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This paper explores the relationship between the flat moduli space of 
a homology knot complement and other topological invariants of the knot. 
We define an invariant by counting the flat orbits with trace of the meridinal 
holonomy fixed and give a formula for the invariant in terms of the Tristam- 
Levine equivariant knot signature and the Casson invariant of the homology 
3-sphere in which the knot lives. 

Casson defined a topological invariant, now known as the Casson in- 
variant, for closed oriented homology 3-spheres which, roughly speaking, 
counts (one half) the number of irreducible representations from the funda- 
mental group of the 3-manifold into SU(2) modulo conjugation (see [AM]). 
Shortly thereafter, Taubes provided an analytic definition of the same in- 
variant, counting instead flat SU(2) connections modulo gauge equivalence 
(see [T]). These papers, along with related ones by Walker [Wa] and Floer 
[F], have inspired a long list of papers both from the topological viewpoint 
and from the gauge theoretic one. 

In 1992, Lin defined an 53 knot invariant by counting the number of 
trace-free irreducible representations of the knot group into SU(2) modulo 
conjugation (see [Li]). Here trace-free means that all knot meridians are 
taken to trace-free matrices. He then showed by a clever topological argu- 
ment that this invariant equals one half of the knot signature. Ruberman 
suggested a generalization of this result involving equivariant knot signature 
which removed the trace-free condition. For the case of 2-bridge knots, a 
similar formula was conjectured by Heusener in [He]. 

The aim of this article is to establish a general formula for arbitrary knots 
in homology 3-spheres. In the special case of knots in S3, this proves the 
formula suggested by Ruberman. Our main result states that if AS : 51 -> X 
is a smooth knot in an oriented homology 3-sphere then (under certain 
transversality assumptions) the number of conjugacy classes of nonabelian 
representations p : 7ri(X \ n) —► SU(2) taking the meridians to matrices of 
trace 2 cos a equals minus four times the Casson invariant of X minus one 
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half the Tristam-Levine knot signature SignBK(el2a). The conjugacy classes 
are counted with signs corresponding to oriented intersection numbers. 

The techniques used in this paper are gauge theoretic rather than topo- 
logical. In particular, we consider flat SU{2) connections modulo gauge 
equivalence, rather than fundamental group representations to SU(2) mod- 
ulo conjugation. The association taking each flat connection to its holonomy 
representation gives an identification of the flat moduli space with the space 
of representations modulo conjugation. 

The general picture is as follows. Let Y be the complement of an open 
tubular neighborhood of a smooth knot K in an oriented homology sphere X, 
Let M denote the space of flat connections on Y modulo gauge equivalence, 
and let M,* denote the subset consisting of equivalence classes of irreducible 
connections. My work in [HI] and [H2] shows that after a small perturbation 
of the flatness equation, if necessary, M* is a smooth 1-manifold, compact 
except for open ends which limit to interior points in the abelian moduli 
space M \ JM*, which is an arc. 

There is a natural restriction map r from M to .MT2, the flat moduli 
space for the boundary torus. This moduli space is the "pillowcase" orbifold 
T2/Z2, which is topologically a 2-sphere. Equivalence classes of irreducible 
flat connections on Y whose holonomy representations take knot meridians 
to matrices of trace 2 cos a correspond to points in r~1(Sa) for a certain 
circle Sa C MT^ • Thus the points to be counted are intersections between 
the immersion r : M* —* Mr* and the circle Sa. 

The signs of the intersections are determined by considering the double 
cover JM* of .M*. In the second section we describe a method by which M* 
is given a natural orientation, once one is chosen on if^Y^R). There is a 
corresponding restriction ipaap f : M. —> M.j-2 = T2. The intersection points 
to be counted correspond in a one-to-one fashion with f"1^) nM*, where 
Sa is one component in the double cover of Sa. An orientation on Sa is 
also determined by the ones on Hl{Y\ R). The last piece of information we 
need is an orientation on Mj^. Its tangent space is canonically isomorphic 
to Hl{dY\'K) and so receives an orientation from Poincare duality on dY, 
oriented as the boundary of Y C X, We adopt the convention that an 
oriented basis for TxdY followed by an outward normal vector gives an 
oriented basis for TXY. 

Several more pieces of notation are necessary to state our main theorem. 
Choose a Seifert surface F for n and fix an oriented normal vector field on F. 
Choose a basis of curves {xi}i<i<2g for Hi(F\ R) and let xf denote the push- 
off of Xi in the positive normal direction. We then define the Seifert pairing 
V to be the matrix with entries Vy = link(^, art). We use this to define, for 
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each unit complex number £, a matrix BK(t) = (1 — t)V + (1 - t~l)VT. The 
signature of this Hermitian matrix is called the Tristam-Levine signature of 
the knot and is a function from U(l) to Z. The matrix B^t) is related to 
the symmetrized Alexander matrix AK(t) = t^V — t~^VT by 

(t-*-t2)AK(t) = BK(t), 

and the Alexander polynomial of the knot is 

AK(t) = det(VT - tV) = (1 - r V^detC^)). 

Our main theorem is the following, where X(X) denotes the Casson in- 
variant of X (see [AM] and [T]). 

Theorem 0.1. For any 0 < a < TT with AK(ez2a) ^ 0, if M is nondegener- 
ate, then 

r{M*) • Sa = -4A(X) - isign^(ei2a). 

// M is degenerate, then after a small perturbation of the flatness equation 
this formula holds. 

Remark: The intersection number on the left side of the formula is the 
number of flat orbits in M^ with tr(holAt(A)) = 2 cos a, counted with signs. 
We only state the formula in terms of the double cover because doing so 
allows us to interpret the correct signs as oriented intersection numbers. We 
will also see that the Casson invariant has an interpretation as an oriented 
intersection number, namely, — \f(M*) • So- This collection of intersections 
corresponds to the double cover of the set of orbits of connections on Y 
which may be extended to flat connections on X. 

As a special case, when « is a knot in 53, we get the generalization of 
Lin's theorem suggested by Ruberman. 

Corollary 0.2. Let Y be the complement of a knot K in S3. Then for any 
0 < a < TT with BK{e%2oL) invertible, if M is nondegenerate, r{M.*) - Sa = 
—^SignBK(et2a). If M is degenerate, then after a small perturbation this 
formula holds. 

We have learned from David Austin that he has independently found a 
proof of a result similar to Corollary 3, but his proof is more along the lines 
of Akbulut and McCarthy's treatment of the Casson invariant (see [AM]). 
Acknowledgements:  I would like to express my gratitude to my thesis 
advisor Tom Mrowka, who first suggested this problem to me and with 
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whom I have had many long and fruitful discussions on the subject of this 
paper. I have also benefitted greatly from discussions with Hans Boden, 
Paul Kirk, Eric Klassen, Andy Nicas, and Ron Stern. 

1. Background and Notation. 

In this section we review the basic gauge theory setup and the generic 
structure of the flat (or perturbed flat) moduli space for a knot complement. 
This material is described in full detail in [HI] and [H2]. 

