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1. Introduction 

Let (Mn,-flf), n > 2, be a connected compact n-dimensional manifold. 
We will consider the flow by the equation 

(1-1) ^=F(R)g, m = e2f09, 

where g is the metric, R is the scalar curvature, and /o is an arbitrary smooth 
function on M. We shall assume that F : R —► R is a smooth function with 
F' < 0. The assumption that F' < 0 is to make (1.1) a parabolic equation. 

Our work is motivated by the study of the following equation, which we 
refer to as Hamilton's Ricci flow when n = 2 and Yamabe flow when n > 3 
respectively: 

i-(r-SW, 
where r is the average of R. Hamilton proved 

Theorem 1.1. (Hamilton [5]).   Let (M,g) be a compact oriented Rieman- 
nian surface. 

(1) If M is not diffeomorphic to the 2-sphere S2, then any metric g 
converges to a constant curvature metric under the Hamilton-Ricci flow. 

(2) If M is diffeomorphic to S2, then any metric g with positive Gaus- 
sian curvature on S2 converges to a curvature of constant metric under the 
Hamilton-Ricci flow. 

Later on, Chow [2] removed the assumption in Hamilton's theorem that 
a metric on S2 has positive scalar curvature. 

Recently, a new proof to the Hamilton and Chow's results was given by 
Bartz, Struwe and Ye [1]. They used the Aleksandrov reflection method to 
prove a gradient estimate, which then easily yields uniform smooth estimates 
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of the solution by linear theory and bootstrapping. Ye [11] also used a similar 
method to study the Yamabe flow on a compact manifold with dimension 
n > 3. The most important result in that paper is 

Theorem 1.2. (Ye [11])Assume that (M,g) is locally conformally flat with 
positive scalar curvature. Then for any smooth function fo, the Yamabe 
flow has a unique smooth solution on the time interval [0, oo). Moreover, the 
solution metric g converges smoothly to a unique limit metric of constant 
scalar curvature as t —► oo. 

The purpose of this paper is to study more nonlinear analogues of the 
Yamabe flow on compact manifolds. 

We write 5 = e2^g and let R be the scalar curvature of (M,^), 
define G(s) — \F (2(n — 1)5), then (1.1) becomes 

(1.2) (/.=G(<=-2/(2#57-A/-^|V/|2)) 
1 /(0, x) = k 

since 

-v(R Kf_"zl (1.3) R = 2{n-l)e-^ __A/-^—|V/| 
\2{n-l) 

|2 

It is well-known that there is a unique solution to (1.2) on M x [0, To) 
for some short time TQ. In section 2, we shall prove that the solution exists 
as long as ||/(-,t)||ci(M) is bounded. 

In section 3, we prove that the scalar curvature R is exponentially de- 
caying if we assume that F > 0, which we refer to as the expanding flow. 
We also obtain a uniform gradient estimate for / in section 3. In section 
4, we prove the crucial Hessian estimate for the expanding flow. In section 
5 and 6 we prove that |VA/| and |AA/| are uniformly bounded under the 
expanding flow. In section 7, we use a bootstrapping argument to show that 
all the higher derivatives are uniformly bounded and prove our main result 
for the expanding flow. Our main result is the following 

Theorem 1.3. (Expanding flow). Assume that (Myg) is a connected com- 
pact manifold and F > 0. Then the solution to (1.1) exists for all time and 
the rescaled metric g = e~2Gr^0^5 converges in C00 norm to a smooth metric 
goo on M. 

1 Throughout this paper we will use A and V as the Laplacian and the covariant 
derivative with respect to the background metric g on M respectively. 
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Like Hamilton interprets the Ricci flow as the Heat flow for the Ricci 
curvature, we can interpret the equation (1.1) as a nonlinear Heat flow for the 
scalar curvature function. Thus we believe that the metric goo should have 
some interesting geometric properties. It seems to be natural to conjecture 
that the scalar curvature of goo is a constant. 

2. A general long time existence theorem. 

In studying equation (1.2), one of the main difficulties is to prove the 
long time existence. As mentioned in the introduction, in this section we 
shall prove that the solution / to (1.2) exists until ||/(-,t)|lci(Af) blows up. 
More precisely, we shall prove the following 

Theorem 2.1. Let (M,g) be a connected compact manifold. If we denote 
[0, Too) the maximal time interval on which the solution f to (1.2) exists, 
then either Too = oo or sup ||/(-)t)||cifM) = 00- 

[O.Too) 

The idea of the proof of Theorem 2.1 is similar to the idea in [4]. We 
first need to compute a few evolution equations. 

