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1.   Introduction and main result. 

In this paper we shall deal with general nonhomogeneous expanding cur- 
vature flows of an arbitrary starshaped closed plane curve 70 in R2. This 
is a partial generalization of Chow-Tsai [5] for nonhomogeneous expanding 
curvature flows of closed convex plane curves. A major difference between 
these two papers is that in Chow-Tsai [5] we use the support functions 
of convex closed curves to formulate our problem while we use the radial 
functions of starshaped closed curves here. In a later paper by Chow-Liou- 
Tsai [8], we shall generalize our results to the expansion of embedded plane 
curves with turning angle greater than —TT. Although we concentrate on 
nonhomogeneous expanding curvature flows here, we should mention the 
many important works on homogeneous curvature flows of closed convex 
curves and hypersurfaces in the last several years. We refer the readers to 
the introductory remarks in the papers by Andrews [1], Chow-Tsai [5], or 
Chow-Liou-Tsai [7] for further information. For expanding starshaped hy- 
persurfaces, we mention the papers by Urbas [19] and Gerhardt [10], where 
they consider the homogeneous expanding curvature flows of starshaped hy- 
persurfaces with dimension at least two. Recently, Chow [2] was able to 
use the Aleksandrov reflection method to get a gradient estimate for the ra- 
dial functions of nonhomogeneous expanding curvature flows of starshaped 
hypersurfaces. 

Let 70 be an arbitrary starshaped (with respect to the origin of R2) 
embedded closed curve parameterized by a smooth embedding Xo(u) : S1 —> 
R2. We consider the initial value problem 

(1.1) -n-FW.N 
X(u,0) = Xo(u) 

where F(z) :R—►R+ is an arbitrary positive smooth decreasing function 
which satisfies   lim  F(z) = oo and F(z) =   Jf' < 0 everywhere, K(u, t) is 

z—►—oo 
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the curvature of the curve given by X(-,t) at the point u, and N(-,t) is 
the unit outward normal vector field to the curve X(-,t). Note that we 
only put very little assumptions on F. The condition F < 0 will guarantee 
that our equation (1.1) is parabolic (see (1.2) below), while the condition 

lim  F(z) = oo is used in the second derivative estimate, it is not required 
z—►—oo 

in the gradient estimate. Moreover, when   lim  F(z) < oo, singularities may 
z—►—oo 

develop for certain initial data (see the picture in Chow-Liou-Tsai [8]). Ge- 
ometrically speaking,equation (1.1) means that we deform the initial curve 
7o in its outward unit normal direction with arbitrary speed F depending 
on its curvature K only. Intuitively, we expect the evolving curves 7* remain 
starshaped and expand to infinity while their shapes asymptotically become 
round. This is indeed the case as we shall show below. It is natural to 
consider expansion with nonhomogeneous speed when the initial curve 70 is 
starshaped. The reason is that, in this case, homogeneous speed corresponds 
to the choice F(K) = -^, which no longer makes sense since the curvature 
may be zero somewhere. 

Since 70 may not necessarily be convex, we can no longer use the support 
function on S1 to reformulate equation (1.1) (see Urbas [18]). However, by 
introducing polar coordinates (r,0) in R2, equation (1.1) for starshaped 
plane curves expansion is equivalent to the following 

dr _ ^r2 + rl 
(1.2) m =       r 

r(0,O) = ro(0), 

F(K) 

^2_i_o«2_ 

where ro(0) is the radial function of the initial curve 70, K = r ^^J-/^2 

is the curvature of the starshaped plane curves, A = r2 + rf, and ri = 
§5, ^2 = fp-j ...etc. The proof of the equivalence is similar to what Urbas 
did in his paper [19] for the higher dimensional case. We will not repeat it. 
Here we should point out that in equation (1.1), the partial derivative J^ is 
with respect to fixed u, while in equation (1.2), ^ is with respect to fixed 
angle 0. To avoid confusion, we use the coordinate (U,T) for equation (1.1) 
and use the coordinate (0,£) for equation (1.2) with the understanding that 
t = r. In the rest of this paper, we also use ' and " to denote J^ and J^- 
respectively when we deal with evolution equations resulting from (1.2). 

