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1. Positive Isotropic Curvature. 

1.1. The Result. 

A Riemannian manifold of dimension at least 4 is said to have positive 
isotropic curvature if for every orthonormal 4-frame the curvature tensor 
satisfies 

#1313 + #1414 + #2323 + #2424 ^ 2i2i234- 

Using minimal surface theory, Micallef and Moore proved [13] that any com- 
pact simply connected manifold with positive isotropic curvature is home- 
omorphic to the sphere Sn. In this paper we improve on this result in the 
case where the dimension is exactly four, using the Ricci Flow. 

An incompressible space form N3 in a four-manifold M4 is a smooth 
submanifold of dimension three diffeomorphic to the quotient 53/r of the 
three-sphere by a group of linear isometrics without fixed points, such that 
the fundamental group 7ri(N3) injects into 7ri(M4). We say the space form is 
essential unless r = {l}, oxT = Z2 and the normal bundle is non-orientable. 

Theorem 1.1 Main Theorem. Let M4 be a compact four-manifold with 
no essential incompressible space-form. Then M4 admits a metric of positive 
isotropic curvature if and only if M4 is diffeomorphic to the sphere S4, the 
projective space RP*, the product S3 x S1, the twisted product S3xS1 which 
is the only unoriented S3 bundle over S1, or a connected sum of the above. 
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Corollary 1.2. // M4 is a compact four-manifold with positive isotropic 
curvature, then 

• (a) if ixi = {1},M4 is diffeomorphic to S4 

• (b) if ixi = Z2,M4 is diffeomorphic to RP4 

• (c) if TTI = Z, M4 is diffeomorphic to S3 x 51 if it is oriented, and to 
S^xS1 if it is not. 

In four dimensions it is an open question to date whether there are 
any exotic differentiable structures on S4. Therefore 1.2(a) is possibly an 
improvement on the result of Micallef and Moore, as their argument only 
proves that the manifold is a homotopy sphere and then uses Preedman's 
result. (By contrast, in dimensions 5 and 6 the differentiable structure on 
S5 and S6 is unique.) The quarter-pinching hypothesis of Klingenberg is 
stronger, but Klingenberg writes the manifold as a union of two balls, and 
in four dimensions such a manifold is known to be diffeomorphic to 54. In 
the case 7ri(M4) = Z2 we certainly get a new result in 1.2(b), as there 
is known to exist an exotic Z2 action on S4 such that the quotient is a 
fake i?P4, homeomorphic to the standard one but not diffeomorphic. The 
standard i?P4 admits a metric of positive isotropic curvature, but the fake 
one does not. Hence this curvature pinching hypothesis is sensitive to the 
differentiable structure. 

The theorem will be proved by using a surgically modified Ricci flow 
where we halt the flow at certain times and change the topology. After 
flowing for a while, we recognize a neck, a region where the metric is very 
close to the product metric on S3 x B1 where B1 is an interval, or a quotient 
of this by a finite group acting freely. When there is no quotient in question, 
we replace S3 x B1 with two copies of the ball B4 by cutting the neck and 
rounding off the ends, in a way we will describe precisely later in terms of 
what happens to the metric. When the group is Z2 acting antipodally on 
S3 and by reflection on B1, we can do the quotient surgery to eliminate an 
i?P4 summand. For other quotients we get one of the named obstructions 
s3/r. 

Surgery may disconnect the manifold into a number of pieces. If one 
of these pieces is diffeomorphic to one of the standard models, we throw 
it away. We can of course recognize such a piece as soon as its curvature 
operator becomes positive, by [4]. After a finite number of surgeries in a 
finite time, and discarding a finite number of pieces, we are left with nothing. 
We can then recover the original manifold by starting with some collection 
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of standard spaces and doing surgeries replacing two JB4,s with an 53 x B1, 
or one B4 with 53 x B1/^ as described before, which is equivalent to adding 
an i?P4 by connected sum anyway. If we do extra surgeries of the manifold 
to itself this is equivalent to adding S3 x 51,s or S^xS1^ by connected sum. 
This will prove the theorem. 

1.2. The Algebra of Isotropic Curvature. 

We start by explaining positive isotropic curvature. Given a real vector 
space V we can consider its complexification 

C®RV. 

If V has an inner product <, >, we can extend it to be complex-linear in 
both arguments (not Hermitian linear). We then say that a complex vector 
Z is isotropic if < Z, Z >= 0. If Z = X + iY, so that X and Y are its 
real and imaginary parts, then Z is isotropic if and only if X ± Y and 
\X\ = |Y|. We say that a complex two-plane is isotropic if every vector in 
it is isotropic. Every complex isotropic two-plane P can be spanned by two 
vectors Z = X + iY and W = U + iV where X, Y.U, and V are orthonormal. 
Note there are no complex isotropic two-planes unless the dimension is at 
least four. We define the sectional curvature of the complex isotropic tangent 
two-plane P by 

K(P) = R(Z,W1ZJW) 

for any such basis Z and W for P, extending the Riemannian curvature 
tensor to be complex-linear in all its arguments. Naturally K{P) is real. 
Using the Bianchi identity we find that 

K{P) = R(X, U, X, U) + R(X, V, X, V) + R(Y, U, Y, U) 

+ R{yMY,V)-2R{X,Y}U,V). 

We then say that the metric has positive isotropic curvature if K(P) > 0 
for every complex isotropic tangent two-plane. 

In four dimensions it is natural to decompose the real two-forms A2 into 
the direct sum of A+ and A?.. Then the curvature operator on two-forms 
decomposes as a block matrix 

M ~ [fB   C) 
as explained in  [3].     Consider a positively oriented orthonormal basis 
XI,X2)XZ)XA and let P be the complex isotropic tangent two-plane 
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spanned by Xi + 1X2 and Xz + iY^.  A basis for A^. (under the obvious 
duality) is 

^ zaXxt^^ + XshXA   v^^-XiAXs+JQAXa   ip$=zXif\Xi + X2l\Xz 

while a basis for A?, is 

tyi^ Xit\Xi-Xi/\Xi     'lp2=XiAX3-X4AX2     ll>3~XiAX4-X2AX3. 

We can then compute 

An ~ i?((pi, (pi) = #1212 + #3434 + 2i?i234 

A22 = R((p2) V2) =' #1313 + #4242 + 2i?i342 

A33 = #(^3, ^3) = #1414 + #2323 + 2#i423 

and 
Cil ^ #(^1? VI) - #1212 + #3434 + 2#1234 

C22 == #(^2, ^2) =* #1313 +' #4242 + 2#1342 

^33 ^ #(y>d» ¥>3) ^ #1414 + #2323 + 2#1423- 

The sectional curvature of the complex isotropic tangent two-plane P is 

K{P) = #1313 + #1414 + #2323 + #2424 - 2i?i234 

and by the Bianchi identity 

#1234 +' #1342 +. #1423 ^ 0.' 

Thus we see that 
K{P) = An + Ato. 

for a positively oriented basis. If the basis had the opposite orientation, we 
would get 

lif(P) = C22 + C?33. 

Since either can occur, we get the following characterization. 

Lemma 2.1. A four-manifold has positive isotropic curvature if and only 

if 
ai + 0,2 > 0    and   ci + C2 > 0 

where ai and a2 are the two smallest eigenvahes if the matrix A, and ci 
and C2 are the two smallest eigenvalues of the matrix C. 
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For example, the spaces S4 and S3 x R1 have curvature operators 

M54 = (J   fj     Ms3xRl = (J   ^ 

and hence clearly have strictly positive isotropic curvature, while 52 x S2 

and S2 x R2 and CP2 have curvature operators 

M52X52 = (Q    J      M^x^ = T 
E   E 
E   E 

where E is the matrix 

M^=[{   3^ 

E 

and thus these spaces only have non-negative curvature operator. 
The trace of the A matrix and the trace of the C matrix are equal by the 

Bianchi identity, and both equal scalar curvature, up to a factor* The trace- 
free part of A is the self-dual part W+ of the Weyl tensor, and the trace-free 
part of C is the anti-self-dual part W-. The matrix B gives the traceless 
Ricci tensor. If a manifold is conformally flat with positive scalar curvature, 
then A and C are the same positive multiple of the identity matrix, and 
hence the manifold has positive isotropic curvature. The connected sum 
of two conformally flat manifolds can be made conformally flat, and the 
connected sum of two manifolds of positive scalar curvature can be made to 
have positive scalar curvature. Moreover these constructions are compatible. 
Hence a connected sum of iiLP4^ and S3 x S^'s and (S3/T) x 5'1's (or other 
quotients if S3 x S1) has a metric which is conformally flat with positive 
scalar curvature, and hence has positive isotropic curvature. This is the 
converse of our result. We leave the details to the reader. 

2. Curvature Pinching. 

2.1. Pinching Estimates which are Preserved. 

In this section and the next we prove the following result. 
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Theorem 1,1 Pinching Theorem. Given an initial metric on a compact 
four-manifold with strictly positive isotropic curvature, there exists p > 0 
and fi < oo depending only on the initial metric, such that for every S > 0 
there exists a constant K depending only on p, fi, 5 and the initial metric, 
with the following property. The subsequent solution to the Ricci Flow has 

ai + p > 0    and   ci + p > 0 

and 

max(a3,63, C3) < f2(ai + p)    and    niax(a3,63, C3) < ft(ci + p) 

and 

h<(l + fi)y/(ai+p)(ci+p) + K 

at all points and all times. 

This result will be a Corollary of the last of a sequence of estimates, each 
of which is preserved by the Ricci Flow. 

We follow the same procedure as in [3] to reduce the proof to the preser- 
vation of inequalities defining convex sets when we evolve the curvature 
matrix by a system of ordinary differential inequalities. We assume the 
reader is familiar with this paper. 

Theorem 1.2. The Ricci flow on a compact 4-rnanifold preserves positive 
isotropic curvature. For any constant m > 0 the Ricci flow preserves the 
inequalities 

a,i + a2>m    and   ci + c^ > m. 

Proof. From the ordinary differential inequalities in [3] 

^ (ai + 02) > a? + a| + 2 (ai + 02) as + b\ + b\. 

Now if a\ + a2 > m > 0 then as > 0 also. The set a\ + a2 > m is convex 
since a\ + a<i is a concave function of the matrix A. This proves the theorem 
for A, and C is the same. From now on we always assume a\ + a2 > 0 and 
ci + C2 > 0. □ 

Theorem 1.3.  The Ricci flow preserves the inequality 

(&2 + &3)2<A(ai + a2)(ci + C2) 

for any constant A > 0. 
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Proof, We have 

# l,(a, + a2) > 2a3 + 26, + (o' ' ^ + "" " ^' + 2°'fe " '") 

—111(62 + 03) < as + toi + C3 —-——  
at 62 + 63 
dw    .L.    N^ofc'^o     ,  (ci - &i)2 + (c2 - M2 + 2c2(&2 - hi) — ln(ci + C2) > 26i + 2c3 +  
dt ci + C2 

and it follows then 

iln,     'feV3)       ,<D 
cti     (ai+ a2)(ci+ C2) 

which shows the set is preserved. Now ax + 0,2 and ci +C2 concave functions, 
while 62 + 63 is convex. Moreover the set 

y2 < Axz 

is convex for any A. Therefore the inequality defines a convex set if matrices, 
and we are done. Note that if M4 is compact and ai +0,2 > 0 and C1 + C2 > 0 
at t = 0, there is some constant A so that the estimate indeed holds at t = 0, 
and now for t > 0. D 

Theorem 1 •4. If the previous estimate 

(62 + h)2 < A(ai + a2)(ci + 02) 

ZioZds, and i/ $ is any constant with 

$> A + l 

i/ien £/ie estimates 

a2 + as < ^(ai + 02)    and   C2 + C3 < $(ci + C2) 

are also preserved by the Ricci flow, 

Proof We have 

— (02 + as) < a^ + 0% + 2ai(a2 + as) + bj + bj. 
at 

Now 
a^ + as < 03(02 + 03) 
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and 
6? + bl < {h + b2)2 < A(ai + a2)(ci + ca) 

and 
2 2 

ci + C2 < -(ci + C2 + C3) = -(ai + 0,2 + as) < 0,2 + a^ 

since ai + 0,2 + as = ci + C2 + C3 is the first Bianchi identity for n = 4. Thus 

— In(a2 + as) < as + 2ai + A(ai + 02). 
at 

Also we have 

— (a1 + a2)>al + al + 2(ai + a2)as + b2
l + bl 

at 

and 
a* + a2 > ai(ai + 02) 

which easily gives 

— \n(ai + a2)>ai + 2as. 
at 

To preserve a2 + as < $(ai + (22) we need 

as + 2ai + A(ai + 02) < ai + 2as 

which is the same as 

(A + l)(ai + 02) < a2 + as. 

Now on the boundary of the inequality 

a2 + as = $(ai + 02) 

and if $ > A + 1 we are done. The other estimate is the same. D 

Corollary 1.5. // the above estimates hold, we can find a constant E == 
$ + 1 such that 

max(a3,63, C3) < S(ai + 02)    and    max(a3,63, C3) < S(ci + C2) 

and 
R < S(ai + 02)    and   JR<£(ci + C2). 
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Proof, Since 0,2 > 0 we use 

^3 < ^2 + ^3 < $(«! + 0'2)' 

Since ci + C2 > 0 we use 

C3 < ci + C2 + C3 = ax + 02 + as < (ai + 02) + (a2 + as) < ($ + l)(ai + a2). 

We have already used ci + C2 < a2 + as, so 

(62 + ^s)2 < A(ai + a2)(ci + C2) < A$(ai + a2)2 

and we use 62 > 0 to get 

&3 < h + h < V'A* (ai + 02). 

Since $ > A + 1 > A we can take S = $ + 1. Also 

i? = ai + a2 + as = ci + C2 + C3 

so 

and 

R < (ai + 02) + (a2 + as) 

JR<E(ai+a2) 

as desired. □ 

Theorem 1.6. For any constant p the estimates 

ax + p > 0    and   ci + p > 0 

are preserved by the Ricci flow. 

Proof. We use 

—ai > af + 2a2a3 + bj 
at 

and if ai + a2 > 0 then a2 > 0 and as > 0 so a2a3 > 0. □ 

Theorem 1.7. // the previous estimates 

max(a3,63, C3) < E(ai + a2)     and    max(a3,63, C3) < S(ci + C2) 
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hold and ai + p > 0 and ci + p > 0 and if $ is any constant with 

# > 4E2 + 1 

£/ien t/ie estimates 

as < *(ai + p)    and   C3 < *(ci + p) 

are preserved by the Ricci flow. 

Proof. Since ai + a2 < 2a2 we have 

max(o3,63,03) < 2Ea2. 

Now a2 < 4E2a2 and 63 < 4E2a2 and 2aia2 < Za^ and 

-r«3 < al + 2aia2 + 63 < (8E2 + 2)a| 

and hence using a2 < a^ 

d 
J lna3< (8E2 + 2)a2. 
at 

On the other hand 

— (ai + p) > a? + 2a2a3 + 6? > 2a2a3 
at 

and on the boundary of the inequality we have 

as = *(ai + p). 

This gives 

— ln(ai + p) >2*a2. 
at 

Then the inequality is preserved if 

2* > 8E2 + 2 

which reduces to our hypothesis. Since as is convex and ai + p is concave, 
the inequality defines a convex set. This proves the theorem. The other 
estimate is the same. □ 
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Corollary 1.8. If the above estimates hold, we can find a constant 0 = S^ 
such that 

max(a3, &3, C3) < n(ai + p)    and   max(a3,63, C3) < Sl(c\ + p). 

Proof. We have 
max(a3,63, C3) < S(ai + a2) 

and a2 < as < \I/(ai + p) so the estimate holds with H = S*. The other is 
the same. □ 

Theorem 1.9. If the previous estimates 

ai+p>0    and   ci + p > 0 

max(a3,63, C3) < ft(ai + p)    and    max(a3,63, C3) < £)(ci + p) 

hold, then for any constant H > 0 the inequality 

h < S ePW(ai + P)(ci + P) 

is preserved by the Ricci flow with P = ^Ctp. 

Proof We have 

-rr&s < (^3 + ^3)^3 + 26162 at 

and this makes 

— In 63 < as+ 63 + 261. 
dt 

On the other hand 

d 

and this makes 

Aai+P) >af+ 2a2a3 + 6j 
at 

±Mal + P)>2a3 + 2bl-
2{a3 + h)p 

dt ai + p 

Now we use our hypothesis to bound 

2(a3 + 6i) <4n(ai + p) 
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and we get 

Likewise 

and we have 

-- ln(oi + p) > 2a3 + 2bi - AQp. 

— ln(ci + p) > 2C3 + 2&i - ACtp 
at 

dt    v(ai+P)(ci + P) 

which shows the inequality is preserved by the Ricci Flow. Since y2 < Cxz 
is a convex set, this proves the Theorem. □ 

We remark that fi and p can be chosen in term of the data at t = 0, and 
the minimum of the scalar curvature at t == 0 determines an upper bound 
T on the time the solution can exist. This gives a uniform bound on the 
constant empt* 

2.2. Pinching Estimates which Improve. 

In this part we show that as the curvature gets big the isotropic pinching 
improves. A similar but easier result holds in dimension 3 without curvature 
restrictions (see [10]). 

Theorem 2.1. For any constants A and fl as before we can find a constant 
K such that the inequality 

26, K 

V/(ai + a2)(ci + C2) max jln y/{a\ + a2)(ci + 'eg), 2} 

is preserved by the Ricci Flow. 

Proof. Again we must show the inequality defines a convex set of matrices 
preserved by the ordinary differential inequalities. To see the set is convex, 
observe that ai + a2 and c\ + C2 are concave, so 

x = \J(ai + a2)(ci + C2) 

is concave, while 

y = 263 
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is convex. Then if y = f(x) is a concave increasing function, the set y < 
f(x) will be convex set, because a concave increasing function of a concave 
function is concave. We can write our set in this form where 

[(i + lfe)*    forage2 

{ (1 + f) x     ioTx< e2. 

