
COMMUNICATIONS IN 
ANALYSIS AND GEOMETRY 
Volume 4, Number 3, 481-493, 1996 

A finiteness property of representations of 
TTI of algebraic surfaces 

KANG ZUO 

( First version, 22. October 1994) 

0. Introduction 
Let X be a compact complex algebraic smooth surface and 7ri(X) be the 
fundamental group of X. In this article we shall prove the following 

Theorem 1 Suppose that X contains a numerically nonzero divisor D 
of rational curves ( possibly singular ) and the self intersection D2 = 0. 
Then any n-dimensional reductive representation p of 7ri(X) is either fi- 
nite, or factors through a surjective morphism f : X -> C onto an algebraic 
curve C of connected fibers after passing to some finite etale covering and 
blowing of X. 

Recently, B. Lasell and M. Ramachadran [14] proved that if X contains 
a divisor D of rational curves such that D2 > 0, then any n-dimensional 
reductive representation of 'Ki(X) is finite. Their theorem gives a positive 
answer in the representation case of the following question has been studied 
by Nori. 

Question A Let X be an algebraic surface. Suppose that there is a 
rational curve R (possibly singular ) on X, with R2 > 0. Is 7ri(X) finite? 

Gurjar has related this question to the Shafarevitch conjecture [17] which 
asks: is X holomorphically convex ? F. Campana and J. Kollar have stud- 
ied, for examples, non negativity of a variant Kodaira dimension [3] and some 
nonvanishing properties for plurigenera [12]. The author [23] has shown re- 
cently that the Shafarevitch varieties sh(X) in the semisimple representa- 
tions case are always of general type and all nonconstant morphisms form all 
curves of genus < 1 into sh(X) must be contained in a proper subvariety 
of sh(X). In a sense, Theorem 1 can be thought as a sharp version of this 
property. 
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Let us recall a part of this conjecture, so called Remmert-Stein reduction, it 
says that there should exists a proper holomorphic map sh : X -* y such 
that every compact subvariety is contained in some fibers of sh. And this 
is enough to solve Question A. Let us say a few words about that. If TT^X) 

is infinite, then / is not constant. So, a connected component of preimage 
of R (which is always compact) is therefore mapped to point. But, this will 
lead a contradiction to D2 > 0. 

Combining this conjecture and Theorem 1, one could similarly ask the fol- 
lowing question 

Question B Let X and D be the same as in Theorem 1. Is the fol- 
lowing true? either ni(X) is finite, or there exists a Gbration f : X -* C 
such that D is contained in a fiber of f and the image 7ri(/~1(c)) —> 7Ci(X) 
is finite for each fiber of f. 

Originally, Bogomolov informed the author very recently that he has con- 
structed a series of examples. Such a surface is a fibration of curves over a 
curve, it contains a configuration D of rational curves as a fiber such that 
image 7ri(D) —► TTIPQ is infinite. So, these examples give a negative an- 
swer of Question B. It might also lead a negative answer to the Shafarevitch 
conjecture. 
Applying Theorem 1 to BogomoWs examples, we see that any n- 
dimensional reductive representation of TTI of such a surface must have a 
infinite kernel. 

It is easy to check Theorem 1 is also valid in the following situation: A 
smooth projective variety X of dimension d, with an effective divisor on 
E such that 7ri(Ei) of each irreducible component of E has a finite image 
in ici(X) and E2Hd~2 > 0 for an ample divisor H. 

The method involved in the proof is, so called, equivariant ( archimedian + 
p—adic)'pluriharmonic maps and nonabelian Hodge theory. Roughly say- 
ing, if all these maps are constant, then p is unitary and discrete, hence, is 
finite. It could also be a general method to treat infinite dimensional repre- 
sentations in some cases. Because of the classification theory of surface, we 
only need to consider surfaces of minimal model and of general type. A sig- 
nificant property of such a surface is, x(®x) > 0- Therefore, by a theorem 
due to Gromov [7], the nature representation of iri(X) in the Hilbert-space 
of L2— holomorphic 2-forms is almost faithful.  ( I thank F. Campana for 
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telling me this fact.) Once a good theorem of harmonic maps is developed 
for infinite dimensional representations in archimeian and p-adic cases ( for 
example, maps into infinite dimensional symmetric spaces and infinite di- 
mensional Bruhat-Tits building ), then our method should work also in this 
case. 
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1. Pluriharmonic maps in archimedian case, p—adic case and non- 
abelian Hodge theory 
Let X be a compact Kahler manifold and p : TT^X) —► GLn( C) be a 
complex representation. One considers an equivariant map u from the uni- 
versal covering X of X to the symmetric space N — GLn(C)/Un. The 
invariant Riemannian metric on N and the Kahler metric on X together 
defines a metric <, > on T^®u~lTfq. The energy of u is therefore defined 
by E(u) — Jx < du, du > dV where dV is the volume form induced by 
the Kahler form. An equivariant map u is called harmonic if u is a critical 
point of £?(.), and called pluriharmonic if the restriction of u to any com- 
plex submanifold of X is again harmonic. The following theorem proved by 
to Hitchin, Donaldson and Corlette ([6] [5] [4]) is a special case of a general 
theorem of existence of equivariant harmonic maps proved independently by 
Jost-Yau [10] and Labourie [13]. 