It is well-known that there exists a unique smooth solution to equation 
(1.2) (or (1.1)) on S1 x [0,r) for some maximal time T > 0. We shall prove 
that the solution exists for long time and show that the evolving curves 7*, 
under an appropriate rescaling, converge to the unit circle Sl in the sense of 
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the following theorem. The maximum principle will be the main ingredient 
in the proof. 

The main result of this paper is the following 

Theorem 1.1. Let F(z) :R—>R+ be an arbitrary positive smooth decreas- 

ing function with F < 0 everywhere and   lim  F(z) = oo. For any given 
z—>—oo 

smooth positive function ro(6) : S1 —JJR"*", there exists a unique solution 
r € C00^1 x [0, oo)) to equation (1.2) such that lim rmin(t) = oo. Moreover, 

t—>oo 
there exists a constant C depending only on F and ro such that 

(1.3) §^ <c 

for all (6,t) e S1 x [0, oo). As a consequence, there exists a solution 
R(t) to the o.d.e. 

(") %-nb dt       vir 

on [0, oo) such that 

(1.5) rmin(i) < R(t) < rmax(i) 

and the radial functions r of the rescaled curves 7 = ^ satisfy 

(1-6) \\r^t)-l\\cl{sl)<^ 

for all te [Ojoo).1 

From now on, we shall focus on equation (1.2) and prove the long time 
existence of a solution. We first compute several evolution equations. 

1 Added in proof: In fact, based on the gradient estimate Proposition 3.3 and the 
curvature estimate Lemma 6.3, we can show that the evolving starshaped curves 
become convex eventually. As a consequence of that, the radial functions r of the 
rescaled curves 7 = -^ will converge to the constant 1 in C2-norm. See a later paper 
by Chow-Liou-Tsai [8]. 
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2. Preliminary computations and the evolution of curvature. 

Our first lemma is on the growth rate of r. Unlike the case in the convex 
curve expansion where the speed of the support function may blow up in 
finite time, the speed of r here will stay finite as long as t is finite because 
of the nature of our problem. We have 

Lemma 2.1. Let rm3iX(t) = maxr(0,i) and rmin(£) = minr(0,i). We have 
oes1 ozs1 

(2.1)        at + rmin(0) < rminft) < r(0, t) < rmax(t) <bt + rmax(0) 

for all (6,t) e S1 x [0,r), where a = ^(^-^oy), b = F(0). 

Proof. We will use a version of the maximum principle due to Hamilton 
[12]. Since r is smooth, rmax(i) and rmin(t) are clearly Lipschitz functions 
of t. Therefore 

d+       ,. .  - rmm(t + h) - rmin(t) 
-Trrmm(t) = lim mf  
dt h^o+ h 

>ini{§ir(S,t),tem(t)}, 

where m(t) = {0 e S1 : r(0,i) = rmin(t)}. For any ^ e m(i), we have 

Therefore, since rmin(t) is increasing and F is decreasing, we obtain 

This implies that 
r(0,i)>rmin(t)>ai + rmin(O), 

where a = F(r 
1
(Q))' Similarly, we can show 

which yields 
r(0, t) < rmax(i) < bt + rmax(0), 

where b = F(0). The proof of (2.1) is done. □ 

The evolution of the gradient of r is given by the following 
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Lemma 2.2. (i) 

(2.2) 
dtn = —jrs + 

F  r 

F        F 
+ -TO (3r2 - 3r? + 3rr2) 

Al/2       A2> 
n 
—r2 
r 

Al/2r2       A2' 

on Sl x [0,T), wAere ra = |^, F = FW, F = F(K) = f^ |z=^ . 

(ii) 

(2.3) 
d^w = —rw" + ^ + ^(3^-3^ + 3^) 

„    F    V?       „F ,A   o ox ^^   2 
^liT^^-^^ + ^ + V2 

^1     / —w 
r 

on S1 x [O.T), where to = r?, «/ = ^, w* = ^^ 9^ 

Proof. The proof is a routine computation. First we have 

(2.4) <*=(&««))'=(£)'«*) + &**. 