Note both definitions agree at x = e2. Also y is increasing since j/ > 1; 
indeed 

p + fi-sfc for^e2 

U + T for a; < e2 

and since at x = e2 the derivative from the left is greater than the derivative 
from the right, there is no problem with concavity there. Then 

y"=< 

f     K{\nx-2) 
x\n3x for x > e2 

{     o for x < e2. 

and in either case we have y" < 0. This shows our set of matrices is convex. 
Now we must check the differential inequalities. When 

x = vVi + ^2)(ci + C2) < e2 

we can take K so large that 

and then the inequality 

l + f>A 

y   „   K 

x 2 
is preserved by our previous pinching estimate. So we only need to check 
when x > e2. Then what we need to show is that 

^ < fix)— 
dtSnX)dt 

when y = f(x) and x > e2, since we can only leave the designated region 
at the boundary. Recall from [3] that the inequality is understood in the 
sense of lim sup (on the left) and lim inf (on the right) of forward differ- 
ence quotients, since x and y may not be differentiable everywhere but only 
Lipschitz continuous (being the eigenvalues of a matrix). 
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By the differential inequalities 

i ln(01 + a2) > 2a3 + 26, + (l-*■)' + («■-^+ '<■.('»-M 
at ai + a2 

d^f    ^    ^o     , 0,   ,  (ci-61)
2 + (c2~b2)2 + 2c2(fr2~&1) 

— ln(ci + C2) > 2c3 + 26i + -^ -A-  
dt Ci+ C2 

and 

— In 63 < 03 + C3 + 2bi -  
dt 63 

From this we see that 

where 

and 

£! = 

and 

7 1 

-r-lnx^D + Ei    and    — \ny < D + E2 
dt dt 

D = a3 + c3 + 2bi 

(01 - 61)2 + (02 - b2)2 + 2Q2(&2 - 61) , (ci - fri)2 + (C2 - b2)2 + 202(62 - 61) 
2(ai + 02) 2(ci + C2) 

E2 = 

We need to show that 

D + E2< 

when 

Solve the latter to get 

1 + 

261(63 - -62) 

63 

K K ' 

Inx     ln2x 

""■(^Ei)* 

(U + JSi) 

In a; = 

and substitute this above. If we simplify the resulting inequality with A = 
y/x, it suffices to show 

(A - 1)2(D + E2) < KXiEx + JEfc). 

Now for x > e2 surely A > 1, so we can get by with 

(A - 1)
2
(JD + Eh) < K(Ei + E2). 
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Moreover A < A always, so if K is large compared to A we get 

(A-I)2<IK 

and then it suffices to have 

(\-l)2D<±K(Ei+E2). 

Since D < C\Rm\ for some C, it suffices to take K > 2C/6 where 6 is given 
by the following estimate. 

Lemma 2.2.  There exists a S > 0 depending on A and £2 such that 

Ex + E2 > 5(X - l)2\Rm\ 

Proof. Clearly 

Ex > V {(ai - 61)2 + (02 - b2)
2 + (62 - bx)2 + (d - bj2 + (c2 - 62)

2} /\Rm\ 

for some constant 77 > 0. Now ai + a2 is at least a fraction of |i?m|, so unless 
«i?^2)^i^2)Ci,C2 are all at least a fraction of |i2m|, we would have Ei a 
fraction of |JRm|, and we could find S as desired since A < A and E2 > 0. 
Since bi is a fraction of |i?m| and 63 is bounded by |i2m|, we get 

E2 > v(h - b2)2/\Rm\ 

for some constant 77 > 0. 
Now we use 

A ^ 263 < 263 
\/(al + a2)(ci + C2)      min{ai + a2, ci + C2} 

to see 

A — 1 < max < 1 , 1 > . 
{ai + a2 C1 + C2       J 

When |jRm| < r2(ai + a2) and \Rm\ < Ct(ci + C2), this makes 

A - 1 < C(|&3 - ai| + \b3 - 02) + |&3 - ci| + I63 - C2\)/\Rm\ 

for some constant depending on Q. Then 

(\-l)2\Rm\<C(E1 + E2) 

for some C depending on A and £2, and we take 5 = 1/C. 
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Theorem 2.3.  We can find constants L) P, and Q depending on A> Ct^ p 
and K given as before, much that the inequality 

y/{ai + p)(ci + p) max{ln y/(ai + p)(ci + p), Q} 

is true att^O and is preserved by the Ricci flow. 

Proof. Clearly if L is large compared to Q and Q, and the initial maximum 
of the curvature, then it is true at t — 0. The inequality defines a convex 
set for the same reason as before if Q > 2. Hence it suffices to show the set 
is preserved by the ordinary differential inequalities, Let 

u = y/(ai +p)(ci + p). 

For u < e^, the set is the same sort preserved before. So we only have to 
check u > e^, where the max is the logarithm. Let /x be the ratio 

v/(ai + p)(ci+p) 

We are done when we can compare /x favorably to our previous ratio A and 
use the bound for A given before. To see this, consider the case where 

ai + p       ci + p 

for some 5 > 0 we choose later. Then 

.^Li^<2[l + *(Ai-i)]    and    ^±^ < 2[1 + % - 1)] 
ai +p ci + p 

which makes 
M < A[l + (5(/i - 1)] 

which makes 

M-IS"-1 

1 - 5X 
Since A is bounded above in terms of K, if we take 5 small compared to K 
we have S\ < 1/2 and 

H-1<2(X-1). 

But 
A-l<-^ 

In a: 

it1 ,. i .1.. 
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by our previous estimate. Also ai + p and ci + p are at least a fraction of 
| j?ra| while ai + 0,2 and ci + C2 are at most a multiple. This makes u < Cx 
for some C, or 

In u < In x + In C 

and now if u > e® with Q big we easily get 

In u < 2 In x 

which makes 

and we are done in this case with L > AK. 
The other case is when 

ai + p      ci + p 

which we assume now. From the differential inequalities 

1 Infr + p) > 2a3 + 26! + K - ^ + ^2 - a^a p + 
dt CLi+p ai+p 

Since as is at least a fraction of u and ai+pis at legist a fraction of 2as + 2&i, 
we get 

ln(ai + p) > 2a3 + 2^+6 (——— ) u - Cp 
\ai+p J 

for some constants 0 > 0 and C; and likewise 

^ ln(ci + p) > 2c3 + 26i + 0 f ^—^^ u - Cp. 
dt V ci + p / 

With our previous estimate we get 

— \nu > a3 + c3 + 2bi + 2C(M - 1)** - Cp 
at 

for some C = OS > 0. 
On the boundary of the set we are trying to preserve, the inequality 

defining the set becomes an equality; so on the boundary 

In u      mu 
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and so if we take L or Q large enough 

and this leaves 
2C(M - 1)** - Cp > C(/i - l)u. 

This gives the cleaner result 

— Inu > as + cs + 2bi + C(M - 1)^- 

On the other hand, we have seen 

d     . rtJ 
— to 63 < 03 + 03 + 261. 
at 

To keep the notation like before, let z = 63, and write 

D = as + c3 + 2bi 

Jg? = C(/i-l)ti. 

Then we have /i = ^/TX and 

d d 
— \nu>D + E   and    — ln^<J9 
at dt       ~~ 

on the boundary of the set where 

4+^) u. 

We need to check that this set is preserved by the differential inequalities. 
Thus we need to show that 

dz 
~dt - 

on the set where 

(1   hfl - LePt\ ^   PLePt 

\        Inu      \n2uj dt        Inu 

/       Lept\ 

Solve the latter for 
Leptu 

mu= — 
z — u 
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and substitute above (and throw away the final term PLept/lnu). Then it 
suffices to show (using our bounds on dz/dt and du/dt) that 

Dz < 

which simplifies to 

1 + 
z — u 1 

Lept 

z — u 
u 

(D + E)u 

{n-l)2(D + E)<fiLePtE. 

Since // — 1 < //, it suffices to show 

(ji-l)(D + E)<LeptE. 

Now in a previous bound in Theorem 1.9 we have 

/*: ^- < -Lept 

y/{ai+p){c\ + p)      2 

preserved by the Ricci Flow for any L = 2H and a suitaably large P = 4fip, 
and we take our L and P here at least this large. Then 

{lM-l)E<\LeptE 
tit 

and it suffices to show 
(fi-l)D<LeptE. 

Now we use ePt > 1 and 

D < Cu   and   E = C(^ - l)tA 

and it suffices to have L big, This proves the Theorem. 
Now it is easy to derive the Pinching Theorem 1.1 as a Corollary. We 

have already remarked the minimum of the scalar curvature gives an upper 
bound T on the time the solution exists. Choose p as before, let 

JB = 1.+ 
Le PT 

Q 

and given S > 0, choose the constant K in the Theorem as 

K = BeL°Pt/i. 

If 63 < K we surely have 

&3 < (1 + S)y/(ai + />)(<* + p) + K 
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and we are done. Otherwise we always have 

h < By/fa + pKa+p) 

by the previous estimate using the worst cases where t = T and 

y/(ai+p)(ci + p)<Q. 

The bounds on 63 give 

V(^ + P)(ci+P)>K/B 

and this makes 

63      <!+, ji^<i+* 
V(ai + P)(ci+P) ""       HK/B) 

and we are done. 

2.3, Necklike Curvature Pinching. 

In this part we prove the following alternative: for a solution with pos- 
itive isotropic curvature, either there is some point where the curvature is 
not small compared to the time to blow up and where the curvature tensor 
is nearly that on a cylinder, or else the curvature operator becomes positive 
everywhere. We assume our solution has isotropic eccentricities bounded by 
A and S as before, so that 

(62 + bs)2 < A(ai + 02)(ci + C2) 

and 
7?<S(ai + a2)    and   iJ<S(ci + C2). 

By the argument in [3] we know 

-77(01 + ^2) > o>i + 20,20*3 + 0,2 + 2aia3 + 6? + &! 
at 

-77(Cl + C2) > c\ + 2C2C3 +c\ + 2cicz + b\ + bl 
at 

T;bz < 0363 + 63C3 + 26162 
at 

-77(62 + ^3) < ^262 + 62C2 + 26163 + 0363 + 63C3 + 26162 
at 

and hence by some algebraic manipulation we get the following result. 
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Lemma 3.1.  We have 

— In       ^2 + 2b^2       "     / (ai ~ 6i)2 + (a2 - M2 + 202(62 ~ 6i) 
-{J 

dt     (ai + 02)(ci + C2) i 01 + 02 

(ci - 61)2 + (c2 - 62)
2 + 2C2(62 - h) + 

+ 
C1 + C2 

2[(a3 - 02) + (ca - C2)]b2 + 46i(b3 - 62) 

} 62 + 263 

Lemma 3.2. Tfp = i?/3 and S < 1 and 5 < 1/6S and i/ 

maxflai - p\, (02 - p|, |a3 - p|, |6i - p\, \h - p\, 

\fo - p\, |ci - p\, |C2 - p|, |C3 - p\} > SR 

then 

#ln,    fa + y       >^ 
at     (ai+ a2)(ci+ C2) 

/or some constant c > 0 depending on the initial conditions but independent 
ofS, 

Proof. In the previous Lemma all the terms on the right have the same sign. 
We have a bound R < S(ai + a2), so if |ai - &i| > £R we have 

(°>-*'>'>gB 
ai + a2        S 

and the above holds with c = l/S. Likewise if |a2—hi > SR or |ci—6i| > SR 
or |c2 - 62I > SR. Also if |&2 - &i| > SR then 

202(62 " bl) >SR> S*R 
ai + 0,2 

as long as 5 < 1. If all the above fails, so that 

\ai - bx\ < SR, |a2 - 621 < SR, |&2 - 611 < ^ 

then 

b2>a2-SR> i(ai + 02) - SR > (— - S J R 

and so if S < 1/4E then 62 > ^^ while if 5 < 1/6E 

h>b2-SR>(±;-2s)R>±R. 
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On the other hand 62 + 263 < 2(62 + ^3) and 

(62 + h)2 < A(ai + a2)(ci + ca) < AR2 

so 62 + 63 < Ai? for a constant which is the initial isotropic eccentricity A. 
Thus for S < 1/6A 

<* >i 

62 + 263 ~ 6EA 

and we get that the expression on the right in Lemma 2.1 above is at least 
cS2R as claimed. □ 

Next observe 

» // 
— ln(ai + a2) < CR   and    — ln(ci + C2) < CR. 
at at 

for a constant c depending only on S. 

Theorem 3.3. For every A and £ we can find a constant C and £ > 0 
such that for every 5 > 0 £/iere exists an a > 0 wt/i t/ie property that if 
we have any complete solution on 0 < t < T with bounded curvature and 
eccentricities bounded by A and £, and if it avoids the exceptional set E 
where the curvature is necklike and not too small 

E= lR(T-t) >C    and    max{|ai - p|,...} < 6R\ 

then 
(b2+2btf(T-tr    rfl2aTa 

(al+a2y-«{c1 + c2y-<*- ^ 

where RQ — maximum of R att=^0. 

Proof We have 

dt     (ai + a2)1-a(ci + C2)1-a - \dt     (01 + a2)(c1 + c2) J     T-t 

for some constant C (depending on A and S). Now if R(T *-t) < 1/C = ( 
we are done. Also if max{|ai — p|,...} > (Ji? then the first term on the 
right is < —cS2R and we are done if a < cS2/C. This shows how to pick ( 
depending on A and E only, and a depending on A and E and S. As long 
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as we avoid 25, one Way or the other works. Then we only need bound the 
expression at t = 0, where 

(&2 + 2&3)2 <c 

(ai + a2)(ci + C2) 

and we are done. Observe that ai + a2 and ci + C2 are concave functions of 
the curvature operator M, while 63 and 62 + 63 are convex, and hence so is 
the sum 62 + 263. Thus the set 

(\ — 

is a convex set in M and the function 5^, which satisfies the evolution 

D'[jh)=A(jh) + \T h)- 
so we can apply the theorem to the pair (M, 5^ J as a system. 

If the manifold is compact this completes the proof, using the maxi- 
mum principle for system explained in [3]. If the manifold is complete with 
bounded curvature, we can modify the proof along the lines of W.-X. Shi. 
Since the maximum principle for parabolic equations on complete manifolds 
is now well understood, we omit the details. □ 

Next we study as — ai. We have 

—(03 - ai) < aj + 2aia2 + 63 - aj - 2a2a3 - bj 
at 

so 
d        .      b2

3 - 6?   ■ 
ln(a3 - ai) < a^ + ai - 2a2 + 

dt as — ai 

Now on the set where for some constant C* 

{as - ai)(T - t)a _        frarpa 

we have 

a3 - ai « C7*2t!0 T _ > cC*(T_t}aR0 1 
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and from Theorem 3.3 

bl - b\ < (b2 + 2&3)2 < C(Q1 + Q2t"a(l+C2)1""a^ara 

SO 
n2-2a   ^ 

(T - t)a 

(T-t)c 

This makes 

!1=3.<°R 
^3 *- «1        C, 

where C depends only on initial data. Then since 

rr ln(ai + a2) > 2a3 + ai 
at 

we have 

| In fLZ2i < -03 - 2a2 + ^ < -cR + ~R 
at     ai + a2 O* O* 

and 

5        («i + a2)1-2«    " "^ + Cai? + KR-T=l 
which we can make < 0 by taking a small compared to some c and C* large 
compared to some C and discarding the last term. 

As before the set 

"W as - ai < C(ai + 02) 

is convex and hence preserved by the PDE as long as we avoid E. So we get 
this result. 

Theorem 3.4.   Under the previous hypothesis are also have 

a3-a1<C(a1 + a2)1-2a(~:rYB%xTa 

and 

ca -ci < ccd+C2)1-2" y^y $*»[*, 
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Corollary 3.5. Suppose we have an ancient solution to the Ricci Flow on 
—oo < t < 0 which is complete with bounded curvature and positive isotropic 
curvature. Suppose the solution is Type I, so that R\t\ < Q for some constant 
fi; and the isotropic pinching is uniform, so that 

\Rm\ < r(ai + a2)    and   \Rm\ < r(ci + C2) 

for some constant T everywhere on the manifold. Then either 
(a) the manifold is a compact space form with the shrinking constant 

positive curvature operator solution, or 
(b) there exists a £ > 0 such that for every S > 0 we can find a point P 

and a time t where 

R\t\ > C    and    max{|ai — p|,... } < SR 

(when p = R/3). 

Proof By translating time in Theorems 3.3 and 3.4, from F we can find A 
and E and choose a constant C and £ > 0 such that for every 8 > 0 either 
we find a point P and a time t as in (b), or if we avoid this set then we can 
find a > 0 such that by 3.3 for every time t < 0 and every time 9 < t we 
can estimate the curvature pinching at time t by 

(ai+a2)1-Q;(ci + C2)1-a -       9 '  ' 

where Re is the maximum of R at time 8. Note we translate time so the new 
time 6 translates to Theorem time 0, new time t translates to Theorem time 
£, and new time 0 translates to Theorem time T. Then in the result in the 
Theorem we replace T -1 by -t = |t| and replace T = T- 0 by 0 - 0 = \0\.] 
Likewise by 3.4 we get pinching 

(ai+as)1-2" ""       9 ' , (ci + C2)1~2a ' ' ' 

Now by our Type I hypothesis 

Re" < n/\0\2a 

and since 9 is arbitrarily large, we get 62 + 263 = 0 and #3 — ai = 0 and 
C3 — ci = 0. But this forces the manifold to be locally isometric to 54, and 
hence globally a quotient space form S^/T. This is alternative (a). □ 
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3. The Geometry of Necks. 

3.1. Harmonic Parametrizations by Spheres. 

Suppose we have a Riemannian manifold Mn with metric g, and let Sn 

be the sphere with its standard metric g. A spherical parametrization of 
Mn is a local diffeomorphism 

P : Sn —► Mn 

of the sphere to AT. Let g also denote the pull-back metric of g to Sn by 
P. Let F and F be the connections of g and g, with covariant derivatives D 
and D. We say the spherical parametrization P is harmonic if its Laplacian 
is zero; 

tdxi       ij dxk       ^ dxi dxi j 

or equivalently on 5n if 

^{it--4} = o. 
We say the parametrization is geometrically (e, fc) spherical if g is e-close to 
g on Sn in the metric g 

\9-9\g<£ 

and the jth covariant derivatives D3 of g are e-close to zero in the metric g 

\DJg\g<e 

fOTl<j<k. 

Theorem 1.1, If there exists a geometrically (e,fc) spherical parametriza- 
tion of Mnj then there also exists a harmonic spherical parametrization. If 
n > 3 it is unique up to a rotation; while for n = 2 it is unique up to a con- 
formal transformation, and hence unique up to a rotation if we also require 
that the center of mass of the pull-back metric g on Sn C Rn+1 lies at the 
origin 0. 

Proof. We look for a harmonic parametrization P* = PF where we want 

F:{Sn,9)—>(S»,0) 
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to be harmonic from the standard metric g to the pull-back metric g. Let 
X(F) be the vector field on (Sn,g) 

dF? 

so that for all vector fields W on (Sn,g) 

(X,W)v={AF,DF(W))g. 

