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Infinitesimal rigidity of higher rank lattice actions 
NANTIAN QIAN 

We establish the continuous and smooth infinitesimal rigidity of 
standard actions of higher rank lattices. 

1. Introduction and the Statement of Results. 

Let r be a discrete group, M a smooth compact manifold without bound- 
ary, and p a smooth action of T on M (or equivalently, p is a homomorphism 
from r to DiflF00(M)). Let e > 0 and pt, 0 < t < e, po = P, be a dif- 
ferentiable path of smooth actions; i.e., for every 7 e F, t K-> ^(7) is a 
differentiable path in Diff00(M). Observe that for all 71,72 G F, t e [0,e], 
Pt(7i72)(^) = Pt{li)pt{l2){%)- We differentiate the equation with respect to 
t at t = 0 and for any 7 € F and x € M denote (3{^){x) := Ji\t=QPt{l){x), 
a{i){x) := /?(7)(Po(7"1)^)) then 

1 ^(7172) = a(7i) + (po(7i))*a(72), 

where for any diffeomorphism / and vector field v, /#v is a new vector field, 
x^Df(y(rlx)). 

For each 7 G F, assume that pt is obtained by a differentiable path of con- 
jugacy with po, or equivalently there exists a differentiable path ^ starting 
at Id in Diff00(M) such that pt{i){x) = ^ 0 Po(7) 0 (pt1^)- Differentiating 
the equation with respect to t at t = 0, we get 

2 a(7) = t; - (A)(7))*v 

for a vector field v(x) = ^|t=o0t(^)- 
Recall that a given action p of F on M is said to be deformation rigid if for 

any sufficiently small deformation pt, pt is given by conjugacy; and it is said 
to be infinitesimal rigid if all maps from F to the set of smooth vector fields 
satisfying (1) (such maps are called cocydes) also satisfy (2) (such maps are 
called coboundaries). (We omit the reference to the class of smoothness and 
the topology for simplicity, see §2 for detailed definition). It is natural to 
ask the connection between the two notions of rigidity. Although no result 
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is established in either direction, one anticipates that they are equivalent in 
a suitable sense (see [1] for a partial result) for standard higher rank lattice 
actions. 

We are interested in the infinitesimal rigidity of discrete group actions. 
While arbitrary actions of discrete group T may not be infinitesimal rigid- 
ity, one anticipates that the standard actions of higher rank lattices are 
infinitesimal rigid. For higher rank lattices, three types of standard volume 
preserving actions of higher rank lattice T on a compact smooth manifold 
M have been described by Zimmer: (1) Isometric actions; (2) Left transla- 
tions on compact quotients H/A via homomorphism F —» H, where if is a 
connected Lie group, A C H is a cocompact lattice; (3) Affine actions on 
compact nilmanifolds. We call them type 1, type 2 and type 3 standard 
actions respectively. 

The first infinitesimal rigidity result was obtained by Zimmer (Theorems 
4.6, 5.6 of [20]) for type 2 standard actions. Let G be a connected semisimple 
Lie group with no simple factors locally isomorphic to 0(1, n) or 17(1, n), H 
a Lie group, F c G a cocompact lattice, A c H a cocompact lattice. Let F 
act ergodically on compact manifold H/A via a homomorphism TT : F -* H. 
Then any C^-cocycle is an L2-coboundary (the action is then said to be L2- 
infinitesimal rigid). If moreover H is semisimple and either (a) 7r(r) is dense 
in H or (b) H = Hi x 272, and 7r(r) projects densely into Hi and trivially 
into TTz, then any C^-cocycle is a C^-coboundary (the action is then said 
to be C00-infinitesimal rigid). Actually, Zimmer proved more about the L2- 
infinitesimal rigidity (see Theorem 4.5 of [20]). Later on Lewis [9] obtained 
the L2-infinitesimal rigidity for non-cocompact lattice actions under some 
technique conditions, and C^-infinitesimal rigidity of standard actions of 
SL(n, Z) on torus T1 for n > 7. The overall structure of their proofs is 
that they show any C^-cocycle is L2-coboundary by Hodge theory on a 
suitable foliated manifold, and then show the regularity of the coboundary 
by Sobolev space techniques. We also mention that Lubotzky and Zimmer 
[13] obtained that for irreducible lattices F in the product of a noncompact 
simple group with a semisimple Kazhdan group, isometric ergodic actions 
on compact manifolds by F are C00-infinitesimal rigid. 

While we will refrain ourselves from discussing the detailed arguments 
of [20], [9], it is worth mentioning that Lewis used the hyperbolicity of the 
standard action of SLfaZ) on torus Tn to obtain the regularity result. 
Hurder [5] noticed that if the action p of F on M is Anosov (i.e., there 
exists 7 e F such that p(7) is Anosov diffeomorphism) with dense periodic 
points (p € M is said to be periodic if the orbit of p under p is finite), 
and F satisfies SVC (see §2 for definition), then any C0-cocycle is C0- 
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coboundary, and if p is maximal Cartan (see [5] for definition), then p is 
C^-infinitesimal rigid. Hurder's argument used the hyperbolicity and the 
density of the periodic points of the action to obtain the Cr0-infinitesimal 
rigidity, the regularity result is an application of the Livsic theorem for 
cocycle over Anosov diffeomorphism [10]. We remark that Hurder does not 
require the actions to be standard to obtain the continuous infinitesimal 
rigidity. 

We extend Hurder's C0-infinitesimal rigidity result to partially hyper- 
bolic actions (§3). The regularity from L2-infinitesimal rigidity to C0- 
infinitesimal rigidity and then to C^-infinitesimal rigidity is also established 
under some (very relaxed) technique conditions. The main new ingredient 
is an observation that an Mn-valued function / on M is regular iff the pro- 
jections of / to sufficiently many subspaces are regular (see §2.5 for exact 
results). 

Theorem 1.1. Let T be a discrete, Kazhdan, SVC group, p a tangentially 
flat action ofT on a compact manifold with dense periodic points associated 
with a homomorphism TT : T —> GL(n,M). Then 

1. p is C0-infinitesimal rigid ifir has no compact part (Proposition 3.2); 

2. p is L2-infinitesimal rigid ifir decomposes as direct sum TTI +^2, where 
TTI has no compact part and 7:2 has only compact part (Proposition 3.5). 

For the definitions of tangential flatness and a homomorphism having no 
compact part, see §2.2 (D9-10). 

Theorem 1.2. Let T be a discrete, Kazhdan, SVC group, M a torus or 
a nilmanifold, p an action ofT on M by automorphisms. Assume that the 
homomorphism TT corresponding to the tangent map has no compact part, is 
of almost Lyapunov multiplicity free type (for the definition, see §2.3), and 
the adjoint representation Ad on ofT on gl(n,R) is completely reducible. 

1. Assume that p is Anosov. Then p is C00-infinitesimal rigid (Theorem 
12 in U). 

2. Assume that M is a torus. Then p is C00-infinitesimal rigid (Theorem 
4.6 in U). 

Corollary 1.3. Let G be a connected, R-split linear group without compact 
factor and finite center, T a lattice in G, TT : G —► GL(n,M) a continuous 
homomorphism.  If either (1) T is irreducible and the real rank of G is at 
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least 2 or (2) the real rank of each simple factor of G is at least 2, and 
for any irreducible constituent TT

7
 O/TT, there exists a multiplicity free weight 

A' 7^ 0 (i.e., any weight O/TT is not proportional to X'). 

1. Assume that p is an Anosov action ofT on a torus or a nilmanifold by 
automorphisms associated with 7r|r. Then p is C00-infinitesimal rigid. 

2. Assume that p is an action ofT on a torus by automorphisms associ- 
ated with 7r|r. Then p is C00-infinitesimal rigid. 

Proof.   It follows from Proposition 2.2 and Theorem 1.2. □ 

Theorem 1.4. Let H be a finite product of connected non-compact simple 
Lie groups Hi with finite center, t) = ©fa the decomposition of the Lie 
algebra of H, A an irreducible cocompact lattice in H. Let G be a connected 
semisimple Lie group with no simple factors locally isomorphic to 0(l,n) 
or U(l,ri), F c G a cocompact lattice. Let p be an action ofT on H/A 
via homomorphism h : F —> H. Assume that there exists 7 G Y such that 
Adn o h(i) is partially hyperbolic, and the eigenspace V\C\) corresponding 
to eigenvalue 1 of Adn ° ^(7) satisfies Vi n \}i / 1);,^ {0}. Assume also 
that Adn o h : T —> GL(\)) has no compact part, and the only non-trivial 
irreducible invariant spaces of it are (j*. Then p is C00-infinitesimal rigid 
(Theorems 4-11, 4-7 in §4)- 

Corollary 1.5. Assume the notation as in Theorem 1.4- Ifh(T) is Zariski 
dense in H, then the standard action of T on H/A by left translation via h 
is C00-infinitesimal rigid. 

