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Conformal flows by curvature on compact manifolds

Lii-PERNG Liou

1. Introduction

Let (M™,g), n > 2, be a connected compact n-dimensional manifold.

We will consider the flow by the equation
og S\ =

(1'1) a = F(R)g’ g(O) = e2fog,
where 7 is the metric, R is the scalar curvature, and fo is an arbitrary smooth
function on M. We shall assume that F' : R — R is a smooth function with
F’ < 0. The assumption that F’ < 0 is to make (1.1) a parabolic equation.

Our work is motivated by the study of the following equation, which we
refer to as Hamilton’s Ricci flow when n = 2 and Yamabe flow when n > 3
respectively: o

g S\

ot (r — R)g,
where r is the average of R. Hamilton proved

Theorem 1.1. (Hamilton [5]). Let (M,q) be a compact oriented Rieman-
nian surface.
(1) If M 1is not diffeomorphic to the 2-sphere S2, then any metric §
converges to a constant curvature metric under the Hamilton-Ricci flow.
(2) If M is diffeomorphic to S2, then any metric § with positive Gaus-
sian curvature on S? converges to a curvature of constant metric under the
Hamilton-Ricci flow.

Later on, Chow [2] removed the assumption in Hamilton’s theorem that
a metric on S? has positive scalar curvature.

Recently, a new proof to the Hamilton and Chow’s results was given by
Bartz, Struwe and Ye [1]. They used the Aleksandrov reflection method to
prove a gradient estimate, which then easily yields uniform smooth estimates
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of the solution by linear theory and bootstrapping. Ye [11] also used a similar
method to study the Yamabe flow on a compact manifold with dimension
n > 3. The most important result in that paper is

Theorem 1.2. (Ye [11])Assume that (M, g) is locally conformally flat with
positive scalar curvature. Then for any smooth function fo, the Yamabe
flow has a unique smooth solution on the time interval [0, 00) . Moreover, the
solution metric § converges smoothly to a unique limit metric of constant
scalar curvature as t — oo.

The purpose of this paper is to study more nonlinear analogues of the
Yamabe flow on compact manifolds.
We write § = e?/g and let R be the scalar curvature of (M,g),

define G(s) = 4F (2(n — 1)s), then (1.1) becomes

(1.2) { fi=G (e_zf (ﬂni-ﬁ —Af -2t |Vfl2))
f(O, :I:) = f0

since

(1.3) §=2(n—1)e‘2f( il )—Af—nT—2|Vf|2>1.

2(n—1

It is well-known that there is a unique solution to (1.2) on M x [0,Tp)
for some short time Ty. In section 2, we shall prove that the solution exists
as long as || (-, t)llc1(ar) is bounded.

In section 3, we prove that the scalar curvature R is exponentially de-
caying if we assume that F' > 0, which we refer to as the expanding flow.
We also obtain a uniform gradient estimate for f in section 3. In section
4, we prove the crucial Hessian estimate for the expanding flow. In section
5 and 6 we prove that |[VAf| and |AAf| are uniformly bounded under the
expanding flow. In section 7, we use a bootstrapping argument to show that
all the higher derivatives are uniformly bounded and prove our main result
for the expanding flow. Our main result is the following

Theorem 1.3. (Expanding flow). Assume that (M, g) is a connected com-
pact manifold and F > 0. Then the solution to (1.1) exists for all time and
the rescaled metric § = e=26O%F converges in C® norm to a smooth metric
Joo ON M.

!Throughout this paper we will use A and V as the Laplacian and the covariant
derivative with respect to the background metric g on M respectively.
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Like Hamilton interprets the Ricci flow as the Heat flow for the Ricci
curvature, we can interpret the equation (1.1) as a nonlinear Heat flow for the
scalar curvature function. Thus we believe that the metric g should have
some interesting geometric properties. It seems to be natural to conjecture
that the scalar curvature of § is a constant.

2. A general long time existence theorem.

In studying equation (1.2), one of the main difficulties is to prove the
long time existence. As mentioned in the introduction, in this section we
shall prove that the solution f to (1.2) exists until || f(-,¢)||g1(pr) blows up.
More precisely, we shall prove the following

Theorem 2.1. Let (M,g) be a connected compact manifold. If we denote
[0, Tw) the mazimal time interval on which the solution f to (1.2) exists,
then either Too = 00 or sup [|f(-,8)llcr(ary = oo

)

-4 oo

The idea of the proof of Theorem 2.1 is similar to the idea in [4]. We
first need to compute a few evolution equations.