Let K be a smooth knot in an oriented homology sphere X with open 
tubular neighborhood I>(K). Set Y = X\i/(«), with the orientation inherited 
from X. We fix a Riemannian metric on Y, and let * : Ql'

p(Y;su(2)) —> 
Q,3~p(Y;su(2)) be the Hodge star operator. 

We consider the trivial 5(7(2) bundle P - Y x SU(2). By fixing a trivi- 
alization of P we obtain an identification of the space of SU(2) connections 
on Y with ^(Y; su(2)), the space of 1-forms on Y with su(2) values. Let A 
denote the completion of this space with respect to the 1% Soboloev norm. 
The gauge group in this context is Q = Map(Y, SU(2)), completed with the 
L3 norm. AT*, and GT

2
 
are defined similarly, using the L| and L| norms, 

2 2 
respectively. In this paper we will not be explicit about Sobolev norms. 

5/7(2) connections may be divided into classes according to the size of 
their stabilizer, which is isomorphic to Z2, £7(1), or 5/7(2). Such connec- 
tions are called irreducible, abelian, and central, respectively. (Note that 
according to this definition, abelian and central are mutually exclusive.) It 
is useful to divide A into A = A* U Au^ where A* denotes the set of irre- 
ducible connections and Au^ denotes the set of reducible (that is, abelian 
or central) connections. Similarly we divide the space of gauge equivalence 
classes B = A/G into B = £* U Bu^. 

To each connection A is associated its curvature 2-form, F{A) — dA + 
A f\A G £L2(Y\ SU(2)), and the connection A is said to be flat if its curvature 
is zero. The flat moduli space M = {A e A\F(A) = 0}/G of Y is the object 
of primary interest in this paper. It has a topological interpretation as 
Hom(7ri(y),5C/(2))/5C/(2)), the set of fundamental group representations 
modulo conjugation. 

The flat moduli space of a knot complement is in general a very singular 
space and hence is difficult to work with (although interesting results have 
been proven using the its real algebraic structure, for example in [He]). For 
this reason, we define a class of admissible perturbations of the flatness 
equation as follows. 



Flat Connections, the Alexander Matrix, and Casson's Invariant      97 

Let {7i : S1 x D2 —> Y}i<i<n be a collection of embeddings of the solid 
torus into Y whose images are disjoint. Let rj be the product of a nonnegative 
bump function on D2 with support in the interior and the standard volume 
form on D2. Let {hi : R —> R}i<;<n be a collection of C2 functions. Let 
tr hol7i(£, A) be the trace of the holonomy of the connection A around the 
curve 7i(S'1 x {#}). We define a function h : A -> R by the formula 

71    f 
HA) = V /    hiitr hol7i(a:, AMs). 

_i /D
2 

Definition 1. A function h constructed in this way is called an admissible 
perturbation function. 

Given an admissible perturbation h : A —> R, we define a function 
(h(A):A->nl(Y;su(2))by 

Ch(A) = ~*F{A)+Vh(A). 

Definition 2. We say that a connection A is perturbed flat (with respect 
to a perturbation h) if it satisfies the equation (h(A) = 0. The perturbed 
flat moduli space is the quotient Mh = (^(fy/S- We also decompose 
this into the set of irreducible orbits M^ = Mh^B* and the reducible orbits 

One point should be made about the notation. The flat moduli space of 
Y or its strata will generally be denoted by Mh, M%, and M^ , with no 
further adornment. We will denote the corresponding moduli spaces of a 3- 
manifold M which is different from Y by Mh(M), M*h(M), and .M^(1)(M). 

We will denote the flat moduli space for the torus by MT2. The holon- 
omy representation of any flat connection on T2 is abelian, so its image lies 
in a maximal torus U(l) C SU(2). Any such maximal torus in SU{2) can 
be conjugated to itself with the reverse orientation. Thus, 

MT2 - Hom(7ri(T2), SU(2))/Ad = Hom(Z 0 Z, C7(l))/Z2 = T2/Z2. 

This flat moduli space is topologically a 2-sphere with four distinguished 
points, namely the fixed points of the involution (the central orbits). 

Given a connection A which is perturbed flat with respect to an admissi- 
ble perturbation fe, we will define associated absolute and relative cohomol- 
ogy groups, denoted by H\h(Y; su(2)) and W^ ^(y, dY; su(2)),     in Section 
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3. Roughly, they arise as the kernel and cokernel of the linearization of the 
perturbed flatness equation. When h = 0, these correspond to cohomology 
with coefficients in the twisted su(2) bundle of the flat connection. 

Definition 3. We will say that Mh is nondegenerate if it satisfies the 
following 5 properties (and otherwise degenerate): 

(a) The only orbits in Mh which are central when restricted to dY are 
central on Y. 

(b) For each central connection A, Hl
A h(Y, dY\ su{2)) — 0. 

(c) For finitely many noncentral orbits [A\ e Mh    , dirriW^ ^(Y, dY; su{2)) - 

2 and StabA acts nontrivially on TilA ^(Y, dY\ su(2)). For all remaining 
noncentral abelian orbits dimH^ h(Y, dY; su(2)) — 0 . 

(d) At each abelian orbit where there is nontrivial relative first cohomology 
the family of symmetric matrices Ht (defined below) has transverse 
spectral flow. 

(e) For each [A] e M^ dim H^Y, dY; su(2)) = 1. 

Conditions (a) and (b) clearly hold for h — 0, and they continue to hold 
for small h. Condition (c) insures that Mh

( ' is a smooth 1-manifold, even 

at the points where the cohomology jumps.   In fact, for h small, Mh 

consists of a single component connecting the two central orbits. 
To define the matrix Ht in condition (d) we first choose a family of 

connections At whose orbits parametrize an open set in Mh and with 
dim(H\ h(Y, dY;su(2))) = 2.   Let V denote the orthogonal complement 

of T^Mh m ^io/^'5^2))* Then we define a 1-parameter family of 
bilinear forms on V by the formula 

Ht{a,0) = (*dAtjka,0)- 

Ht is symmetric and Stab(Ao) = U(l) invariant. 
When h = 0, a jump in H\(Y;su(2)) occurs (for abelian connections) 

at connections where, up to gauge, hol^A = exp(i0) and IIOIAA. = 1 where 
BK{e%26) is degenerate. 

The structure of Mh was described in [HI]. It is summarized in the next 
theorem. Let M*h denote the closure of M*h in Mh- 
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Theorem 1.1. (Theorem 15 and Corollary 24, [HI]; also, see Theorem 

12, [H2J) For generic admissible perturbations h, M^ and M^ are com- 

pact smooth 1-manifolds. dM*h consists of orbits in the interior of M^ • 

dMfr consists of exactly two orbits, the central orbits. Furthermore, 
r : Mh —► MT^ is an immersion on each stratum taking only the central 
orbits of Mh to the central orbits of .A4T2 

Definition 4. The orbits in M^ fl M^     are called bifurcation points. 

Remark: The proof of Theorem 1.1 amounts to showing that the set of 
perturbations for which Mh is degenerate has codimension 1, and then using 
local implicit function theorem arguments to show that these cohomological 
conditions guarantee that Mh has the structure in the theorem. 