Theorem 1.1 There exists a p—equivariant pluriharmonic map (in fact, 
a unique one), if and if p is reductive. 

Here, p called reductive, if either p7ri(X) is not contained in a parabolic 
subgroup of SXn(C), or if it stabilizes (i.e. maps to itself) a totally geodesic 
flat subspace of N. 

As an interpretation of equivariant pluriharmonic maps, Hitchin and Simp- 
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son have constructed a holomorphic object, so called Higgs bundle [6], [18]. 
Let us briefly describe their construction. Let V be the flat vector bundle 
associated to p with the flat connection D. Given a metric g on V> ( or 
equivalent to say, given a p—equivariant map u : X -* N ) then there is an 
unique decomposition D = (D^ + Dg) + (0 + 0) such that the connection 
LPg+ry respects to g and 6+6 e Alfl(EndV)®A0'1(End V) is self-adjoint 
with respect to g. The metric g is harmonic ( equivalent to u is harmonic 
) if (Dg+ 6)2 = 0. Hence, from this equation we get a holomorphic vector 
bundle E = (V,D%) and a holomorphic section 6 e H0(X, ft1 (End S). 
This pair (JS1,6) is called Higgs bundle corresponding to p. It is easy to see 
that p is an unitary representation if and only if 6 = 0. 

There is a variant semi negativity ( positivity ) theorem due to Mok, so 
called semi Kahler structure. In a sense, it is stronger than Lemma 1.3. Let 
us briefly describe it. Considering a compact Kahler manifold X and let p 
be a noncompact reductive representation of iri(X). Then by Theorem 1.1 
we have a non constant p— equivarient pluriharmonic map u: X —► TV. The 
(1, 0)-part of the complexified differential d'u is holomorphic, and therefore 
it defines a meromorphic foliation J7 on X. The following is a part of Mok's 
theorem ( [16] (1.2), Theorem 3, (1.3), Theorem 4 and p.574 ). We need it 
in the proof of Theorem 1. 

Lemma 1.2 Let h be the canonical Riemannian metric on N. Then the 
(1, l)-part of the pull back u*(h) is a possibly degenerated Kahler metric g 
on X. Moreover, denote by (3 the closed (1,1)- Kahler form on X, associ- 
ated to 5, til en (3 is semipositive definite, and the Kernel of the semipositive 
Hermitian form of 0 on Tx'0(X) coincides with Tl'0{F). 

Now we consider the similar question in the p—adic case. Let p be a repre- 
sentation of 7ri(X) into a semisimple p—adic algebraic group G^p) where 
Kp is a complete field with a discrete valuation p. We denote the valuation 
ring by Op. Instead of the symmetric space in the archimedian case, here we 
take the Bruhat-Tits building A of G{Kp) [2]. It is a rfc^pG-dimensional 
contractible simplicial complex. One defines a metric on A by glueing the 
Euclidean metrics of simplicial together, and it make A to be nonpositive 
curved space in the global sense. G(Kp) is then the isometry group of A. 
In the same way we consider a p equivariant map u : X —> A A point 
#0 € X is called a regular point of u if there exists a ball i?(#o> 0"o) of 
radius GO > 0 and a rk^ G—flat F c A(G) with B(XQ,GO) C F. ( see 



A Finiteness Property of Representations of TTI of Algebraic Surfaces 485 

[8], page 68). And S(u) — X\Xr is called the singular set of u. In the 
same way We define the energy of u by E(u) := Jx < du, du > dV. The 
following theorem is proved in [8]in the p—adic number field case and in the 
function field case in [11] 

Theorem 1.3 There exists a p—equivariant pluriharmonic map (in fact, 
it is unique ) if and only if p is reductive. 