Lemma 1.2, If V is a Killing vector field on (5n,^); i.e. an infinitesimal 
rotation, then 

Js* 
so X = X(F) is perpendicular to the infinitesimal rotations. 

Proof. If V is a Killing vector field 

The derivative x 

is a section of the bundle of linear maps L(TSn
)F*TSn) of the tangent 

bundle to the pull-back of the tangent bundle. Let Vi denote the covariant 
derivative on this bundle in the induced connection. Then 

dFa _      dFa 

gives a symmetric second derivative, and 
dFa 

The divergence theorem gives 

/a{«J,'£gv}*<»-o. 
which makes 

(3.1) 
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If V is Killing then TpWiV* is anti-symmetric in j and fc, so the third term 
vanishes. But the divergence theorem also gives 

/^{wJ«^^V*}*ffi)-0 

which makes 

and DkVk = 0 if V is Killing, Thus the second term in the first expansion 
is zero; and the first term must then be zero also. This proves the Lemma. 
D 

Now we return to the proof of the Theorem. Let M2"fQ!(5n, Sn) denote 
the manifold of C2*" smooth maps of Sn to 5n, let Va(Sn) denote the space 
of Ca vector fields on Sn, and let Va(Sn)'L denote the subspace orthogonal 
to the infinitesimal rotations. Then X = X(F) defines a map 

X: M2+a(Sn, Sn) —* Va{Sn)x 

depending on the metric g as a control parameter. When g = g and F = I 
is the identity, the linearization of X is the linear operator 

DX : V2+a(Sn) —> Va(Sn) 

where 
DX(V) = AV + (n-l)V. 

This clearly has the infinitesimal rotations in its kernel. When n > 3 the 
kernel is no larger as can be seen from representation theory, and the image 
is everything orthogonal to the infinitesimal rotations. Then the inverse 
function theorem allows us to find a harmonic F near the identity when g 
is close enough to 7?, and F is unique up to a rotation. When n = 2 the 
same argument works using infinitesimal conformal transformations. In fact 
harmonic maps close to the identity are holomorphic, and the result follows 
from the uniformization theorem. 

Corollary 1.3. For every (e, k) we can choose (e, k) above so that if the 
original parametrization is geometrically (e, k) spherical then the harmonic 
parametrization is geometrically (e, k) spherical 
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3.2. Geometric Necks. 

We now give precise definitions for several notions of a neck. A topolog- 
ical neck N in a manifold Mn is a local diffeomorphism of a cylinder into 

NiS71'1 x [a, 6]—►M71. 

Note N need not be globally a diffeomorphism. It will be useful to impose 
enough conditions on the map iV so that it is unique up to an isometry. Let 
g denote the metric on Mn, and also its pull-back to the cylinder by TV; 
while g denotes the standard product metric on the cylinder. We can define 
the mean radius r(z) of the horizontal sphere S'ri_1 x {z} in the pull-back 
metric g (restricted to the sphere) so that its area with respect to g is 

A(Sn-1x{z},g)=an-1r(z)n-1 

where crn_i is the area of the unit sphere in the standard metric. We say 
the topological neck N is normal if it satisfies the following conditions: 

• (a) each horizontal sphere S71"1 x {z} for z G [a, b] has constant mean 
curvature in the pull-back metric g; 

• (b) the identity map from each horizontal sphere, in the standard metric 
g (restricted to the sphere) to the horizontal sphere in the pull-back 
metric g (restricted to the sphere) is harmonic; and 

• (b7) in the case n = 3 only, we also require that the center of mass 
on each S2 x {z} in the Euclidean structure on Rn x {z} of the mass 
distribution da of the pull-back metric g (restricted to the sphere) lies 
at the origin {0} x {z}; 

• (c) the volume of any subcylinder in the pull-back metric g is given by 

ViS71-1 x [z,wU) = o-n-i /    r(z)ndz; 
Jz 

• (d) if V is an infinitesimal rotation on S71'1 x {z} (i.e., a Killing vector 
field in the metric g restricted to the sphere) then the g average of the g 
inner product of V with the unit vector field W which is g orthonormal 
to the sphere is zero: 

/, 
g(V, W)da = 0. 
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Now we want to make our necks close to a cylinder geometrically. Given 
e > 0 and an integer fc, we say that a neck is geometrically (e, k) cylindrical 
if it satisfies the following conditions: 

• (A) if g = g/r2 is the metric on the cylinder conformal to the pull-back 
metric g modified by the factor r2 on each horizontal sphere to have 
the area of each sphere the same as the unit sphere, then g is within 
e of the standard metric g: 

\g-9\9<e; 

• (B) the covariant derivatives Doig with respect to the standard metric 
g have size at most e 

~n      <e DJ9 

for 1 < j < k\ 

• (C) the logarithm of the mean radius function r has 

(£)JlogrW <e 

for 1 < j < k. 

The set of metrics g on the cylinder that satisfy these conditions form a 
closed neighborhood of g, and the collection of all these neighborhoods for 
all s and k defines a basis of the neighborhoods of g in the C00 topology. □ 

Of course to check that we have an (e, k) neck it suffices to find a single 
constant f so that if g — g/r2 then 

\9-9\9<J 

and 

D39 <e' 

for 1 < j < k' with suitable ef and k!. This definition would appear easier; 
but it does not work when we wish to combine two overlapping necks into 
one long one, since we may need a different scaling constant f on each neck. 
This is why we let r be a function of z. 

We have the following uniqueness result. 



32 Richard Hamilton 

Lemma 2,1. There exists (e, k) so that if Ni and N2 are necks in the same 
manifold Mn and both are normal and geometrically (e, k) cylindrical, and 
if there exists a diffeomorphism F of the cylinders such that N2 = FNi, 
then F is an isometry in the standard metrics on the cylinders. 

Proof For any smooth constant mean curvature hypersurface, there exists 
a unique one-parameter family of nearby constant mean curvature hyper- 
surfaces by the universe function theorem. The map F takes an end of one 
cylinder to an end of the other. Since these constant mean curvature hyper- 
surfaces agree under F, so do all the nearly ones; and we can pursue this all 
the way from one end to the other. Thus condition (a) guarantees that F 
preserves the foliation by horizontal spheres. Given the foliation, condition 
(b) together with the geometric closeness to the standard metric makes F 
act by isometry on each horizontal sphere 5n~1 x {z}. Condition (c) forces 
the vertical height functions z to differ by an isometry of R1. Then condition 
(d) forces the isometries of the spheres to align themselves as an isometry 
of the cylinders; because by (a), (b) and (c) we are dealing with a map of 
the cylinder to itself which preserves the height and acts on each horizontal 
sphere by rotation, and if it is perpendicular to the rotations it must be 
constant. □ 

Now we prove an existence result for normal forms. 

Theorem 2.2. For any S > 0 we can find e > 0 and k such that if N is 
a neck which is geometrically (e, k) cylindrical and defined on a cylinder of 
length at least 35 in the standard metric then we can find a normal neck N* 
and a diffeomorphism F of the domain cylinder of N* onto a region in the 
domain cylinder of N containing all the points at standard distance at least 
6 from the ends, so that N* = NF. 

Proof The inverse function theorem guarantees that for any g in a small 
enough neighborhood of g every point at distance at least S from the ends 
lies on a unique constant mean curvature hypersurface which is close to 
horizontal. Once we have this suitable foliation of a region inside the domain 
cylinder of JV, we can choose harmonic parametrizations of the spheres to 
satisfy '(b), choose the height function to satisfy (c), and straighten out the 
parametrization by rotations of the horizontal spheres to satisfy (d).        □ 
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Corollary 2.3, For any 5 > 0 and any (£, k) we can choose (e, k) so that 

the above holds, and the normal neck N* is (£, k) cylindrical. 

Proof. In the construction above F will be close to the identity by the inverse 
function theorem, □ 

The next result says that normal necks which are cylindrical enough and 
overlap more than a little bit near the ends can be combined to form a single 
long normal neck. 

Theorem 2.4. For any 5 > 0 we can choose e > 0 and k with the following 
property. If Ni and N2 are two normal necks in the same manifold M which 
are both geometrically (e, k) cylindrical, and if there is any point Pi in the 
domain cylinder of Ni at standard distance at least S from the ends whose 
image in M is also in the image of N2, then there exists a normal neck N 
which is also geometrically (e, k) cylindrical, and there exist diffeomorphisms 
Fx and F2 such that Ni = NFi and N2 = NF2, provided n > 3. 

Proof. For n > 3 the sphere 5n~1 is simply connected, and hence so is the 
cylinder S71"1 x [a, b]. Let P2 be a point on the cylinder iV2 whose image 
P = N2P2 in M is the same as the image P = iViPi of the given Pi. Suppose 
Pi lies on the sphere 5n""1 x {zi} and P2 lies on the sphere S72"1 x {22}- □ 

First we claim we can find a map 

G : S71"1 x {Z2}—> S71-1 x {zi} 

so that NiG = N2 and GP2 = Pi. To see this, take any path 72 from P2 
to any point Q2 in S71"1 x {^2}- Let 7 = A^272 be its projection in M, and 
lift 7 to a path 71 in the first cylinder with 7 = Niji. The point Pi is 
well in the interior, so we can lift the path until we reach a point Qi with 
JV1Q1 = Q = N2Q2'i unless 71 runs into the boundary of the first cylinder. 
But we claim this won't happen because 71 is nearly horizontal. The metric 
g on M pulls back to metrics gi on the domain of Ni and 52 on the domain 
of N2, each of which are close to the standard metrics gi and 52 on the 
two cylinders. The horizontal spheres on the cylinders are where the Ricci 
curvatures of the product metric are all n — 1, while the vertical direction 
is where they are 0. For k > 2 the curvatures of gi are close to those of 51, 
and the curvatures of 52 are close to those of 52 • The Ricci curvature of 52 
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in the direction of 72 is close to (n — 1), and the Ricci curvature of gi in 
the direction of 71 is equal to that of 52 in the direction of 72. Hence 71 
is close to horizontal. If the path 72 is not too long and (s, k) are chosen 
well enough, the path 71 cannot exit the cylinder since its length is about 
the same. Since S71"1 is simply connected, the map G taking Q2 to Qi is 
uniquely defined by this process and the choice of Pi and P2. 

Now we claim that the image of 5n_1 x {Z2} under G is exactly the sphere 
gn-i x ^i}, so that 71 stayed exactly horizontal. The reason is that the 
image of S'71-1 x {^2} under G will be another constant mean curvature 
sphere, since locally G extends to an isometry from 52 to 51, and this new 
constant mean curvature sphere is nearly horizontal and passes through Pi. 
But the inverse function theorem says that such spheres are unique. 

The only remaining question is whether the orientations of the normal 
bundles in the cylinders to the two spheres agree in their images in M. If 
they don't, we can flip one of the cylinders and continue the argument. Then 
the spheres iS71-1 x {z2 + /i} will map to the spheres S71'1 x {zi + //} under 
the obvious extension of G by similar lifts, for // near 0, and hence for fi 
in some interval. This lets us patch the cylinders together using G, which 
must be an isometry from 52 to gi by the previous Lemma. 

We say a cylinder iV is a maximal normal (e, k) neck if N is a normal 
neck which is geometrically (e, k) cylindrical, and if whenever iV* is another 
such neck with N = N*F for some F then the map F is onto. 

Theorem 2.5. For any 6 > 0 we can choose e > 0 and k so that any 
normal neck defined on a cylinder of length at least 36 which is geometrically 
(e, k) cylindrical is contained in a maximal normal (e, k) neck; or else the 
target manifold M is diffeomorphic to a quotient of Sn~~1 x R1 by a group 
of isometrics in the standard metric. 

Proof. Since the neck N has a domain cylinder of standard length at least 
35, a point P in the middle has standard distance at least S from either end. 
If there is any other normal neck N* which is geometrically (er, k) cylindrical 
with N = N*F for some F, then the previous theorem allows us to extend 
the definition of N to a longer cylinder, and this extension iV is unique, and 
now iV* = iV F for a map F. Take the largest extension N of N. It will 
be defined on 5n~1 x Bl for some interval B1 C Rl. If B1 is of the form 
[a, b] with —00 < a < b < 00 we have a maximal normal (e, k) neck. If we 
have an interval (a, 6] or [a, 6) or (a, 6) with —00 < a < b < 00, we have 
enough bounds to extend the neck to the endpoints, so the original was not 
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the largest. If a = oo but b < oo or b = oo but a < oo, then there must be 
two points Pi and P2 in the domain cylinder at different heights zi and Z2 
with the same image in M, because M has finite volume and N is nearly a 
local isometry so there must be considerable overlap. In fact we can make 
Pi and P2 at least 5 from the finite end. Then the previous theorem shows 
that the neck N must repeat itself, so both a = 00 and b = 00. □ 

Now if iV : S'71-1 x (—00,00) —► M is a local diffeomorphism which is 
geometrically (e, k) cylindrical and periodic, its image is open, closed, and 
connected, and hence all of M. Moreover N lifts to the universal cover M 
oiM _ 

NiS71'1 x (-00,00) —>M 

for n > 3. Any deck transformation 7 : M —► M induces a transformation 
F on Sn~l x (—00,00) with NT = jN. Arguing as before, we see that T 
acts by isometries in the standard metric, since N = NT. This proves the 
Theorem. 

Corollary 2.6. For any 6 > 0 we can find s > 0 and k so that any two 
maximal normal (e, k) necks with lengths at least 35 in the standard metrics 
cannot overlap except within standard distance 5 of their ends. 

Proof. Otherwise we could combine them to make a longer neck. □ 

When we perform surgery, we shall do it on maximal (e, k) necks of 
standard lengths at least 35, and we shall leave the manifold unchanged in 
the 5-collars around their ends. This Corollary shows that such surgeries 
will not interfere with each other. 

3.3. Curvature Necks. 

It is going to be important to detect spheres and necks from their curva- 
ture alone. We say the curvature is er-spherical at P if the curvature operator 
Rmp at P satisfies 

\Rmp — Rm\ < e 

where Rm is the identity curvature operator on the standard round sphere 
5n; if this is true in one orthonormal frame, it is true in every one. We say 
the curvature is s-cylindrical at P if there exists an orthonormal frame at 
P such that 

\Rmp — Rm\ < e 
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where Rm is the curvature operator on 5ri~1 x R1 in a standard frame. We 
say the curvature is (e, k) parallel at P if 

\DeRmp\ <e   for    1 < k < t 

We say the curvature is (e, fc) spherical if it is e-round and (e, A:) parallel 
at every point. We say the curvature is (e, k,L) cylindrical around P if 
it is ^-cylindrical and (e, A;) parallel at every point in the ball of radius L 
around P. We say the curvature is (e, k) homothetically spherical or (e, fc, L) 
homothetically cylindrical around P if there exists a scaling constant a such 
that it is true for the scaled metric ag. For simplicity, if the curvature is 
(e, fc, L) homothetically cylindrical around P we say P lies at the center of 
an (e, fc, L) curvature neck. 

Theorem 3.1. For every (e, fc) £/iere ea;25i5 (ef,kf) such that if the curva- 
ture of a metric is (s', fc7) spherical then the manifold has a geometrically 
(e, fc) spherical parametrization. 

Proof. Since the curvature is very pinched near the identity, the Ricci flow 
will converge by [11]. The convergence is quite rapid, so the limit metric is 
close to the original one. The limit is a sphere or space form with a round 
metric of radius almost one. This proves the Theorem. □ 

Theorem 3.2. For every (e, fc, L) there exists (e7, fc7, Z/) such that if the 
curvature is (ef, fc7, L7) cylindrical around P then P lies on the center of a 
geometrically (e, fc) cylindrical neck N on Sn~l x [—L, L]. 

Before we prove this Theorem we need a few Lemmas. The strategy is to 
start by constructing a function which is like the length down the cylinder. 
Since the curvature at each point in the ball Bv (P) of radius L7 around P 
is nearly like that on a cylinder, there will be a unique direction, which we 
call horizontal and write as ±H where if is a unit tangent vector, where 
the Ricci curvature Rc(H, H) is least. Since the curvature tensor is within e 
of being parallel, the direction ±H will be a smooth subbundle. Note that 
it may not be possible to choose an orientation on this bundle in the whole 
ball, for example if we have a quotient of Sn~l x [—L, L] by a map which 
acts antipodally on the sphere and flips the interval. 

Lemma 3.3. For every S there exists a A and an (e\ fc7) such that if we 
have any minimal geodesic contained in the ball B^f (P) of length at least A 
then the angle it makes at each point with the horizontal is at most S. 
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Proof. For any 5 we can find e' and 77 > 0 such that if the curvature operator 
is within e' of being cylindrical and if a vector T makes an angle at least 
5/2 with the horizontal ±H then the Ricci curvature Rc(T,T) > 77 > 0. 
Choose A long enough so that Myer's theorem contradicts Rc(T, T) > rj > 0 
for the unit tangent T to a geodesic of length A. If e' is small enough and 
kf large enough compared to A , then if the angle of the geodesic with the 
horizontal is at least S at any point it will stay at least 5/2 at every point 
within distance A. This proves the Lemma. □ 

Lemma 3.4. There exists a AQ and an (e', k') such that if A > AQ and we 
have any minimal geodesic contained in the ball By^^P) from M to N of 
length at least 6 A with midpoint O, and if X is any point whose distance from 
O is at most \, then there exists a point Y on the geodesic whose distance 
from X is at most 4- 

Proof We can replace 4 by any number greater than TT, the diameter of 
the sphere. Since d(0,M) = <i(0,iV) = 3A and d(0,X) < A, we have 
d(X, M) > 2A and d(X) N) > 2A. Thus the point Y on the geodesic which 
is closest to X is not an endpoint. A minimal geodesic from X to Y will be 
perpendicular at Y to the geodesic MN. If A is big and (e', kf) good the angle 
between the geodesic MiV and ±H can be made at most 5 for any 5 > 0 
by the previous Lemma. Then the angle between the geodesic XY and the 
horizontal ±H is at least 7r/2 - 5 at Y". Since 6A < Z/, L'/2 + A < L' and X 
is in the ball Bift(P) also. If (e7, A/) are good, the angle with the horizontal 
will stay at least 7r/2 — 25 on all of the geodesic XY. If e' is small, the 
Ricci curvature jRc(V, V) in the direction of the unit tangent vector V to 
the geodesic XY can be kept at least (1 - 6)(n - 1) for any 6 > 0 we like. 
Then again Myer's theorem gives a contradiction on any length greater than 
TT for an appropriate 6. This proves the Lemma. □ 

Lemma 3.5. There exists a AQ and an (ef,kf) such that if A > AQ and a 
minimal geodesic from M to N of length at least 6A is contained in the ball 
BL'/2{P) 

and if O is its midpoint, and if X is any point at distance at most 
A from O, then a minimal geodesic from M to X and one from N to X 
arrive at X from opposite sides, one near H and one near —H. 