We compute 

(2.5) 

and 

(2.6) 

K' = —^ (--A^3 - Arri - Srrf - Sr?^ + Sr2rir2 + Srrirl) 

\/3\   _ rri + rir2     ^1/2^1 
r   / rA1/2 r2' 

Formula (2.2) follows by substituting (2.5) and (2.6) into (2.4).  To prove 
(2.3), we use 

wf = 2rir2,    w" — 2rir3 + 2^ 

and (2.2). D 

As a preliminary estimate, we have the following lemma, which will be 
improved later. 
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Lemma 2.3. There is a constant Ci depending on the initial curve 70 and 
F such that 

(2-7) liW-01     onSlx^- 

Proof. Same as before, we have w = r\ and 

d+ ,.. Wmax(t + h) - IDmaxC*) 
-rrwmax(t) = hm sup  
at h-^o+ h 

<swp{—w(<r),t), 7ieW(t)}9 

where W(t) = {0 e S1 : w(09t) = wm3LX(t)}. For any 77G W(t), we have 
^2(77,4) = 0 and 

r2 + 2r? 2 2 2 0 < *(,,«) = -zpHmO < ^fe.) < JT^J s ^-w. 
By (2.3), we get 

-^^maxW < -8F(A0 at (?/,*). 

Let d = max F(z)  on the interval [0, r 
2(0)]» We obtain 

(2.8) r?(0, t) < ttfmaxOO < 8dt + ^max(0). 

and conclude 

r{0,t) -   at + rminiO)   "   1 

for all (0,t) e S1 x [0,r), where Ci = max(f, 7^^). This finishes the 
proof of the lemma. □ 

The next lemma, though similar to Lemma 2.3, may be of interest on its 
own. 

Lemma 2.4. Let (0, A] be the maximum interval on which F(z) H—fl > 
0. For any initial curve 70 with radial function ro{0) > j, for all 6 e 51, ^e 
have 

(2.9) max4S4 < max^T^     for al11 ^ t0'T)- v    ^ oesi r2(0,t)     oesir2(0,O) 

In particular, if F(z) + —^ > 0 on (0,00), tfien (^2.9^ /ioZd5 /or any initial 
curve 70. 
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Proof. Since this lemma will not be used later, we only provide a brief proof. 
T 11) 

For convenience, let ij) = -j = -j.  At any point (p,t) where ?/> attains its 

maximum on S1, that is ip(p,i) = m&xip(0,t), we have 
oes1 

r? 
r2 = —    at(p,t). 

dtiP(P}t) = -ji/' + F F'~,2     0.2 
r 

This will imply 

-2r^(F{K) + All*F{KJ)     at(p,t). 

Note that 

0 < K(p,t) = -^(p,t) < —^TT <    .  1  .,,. < A. w. J     ^1/2^' > - rmin t) - min^ ^) - 

By the assumption, we deduce 
2 

-2^ (F(K) + A^FCif)) < 0   at (p, t). 

Hence 
^<0    at(p,t). 

By the maximum principle, (2.9) is proved. O 

Remark: We would like to point out that the border case of the differ- 
ential inequality F(z) -\—jEl > Q happens to be the homogeneous speed 
F(z) = 1. 

The next lemma will be our main formula, which is the evolution equa- 
tion of the curvature K. When we compute the evolution equation of the 
curvature K using the coordinate (u, r) or arc length parameter 5, part of 
our computations are similar to those in the paper by Gage and Hamilton 
[9]. Details can be found there. 