2. The Double Cover of the Moduli Space. 

In this section we will discuss the double cover of the moduli space (with- 
out the central orbits). This double cover has the same type of bifurcation 
point singularities where the different strata meet, but we will see that 
its 1-dimensional strata receive natural orientations from an orientation on 
H1(Y) or, equivalently, a choice of generator [/x] G Hi(Y]Z). 

We begin by fixing a maximal torus in {exp(i0)} ^ SU{2). Here we 
identify su{2) with the space of purely imaginary quaternions, with standard 
basis elements i, j, and k. We will abuse the notation and refer to this 
maximal torus as U(l). The adjoint representation of U{\) on su(2) reduces 
to a trivial representation on span{i}, which we will identify with R, and a 
weight two representation on spanjj, k}, which we will identify with C. 

First note that by considering flat connections on the torus with holon- 
omy values in [7(1) C £[7(2) we obtain a natural double cover M^ of 
MTI, branched at the central points. Specifically, M^ is the space of flat 
^(1) valued connection 1-forms divided by the group of [7(1) valued gauge 
transformations. 

We define 

and 

A = {AeA\ A\dYeV}{dY-Il)} 

G = {9 eg\ g\dY eMap(o>y,[7(l))}. 

Let dA,h = z^dA — *Hess/i(A). Then — * dA,h is the linearization of £&. 
Define 

nP(Y;su(2)) = {ae Qp(Y;su(2))\ a|ay = 0} 
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and 
nj(y; su(2)) - {a € QP(Y\ su(2))\ * a\dY = 0}. 

Let U be a contractible family of admissible perturbation functions. 
We consider the family of elliptic operators 

Kh(A) : «°(r; 5w(2)) 0 ^(F; 5w(2)) ^ ^(F; su(2)) 0 ft1^; ^(2)), 

parametrized by (A, h) e AxU, given by 

lik(A)(0-, r) = (rf^r, d^a + *GU,/IT). 

If ^(A) = 0, then 

kevKh(A) = H0
A(YJdY]su(2)) ®n1

Ah(Y;su(2)) 

and 
cokeTKh(A) = H0

A(Y; su(2)) © W^Cr, SF; sw(2)). 

Here^(F; OT(2)), W^(y; w(2)), ^^(r, dY; su(2)), and 7^(y, ^F; su(2)) 
are the harmonic spaces representing the cohomology groups of the Fred- 
holm elliptic complex 

The last cohomology group is always trivial when h — 0, these cohomology 
groups correspond to the cohomology with coefficients in the twisted flat 
su{2) bundle determined by the flat connection. 

Notice that if A € A is a perturbed flat connection and A lay is noncentral 
then all the harmonic forms have boundary values in u(l). The virtual 
bundle Ind-Kh = ker Kh — cokerif^ is orientable since A is an affine space. 
We will refer to an orientation on Ind^(A) by specifying one on ker Kh(A)® 
cok<xKh{A). 

Lemma 2.1. (Lemma 53 of [HI]) 
The action of Q on the index bundle Indif^ is orientation preserving. 

For the remainder of this section, let h be a fixed nondegenerate admis- 
sible perturbation function. For any noncentral A e C/rHO) n A, 

7#(0y; ^(2)) = ridStab(A|ay) ^ 11(1), 

which is canonically oriented. The kernel kerif/^A) contains the tangent 
space to the stratum {M*h or Mh    ) containing [A]. If [A] is a bifurcation 
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point, however, the kernel contains more. In the latter case, a space comple- 
mentary to the tangent space of the stratum receives a canonical orientation 
from H^(dY]su(2))t Furthermore, cokerif^A) (which always has positive 
dimension) also receives a canonical orientation from 7^{dY]su(2)). This 
can be seen as follows. There are several cases to consider. 

If [A] e Mh is not a bifurcation point, then the restric- 
tion map H\{Y\su{2)) —> H0

A{dY\su{2)) is an isomorphism and 
H\h(Y,dY\su(2)) = 0. If [A] G M*h then H0

A(Y;su(2)) = 0 and 
7i1(Y;su(2)) and 7i1(Y;su(2)) are both 1-dimensional. In this case, the 
coboundary map in the long exact sequence of the pair (Y,<9F) gives a 
canonical isomorphism from HA(Y; su(2)) to H^ h(Y, dY] su(2)). 

If [A] e Mh ' is a bifurcation point, then the restriction map 
n0

A(Y; su{2)) -> H0
A(dY', su(2)) is injective, but H^Y, dY; su{2)) and the 

kernel of the restriction map r : HAh(Y;su(2)) —► 7iA(dY;su(2)) are both 
real 2-dimensional, with Stab(A) acting with weight 2 to give a complex 
structure on each. If [A] e M*h then H0

A(Y]su(2)) - 0 and H1(Y]su(2)) 
and H1(Y]su(2)) are both 1-dimensional. In this case, the coboundary map 
in the long exact sequence of the pair (Y, dY) gives a canonical isomorphism 
from n0

A(Y- su(2)) to H\9h(Y, dY; su{2)). 
It follows that an orientation on the virtual index bundle determines one 

on the 1-dimensional strata of Mh for each nondegenerate h. We fix an 
orientation on this index bundle by specifying it on one fiber; namely, we 
orient ker.Ko(©) ©cokerifc^©), where 6 denotes the trivial connection. 

Our orientation will depend on an orientation of J3"1(y;R) or, equiva- 
lently, a choice of primitive generator [/J] e Hl(Y]Z). Let fi* denote the 
harmonic 1-form on Y with Neumann boundary conditions and satisfying 
f ft* = 1. Then we take the orientation on kerKo(0) ©cokeri^oC®) deter- 
mined by the basis 

{^*®i,/i*®j,/x*®k,i,j,k}. 

We end this section by noting that the Z2 action on the double cover 
does not preserve this orientation on Mh- 

3. Perturbing. 

In order to obtain nondegenerate moduli spaces in general, it is necessary 
to perturb the flatness equations. In this section we describe the admissible 
perturbation functions and prove that it is possible to find small perturba- 
tions such that the moduli spaces satisfy certain technical conditions that 
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will be needed in Lemma 5.1. 
The standard class of admissible perturbation functions h in this context 

(see, for example, [T], [F], [HI]) is defined as follows. Let x be a pair of 
coordinates on the disk D2. Let ^(x) be a radially symmetric bump function 
on D2 which vanishes near the boundary and let dx be the standard measure 
on D2. Given a finite collection of disjoint embeddings {7; : S1 x D2 *-> 
y}i=i,...,n and a collection of C2 adjoint invariant functions {hi : SU{2) —> 
R'}t=i,...,n) we define a gauge invariant function on A given by 

n      p 

h(A) = S^ /    /ii(hol7iO, A))rj(x)dx. 
7-1 JD

2 
„_. fD2 

Functions constructed in this way are said to be admissible. 
For our purposes it will be sufficient to fix a single collection of thick- 

ened loops {7t}t=if...,n- The collection is required to be sufficiently large 
in the sense of [HI], Section 6, Theorem 15. We allow ourselves to 
vary the functions hi to achieve nondegeneracy, transversality, etc. Let 
Ti, = [C|c//2)(SfC/(2),R)]n, the product of n copies of the space of Ad- 

invariant C2 functions from SU(2) to R. 