Lemma 2.2. The evolution equation for R is

(2.1)
&R =(1-n)e? [AF(R) + (n—2)VF(R)Vf] - F(R)R.

Proof. We differentiate (1.3) with respect to ¢ and use the equation f; =
3F(R), we have

OR=(=2f)R+2(n—1)e ¥ (=Afi — (n—2) V£VS)
=(1-n)e ¥ [AF(R) + (n—2)VF(R)Vf] - F(R)R.

Q.E.D.
Let F(R) = W. From (2.1), it’s easy to see that W satisfies

(2.2)
OW = (1 —n)F' o F7Y(W)e 2/ [AW + (n — 2)VW V]
—F' o F~Y (W)WR.

By straightforward computation it’s also easy to see O
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Lemma 2.3. The evolution equation for |V f|? is

BV = ~G'e™! |A|VS ~2|VVf]® ~ 2RaVifVif
+4|VIP (g — A - C21VIP) - EE + (-2 VIV VI

where G' = G’ (ﬂnz-ﬁ) and Ry is the Ricci tensor on M with respect to g.

The good term 2G'e~%f |[VVf|? in the evolution of |V f|?may be used
to estimate W as follows. Let a be a positive constant to be chosen later,

we consider the quantity ¢ = (IV f l2 + a) W and compute its evolution
equation

8 = (1 —n) Fle=2 [A¢ _ov (|Vf|2 + a) VW —2|VV W
—2RaVif VW +4 VI W (g — AF - B2 V1) - ¥SFw
+(m=2)VIVIVIPW +(n—2) VWV (|Vf|2 + a)] —F'WR (|Vf|2 + a) .

Here F' = F'(R). We can write

2V (VP +a) Ve 2 |v |Vf|2|2 W
Vifta | [ViPta

—2v IV +a) YW =

and
(n—2) VWV (|Vf|2 +a) F(n—2)WV|VfEVf = (n—2) VoV

We shall prove Theorem 2.1 by contradiction. Assume that Too < 00
and
sup [|f(-,)llgr(ary < oo. From (1.3) we have
[0,Te0)

R 1

(2.3) Af = 2—n) ik D —2(n_1)e2fR'.

Therefore |Af| < C1+Cs |§| and |Af| > Cg§2—04. Throughout this proof,
all the constants C; may depend on T and sup || f(-,)llc1(as) - Using that

0, T

sup I/ (-, t)llc1(ary is bounded and the inequality |[VV f 1> > L|Af?, if we

y W
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choose a=9 sup |Vf|® then
Mx[0,Te)

212
Ao =21V + 41911 (ki — A1~ =219 1F) ~ ¥
—2R,~N,~gfvlf - zl—iﬁsewl—% (]Vf|2 + a)
2 — —_—
< (WYL _\yvs2) - 1 (CoF — Cu) + Cs [B] +Co

Vi +a
< —-C7R" + Cs.
Let @max= ngel( ¢(z, t) then by maximum principle and that F’ < 0, we
T
have
(2.4)

d ) 2 [Cs
E‘ﬁm&x <0 if Pmax = max {O; st[lé,l'.?['oo) ('Vfl + 01) F ( 07) } )

which proves that ¢max < Cy. We remark that ¢max is only a Lipschitz
function and inequality (2.4) is interpreted as in section 3 of [7]. A lower
bound on ¢ can be proved analogously, hence we have shown that F(R) is
bounded. The next step is to show that R is bounded. By the evolution of
R

(2.5)
8 = (1 —n)e [F’AR + F'|VE|® + (n— 2)F'VRV f] _FR,

using the estimate on F(R) and applying maximum principle, it is easy to
prove that R is bounded on [0, Teo).

To get a contradiction, we still need to have all the higher derivatives
bounded. We again consider the equation for W

(2.6)
OW =1 —=n)F o F1(W)e % [AW + (n — 2)VW V]
~FloFTY(W)WF~Y(W).