Lemma 2.5.  We have 

(2.10) 

a* - -JK"+w-^K'+w*™' - jKa -FK2 

on S1 x [0, T), where F = F(K) = f# \Z=K . 
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Proof. It is possible to give a direct computation of K using (0, t) coordinate 
and the relation K = r +^77T2 > but it turns out to be very tedious. We 
can use a different approach. First, following similar calculations as in Gage 
and Hamilton [9] and using the (u, r) coordinate, we can obtain 

(2.11) dTK = ~F{IC) - F(K)K2, 

(x{u,r)\ (Q 

where s denotes arc length parameter. Although s is only defined up to a 
constant, Jj is uniquely defined. Let X{U,T) — (x(u,T),y(u,T)). We have 
the relation 

^cos0(^,r)N 

^sin 0(U^T)J' 

Let P = (cos0(^,T),sin0(^,T)) and J = (—sin0(^,r),cos0(^,r)). 
We deduce the following relation between the two orthonormal frames 
{P, J}, {AT, T} along ft 

iV = unit outward normal = —={rP — n J) 

i     ^ 
T = unit tangent = —=(r J + riP) 

and 

Using the equation 

(2.13) (g, ^) = F(K) • JV = F(K) • JL(rP - ri j), ■ 

and comparing (2.12) and (2.13), we can get 

09 _    F{K) n 
(2.14) 

We also have 

where 

Or -/A   r ' 

d       Id        Id 
ds     y/vdu     yfAdQ" 

2        /a..\ 2 
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By the relation 
K(U,T) = K(e(u,T),t), 

we infer 
dK__dK_de_    dK_ 
dr ~ 06 dr + dt ' 

It follows that 
OK _ dK     dK 09 
dt ~ dr 0   09 dr 

= -FK„ - FK* - FK* + -~}K>. 

Finally, use 
d        1   d 
ds     jAdO 

to conclude 

** = -LAK" + ^7K' + ^K' - J*" - FK2' 
which is equation (2.10). D 

Lemma 2.5 and the maximum principle will yield the following immedi- 
ately. 

Corollary 2.6.  There exists a positive constant C2 depending only on the 
initial curve 70 such that 

(2.15) K(0,t) < C2     on Sl x [0,T). 

Proof. By (2.10), we have 

since F is positive. Now (2.15) follows from the maximum principle. 

Lemma 2.7.  The evolution equation of F(K) is 

(2.16) 

dtF(K) = -jF(K)" + -^jFiK)' + -^FFiK)' - FK2F(K) 

on Sl x [0,n where F{K)' = ^F(K), F(K)" = ^F(K). 
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Proof. Clearly, by (2.10), we have 

(2.17) 
dtF(K) = F{K)dtK 

= F • (-Z-K" + ^TTz-K' + -^FK1 - ^-K'2 - FK2\ . 
^   A A1/2 r 2A2 A ) 

Compute 
FiK)' = FKl 

F{K)" = FKff + FK,2
i 

and use them into (2.17) to get equation (2.16). □ 

3. Gradient estimate. 

Our main crucial estimate in this section is a uniform bound for the 
gradient of r. Here we use the maximum principle to show that the gradient 
of r is bounded by a constant C depending on F and the initial curve 70. A 
different important approach was made by Chow recently, where he used the 
Aleksandrov reflection method to obtain a uniform gradient estimate (with 
the bound depending only on the initial hypersurface) for the radial function 
of a starshaped hypersurface moving by its curvature vector, which holds 
outside some compact set depending only on the initial hypersurface. See 
Chow [2] for details. Furthermore, the Aleksandrov reflection method has 
been used in various ways in the papers by Chow-Gulliver [3], [4] recently. 

The quantity we shall estimate here is 

where Q 
F(K)'      ^^     JA 

This quantity is equal to g^, the ratio of the space derivative to the time 
derivative. It is also equal to the ratio of the tangential component of the po- 
sition vector to the speed function. We shall show that the absolute value of 
^ is bounded by a positive constant depending on 70 and F. The motivation 
for estimating this quantity is based on a previous paper. See Chow-Tsai 
[5]. 

Remember that we have 

iV = unit outward normal = —=(rP — riJ) 

1     ^ 
T = unit tangent = —r=(rJ + riP) 

VA 
X(U,T) = r(6{u)T)^t) • (cos0(u,T),sin0(?z,r)). 
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Prom this it follows that 

where (•, •) denotes the Euclidean inner product. 

