lliy1.00^2) < CII/IIL^CI
2
)- 

Proof Existence follows from the Lax Milgram lemma and lemma B.l. The 
second estimate follows from the representation of the solution in the form 

u(x) = /   K(x,y)f(y)dy. 

Claim. The kernel K(x, y) is a smooth function of x away from x = y, decays 
exponentially fast to zero as \x — y\ —> +oo and satisfies H^aJ^JHivM^) < 
Cwhere C is independent of x. 

Proof of Claim.   To prove this notice that K solves 

(-Ax + \cf>(x)\2)K(x,y) = 5(x-y) 

so that K( - ,y) is strictly positive and satisfies / \(f)(x)\2\K(x,y)\dx = 1. It 
has a logarithmic singularity at x = y. To be precise let p(u) be a smooth 
positive radial nonincreasing function equal to one for |u| < 1/2 and equal 
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to zero for \u\ > 3/4; then J{x,y) = K{x,y) + ^p{\x — y|)ln(|a: — y\) is 
bounded in Lco(dx) independent of y. Indeed J satisfies the equation 

(-Ax + \4>(x)\2)J(x, y) = ^p(\x - y\) \n{\x - y\) 

and the right hand side is bounded in L2(dx) independent of y and therefore 
J(x,y) is bounded in H2(dx) independent of y and so also in L00(da;). By 
the assumption on </) we find K(x,y) is bounded in Ll(dx) independent of 

jK(x,y)dx   <   J\l-\<i)(x)\2\K(xJy)\dx + J\<i>(x)\2\K{x,y)\dx 

< \\J(xMLaoWJ\l-\(l>{x)\2\dx 

+CI l^(lx~yl)lll(la;~"~yl)lcte 

+ J \cl>(x)\2\K(x,y)\dx 

< c(l + \\J(x,y)\\Lcx>{dy)). 

Self-adjointness implies K(x, y) = K{y, x) and so K(x, y) is also bounded in 
Ll(dy) independent of x. Having proved this we can infer that the same is 
true of dxK(x,y) by differentiation of the equation for J and applying the 
L1 boundedness of the operator / *-+ f K( • ^y)f(y)dy ([14, 6.3]). Thus we 
deduce that dxK(x,y) is bounded in Ll(dy) independent of x. The result 
now follows immediately. □ 

Lemma B.3. Assume #o € flfceN ^'^(M^M2 x C) and letq>-> #o+ '*/>(<?) 
be a local family of solutions as in lemma 5.11 for q in some small compact 
set E inside the chart provided by the local diffeomorphism F in the lemma. 
Then Wdq^Ww™'00 <: ||^^;||Hm+2 ^ c(m> S) < oo for all m = 1,2,... 

Proof By the construction in lemma 5.11 we know that ||9g'0||if2 < c. Dif- 
ferentiate (B.l) for ^ to get 

If we apply the covariant derivative Da defined in appendix A to this we find 

2?tfo(Da(0^)) = [^o^J^ + Da^^W). 
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The error term is a commutator and so contains curvature terms which can 
be estimated a priori ([19]). They are in Wkl00 for all k. The same structure 
occurs if Da is applied again. We therefore get the estimate llD^dg^lka < 
c(H,E) for all multi-indices a. Since #o € PUGN W*'00^2;!*2 X C) this 
implies ||cV^||#m+2 < c(m, E) by (A.l). D 

Proof of lemma 5.10 We define a map Coul : SK
N

J —> SJV by moving 
(2) 

into Coulomb gauge: given *o = («, </>) E S^ we solve for * = (A + 
dx, $elx) satisfying the elliptic system (3.14) with B = dia2 — cfeai. This 
will give a smooth solution ([19]) and so maps into Sjsf. (This procedure 
is unique only up to gauge transformation by harmonic functions; thus to 
fix Coul we require that lim^i^oo |^4(x)| = 0 and lim^^oo^^ijO) = +1, 
where xi, X2 are coordinates on the plane. The first condition cuts down the 
indeterminacy to gauge transformation by constants which is then removed 
by the second condition.) The gauge transformation x is determined by 
solving Vx = A — a which will be in Hf^ as A — a e i/j2 c. 

(2) We now show that this induces a map C : M^' —> M^ which is a 
bijection. First of all to see that it is well defined consider (A, $) and 
(A\ $b) in 8$ such that 7r(A, $) = 7r(Ab, $b)5 i.e. 

(A\ $b) = {A + cfo, $e^) for some g G if3. 

We must show that 

(B.3) 7r(C<mZ(A, *)) = 7r(CcmZ(Ab, $b)) 

Now Coul(A, *) = (i, 4) = (A + dx, fce*) and CW(Ab, *b) = (A\ 4b) = 
(Ab + dxb^beixb) where 

Ax + V • A = 0        and        Axb + V • Ab = 0. 

Then let fc = 5 - x + Xb € fl"^ and we have p(/i)(i,<l) = (ib,$b). But 
since V • A = V • ib = 0 it follows that h G C00 which implies (B.3). Thus 
Coul induces a map on equivalence classes, which we denote by C. 