Remark. Note that the harmonic map in the function field case will be 
used in the case where some unbounded representation will be produced 
from nonrigid representations (see the second construction before of Lemma 
of 2.6). It makes the argument shorter. Nevertheless, our main applica- 
tion will be in the p—adic number field case. In fact, harmonic maps in 
the p—adic number field case suffice for all applications given in the present 
paper ( see the first construction before lemma 2.6). 

Instead by Higgs bundle, the similar holomorphic object here is a collection 
of equivariant holomorphic 1-forms. ([JZ] ) We start with an apartment 
A -R71""1 of A. Let W = Z x W be the afflne Weyl group of A(G), here, 
W is the usual Weyl group of G(KV). which operates on A as a finite 
linear subgroup generated by reflections, and Zr acts on A as the usual 
translations. Let TZ = {/?!,...,$} be the roots system of W, where fa are 
normalized vectors in Rr and ft1- are the reflection hyperplanes. We can 
consider fa as coordinate functions on A by orthogonal projection from 
A to fa. Now, by taking the differential, we get a collection of differential 
1-forms {dPi,...jd/3i} on A. One can glue these collections of 1-forms on all 
apartments together. It turns out, however, a I—valued 1-form a;, since on 
the common part of two apartments these two collections coincide as set, but 
the orders of the 1-forms in these two collections are differed by a permuta- 
tion from W. Here, a differential form on A means that its restriction to 
each apartment is a usual differential form. Equivalently, by taking a base of 
the invariant polynomials, one gets a collection of single valued differential 
forms ai, ...,cty in symmetric tensor product such that the I—valued 1-form 
LJ is the roots of the polynomial az+ceitz~1+...+az. ( see also [19] and [8] for 
SL2 case ). By taking the complexified pull back u*c(u) via the differential 
du, its (l,0)-part is a /—valued a holomorphic 1-form on X which we call 
again u. It can be seen as follows: First, u is holomorphic on Xr = X\S. 
Since u is Lipschitz, du is bounded near S. Noting that codimS' > 2, 
we extend u over S. Since u is 7ri(X)—invariant, it descends a /—valued 
holomorphic 1-form that we call again u on X. The image u(X) in the 
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total space of holomorphic cotangent bundle X is a subvariety, and can be 
regarded as a Z-fold covering of X under the nature projection. There is an 
equivalent way to see that, pulling back the single valued differential forms 
ai,..,az via the complexified differential dcu^ this gives the single valued 
holomorephic forms which we call again ai, ....,cty of symmetric tensor on 
X. Then the polynomial tl + aitl~l + ... + a/ defines the suvariety u){X) 
in 7-. 
Now by taking the Galois closure of the function field extension 
K(u}(X))/K(X), we get a Galois covering a : Xs —► X and a*u splits 
into / single valued 1-form CJI,...,^. They are just d/(ua)/3i,...,d,(ua)/3i. 
The Galois group is a subgroup of W. We obtain ([11]) 

Lemma 1.4 There exists a finite ramified Galois covering a : Xs —> X 
so that differentials d^ua)^ ..., df\ua)pi of the coordinate functions on all 
vkKpG-flats chosen as above piece together and yield I single valued holo- 
morphic 1-forms ui,...,ui on Xs 

2.    Proof of Theorem 1 

What we really need to do in Theorem 1 is to show either p is finite, 
or there exists a fibration f : X —> C such that the restriction p|/-i to 
a generic fiber of / is finite. This implies already that after passing to a 
finite etale covering and blowing up the pulled back of p factors through 
the Stein factorization of /, if one uses the fact that pni(X) is residually 
finite and the same argument in [12], Theorem 4.5. 

First we prove Theorem 1 the abelian case. This is an easy consequence 
form a sharper version of BogomoWs lemma 

Lemma 2.1 Let X be an algebraic surface. Suppose that X contains a 
configuration of curves i : B ^ X such that there is a nonzero holomorphic 
1-form a; on on X with the pulled back i*u = 0. If there is a numerically 
nonzero divisor D supported on B with D2 — 0. Then there exists a fi- 
bration f : X —> C of connected fibers over a curve C such that u factors 
though f and D is a fiber of f. 