Proof. For any 5 > 0 we can make each minimal geodesic from M or N to X 
arrive at X at angle within 5 of ±ff. Suppose one from M and one from N 
both arrive close to +H (or both close to — H). Let Z and W be the points 
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on the geodesies MX and NX at distance 5 from X. This is possible since 
rf(M, X) > 2A and d(JV, X) > 2A and A is big. Since the angle between the 
geodesies MX and NX at X is at most 26 and we can make 5 as small as 
we like, if we choose (e\ k') good enough then we can make d(Z, W) < 1. □ 

By the triangle inequality 

d(M, N) < d(M, Z) + d(Z, W) + d(W, N) 

and we also have 

d(M, Z) = d(Af, X) - 5    and   d(iV, W) = d(iV, X) - 5 

so 
d(M, AT) < d(M, X) + d(JV, X) - 9. 

Now let Y be the point on the geodesic LN closest to X. By the previous 
Lemma cf(X, Y) < 4. The triangle inequality gives 

d(M9 X) < d(M, Y) + d(y, X) 

d(j\r, x) < d(iv, y) + d(y, x) 

and since Y is on a minimal geodesic 

d(M, AT) = d(M, y) + d(y, AT). 

This makes 
<*(Af, iV) > rf(M, X) + d(iV, X) - 8 

and we get a contradiction. 

Corollary 3.6. In the ball of radius A around O we can choose an ori- 
entation for the horizontal bundle so that at any point X in this ball every 
minimal geodesic from M to X arrives close to —H and every minimal 
geodesic from N to X arrives close to +H. 

Proof Pick a point X . Define the orientation in a small neighborhood of 
X so that the criterion is satisfied at X. Then I claim it also holds at all 
X in a neighborhood of X. If not, we can find a sequence of points Xj 
converging to X and a sequence of geodesies from L to Xj and from JV to 
Xj arriving the wrong way around. Since the end points converge, we can 
find subsequences so that these geodesies converge to a pair of geodesies 
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from L to X and from N to X arriving there the wrong way around. This 
is a contradiction. Hence the orientation determined by the geodesies from 
L and N varies continuously. This proves the Corollary. □ 

Now we define a function / in the ball B\(0) which will be approxi- 
mately the length down the cylinder. We mimic the construction of Jost 
and Karcher [12]. Let 

d(M,X)2-d(N,X)2 

/(*) = 2d{M,N) 

Lemma 3,7. The function f{x) is Lipschitz continuous, and smooth al- 
most everywhere. Moreover for any 7 > 0 we can choose AQ and (ef, k') so 
that if X > AQ then in B\(0) 

|£>/-tf|<7 

almost everywhere. 

Proof The distance function is Lipschitz continuous, and smooth almost ev- 
erywhere, since the set of points on the cut locus has zero measure. Suppose 
X is not on the cut locus of M or JV. Then the derivative of the distance 
function d(M, X) from M to X with respect to the variable X is given by 
the unit tangent vector TM at X of the unique minimal geodesic from M to 
X. For any S > 0, by choosing A and {e1 ;k') we can make 

\TM-H\<8. 

Likewise if T/v is the unit tangent vector at X of the unique minimal geodesic 
from N to X then the derivative of the distance function d{N, X) from N 
to X with respect to the variable X is given by TJV, and we can make 

\TN + H\<5. 

Now by the chain rule, for any vector V 

1 ' 2d(M, N) 

Therefore 

d(M, X)(TM -H)-V- d(N, X)(TN + H)-V 
(Df-H)-V = 

+ 
d{M, N) 

d{M,X) + d(N,X) 
d(M,N) 

H-V. 
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Now we have seen that the closest point Y to X on the geodesic from M to 
JV is at distance d(X, Y) < 4. Hence since d{M) N) > 6A we can make 

d(M,X) + d(N,X) „6A + 8 
1- d(M^) -"eA--^^ 

for any -0 > 0 by choosing A large compared to I/J. Then 

\(Df-H)-V\<[(l + rl>)S + tl>]\V\ 

for all V, so 
|I>/-Jff|<(l + ^)(5 + ^<7 

if we make ip and 6 small compared to 7. This proves the Lemma, □ 

Corollary 3.8.  Under the same assumptions 

\f(x)-f(y)\<(l + 1)d(X,Y) 

Proof, We have \Df\ < 1 + 7 almost everywhere. □ 

Proof, jProof of Theorem 3.2.,/, Take a geodesic from P to any point Q at 
distance I/. (We can do this unless the manifold is contained in the ball 
of radius 1/ around P, in which case the curvature is (e7, fc') cylindrical 
everywhere. We deal with this case elsewhere.) Then in a large ball around 
its midpoint we get a function / and a one-form H such that 

Df » H   and   DH w 0 

by the previous construction. By the Smoothing Theorem in appendix F we 
can find a function / in a slightly smaller ball so that / « / and Df « if 
and D2fttQ. The level sets of / in a slightly smaller ball will be compact 
(since / is close to / and / has this property) and they will be almost totally 
geodesic. Hence they have metrics of almost constant curvature. It follows 
from the sphere-pinching theorem of Huisken [11] that each level set of / 
is topologically a sphere S71"1 or a space form 5n"1/r. Moreover we can 
parametrize one level set by a map of the space form which is nearly an 
isometry, and extend it to a map of the cylinder S'n~1/r x [—L, L] into the 
manifold using the horizontal curves of unit speed along Jff, and this will be 
nearly local isometry. □ 
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We would like to see that this map is injective. To see this, note that 
since Df « i?, the rate of change of / along each horizontal curve is nearly 1. 
This prevents overlap, since different spheres correspond to different values 
of /. 

Now because we have such good bounds on the curvature and its deriva- 
tives, we can extend our parametrization to a larger quotient cylinder by 
again starting at one leaf Sn~~l/T where / is constant as before and following 
out along the direction H with unit speed. The resulting map will be as 
close as we wish to an isometry, but it may no longer be injective. Never- 
theless we can pull the metric on the manifold back to the quotient cylinder 
using this map, and lift to the cover by F to get a metric as close as we like 
to the standard metric on a standard cylinder. Then on a slightly smaller 
cylinder we can choose a standard parametrization as before with constant 
mean curvature leaves. This parametrization is unique up to translation 
and rotation and reflection, and it is invariant under the cover group F, so F 
acts by rotations. As a result the induced foliation descends to the quotient 
cylinder by F. Each quotient sphere Sn~l/T has as its image a constant 
mean curvature surface which is nearly perpendicular to the vector field H. 
As we take the extension described in the direction back toward our original 
point P, we will stay close to the geodesic from P to Q, and hence we will 
not leave the ball of radius 1/ where we control the curvature until we have 
gone nearly a distance L' back past P in the other direction. In this way 
we produce a map of the cylinder S'n~1 x [—L, L] onto a neighborhood of P 
which is geometrically (e, k) cylindrical. This proves Theorem 3.2. 

3.4. The Fundamental Group. 

Consider a maximal normal geometrically (e, k) cylindrical neck 

N -.S71-1 x [a,b)~>Mn. 

The map N may not be one-to-one. This can happen in two distinct ways. 
First there may be some overlap near the ends 

S71'1 x [a, a + 6]    and    S71'1 x [b - 8, b] 

for the S > 0 in Theorem 2.4. This will not concern us, as we have remarked 
we will not do surgery here. Second, there may be overlap in the middle. But 
Theorem 2.4 applied to a maximal neck guarantees there is a diffeomorphism 

F-.S71'1 x [a,b}^Sn-1 x [a,b] 
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of the cylinder which induces the overlap, so that N = N o F. Moreover 
F must be an isometry in the standard product metric (as well as the pull- 
back metric). The collection of all such diffeomorphisms F form a group F 
of isometries of the cylinder in the standard product metric, and the map 
iV descends to a quotient map 

N/T-.S71-1 x [a,6]/r^Mn. 

We call N/T a geometrically (e, k) cylindrical quotient neck. 
We can use the hypothesis of positive isotropic curvature to detect necks 

which are quotients by looking at the fundamental group of the ambient 
manifold. 

Theorem 3.1. There exists (e, fc,L) such that if a compact manifold M4 

has a metric of positive isotropic curvature with a geometrically (e,k) cylin- 
drical quotient neck 

53x [-L,L]/r—>M4 

then 
7ri(S3x{0}/r)^7ri(M4) 

injects. 

First we simplify the problem by considering the question of orientation. 
Suppose the group F acts on the cylinder S*3 x [—L, L], and the quotient 
embeds in a manifold M4: 

S3 x [-L,L]/r—►M4. 

Since F fixes S3 x {0} and acts without fixed points, F preserves the orien- 
tation of S3 x {0}. Let r+ be the subgroup which preserves the orientation 
of the cylinder. If F"1" ^ F, we have a diagram of a short exact sequences 

0- 

>0 

and any kernel of F —> 7ri(M) survives in the kernel of F4" —> 7ri(M)+. We 
can lift to the orientation-preserving cover M+ which has a neck Sn~l x 
[—L, LJ/F"1" and show TTI injects there. 

Since the curvature operator of the cylinder is in the interior of the region 
of positive isotropic curvatures, for (e, A;, L) good enough we can deform the 

r+  — 
1 

r   —►   Z2 

i             1 
7r1(M)+ - -> TTj (M)  ► Z2 
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metric in the neck so it is the standard metrics (up to a constant factor) in 
a smaller neck but still has positive isotropic curvature everywhere. This 
can be close by choosing a bump function </? and forming the new metric g 
from the old metric g and the standard metric tp using 

g = (pg+(l-<p)g. 

Then _ _ 
Rm = ipRm + (1 — (p)Rm + ... 

where the dots are terms involving derivatives of Rm or i?m, which are 
arbitrarily small. 

Lemma 3.2. Ifn^S3 x {0}/r) does not inject in 7ri(M4)? then there is a 
curve 7 in Ss x {0}/r which does not bound a disk in S3 x {0}/r but does 
bound a disk in the manifold M4 which meets S3 x {0}/r only at j, where 
it is transversal 

Proof. We can find a curve 7 which does not bound a disc in S3 x {Oj/F 
but does bound a disc D2 in M4. Choose this disc in general position, so 
it meets S3 x {0}/r in a collection of curves 7^ one of which is 7, with the 
disc D2 transversal to S3 x {Oj/F along each 7^, and with D2 crossing itself 
transversally at isolated points away from the 7*. The curves 7* pull back 
to smooth disjoint curves 7; on the disc D2, and the curve 7 pulls back to 
the boundary of the disc 7. 

Among all such discs, choose one where the number of curves 7* is mini- 
mal. One of the curves 7* must bound a disc D2 in D2. So 7* bounds a disc 
in M4. If 7* also bounds a disc in S'3 X {Oj/F, we could use this to modify 
the disc D2 to eliminate the intersection curve 7* by pulling 7* a little off 
53 x {0}/r to a neighboring space form S3 x {z}/r and bounding it there. 
Hence 7* does not bound a disc in S3 x {Oj/F, proving the Lemma. 

Now construct a new manifold M4 in the following way. Cut M4 open 
along 
53 x {0}/r to get a manifold with two boundary components 53 x {Oj/F, 
and double across the boundary to get M4. Clearly M4 also has a met- 
ric of positive isotropic curvature, since the boundary is flat extrinsically 
and we can double the metric. We can take our disk D2 bounding the 
curve 7* and make D* perpendicular to the boundary in a neighborhood 
of the boundary, and then double it across one boundary component to 
get a sphere S2 which is Z2 invariant and intersects the boundary com- 
ponent transversally in 7*.   The homotopy class [7*] is nontrivial in the 
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fixed point set component Ss/r. Among all spheres which are Z2 invari- 
ant and intersect the 53/r in the homotopy class [7*] ^ 0 there will be 
one of least area. This sphere must even have least area among all nearby- 
spheres. For if a nearby sphere of less area divides in two parts bound- 
ing [7*] in S3/r^ one side or the other has less than half the area of the 
original sphere. We could then double this half to get a sphere of less 
area which is Z2 invariant, contradicting the assumption that ours was of 
least area among this class. But the hypothesis of positive isotropic cur- 
vature implies there are no stable minimal two-spheres as was shown in 
[13]. Hence we get a contradiction unless 7ri(S3 x {0}/r) injects in 7ri(M4). 

3.5. Finding Necks. 

Our previous curvature pinching estimates imply a derivative bound, 
which we now prove. We obtain it by a compactness argument. There 
should be a more constructive proof, as in the three-dimensional case with 
Ricci pinching. 

Theorem 5.1. For every (s, fc, L), every 9 and ft and every 77 we can find 
H and 5 and a with the following property. For every p and K there exists 
an M# so that if M > M* and we have a complete solution to the Ricci 
Flow with bounded curvature on an interval 0 < t < T for T > 6/M with 
curvature bounded \Rm\ < M in the ball of radius a/y/M around some point 
P on the time interval and the solution satisfies the estimates 

ai + p > 0    and   ci + p > 0 

maxjas, 63, C3} < J7(ai + p)    and    maxfas, 63, C3} < ft(ci + p) 

and 

b3<(l + 5W(a1+p)(c1+p) + K 

and if P is a point where 

\Rm(P,T)\>r)M 

and the smallest eigenvalue Ai(P, T) of the curvature operator Rm(P,T) 
satisfies 

\i(P,t)<nM 

then P lies at the center of an (e:, A;, L) curvature neck. 
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Proof. If no such estimate exists, we shall get a contradiction by taking a 
limit and seeing the limit is cylindrical. Suppose that the estimate fails. 
Then there exists e,k,L and there exists 9 and Q and there exists rj with 
the following property. For a sequence /JLJ —> 0 and Sj —> 0 there exists pj 
and Kj so that for any sequence M- we can find a sequence Mj > M• and 
a sequence of complete solutions to the Ricci flow on intervals 0 < t < Tj 
with Tj > 9/Mj and with curvature bounded |jRmj| < Mj in the balls of 
radius a/\fMj around some points Pj satisfying 

ai,i + Pj > 0   and   cij + pj > 0 

max{a3j, 63^, csj} < ^(aij + p)    and    max{a3J-, 63^, csj} < f2(cij + p) 

and 

bzj < (1 + Sj)y/(a1j + p){c1j + p) + Kj 

and we can find points Pj where 

RrrijiPj^^vMj 

and 
XijiPjiTj) < nM 

and such that Pj is not the center of an (e,k,L) curvature neck in the 
metric of the jth solution at time Tj. This means we can find points Qj at 
distance Sj < L/\Rm{Pj1Tj)\ where the curvature matrix at time Tj scaled 
by i?ra(Pj, Tj) fails to be within e of what it is on the cylinder in any frame 
or else some covariant derivative of the curvature scaled by Rm(Pj,Tj) fails 
to be within £ of 0 at time Tj, for some j < k. Choose a minimal geodesic 
7j from Pj to Qj and choose a frame Fj at Pj whose first vector Fij starts 
in the direction jj. (If Pj = Qj any frame will do.) 

First we get to choose the sequence Mj   to depend on pj and Kj, so we 
make 

Pj/Mf-*0   and   Kj/Mf-+0. 

Then since Mj > M*, we know 

Pj/Mj -> 0   and    Kj/Mj -> 0. 

Next we dilate the solutions so that Mj dilates to Mj = 1. Then the dilations 
Pj of pj have pj —> 0, and the dilations Kj of Kj have Kj —> 0. The times Tj 
dilate to Tj > 9, and by translating in time and neglecting the early part we 



46 Richard Hamilton 

can take the dilations to all be defined on 0 < t < 0. They are still complete 
with dilated curvatures Rrrtj bounded by \Rmj\ < 1. We also have 

1^(^,0)1 > r, 

and 

We can now take a limit of these solutions. Since we lack both global 
curvature bounds and an injectivity radius estimate at Pj we may not get 
a global limit, but we can at least take a local limit of a subsequence in the 
geodesic tubes out of the Pj in the directions Fij of lengths ZL/rj in the 
dilated metrics if a is large compared to L/r]. We choose this since Qj is out 
along the tube at distance Sj < L/rj. By choosing another subsequence we 
can arrange for the Qj to converge to a point Q at distance 5 < L/rj down 
the tube. 

The limit metric has 

ai > 0    and   ci > 0 

since it is not flat, and the limit has 

max{a3,63, C3} < Qai    and    max{a3,63, C3} < Qci 

and the limit also has 

since Sj —» 0 and pj —» 0 and Kj —> 0. Moreover we know that in the limit 
at the point P — lim Pj 

Ai(P,0) = O 

since Hj —> 0. Therefore our limit metric has a null eigenvalue for the 
curvature operator, while the whole operator is non-negative. It follows 
from [3] that the Lie algebra of the holonomy group is restricted to a proper 
subalgebra if A2. (Note the strong maximum principle works locally, so 
we do not need to have a complete solution, one just on the ball will do.) 
There are not too many possibilities now. Since the limit metric is not flat, 
holonomy {1} is ruled out. Since the limit metric will still have positive 
isotropic curvature, as in did the pinching 63 < 01C1 holds, we rule out the 
Kahler examples of U{2) or So{2) x So{2) or So{2) x {1} as on CP2 or 
S2 x S2 or S2 x R2. The only remaining possibility for the Lie algebra of 
the holonomy is 50(3). 



Four-Manifolds with Positive Isotropic Curvature 47 

Now the only way we get holonomy So(3) is when in some basis we have 
A = B = C in the curvature operator matrix, so that 

M=\A   A 

which corresponds to the fact that the metric is locally a product of a three- 
dimensional piece with curvature operator A and a one-dimensional piece 
(which is of course flat). But this makes ai = bi = ci and 0,2 = &2 = C2 
and as = 63 = cs, so the inequality 63 < aici now tells us that 03 < ai. 
Hence A is a multiple of the identity. Moreover this is true at every point. 
Now in dimension > 2, when the curvature is the same in every direction at 
each point, it must be constant (by the contracted second Bianchi identity). 
Therefore our limit metric is isometric to an open subset of S3 x Rl with 
the product metric, even at the point Q, and the covariant derivatives of 
the curvature must be zero everywhere, even at Q. But at each Qj either 
we avoid a fixed neighborhood of the multiple of the curvature operator on 
53 x J?1, or some jth derivative for j < k avoids a fixed neighborhood of 0. 
By taking a subsequence of the j, we can make the same choice happen for 
each j. Then when j —> 00, the same choice happens at Qj and we get a 
contradiction. This proves Theorem 5.1. 