Lemma 3.1.  We have 

(3.1) 

fi) 
dr 

(i)     £- (X, N) = -F (X, N)ss - K2F (X, N) + F + KF. 

d ,„ _        A,,,™,        .,2, (3.2) ^     f; (X, T) = -F {X, T)ss - K2F (X, T) 

Proof. The Frenet formula says that 

d4 = KT,  %—KN. 
ds '   ds 

-KFT 

We also have the relation for commuting the operators ^ and ^, which is 

(3.3) 2-1-2-®- = -KF?-. 
dr ds     dsdr ds' 

Therefore we can infer 

dT _ d OX _ d OX 
dr      dr ds      ds dr 

^^ = J-(FJV) - KFT = F{K)SN + FKT - KFT 

= F\K)SN. 

Similarly, we have 

dN 
(3.5) |- - -F(K)aT. 

Now by equation (3.5), we find 

(3.6) —(X,N)=F-F(K)S(X,T). 
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Using 

and 

(X,N)S = (X,NS) = K(X,T) 

(X, N)ss = KS(X>T) + K + K (X, -KN), 

and equation (3.6), we can get (3.1). The proof of (3.2) is similar. 

Lemma 3,2. Let H = £p- = $. We have 

(3.7) -o- = —FHSS — 2—F{K)sHs. 

U 

Proof. By equation (3.2), we obtain 

dH _ 1 
-F(X,T)SS-K2F(X,T) 

(3.8) 

Using the relation 

-■p (X, T) [-FF(K)SS - FFK2] 

^>T)ss , p{X,T)F{K)ss 
F2 

Hss = ±[F (X, T)ss - (X, T) F{K)SS\ - jF{K)sHs 

into (3.8), we can justify equation (3.7). □ 

Proposition 3.3.  There exists a constant C depending on 70 and F such 
that 

(3.9) |ri(0,t)| = 
dr 

<C    onSlx [0,r). 

Proo/. We let C denote any constant depending on 70 and F, where C may 
change from line to line. Applying the maximum principle to equation (3.7) 
immediately gives us 

\H\ < C. 

Since 

H = 
(X,T) _ m 

F      VAF' 
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we find 

(3-10) InlSC^l + ^FiK) 

At any point (77,£) where ri(r/,i) = max ri{9^t)^ we have 

r2(i?,t) = 0> 

and hence 

Since F is decreasing, we have F^^t)) < F(0). By (2.7) and (3.10), the 
proof is complete. □ 

Since ri(0,t) is uniformly bounded on Sl x [0,T), we have 

Corollary 3,4.  The evolving curves 7* remain starshaped with respect to 
the origin of R2 on the time interval [0,r). 

4. Second derivative estimate. 

In this section we shall derive an estimate for the second derivative of 
r, i.e. r2, which depends on ro, T, and F. The second derivative estimate 
comes as a consequence of the curvature estimate. We shall show that 
K > I on S1 x [0, T), where / is a constant depending on ro, T, and F. This, 
together with (2.15), are essential for us when we want to use the results 
of Krylov and Safonov [15] to prove the long time existence of a solution to 
equation (1.2). 

First, the lower bound of r2 is an immediate consequence of (2.15). We 
have 

Lemma 4.1. There exists a constant C3 depending on the initial curve 70, 
T and F such that 

(4.1) r2>C3     onS^lO.T). 

Proof. Since K is bounded above by a positive constant C2 depending only 
on 70 on 51 x [0, T), we have 

(4.2) r, > ^'J-C^ 
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The result follows from (4.2). □ 

It is more difficult to get an upper bound of r2. The idea is to get an 
upper bound of F(K) first, since the evolution equation of it does not involve 
the uncontrolled quantity F{K). Because we assume   lim  F{z) = oo, the 

z—►- oo 

fact that F(K) has an upper bound will force K to have a lower bound, 
which, in turn, implies an upper bound of r2. We provide the details as 
follows. First we need 

Lemma 4.2.  We have 

(4.3)      «L = -tn.-*-miir.   {XtN) 

where Q — 

{X'N)^s - -^—^(F2 + KFF), 

<X,JV>' 

Proof. It follows from (3.1) that 

(4.4) 

f=(^v)[-^^-™2] 
-yj^I [--F (X>N)ss - K2F(X,N)+F + KF 

F 
(x,Ny 

(X,N) 

Substitute the relation 

nss = &7N) 

into (4.4) to get 

-FF(K)S 
(X,N)2 

2[(X,N)F(K)SS-F(X,N)SS} 

-F(X,N)SS + F + KF 

(X,N) 
{X,N)sn 

s*OS 

OT L 

The proof is done. 