Since both W and R are bounded, F’ o F~! (W) is also bounded, hence
we may apply Theorem 4.2 in [10] to conclude that [|Wl|caarxjo1.)) <€,

which implies that ||R| ga(asx (0,120 < C 204 [|[F'0 F7H (W) caarniozenyy <
C. To get |Wllcz.e(arx(0,700))
bounded, we need V f being bounded in C* norm. For this purpose, we first
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observe that sup ||f (-,¢)llc2.(ary < C from (2.3) and linear elliptic theory.
T

We then look at the evolution of V; f

aVif = =G [AVif = RaVif +29:f (5585 — AF - 252 [V /?)
2(n_1) + n—2v’b |vf| ]

Since both |V f| and |VVf| are bounded on [0,7w) we may use Theo-
rem 4.2 in [10] again to get [|Vfllga(mxjor,) < C. Hence we obtain
IWllc2a(axpo,1e)) < € from (2.6). To get higher derivatives estimates, we
rewrite (1.2) as

(2.7)

= HR)e ¥ (2 R

n—2
Tm-1) —Af——2—|Vf|2> + G(0),

where _
G (2 nlil ) - G(0)
B
2(n—1)

is a smooth function.

H(R) =

Thus by linear theory and bounds on [|W || c2.a(arx0,70)) 204 IV fll ca(arx(0,70)) 5
we easily get

I fllga. @ (Mx[0,Too)) = <C.
Then by (2.6) we have ||W||gs.a(arxj0,7.0)) < C» Which implies that

Ifllore(axporm)y < €

from (2.7). Hence we can bootstrap to get all the C* norms of f bounded
on [0,T), and then we can extend the solution f to a larger time interval,
which gives us the desired contradiction and the proof of Theorem 2.1 is
completed.

Corollary 2.4. If we assume that (M,g) is a connected compact locally
conformally flat manifold with scalar curvature R > 0, then either To, = 00

or sup |f|l=
Mx[0,T)

Proof. The Aleksandrov reflection method in Ye [11] can be used to get
IVfl<C
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for some C depending only on F' and fo, hence the corollary follows easily.
a

3. Expanding flows

From now on, we shall assume that F’ < 0 and F' > 0, which we refer
to as the expanding flow because f is always increasing under the flow.
Intuitively, since the metric is getting bigger, we expect that the manifold
will become flatter after long time. In fact, we can show that the scalar
curvature R is exponentially decaying.

Lemma 3.1. |R| < Ce=%? for some positive constants C and Co depending
only onn, F and fo.?

Proof. We first prove that R is bounded. Define Rmax = ngécﬁ(m,t) and
xT

Rmin = Héll‘l} R(z,t) . By maximum principle and (2.5), we get
x

d— — — —
(3-1) 'Et‘Rmax S ’—F(Rmax)Rmax S 0 if Rmax Z 0.
Similarly,
d— — — —
(3.2) = Bmin 2 —F (Rumin) Bmin 2 0 if Bin < 0.

_From (3.1) and (3.2), there exists some N such that |Tl| < N , hence
F(R) > Cp > 0. To show that Bmax < Ce~? we consider the following
two cases:

CaseI. If Rpax > OV t, we have
d— — — —_
'Et'Rmax S ’_F(Rmax)Rmax S. '—CORma)u

therefore Ruax(t) < Rmax(0)e~C0t.

Case IT . If Ry first becomes nonpositive at 2o € [0, Teo), then by
maximum principle we have Ryax(t) <0V t € [to, Teo) . Therefore in both

2From now on, unless otherwise stated, all the constants are positive uniform
constants depending only on n, F' and initial condition.
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cases we have Rmax < Ce~% for all t. Ryin > —Ce~ %! can be proved
analogously. O

Corollary 3.2. 4t —C' < f < Ct+C' for some constants C and C'.

Proposition 3.3. There ezists some constant C depending only on n, fo
and F such that

[Vl <C.

Proof. Recall that

IV = -G'e |AIV]2 = 2|VVS? - 2RaVifVif
14|V (g — A~ B2V 12) - YZE 1 (n - 2) VIV |V

Using R = 2(n—1)e % (Z?Fiﬂ —~Af-252 |Vf|2) and applying maxi-
mum principle to ¥ = né%(]V f ]2we can get the following inequality
z
d

E\I/ < (C’e'” +C Iﬁl) U+ Ce %,

Hence by Lemma 3.1 and Corollary 3.2 it follows easily that ¥ < C. a

We should comment that the gradient estimate for this problem is easy,
but in the cases of Ricci and Yamabe flow the gradient estimates are hard
and the key.?

By Theorem 2.1, Corollary 3.2 and Proposition 3.3 we have

Proposition 3.4. For expanding flow, the solution f to (1.2) exists for all

time i.e., T = 00.