Proof The existence of an M-regular element s e h(T) is established by 
Benoist-Labourie, Prasad (See for example [16]). Then s is in a Cartan 
subgroup C of H. Let c be the Cartan subalgebra corresponding to C. 
Then Adu ° h{s) has eigenspace Vi = c corresponding to eigenvalue 1 [17]. 

Then we have Vi n fa ^ 0, fa. Moreover, Adn ° h has no compact part, 
and the only non-trivial irreducible invariant spaces of it are fa. So p is 
C^-infinitesimal rigid. □ 

Corollary 1.6. Let G, H be as in Theorem 1.4, and H = G. For any 
irreducible cocompact lattice A c G, cocompact lattice T c G the standard 
action ofT on G/A by left translation is C00-infinitesimal rigid. 
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Proof.   It is a special case of Corollary 1.5 by Borel density theorem.       □ 

We thank D. Burde and R. Howe for helpful conversations. 

2. Preliminaries. 

For the convenience of the reader, we collect notations, definitions and 
preliminary results in this section. We mention that the results in §2.5 are 
important for the rest of the paper. 

2.1. Notations. 

We always assume the following unless otherwise specified. 

1. (Nl) F is a discrete subgroup; 

2. (N2) M is a smooth compact manifold with dimension n; 

3. (N3) p is a C^-action of T on M; 

4. (N4) fl(p) the set of periodic points, Sl(p) = {p € M : /?(r)p is finite}; 

5. (N5) E is a C00-vector bundle over M; 

6. (N6) p is a C^-action of Y on E by C^-bundle automorphism, p 
covers p; 

7. (N7) Xr(E), Xhdd(E), XL\E) are the sets of all Cr, bounded, I? 
sections of E —> M, respectively; 

8. (N8) (p)# is the action of Y on Xr{E), X^E), XL\E), (7, ?;(•)) ^ 
P(7)/y(p(7~1)(')) for all elements 7 G F and sections v. 

2.2. Definitions. 

For the convenience of the reader, we put all definitions here for easy 
reference. All of them are standard except (D9,10). 

1. (Dl) (1-cocycle, 1-coboundary and 1-cohomology group over 
a representation). Let TT be a representation of a group if on a 
vector space V. A map / : H —► V is a 1-cocycle over TT if for any 
hi,h2 e H, fihihv) = f(hi) + ir(hi)f(h2)i a map / : H -► V is a 
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1-coboundary over TT if there exists v € V such that f(h) =v — 7r(h)v 
for all h € H; 1-cohomology group Hl{H,T[) over TT is the quotient of 
the group Z1(fir,7r) of all 1-cocycles over TT by the group S1(fl',7r) of 
all 1-coboundaries over TT. (We remark that it is clear that Z1(if)7r) 
and Bl{H^) are abelian groups with the usual pointwise addition, 
and JB^^TT) C Zl{H^)^ therefore Hl{H^) makes sense.) 

2. (D2) (Kazhdan's property T). A locally compact group H is Kazh- 
dan if for all unitary (orthogonal) representations TT of if on complex 
(real) Hilbert spaces, £r1(if,7r) = 0. (We remark this is an equivalent 
definition among variety of other equivalent definitions of Kazhdan's 
property T, see [2].) 

3. (D3) (Strong vanishing condition SVC) A group H satisfies SVC 
if for all finite dimensional representations TT, ^(H^TT) = 0. (We re- 
mark that SVC first appeared in [4]. Irreducible lattices in connected, 
semisimple Lie group without compact factors, with M-rank at least 
2 satisfy SVC, as well as lattices in connected, semisimple Lie group 
without compact factors, each simple factor has M-rank at least 2. 
They are also Kazhdan groups. See [14]). 

(D4-8) define the infinitesimal rigidity. 

1. (D4) a : T -> Xr(E) a Cr-cocycle of p with coefficients in vector 
bundle E if 

a(7i72) = a(7i) + (p(7i))*«(72)- 

2. (D5) a : F -* Xr(E) is a Crs-coboundary (L2-coboundary) of p with 
coefficients in vector bundle E if there exists v G XS(E) (XL (E)) 
such that 

a(7) = v - (p(7))*T;. 

We also say that v is a Cs- (or an L2-)coboundary of a. 

3. (D6) The quotient group H^s(p, E) {H^L2 (p, E)) of the additive group 

of all Cr-cocycles by the additive group of all Cs-coboundaries (L2- 
coboundaries) with coefficients in vector bundle E is the first coho- 
mology group of p with coefficients E. 

4. (D7) p is (r, s)-infinitesimal ((r, L2)-infinitesimal) rigid if H}s(p, E) = 
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5. (D8)   Let   p   be   the   tangent   action   induced   from   p.       p is 
(r, s)-infinitesimal ((r,L2)-infinitesimal)  rigid if iJ*5(p,TM)   = 0 
(H^L2(p,TM) = 0); p is C0-infinitesimal rigid if flJ|0(p,rM) = 0, 
p is'c^-infinitesimal rigid if H^faTM) = 0. 

(D9-10) essentially define notions at the tangential level. 

1. (D9) (flat actions) Let p be an action of a discrete group T on a flat 
vector bundle E — M x Rno covering an action p of F on M. p is said 
to be flat associated with a homomorphism TT : T —► GLfoo, M) if there 
exists a C^-framing a (i.e., a set of C00 sections {Xi,..., Xn} of ^ -> 
M, called linearizing framing) such that p(7)a:(cr(^)) = ^■(p(7)(aj))7r(7) 
for all 7 € F. p is said to be tangentially flat associated with a ho- 
momorphism TT : F —► GL(n, M) if TM is flat and p is the action on 
tangent bundle which is flat associated with TT. (We note that one com- 
mon feature of type 2 and type 3 standard actions is the tangential 
flatness). 

2. (D10) A homomorphism TT : F -> GL(n,M) has compact part if there 
exists an invariant vector subspace V C Mn, such that the spectrum 
of the restriction of 7r(7) to V Spect(7r(7)|y) C S1 for all 7 e F, where 
51 C C is the set of complex numbers of absolute value 1. 

2.3. Abelian subgroups of lattices. 

Abelian group actions contained in a lattice group action impose many 
constraints for possible perturbations, they contribute greatly to the rigidity 
of the action [6, 7]. We collect some facts concerning the existence and the 
structure of abelian subgroups of a lattice group F in a connected semisimple 
Lie group G C GL(no,ffi) for some integer no > 0. The following is taken 
from [17]. We assume that G is self-adjoint; i.e, G is stable under the 
inverse transpose ©, ©(G) = G. The automorphism © of G induces an 
automorphism 9 of the Lie algebra g of G. Take a Cartan subalgebra fj of 0; 
i.e., a subalgebra of g that is maximal among abelian 0-stable subalgebras. 
The Cartan subgroup H of G corresponding to fj is the centralizer in G 
of f); i.e., the set of all g e G such that Ad(g)X = X for all X e f). If 
0 = 01 © • • • © &h is the decomposition of 0 into simple ideas, then a Cartan 
subalgebra t) intersects each of the ideas &. A Cartan subgroup is abelian 
and diagonalizable over C. If G is noncompct, different Cartan subgroups 
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may not be conjugate but there are only finitely many nonconjugate ©- 
stable Cartan subgroups. Following theorem asserts the existence of certain 
abelian subgroups in G. 

Theorem 2.1. (Theorem of [15] p. 211, Theorem 2.8 of [17]) Let G be a 
connected semisimple Lie group and T be a lattice in G. Let H be a Cartan 
subgroup, then T intersects a conjugate of H in a uniform lattice. 

Fix a standard abelian group action of H on n-dimensional compact 
manifold M preserving the Lebesgue measure. We call a non-trivial ho- 
momorphism A : H —► M (M as an additive group) a Lyapunov exponent 
for the tangent bundle TM if for all h e H, almost all x e M, there exists 
0 ^ u G TXM so that the exponential growth rate limn^oo ^ log \\Dp(hn)(u)\\ 
for h is given by \{h) (independent of x). For a Lyapunov exponent A, let 
E\{x) C TXM be the set of all u as above (union {0}). Since the action 
is standard, E\{x) is constant distribution for each Lyapunov exponent A 
and of class C00. Moreover, the tangent bundle has a natural il-invariant 
splitting: TM = ££A. 