{X,N) 
(X,N)SQ 

(X,Ny 
\F + KF] 

a 

Lemma 4.3. There exists a constant C4 depending on the initial curve 
70, T, and F such that 

(4.5) F(K)<C4     (mS1x[01T). 
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Proof. First note that 

(X,N)      r2    ' 

Using 

d__d_   de_d_    ae      F{K) n 
(    ' dT~ dt + drde'     dT~     y/A   r 

and 
d        1   d 
ds     y/AM' 

we can convert equation (4.3) into 

(4.7) 
d   A1/2 F A1/2 F n   A1/2 3 F      A1/2 

dt    r2 A    r2   , A r    r2 2 A2       r2 

J? Al/2 A 

+^r4{—F)'-7*F{KF+F)- 
on Sl x [0,T). Let C5 be a constant depending on ro and F such that 

^(jU^r^     onS'x[0,T) 

and let (4x-^)max(£) = max(^F)(^,t). At any point (p,t) where 

{$r-F)M = max(^F)(e,t), if (^F)max(t) > C5F(0), we must have 

K(p,t) < 0. Therefore dt(^-F) < 0 at (p,t) by (4.7). Because we know 

d+ A1/2 A1/2 

^-(^pr^WCt) < supW-p-F)^,*), s e E(t)}, 

where £;(t) = {6 e Sl, (^F)(e,t) = (^F)max(t)}. We deduce that 

^(—F)max(t) < 0, 

whenever (^-F)max(t) > CsFifl). Hamilton's maximum principle guaran- 
tees that 

A1/2 f A1/2 1 
(—2-F)max(t) < max \ (-^-^^(O), C5F(0) \ , 



474 Dong-Ho Tsai 

for all t € [0, T). The proof of (4.5) is complete. □ 

Remark: Note that ^-F = Stn. r* r 

Proposition 4.4. There exists a constant C§ depending on the initial 
curve 70, T and F such that 

|r2(0,i)|<C6     onS1x[^T). 

Proof. Since F{K) < C4 and   lim  F(z) = 00, we have K > Cj for some 
z—>—00 

constant Cj. This implies that 

s+tj-aA* onSlx[0,T). 
r 

Combined with (4.1), the proof is done. □ 

5. Long time existence. 

Proposition 5.1. (Long time existence) There exists a unique smooth so- 
lution r(0,t) to equation (1.2) on S1 x [0, oo). 

Proof. In the following discussions, we shall restrict the domain of all quan- 
tities to 51 x [e, T) where e is some fixed positive constant. Also, we let C 
denote any constant depending on e, T, F, and ro, where C may change 
from line to line. Recall the following three equations 

F 

(5.1) A 
_^_ + J.(3r2-3r? + 37T2) 

F  rf      F 

n 
—r2 r 

~Ii7^"^(4ri+rri)' 

(5.2) 

dtF(K) = -jF(K)" + jpsjFW + ^FF{K)' - FK2F(K) 

and 

dr     A1/2 p Fr?     F       A1/2 

(5.3)        % = —F = ~r2 + 2^ + ^r + ^— (F - KF). v    / dt        r A A r      A r 
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Moreover, it is not difficult to compute 

(5.4) 

A A r 2 A2 ^1/2 r 
FF 1 

+45/2 r3 
(/ _ 3r2r4 _ ^6) _ (2r4 + r2r2 _ ^ . ^^3/2 

where $ = ^-F{K) — %. Since we have deduced 

(5.5) |r|, Inl, M, 1^1, \F{K)l   F(K) <C9 

we can apply Theorem 4.2 in Krylov-Safonov [15] to equations (5.1), (5.2), 
(5.3) and (5.4) to yield 