Proof Consider the Albanese map $ : X —► Alb(X). By taking the quo- 
tient of Alb(X) divided by the abelian subvariety generated by the images 
of integral subvarieties of a;, we obtain a surjective map of connected fibers 
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/ : X —> y. We notice that a; factors through /, so, / is not constant. 
We claim Y must be a curve. It can be seen as follows. Suppose Y is a 
surface. Since f{D) is points, we find an ample curve H C Y such that 
it does not intersect with f(D), hence, f*{H)D = 0. Now Hodge index 
theory implies D2 < 0. This is a contradiction. So, we show that Y is an 
algebraic curve and D is contained in some fiber of /. Since D2 = 0, D 
is a fiber of /. Lemma 2.1 is proved. 

Corollary 2.2 Let X and D be the same as in Theorem 1, then ei- 
ther Hi(X, Z) is finite, or there exists a fibration f : X —> C over a curve 
such that the image H^f"1^)^) —> Hi(X,Z) is finite for every fiber of 
/, and D is a fiber of f. 

The following lemma is a nonabelian version of Cor.2.2 for discrete Zariski 
dense representation into a semisimple Lie group of noncompact type. 

Lemma 2.3 Let X and D be the same as in Theorem 1. Suppose there 
exists a discrete Zariski dense representation p of 7ri(X) into a semisimple 
Lie group G of noncompact type, then there exists a fibration f : X —> C 
over a curve C such that p factors through f and D is a fiber of /. 

Proof Since p is not unitary, u is non constant. We claim that the foliation 
J7 on X defined by d'u is a 1-dimensional family of curves. This can be seen 
as follows. If the generic leaves of J7 are points, then the associated semi 
Kahler form (3 of g in Lemma 1.2 is strictly positive on an open subset of 
X. Hence, fxpA/3>0. Noting that u maps every rational curve P1 from 
D to point and g is a pull back via u, we obtain fp1 (3 = 0. This implies 
also the intersection of the cohomology classes pAci(Ox(D)) = 0. Applying 
Hodge index theorem, we obtain either D2 < 0, or Ci(Ox{D)) = 0. The 
both cases lead contradictions. So, we proved that F is a 1-dimensional 
family of curves on X. Since p here satisfies the condition in Mok's factor- 
ization theorem ([16]), it descends a fibration on a blowing up / : X —> C, 
such that p factors through /. In fact, / descends a fibration on X in 
the surface case. It can be seen as follows, suppose it does not, then there 
exists a exceptional curve on X which maps onto C. This implies that p 
is trivial. But, this is a contradiction. D is contained in a fiber, since every 
P1 from R is mapped by u to point. D is a fiber of /, since D2 = 0. 
Lemma 2.3 is proved. 

Now we are in a position to prove Theorem 1.    Let  p be a reductive 
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representation into some GLn(C). Taking its Zariski closure, we get a 
Zariski dense representation p : itiiX) —> pK\(X). Since p is reductive, 
prci{X) = T x YliGi is an almost direct product of a torus with some al- 
most simple algebraic groups G* over C. Clearly, if dimp7ri(X) = 0, then 
we get the conclusion that p is finite. Suppose dimp7ri(X) > 0. We con- 
sider the projection into each factor and prove at first Theorem 1 for the 
representation induced by the projection. 

Lemma 2.4 Let p : 7ri(X) —* T be a Zariski dense representation in 
to a complex torus T of positive dimension. Then there exists a fibration 
f : X —► C such that p\f-i is finite and D is a fiber of /. 

Proof It is clear that p factors through to a representation r : Hi{X, Z) —> 
T. Since r is a Zariski dense representation into a torus of positive dimen- 
sion, r is infinite. Hence Hi(X,Z) is infinite. Applying Cor. 2.2 we 
complete the proof. 

Now we consider Zariski dense representations of 7ri(X) into an almost 
simple complex linear algebraic group G. We may assume G is defined 
over some number field L after a conjugation in GLn(C). So, the space 
R(G) of representations of 7ri(X) into G and the moduli space M(G) are 
also algebraic varieties defined over L, since 7ri(X) is a finitely presented 
group. We divide R(G) into the following two types 

Type A    1) p is rigid in G(C), i.e.   [p] is an isolated point in M(G). 
Hence p is valued in some number field K after a conjugation. 
2) p is p—bounded for every prime ideal p from OK, the ring of the alge- 
braic integers of K. 