Theorem 3.1. Fix 0 < a < TT with AK(e2ia) ^ 0. Then there exist arbi- 
trarily small perturbations h GH for which Mh satisfies (l)-(5) of Lemma 
5.1. 

Proof By the proof of Theorem 15 in [HI] there is a neighborhood V C Ti 
of 0 such that the set Vb C V of perturbations for which Mh is degenerate 
has codimension > 1. Furthermore, Proposition 34 in [HI] implies that V 
may be chosen small enough that the set Vi C V of perturbations for which 
r(MD does not intersect Sa transversely also has codimension 1. 

Choose a path ht : (-1,1) -> Vr, with ho = 0, which meets Vb and Vi 
transversely. This will ensure that there is an e > 0 such that Mht satisfies 
conditions (1) and (2) for each 0 < t < e . 

To meet condition (4), note that for t small enough, the map 

tr(holM) : M^l) -» [-2,2] given by [A] h-> tr(holM(A)) is a diffeomorphism 
on the interior and continuous on the whole space. By another (^-dependent) 

perturbation using a curve near dY parallel to /x, K^/J ) can be realigned 
with the unperturbed abelian stratum. See Lemma 61 and Example 1, p. 
64, of [HI], for details. 
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That condition (3) holds for t sufficiently small may be seen as follows. 

Suppose Sa intersects r(Mh^ ') at a bifurcation point for arbitrarily small 
t > 0. Then there are Fredholm operators arbitrarily close to KA^(Y) 

(namely KA<x,ht(Y)) with larger kernel than kevKAa{Y). This contradicts 
the fact that dim ker K is an upper semi-continuous function on the space 
of Fredholm operators from one separable Hilbert space to another. 

The path ht, 0 < t < |, constructed in this manner, automatically 
satisfies condition (5). □ 

4. The Local Picture Near a Bifurcation Point. 

In this section we fix a primitive [/JL] € -ffi(F; Z) to specify an orientation 
on the 1-dimensional strata of Mh as in the previous section. We assume 
furthermore that Mh is nondegenerate and fix AQ e C^l(0)nA such that 
[Ao] is a bifurcation point on the [/(l)-stratum. For concreteness say that 
hol^Ao) = exp((ji) where a e (0,7r) (thereby specifying in which half of the 
double cover of the moduli space [AQ] lies). We will explore the Kuranishi 
picture for the moduli space near [AQ] . 

Let Ho denote the orthogonal projection 

Ho : ^(Y'.su^)) ®Q1{Y;su(2)) ^n0
Ao(y;su{2)) ®n1

Aojh(Y,dY]su(2)). 

We shall obtain a description of the restriction 

Ho o Kh(A) : H^iY; su(2)) - ^(F; su(2)) 0 H^Y, dY- su(2))9 

for A near AQ. This will enable us to sort out the orientations induced on 
the irreducible and abelian strata near [AQ] from the one on HA(dY] sw(2)), 
in terms of the direction of the spectral flow of Ht at t = 0. 

We begin by studying a part of this operator, namely, its restriction to 
the orthogonal complement in Ti^ h{Y\ su{2)) of the U{1) stratum tangent 
space. As pointed out above, Stab(Ao) is naturally identified with the fixed 
(oriented) U{\) C 577(2). The action of Stab(Ao) on Q}{Y')su{2)) gives 
a natural complex structure on this orthogonal complement, denoted by 
^Mthfy* ^)» an^ on ^AQJti^ dY'i su(2)). We denote both of these complex 
structures by J. 

Let u e HA0{Y;SU(2)) = T^StQb(Ao) point in the positive direction. 
Recall that the map j : Hl

A0)h{Y,dY]su(2)) -+ n1
Aoh{Y]su(2)) in the long 

exact sequence of the pair is in fact L2 orthogonal projection between the 
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harmonic spaces representing the cohomology groups. Choose nonzero co- 
homology classes a, 6, and c, as follows.  Choose c G H^^Y.dY'.C) and 

let b = jc G H1^ h(Y] C). Note that b and c differ by an exact form. Let 
a e 7i\0(Y; R) be a vector such that the orientation coming from the basis 

{a, 6, J6, S, c, Jc} agrees with the orientation on ker Kh(Ao)®cokevKh(Ao) — 
H1

Aoth(Y;su(2))en0
Ao(Y;su(2)) ®n1

AoA(Y,dY]su(2)). 
Let At be a 1-parameter family of connections through AQ such that 

[At] gives a smooth parameterization of Mh We further require that the 
parameterization be chosen so that -^At^o = a. Define Ht to be the coho- 
mological pairing Ht(z,z') = (*dAt,hZ,zr) on the orthogonal complement of 

T[A0\MU
h
{l) in«ji0|h(y;«i(2)). 

Proposition 4.1.  The pairing has the form Ht = A(t)Id for some real val- 
ued function A(i) with A(0) = 0 and A^O) 7^ 0. 

Proof Ht : C —> C is a U(l) equivariant map and hence has the form 
A(t)e*^ for some real valued functions A and 9. We first show that Ht is 
symmetric, which shows that 6(t) =0. 

The Hessian of h is symmetric. To see that *dAt is also symmetric, let z 
and z' be harmonic forms in Ti\ (Y] C). These forms are necessarily exact 
when restricted to dY; say, z\dY = cU0£ and zf\dY = dAo^- Then, 

{*dAtz, z1) - {*dAtz,iz)   =   - / to(dAtz Az' - z A d^z7) 

=   - /   tr^Az') 
Jay 

tr(d^0^ A dAoZ') I dY 

=    -[   tr(^[FAo,C
/])=0. 

JdY 

The last integral equals zero because AQ is flat on dY. Our nondegeneracy 
assumptions guarantee that A^O) ^ 0. □ 

Finally, we relate the sign of the spectral flow KJQJI to the orientation 
of the irreducible arc limiting to the bifurcation point. A slice to the gauge 
group action through AQ is 

XA0 - {Ao + a\d*A0a = 0, a e «J(y; w(2))}. 



0 2y       -2x 
A'(0)a: X'(0)t       0 

my 0       A'CO)* 
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Let Ilker^ denote the orthogonal projection from fi1(yr; su(2)) onto ker d*Ao. 
By standard arguments involving the Kuranishi map, the connections in XAQ 

near AQ for which Ilkere^ Ch(A) G 7i1AQh(Y,dY;su(2)) make up a smooth 
3-dimensional submanifold, parametrized by 

A(t, x, y) = AQ + ta + xb + yJc + 0(t, x, y), 

where 0 : R3 -> *^0^(y;5w(2)) satisfies 0(0,0,0) = 0. See [HI], for 
example, for details. 