(5.6) 
Hlc70,a(six[ejT)),   IMIc70><*(,Six[e,r)) < C 
dr 
dt C0'a{S1x[€,T)) 

\\F(K)\\c°><*(Slx[€,T)) ^C 

for some constant a G (0,1). Because F is smooth and decreasing, we clearly 
have 

(5.7) 

Using 

11^11(70^(51 x[e,T)) ^ C- 

r2 
r2 + 2r2

1-KA3/2 

and (5.6), (5.7), we finally get 

dr 
(5.8) 

dt C0^(S1x[€fT)) 
+ IN||co.«(Six[€lT)) ^ C- 

Estimate (5.8) is good enough for us to apply the standard parabolic theory 
to get the Ck,a bounds of r for any positive integer k. The proof is done. □ 

Remark: Alternatively, we can also show that all of the derivatives of 
the curvature K with respect to the arc length s are bounded as long as 
r is finite. This will allow us to get long time existence without using the 
theorem of Krylov and Safonov. See also Chow-Tsai [5]. 
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6. Rescaling and convergence. 

Since we have long time existence, we are ready to investigate the asymp- 
totic behavior of the solution. We shall see that the quantitative behavior 
of r(9,t) is the same as some solution R(t) to the o.d.e. 

First, we have 

Lemma 6.1. There exists a solution R(t) to the o.d.e. (6.1) such that 

(6.2) rmiR(t) < R(t) < rmax(t) 

for allt € [0, oo). 

Proof. First note that if rmax(i) = r(p,t) for some p e S1, then 

Similarly, if rm\n(t) = r(q, t) for some q € Sl, we have 

The rest of the proof goes exactly the same as in Lemma 9 in Chow-Tsai 
[5]. We omit it. □ 

Now we will choose one R(i) satisfying (6.2) and use it to rescale the 
solution r(#,£). Define the rescaled solution r(6,t) as 

Lemma 6.2.  We have 

Q.'TrC 

(6.3) W-O-^W) 
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and 

(6.4) %™ < 
C 

R(ty 

for all (9, t) e [0, oo), where C is the constant in (3.9). 

Proof. By Proposition 3.3, we have 

\r(9,t)-R(t) mt)-i\ = R(t) 
< rmaacft) - ^min(^)  < 27rC 

R(t) R(ty 

Equation (6.4) is also a consequence of Proposition 3.3. 

The proof of Theorem 1.1 is now complete. 
Before we end this section, we would like to say something about the 

asymptotic behavior of the curvature. Since we can not obtain a good esti- 
mate on the second derivative of r, we are not able to get sharp control of 
the curvature. However, we can deduce the following rough estimate. 

Lemma 6.3.  We have 
(i)   lim supifmaxC*) =0. 

t—+00 

(ii)   There exists a positive constant d depending on 70 and F such that 

K(e,t)>-d, 

for all (9, t) eS1 x [0,00). 

Proof, (i) Recall equation (2.10), which is 

dtK = -^K" + -^-K' + £2*'*? - T*'2 - FK2- A A1/2 r 2A2 A 

In view of the comparison principle, we have 

0 < KmaxCt) < (p(t) 

on [0,00), where <p(t) is the solution to the o.d.e. 

dt = -FfrW 
<p(0) = tfmax(0) > 0 
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It is evident that lim </?(£) = 0. (i) is proved. 
t—*oo 

(ii) We remember the equation 

A A r 2 A2 A1/2 r 
Fp 1 \r&-Zr2r\-2r\)-{2ri + r2r\-r\)-KA3l2 + 45/2 r3 

where $ = ^-F{K). For i large enough, say t > T' for some T' > 0, we 
have 

(6 5) 4 Ar     +2yl2        +AV2r 

-§-2^ + r2rl-ri).KA^ 

and (2r4+r2r^-rf) > 0 on S1 x [T', 00). Now let Cg be a constant such that 
^ < C& on 51 x [r',00). Again at any point (p,t) where (^■F)(p,t) = 
md,x(^F)(0,t) and t > V, if (^F)max(t) > CgFCO), we must have 

ii:(p,t) < 0. Therefore dt(^F) < 0 at (p,*) by (6.5). Hence 

A1/2 { All2 1 
( —F)max(*) < max ^ (—-iOmaxCT'),  C8F(0) I , 

on 51 x [T7, oo). Since we assume limF(2;) = oo, the z —> —oo proof of (ii) 
is done. □ 