For a flat action of abelian group if on a flat bundle E —► M, we may 
define the notion of Lyapunov exponents and Lyapunov subspaces and we 
may also define the notions for homomorphism H —► GL(n, M) in an obvious 
way. In case of the flat bundle action or tangentially flat action we shall 
abuse the notation to use the notions for any three of the situations if there 
is no confusion. Later on we shall always assume that our bundles and 
actions are flat. 

We use A to denote a finitely generated abelian group. Let the action of 
A be flat on flat bundle E —> M. We call a Lyapunov exponent A real if for 
any a e A, u e E\, 7r(a)u = exp(X(a))u (in other words, the Lyapunov space 
Ex corresponding to A is also the common eigenspace for A corresponding 
to exp(A)); we call a real Lyapunov exponent A almost multiplicity free if /x 
is another Lyapunov exponent with /i = cA, then /J, is real and one of c, 1/c 
is an integer. We call a Lyapunov exponent A multiplicity free if c = 1 (c as 
above). 

We say that a completely reducible representation TT : T —► GL(n,M) is 
of (almost) Lyapunov multiplicity free type, if for each 7r-invariant non-trivial 
subspace V C Mn, there exist 

1. A finitely generated abelian group A C F; 

2. A real Lyapunov exponent A : A —> M with Lyapunov space E\ so that 
Ex n V ^ {0} and A is (almost) multiplicity free; 
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3. There exists a G A, such that dimEo(a) = miOyerdmi^T), where 
for 7 G F denote by #0(7) the Lyapunov space of 7r(7) corresponding to 
Lyapunov exponent 0. Moreover, if dim £0(a) > 0, all unit eigenvalues 
of 7r(a) are 1. 

4. Let n be another Lyapunov exponent not proportional to A (A as in 
(2)). Then a in (3) may be chosen so that A(a) < 0 and 11(a) > 0. 

The following result gives a criterion of Lyapunov multiplicity freeness. 

Proposition 2.2. Let G be a connected semisimple linear Lie group, TTQ a 
restriction to T of a homomorphism ofn : G —> GL(n,M). 

1. J/TT is hyperbolic (i.e., there exists 7 € G such that the eigenvalues of 
7r(7) have modulus different from 1. Such 7r(7) is said to be hyperbolic), 
then TTQ is hyperbolic. In other words, there exists 71 G F such that 
fl"o(7i) is hyperbolic. 

2. Letm = maxy^lZ G Z : 7r(j) has I eigenvalues of modulus different from 1}. 
Then there exists 71 G F such thatiroiji) has m eigenvalues of modulus 
different from 1. 

3. If G is an R-split linear group and for any irreducible constituent TT' 

ofn, there exists a multiplicity free weight A' 7^ 0 (i.e., any weight of 
TT is not proportional to Xf). Then TTQ is of Lyapunov multiplicity free 
type. 

Proof It is well-known that any connected linear semisimple group G can be 
realized as the connected component of identity in GK of a connected, self- 
joint, semi-simple algebraic group G c GL(n, C) defined over R. Without 
loss of generality, we assume that G is such a realization. Let pol(7) be the 
polar part of 7$, where 75 is the semisimple part of the Jordan decomposition 
7 = 7s7ii of 7. It is well-known that pol(7) G G, and it is contained in a 
maximum M-split abelian group S which is contained in a Cartan subgroup 
H. (We refer the reader to §1, p. 297 of [17] and the references there for 
the above discussion.) 

(1) Since 7r(7) is hyperbolic, 7r(pol(7)) is hyperbolic. Denote by A the 
intersection of F with a conjugate of H (without loss of generality we assume 
that the conjugate is H itself) so that A is a uniform lattice in H. Let 
{Ai,..., As} be the set of all Lyapunov exponents of A corresponding to TTQ. 

Then they extend to Lyapunov exponents of H corresponding to TT.  The 
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Lyapunov exponents for matrix are the logarithms of the absolute values of 
the eigenvalues, therefore, for alH = 1,..., s Ai(pol(7)) ^ 0. 

As is well-known for Cartan subgroups of semisimple connected Lie 
groups, H = TxB (direct) where T is the maximum compact subgroup of H 
and B is a vector subgroup such that Ad B is diagonalizable over the reals. 
It is clear that Af |T = 0. Let Ki be the kernel of A*, then Ki = TxBi for some 
codimension 1 hyperplane Bi in B. Since H - Uf=1Ki = T x Uf=1(2? - Bi) 
and each connected component U|:=1(JB — Bi) is a non-empty open cone in 
B, (H — Uf^Ki) n A is non-empty. Let 71 be in the intersection. Then the 
eigenvalues of 7r(7i) are non-zero, hence 7r(7i) and therefore TTQ are hyper- 
bolic. 

(2) Same argument as in the proof of (1). We replace all Lyapunov 
exponents {Ai,..., A5} by non-trivial Lyapunov exponents. 

(3) Let H in the proofs of (1), (2) be such that contains an M-split abelian 
group A. Let a be the Lie algebra of A. Then a is a Cartan subalgebra. 
Homomorphism TT : G —► (7L(n,M) induces a homomorphism of the Lie 
algebras of G and GL(n, M). The weights of TT (with respect to a) correspond 
to the Lyapunov exponents of 7r(H). Since H is M-split, all the Lyapunov 
spaces of 7r(if) are eigenspaces. Hence all Lyapunov exponents are real. 

To verify condition (4) in the definition of Lyapunov multiplicity freeness, 
we notice that 71 in the proofs of (1) and (2) may be taken to be in T x 
(B — [/), where U is the sum of any given finitely many hyperspaces. So 
we may assume that A(a) and ^(a) are non-zero. Moreover, we may assume 
that A(a) < 0 and /x(a) > 0 by Lemma 4.1 proved later. 

By definition, TTQ is of Lyapunov multiplicity free type. □ 

2.4. The Livsic theorem. 

We list in Theorems 2.3, 2.4 some well-known results about the cohomo- 
logical equation for diffeomorphisms. We thank the referee for pointing out 
a result of Livsic (Theorem 2.3 (3) below) that replaces a weeker version in 
our earlier writing. 

Theorem 2.3. (the Livsic theorem) Let T : M —► M be an Anosov diffeo- 
morphism with a dense orbit 

1. Let f be a Holder continuous function on M. Then the equation 

2.1 f(x) = <Kx)-<KTx) 
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has a Holder continuous solution (j) iff for any periodic point p € M 
with period m, the closing condition YAL\ fC^P) = 0 is satisfied. 

2. Let f be a C00 function on M. Then </> in (1) is C00. 

3. Let T : M —► M be an Anosov C2~diffeomorphism preserving a 
Lebesgue measure, let f be a Holder continuous function. If (2.1) has 
a measurable solution (j), then <p coincides almost everywhere with a 
continuous function (j)' which is also a solution of (2.1). In particular, 
the closing conditions for all periodic points are satisfied. 

(1) appeared in [10] (Theorem 1.1). (2) was proved in [12]. (3) appeared 
in [11] (§6, Theorem 9). 

The following proposition is a Livsic type theorem for certain partially 
hyperbolic diffeomorphisms. 

Proposition 2.4. Let M be as before and N be a connected smooth man- 
ifold, f : M x N -> M be a C00 function. Define T : M x N by 
(m, n) —► (Tra, n). For each n e N denote by fn : M -* M the restriction of 
f to the T-invariant compact manifold M x {n}. Assume that To : M —> M 
is a C00-transitive Anosov diffeomorphism satisfying the closing condition 
at each periodic point (for fn)- Then 

1. for any function 77 : JV —> M; there exists a unique function (j) : M x 
N —> M such that f(m,ri) = 0(m,n) — 0(Tra,n), 0(p,n) = r](n) and 
0(m, n) is of class C00 for any fixed n e N; 

2. ifrj in (1) is of class C00, then (j) is of class C00. 

Proof.   (1) is a straightforward corollary of Theorem 2.3. (2) is a reformu- 
lation of Theorem 2.2 of [12]. □ 

2.5. Some algebraic lemmas and regularity results. 

The following results are simple but important for the rest of the paper. 
It illustrates the following simple phenomena: An IRn-valued function / on 
M is regular if the projections of / to sufficiently many subspaces are regular. 

Lemma 2.5. Let TT : Y —> G?L(n,E) be a homomorphism.   Assume that 
there exist d elements /Ji,...,/^ e r and d non-trivial vector subspaces 
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Vi,...,Vd C Mn such that each Vi is the sum of a subset of generalized 
eigenspaces of7r(/3i), and for every ^-invariant subspace V c Mn there exists 
at least one 1 < i < d such that Vi n V / {0}. Then there exist an integer 
s > 1 and 

• s elements 71,..., 75 G F, /or eacA 7^ i/iere e^zsi 1 < ij < d and 6^ e T 
such that 7j = SijpijS^}; 

• 5 non-trivial vector subspaces Ei,... ,ES C Mn
; /or eac/i Sj (1 <j < s) 

Ei=n(Sij)VJi; 
• 5 vector subspaces F^..., Fs c Mn 

i. /or eac/i 1 < i < s, E^Fi are n(71)-invariant, dim(E,i) +dim(Fi) = n; 

Ei + Fi = Mn
; and &o£/i ^ and Fi are generalized eigenspaces of 7* 2/ 

1 < dim(jE?i),dim(Fi) < (n - 1); 

«. n|=1^ = {0}. 