To first order in £, x) and y, in terms of the bases {a, 6, Jb] and {w, c, Jc} 
for Wi0>fc(y; sw(2)) and ^0(F; 5w(2)) e^0^(r, ^F; su(2)), the restricted 
operator has the form 

noo^(^,^y))- 

The lower right hand 2x2 block in the above matrix is equal to Ht. 
The second and third entries in the first column must have the values given 
because of the fact that the bottom two rows form the derivative matrix 
for a map from Hl

Ao h{Y\ su{2)) to TilA fJX^ ^^ su{2)). The top row entries 
are clear from the fact that Stab(Ao) acts with weight two on the complex 
coefficients. 

For the purposes of keeping track of orientations this first order approx- 
imation is sufficient. By Theorem 12 of [H2], the irreducible perturbed flat 
connections in the slice near AQ, together with AQ (which is reducible), form 
a 2-dimensional submanifold through AQ, invariant under the Stab(Ao) ac- 
tion, described to first order by A(0,£,y). What remains for us to do is to 
identify the induced orientation on the radial direction in this tangent space 
from the orientation on the index of Kh- 

We will say that two bases for a vector space are equivalent if they induce 
the same orientation on the vector space, and we denote this equivalence by 
~. Recall that by assumption, a correctly oriented basis for ker Kh{Ao) 0 
cdkerKhiAo) is 

{a, 6, J6, #, c, Jc}. 

The corresponding basis for IndK^(A(0,^, 0)) is {e&, Jc} where e <E {±1} 
makes 

{eft, a, J6, Jc, Ho o 1^(4(0, a, 0))a, Ho o Kh(A(Q, x, 0)) Jb} 

~   {e6, a, J6, Jc, X'^xS, 2xu} 

os   {a, A/(0)e6, J6, &, c, Jc} 
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equivalent to 
{a, 6, JbjUjCyJc}, 

In other words, e = ujJi, so the sign coincides with the spectral flow 
direction of Ht. This is summarized in the following proposition. 

Proposition 4.2. The orientation on the irreducible arc limiting to a bi- 
furcation point points away from or towards the bifurcation point according 
to whether the spectral flow of Ht is positive or negative. 

Remark: By Corollary 3 of [H2], the direction in MT^ in which r(MD 
leaves the image of the bifurcation point is also determined by this sign. 
Thus the orientation on the non-closed components of M^ is determined by 
their image in MT2. 

5. An Intersection Formula. 

Choose a 0-framed longitude A for the knot, i.e., an embedded circle in 
dY which is null homologous in Y. Also, choose a meridian curve /x, the 
boundary of a normal disk in */(«). We require that A and // are oriented 
so that their intersection is /i • A = 1, using the boundary orientation on 
T2. Note that this orients the index bundles from Section 2 on both Y and 
S1 x D2, since A and fi generate Hl(Sl x D2; R) and Hl(Y\ R), respectively. 

For each 0 < a < TT, define 

Sa = {[A] e MT2\ holM(A)) = exp(ia)}. 

Orient this circle so that f(Mu^) • Sa = 1. For a = 0, So = r(MsixD2)j 
and this orientation on So is corresponds to the one on Ms1xD2 coming 
from the choice of first homology generator A. 

Assume that the map 

0 : A#<i) - U(l) 

given by 0([A]) = holM(A) is a diffeomorphism. (Large perturbations can 
violate this requirement, but small ones cannot.) For each bifurcation point 

[A] e Mh , let <7([A]) = ±1 depending on whether the eigenvalue A(t) of 
Ht has positive or negative derivative when it crosses zero. 

Define S : (0,7r) —> Z to be 5(a) = X^G^J) where the sum is taken 
over all bifurcation points in 0~

1
(O,Q:). 

For each 0 < a < TT, let Aa denote a flat abelian connection on Y with 
meridinal holonomy equal to exp(ia:) G SU(2). Such a connection is unique 
up to gauge equivalence. 
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Lemma 5.1. Let 0 < a < TT be a number such that Ti\a(YJ dY; su(2)) — 0. 
Let h be a perturbation such that the following conditions hold, 

(1) Mh is nondegenerate. 

(2) Sa meets r(MD transversely. 

(3) Sa misses the bifurcation points of r{Mh    )• 

(4) r maps M^   ' onto r(Mh^ ^). 

(5) There is a path ht of perturbations from 0 to h such that Mht satisfies 
(1), (3) and (4) for allQ<t<l. 

Then 
r(M*h)-Sa-r(M*h)-So=S(a). 

Remark: We will show in Section 3 that it is always possible to find a small 
perturbation satisfying (1) — (5). 

Proof of Lemma 5.1 This reduces to the following elementary topological 
fact. Let E c .MT2 denote the smaller annulus between So and Saj i.e., 
^ = Uo</?<a Sp- The induced orientation makes <9£ = Sa - SQ. 

For any immersion / : C —> MT2 of a compact, oriented, 1-dimensional 
submanifold C with f(dC) Pi d£ - 0 and /(C) transverse to 3E, /(C) • 
OH equals the number of endpoints (counted with orientation) of C whose 
images lie in E. □ 

6. S(a) and the Equivariant Knot Signature. 

We next relate S(a) to the spectral flow of the twisted signature operator 
on the 0-surgery on «. We then relate this spectral flow to the signature of 
the matrix Bk(et2a). We begin by recalling the definition of spectral flow 
for a family of self-adjoint Fredholm operators. 

Let Kt, 0 < t < 1, be a continuous 1-parameter family of self-adjoint 
Fredholm operators on a separable Hilbert space. The eigenvalues of Kt 
are real and vary continuously in t. We consider their graphs in [0,1] x R. 
The nonzero eigenvalues of KQ and Ki are bounded away from zero. Let 
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8 > 0 be smaller than the absolute value of the nonzero eigenvalue closest 
to zero. A small homotopy of the family of operators, fixing the endpoints, 
will insure that the eigenvalues cross this line transversely. Then we define 
the spectral flow SF(Ko, Ki) to be the number of eigenvalues, counted with 
multiplicities, which cross the line segment connecting (0, —5) to (1,(5); an 
eigenvalue counts with a plus or minus sign depending on whether it crosses 
from below to above or from above to below. Equivalently, the spectral flow 
from ifo to Ki is the number of eigenvalues that change from non-negative to 
non-positive. Note that with this convention, SF{KQ, KI) + SF(Ki, K2) = 
SF{Ko,K2) - dimker(^1). 

Let Y — Y U^y S1 x D2 be the closed manifold obtained by 0-surgery on 
K. We will denote connections on Y by A. In this section we assume that h 
is a perturbation such that Mh(Y) satisfies (1) - (5). We are considering h 
as a perturbation for both Y and Y. Condition (4) insures that the abelian 
portion of MhiX)is a 1-dimensional arc parametrized by tr(holAt(A)). (This 
is not the case for generic perturbations on F, but it can be arranged by 
choosing the perturbations in Y as prescribed above.) 