4. Surgery. 

4.1. How to Do Surgery. 

Now we discuss our surgical procedure. We shall perform surgery at 
certain operating times 0 < ri < • • • < Tj < — At each operating time 
Tj we perform the following operation, which we call (£, fc, L) surgery. It 
consists of performing a standard surgery (which we shall describe) on each 
maximal normal (e, fc) neck 

NiS^x [a,&]->Mm 

of standard length b — a > L. We call such a neck an (e1 fc, L) neck. The 
standard surgery will be invariant under the group of isometries on the 
cylinder 5n~1 x [a, 6], and each maximal normal (e, fc) neck (for a good 
enough choice of e and fc) is uniquely defined up to a rigid motion of the 
cylinder. It will leave the manifold and the metric unchanged on two collars 
of standard width A (chosen later) around the ends, i.e., 

S71'1 x [a, a + A]    and   S71'1 x [6 - A, b) 
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and (for a good enough choice of e and A;) the images of any two distinct max- 
imal (e, k) necks are disjoint except possibly for these collars. The surgery 
will replace S71'1 x [a, b] with two copies of the ball J5f U B%. If the neck 
N is not 1-1 (except possibly on the collars), any multiplicity is represented 
by a group T of isometries in both the standard and the pullback metries 
on the cylinder, so that 

N/T-.S71"1 x [a,b]/T^Mm 

is 1-1 (except possibly on the collars). The group T will still act by isometries 
in the new metric on the two balls B™ U BJ, and we can patch BJ1 U Blj/r 
back into M. Of course even if the original M has only smooth points, 
the resulting M may have orbifold points. In fact this happens unless F = 
{/d}, or F = Z2 with the antipodal map a flipping both S71^1 and the 
interval [a, 6]. In the latter case the surgery on Mn removes a copy of 
RPn as a direct summand. Our assumptions that n = 4 and M4 has 
positive isotropic curvature, and the only incompressible space forms are 
i?P4,s with unoriented normal bundle, guarantee that surgery produces no 
orbifold points on M4. 

Now we discuss the standard surgery. The surgery will take place in four 
steps. We can describe it at the end near 5n~1 x {a}; and do the same thing 
at the other end S71-1 x {b}. For simplicity let us take a = 0. On the collar 

we do nothing. On the collar 

rra—1 x[0,A] 

S^x [A,3A] 

we modify the metric conformally by a function f(z) depending only on the 
height z of each sphere S71^1 x {z}. This is the most delicate part. The aim 
is to choose / so that the resulting metric has strictly positive curvature 
operator on the collar 

S71'1 x [2A,3A] 

which we do by pinching the neck slightly. We shall discuss this further in 
a minute. First we finish the description of the standard surgery. 

Once the conformally pinched metric e~2fg has strictly positive curva- 
ture operator, we can blend it into the corresponding metric rQe~2fg ob- 
tained by pinching the standard metric g in the same way and scaling it 
by a constant factor ro chosen as the mean radius r(0) at the end of the 
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cylinder. We take a suitable bump function ip with <p = 1 for z < 2A and 
(p = 0 for z > 3A and take 

g = ^c"2/flf + (1 - (p)rle~2fg 

as the blended metric. Then p == e~2fg for 2: near 2 while 3 == rQe^2^g for 2 
near 3. 

If we extend the function f(z) suitably with f(z) —>0as;2:-»c<4A the 
resulting metric will be smooth on the ball obtained by adding a point to 
gn-i x ^ cyt ^ ^ofeg fais as the metric on the last piece. This completes 
the surgery The new metric equals 

g    on    Sn^x[0,X] 

e^fg   on   S^xfA^A] 

g   on   ^^x^SA] 

,rge-2'p' on   fi^^x^c] 

and extends smoothly to the one-point compactification. 

4.2. Curvature Changes under Surgery* 

We shall show how to pick A, / and p to work for any e small enough 
and k large enough. We also need L > 8A to have enough room between 
one end of the neck and the other. The crucial part is for A < z < 2A where 
we make the conformal change g = e""2^ to pinch the neck a little to give 
it a positive curvature operator. The basic idea is that the eigenvalues A 
have their biggest change coming from acquiring a factor A = e2^A, which 
doesn't hurt any ratios, while the rest of the change serves to increase the 
ai's and Q'S and decrease the Vs. 

Consider then a conformal change of the original metric gij to a new 
metric % given by 

9ij ^ e      9ij> 

Thus lengths are shrunk by a factor e^ > 1 when we take / > 0. If we take 
an orthonormal frame ^1,^2^3,^4 for gij then 

is an orthonormal frame for g^. If 

Fa==Flad? 
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in local coordinates, the metric in this frame is g^ = gijF^F^ = Ja6, and we 
write the curvature tensor in this frame as 

Rabcd = RijktFaFb ^c ^d 

or equivalently 
Rabcd = Rm{Fa) Fb, Fc, Fa) 

and likewise for the Ricci^tensor i?a& or the Weyl tensor Wabcd- Also we 
write Rabcd and Rab and Wabcd for the same tensors of the metric gij in the 
frame Fa- The following holds in dimension n. 

Lemma 2.1.  TTie Ricci tensors are related by 

Rab = e2f {Rab + Af • gat + (n - 2)[DaDbf + DafDbf - p/l2^]} 

and the Weyl tensors are related by 

Wabcd = e2fWabcd 

Corollary 2.2.  The scalar curvatures are related by 

R = e2f{R + 2(n - 1)A/ - (n - 2)(n - 1)|Z?/|2} 

Proof. This is a standard computation, which may be done in local coordi- 
nates from 

Tik = f^ - rj, = iflf*(£>#« - Z?*^ - Degjk) 

and 

^7^ "" nik£ — IJJ1ke — Uh-Ljt -r J-jm1M ~ 1km1H 

and we leave it as an exercise for any reader who has never done it himself 
or herself. Note as a check that when n = 1 there is no curvature, and when 
n = 2 the Ricci tensor is a multiple of the metric. □ 

When we start the surgery / is small, say / = ce"^^^ where z is the 
standard distance along the neck and c is a small constant and p is a large 
one. In this case the second derivative terms DiDjf will surely dominate 
the quadratic terms DifDjf in the first derivatives. Remember that since 
we can make the original metric as close to the product metric of a true 
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neck as we wish, we only need a very small positive / to get the neck to look 
spherical. The dominant part of DiDjf will be in the direction of the neck. 

First observe that up to the common factor e2f the Weyl tensor is un- 
changed, while the scalar curvature increases. Now the scalar curvature 
R is the common trace part of the A and C matrices, while the self-dual 
and anti-self dual parts W+ and W~~ of the Weyl tensor are the trace-free 
parts of A and C, Therefore all the eigenvalues of A and C will increase, 
neglecting the common factor e2f. In fact we have 

RKte2f{R + 6D4D4f} 

and hence 
ai « e2f{ai + 2D±DAf)     for     1 < % < 3. 

Now ai « 0,2 « as « I/TQ where ro is the mean radius of the end sphere, 
while 

e2f - 1 « i>D4DAf < 1 

so we get the simpler approximations 

at » a* + 2DADAf   for    1 < i < 3. 

Likewise 
Ci « Q + 2D±D±f   for    1 < i < 3. 

Next we note that we can recover the principal strains of the B matrix 
from the eigenvalues of the Ricci tensor. 

Lemma 2.3. // the Ricci tensor has eigenvalues 

Pl> P2> P3> P4 

then the principal strains of the B-matrix are 

h = - (p2 + Ps - Pi - P4) 

h = g (Pi + P3 - P2 - PA) 

h = - (pi + P2 - Ps - P4) 

(^up to a constant factor). 
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Proof. An orthonormal basis (up to a constant factor) for A+ and Ai is 
given in terms of a frame JFi, F2, F3, F4 by 

^ = F2 A F3 + Fi A F4 ^1 = F2 A F3 - Fi A F4 

^2 = ^3 A Fi + F2 A F4 ^2 = F3 A Fi - F2 A F4 

¥?3 = F1AF2 + F3AF4 ?/;3 = FiAF2-F3AF4 

and we can compute the entries of the B matrix, which are 

JSn = JB(<pi,^i)    5i2 = S(y?i,^2)    etc. 

to get 

Bn = i22323 - -Rl414 

B22 = ^3131'— ^2424 

#33 = -^1212 - -R3434 

and 
B12 = i?2331 + #1431 ~ #2324 - #1424  etc. 

Doing a little algebra we find 

Bn = - (#22 + #33 - #11 - #44) 

#22 — ^ ^11 + J^33 "" ■^22 ~ ■^44) 
1 

533 = ~ (#11 + #22 — #33 — #44) 

while 

£12 = -(#12+ #34)    etc- 

If we choose the frame so that the Ricci tensor is diagonal, then B is diagonal 
also. If the eigenvalues of the Ricci tensor are p\ > P2 > ps > PA then the 
principal strains of B are its positive diagonal entries which are given above 
in increasing order. d 

Now when the metric is very close to a neck, the first three eigenvalues 
will be almost equal and quite positive, while the fourth eigenvalue is nearly 
zero. But in our conformal change the dominant term will be the second 
derivative D4U4/ along the neck. The dominant terms in the change in 
the Ricci tensor (up to the common factor e2^) is thus to add one factor of 
D^D^f to each term on the diagonal, and an extra two copies (n — 2 = 2 if 
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n = 4) of .D4.F4/ to the last diagonal entry. This has the effect of subtracting 
two copies of D4JD4/ from each principal strain of the B matrix. This is 
the dominant effect, and all other changes resulting from other linear terms 
DiPjf and quadratic terms DifDjf can be made small in comparison. Thus 
all the principal strains of the B matrix will decrease slightly, as desired. 
We get approximation 

61 » e2/(6i - 2DADAf) 

62 w e2f(b2 - 2DAD^) 

hne2f{b3~2D4D4f). 

We get approximations 

bi « e2/(6i - 2£>4£>4/)    for    1 < i < 3 

which again leads to the easier approximations 

bi « -2DAD±f   for    1 < i < 3. 

Instead of an approximation it is more rigorous to have estimates. Recall 
that z is the coordinate down the cylinder Sn~l x [0,4A] with z € [0,4A], 
and ro is the mean radius of the metric g at z = 0. Take / to be the function 

(f(z) = ce-Pttz-V forz>A 
\       f(z) = 0 for 0 < z < X 

where we shall choose appropriate constants c and p soon. This makes 

Tz = ^f  and   d? = —?—^ 
Note we always have / < c. Also since y = xAe^x has its maximum at 
x = 1/4 where y < 1, we have 

dz2 "" p2 \^/ 

If p > 4A then p — 2z > p/2 and 

dz2 - 2z4 J' 

When 0 < z < A we have 

/< — ^ 
~~  p2   dz2 
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and 

and 

and 

dz ~~   p    dz2 

dz ) dz2 

e
2'-l<2e2c/<2e2c.^^. 

pz   dzz 

Now we easily have the following estimates. 

Lemma 2.4. For any A and any 5 > 0 we can choose c small enough and 
p large enough so that when f = ce~p^z~x^ 

el-l<8—2     and   - < 8 -^    and       -J   < 5-^ 

and 

dz2 <d 

forX<z< 4A. 

Recall that r(z) is the mean radius of g on the sphere S71-1 x {z}, 

9 = 9/r2 

and g is the standard metric, and we have 'g nearly g and r nearly equal to 
its constant value ro at z = 0. In particular in an (e, A;) neck we have 

and 

and 

\9-9\9<£ 

{TPglg <e   for    1 < j < k 

d^j 

dz 
logr(^) < s    for    1 < j < k. 

Writing g = r2g, we see that for any k and any e' we can choose e above to 
make 

\g - rl -g\g < e'rl 
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and 
\Djg\g<s,rl    for    1 < j < k. 

We choose the frame J7 = {Fa} orthonormal in the metric g so that the Ricci 
tensor of g is diagonal in this frame, with the eigenvalues pi > p2 > Ps > P4- 
Since g is close to VQ g, 

pi & P2 ~ Ps ~ 2/ro    and   p^ « 0. 

The covariant derivatives of z in the metric g will be nearly those in the 
metric g since the connections are close. The orthonormal frame J7 = {Fa} 
in the metric g will be nearly a multiple of an orthonormal frame J7 = {Fa} 
in the metric g with F4 = -^ 

11 
F » — F   or    Fa « — ra. 

ro ro 

In particular for any e" we can find ef and k above so as to make the 
covariant derivatives Daz and DaD^z in the orthonormal frame F = {Fa} 
in the metric g satisfy 

1        e" 

ro       ro 

e" 
\Daz\ <—    for    1 < o < 3 

e" 
\DaDbz\ < -s    f or    1 < a, 6 < 4. 

ro 

Then we can compute the covariant derivatives Daf and DaD^f in the 
orthonormal frame T = {-Fa} in the metric ^ from 

^a^/ = -£D"Dbz + -^D^zDbZ' 

Given any 77 we can choose S and e" above to get the following result. 

Lemma 2.5. For any 77 > 0 and any X we can choose s and k and c small 
enough and p large enough so that if f = ce~p^z~>^ then 

\Daf\<^^{    for   l<a<4 
ro dzz 
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and 
77   d2f 

\DaDbf\ < -2 -7-2    ^n^55   a = 6 = 4 

and 
i d2/ 

AI>4/-3^ rn  rf^2 

< »?  d2/ 
r§  d^:2 

on A < 2: < 4A on any (e, fc) necA;. 

Then by the proceeding arguments we can make the following eigenvalue 
estimates. 

Theorem 2.6. For any 9 > 0 and any A we can choose e and k and c 
small enough and p large enough so that if f = ce~p/(2:~~A) and g = e~~2fg 
then the eigenvalues of the curvature operator of g are related to those of g 
by 

\ai - [oi + 2^4^4/11 < 0D4D4f 

bi-[bi + 2D4DAf] <9D4D4f 

&-& + 2DiDif]\ < eDADAf 

for l<i<2>on\<z<4:Xon any (e, k) neck. 

Corollary 2.7.  We have 

ai > ai    and   bi < bi    and   Ci > c^. 

Proof The previous Lemma lets us make 

\Daf\<Tf\DtD4f\    for    l<a<4 

and 
\DaDbf\ < v'\D4D4f\   unless   a = 6 = 4 

for any ry7 we like. Then we can use our curvature formulas to estimate 

1% - e2f [m + 2D4DAf] \ < 9fDAD4f 

\bi - e2f[bi - 2DADAf]\< 9'DM 

\ci~e2f[ci + 2D4D4f]\<9'D4DAf 
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for any 6' we like. Since 

ai & bi « Ci « l/rg 

we can make them all less than 2/rQ easily, and use 

e2f - 1 < 6 il < -i- r0
2Z)4i?4/ 

a^2      1 — r; ■ 

to expand and get rid of the e2^ in the estimates. The resulting quadratic 
term in D^D^f can be handled by comparing r^D^D^f to d2f/dz2 and using 
d2f/dz2 < S. In particular 

Si-e2' h + ZDM] = {^ - [at + 2D4i?4/]}-(e2/ - l) a^2 (e2^ - l) D4D4/ 

(e2' - l) a,I < T^DiDtf 
and 25 

and 
52 

(e2f - l) D4l>4/ < —D4D4f 

gives us what we need. The same works on bi or Q. This proves the Theorem. 
D 

4.3. Pinching Estimates under Surgery. 

In the section on curvature pinching estimates we showed that the fol- 
lowing estimates are preserved by the Ricci Flow: 

ai + 0,2 > m   and   ci + C2 > m 

(b2 + b3)
2 <A(a1 + a2)(c1 + C2) 

o>2 + ^3 < *(«i + 02)    and    C2 + C3 < *(ci + C2) 

ai + p > 0   and   c\ + p > 0 

03 < *(ai + p)    and   C3 < *(ci + p) 

63 < S ePV(ai + p)(ci + p) 
263 _  . i^T 

< 1 + 
yjifli + Q>2){ci + C2) max{ln \/(al + «2)(ci + C2), 2} 
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6, 
<1 + 

Le Pt 

\/(ai + P)(ci + P) max{ln y/{ai + p)(ci +p),Q} 

Now we also establish the following. 

Theorem 3.1. For a suitable choice of e,k,L,\,f and ip, the above esti- 
mates are also preserved by the standard surgery. 

Proof. Consider the estimates we need to preserve.   Since the a* and q 
increase while the bi decrease 

ai+ a2>m   and   ci + C2 > m 

(fe2 + &3)2<A(ai + a2)(ci + C2) 

«i + P > 0   and   ci + p > 0 

are all easy. The estimates 

«2 + ^3 < $(ai + 02)    and   C2 + C3 < $(ci + C2) 

as < *(ai + p)    and   C3 < *(ci + p) 

are also easy if $ > 2 and # > 2, since the 01, a2, as all increase about the 
same amount. 

For the improved pinching estimates it is easier to see they are preserved 
if we multiply them out and write them as 

2&3 < \/(ai +02) (ci + C2) 1 + 
K 

max{ln y/{a\ +a2)(ci + C2), 2} 

and 

&3 < \/{ai+ p){ci+p) 1 + 
Le*1 

max{ln yj(ai+ p){ci +/?), Q} 

Now the right hand sides increase if ai, a2, ci, C2 increase (at least if Q > 1), 
since the function 

y = 
x 

has 

• = 

In a: 

Inx — 1 
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and hence y increases when Inx > 1.   This shows that all the pinching 
estimates are preserved by the conformal change on 0 < z < A. 

If we choose e and k good enough, we can make 

Q>i ™ -o < c 

&i- -o 

1 
Q        9 

r0 4 r0 

in an (e, fc) neck for any £ we like. Make £ small compared to the minimum 
size of (fif/dz2, on 2A < z < 4A. Then we can make 

di > 
1 + C and    bi < i-c and   Ci > i + C 

for 1 < i < £ on 2A < z < 4A. This makes the metric g = e~2fg have 
strictly positive curvature operator for 2A < z < 4A with a uniform positive 
lower bound proportional to C/ro* 

In the part of the neck where 2A < z < 3A we blend the metric e~2fg 
into the metric e~2fg with a bump function tp and take 

g = Ve-2fg + (l-ip)ple-2fg 

as our new metric, where cp = 1 for z < 2A and cp = 0 for z > 3A. If (e, k) 
are chosen good enough then g is so close to g that 5 is as close as we like 
to Poe~2^5 together with as many derivatives as we like. Thus g also has 
strictly positive curvature operator and 63 < aici. We can now check our 
curvature pinching estimates on g. The estimates 

«i + ^2 — m    and     ci + C2 > m 

and 
ai + p>0    and     ci + p > 0 

will hold if we do surgery only on necks with large enough curvature so that 
ro is small enough. The estimates 

0*2 + 0,3 < $(ai + a2)    and     C2 + C3 < $(ci + C2) 
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and 
as < *(ai + p)    and     C3 < *(ci + p) 

hold if $ and # are large enough, which is no loss. The remaining estimates 
hold easily if 63 < aid. 