4. Uniform estimates for |Af| and |VVf|.

The Hessian estimate is central when studying general nonlinear
parabolic equations. In fact, with the extra assumption that F is con-
cave, a uniform C? estimate combined with Krylov’s theorem (see [9]) yield

3We would like to thank the referee for pointing out this to us.
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a uniform C%% estimate of the solution. We then can bootstrap to get all
the higher derivatives estimates. Although Krylov’s theorem does not apply
to more general case without assuming concavity of F, a uniform Hessian
estimate is still the first essential step for getting higher derivatives esti-
mates.

In this section we are going to prove the Hessian estimate.

Proposition 4.1. There exists a constant C' depending only on n, F and
fo such that
IVVfl < C.

The strategy of obtaining Hessian estimate is the following :

I. We first obtain an estimate for Af. In fact, from (1.3) and Lemma 3.1,
we can get a Laplacian estimate depending on time. But to get a uniform
estimate for Af we need to calculate the evolution equation for Af then
apply maximum principle.

II. We then use the estimate for Af to prove an estimate for |VV f| by
estimating a quantity involving both Af and |VV f|. The reason for doing
so will become clear as we proceed in our proof.

We shall start with the estimate of Af.

Lemma 4.2. There exists a constant C depending only on n, F and fy
such that

IAf| < C.

Proof. By straightforward computation we have
(Af)e = "G [AAf — 5325 + 22 AV S
+ (201 -1 el ?) (s — AF - 22 IV£P?)
4V S ( — VAf - 252V V| )]
e tiGr [4 VA (g — AF = 252 1VIP) + J22 4 VA S
+ o2 |V|Vf|2|2 YATE + (n—2) VAFV|Vf|® — =5 VRV VS|
+4v 1 (7 + VAf + "‘2V|Vf| ?) (s — AF - 2219 4P)] -
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It is readily seen that the main bad terms in the evolution of Af are terms
involving |VV f| and |[VVf|?>. To control these bad terms, we shall make
use of the negative |[VV f|? in the evolution equation of |V f|? and consider
the quantity ¢ = Af + |V f|?, where A is a number to be determined later.
We have

0r = —Gle=2f [Ago — gAEs + (n— 2~ 2)) RaVifVif + (n—6) VfVy
+(n—2—=2))|VVS]?+ 4\ —2n+4) VfV|Vf|2

220V fVR + (2¢+(2A 4) |V f|2) (7—7 —n=2|yf| )]
+e ¥ G” [4|Vf|2 (7——7 Af - 252 |V )2 + f(n—_%g +VAfVp — Y
Fn—2- N VeV VAP + (32 + 22— (n—2))) |V|Vf|2|2
+ (1 - o) VRVIVSP + 491 (7-5—_% + Vo - V[V + 232V |Vf2)
(e — A7 = 52 1V4F)]

Here we used
VAf =V - AV|Vf|?

and
2
[VAf|2 = VAV — AVeV [V f|2 + A2 |v |Vf|2| .

Define pmax = maxp (z,t) . Substituting
reM

R e?fR

R R N o

and using the estimate on |V f| we have
4 omax < ~Gle™ [(n ~2-2))|VV/ + Cio (~2n+ 4+ 4X) [VV/]
+Cur+Crz + (n_ (2|pmax| +C13A + 014)]

|G e [015e4fR + (C16)2 + Ci7) [VVS[?
+((C18 + C1o)) [VV | + Cao) €27 |R| + (Ca1 + C22) |[VV f| + Cas] .

Let A =n —1 and use Lemma 3.1 and Corollary 3.2, we obtain

(4.1)

d — — —
%(Pmax < 024R2 + Cas ‘Rl 4 Caog ‘Rl |<pmax| + 0276_2f fort > T3,



Conformal Flows by Curvature on Compact Manifolds 445

where T; is a positive number. Therefore we can integrate (4.1) to get
Ymax < C. In the same manner we can show i, > —C by choosing A
negative. Hence we have proved |Af| < C. a

We are going to use the estimate on A f to prove an estimate on |[VV f|.
Let’s compute the evolution equation for |[VV f|>. We have

(IVV P =2ViV;f ViVifs.
Straightforward computation shows that

ViVifi=—eHG [ViV;Af - S + 252V, | VP

+2ViV;f (g — AF = B2 IVIP) + 2V, f (555 - Vi f — 252V4 V1P
129 f (illy = ViAS - 2529, [VIP) — aVif Vi f (gl — A = 22 (V)]
+eG" (29, (i — AF - 22|V f|2) — B + VAT + 252V |V 7]

[ng (7—; Af -252 |V ) ﬁ + V;Af + 252V, |V ]

Therefore, by all the estimates we have so far, we can get
Lemma 4.3. (a)
(Ivv f|2)t < —e 2@ (A IVV§|2 - 2 |[VVV 2
+Cas [VVI* + Cas [V 1| [VAS| 4 Cio)
+e741 |G| (Car IVV I + Coa [VAS [V ]
+Ci3 [VAF| [VVS* + Cas)
and (b)

(lVf|2)t e e (A V|2 = |VVF2 + 035) .