Let K-z^ : ft0(F;5u(2)) 0 ^(F; su{2)) -+ Q0(Y; su(2)) 0 Q1(Y',su(2)) 

be the twisted signature operator for A on F, given by 

Let At be a path of abelian connections on Y such that [At] passes 
through a bifurcation point when t = 0, as in Section 4. Let At be a family 
of abelian connections on Y such that At\Y = At and Atls^-xD'2 is flat- Let a 
denote the tangent vector ;i|At|t=o. The next proposition relates the spectral 
flow of the finite dimensional self-adjoint operator Ht defined in Section 1 
to the spectral flow of the operator K-j h. 

Proposition 6.1. As t passes through 0, exactly one eigenvalue of K-j h, 
having multiplicity two, changes sign, and it changes in the same direction 
as \(t). 

Proof. The Mayer Vietoris sequence implies that Y has a jump in (twisted) 
first cohomology at exactly those abelian connections which restrict to be 
bifurcation points on Y. The only problem is to relate the sign of the spectral 
flows at these points. 

The Mayer Vietoris sequence along with our assumption about M^ ' to- 
gether imply that the restriction map from TiKh{Y\ su{2)) to W^ h(Y\ su{2)) 

is an isomorphism. 
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Let A(i) be the eigenvalue of K-^ h which passes through 0 when t = 0, 
and let (f)(i) be a corresponding eigenvector. Then 0(0) € W^  (F;C), and 

in fact <j)(t) can be chosen so that 0(0)|y = b. 

Differentiating in t and evaluating when t = 0 gives 

A(t)'(o)ii0(o)i|22(F) = <*[a Amum = -j_tT([sA4m Am)- 

(Note: this pairing only depends on the cohomology classes of 0(0) and a.) 
Breaking up the integral we obtain 

- / tr([a A 0(0)] A 0(0))    =    - f tr([a A 0(0)] A 0(0)) 

- /        tr([aA0(O)]A0(O)) 

=    - f tr([aA6]A6). 

The integral over the solid torus vanishes because there 0O is exact and 
a is closed. The integral over Y has the same sign as A^O). D 

Corollary 6.2. 2S(a) -4 = SF(K^o h, K^^W). 

Proof. The image of the set of bifurcation points in Mht, 0 < t < 
1, in MT^ is bounded away from the trivial orbit. It follows that 
dimkerif-^o, (Y) is constantly equal to 6, and that for 0 > 0 very 
small dimkerK-j^     is constantly equal to 2 for 0 < t < 1.   Therefore 

SF{K^oh,K^h)(Y) = SFiK^.Kjp)^) which is easily calculated to 
be —4 by explicitly computing i^-j^|kerK-o- The proposition implies that 
2S(a) = SFiK-tf h, K^h)(Y) + 2, which'equals SFiK^o,K^)(Y) + 4 by 
the above argument. □ 

We now relate the spectral flow of the twisted signature operator on Y 
to the signature of the matrix B^2a) = (l-ei2a)F + (l-e-i2a)FT, where 
V is the Seifert pairing of a Seifert surface for K. The following modification 
of the argument in [KKR], Section 4, was suggested to the author by Paul 
Kirk. 
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Proposition 6.3. SF(KAo,KAa)(Y) - -Sign^(ei2a) - 4. 

Proof. We will use a formula relating the spectral flow of KA on Y to the 
Chern-Simons function and rho invariants of the flat connections at the ends 
of the path. A derivation of this formula may be found in [KKR]. 

Let Aa and A13 be any flat connections on a 3-manifold Z with holonomy 
representations a, /? : TTIZ —► SU(2). The formula is the following: 

SF(KA«,KAe)(Z) 

=   8(cs(A^)(Z)-cs(Aa)(Z)) 

+^{pad^{Z) - padcx{Z)) 

—- (dim ker KA* + dim ker KA0). 

Suppose that M is an oriented 4-manifold with oriented boundary Z. 
Suppose furthermore that a : TTIM —* SU{2) is an extension of the com- 
plexified adjoint representations ada. Then the rho invariant of ada may be 
calculated with the formula 

Pada(Z) = 3SignM - Sign^M, 

where the latter term is the equivariant signature of M. 
We begin by describing a 4-manifold to which we will apply the above 

spectral flow formula. Let U be the union of X x [0,1] with a 2-handle 
attached to X x {1} along N(K) with the 0-framing. Orient U so that 
dU = Y-X. 

Let F be a Seifert surface for K X {1}, the interior of which is pushed 
into X x [0,1]. Let F denote the closed surface obtained by capping F off 
with the core of the 2-handle. F has trivial normal bundle in 17, so we may 
remove N(F) and replace it by S1 x H where H is a handlebody of genus 
equal to that of F. Call the resulting manifold M. 

Proposition 6.4.       1. Hi(M) = Z. 

2. The map Hi(Y) —> Hi(M) induced by the inclusion map is an iso- 
morphism. 

3. Sign(M) - 0. 
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This proposition is just a homology calculation, so it suffices to show it 
for the case of K equal to the unknot in S'3, with F equal to a disk. The 
claims are easily checked in this case. □ 

The important property of M is that dM = Y — X and any abelian 
representation a : TTIY —> SU(2) extends uniquely to an abelian represen- 
tation a of TTIM which is trivial on TTIX. Thus pad<x(Y) — Ptrivial("*0 — 
SSignM — Sign5M. Since the Chern-Simons function is a flat cobordism in- 
variant, cs(Aa)(Y) — cs(A0)(X) = 0, and the Chern-Simons function terms 
in the spectral flow formula contribute zero. 

The formula then implies 

SF(KAo,KA«)(Y) = --Sign^M - 4. 

Proposition 6.3 is now a consequence of the following fact. 

Proposition 6.5. Sign^M = 2SignBK(ei2a). 

Proof, of Proposition 6.5 Since S1 x H has a deformation retract S1 x (ViS1) 
in its boundary, SignS1 x H and Sign^S1 x H are both zero. By Novikov 
additivity Sign^M = Signet/ \ N(F). 

Let N = U \ N(F), and let N be the universal abelian cover of N. Let 
B : H2(N]Z) x H2(N]Z) —► Zft,^"1] denote the equivariant intersection 
form. 

Theorem 6.6. (Theorem 4.2 of [KKR]) ^(N; Z) = (Z[t, f^eZ where 
Z[t, t~l] acts trivially on the Z summand. The matrix for the equivariant 
intersection form, B, on the free summand is given by 

{l-t)V + {l-t-l)VT 

where V is the Seifert matrix for the Seifert surface F, Vij = £k(xi,x^). 
The Z summand is in the kernel of B. 

The proof of this theorem is a standard argument which may be found 
in Chapter VII of [K] and in [KKR]. The idea is to construct N as the union 
of the universal cover of the 2-handle minus its core and the universal cover 
of X x [0,1] \ F. In both of the above references, the calculation is done for 
the case when X = S3 (and the trivial X end of the cobordism U is capped 
off with a 4-ball). It works the same for the present situation, however. The 
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important feature is that {X x [0,1]) \ N{F) cut open along the trace of a 
homotopy from F to a Seifert surface in X x {1} has no 1-dimensional or 
2-dimensional cohomology. 