Past z = 3A we have the known metric e"2^ on the neck. Now all we 
have to do is choose / the rest of the way to give a nice end cap, keeping 
^3 < aici. This proves the theorem. 

5. Recovering the Manifold from Surgery. 

5.1, Operating Procedure. 

We prove the Theorem in the following way. Pick 7 > 0 and let 7 
effective (e, fc, L) surgery be the following procedure. We run the Ricci flow, 
and perform (e, fe, L) surgery as described in section Dl at the first time r 
when we can satisfy the following conditions: 

• the current maximum of the curvature is at least any previous maxi- 
mum, and 

• after surgery the maximum curvature falls by at least the factor 7. 

The volume V decreases under the Ricci flow, and under surgery. In 
fact surgery when RMAX = M removes a volume at least c/My/M for some 
c > 0, Hence only a finite number of surgeries can happen unless R becomes 
unbounded. We shall show this cannot happen. 

First we need to check that there is indeed a first time we can perform 
surgery (if there is any time at all when we can). So suppose surgery is 
possible on standard (e,fc,£) neck at times TTJ \ vr, reducing RMAX by 
a factor 7. We claim such a surgery is also possible at time TT. If not, 
we shall get a contradiction. Suppose then that P is some point where 
Rp > iRMAX at time TT but P cannot be removed by standard surgery at 
time TT. Then Rp > 7#M4X for all large enough j by continuity, so P can 
be surgerically removed at time TTJ. Pick (e, fe, L) necks Nj containing P at 
standard distance at least A from the ends at time TTJ. Because of all the 
estimates we have on the necks, it is easy to check that for a subsequence 
the necks Nj converge to a neck AT, and N is again an (e, fc, L) neck at time 
TT. If we had not chosen the standard parametrization carefully, there would 
be a problem with the regularity, since from the bound on the kth derivative 
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we only get equicontinuity and hence convergence on the (fc — l)st derivative. 
However in the standard parametrization each sphere is a minimal surface 
with a harmonic parametrization, so once we control a few derivatives the 
regularity theory of elliptic partial differential equations gives bounds on 
the remaining derivatives. Then our other conditions bound the transverse 
derivatives as well. Of course we don't get the kth derivative bounded by e 
from this alone; but since the kth derivatives in the sequence are all bounded 
by e and they converge uniformly, the kth derivative of the limit is bounded 
by e also. If each neck Nj has standard length at least £, so does the limit 
neck JV, and P is still at standard distance at least A from the ends. Since 
the surgeries on Nj converge to the surgery on JV, and since surgery on Nj 
reduces R at P to < 7RMAX, so does surgery on iV. Hence P can indeed be 
removed by a standard (e, fc, L) surgery at time TT also. 

We want to show that if (e, fc, L) is restrictive enough and 7 is small 
enough then we only need to perform a finite number of surgeries to keep 
RMAX from going to infinity. This will establish the Main Theorem. Our 
procedure will be to suppose RMAX -* 00 for all (e, fc, L) and all 7, and 
obtain a contradiction, The following result will be obtained by a limiting 
argument. 

Theorem 1.1. Suppose RMAX —> 00 no matter how precisely we choose 
our surgical parameters. Then there exists an 77 > 0 such that for any 
(e, fc, L) and any 7 we can construct a complete solution to the Ricci flow 
with bounded curvature on 0 < t < 1 and find a point P in the solution with 
the following properties: 

• (a) the solution has positive curvature operator and satisfies the es- 
timates as < ^(ai + p) and C3 < \I>(ci + p) and 63 < aici for the 
constants \I/ and p of section D3 

• (b)RMAX(i)>ratt = i 

• (c) R(P, 1) > r) at P at t = 1 

• (d) P cannot be removed by (s, fc, L) surgery either by finding P in the 
part of the neck we remove or by finding P in a ball ending in a neck 
we remove. 
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Proof. We can find a constant c > 0 so that if RMAX < ri at time ti and 
RMAX > ^2 at time £2 then 

t2—t\>C 

as a consequence of the maximum principle. Pick 

c 

so that 

«(H-r- 
Also pick (e, fc, L) slightly weaker than (e, fc, L). 

Suppose we perform 7-effective (e, fc, L) surgeries at times Tj where 
RMAX(TJ) = Mj with Mj —> 00. Pick a subsequence with Mj < Mj+i 
and pick times ^ with TJ < ^j < fy+i and RMAx(Qj) = Nj with 
Mj < iVj- < Mj+i. We would have done surgery at time 0j if we 
could have reduced RMAX by 7. Since we did not, there must be some 
point Pj with R(Pj,6j) > 7RMAX(0j) which cannot be removed. Since 
RMAX(0J) 

= fy > Mj and RMAX(TJ) dropped from Mj to 7Mj, the time 
elapsed 6j — Tj>c(l — J)/JMJ. We can now dilate the solution in space and 
time and translate in time to get a solution on 0 < t < 1 with i?(Pj, 1) > rj 
for some rj > 0 independent of F, and where RMAX(i) — F at time t = 1. 
And in this solution Pj cannot be surgically removed by {e,k,L) surgery. 
Hence in particular the smallest eigenvalue Ai of the curvature operator at 
Pj has a lower bound 8 > 0 independent of j by Theorems C5.1 and C3.2. 
Moreover since the curvature pinching improves as R —► 00 from the esti- 
mates in section B, we get an injectivity radius estimate by Theorem 25.1 
of [10] and the sequence will have a convergent subsequence, and we get 
a limit which is a solution to the Ricci flow on 0 < t < 1 which is com- 
plete with bounded curvature and strictly positive curvature operator and 
has RMAX = F, and there is a point P with i?(P, 1) > 77 which cannot be 
removed by (e, fc, L) surgery since otherwise a close enough metric would 
allow (e, fc, L) surgery. 

Moreover each metric in the sequence satisfies the pinching estimates 
derived for the Ricci Flow in section B and preserved by the surgery in 
section D, so we have 

as < *(ai + p)    and    C3 < *(ci + p) 
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and 

*   <i+ 
y/(ai+p)(ci+p) max{ln y/(ai + p)(ci + p), Q} 

with the same constants *, L, P and Q for each metric, before we translate 
and dilate. Also the time t is uniformly bounded t < T < oo, so LePt is also 
uniformly bounded. Now when the curvature becomes large, p and Q are 
negligible in comparison. After dilating the solution to control the curvature 
and taking the limit, we see the limit metric satisfies the simple estimates 

as < tyai    and    C3 < ^ci    and   63 < aici. 

However, this result will be ruled out by the following Enabling Theorem, 
and we will be done. 

5.2. Enabling Surgery. 

Let Ai be the set of solutions to the Ricci flow for 0 < t < 1 in dimension 
4 which are complete but not compact with bounded curvature and which 
satisfy the estimates above 

as < *ai    and    C3 < ^ci    and    63 < aici. 

We then let Mi be the set of metrics gi obtained by evaluating a metric gt 
in M. at t = 1. For a metric gi in Mi it is a strong restriction if we require 
that its maximum scalar curvature RMAX is large, for dilating the solution 
in space and time makes the curvature less and the duration of the solution 
longer. Note that topologically Mi if diffeomorphic to R4. 

It is important to study Mi because if we could not keep R bounded 
for a compact solution by surgery, we would obtain a limit in Mi with 
RMAX = r while some point P where the scalar curvature Rp > rj cannot 
be removed by surgery, with 77 > 0 independent of F, by Theorem 1.1. 

Theorem 2.1 Enabling Theorem. For every 77 > 0 and every (e, fc,L) 
there exists a F such that for every metric in Mi with RMAX > F and every 
point P with Rp > 77 either 

(a) P lies on the center sphere S3 if an (e, fc, L) neck, or 
(b) P lies in a differentiable ball JB

4
 bounded by the center sphere S3 of 

an (s, fc, L) neck. 

Note that in dimension 4 the Schoenflies Conjecture is still open. Even 
though the manifold, since it has positive sectional curvature, must be dif- 
feomorphic to i?4, an embedded S3 is not known to necessarily bound a 
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differentiable B4. Hence this part requires some extra effort, which we ad- 
dress in appendix G. 

The proof of Theorem 2.1 will be broken up into a string of Lemmas. 

Lemma 2.2. For every (e, k, L) and every 77 we can find /3 > 0 and fi < 00 
with the following property. If we take any metric in Mi and any point P 
where Rp > r), then either 

(a) P lies on the center sphere of an (e, fc, L) neck; or 
(b) there exists a point Q where RQ > Rp and d(P, Q) < jjb/y/Rp, and 

there exists an r < fj,/\JRQ such that every sectional curvature K at 
every point in the ball Br(Q) of radius r around Q has K > (3/r2. 

Proof. First pick (e, fc, L) so that if a point is at the center of an (e, A;, L) 
curvature neck it is on the center sphere of an (e, A:, L) geometric neck. Next 
pick /x large compared to L, and rechoose e even smaller if necessary so e/z 
is much smaller than some constant we shall determine later. 

Now let sp denote the distance from P, and choose Wp as the largest 
radius for which 

R(Wp - sp)2 < M
2 

everywhere in the ball sp < Wp. Of course 

RpW£ < fj? 

since sp = 0 at P. Since Wp is extremal, there must be some point Q where 

RQ(Wp-sp(Q))2 = fJ
2. 

Let SQ denote the distance of a point from Q1 and let 

WQ = WP-SP(Q). 

By the triangle inequality 

WQ-SQ<WP- SP 

so we have 
RQW% = ^ 

and 
R(WQ-SQ)

2
<IJ,

2 

everywhere in the ball SQ < WQ. 
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Now the Harnack inequality [6] tell us that tR is pointwise increasing 
for a solution in .M, so the value of R at a point at a time 1/2 < t < 1 
is no more than twice its value at t = 1. This time interval is a fraction 
of l/ry, depending on 77. This gives estimates on R in a ball around Q of 
radius WQ/2 for 1/2 < t < 1. Then the strong maximum principle tells us 
as in Theorem C5.1 that there exists a 5 > 0 such that either all sectional 
curvatures K at Q are at least 5RQ, or else Q is the center of an (e, fc, L) 
curvature neck, as long as we choose // large compared to L. 

In the first case, since we have estimates depending on 77 on the deriva- 
tives of the curvature in a smaller ball around Q of size WQ/3, we easily 
find that Q is the center of a bump of radius r = WQ/3 where K > (3/r2 

for an appropriate (3. Now 

d{P9Q)<Wp<lM/y/Rp 

so Q is close to P as desired, and r < WQ = fj,/\/RQ. In the second case, 
we claim that Q = P, and hence P lies on the center sphere of an (e, fc, L) 
neck. 

For if Q 7^ P, choose a minimal length geodesic from P to Q. Extend it 
past Q and call the distance from P along the geodesic s. Then sp = s up 
to Q, and sp < s past Q. It follows that R(Wp — s)2 also has a maximum 
value equal to fj? at 5 = sp(Q) = <i(P, Q), and its first derivative there must 
be zero. This gives us the equation 

±RQ = 2RQ/WQ = l^. 

But in an (e, fc, L) neck we have 

for some constant C. If e is so small that e/x is smaller than 1/C we get 
a contradiction. This means Q must be P, where we do not get such an 
argument on the derivative since sp is not differentiable. 

Lemma 2.3. For every 6 we can find (e, fe,L) such that if two minimal 
geodesies go from the same point on one end of an (e, /c, L) neck to the other 
end, then the angle between them at the common endpoint is 9 or less. 

Proof. First observe that it is true on a standard cylinder of radius 1 if the 
length L is great enough. This is because a geodesic in the product metric 



66 Richard Hamilton 

projects to a geodesic in each factor, and if it travels further than TT in the 
sphere it does not minimize distance. Consequently the angle a minimal 
geodesic down the cylinder makes with a straight line down the cylinder is 
no more than arctan(7r/L); and the angle between two geodesies is no more 
than twice this. So it suffices to take L > 7r/tan(0/2). □ 

Suppose now that the metric is not the standard one, but is very close 
to it. A geodesic has constant velocity, and its components on the sphere 
and the interval will be nearly constant. Again if the sphere component of 
the velocity is too large compared to the interval component, the second 
variation formula for arc length becomes negative, and the geodesic cannot 
be minimal. But if two minimal geodesies of speed one have small sphere 
components to their velocity, the angle between them is small. This proves 
the Lemma. 

Lemma 2.4. For every (e, fc, L) and every rj we can find (?, fc, L) with the 

following property. If we take any metric in Mi which has an (e, fc, L) neck 
with R < r] somewhere on its center sphere, and P is a point outside the 
center sphere of the neck on the non-compact side where Rp > r), then P 
lies on the center sphere if an (e, fc, L) neck. 

Proof. Given (e, fe, L) and ry, choose /? and /x as in Lemma 2. Now suppose 
we have a metric in Mi and a point P where Rp > 77, but P is outside 
the center sphere of an (s, fc, L) neck. Then, as in the Lemma, we can find 
a point Q where RQ > Rp > 77 and d(P, Q) < fi/y/Rp, and we can find 
r < v/y/Rq with K > (3/r2 in Br{Q). 

Now by the Bump Avoidance Theorem 21.4 in [10], we can chose A 
depending only on /?, so that if we take any minimal geodesic between points 
X and Q' both at distance at least s from Q with s > Ar, then the entire 
geodesic XQ' stays away from Q by a distance at least s/X. Choose 0 with 
tan0 < 1/A. We then pick (s, fc, L) so that L is large compared to A and /x, 
and so that any two minimal geodesies from a common endpoint at one end 
of an (e, A:, L) cylinder to the other end make an angle at most 9, which we 
can do by Lemma 3. 

Suppose now that the point P lies on the outside of the center sphere of 
an (e, fc, L) neck where some point on the center sphere has R < 77. Then 
the radius of the neck is at least l/y/rj or not much less, and the length is 

at least L/y/rj or not much less. Pick a smaller (e, fc, L/6) neck in the bigger 
neck, going from (roughly will do) one-sixth to one-third of the way from the 
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inner end to the outer end. Since we have left a collar of length at least or 
not much less than L/G^/r/, and d(P, Q) < n/y/Rp < /V\A/? and L is large 
compared to /x, and P is outside the center sphere, Q is still outside the 
small neck. Then take a point X on the inner end of the smaller cylinder, 
and connect it to Q by a minimal geodesic XQ, It is clearly inefficient for 
the geodesic to backtrack out of the inner end of the big cylinder (since 
we have left a long collar on that end also), and therefore it must proceed 
monotonically down the small cylinder, exiting at a point Y on the outer 
end of the small cylinder. 

Likewise if we pick a very remote point Q' and connect it by a minimal 
geodesic to X, we get another minimal geodesic going monotonely down the 
small cylinder from X on the inner end to some point Z on the outer end, 
and then on to Q'. 

Since the distance from X to Q or Q' is at least L/fty/r] or not much 

less, while the radius r of the curvature bump at Q has r < n/y/rj, and L is 
large compared to A//, we can make the distance s from X to Q at least Ar. 
Similarly if Q' is remote we can make the distance from Q to Q' at least s 
and the distance from X to Q' at least s also. 

Pick the point Q" along the geodesic from X to Q' at distance exactly 
«s from X. By the Bump Avoidance Lemma, the distance from Q to Q" is 
at least s/X. On the other hand, the angle between XQ and XQ" is the 
angle between XY and XZ, which is at most 9 < arc tan 1/A. Since the 
sectional curvatures are positive, we can use Toponogov's Theorem (see[l]) 
to conclude that the distance from Q to Q" is at most the base of a Euclidean 
isosceles triangle with two equal sides s and included angle 9. The base has 
length 2s tan 9/2 < s tan 9 < s/A, and we have a contradiction. This proves 
the Lemma. 

Lemma 2.5. For every (e, fc, L) and every 77 we can find an (e7, £/, Z/) with 
the following property. If a metric in Mi has an (ef, &/, I/) neck, then every 
point P outside its center sphere on the non-compact side where Rp > 77 lies 
on the center sphere of an (e, fc, L) neck. 

Proof. Given (e, A:, L) and 77, choose (e, fc, L) as in Lemma 4, and first re- 
quire (e7, k', V) to be at least as restrictive. Now if a metric in Mi has an 
(e1\kj',!/) neck it is also an (e,k,L) neck, and if R < rj somewhere on its 
center sphere we are done by Lemma 4. 

Otherwise we have an (s'jfc',!/) neck with R > 77 everywhere on its 
center sphere.   Again we construct a smaller (e', fc', Lf/6) neck going from 
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(roughly) one-sixth to one-third of the way from the inner end. Suppose 
now that P is a point beyond the center sphere of the (e', k\ V) neck where 
Rp > rj. Connect P by a minimal geodesic to a point X on the inner end of 
the smaller (e7, k', L'/6) cylinder. Let P be the last point going from X to P 
such that Rp > rj and P is the center of an (e, A;, L) neck. Since (e', kf, Z//6) 

can be chosen more restrictive than (e, A;, L), we can be sure P is beyond the 
center sphere of the bigger (e', k', V) neck. We are guaranteed the existence 
of a furthest P because a limit of necks in standard parametrization is a 
neck. If P = P we are done. If Rp < rj we are done by Lemma 4, since P 

is outside the center sphere of the (s, fc, L) neck at P. (Indeed we get one 
long neckline region from well before X all the way to well past P, as the 
individual (e, fc, L) necks fit together, and the geodesic from X to P must be 
nearly along the lateral direction since it is so long; and since the necklike 
region extends well past P, if P were back before the center sphere of the 
neck at P our path would not be the shortest from X to P.) And if P ^ P 
and Rp > 77 and P is furthest, some point P# just past P (but as close as 

we like) is not on the center sphere of an (5, fc, L) neck but has Pp# > 77 
still. 

Let us pause to compare the curvature at P with its distance s from X. 

Lemma 2.6 Sublemma. For every (s, fc, L)  sufficiently restrictive and 
every v < 00 we can find (e'. A/, Z/) so that s > vj\JRp. 