From Lemma 4.3(a), it is easy to see that the bad terms in the evolution
of |[VV f|2are |[VAS||VV S, |[VAF2|VVS], [VVS] etc.. Now the idea is
to produce good terms from some function of A f, then use these good terms

to dominate those bad terms. We let a = sup |Af|+1 and consider the
Mx[0,00)
quantity @ = Af +a.
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Calculating the evolution for Q2 and using estimates on |V f| and Af,
we have

(@), < —eG" (AQ> —2|VAf[* +Cy + Cor [VA[| + Css [VV 1)
+e~4f |G"| (039 + Cyo |VAf|2 +Cu Ivvf|2)

< e (AQ2 — [VAF]? + Caz + Cas [VV f|2) for t > Tb.

If we multiply (Q2), by [VVf |? then we get a negative |[VAS|?|[VVf|? term

to dominate those bad terms such as [VAf| |[VV f|?and [VAf|>|VV /], but

at the same time we also get a bad positive |[VV f|* term , hence we need to

add in some negative [VV f|* term which can be produced by multiplying

the evolution of |V f|® by [VV f]|?. We shall consider the quantity
w=(Q+H) IVVII* + IV VY,

where 8 and <y are numbers to be chosen later. By computing the evolution
equation for w and using the estimates on |V f| and A f, we have the following
inequality

(4.2)
wy < —e~2G' [Aw + Cua [VV S| IVAS| [VVV S| = [VASP [VV S
+Cus7|VVSPIVVV S|+ (Cas + Car) IVV S + (Cas =) IVV I
—~38IVVV? + (8 +7+ Cao) (Cao IV £°
+Cs1 |VV f|IVAS] + Cs2)]
+e4/ G| (B+ 7 + Cs) (Csa [V SI* + Css [IVASI VY £
+Cs6 [VASIZ VYV f| + 057) for ¢t > Ts.

Let v = Csg + 2 and choose G so large that

1
2 |V + 2 VAR VY 2 Cu [V VAL VYV
and
BIVVVS +|VVSI* > CusyIVV 2 [VV V] .

Then the inequality (4.2) becomes

we < —e G (Aw = F [VASP VY - |9V It
(43)  +Css+Cso|VVI> +Ceo [VAS|IVV f|

+Co1 [VAS[VV S| + Cea [VAS| [VV I2) for t > T,
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To take care of the bad terms in (4.3) we have

—L|VAFPIVV P + Cor [VAFIP IVVF| + Cez [VAF| [VV f|* + Coo [VAF| [VV £
= (—% IVAfP? + Cea IVAfl) IV + (—% IVVF[2 + Cs1 [VV f|) VA2

+ (=4 IVASP IVVSP + Coo IVASI VY1)

< Ce3 |VV | + Co4 if |VV | > 6C1.

For the other terms, we have
1
—|VVF* + Cso |[VVF|® < 1004 fI* + Css.

Therefore we obtain the following inequality by maximum principle

(4.4) %wmx < 0if wmax = Ces and t > Ty,

where Wmax = maxw (z,t). Hence we have shown w = (Q2 + B) |[VVf|? +
x

v |VF2|VVf|? < C and the proof of proposition 4.1 is completed.
Since |VVf| is bounded, the inequality Lemma 4.3(a) now becomes

(19V1P), < =¥ (AIVVIP - §IVVVIP

+Cs7|VAS] + Ces)
45)  je4 @] (069 IVAf[? +Cro [VAS| + C’71)

< —e 2 (A IVVF? - VYV + 072) for ¢ > T,

Here we used |[VVV/|? > 1 IVAF2.

5. Uniform |VAf| estimate

In general, for fully nonlinear parabolic equations, a uniform Hessian
estimate is not strong enough for bootstrapping to obtain all the higher
derivatives estimates. Therefore we still need to estimate some other higher
derivatives of f. We shall see in section 7 that a uniform estimate on |[AAf|
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is good enough for bootstrapping to get all the C** estimates. In this
section we are going to get an uniform estimate on |[VAf|, and in the next
section we will use this estimate to prove an uniform estimate on |AAf]|.