All that remains to prove Proposition 6.5 is to understand the adjoint 
action of exp(ia) on the complexified Lie algebra su{2) ® C. The represen- 
tation of Hi(M) = Z reduces to a direct sum of 3 [/(I) representations, 
taking the generator to el2a, e~l2a, and 1. Thus 

Sign^iV = Signi?K(ei2*) + SignBK(e-i2a) + Signal) - +2Sign^(ei2a). 

7. Casson's Invariant, 

In this section we relate the intersection number f(-M^) • So to the 
Casson invariant. We will make use of the fact that Taubes showed 
K*) ^ -SE^GA^WM)

5
^

0
'^ in [T]; see also [KKR], Section 2, 

for clarification of the sign. 

Theorem 7.1. r(M*h) • So = -4A(X). 

We first prove this equality up to an overall sign. That is, we show that 
the oriented intersection number r(Al^) • So has the same absolute value as 
4 times Casson's invariant for X. 

Proposition 7.2. Let {A\ and [A!] be orbits in M^ fl f-^Sb). Then the 
local intersection numbers ofriM^iY)) -So at [A] and [A] agree if and only 
if SF^AfaKA'fr) equals zero modulo 2. 

Remark: Both of the quantities are unchanged when A1 is replaced by giA') 
for any gauge transformation. Thus it is sufficient to prove the proposition 
for one for arbitrary A e C^^O) and for any representative A7 of an arbitrary 
orbit in the intersection. In fact, it is enough to do so for pairs [A], [A7] in 
the same component of f"1^ \ {centrals}). 

Proposition 7.2 is analogous with Proposition 5.2 of [T], with the follow- 
ing difference. Taubes was concerned with intersecting the two irreducible 
strata of the flat moduli spaces for the solid handlebodies in a Heegard de- 
composition for X in the irreducible stratum of the flat moduli space for 
the splitting surface. Because our connections are abelian on the torus dY, 
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and on the tubular neighborhood of the knot, the Fredholm operators which 
for Taubes were surjective have cokernel in our case. We have already dealt 
with this problem Section 2 and we now modify Taubes' argument to include 
the identifications of these two cokernels with H0(dY; su(2)). 

We begin by establishing some notation that will parallel that in [T]. 
Recall that X is a homology 3-sphere, in which Y sits as complement of an 
open tubular neighborhood of a knot. Let Xi = Y and let X2 = S1 x D2 be 
the closure of a slightly larger tubular neighborhood, so that XQ = XiflXz is 
difFeomorphic to a product T2 x [0,1], We may assume that the perturbation 
curves do not intersect XQ. 

We make the following definition 

^ - {A e A(X)\ A\x2 e Q1(X2;u(l)),A\x2 is not central}. 

For each A e A0, let Ta(A) = kerd^ n ^l(Xa). These fit together to 
form bundles Ta over A0. For a = 0,2, this requires a straightforward mod- 
ification of the usual argument, taking advantage of the fact that ker d^nft0 

is always the span of the constant 0-form i. 
The bundles fit into an exact, acyclic Fredholm complex 

0^T^TieT2^To->0. 

The map $ is defined by 

$(a) = (o|xi - dAbi,a\x2 - dyife) 

where 61,2 is the unique 0-form satisfying 

and 62 -L i. 
The map * is defined by 

*(ai,a2) = ai|xo -Mxo ~ ^0 

where 60 is the unique 0-form satisfying 

d*AdAbo = 0, *dAbo\dXo = *(ai - a>2)\dXo 

and 60 -L i- 
Next, define £a = kerd^ n n1{Xa;su(2)) for a = 0,0,1,2. Again we 

have an exact, acyclic, Fredholm complex 

0-+£-+£ie£2^ A)->0, 
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where the maps are $(a) = (a|xi, ata) and *(ai5 a2) = Q>I\XQ - O2|xo- 

Proo/ of Proposition 7.2: Let A, A' e A0 be two perturbed flat irreducible 
connections on X. We will use the same notation for their restrictions to 
the pieces Xa. Without loss of generality, we can assume that A and A' 
are connected by a path At,t e [0,1] for which At\x2 is flat and which is 
mapped 1-1 onto the arc in So connecting [AlaxJ to [^laxj which does not 
include any central orbits. 

To conserve notation, let Ta(t) and £<*(*) denote the fibers of these bun- 
dles over At. We will let Ba(t) denote *dAt,h\Ta(t) composed with orthogonal 
projection onto £«(£). We begin by considering the diagram of maps 

-T(t) 
$ 

Ti(t)er2(t) 

B1(t)®B2(t) 

* 

%{t)   - 

Bo(t) 

Co(t) - 

->   0 

^ £i(t)@C2(t) 

Next we adjust the complex to compensate for the extra cokernel at the 
perturbed flat connections. B2(t) is surjective for all t. When i = 0,1, 
Bi has cokernel equal to H\ h(Xi,dXi]su(2)). To eliminate this, we let 
B[(t) : 71 (t) eR -> Ci(t) be the map (a,s) i-> (Bi(a),sUCidAti)^ Then, 
given our nondegeneracy assumptions on /i, Bi ©S2 is surjective for t = 0,1. 
Similarly, for £ = 0,1, J3 is an isomorphism but BQ has cokernel equal to 
n1

Atjh(X0,dXo]su(2)) ^ W^(aXi;w(2)). Let 5^ : 73 ©R ^ £0 be the 
map (a, 5) »-»(Bo(a), sidu) where u is the [0,1] variable. 

Proposition 7.3. There exists a pair of nonzero numbers A(0) and A(l) of 
the same sign such that for t = 0,1 the following diagram commutes: 

B(t)[ 
Ti (t) e R © 7S(i)   ^eA(t)) 76(t) © R 

B'^t)©^^) 

AC*) e £2(4) 
* 

£o(t) ■♦ 0. 

Proof. We will prove this by showing that for each t e [0,1], *(n£ (d^i)) is 
a nonzero multiple of idu. Let A <E A^iX) be a connection with A\x2 flat. 
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Let b G Ct0(Xi; su(2)) be the unique solution to the equations 

d*AdAb = 0, blax, = 0. 

Then TL^dAi = cU(i - b). 
Suppose that II^ dyii|xo = 0- Then b\x0 is a constant multiple of i. But 

then the boundary conditions on b imply that b\xo = 0, which implies that 
b = 0 on Xi. This contradicts the fact that d^d^i ^ 0 on Xi. Therefore 

H^d^ilxo / 0. 
The preceding observation rules out the possibility that (Il^d^i, 0) = 

¥(a) for some a € C. By exactness, *(n£ dAh 0) ^ 0. We conclude the 
proof of Proposition 7.3 by showing that Il^cUilxo -L *dA^'1(Xo;su(2)). 
Here we are making use of the Hodge decomposition theorem, justified by 
the fact that A is flat on XQ, and the fact that H\(Xo]su(2)) is generated 
by idu. 

Letzen1(Xo]su(2)). 