Acknowledgement. I would like to thank my advisor Ben Chow 
for posing this problem to me. His patient guidance and constant encour- 
agement have been very influential through the years. Thanks also go to 
Mr. Lii-Perng Liou for many helpful discussions and the referee for some 
suggestions. 



Geometric Expansion of Starshaped Plane Curves 479 

References. 

[1] Andrews, B. (1993) thesis, Evolving convex hypersurfaces, The Australian Na- 
tional University. 

[2] Chow, B. (1995) Geometric aspects of Aleksandrov reflection and gradient 
estimates for parabolic equations, to appear in Comm. Anal, and Geom. 
1996/1997. 

[3] Chow, B., Gulliver, R. (1994) Aleksandrov reflection and nonlinear evolution 
equations, I: The n-sphere and n-ball, to appear. 

[4] Chow, B., Gulliver, R. (1995) Aleksandrov reflection and geometric evolution 
of embedded hypersurfaces, in preparation. 

[5] Chow, B., Tsai, D.H. (1994) Geometric expansion of convex plane curves, to 
appear in J. Diff. Geom. 1996. 

[6] Chow, B., Tsai, D.H. (1995) Expansion of convex hypersurfaces by nonhomo- 
geneous functions of curvature, in preparation. 

[7] Chow, B., Liou, L.P., Tsai, D.H. (1995) On the nonlinear parabolic equation 
ut = F(Au + nu) on 5n, to appear in Comm. Anal, and Geom. 1996/1997. 

[8] Chow, B., Liou, L.P., Tsai, D.H. (1995) Expansion of embedded plane curves 
with turning angle greater than —it, to appear in Inventiones Mathematicae 
1996. 

[9] Gage, M., Hamilton, R. S. (1986) The heat equation shrinking convex plane 
curves, J. Diff. Geom. 23, 69-96. 

[10]  Gerhardt, C. (1990) Flow of nonconvex hypersurfaces into spheres, J. Diff. 
Geom. 32, 299-314. 

[11] Hamilton, R.S. (1982) Three-manifolds with positive Ricci curvature, J. Diff. 
Geom. 17, 255-306. 

[12] Hamilton, R.S. (1986) Four-manifolds with positive curvature operator, J. Diff. 
Geom. 24, 153-179. 

[13] Huisken, G.  (1984)  Flow by mean curvature of convex hypersurfaces into 
spheres, J. Diff. Geom. 20, 237-268. 

[14] Huisken, G. (1988) On the expansion of convex hypersurfaces by the inverse 
of symmetric functions, preprint. 



480 Dong-HoTsai 

[15] Krylov, N.V., Safonov, M.V. (1980) Certain properties of parabolic equations 
with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 40, 161-175, 
English tsansl., Math. USSR Izv. 16 (1981) 151-164. 

[16] Tsai, D.H. (1995) Geometric expansion of immersed convex plane curves, in 
preparation. 

[17] Tso, K. (1985) Deforming a hypersurface by its Gauss-Kronecker curvature, 
Comm. Pure and Appl. Math. 38, 867-882. 

[18] Urbas, J.I.E. (1991) An expansion of convex hyper surf aces, J. Diff. Geom. 33, 
91-125; (1992) Correction to, ibid. 35, 763-765. 

[19] Urbas, J.I.E. (1990) On the expansion of star shaped hypersurfaces by symmet- 
ric functions of their principal curvatures, Math. Z. 205, 355-372. 

RECEIVED FEBRUARY 28, 1995. 

SCHOOL OF MATHEMATICS 

UNIVERSITY OF MINNESOTA 

MINNEAPOLIS, MN 55455 