Proposition 5.1. There exists a constant C depending only on n, F and
fo such that

IVAf| < C.

Proof. The idea in proving this proposition is similar to that used in section
4. We first compute the evolution equation for [VAf|? to see what kind of
bad terms we have in the equation, then we try to make use of the good
negative |VVV |2 term in the evolution of [VVf|>. It turns out that the

quantity x = (lVVf 1+ 1/)|VA f|? is the right quantity to look at. With
some patience we calculate that

(ViAf), = —e G [ViAAf — AR 4 222V A |V 2

+(2Viaf — Vi VIP) (g — AF - 252 1V4P) + (281 - 41V4?)
(Ey - Vi - 22V V1) + 4ViVsf (qiy — ViAf - %52V, 1V 1?)
+4V;f (L - ViV,Af - 2529,V5| V1) - 24V,
+67e=4t {49,V 1P (e = AF - 252191+ 81V (sl — A1 = 252 V1)
(7%1'% ViAf - 25203 V/P) + T 4 ov.v,a1 VAL + 220 v v s
—kyy (ViV;AfV,R + V,AfV,V,R) + (n 2) (v ViAfV;|VE? 4+ V;AfV:V; |Vf|
—ézﬂ (VeV3RY; V12 + ViRViV; V1) +4Vi05f (725 + V5Af + 25295 (04

gy ~ A1 =5 V) + 4931 TG+ ViViAL + 252V |V )
: m Af— o2 |Vf|2§ +4V;f é% + V;Af + 252V, |V ] )
(22Es — ViAf — 252V, |V f] f —4BVif + A [2V,f (7—5 Af — 22|V )
—55%'% +ViAf + 252V VS| }

BG"e™® [2Vif (iyy = Af = 22 V1) — g8&; + ViAf +252V, |V 7],
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where
A=AAf— B85 + 22A VP +(2Af 4V 1| )(T— ”‘2|Vf|)
+4Vf( VAf—n-2V|Vf|) and

B =4|V/* (m—Af—”—;?Wfl) +J(n—-{7+IVAf| + &2 g vy
— YA 4+ (n—2) VASV|VS|* - =25 VRV [V
+49f (528 + VAS + 22V |VP) (3l - AF - 252 V).

By all the estimates we have gotten and the fact that |[VVAf| > % |AAf|
, it is easy to get

(5.1)
(IVAS1?), < =G (AIVAS2 = §IVVAS[ + Crs

+Cna [VAS[? + Crs| VIV f|[VAS])
+e741|G"| (Cro + Crr [VASP + Crs [VVAS| [VAS]

+Crg |[VVAS||[VAS|? + Ceo [VVVf| |[VAS]
+Ca1 VYV [VAS?)

+¢757G"| (Caa + Cas |[VAJ|Y) for ¢ > Ts.

We then consider the evolution equation for the quantity xy =
|VAF? (lVV fI?+ 1/), where v is a number to be determined later. From
(4.5) and (5.1) we have

xt < —e G [Ax + Css |[VVAS|[VVV | [VAS]|

—3 (IVVS12 +2) IVVASP + (IVVSIP +v) (Cra+ Cra [VAS?
+Cr5 [VI VS| [VAS]) + Cra | VASI? = [VIV 12 [VASP]

+e7 |G"| (|99 ? +v) (Crs + Crr [VASI + Crg [VVAS| VA
+Cro [VVAS| VA + Cao VYV | [VAS] + Cet VUV | [VASP)
+e7%1 |G| (IVVf1? + ) (Coa + Cas IVASI!) , for £ > Tr.

We let v = 2 (Cgyq + 1) then

1
v|VVAS + 3 [VVVS*|VAS|? 2 (Csa + 1) [VVAS| [VVVS[VAS],
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so we have
(5.2)
xe < —e G (Ax — [VVAS|[VVV S| [VAf] + Cs
+Cas [VASI + Cor [VV VS| [VAS| - § VYV £ [VAS?)
+¢74/1G"| (Cas + Cao[VASI* + Coo [VVAS| [VAS]
+Co1 [VVAS|[VASI® + Co2 [VVVf| [VAS]
+Co3 VYV f|[VAfP?)

+e %7 |G"| (094 + Cos IVAf|4) , for t > T.

Using the fact that |[VVV f| > % |[VAf| we get

—|VVAf|IVVVI|IVAf| < —= \/— _ [VVAS| [VASP.