Proof Let the Vi be the sum of a subset of generalized eigenspaces of 7r(/?i), 
and Vf1 be the sum of complementary generalized eigenspaces of 7r(/?i). Con- 
sider elements 7/?i7~1. ^(7)^1,7r(7)Pr

1
± are vector subspaces invariant under 

7r(7/?i7~1); they are both the sum of generalized eigenspaces of 7r(7/?i7~1). 
Consider W = n7Gr7r(7)^iJ"; W is TT-invariant and clearly there exist finite 
number of elements 5i,..., ^ G T such that W = n|i17r(5i)Vr

1-
L. We denote 

7t = ^7o^rl
5 ^i = *"($»)Vi, ^ = Tr^i)^-1- for i = 1,..., 51. 

Since PT is 7r-invariant and W fl Vi = 0, it intersects V; for some z = 
2,..., d. By induction, our assertion is obvious. □ 

We have a special version of the lemma for homomorphism without com- 
pact part. 

Lemma 2.6. Let TT : F —► GL(n,M) be a homomorphism with no compact 
part. Then there exist an integer s > 1 and 

• s elements 71,..., 75 G F; 
• s non-trivial vector subspaces Ei,...,Es C W1; 
• s vector subspaces Fi,..., Fs CM72 

such that 

1. for each 1 < i < s, E^Fi are TT'(7$)-invariant, dim(i^) +dim(i^) = n; 

Ei+Fi = W1, Ei is the sum of generalized eigenspaces 0/7; correspond- 
ing to eigenvalues of absolute values less than 1, Fi is {0} or the sum 
of generalized eigenspaces 0/7; corresponding to other eigenvalues; 



Infinitesimal Rigidity of Higher Rank Lattice Actions 507 

Lemma 2.7. Assume the notation in Lemma 2.5. Let Pi : Rn -» Ei be the 
projection operator associated with the decomposition W1 — Ei © Fi. Then 
the homomorphism h : Mn —► (IR71)8, v G Mn h^ (Pxv,..., P5t;) is injective. 

Proof. Let v € Mn such that h(v) = 0. Then for alU = 1,..., s PiV = 0. 
Since PiV = 0if£ve Fi, we have v G ns

i=1Fi = {0}. So v = 0. □ 

Corollary 2.8. Assume the notation in Lemmas 2.5, 2.7. Let S be a dense 
set in M, f : S C M —► Mn 6e a map such that Pi o / extends to a Cr map 
for all 1 < i < s. Then f extends to a Cr map M —► IRn. 

Proof. Let U = /i(Mn). Then ft : Mn -^ C7 is an isomorphism. Denote ft"1 : 
U -* Mn the inverse of ft : IRn -> C/. Obviously, ft"1 is of class C00. For each 
i let /i : M —> IRn be the C7, map so that the restriction to 5 /i|s = P* o /. 
For any x G X, let x^. G 5 so that #& —> re as k —> oo, then the points in 
C/ (Pi o /(a*),..., Ps o /(ajfc)) = (/x^),..., /.(ojfc)) ^ (/i(a?), • • •, fs{x)). 
Hence (fi(x),..., fs(x)) G C/ also (C/ is a closed vector subspace). We thus 
obtain a Cr function ft~1(/i(^),...,/«(»)) from M —> IRn that coincides / 
at every point in the dense set 5. In other words, / extends to a Cr map. 
□ 

Same argument proves the following. 

Proposition 2.9. Assume the notation in Lemmas 2.5-2.8. Then f : M —> 
Rn is of class Cr iff Pi o / is of class Cr for all 1 < i < s. 

For the convenience of later use, we give a criterion of the regular- 
ity of an Mn-valued function /. Let TT : T —> GL(n,M) be a homomor- 
phism. For 7 G F, we use E,(7),P(7) to denote the sum of some sub- 
sets of generalized eigenspaces for 7r(7), so that Mn = Eft) © F(j) is 
a direct sum. We denote by /(£(7),F(7)) the projection of / to the first 
factor £'(7) with respect to this decomposition. For any 7' G F, we let 
Etfii'1) = 7r(7/)£;(7),P(7/77/"1) = 7r(7/)P(7). It is easy to see that 
7r(7/)£,(7), 7r(7/)^(7) are the sum of some subsets of generalized eigenspaces 
for 7r(7/77/""1), and Mn = 7r(7/)£,(7) ©^(Y)^?) is a direct sum. 

Theorem 2.10. Let f : M -+ Mn be an B^-valued function, TT : F -> 
GL(n,M) a homomorphism. Assume that 
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1. for each 7r-invariant space V c Mn
; there exists 7 e r; and a de- 

composition W1 = Eft) © ^(7) into a direct sum of the sum of some 
subsets of generalized eigenspaces 0/^(7), such that E(j)nV ^ 0 and 
f(E(<y),F(<y)) ™ of class Cr; 

2. for each 7' € T and 7 as in (1), f^Etfri''1) Hi'n''1)) is also 0f class 

Cr. 

Then f is of class Cr. 

Proof In view of the proof of Lemma 2.7, it is enough to prove the following: 
There exist finitely many elements /?i,..., PN € I\ such that (i) for each ft, 
there is a decomposition Mn = !?(#) © F(/3i) into a direct sum of the sum 
of some subsets of generalized eigenspaces of ir(J3i) such that f(E(pi),F((3i)) is 
of class Cr; (ii) D^Ftfi) = {0}. 

From the assumption (1), we choose 71 G F such that W1 = #(71) ©^(71) 
is a direct sum of the sum of some subsets of generalized eigenspaces of 
7r(7i), and /(E(7I),F(7I)) is of class Cr. We let Wi = nyerF^iV"1) = 
Hyer^(70^(71)) which is 7r-invariant. We may choose finitely many ele- 
ments 61,..., Sdi e F such that Wi = n^17r((5i)F(7i). We let ft = SaiS^1 

for i — l,...,di. By the assumption (2), f(E(Pi),F(Pi)) is of class Cr for 
i = l,...,di. 

Since Wi is 7r-invariant and the assumption (1), we choose 72 € F such 
that Mn = £(72) © ^(72) is a direct sum of the sum of some subsets of 
generalized eigenspaces of ^(72) and /(£■(72)^(72)) is of class Cr. We let W2 = 
n7/€r-F1(7/727/~1) — nyer^(7/)^1(72)) which is 7r-invariant. We may choose 
finitely many elements <5d1+i,..., 6d2 € F such that W2 = n^:di_i_17r(61)^(72). 
We let pi = Si^S'1 for t = di + 1,..., (fc. We have W2 := n^Fifo) = 
Wi'H Wh and VF2 is a proper subspace of W\. By the assumption (2), 
/(£?(A),F(A)) is of class CT for t = di + 1,..., fa. 

Since W2 is vr-invariant and the assumption (1), we may repeat the pro- 
cess to obtain /?d2+i,... ,/3d3 € F such that /(ECftJ.FCft)) is of class C7* for 
i = ^ + 1,..., da, and W3 := n^jFX/^) is a proper subspace of W2. We 
keep doing the process, obtain a proper inclusion of subspaces W^+x C W^. 
It is obvious that after a finitely many steps, W} = 0. 

For such /3i,...,/3JV G F, we have that for each /%, there is a decompo- 
sition W1 = J5(/3i) © F(/?i) into a direct sum of the sum of some subsets of 
generalized eigenspaces of 7r(/?i) such that f(E(pi),F(Pi)) is of class Cr, and 
nl.FiPi) = {o}. ' n 
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3. (r, 0)-infinitesimal rigidity. 

In this section we establish (r, L2)- and (r, 0)-infinitesimal rigidity for 
actions of Kazhdan, SVC group F with dense periodic points £1 We re- 
mark that the type 3 standard actions, or the actions on tori T2, via a 
homomorphism F —> SL(n, Z) or on nilmanifolds M via a homomorphism 
F —> Aut(M) are primary examples of actions with dense periodic points. 
One isolated type 2 standard action example can also be constructed as fol- 
lows: if A is a torsion free, cocompact, arithmetic subgroup in a connected 
semisimple Lie group with trivial center and no compact factors, the action 
of A on G/A by left translation has dense periodic points (a corollary of 
6.2.4 of [19]). 