We next show that the map C is onto. Pick any * G SN and (since MJV 

is connected) a curve 7(7-) from 7r(^r*) to 7r(*). Then by lemma 5.13 we lift 
this to a horizontal curve starting at \I>* and given by 

** + /(j^jM7M)d7 
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The endpoint *b of this curve will satisfy 7r(*) = 7r(*b) and ^b € *A(2) by 
(5.38). 

Finally we show that C gives a one-to-one map. Thus consider (A, $) and 

(4b, f) in 8$ such that {A, $) g a(3) • (^b, $b) but such that p{g){A, $) = 
(74b,l>b) for fl' G C00. The gauge transformations X)Xb are in Hfoc so there 
exists h € fl^c such that p{h)(A, $) = (Ab, $b). Therefore since (A, $) and 
(Ab = dh + A,$b = eih$) are in A^ it follows that dh £ H2. But also since 
($ - $b) G i?2 and lim^i^oo |$(x)| = 1 we see that h G L2 and so h € Hs 

which completes the proof. 

C. Appendix C. 

Proof of lemma 5.14 Let F = (/i, /2), then ^ = F — $* solves the first 
order elliptic equation 

V*.il> = gty) + hty) 

where g is as in lemma 5.11 and appendix B, and h is given by 

h = (O, V • (A - a*) + (i</>*, $ - 0*) + (*($ - 0*), /2 - (/)*)). 

This latter term is present because -0 ^ <S£^. It follows on account of the 
inequalities \4>(x)\ < 1, \$(x)\ < 1 that g, h satisfy 

\\9my + \\hm\^<c(i+\mL2) 
hmim + \\hm\m<c(i+\mm) 

Therefore the elliptic regularity estimate in appendix B implies | IV711 if1 ^ 
C||V>||L

2
- A single bootstrap completes the proof of the lemma. □ 

Proof of lemma 5.16 Write * = (A, $) and *o = («,</>)• We wish to 
consider 

(C.l) inf{/(x) : X € #3(M2)} 

where 

I(X) = J(\A -a- dx\2 + |$ - <Pe^\2)dx. 

Write s = s(x) = etx — 1 and consider the minimization 

(C.2) inf{/(a) : 5 G H3(R2; C) and |1 + s\ = 1 everywhere} 
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where 

I(s) =  f(\A-a + i(l + s^ds]2 + |$ - (f) - (j)s\2)dx. 

These two problems are equivalent for two reasons: 

(i)j(x) = /(*(x)). 
(ii) The function x *-> s{x) defines a bijection between {% € iir3(M2;]R)} and 
the set 

S = {s e if3(M2;C) : |1 + s(x)\ = 1 everywhere }. 

Indeed we can define an inverse to s as follows: given s(x) satisfying these 
conditions define 

(C.3) x(x) 
rx 

= -i      (l + s)~1(i5 + ci 
./o 

where x(0) G [0,27r) satisfies 5(0) = e1^0^ — 1 and the real constant ci is 
to be defined later. (The condition |1 + s(0)| = 1 and ci G R ensure that 
|1 + s(x)\ = 1 everywhere). Notice that the integrand in this path integral 
is C1 and by Stokes' theorem (applied to the real and imaginary parts) the 
result is independent of the path taken. The resulting function will satisfy 
dx € if2, so that x is uniformly continuous and by integration we find that 

s(x) = e^W-0^ - 1 

for some constant C2 determined freely by ci. Since x is uniformly continuous 
and s e L2 it follows that limia,^^ \x(x) — C2I = 2n7r where n is an integer. 
By appropriate choice of ci we ensure C2 = 0. But then since sin(x) € L2 

we get x G L2. Therefore the constant ci can be chosen such that x G L2 

and thus also x G Hs. 
We will now show that these minimisation problems have a solution. 

Since \s(x)\ <2\fx and lim^i^oo \(l>(x)\ = 1 the functional / is coercive with 
respect to the H1 norm, i.e., 

i(s)>ci\ s \2H1-C2- 

By the convexity of the integrand in the argument ds, I(s) is weakly se- 
quentially lower semicontinuous in H1 and hence attains its infimum on H1. 
Let (sn)n>i G -Br3(ffi2;C) with sn = elXn — 1 be a minimising sequence for 
I(s) which by coercivity is bounded in H1 norm. (By the density theorem 
proved in [2] we may assume that sn G i?3). Extract a subsequence (not 
relabeled) weakly convergent in H1 to a limit s. By Rellich's theorem it will 
converge strongly in L2

0C(M2) and so, at least subsequentially, we can assume 
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^n(^) -^ s(x) for x a-e-  in. M2 (this being true initially for every compact 
subset of M2 is true on all of the plane by a diagonal argument using an 
increasing sequence of compacts).  Hence |1 + s(x)\ = 1 a.e.  To show the 
regularity of this minimiser it is convenient to write this in terms of x- 
Claim There exists a function x in the space 