Type B Either p is non rigid in G(C), or p is valued in a number field 
K and is p—unbounded for a prime ideal p from OK- 

Lemma 2.5 Suppose that p is of Type A. Then there exists a fibration 
f : X —> C such that D is a fiber of f and p\f-i is finite. 

Proof If p is of Type A, then p is more or less closer to a discrete repre- 
sentation, and we may apply Lemma 2.3. More precisely, by condition 2) in 
Type A p/iri(X)nG(OK) is a subgroup of p7ri(X) of finite index ([20], page 
120-121). So, after passing to a finite etale covering of X, we may assume 
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that pni(X) c G(OK)- We now need to consider Restriction of Scalars 
([20], page 116-120 ). Let ai(= id.),—,^d be distinct embeddings of K 
into C, RK/Q(G) = nli Gai and a : G(K) -> RK/Q(G) be the diagonal 
embedding. It is well known that RK/Q(G) is (isomorphic to ) an algebraic 
Q-group, such that aG(K) = RK/Q(G)(Q) and aGiOx) = RK/Q(G)(Z). 

The Zariski closure H := ap7ri(X) C RK/Q(G) is then an algebraic 
Q—group, and is semisimple. This can be argued as follows: The projection 
Pi : RK/Q(G) —> Gai satisfies p^a = a*. Since (7ip7ri(X) is Zariski dense 
in G*7*, Pi (if) = G0"*. The radical of H must be trivial. Otherwise, it 
would be projected to a G** by pi with the positive dimensional image. 
So, the image is a nontrivial algebraic solvable normal subgroup of Gai. A 
contradiction to the fact that Gai is semisimple. 
The diagonal embedding a induces now a discrete and Zariski dense repre- 
sentation 

T = ap: 7ri(X)-+#(Z). 

In order to make Lemma 2.3 applicable, we decompose H(R) = Fi x F2 
into a noncompact factor Fi and a compact factor F2. The projection qir 
into Fi is again Zariski dense and discrete, since F2 is compact. 
Applying Lemma 2.3 to qir : 7ri(X) —► Fi we get a fibration f : X -+C 
so that 9IT|/-I is finite. In particular, this implies that r|/-i is compact. 
Since r\f-i is also discrete, r|^-i is finite. Because r = ap is the diagonal 
embedding of p,  p|/-i is also finite. Lemma 2.5 is completed. 

Suppose now p is of Type B. Namely, either p is nonrigid in G(C), or 
there exists a p—adic number field Kp such that prripQ C G(KP) is 
p—unbounded. 
For a nonrigid p we may associate p to some unbounded representations 
in the following two different ways. 

The first construction It avoid to involve representations over function 
field. Choosing an integral structure for G, then M(G) is a variety defined 
over Spec(OK)- Taking the completion Kp D K for a prime ideal p from 
OK, we may assume M{G) is defined over Spec(OKp)' The OKP— integral 
points of M(G) correspond to p—bounded representations into G(OKP)- 

Because p is nonrigid, we may find an algebraic curve T C M(G) pass- 
ing through p and contains infinitely many non integral points {ptheTo- 
Those points correspond to unbounded representations into G{EP)^ where 
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Ep D Kp are some finite extensions of Kp. Since all the Zariski dense repre- 
sentations into a semisimple group G forms a Zariski open subset of R(G), 
we may assume that {pt}teTo are Zariski dense. 

The second construction This is due to Simpson [18] which goes back 
to M. Culler and P.B. Shalen [1]; see also [15] for a nice exposition. Since 
i?(G), M(G) are afflne varieties and dim[p]M(G) > 0, we may find an 
affine curve 5 in the space of representations passing through p for which 
the image in MB is again an affine curve. Let S — S U oo be the 
completion of S at infinity, and K(S)00 be the completion of the func- 
tion field of S w.r.t. the valuation of a point in oo. The family of the 
representations {ps}ses induces tautologically a Zariski dense represen- 
tation ps : TTIPO —> G(K(S)00) such that ps\s = Ps- Clearly, ps is 
oo—unbounded, since the image of S in M(G) goes to infinity and hence 
there are some G—invariant functions on S which are unbounded at infinity. 

Lemma 2.6 Suppose that p is of Type B. Then there exists a fibration 
f : X -» C such that D is fiber of f and p\f-i is finite. 