(dx(i - b), *dAz)   =   - /   tr(GU(i - b) A dAz) 
JXo 

=   - tr((i - 6) A dAz) 
JdXo 

=   - /     tr(idAz) =  /   tr(d^i hz) = Q. 
JdXn J Xn 

a 

Now extend A : {0,1} —► R\{0} to a continuous function; for example, we 
can choose A(£) to be the number which satisfies ^(H^^d^i, 0) = \(i)idu. 
We can now form the diagram in 7.3 for all t e [0,1]. The rows are exact 
(since A(t) never vanishes) and the diagram commutes at the endpoints. 

Choose a splitting O(i) : Co(t) -» Ci(t) 0 £2(1) with the property that 
^(t) o Q(t) = 1. Since the vertical maps in the diagram are surjective for 
t = 0,1, one can easily construct splittings ©(*): 7b(t) eR -► 71 (t) eRe72 
such that (Bi(t) 0 ^(t)) o e(t) - O o B'0(t) for t = 0,1. Since the set of 
all splittings of this short exact sequence may be identified with the space 
of bounded maps from 7b 0 R to T, which is connected, these may be 
connected by a path of splittings ©(£) : 7b(t) © R -► 71 (t) 0 R © 7^(£) 
satisfying (* © A(t)) o e(t) = 1. 

We shift our attention to the folded over diagram given below. 
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r(i)eTo(i)eR 2*2®+ T1(t)@R@T2(t) 

%(t)[ JBI 

C(t)®£o{t)      2**+     £i(t)e£2(t). 

Its rows are isomorphisms. Furthermore, the diagram commutes at per- 
turbed flat connections (i.e., for t = 0,1). The columns are operators of 
index 2, and when t = 0,1 they are surjective. The operator Bf

0(t) has is 
always surjective, with kernel equal to Ti\t(Xo;su(2)), which we may iden- 
tify with R2. Let Hi : To(t) —> R2 denote the orthogonal projection onto 
this subspace. 

We use this to make one final diagram from the previous one, as follows. 

T(t)0 76(t)eR 2^1  Ti(t)eRe75(t) 

s(t)ess(*)eni ^1(*)©B2(*)©(nio*(t)) 

C{t) © £o(i) © R2 2®?®h dit) © £2® © R2. 

The rows of this diagram are again isomorphisms, and the columns are 
when t — 0,1. Furthermore, when t = 0,1, it commutes. 

Following [T], we let J^ denote the set of real, bounded, Fredholm oper- 
ators on a separable Hilbert space which have index n, and let J* denote the 
subset which has nonempty cokernel. J7^ has codimension 1 in ^rl. Given 
two operators Fo, Fi € To? we define 5(Fo, Fi) to be the mod (2) cardinality 
of the set {Ft} fl ^Q for a generic path Ft between them. This number is 
well defined and independent of the path Ft. 

Applying this to the current situation, we get that the delta invariants 
of 

(Bf
1(f)®B2(t)®Ui)o^(t)i 

(*(t) © e(t) © 1) o (B{t) © B'Q(t) © Hi o *(t)) o (*(t) © Gft))-1, 

.B(t)eJ3£(i)eni  and  5(4) 

are all equal. The last delta invariant is equal to SF{KAQ, KA^X) modulo 
2. 

Finally, we relate the delta invariant of B^ (£) ©I?2(*) ©n^ to the relative 
intersections numbers at [AQ] and [Ai]. 

Proposition 7.4. 
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1. B[(i) is homotopic rel endpoints to a path Bf{(t) which misses J7^ 

2. With Bi(t) chosen as above, B'{(t) © B2(t) is surjective for all t. 

Proof, of Proposition 7.4: The first assertion follows immediately from 
Lemma 5.7 in [T]. The second follows from the fact that B2{t) is surjective 
(recall that At\x2 are flat u(^) connections). O 

Now we conclude the proof of Proposition 7.2. Let Vt = ker(5/
1
/(i) © 

B2(t)). These 2-dimensional subspaces fit together to form a vector bundle 
V over [0,1]. The virtual vector bundle IndexJBi(i) is oriented in such a 
way that the orientation on keriJi(t) agrees with that on T^Mh for t = 
0,1 (compare with Section 2). Therefore kerJBi(t), a 1-dimensional vector 
bundle over [0,1], has the same property. 

Let ^(t) : V -> R2 be the map (f)(t) = III o *(t)|vt. Perturb 0(t) relative 
to the endpoints to get a (//(t) : V —► R2 with the section det <j/(t) transverse 
to the zero section of A2(R2) ® A2(V*). Then the relative orientations of 
T[At]Ml(Xi)®So with R2 at t = 0,1 differ by the cardinality of det(0/)"1(O) 
modulo 2. 

Proposition 7.2 proves Theorem 7.1 up to an overall sign. The remainder 
of this section is devoted to determining that sign. 

Lemma 7.5. If A is a perturbed flat connection on X with H\h(X; su(2)) 

trivial, and if © denotes the trivial connection, then r(M*(Y)) intersects 
positively with riMiS1 x D2)) if and only if the spectral flow from KQ to 
KA is even. 

Proof. In the case where there are non-closed components in M^, we can 
perturb to deform r(Al(51 x D2)) until it intersects the image of an non- 
closed arc such that r{M*(Y)), r(Mu^(Y)) and riMiS1 x D2)) form a 
small triangle in M^- Then a direct spectral flow calculation (see [H3]) 
gives the allows the determination of the spectral flow from the trivial con- 
nection to the irreducible perturbed flat connection which is a corner of the 
triangle, which proves the theorem. If there is no such arc, we can produce 
one as follows. 

On pp. 410-411 of [HI], we described a particular perturbation which 
gave rise to an irreducible arc in the perturbed flat moduli space of the solid 
torus. Performing the same perturbation using a pair of curves which are 
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parallel to fi in Y and have framing 1 does the same thing to the mod- 
uli space of Y (adds a new non-closed component to M*). It also, however, 
creates singularities along each part of M^ which maps under r into a neigh- 
borhood of r(M(Sl x i}2)). By doing the construction from [HI] very close 
to the trivial orbit, however, and then by perturbing slightly on the Dehn 
filling, we can arrange that r(M(S1 x D2)) misses these new singularities. 
Furthermore, with a little care, we can arrange that the new intersections, 
except for two intersections with the new arc, correspond under a one-to- 
one, orientation preserving map to the old intersections. Then, once again, 
the direct spectral flow calculation implies Lemma 7.5. □ 

8. Proof of Main Theorem. 

The proof of the main result of this paper now follows easily. 

Theorem 8.1. For any 0 < a < TT with BK(e'l2a) invertible, if M is non- 
degenerate then 

fCM*) • Sa - r(M*) • So = —SignB^e*2*). 

// M is degenerate, then after a small perturbation this formula holds. 

Proof The assumption about SK(ei2a) implies that H\a(Y,dY;su(2)) = 0. 
By Theorem 3.1 we can find a perturbation h satisfying the hypotheses of 
Lemma 5.1. This lemma, combined with Corollary 6.2 and Proposition 6.3, 
proves the theorem. □ 
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