X = {x:dxe L2,smx G L2, (1 - cosx) € L2} 

which minimises / over the space of all such functions. 
To prove this notice that by Poincare's inequality and Rellich's lemma there 
exist, for any R > 0, numbers kn such that Xn — kn are strongly convergent in 
L2{BR)] to be precise let kn\BR\ = $BRXn- Since || • ||L2(^) < II * \\tf{Bs) 
for R < S we can, by a diagonal argument, obtain a subsequence and 
a sequence of real numbers Cn such that Xn — Cn converge in L2(K) for 
any compact set K. Call the limiting function x{x)' But recall also that 
e*Xn _ i converges also strongly in L2{K) for compact K and therefore 
Cn —> 0 mod 27rZ and s = elx — 1. Also dx-n —^ dx weakly in L2 and so it 
follows (by lower semicontinuity) that 

J(x) < lim inf J(xn)        and        J(x) = inf /.. 

This completes the proof of the claim. 
Taking smooth variations at x, i-e., ^|A=O^(X+AC) = 0 for all £ smooth and 
compactly supported we obtain, in the sense of distributions, the following 
Euler-Lagrange equation: 

-Ax = (i$, r/e**) + (i*, $(eix - 1)) - V • /? 

where * = ^o + (P,v)' The right hand side lies in iJ1(M2) which implies 
that ||xllff3(5(a:,fl) ^s bounded uniformly in x. Therefore dx £ L00 and so 
since (1-cosx), sinx € L2 we deduce that lim^i^oo x(x) = 0 (after possibly 
adjusting x by 2n7r for some interger n) and x G L2. Thus X) 5 both lie in 
Hs and the two original minimisation problems have been solved. Finally 
the Wk'00 statement follows from lemma B.2. □ 

Proof of lemma 5.17. Step One.   We introduce the set 

X = {F = (/i, /2) G ^(2) : B(F) = 0 and (F - *) G <S/:i2)} C A™ 

with the induced topology. Here B is the set of solutions of the Bogomol'nyi 
equations given in (5.20-5.21). This is a sequentially weakly closed subset 
of A^. We will minimise the function d : X -* M+ given by 

d{F) = \\F-y\\L2 
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This is a sequentially weakly lower semi-continuous function. 
Step Two. Claim A. The function d is coercive i.e. there exist positive 

constants Ci, C2 such that 

d(F)>ci||F- **||^2-c2. 

Proof of Claim. First notice that the Hilbert space inequality 2|(a, b)\ < 
i|a|2 + 2|6|2 implies d(F) > ^||F - **|||2 - 2€2 so it remains to prove 

(C.4) ||F - **||L2 > c||F - ^11^ - ||* - ^H^. 

This follows from lemma 5.14 and the result follows since * — ** G H2. 
Step Three. Claim B The function d attains a minimum at some point 

^0 € X and <i(\I/o) ^ Lse where L3 = 1 + L2, where L2 is as in lemma 5.9. 
Proof of Claim Since (*o — *) G SC^ it follows from remark (ii) fol- 

lowing definition 1 that (^o — *) € SC^K From lemma 5.9 there exists **, 

gauge equivalent to **, such that ** — * G SC^   and this will satisfy 

ll**-**lli/2 <L2e. 

Therefore 

rf(*o)     =     11*0-^11^(12) 

< l|**-*||L2(R2) 

< II** " **\\H*(**) + 11** " *llif2(E2) 

<    <{l + L2)e. 

Step Four. Claim C#o € DfeeN^'00^2^2 x c)- 
Proof 0/ CZaim By (C.4) we have ||*o- ^*\\H

2
 < C€- Therefore for small 

enough e we can apply lemma 5.7 to gauge transform *o onto the local solu- 
tion space MJV(**)- It then follows by lemmas B.3 and 5.7 and from the as- 
sumption #* G fl/cGN W^iR2-^2 x C) that #0 G PUGN ^'^(M2;]^2 X C). 

Step Five. Now consider the local solution space MJV(*O)- Choose a 
local coordinate system q in MN around 7r(*o) with q = 0 corresponding to 
*o5 so that q i-> *o(^) ^ Miv(*o) is a local diffeomorphism with *o(0) = *o 
as in lemma 5.11. Then lemma 5.9 provides us with gauge transformations 
X(Q)I X(0) = 1 which give a diffeomorphism ^o(q) —► p(x{Q))^o(q) between 
neighbourhoods of *o in MAr(*o) and in X. (This incidentally shows that X 
is a smooth submanifold in a neighbourhood of *o-) Now define a function of 
q given by d(q) = d(p(x(q))^o(q)) which is smooth and takes on a minimum 
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at q = 0. Therefore J'(0) = 0. To complete the proof recall that (* - *o) £ 

SCy   so that 

(*-*o,^(p(?)*o(0)))La=0. 

J'(0) = (*-*o,^*o(9))L2=0 

which in turn implies (* — \I/o) is L2 orthogonal to KerL^0 since (# — ^o) ^ 
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