3.1. Actions with dense periodic points: TT has no compact part. 

In this subsection, we will show that a tangentially flat action p asso- 
ciated with a homomorphism TT : F —► GL(n, M) is (r, 0)-infinitesimal rigid 
provided that TT has no compact part and p has dense periodic points fi(p). 

The following is essentially a lemma of Hurder [5]. 

Lemma 3.1. Let p be an action on a vector bundle E —> M (by vector 
bundle automorphisms) covering p. Let Q, = fi(p) be the set of periodic 
points of p. Assume that F satisfies SVC. Then for every Cr-cocycle a 
with coefficients in E there exists a set function VQ : Q, —> TQM, such that 
a(7)ln = Mn - (p(7))*^o|n. 

Proof Take p G Q, let 0{p) = p(T)p = {pi = p,...,pjv}- P induces 
an action on the sum i?o(p) 0^ fibers over {pi,... ,pjv}; or equivalently, it 
induces a representation TT^ of F on vector space W = ®iLiEPi where EPi 

is the fiber of E over p*. Since a|o(p) can be viewed as a cocycle of F with 
coefficients in TT^, there exists ^o : 0(p) -♦ ^o(p) such that for every 7 e F, 
tt(7)lo(p) = vo\o(p) - (p(l))*vo\o(p) by SVC. Do this for all orbits of points 
in fl, our lemma follows. D 

Proposition 3.2. Let E = M x Mno be a trivial bundle, p be a flat action 
ofT on E associated with a homomorphism TT : F —► Mno covering an action 
p ofT on M. Assume that F is SVC group, TT has no compact part and the 
set Q,(p) of periodic points of p is dense in M. Then vo (as in Lemma 3.1) 
extends to a continuous coboundary for Cr-cocycle a. 
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Proof. Without loss of generality we assume that the trivialize E — M x IRno 

is given by the linearizing framing with respect to which ^(7) is given by the 
homomorphism TT. For each 1 < i < s, let Ei, Fi be as in Lemma 2.6', let 
the subbundle Ei correspond to Ei in an obvious way. It is easy to see that 
Idli^ — (p(7;))* is an invertible operator on the set Xhdd(Ei) of bounded 
sections of Ei. Therefore, there exists a unique v* € Xbdd(Ei) such that 
PiCthi) =Vi — {p{li))*Vi. Since PiOt^i) is continuous, Vi is continuous. 

On the other hand, if we define v^ € Xbdd(Ei) by vfa) = Vi(x) if x £ 
Oip), v^x) = Pi(vo(x)) if x e O(p), it is clear that v^ also satisfies PiCtdi) = 
vi ~ (phi))*vi- Hence v* = ^. In other words, continuous section vi extends 
set function Pi(vo) defined on a dense set 0(p). Corollary 2.7 ensures that 
vo extends to a continuous section v which is clearly a C0-coboundary for 
a. □ 

3.2. Uniqueness and continuity of measurable coboundary. 

We insist in this subsection that a measurable section v of E —> M is 
essentially finite; i.e., for a continuous fiber norm || • || on the vector bundle 
E —► M, {# G M : ||^(^)|| = 00} has zero Lebesgue measure. We remark 
that we do not assume the density of periodic points for p in this subsection. 

Proposition 3.3. Let E = M x Mno and p be a flat action of T on E 
associated with homomorphism TT without compact part, and p covers an 
action p ofT on M. Let p preserve Lebesgue measure. Then for any map 
a from T to measurable section of vector bundle E —> M, the equation 
a^) = v — (p(7))*i; (for all 7 € T) has at most one measurable solution v. 

Proof Otherwise, there exists a nontrivial measurable section u, such that 
u — (p(7))*n for all 7 G F. We fix a trivialization for £*, and consider u as 
a measurable map from M to Mno. Take 5, 7*, E^Fi as in Lemma 2.6', Pi 
as in Lemma 2.7. We claim that m := PiU = 0 almost everywhere, for all 
i = 1,..., 5. Indeed, for any i = 1,..., 5, m = (/?(7i))*^;, or equivalently 
Ut(p(7i)a0 = fi(7i)ui(a0> hence Ui{p{^)x) = #(7^)^(0:) for all n > 1. Then 
Poincare recurrence theorem implies that for almost all x G {x G M : ^(a?) 7^ 
0}, ||^(^)|| = 00. Contrary to the fact that {x G M : ||^(rr)|| = 00} has zero 
Lebesgue measure. □ 
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This is the uniqueness results of the measurable coboundary (if exists) 
of cocycle a. We remark that the following is proved above. Let wi be 
a measurable section of the vector bundle associated with Ei. Then there 
exists at most one measurable section Vi of the vector bundle associated 
with Ei satisfying wi—Vi — (/?(7i))*f;. Based on this observation, we obtain 
the following continuity result of the measurable coboundary (if exists) of 
cocycle a. 

Proposition 3.4. Assume the conditions in Proposition 3.3. Let a be a 
continuous cocycle ofT with coefficient inE. Letv be a measurable cobound- 
ary. Then v coincides with a continuous section. Consequently, such mea- 
surable coboundary v is unique. 

Proof. Assume the notation as in the proof of Proposition 3.2. By the 
same argument as in the proof of Proposition 3.2, we know that Pia^i) = 
Vi — {p{^i))vi has a unique continuous solution v^ By the uniqueness result 
Proposition 3.3 and the remark above, PiV coincides with Vi. Our result 
follows from Corollary 2.7. □ 

3.3. I/2, (7° vanishing of Cr-cocycle for other actions. 

In this subsection, we always assume that p is a smooth flat action of F 
on a flat bundle E — M x IRno associated with a homomorphism TT : T —> Mno 

such that p covers a smooth action p of T on M. Moreover TT decomposes 
as a direct sum of two subrepresentations TT = TTI + 7r2 corresponding to 
Rno = j^m 0^2 =Wi®W2 where TTI has no compact part and 7r2 has only 
the compact part. 

Proposition 3.5. Let Y, E, p, p and TT be as above. Assume that Y is an 
SVC and Kazhdan group, and that p has dense periodic points. 

1. If p preserves Lebesgue measure, then any Cr-cocycle a is an L2- 
coboundary; i.e., there exists v G XL (E), such that a{^){x) = 
v — (/5(7))*v(a0 for all 7 G Y and almost all x G M. Moreover, the 
projection Pi{v) ofv to the first factor is continuous; for any two such 
coboundaries u, v, Pi(u — v) is trivial, and the norm of the projection 
P2(u — v) ofu — v to the second factor is invariant under the action. 

2. If M is a torus or a nilmanifold, p is an Anosov action by toral or nil- 
manifold automorphisms, and ^2 is trivial (i.e., 7^(7) — Idw^)- Then 
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any Cr-cocycle a is a C0-coboundary; i.e., there exists v e X0(E), 
such that (2(7)(#) = v — (p(7))*v(a;) for all 7 e T and all x e M. 
Moreover, Pi(v) is unique and continuous; P2(v) is of class C00 if 
r = 00; for any two such coboundaries u,v, Pi(u — v) is trivial and 
P2(u — v) is constant. 

Proof We decompose lRno into the direct sum of 7r-invariant subspaces 
Wi © W2, so that Trlwi has no compact part and 7r|v^2 has only compact 
part. We denote the corresponding p smooth invariant subbundles of E by 
Ei and £'2. We decompose the cocycle a = ai+a2 so that a* is a Cfr-cocycle 
with coefficients in Ei. 

(1) The restriction pi of p on flat bundle Ei is a flat action of T on flat 
bundle Ei associated with the homomorphism TTI with no compact part. 
So there exists unique vi e X0(Ei) such that 0^1(7) = vi — (pi(7))*vi by 
Proposition 3.2. The induced action (fc)* of the restriction P2 of p on 
flat bundle E2 is a unitary action of F on XL2

 (E2), therefore there exists 
V2 € XL2(E2) such that 02(7) = V2 - (P2(7))*^2 by Kazhdan Property T. 
Other claims are easy to see. Our result follows. 