Proof The main idea is to apply harmonic maps for unbounded representa- 
tions into Bruhat-Tits building. First we consider p is a unbounded Zariski 
dense representation into G(Kp). Applying Theorem 1.3 in the p—adic num- 
ber field case, we get a nonconstant p—equivariant pluriharmonic map u 
into the corresponded Bruhat-Tits building. Hence by Lemma 1.2 the (1,0)- 
part d!u gives rise a collection of non zero holomorphic 1-forms {ct;i, ...,a;/} 
on a finite branched Galois covering a : Xs —► X. For every rational curve 
P1 C D, the restriction of the pulled back representation cr*p\a*pi is again 
trivial. This implies that the pulled back of all a;* to a^P1 are zero. 
Applying Lemma 2.1 we get a collection of fibrations {/* : Xs —> d} 
such that Ui factors through fa. Since all these fibrations contain a com- 
mon fiber a*D, they coincide with a fibration fs : Xs —► Cs. Because 
the Galois group of the covering a : Xs —► X permuts {ui, ...JCJJ}, /s is 
equivariant. Hence it descends to a fibration / : X —> C so that u factors 
through it. 

Claim 2.7 Suppose p is a unbounded Zariski dense representation into 
an almost simple algebraic group G. and If the p—equivarinat harmonic 
map u into Bruhat-Tits building factors through a fibration f : X —> C. 
Then p\f-i is finite. 
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Proof of Claim 2.7 Since u : X —► A is unbounded, the convex sub- 
complex of A which is generated by u(X) contains at least one geodesic 
line L. Fixing a generic point Co € C, then p7ri(/""1(Go)) Axes CQ. In 
fact, it fixes L, since for any two generic points ci, C2 € C, the images 
of TTIC/"

1
^!)), TTif/""1^)) in 7ri(X) coincide, thus ^/wri^""1^)) fixes 

ti(-X"), hence L. This implies that p|/-i is contained in the normalizer of 
some torus in G. 
Now let / : /~1(C0) —> C0 the regular part of the fibration such that all 
fibers over C0 are smooth and connected. Since X is smooth, the inclu- 
sion /~1(C0) c-* X induces the surjective map of the fundamental groups 
7ri(/"1(Cr0)) —► TTIPQ, so plyr-i^o) is again Zariski dense in G. 
Now we consider the homotopy exact sequence 

*i(rH<>o)) — TitrHc0)) — *i(c0) —► i, 

in particular, 7ri(/~1(co)) is normal in 7ri(/~1(Cr0)). So, the Zariski clo- 
sure p7ri(/"1(co)) is a normal algebraic subgroup of pni(f~l(C0)) = G. 
We have shown already that p7ri(/~1(co)) is contained in the normalizer of 
some torus in (7, and since G is almost simple, so pniif"1^)) must be 
finite. The claim is proved. 

By Claim 2.7 we proved Lemma 2.6 for unbounded representations. 

Proof for the nonrigid case Now we consider nonrigid Zariski dense repre- 
sentations into G. We state two proofs here according to the above different 
constructions of unbounded representations. 

The first proof Let {pt}t€To be the family of unbounded representations 
in the first construction. Applying Theorem 1.3 in the p-adic number field 
case and using the same argument as the above, we obtain a family of fi- 
brations {ft : X —► Ct}teTo such that pt\f-i is finite. Since all ft have 
a common fiber D, all ft coincide with a fibration / : X -* C. Hence 
Pt|/-i, t e TQ are finite. In particular, they are not Zariski dense. Since 
To is a Zariski open subset of the algebraic curve T C M(7ri(/""1) -> G) 
and the subset of Zariski dense representation is a Zariski open subset of 
M(7ri(/~1) —> G), p\f-i is also not Zariski dense. Finally, applying the 
homotopy exact sequence as above, we show that p\f-i is finite. The first 
proof is completed. 

Tie second proof   Applying Theorem 1.3 in the function field case to the 
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unbounded representation ps in the second construction, we get a noncon- 
stant ps—equivariant pluriharmonic map u into the corresponded Bruhat- 
Tits building. Using the same argument in the unbounded case, we obtain 
a fibration / : X —► C such that ps|/-i is finite. This implies that p\f-i 
is also finite. Lemma 2.6 is completed. 

Proof of Theorem 1 This is a direct consequence from Lemmas 2.4-2.6. 
Since all fibrations appear in Lemmas 2.4-2.6. have a common fiber D, 
they are all the same. 
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