Proof. Take a point P on the center sphere through P of the (e, A;, L) neck 
>•% ^^ ,^_, 

there so that P is (roughly) antipodal to P. Then the distance from P to 

P is (roughly) TT/ y/R^- Connect P to X by another minimal geodesic. By 
choosing (e^A/,!/) with 1/ large enough we can make the angle 9 between 

^ »•%   

XP and XP as small as we like.   If s is the distance from X to P, the 
«-*   ^ 

distance from X to P is within (roughly) TT/^/R^ of 5.   As long as L is 

reasonably long, we can replace P and P by points P' and P  near them 
along the geodesies, no more that n/y/Rp away, so that the distance between 

P' and P is still nearly ir/y/Rp, so at least l/y/Rp, and the distance from 

X to P' and P  are both equal to some s' < s.   Now comparing to an 
isosceles Euclidean triangle with two sides sf and included angle 0, we see 
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>/ 
the distance from P' to P is at most s/tan0(since 2sin(0/2) < tan0). Then 

s'tantf^ 1/V^P 

and we only need to make tan0 < l/v to prove Lemma 6. □ 

We can now return to the proof of Lemma 2.5. If we apply Lemma 2.2 
at the point P#, we find (3 and /x depending on (e, &:, L) and 77, and we find 
a point Q and a radius r with RQ > Rp# and 

d(P*,Q)<v/y/R^    and    r<ixjyjR^ 

such that every sectional curvature K at every point in Br(Q) has If > /3/r2. 
We can then find A depending on (3 from the Bump Avoidance Lemma so 
that any minimal geodesic between points at distance at least s > Xr avoids 
Q by a distance at least s/X. 

Now d(X,P*) = s > v/y/R^ while d(P*,Q) < [xj^Rp^ and Rp# is 
nearly Rp. Since we can make v very big compared to //, <i(X, Q) is nearly 
d{X, P#). Now P# is beyond the center sphere of the big [e1, k1\ L') neck, 
so this suffices to place Q outside the smaller (e^k^V/G) neck. Moreover 
r ^ ^/^/RQ 

an<i -RQ ^ Rp* and ^p# ^ nearly i?p, so r is not much more 
than /x/\/Rp] and by making 1/ large compared to A/x, we can make s > Xr. 
Now as in the proof of Lemma 2.4, if we connect X to a very distant point 
Q' by a minimal geodesic and pick Q" along it with the same distance 5 from 
X as Q, and make the angle between XQ and XQ" very small by making 
(e\kf,L') very good, we get a contradiction. This proves Lemma 2.5. Now 
we just need to show we can find as good a neck as we take by making RMAX 

large at t = 1. 

Lemma 2.7. For all 77 we can find a 5 with the following property. Given 
any solution to the Ricci flow in Mi with RMAX > f], we can find a point P 
where Rp > ^-RMAX and the smallest eigenvalue of the curvature operator 
at P satisfies A^p > SRMAX. 

Proof Given 77 and a decent (£, fc, L) we can find 5 so that if we have a 
solution in Mi with RMAX > rj and a point P where Rp > ^RMAx and 
where A^p < SRMAX^ then P lies on the center sphere of an (e, fc, L) neck. 
Suppose every point P where Rp > ^RMAX has Ai?p < SRMAX^ which is 
true if the Lemma fails.   Choose a point Q where RQ > f-RMAX.   Then 
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R is nearly as large near Q, so the (s, fc, L) neck centered at Q extends in 
both directions to form a long neck. Each point in the middle of the long 
neck will be on the center sphere of an (e, fc, L) neck, out at least until we 
get points X on one side and Y on the other where Rx = Ry — ^R-MAX- 

Moreover this neck will be foliated by constant mean curvature spheres. For 
a good (s, fc, L) the area of the spheres through X and Y must be a bit larger 
than the area of the sphere through Q. Hence there will be some sphere in 
the middle where the area is no more than its neighbors. Since the rate of 
change of the area is zero, this sphere will be a minimal sphere. 

We claim it is a stable minimal sphere, in the sense that all nearby 
spheres have at least as much area. To see this, think of any nearby sphere 
as a graph in the parametrization S3xB1. At any constant graph the second 
variation is strictly positive in the directions orthogonal to the constants. 
(This is clearly true in the product metric, and hence in any metric close 
enough to the product.) Then we can accomplish any small variation by 
first moving by a constant, which does not decrease area, and then moving 
orthogonal to the constants, which increases area. This shows the minimal 
sphere is stable. But since metrics in M-i have strictly positive curvature 
operator, the second variation in the normal direction is negative. This 
contradiction proves the Lemma. 

Lemma 2.8. For every (e, fc, L) we can find T so that any solution in Mi 
with RMAX > F has an (e, fc, L) neck at t = 1. 

Proof. Assume not. Pick a sequence of solutions in Mi with RMAX —► oo 
but so that none of them has any (s, fe, L) neck at t = 1. Pick origins Pj 
where i2p. > ^RMAX and Ai^. > SRMAX by the previous Lemma. Dilate 
the solutions so RMAX = 1 and take a limit. We have to dilate and translate 
in time so the final time t = 1 becomes t = 0 and the solutions exist 
on an interval TJ < t < 0 with TJ —* — oo. Then we can find a convergent 
subsequence using Theorem 25.1 in [10]. The limit will be an ancient solution 
on — oo < t < 0 with bounded curvature and strictly positive curvature 
operator and satisfy as < ^ai and C3 < *ci and 63 < aiCi. Such a solution 
must have an arbitrarily necklike end by the following Theorem E3.3, so 
each of the approaching solutions far enough out in the sequence has as 
good a neck as we like. This is a contradiction. It follows from our theorem 
in appendix G replacing the Schoenfliess conjecture that the (e, fc, L) neck 
bounds a differentiable ball i?4. This will complete the proof of Theorem 
once we establish Theorem E3.3. 
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5.3. Ancient Solutions with Necklike Ends. 

Recall from section 19 in [10] the asymptotic scalar curvature ratio 

A = lim sup Rs2 

s—>oo 

where s is the distance from some origin. The definition is independent of 
the choice of the origin and invariant under dilation. By Theorem 19.1 of 
that paper, if we have an ancient solution to the Ricci Flow complete with 
bounded curvature and positive curvature operator, A is constant in time. 

We say a complete Riemannian manifold with one topological end has 
an arbitrarily necklike end if for every (e, fc, L) we can find an (e, fc, L) neck 
in the manifold. 

Theorem 3.1. Suppose we have an ancient solution to the Ricci Flow on 
—oo < t < 0 which is complete with bounded curvature and positive curvature 
operator, and satisfies the pinching conditions 

as < \Pai    and   cs < \Pci    and   b^ < aici. 

Then the solution has an arbitrarily necklike end if and only if A = oo. 

Proof Suppose we have an arbitrarily necklike end. If e and k are good, the 
scalar curvature R in the neck is nearly 1/r2 where r is the average radius, 
and the length of the neck is nearly Lr. The distance s of some point on 
the boundary of the neck is nearly Lr/2 from the center, so Rs2 is nearly 
L2/4. Taking a sequence of necks with L —> oo we see Rs2 is unbounded, so 
A = oo. 

Conversely, suppose A = oo. We can argue along the lines of the di- 
mension reduction procedure of section 22 in [10]. By Lemma 22.2 of that 
paper, we can choose a sequence of points Pj at time t = 0 and radii rj and 
numbers Sj —► 0 such that 

(a) R(P,0) < (1 + 6j)R(Pj,0) for all P in the ball of radius rj around 
Pj at t = 0 

(b)r]R(Pj,0)^>oo 
(c) if Sj is the distance of Pj from the origin at time 0, then Sj/rj —> oo 
(d) the balls in (a) are disjoint. 
Let Xj be the smallest eigenvalue of the curvature operator at Pj at time 

t = 0. 

Lemma 3.2.   We have \j/R(Pj,0) -> 0. 
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Proof. Suppose not, so that \j/R(Pj,$) > e > 0 for an infinite subsequence. 
The bound on R in the ball of radius rj around Pj at t = 0 extends for 
time t < 0 by the Harnack estimate [6], and this gives interior derivative 
bounds. Since r? JR(PJ,0) —► oo it will be at least 1 for a subsequence. 
Dilate the solutions to make R(Pj,0) become 1, take Pj to be the origins, 
and take a local limit of the dilated solutions in a ball of radius 1 for time 
—1 < t < 0 using geodesic coordinates (see [8]). We then have the smallest 
eigenvalue A > e > 0 at the origin at time 0. Since the solutions have 
curvature operator Rm > 0, so does the limit. 

Suppose Rm has a zero eigenvalue in the interior of the ball for the 
limit. Then the strong maximum principle would contradict A > 0 at the 
origin. This means that we can find S > 0 such that A > 5 in the ball of 
radius 1/2 around the origin at t = 0. But this means that for large j we 
have A > (5/2)R(Pj,0) in the ball of radius rj/2 around Pj at t = 0 in 
the sequence. Hence there is a ft > 0 such that each Pj is the center of a 
curvature /3-bump of radius rj/2. Since Sj/rj —> oo, for any A < oo we can 
find a subsequence of disjoint A-remote curvature /?-bumps. This contradicts 
Theorem 21.6 in [10]. Hence \j/R(Pj,0) -> 0. 

Now we finish the proof of the Theorem as in section C5. We claim 
that for any {e'^k'^L1) the points Pj for large enough j are the centers of 
{e1\ &/, V) curvature necks. To see this, take geodesic tubes out of the Pj 
for any length £R(Pj^0)1/2 in any direction ending in points Qj and still 
control the curvature. Since r?jR(Pj, 0) —> oo we can always go out a length 

£R(Pj^0)1/2 for large j and still control the curvature. Make Pj the origin 
and the directions the same, dilate so i?(Pj,0) becomes 1, and take a local 
limit along the geodesic tube. The limit still has non-negative curvature 
operator and satisfies the pinching conditions 

as < ^ai    and   C3 < \I/ci    and    63 < aici 

since they are dilation invariant. In the limit the curvature operator has a 
zero eigenvalue at the origin by the previous Lemma. Then as in Theorem 
C5.1 the holonomy reduces to 5o(3), the curvature operator matrix has 
A = B = C, and 63 < aici forces A = B = C to be a multiple of the 
identity. In dimension 3 if the curvature is a multiple of the identity at each 
point, it is constant. Hence the curvature in the limit is cylindrical. For 
large j it will be (s7, kf) cylindrical in a ball of radius £R(Pj,0)1/2 for any £ 
we like. Taking £ > 1/ establishes our claim that the curvature is (e7, fc', £/) 
cylindrical. For any (e, fc, L) we can pick (e7, k', V) so that if the curvature 
is (s7, /c7, L') cylindrical we have a geometric (s, fc, L) neck. This proves the 
Theorem. 
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The following result will complete the proof of the Enabling Theorem 
and hence also the Main Theorem Al.l. 

Theorem 3.3. Given an ancient solution on —oo < t < 0 to the Ricci 
Flow which is complete but not compact with bounded curvature and strictly 
positive curvature operator and satisfying the pinching estimates 

a^ < ^ai    and   C3 < \I/ci    and   63 < aici 

then for every (e, fc, L) we can find an (e, fc, L) neck somewhere in the solu- 
tion at time t = 0. 

Proof We consider two cases. The first is Type I where R\t\ < ft < 00. 
Since 

i? = ai + a2 + as = ci + C2 + C3 < Sas    or    803 

we have uniform isotropic pinching. By Corollary B3.5 we can find points 
with necklike curvature, and use Theorem C5.1 (our hypotheses here are 
stronger) to find the desired neck. 

The other case is Type II where 

—*    limsup jR|t| = 00. 

Pick sequences Tj \ —00 and 7^ /* 1, and then pick points Pj and times tj 
so that tj > Tj and 

\tj\(tj-Tj)R(Pj,tj)>fjSup\t\(t-Tj)R(P,t). 
P,t 

Then translate in space so Pj is the origin and in time so tj becomes time 0, 
and dilate in space and time so R(P^t) becomes 1. Suppose time 0 dilates 
to become ttj and time Tj dilates to becomes —Aj. Then 

1 AjQj    =\tj\(tj-Tj) 
1/Aj + l/Qj      Aj+Qj Tj        n^>z3) 

by dilation invariance, and the last term goes to 00 as j —+ 00 by our 
hypothesis that |t|jR is unbounded. Hence Aj —> 00 and Slj —►■00. 

If a subsequence of the lowest eigenvalues Ai j of the curvature operators 
of the dilated solutions at the points (0,0) (which were (Pj.tj) before we 
translate and dilate) have Ai j —> 0, we can find arbitrarily good necks in the 
solution, but at earlier times. If we find an (gp, fcp, Lp) neck at time tp, the 
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asymptotic scalar curvature ratio A at that time must be nearly L^. But 
A is constant in time and Lp is arbitrarily large. Hence A = oo. But then 
Theorem 3.1 implies we have arbitrarily good necks at time t = 0 also. 

If on the other hand the lowest eigenvalues Aij of the curvature operators 
of the dilated solutions are uniformly bounded away from 0, we can control 
the injectivity radii by Theorem 25.1 of [10], and take a global limit. This 
limit will have strictly positive curvature operator, since Ai > 0 at the origin, 
and the scalar curvature R will assume its maximum at the origin at time 
0 by our choice of the Pj and tj. Then it is a Ricci soliton by [7], and by 
Theorem 20.2 in [10] such a soliton has asymptotic curvature ratio A = oo. 
Hence the soliton limit has arbitrarily necklike ends. Then again we can find 
arbitrarily good necks in the original ancient solution at a sequence of times 
tj —> —oo. So A is very large at these times, but A is constant; hence A = oo 
in the ancient solution also and we can apply Theorem 3.1. Thiscompletes 
the Proof. 
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Appendices 

6. Smoothing Functions. 

6.1. Heat Flow Estimates on Tensors. 

We shall prove a smoothing theorem to deal with the following situation. 
We have a region in a manifold where we have a function /o and a one-form 
HQ so that Dfo ~ HQ and DHQ « 0. Then we would like to approximate /o 
by another function /* on a smaller region so that 

/* ~ fo    and    Df* « HQ    and    D2/* « 0. 

This requires smoothing since fo may not even have a second derivative. 
Our technique for smoothing fo will be to solve a heat equation with 

Dirichlet boundary data, and use some fairly standard derivative estimates 
from the maximum principle. We shall also have to do the same with HQ. 

Of course one could probably do this also by writing down a convolution. 
However this becomes somewhat complicated in dealing with forms on a 
manifold, so the author has used a method with which he is more familiar. 

We start by observing we can always take the boundary of a region to 
be smooth, up to a small error in distance. Of course we have no control 
over the extrinsic curvature of the boundary, but this will never enter our 
subsequent estimates. This is just a device to make things as smooth as 
possible to avoid technical questions when possible. 

Lemma 1.1. Given a compact set K inside an open set U in a smooth 
manifold M, there exists a compact set N with K C N C U such that the 
boundary of N is a smooth submanifold of M. 

Proof Choose a Riemannian metric on M. Cover K with a finite number of 
open coordinate balls of radius at most p. If p is small each coordinate ball 
is a smooth ball with a smooth boundary, and each ball lies well inside U. 
Call the balls i?i, i?2, • • • > B^. Let si be the distance of a point outside Bi 
to its boundary, and likewise for 52,..., Sfc. There will be some 6 > 0 such 
that each Sj is smooth on 0 < Sj < 25. By enlarging some of the radii of 
the balls slightly if necessary, we can guarantee they all meet transversally. 
Then we can find 6 > 0 so that if some collection of balls, say i?i,..., J5p, has 
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si < 25,..., Sp < 25 at a point then the vectors Dsi,..., Dsp are linearly- 
independent at that point. 

Choose a smooth function </?(s) with (p(s) = S for 0 < s < 6 and (p(s) = 
26 for s < 26, while <//(s) > 0 if 0 < s < 26 for all s. Let 5^ = (p(sj). Then 
5j is smooth everywhere. Consider the product 

S = Si§2 . . .Sfc. 

We let AT be the set where 5 < e for some small e > 0 to be chosen. Clearly 
N contains K, and if e is small N is contained in U. If e < 5fc then when 
S = e on the boundary of AT, some function, say §1, has si < 6. Then 
s1 = si and £)5i is a unit vector, so Z>5i ^ 0. Suppose 5i, 52,..., Sp < 26 
while 5p+i,..., Sk < 25. Since 

and Dsi,.. .Dsp are linearly independent, so are Dsi,.. .Dsp] while 
jDSp+i,..., jD^fc = 0 since (p'(s) = 0 for 5 > 26 by the product rule 

DS = Dsi • 52 ... Sk + h ' Dh • 53 ... 5^ + ... 

and we see that DS / 0 or S — e. This shows the boundary of N is smooth, 
proving Lemma 1.1. 

Let N be a compact manifold with boundary. Choose a distance s on N. 
Let iVg denote the set of points whose distance from the boundary dN is s 
or more. We assume iV has a Riemannian metric whose sectional curvature 
tensor is bounded in absolute value by 

\Rm\ < 1/s2 

which is always true if s is small. Let P be a smooth tensor on N evolving 
over time by a heat equation of the form 

OP 
^- = AP + L*P + Q 
at 

where L and Q are some other tensors on N and L*P is a tensor contraction. 
We assume moreover that for some constant B we have bounds 

|P| < B    and    |L| < 1/s2    and    \Q\ < B/s2 

on N for 0 < t < u. We also assume s is so small that s2 < UJ. 
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Theorem 1.2. Suppose in addition 

\P\ < SB 

for some small 5>0onNatt = 0. Then also 

\P\<{6 + Ct/s2)B 

on Ns for 0 < t < s2 for some constant C depending only on the dimension. 

Proof. Let 
p = e-tls\l + \P\lB)-(l + 5). 

Then p is smooth for P ^ 0, and P — 0 will not matter. Using our estimates 
we find that p < 1 on N for t > 0 and p < 0 on N at t = 0. Moreover p 
satisfies the inequality 

!** 
on N for t < 0, as we see from the estimates on L and Q. We want to keep 
p from growing too fast on iVs. 

Take any point X in Ns and look at the exponential map at X taking a 
ball of radius s in the tangent space at X into N. Since |i?m| < 1/s2 this 
is a local cover. By reducing the original s by a constant factor, we can get 
such a cover on a ball of radius many times 5, and this will only scale the 
constant C in our estimate. Then we can find harmonic coordinates on the 
ball of radius s in the tangent space. By making s small, these coordinates 
will be such that the metric is nearly the identity and its first derivatives 
are nearly zero. If r is the Euclidean radius in the ball, we will have Ar2 

nearly equal to 2n; this gives 

Ar2 < C 

for a constant depending only on n. Let 

r2 + Ct 

on the ball. Then q < 0 on the ball, and q > 1 on its boundary. Moreover 
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by the previous estimate. If we pull back the function p to the ball, we find 
that p < q by the maximum principle, since this holds at t = 0 and on the 
boundary of the ball. This gives 

\P\ < B[S + (e*/*2 - 1) + CBt/S2] 

at X since q < Ct/s2 there. Now 

etls* _ j < ct/s2 

for 0 < t < 52, and we are done. 