(2) We only need to prove that L2 section V2 satisfying #2(7) = ^2 — 
{p2{/y))*V2 is actually C00 if r = 00. Without loss of generality, we assume 
that V2 is a real valued function. Fix an Anosov element 7 G F; i.e., / = ^(7) 
is an Anosov automorphism. Our result follows from Theorem 2.3. □ 

3.4. Differential operator and induced actions. 

Assume that the tangent bundle of M and the vector bundle E —> M 
are flat (i.e., TM - M x Mn, E = M x Mno). Let ^E = L(TM,E) = 
Ua:€MAfn,noW) where Mn,noW are the set of all n x no real-matrices. 
Let / be a Crr-section of E, or equivalently, / is a Cr-map from M to 
Mno. We assign / to a Cr~1-section of j1^, or equivalently a C71""1- 
map, by a? -> Df(x). This assignment defines a differential operator 
D : Xr{E) -» A,r~1(j1J5). Let p be a flat action of discrete group F on 
E via homomorphism TTE : F -^ GL(no,M). We define a flat action of F on 
jlE as follows. Let 7 G F, and w G (j1E)x. We may consider it; G Mn)no. 
Then 7^ G (j1E)p^x^ and as a matrix 77/; = TTE^W. This in turn induces 
an action of F on Xr(jl(E)) by (7/u)(a:) = 7r^(7)'u(p(7~1)rc). 

If p is tangentially flat, p as above, then the action of F on ^E is also flat. 
Denote by 7rjiE the homomorphism associated with the flat action.  From 
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the construction of the actions we see that D and the actions commute. 
Apply previous results in this section to this special bundle, we obtain the 
following result. 

Proposition 3.6. Let p be a tangentially flat action ofT on M, p be a flat 
bundle action ofT on a flat bundle E —> M. 

1. If a is a Cr'Cocycle with coefficients in E, then Da is a Cr~1-cocycle 
with coefficients injlE; 

2. If p has dense periodic points and T is SVC and Kazhdan, 7rjiE de- 
composes into TTI +7r2 such that TTI has no compact part and 712(7) has 
only compact part. Then for every C1-cocycle a, Da is L2 trivial; 

3. If in addition to the assumptions in (2), we assume that p is Anosov 
and 712(7) is identity for all 7 € Y. Then Da is C0 trivial 

Proof It follows from the construction above and Proposition 3.5. We 
mention that a tangentially flat action always preserves a Lebesgue measure 
(Lemma 2.5 (2) of [18]). □ 

4. C^-infinitesimal rigidity. 

We assume in this section that T is a discrete, Kazhdan, SVC group, 
TM = M x ]Rn, p a tangentially flat action of T on M associated with a 
completely reducible homomorphism TT : T -* GL(n,M), a a C^-cocycle 
with coefficients in TM, v a C0-coboundary of a. If M is a torus, we let 
p be such that the linearizing framing can be taken as a = {^-,..., ^■}; 
if M is a quotient if/A, we let p be such that the linearizing framing can 
be lifted to a framing of left invariant vector fields on AT. We shall give 
sufficient conditions under which v is of class C00. 

4.1. Anosov actions. 

We first prove an algebraic lemma. 

Lemma 4.1. LetB be a finitely generated abelian group, Tor(B) the torsion 
group ofB. Assume that the finitely generated free abelian group B/Tor(B) 
has rank at least 1, and that A, p, : B —► M are two non-trivial homomor- 
phisms. Then 
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1. either there exists a positive number c > 0 such that A(6) = c/i(6) for 
all b e B; 

2. or there exists b e B such that A(6) < 0 and /x(6) > 0. 

Proof. Let B = Zr 0Tor(#). Then it is easy to see that MTOT(B)^\TOT(B) 
are 

trivial. So without loss of generality, we assume that B = 27. A,^ can be 
extended to homomorphisms lRr —► M. We denote the extensions by A7,^, 
respectively. 

Consider the kernels of A7 and //, we have either (i) ker(A/) = ker(//) 
(denote the common space by K) or (ii) ker(A/) ^ ker(^/). If (i) occurs, 
take b e Rr such that A^ft), ^(fe) ^ 0 and let c = A/(6)/^/(6). Then for 
any a e Mr, a = k + hb for some k e K and fe G M. So A7(a) = frA'O), 
^(a) = hji^b). Hence A^a) = c/i^a). If c < 0 we have (2) as asserted in the 
lemma, if c > 0 we have (1) as asserted in the lemma. 

If (ii) occurs, then the negative half space of A7 iVy := {u G IRr : X(u) < 
0} and the positive half space of tf P^ := {u G W : ^(n) > 0} intersect in 
an open, non-empty cone C C Mr. It is obvious that Zr fi C is non-trivial. 
Take any 6 G C, we have (2) as asserted in the lemma. □ 

Theorem 4.2. Let F, p; TT, a and t; 6e as in the beginning of this section. 
Assume that M is a torus or a nilmanifold, p is an Anosov action by auto- 
morphisms, and TT is of almost Lyapunov multiplicity free type. Then v is 
of class C00. 

Proof. It is clear that the action p has dense periodic points in M. Let a be 
the linearizing framing. Let V C Mn be an irreducible 7r-invariant subspace, 
A C F an abelian subgroup, A a real multiplicity free Lyapunov exponent so 
that E'x := ExHV / {0}. Let the dimensions of Ef

x, Ex be si, s, respectively. 
Denote the subbundle corresponding to Ef

x, Ex by W'^Wx. Without loss 
of generality, we assume that a — {Xi,..., X5l, XSl+i,..., Xs, Yi,..., YJ} 
with s +1 = n, Xi C^-sections of WA (among them Xi,..., XS1 are sections 
of W^), Yi C^-sections of subbundles corresponding to the other Lyapunov 
subspaces. 

Since A is real Lyapunov exponent, Ex is the common eigenspace of 
A with eigenvalues given by exp(A). By the tangential flatness of p, for 
7 G A the equation a(7) = v - (p(i))*v can be written as a(7)(x) = 
v(x) —^{l)v{p(^~l)x). Let the Xi-component of a(7)(a;) be a:i(7)(a;), the 
Xi-component of v(x) be (j)(x).  The Xi-component of 7r(7)/?;(p(7~1)^) is 
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then exp(A(7))0(p(7""1)a;).  Compare the Xi components at both sides of 
the equation, we obtain 

4.1 <xi(i)(x) = (j>{x) - exp(\(-/))(f)(p^-l)x). 

Take an element 7 e A so that A(7) < 0. Let f(x) = 0:1(7)(a?), T = ^(7), 
then (4.1) has an explicit solution 

4.2 #a0 = f(x) + exp(A(7))/(r-1a;) + • • • + exip(X^))kf(T-kx) + .... 

Take any 1^, we want to show that for any positive integer m, Y-^^x) 
exist and are continuous, i = !,...,*. Let ^ be a Lyapunov exponent, E^ 
the corresponding Lyapunov space. Let W^ be the invariant subbundle cor- 
responding to n so that Yi is a vector field in the W^. Since A is multiplicity 
free, there exists element a e A such that exp(A(a)) < 1, exp(/x(a)) > 1 and 
p(a) is Anosov. We take 7 = a in (4.1). It is easy to see that the formal 
derivative of the series with respect to Y™ exist and converges uniformly for 
all m, therefore Y-^^x) exist and are continuous for all m > 0. 

It remains to show that X™0(#) exist and continuous. Formally differ- 
entiate (4.1), we get a formal equation Xif(x) = Xi(f)(x) — Xi(p(p(a~1)x). 
Since equation Xif{x) = Qiix) - gi{p{a~l)x) has an L2-solution gi(x) by 
Proposition 3.6 (2), and p{a~l) is Anosov, gi(x) is of class C00 by The- 
orem 2.3. We recall a Hurder's trick [5]. The partial sum </>n(#) of the 
first n terms in the right hand side of (4.2) has derivative Xi(j)n{x) = 
Xif(x) + XifiT^x) + • • • + /(T-ln-Vx) = gi(x) - giiT^x), and hence 
uniformly bounded. Therefore, (j){x) is absolutely continuous along the inte- 
gral curves of Xi and X^x) exist almost everywhere and Xi<p(x) is L1. By 
the ergodicity of ^(a-1), we have the uniqueness of the measurable cobound- 
ary, or Xi(f)(x) = gi(x) + c for a constant c. Hence Xi(f)(x) is of class C00. 

We now apply a regularity theorem (Theorem 2.1 of [6]), we see that 
(f>{x)j the Xi-component of v(x), is of class (7°°. Same argument shows that 
for any Xj, Xj-component of v(x) is of class C00. 

In other words, in term of notation in Theorem 2.9, we may decompose 
W1 — E(a) @F(a) into a direct sum of the sum of some subsets of generalized 
eigenspaces of 7r(a) with E(a) generated by Xi,..., Xs and F(a) generated 
by Yi,..., Yt, so that V(E(a),F(a)) is of class C00. For any 7' e F, we replace 
A by 7/^l7/~1, replace a by 7/a7/~1, replace E(a) and F(a) by E^'ai"1) 
and F(7/a7/~1) respectively, repeat the process above.  We conclude that 
v(E(YaY-1),F(7'a7'-1)) is als0 of claSS C'00- 

Applying Theorem 2.9, we obtain that v{x) is itself of class C00. 
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For Anosov action p of almost Lyapunov exponent free type, the proof 
above goes through with minor changes. We leave the proof as an exercise. 
□ 

4.2. Partially hyperbolic actions. 

The first examples of partially hyperbolic, C^-infinitesimal actions are 
the product actions. To be specific, we have the following. 