Therefore
I= -G (~|[VVAf||VVVS| [VAf])
+e4/ 1" (090 VYASIIVAS|+ Co1 [VVASIIVAS?)
< -G (7 IVVAS| [VASP + Coo [VVASIIVAS]) for ¢ > T,

Hence we have
I <0if |[VAf| > 2v/nCy and t > Tg.

For the rest terms in (5.2) we have

—e G (~§ IV [VASI? + Cas + Cas IVASI® + Cor [VVV ] [VAS])
+€747 |G| (Cas + Cas [VASI® + Coz [VVV £ [VAS| + Cos [VVV f| VAS)
+¢787 |G| (Cou + Cos [VAI)
< —e G (-4 IVVVSP + Cos VOV 1) VA
+ (L IVALRIVIV I + Cor IVASI VYV £1)

— L [VAF* + Cage= [VAF|® + Cooe=f [VAF|* + Cro0 [VAF|? + cml)]
<0fort>Ty and |VAf| > Cio2-

Here we used [VVVf[?|[VAf[> > 1|VAf|*. Thus there exist constants
C1io3 and Tyg such that

d .
aXmax < 0 if xmax = C103 and t > Tq,
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which proves that |VAf| is uniformly bounded and the proof of Proposition
5.1 is completed. a

6. Uniform |AA f| estimate.

_In this section, we are going to use all the estimates we have gotten so
far to show that |AAf| is uniformly bounded. Then in the next section we
shall use a bootstrapping argument to bound all the C** norms of f.

Proposition 6.1. There ezists a constant C depending only on n, F and
fo such that
|AAf| < C.

Proof. We first rewrite (5.1) as

(IvAfP), < —e @G (A[VAFF = [VVASP

(6.1)
+C104 |VVV f| + Cios) for t > T1;.

With some lengthy calculations (we omit the details), we can obtain the
following inequality.

(6.2)
((AA f)2>t < —e 2 [A (AAS)? — |[VAASE + Cios
+Ci07 |AASI? + Cros [VVAS|AAS| + C1oo VYV £ |AA S|

+e~4 |G| (C'uo + C111 |AAF]® + Cri2 [VAAS||AAS]
+Cus [VVASP JAMf| + Crua VYV £ |AAS])
+e787 G| (Cus + Cuis |AASIP + Cuir [VVAS| [AAS]
+C118 [VV VI |AAF]) + Criee™®/ |[GW[|AAS].

We shall consider the quantity

¢ = 1AM (IVASP + 1) +1AAF2 WV 1P,
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where p will be chosen later. We use (4.5), (6.1) and (6.2), then

(6.3)
& < —e" G [AL + Crao [VAAF| |AAS|[VVAS]

+C0121 [VAAF| |AAF| [VVV | - [VVASP|AAFP?
+C122|VVVS|AAS? — p|VAASP - [VVV 2 |AAS?

+(1+ 1) (Cuzs + Crat JAASI? + Cras [VVAFI|AA ]
+C1s [VVV S 1AAS])]

+e~4|G"| (1 + ) (Ci27 + Cras [VAAf| |AAF]
+C120 [VVAS? |AAF| + Cizo |AA S

+C1a1 [VVVP [AAf])

+e75 |G| (1 + 1) (Craz + Cras |AA P

+C134 |[VVAF| |AAf| + C135 [VVV f| [AAf])
+C136e™8f |GW| (1 + p) |AAS|, for ¢ > Tha.

Let u be a number so large that

-g IVAAF? - % IVVAFP|AAS? < = (Crzo + 1) [VAAF||AAF| [VVAS]
and

L \VAASP -3 IV IAASE < ~ (Cun + 1) IVAAS IAAS [V V).
Using the fact that [VVAf| > -\-/1—5 |AAf| we have

1

IVAAS||AAF||VVAS| > Tn

[VAAF||AAF2.
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Thus (6.3) becomes

(6.4)
& <~ G [A¢ - J IVAASIIAASP

~3|VVAFP |AAS? - 3 IVVVS |AASP
+C137 |[VVV | |AAF|? 4 Crag |AAF|% + Cize

+Cu0 [VVAS| |AAS| + Craa VIV |AAS]

+e~4 |G"| (Crag + Cras [VAAS| |AAF]
+C144 [VVAF? |AAS| + Cus |AAF?
+Cus |VVV S |AA f|)

+€751 |G| (a7 + Cras |AAFI® + Crao [VVAS| |AA ]
+C150 [VVV f| [AAS]) + C151e3 |GW| |AAF|, for t > Tis.