Corollary 1.3. If we only assume P is in L00 at t = 0 with the same 
bounds, the conclusion still holds for the weak solution. 

Proof. We can approximate P by smooth functions at t = 0 in the classical 
way using consolutions in local coordinates and patching together with a 
partition of unity. This gives us a sequence of smooth functions Pj at t — 0 
with Pj —> P weakly and 

limsup suplP^rr,0)| < esssup \P{x,0)|. 
J—►OO X X 

Solve the same linear equation with smooth coefficients for t > 0 using the 
Pj as initial data. Then the solutions for the Pj converge weakly to the 
solution P. Since the Pj satisfy the bounds of the Theorem, so does P.   □ 

Now we give estimates on the first derivative. Suppose again that P is 
smooth and 

OP 
— = AP + L*P + Q 
at 

on 0 < t < s2 and 

|P| < B    and    \L\ < l/s2    and    |Q| < B/s2    and    \Rm\ < 1/s2 

and now suppose also that 

\DL\ < l/s3    and    \Dip\ < B/ss    and    \DRm\ < l/s3. 

Theorem 1.4.   We have an estimate 

(i) \DP\ < CB/Vt 
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on Ns for 0 < t < s1. If we assume in addition that 

\DP\ < B/s 

att = 0 then we also have an estimate 

{ii) \DP\ < CB/s 

for 0 < t < s2. Here C denotes constants depending only on the dimension. 

Proof We let 
F = a(AB2 + \P\2)\DP\2/B4 

where a and A are constants we can choose later. The derivative DP will 
satisfy an equation of the form 

-—DP = ADP + Rm*DP + DRm *P + L*DP + DL*P + DQ 

and hence F will satisfy an equation of the form 

^ = AF-f4 [\Dpr + {Alfi + \P\*)\l?P\*]+% 

where E is a sum of terms of the form 

Ei=P*DP*DP* D2P 

E2 = P*(L*P + Q)\DP\2 

E3 = (AB2 + \P\2)[Rm *DP + DRm * P + L* DP + DL* P + DQ] * DP. 

Our estimates give 

l^xl < CB\DP\2\D2P\ 

\E2\ < CB2\DP\2/s2 

\E3\ < CB2\DP\2/s2 + C53|£>P|/s3 

and we can use the negative terms to get 

^AF-i^ + C/s4 

ot 

by making A large enough to bound JSi, taking care of E2 and i?3, and 
making a small enough that the term in |I?P|4 bounds F2. If we let 

F = F- Ct/sA 
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then when F > 0 (which is all we need) we have 

at 

This is our basicdifferential inequality. 
To estimate F we again construct a comparison function in a harmonic 

coordinate ball on a local cover. If r is the Euclidean radius in the ball, we 
have 

\Dr2\ < Cs    and    |Ar2| < C 

as before. Then we let 
1 As2 

t + (s2- r2)2 

where A is a constant we can choose later. Since 

dh 1 ^    AU^     CAs4 

and    Ah < 
Ot t2 - (s2-r2)4   V 

if A is large compared to C we get 

and h —* oo iit —»0orr--»s. Therefore by the maximum principle F < h. 
This gives the bound (i) in the general case. 

If we also assume \DP\ < B/s at t = 0, we get a bound 

F<C/s2    at   t = 0 

and we can take the simpler comparison function 

As2 

(s2 — r2)2 

with A suitably large compared to the constants C. Then we still have 

at 

and F < h at t = 0, while h —> oo as r —>• 5. This makes F < /i for t > 0, 
which gives the bound (ii). 

Corollary 1.5. // we only assume P is in L00 with the same bounds, (i) 
still holds. If we only assume P is Lipschitz continuous with the same 
bounds, (ii) holds. 
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Proof. The result for (i) is the same proof as Corollary 1.3 before. The result 
for (ii) is similar. If P is Lipschitz, the sequence of smooth approximations 
Pj at t = 0 will have 

limsup sup|Pj(a;,0)| <sup|P(x,0)| 
j—>oo        x X 

and for the covariant derivative 

limsup suppPj-foO)! < limsup |P(a:,0) - P(y,0)|/d(a;,y). 
J-KX)        x d{x,y)-+0 

Hence we can replace the bound on DP at t — 0 by the Lipschitz seminorm. 
□ 

6.2. The Smoothing Procedure. 

Now we prove our smoothing result. 

Theorem 2.1 Smoothing Theorem. In any dimension n, for every e > 
0 there exists a S > 0 depending only on e and n with the following property. 
If N is a smooth manifold with boundary ON of dimension n, /o is a Lips- 
chitz continuous function and HQ is a Lipschitz continuous one-form on AT, 
s is a distance and B is a constant such that 

\Rm\ < 1/s2    and    \DRm\ < 1/s3    and    \D2Rm\ < 1/s4 

and all of N, and 

|/o| < B    and   \Ho\ < B/s 

on all of N, and 

\Dfo - Ho\ < 5B/s    and   \DHo\ < SB/s2 

almost everywhere on N, then we can find a smooth function /* on the 
interior of N such that 

|/*-/o|<eP    and   \Df* - Ho\ < eB/s    and   \D2f*\<eB/s2 

at every point of N whose distance from the boundary dN is at least s. 
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Proof. We shall start with the given value /o, and construct a one-parameter 
family of functions ft for t < 0 by solving the heat equation 

at      J 

on iV with initial value and boundary value conditions / = /o at t = 0 and 
on dN. The resulting solution is smooth in the interior of N for t > 0. We 
will take our smoothing /* to be the value of the solution ft at a suitable 
value t* of t. O 

Lemma 2.2. For allt>0 we have \f\ < B on all of N. 

Proof. This follows from the maximum principle since |/| < B at t = 0 and 
on dN. D 

Lemma 2.3.   We have an estimate 

\Df\ < CB/s 

at all points at distance at least s from dN for 0 < t < s2. 

Proof. We can apply our interior derivative estimate to Df. At t = 0 we 
have 

\Df\<\Df-H\ + \H\< (6 + l)B/s 

and we can take S < 1. We also have bounds on Rm and DRm, and this is 
all we need to use Theorem 1.4 (ii). □ 

Lemma 2.4.   We have an estimate 

\D2f\ < CB/sVt 

at distance at least s from dN for 0 < t < s2. 

Proof. Let JV^ denote the points at distance s from dN. Then 

Ns = (Ns/2)s/2. 
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The previous Lemma gives an estimate of the same form on Ns/2 with a 
larger constant C. We use this as our bound on Df when we apply the 
interior derivative estimate to D2f. Now Df satisfies an equation 

-Dif = ADif-2RijDjf 

which has the form 

^-Df = ADf + Rm*Df 
at 

and we have bounds on Rm and DRm. Then we can use Theorem 1.4(i). 
□ 

Corollary 2.5.  We have an estimate 

I/* - /o| < CBVt/s 

at distance s from the boundary for 0 < t < s2. 

Proof. We use 

% = &f    and    |A/|<C|D2/I 

and integrate the previous estimate from 0 to t. Note that although 1/y/i —► 
oo as g —» 0, its integral is bounded by y/i. D 

For the first inequality in the theorem to hold, we need to make 

\f*-fo\<eB. 

We can accomplish this by Corollary 2.5 by making 

** < (es/C)2. 

This is one condition we must meet. 
To make further estimates, we construct a one-parameter family of one- 

forms Ht for t > 0 by solving the heat equation 

where AB is the Bochner Laplacian on one-forms 

ABH = (dd* + d*d)H 
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given in coordinates by 

&BHk = AiJfc - RkiHi 

where A is the naive Laplacian 

LHk^gVDiDjHk. 

Note that Df satisfies the same equation 

|D/.A.i>/. 

The equation has the form 

The equation has the form 

—H = AH + Rm*H 
at 

which is all we use for our estimates.   We impose the initial value and 
boundary value conditions 

H = Ho    at t = 0    and on dN. 

Lemma 2.6. For 0 < t < s2 we have an estimate 

\H\ < CB/s 

on all of N for some constant C. 

Proof The estimate holds at t = 0 and on dN.  The length squared of H 
satisfies an equation of the form 

^-\H\2 = A\H\2 - 2\DH\2 + Rm*H*H 
at 

which gives an inequality 

J^ljgf <A|jff|2 + c|ir|V. 
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The maximum principle can be applied to 

h = e-ctls2\H\2 

since 

and h < B/s at t = 0 and on dN. This gives h < B^js1 for t > 0 on AT, 
and for 0 < t < s2 we get \H\2 < CB2/s2. 

Lemma 2.7.   We have an estimate 

\DH\ < CB/s2 

at all points at distance at least s from dN for 0 < t < s2. 

Proof. We apply the interior derivative estimate to DH. At t — 0 we use 

\DH\ < 5B/s2 

and take S < 1, since it can't help to make it small because there are other 
terms in the answer without S. We can apply Theorem 1.4(ii) to get the 
result. □ 

Lemma 2.8.   We have an estimate 

\D2H\ < CB/s2Vi 

at all points at distance at least s from dN for 0 < t < s2. 

Proof. First we use the previous result to estimate \DH\ not just on iVs but 
on the larger set iV^, and then use this to estimate \D2H\ on iVg. The 
tensor DH satisfies an evolution equation of the form 

— DH = ADH + Rm*DH + DRm * H 
at 

and we have bounds on Rm and DRm and D2Rm and H and DH. We can 
use Theorem 1.3(i), □ 
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Corollary 2.9.  We have an estimate 

\Ht-Ho\<CBVi/s2 

at all points at distance at least s for dN for 0 < t < s2. 

Proof We use the equation for dH/dt and integrate the previous bound 
from 0 to t. U 

Next consider the tensor 

J = Df - H 

which also satisfies the equation 

dJ        A      T 

Tt=^J 

which has the form 

— = A J + Rm * J. 
at 

Using our estimates on Df and H we have a bound 

\J\ < CB/s 

on Ns for t > 0, and hence a similar bound on iV^- By our hypotheses we 
also have a bound 

| J\ < 5B/s 

on Ns at t = 0. 

Lemma 2.10.  We have a bound 

\J\<(5 + Ct/s2)B/s 

at all points at distance at least s from dN for 0 < t < s2. 

Proof We apply our bound in Theorem 1.2 to J on N8/2- 
Now observe that 

Dft -Ht = Jt + (Ht - Ho) 
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and hence on Ns we have an estimate 

\Dft-Ht\<(8 + Cy/i/s)B/s 

for 0 < t < s2 using Lemma 2.10 and Corollary 2 .9 and noting t/s2 < y/i/s. 
We can then make 

\Df*-H*\<eB/s 

by choosing 5 < e/2 and U < (es/2C)2. 

Lemma 2.11.   We have a bound 

\DH\<(S + Ct/s2)B/s2 

at all points at distance s from ON for 0 < t < s2. 

Proof We have \DH\ < CB/s2 on Ns/2 for 0 < t < s2 from Lemma 7 and 
\DH\ < SB/s2 on N at t = 0 from the hypotheses. We can then apply 
Theorem 1 to DH on Ns. □ 

Lemma 2.12.   We have a bound 

\DJ\ <C{5 + t/s2)B/sVi 

at all points at distance at least s from ON for 0 < t < s ? 

Proof We use the evolution equation for J and the bound on J from 
Lemma 10, which will also hold on Ns/2 in the same form. We can then 
apply Theorem 1.4(i). □ 

We are now in a position to estimate D2ft using 

D2ft = DJt + DHt 

to get 
\D2ft\<C(S + t/s2)B/sVi 

on Ns for 0 < t < s2 (using 1/s < l/\/t in the estimate for DH. We can 
now make 

|£>2/*l < zB/s2 

by first making 
U < (es/2C)2 
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and then making 
5 < ey/i*/2Cs. 

Since these are compatible with our previous restrictions we are done. This 
proves the smoothing theorem. 

7. A Replacement for Schoenfliess Conjecture. 

We use the following result, which is much easier than the Conjecture. 

Theorem 1.1. There exists (e,k,L) with the following property. If we 
have a complete Riemannian manifold M4 with a metric of strictly positive 
sectional curvature K > 0; and if M4 contains an (e, fc, L) neck, then its 
center sphere S3 bounds a differentiable ball B4. 

Remark. A complete Riemannian manifold Mn with strictly positive sec- 
tional curvature is diffeomorphic to i2n, and a differentiable sphere S71'1 in 
Rn is known to bound a differentiable ball Bn in all dimensions except n = 4 
by the Schoenfliess conjecture. But our proof works in all dimensions. 

Proof The standard proof that Mn is diffeomorphic to Rn above is to 
construct a strictly convex Lipschitz Busemann exhaustion function 6, and 
smooth b a little to get a C00 strictly convex exhaustion function b. Since b 
has a single central point which is a minimum, the result follows by Morse 
Theory. Of course every sublevel set b < C is a differentiable ball Bn. We 
shall show that a level set b = C near the middle of a good long neck is 
transverse to the foliation of the neck S3 x B1 by lines {P} x S1, in fact be- 
ing nearly perpendicular. It is then easy to see that the sublevel set b < C, 
which is a differentiable ball, is diffeomorphic to the ball inside the center 
sphere of the neck. □ 

For simplicity, we scale the metric so the radius of the standard metric 
on S3 is 1, and the metric on M4 is (e, /c, L) close to the product S3 x [0, L]. 
Let / be the function on the neck corresponding to the coordinate in [0, L]. 
We also take a Busemann function b on M4 from the standard construction 
(see Cheeger and Ebin[l]). 

Lemma 2.  There exists a function b on M4 with the following properties. 

• (i) b is proper and bounded below 

• (ii) b is Lipschitz continuous; \b(Y) — b(X)\ < d(X1Y) 
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• (in) b is strictly convex (in the sense that the composition ofb with any 
geodesic s : R1 —> M4 is a strictly convex function of the arc length s) 

• (iv) for any r < s, the compact strictly convex sublevel set Br = {b < 
r} is exactly the set of all points in Bs whose distance from the bound- 
ary of Bs is at least s. 

Since b is strictly convex, if we smooth it a little (using smoothing oper- 
ators as in Appendix F) it will still be strictly convex. We shall show that 
near the middle of the neck b is close to / (if we shift 6 by a constant) both 
in the supremum sense \b — f\ < 5 and in the Lipschitz sense 

\[b(Y) - f(Y)} - [b(X) - f(X)}\ < Sd(X,Y). 

Then if we smooth b a little to 6, and smooth / by the same process to /, 
then b — f will still be small in the Lipschitz sense (see Appendix F again), 
and / will still be close to / in the Lipschitz sense. This suffices to make 
the level sets of b near the middle of the cylinder almost perpendicular to 
the lines of the cylinder, as desired. It remains to show b is close to / as 
claimed. 

Lemma 4. For every 5 > 0 and every fraction c > 0 we can find (e, fc, L) 
so that once we are the fraction c of the way from the far end of the cylinder 
we have \b — f\ < 5. 

Proof. First we shift b by a constant so that on the far end of the cylinder, 
where / = L, the minimum value of b is exactly L, occurring at some point 
P. Consider any point X in the cylinder on the sphere where f{X) = L — £. 
The value of b at X is given by 

b(X) = L-d(X1{b = L}). 

Since P G {b = L}, we have 

b{X)>L-d{X,P). 

In the product metric d 

d(X,P)2<e2 + 7r2 

and this makes 
d(X,P) <£+!', 
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while in our metric the distance will not be much more if (e, fc, L) is good. 
If we take (. large compared to 8 we can make 

d{X,P)<f. + 5 

and get 
b{X) >L-£-6 = f(X) - 5. 

On the other hand, since the set {b = L} lies on or beyond the far end of 
the cylinder, the distance from X to {b = L} is at least the distance to the 
far end. In the product metric this distance is £, and we can make it at least 
£ — 5 in our metric if (e, A:, L) is good. Then 

d(X,P)>e-5 

gives 
b{X)<L-e + 5 = f(X) + 5 

and we are done. □ 

Lemma 5. For every S > 0 and every fraction c > 0 we can find (e, k, L) 
so that once we are the fraction c from the far end of the cylinder we have 
a Lipschitz estimate 

\[b(Y) - f(Y)} - [b(X) - f(X)}\ < 6d(X,Y). 

Proof By the previous Lemma, we can afford to assume that at the far end 
of the cylinder we already have \b — f\ < 5. Choose M so the level set 
{b = M} is between the level spheres {/ = L} and {/ = L — 8}, and with 
L — 5 < M < L. Then take points X and Y near each other and well down 
the cylinder. □ 

Let P be the point on the level set {b = M} closest to X. Then 

b(X) = M-d(X,P) 

while for any Y we have 

b(Y)<M-d(Y,P) 

and this gives 
b{Y) - b{X) < d{X, P) - d{Y, P). 
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Choose minimal geodesies XY, XP, and YP, and let 0 be the angle between 
XY and XP. When X is far down the cylinder from P, the tangent vector 
to any minimal geodesic XP must be close to the gradient vector Df(X). 
In fact we can make the angle between them as small as we like by making 
(e, fc, L) good and making XP a fraction of L. Then since / is smooth we 
can make 

\f(Y)-f(X)-d(X,Y)cQ80\ < 5d(X,Y)/2 

for Y close to X. Now since K > 0, Toponogov's Theorem (see [1] again) 
allows us to compare to a Euclidean triangle with sides d(X, Y) and d(X, P) 
and angle 0 between them to conclude 

d{Y, P)2 < d{X, P)2 + dpT, Y)2 - 2d(X, P)d{X, Y) cos 0 

by the law of cosines. We rewrite this as 

d(Y, P)2 < [d(X, P) - d(X, Y) cos 0]2 + d(X, Y)2 sin2 0. 

Now we use sin 0 < 1 and 

Va2 + b2<a + — 
2a 

and cos 0 < 1 in the denominator to get 

d(r, P) < d(X, P) - d(X, Y) cos 0 + 
d(x,y)2 

d(X,P)-d(X,Yy 

If P is far down the cylinder and X is close to Y we can make the last term 
smaller than 5d(X,Y)/2. This gives 

b(Y) - f(Y) < b(X) - f(X) + 6d(X, Y) 

and since X and Y are interchangeable we are done.   This completes the 
proof of Theorem 1. 
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