Theorem 4.3. let M be a torus or a nilmanifold, po an Anosov action 
ofT on M by automorphisms. Let T be a SVC and Kazhdan group, and 
po C00-infinitesimal rigid. Then the product action pofTonMxNby 
p(7)(m,n) = (A)(7)ra<,n); where N is a connected smooth manifold but not 
necessarily compact, is also C00 -infinitesimal rigid. 

To prove the theorem, we need two simple lemmas. 

Lemma 4.4. Let M, N be as in the theorem. Let T : M —* M be an 
Anosov automorphism. Let f : M x N -* R be C00 and (/> : M x N —> 
M be L2 such that /(m,n) = 0(m,n) — 0(Tm, n). Then there exists C00 

function (j)^ : M x TV —► M such that /(m, n) = (pooim, n) — ^(Tm, n) and 
<l>oo(™>,ri) — 0(m,n) = r/(n) is L2 and independent of m, for all (m,n) G 
M x N. 

Proof. For fixed n e N, 0(m,n) is a C00-function on M by Theorem 2.3. 
Now for any given mo € M, any real valued (7°°-function ^(n), there exists 
C00-function </>oo so that /(m, n) = 0oo(^z, n) — ^ooC^ra, n) and 0oo(rao, n) = 
^(n) by Proposition 2.4. It is easy to see that 0oo(ra,n) — </>(ra,n) = 77(71) 
is L2 and independent of m, for all (m, n) e M x N. □ 

Lemma 4.5. Lei po &e a tangentially flat Anosov action of a SVC and 
Kazhdan group T on M, associated with a homomorphism TT. Let T be 
such that every finite dimensional representation of it decomposes into two 
subrepresentations, one has no compact part, the other is identity. Assume 
that po has dense periodic points and is C00-infinitesimal rigid. Let N be a 
connected smooth manifold (not necessarily compact), p be an action ofT on 
M x N by p(7)(m,7i) = (po(7)>ft); a be a C^-cocycle over p with coefficient 
in TM. Then there exists a unique L2-coboundary v such that 

1. for fixed n, v(-,n) is a C00-section ofTM; 
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2. for any C00-vector field X that is a vector field (on M) in the lineariz- 
ing framing, Xkv is a locally L2-function on M x N for any k>l; 

3. for any C00-vector field Y on N, Ykv is a C0-function on M x N for 
any k>l. 

4- v is of class C00. 

Proof. The existence of L2-coboundary v can be derived from Proposition 
3.5 (1). (Note we may take a Lebesgue measure on N so that the volume of 
JV is finite and the arguments there is valid.) 

(1) is the consequence of the C^-infinitesimal rigidity of po- 
(2) Xkv is measurable by (1). Consider D = DM as a partial differ- 

ential operator on TM x TiV, by repeated use of Proposition 3.6, we see 
that DkOL has an L2-coboundary g. Let the induced bundle be jkTM := 
jiQ^-^TAf), and the associated representation TT^ = (7rfc)i + (71^)2 {{^k)\ 
has no compact part, (TT*^ has only compact part, the corresponding spaces 
of (7rfc)i and (71^)2 are E/i, U2 respectively). Since Dkv is easily seen to be a 
measurable coboundary of Dka^ we see that the Ui component of Dkv — g 
is trivial and the the U2 component of Dkv—g is invariant under the action. 

By looking at the component of Dv — g with the above consideration, 
we conclude that Xv = gi + fi where gi is L2 and fi is measurable and 
invariant under the action. Hence /1 = /i(n). By integration along the 
trajectories of X, we see that /i(n) is locally L2. Hence Xv is locally L2. 
Similar argument yields that Xkv is locally L2. 

(3) can be shown as follows. For Anosov element 7 e T for po, we de- 
compose Mn into stable and unstable subspaces of 7r(7). We decomposes 
TM — E~ © E+ into stable subbundle and unstable subbundle of Tpo(7). 
We let a_, a+, V-, v+ be the components of a, v in the obvious sense. Then 
the equation a(7)(ra,n) = v{rn,ri) — /K(/y)v(po(/y~1)m,n) decomposes into 
a±(7)(m,n) = v±(ra,n) — 7r(7)^±(po(7~"1)^',^)- Each equation has an ex- 
plicit absolutely and uniformly convergent series solution (on any compact 
subset of JV). Moreover, after applying Y to each of the terms of the series, 
we again obtain an absolutely and uniformly convergent series solution (on 
any compact subset of iV). Hence Ykv± are C0 for any k > 1 and our result 
follows. 

(4) It is a straightforward application of Theorem 2.1 of [6]. □ 
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Proof, of Theorem 4.3. Take any C^-cocycle a with coefficients in 
T(M xN)= TM x TN} we decompose a = ctM+®N- We have that Q^M is a 
C^-cocycle with coefficients in vector bundle EM = TM x {0} -» M x JV, a^v 
is a C^-cocycle with coefficients in vector bundle EN = {0}xTN —► M xN. 
The action p induces a flat action pM of T on SM associated with a homo- 
morphism TT without compact factor (po is Anosov), a flat action p^ of F on 
Siv associated with the trivial homomorphism. Since p has dense periodic 
points, there exists VM € ^(JEM) such that Q:M(7) = VM - (P^(7))^M; 

or (using the linearizing framing) we have aMi^irn.n) = VM{m,n) — 
^(T^MCPOCT

-1
)™,™)- Since po is C00-infinitesimal rigid, VM^.TI) is C00 

by Lemma 4.5. 
By Kazhdan property, we see that there exists v^ G XL2

(E) such that 
OLN{l){jn,ri) = VN(m,ri) - ^JVCMT"

1
)

771
?™)- Without loss of generality we 

assume that vjy is a real valued function. To show that ^ can be taken 
as a C^-function, we fix an Anosov element 70 G F for the action po, and 
denote po(7o) by T. Then we havecw^oX^ri) = VN(m,n) — VN(Tm,n). 
By Lemma 4.4, there exists C00 function ^oo such that aiv(7o)(ra,™) = 
Voo(m,ri) —Voo(Tm,ri), and VN{rn^n) —Voo{m^n) = 77(71) for an L2-function 
r/. For any 7 6 F, Voo{m,n) -Vooipoh^n) = VNim.r^-VNipoh)^^) = 
a/v(7)(ra,n). go t^oo can be taken as a C^-coboundary of 0^. □ 

Another class of examples is the tangentially flat partially hyperbolic 
action on torus so that the corresponding homomorphism TT has no compact 
part. 

Theorem 4.6. Let F be an SVC group, p an action of F on torus T1 

induced by completely reducible homomorphism TT : F —> SX(n, Z) without 
compact part Let TT 6e 0/ almost Lyapunov multiplicity free type. Moreover, 
assume that there exists a partially hyperbolic element 7 G A such that all 
unit eigenvalues are 1, and A(7) < 0 (A, A as in the definition of almost 
Lyapunov multiplicity freeness). Then v is of class C00. 

Proof   The argument of the proof of Theorem 4.2 applies here except one 
minor change. We will indicate the difference and handle it separately. 

It is clear that the action p has dense periodic points in M. As in the 
proof of Theorem 4.2, let a be the linearizing framing as above. Let V C M71 

be an irreducible 7r-invariant subspace, A C F an abelian subgroup, A a 
real multiplicity free Lyapunov exponent so that Ef

x := Ex n V / {0}. 
Let the dimensions of E'^Ex be Si,s, respectively. Denote the subbundle 
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corresponding to E'x, Ex by W{, W\. Without loss of generality, we assume 
that a - {Xi,..:,X819Xai+i,...,X8,Y1,...,Yt} with s + t = n, Xi C00- 
sections of W\ (among them Xi,..., XSl are sections of W{), Yi C^-sections 
of subbundles corresponding to the other Lyapunov subspaces. 

Take a C^-cocycle a with coefficients in TM, let v G X0(TM) be a 
coboundary of a, <f>(x), ai be the Xi -components of v, a, respectively. For 
simplicity, we assume that A is Lyapunov multiplicity free. Same argument 
as in the proof of Theorem 4.2, we obtain that for any A; > 1, Yf(f)(x) is 
continuous. 