We can group the terms in (6.4) as follows.

el g_‘/%" IVAAF| |AA f|2)

+01436-4 |G”| |VAAf| IAAfl <0, if |AAf| > Cis2.
—e~2G! (~4 IVVASP |AAFP + Cuo VVASI [AAS])
+C14e™4 |G"| |[VVAF? |AAf| 4 Cra0ef |G"| |[VVAF] |AAS]
< 01536_2f if |AAfI > Clisa.

—e G (=} IVVVPIAASP + Cir [VVVF|AASP
+C1 IVVV P IAAS]) + 7 |G| (Cuas IVVV FI2 |AAf])
+C1s0e~% |G| [VVV f| |AAf]|

< Cusse™ |AAS? if JAAS]| > Cuss.

1e VG |VVASP [AASP + Cuse™ |G"| |AAFP?

< 2”2 G AASfI* + Cuse™ |G"| |AASP

< 5 VG DASI A |AAS| 2 Crsr.

Therefore there exist constants Cyss and T4 such that

d .
a’t{max <0 if &max = Ciss and t > T1g,

which implies that |[AAf| is uniformly bounded.

453
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7. Rescaling and convergence.

Using estimates on |Af| and |AAf|, we may apply standard elliptic
theory to get

(7.1) IAf(, Dllcraan < C for some a € (0, 1).

Define f = f — G(0)t, then

(7.2) Fi=fi-c(0) = G( e ))—G<o>.

We note that the covariant derivatives of fWit~h respect to the space z is
the same as those of f. By Lemma 3.1, we have f; — 0 exponentially. Hence
f converges to some function fo as ¢t — oo. In particular f is uniformly
bounded. Therefore from (7.1) and elliptic Schauder estimate we can get

(7.3) |70

Cc3 a(M)

We are going to prove that all the derivatives of fare also uniformly bounded
and then it follows easily that f i foo-

Proposition 7.1. There exists uniform constants Cy depending on n,F
and fo such that

|70 < Ci.

Ck, (M)

Proof. Let R = 2R be the corresponding scalar curvature of the metric
g = 2T g. From (2.1), it is easy to calculate the evolution equation for R

R’ - ( n) e~2f (F'(E)Afz + F"(R)VRVE + (n - 2) F'(R)V fvﬁ)

2G( R ) —2G(0)
K(R) = = is a smooth function.
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Let ﬁ(w, ) = R(z, o (1)), where o (1) satisfies the O.D.E.

{ o' (1) = exp(2G(0) o (7)),
o (0)=0.

Then the evolution equation for Ris
8:R=(1-n)e?f (F'(ﬁ)Afz + F'(R)VRVR + (n—2) F'(R)V fvﬁ)
KR) 5
21 R2’
which satisfies the uniform parabolicity condition. Now define

a(z, 7) = F'(R)e~%, bi(z, 1) = F"(R)e~2’V;R + (n — 2) F(R)V.f
and ¢(z, 7) = K (-ﬁ)ﬁ.

From (7.3) and recall that

R=2(n-1e? (g5 - Af - 22|V/P)

4 3 . .
74 R=2(n-1)e? (2(n}31)—Af—%‘Vﬂ2>

< C, hence

we easily get “}_2(, t)“Cl,a(M) < C and Hﬁ(’ t) cle(M)

3¢, Dligrann s [B:6 D) oy s 180 Dlloraqn < C-

Cx(M)

Thus we can apply Schauder estimate(see [8], p.80) to get

(7.5) Hﬁ(-, 7)

<
crea(M) ~

From (7.4) we have

~

~ n—-2 2
(7.6) Af+_2_‘vf] TIm-0 T 2m-D°

Hence by (7.3) and (7.5) we get

|7¢, 7

<
C4'°‘(M)
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Because of (7.5) we have

312('7 T)

la(, Dllczaary » e, Ml gzeary < C-

Cl""(M)

Using Schauder estimate again we get IIﬁ(-, T) ) < C, which implies

c3e(M

|76, )

<
C5e(M) —
In this way we may bootstrap to get

||§(., 7) <C. QED.

chea(M) ~

ghaqrpy < O 2nd ”f(-, 7)

Proof. [1.3.] By taking the covariant derivatives of (7.2) and using (1.2), we
get - ~
VE £y = e (sum of terms involving derivatives of f).

Therefore Vkﬁ — 0 exponentially and hence f < fw, which proves
Theorem 1.3. O
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