It remains to show that X^ipfjc) exist and are continuous. Let 7 be as 
in the statement of the Theorem, so that A(7) < 0. Since 

4.3 <xi(i)(x) = (t>(x) - exp(A(7))0(/?(7~1)a;), 

by formal differentiation and let f(x) = 0^1(7)(re), we get equation Xif(x) = 
Xi(j)(x) —Xi(j){p{^~l)x). Since equation Xif(x) = gi(x) -gi{p{l~l)x) has an 
L2-solution gi(x) by Proposition 3.6 (2), and T := pif/"1) can be considered 
as a diffeomorphism on TP1 x Y1'711 by Anosov diffeomorphism on (torus) 
the first factor M = TT1, by identity on the second factor N = T1-"!, there 
exists C00 function g^ : M x N —> E such that 0(7)(m,n) = goo{m9n) — 
goo(Tm,n) and goo(rn,n) —g(m,ri) — r](n) is L2 and independent of m, for 
all (m, ri) e M xN (Lemma 4.4). Therefore, X!?gi(x) is of class C00 for any 
k > 1 and j (we note that Xj is tangent to the first factor M). 

Since (4.2) has a series solution, Hurder's trick (see the proof of Theorem 
4.2) implies that (f)(x) is absolutely continuous along the integral curves of 
Xi and X^x) exist almost everywhere and Xi<f)(x) is L1. By the ergodicity 
of T on the first factor M, we have Xi0(m,n) = <7oo(ra,n) + c(n) for an 
Z^-function c. By integration along trajectories of X*, we see that c(n) is 
also an L2-function. Hence X^(m,n) is of class L2 for any k > 1. 

We now apply a regularity theorem (Theorem 2.1 of [6]), we see that 
(p(x), the Xi-component of v(x), is of class C00. Apply the same argument 
as in the proof Theorem 4.2, we obtain that v(x) is itself of class C00. 

Again for action p of almost Lyapunov exponent free type, the proof 
above goes through with minor changes. We leave the proof as an exercise. 
D 

Still another class of partially hyperbolic C^-infinitesimal actions will 
be considered in the next subsection. 
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4.3. Type 2 standard actions. 

We first recall the following result of Zimmer. We reformulate using our 
terminology. 

Theorem 4.7. (Theorems 4-4-4'6 of [20]) Let G be a connected semisimple 
Lie group with no simple factors locally isomorphic to 0(1, n) or [7(1, n); 

F C G a cocompact lattice, TT : G —► GL(no,M) a homomorphism. Let p be a 
C00 flat action ofT on flat bundle E = MxMno associated with TT covering a 
C00-action p preserving a smooth volume density. Then p is L2 -infinitesimal 
rigid; i.e., any C^-cocycle with coefficients in E is a L2~coboundary. In 
particular, let H be a Lie group, h : G —► H a continuous homomorphism, 
A C H a cocompact lattice. Then the action of T on M — H/A is L2- 
infinitesimal rigid (E = TM). 

Corollary 4.8. // TT does not contain the identity, then p is (oo,0)- 
infinitesimal rigid; i.e., any C^-cocycle with coefficients in E is a C0- 
coboundary. 

Proof.   Same argument as in the proof of Proposition 3.2. O 

While Zimmer gave conditions under which the type 2 actions are C00- 
inflnitesimal rigid using Sobolev space technique, we show the infinitesimal 
rigidity using harmonic analysis on semisimple Lie groups. The key ingredi- 
ent is the use of the vanishing of the matrix coefficients for unitary represen- 
tations. This approach was developed by Katok and Spatzier in establishing 
the cohomological and local rigidity of principal abelian group actions [6, 7], 
and then used by Kononenko for the cohomological rigidity of higher rank 
lattice actions [8]. They used the exponential decay of the matrix coefficients 
(Corollary 7.2 of [3]) for unitary representations to construct a distribution, 
and then show that the distribution is actually a smooth function. 

We start with a C^-cocycle a with coefficients in tangent bundle of 
H/Aj and an L2-coboundary v. Then we only need the vanishing of the 
matrix coefficients for unitary representations to construct a distribution. 
The regularity of the distribution can be established the same way as in 
[6, 7]. 

We recall a theorem on the vanishing of matrix coefficients. 

Theorem 4.9. (By Howe-Moore, Sherman, and Zimmer, see Theorem 
2.2.20 of [19]) Let H be a finite product of connected non-compact sim- 
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pie Lie groups Hi with finite center, U a unitary representation of H on a 
Hilbert space V such that for each Gi, Uld has no invariant vectors. Then 
for any v,w e V, the matrix coefficients < U(h)v,w >—> 0 as h leaves 
compact subsets of H. 

Corollary 4.10. Let H be as in Theorem 4-9, A an irreducible cocom- 
pact lattice in H. Let /i,/2 € L2(H/A) orthogonal to constant functions 
(i.e., J fidx = 0; where dx is a Haar measure on H/A, i = 1,2/ Then 
J fi(x)f2(hx)dx —► 0 as h leaves compact subsets of H. 

Proof Let U be the unitary representation of H on L2(H/A) by 
(U(h)f){x) = f{hx). Then U induces a unitary representation of H on 
V = L2(H/A)QC. Then Moore ergodic theorem asserts that there exist no 
non-trivial invariant vectors in V. □ 

Theorem 4.11. Let H be as in Theorem 4-9, A an irreducible cocompact 
lattice in H. Let f) = ©fj; be the decomposition of the Lie algebra of H. Let 
p be an action of a discrete group T on H/A via homomorphism h : F —► H. 
Assume that 

1. p is L2-infinitesimal rigid; 

2. Adn o h : T —> GL(fj) has no compact part; 

3. there exists 70 € T such that Adn 0 ^(70) is partially hyperbolic; 

4- the eigenspace Vi C t) corresponding to eigenvalue 1 of Adn o /i(7o) 
satisfies Vi D fj; ^ faj ^ {0}; 

5. the only non-trivial irreducible invariant spaces of Adn o h are fo. 

Then p is C00-infinitesimal rigid. 

Proof p is tangentially flat action of T associated with homomorphism 
Ada o h. For any C^-cocycle with coefficients in TM, by (1) there exists 
an L2-coboundary v such that 

4.4 01(7)(x) = v(x) - Adn o h{^)v{h{^)~lx). 

Since 1 is an eigenvalue of AduOfr(7o)> and Vi intersects each f); non-trivially, 
there exists a nonvanishing vector field (considered as an element in Lie 
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algebra fj) Xi e i)i on H/A corresponding to eigenvalue 1. Let X2,..., Xd be 
complementary vector fields in the subbundle Ei corresponding to Lyapunov 
exponent 0, 11,... ,1^ be vector fields in the subbundle E2 corresponding 
to other Lyapunov exponent of Adn o /i(7o). We want to show that the 
Xi-component of v is smooth. 

Let /, 0 be the Xi -components of a(7o), v respectively, Let /i(7^1) = p. 
Compare the Xi-components of (4.3), we obtain f(x) = 0(aj) — <f)(gx). It 
follows by repeated use of the equation that <f>(x) — X^o f(9%x) +0(5m+1^) 
and <f)(x) = — YALI f(9~lx) + </>(<7~(m+1)#). By the vanishing of the matrix 
coefficients (Theorem 4.9, Corollary 4.10) and (3), we obtain that as distri- 
bution, P+ = YltLo f(9%x) and P- — — S£i f(9~%x) are well-defined and 
they are equal. (We remark that f f(x)dx — f((f)(x) — (j)(gx))dx = 0. If a 
function u{x) is constant, then P+(w) = P-{u) — 0). 

We show that the stable and unstable spaces of T := Adn ° ^(7o"1) 
generate (j. Since T is an automorphism of (), we may decompose I) as 
I) = I)0 + fj+ + fj~, where ^0,^+,f)~ are the sum of Lyapunov spaces 
corresponding to zero Lyapunov exponent, positive Lyapunov exponents 
and negative Lyapunov exponents of T respectively. Since [fj0, l)+] C f)+, 
[f}0,()~] C FT, it is easy to obtain that the Lie algebra fj* generated by 
fj+, fj~ is a non-trivial idea. Hence f)* is a sum of some fo. If ^* 7^ fj, then 
some fjj C f)0 (since {f)j} are permuted by T and all of them are fixed by 
some positive power Tq of T. If \}j is not contained in fj*, and is invariant 
under Tg, ^ C f)0). Contrary to assumption (4). 

Once P+ = P_ and the stable and unstable distributions of g = h^Q1) 
generate I), Katok and Spatzier showed (see Theorem 4.5 of [7]) that P = 
P+ — P_ is a C^-function. Hence the Xi-component 0 of 7; is of class C00. 

Apply the same argument as in the proof of Theorem 4.2, we obtain that 
v(x) is itself of class (7°°. □ 
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