Lemma 2.2.  The evolution equation for R is 

(2-1) 
dtR = (1 - n)e-2f [AF(R) + (n - 2)VF(R)Vf] - F(R)R. 

Proof. We differentiate (1.3) with respect to t and use the equation ft = 
^F(R), we have 

dtR = (-2ft) R + 2 (n - 1) e-2* (-A£ - (n - 2) V/tV/) 
= (1 - n)e-2f [AF(R) + (n - 2)VF(R)Vf] - F(R)R. 

_ Q.E.D. 
Let F(R) = W. Prom  (2.1), it's easy to see that W satisfies 

(2.2) 
dtW = (1 - n) F' of-1 (W) e-2f [AW + (n - 2)VWV/] 
-F' o F-1 (W) WR. 

By straightforward computation it's also easy to see □ 
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Lemma 2.3. The evolution equation for |V/|2 is 

dt |V/|2 = -G'e-V [A |V/|2 - 2 |VV/|2 - 2RaVifVif 

+41 V/l2 (jpfey - A/ - feya |V/|2) - |Sf + (n - 2) V/V | V/|2] , 

w/aere G' = G' (2(^.1)) and Ru ^ the Rieci tensor on M with respect to g. 

The good term 2G/e_2/ |VV/|2 in the evolution of |V/|2may be used 
to estimate W as follows. Let a be a positive constant to be chosen later, 
we consider the quantity <£ = (|V/|

2
 + Q;] W and compute its evolution 

equation 

dt<f> = (1 - n) F'e-V [A<£ - 2V (|V/|2 + a) VW - 21VV/|2 W 

-2RuVifVifW + 4 |V/|2 W (jp&u - A/ - ^11v/|2) - ^™W 

+ (n - 2) V/V |V/|2 P^ + (n - 2) VW^V/ (|V/|2 + a)] - F'^i? (|V/|2 + a) 

Here F' = F'(R). We can write 

-2v(|V/|2 + a)v0     2 
-2V (IV/|2 + a) W = V J       + _ 

V|V/| 2
2 

TT 

IV/r + a |V/|2 + a 

and 

(n - 2) VWVf (|V/|2 + a) + (n - 2) WV |V/|2 V/ = (n - 2) V<£V/. 

We shall prove Theorem 2.1 by contradiction.  Assume that Too < 00 
and 
sup \\f(-,t)\\ci(M) < 00. Prom (1.3) we have 

[0,Too) 

Therefore |A/| < C1+C2 |i?| and |A/r > Caii -C4. Throughout this proof, 
all the constants Cj may depend on Too and sup ||/(-, ^H^i^) • Using that 

[O^oo) 
SUP ll/Ci^llc^An 1S bounded and the inequality |VV/|2 > ^ |A/|2, if we 

[o^c) v   ' 
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choose a — 9    sup    |V/|2 then 
Mx[o,roo) 

HlZpJ _ 21w/l2 + 4 |V/|2 (^ - A/ - ^ |V/|2) - ^ 
-2RaVifVif - j^eVR (|V/|2 + a) 

< (^j^ " I W/l2) - 1 (Csl2 - C4) + C5 P| + C6 

< -C7R
2 + Cg. 

Let ^max^ max^(a;, t) then by maximum principle and that F' < 0, we 

have 

(2.4) 

d ,    sup    (|V/|2 + a)Ff-#U di^max < 0 if ()!>max > max <( 0 

which proves that 0max < Cg. We remark that ^max is only a Lipschitz 
function and inequality (2.4) is interpreted as in section 3 of [7]. A lower 
bound on </> can be proved analogously, hence we have shown that F(R) is 
bounded. The next step is to show that R is bounded. By the evolution of 
R 

(2-5) 

dtR = (1 - n)e-2/ [F'AR + F" \V#|2 + (n - 2)F'VRVf\ - FR, 

using the estimate on F(R) and applying maximum principle, it is easy to 
prove that R is bounded on [0,Too). 

To get a contradiction, we still need to have all the higher derivatives 
bounded. We again consider the equation for W 

(2.6) 
dtW = (l-n)F'o F-1 (W) e-2f [AW + (n- 2) VWVf] 
-F'oF-l(W)WF-1(W). 

Since both W and R are bounded, F' o F_1 (W) is also bounded, hence 
we may apply Theorem 4.2 in [10] to conclude that ||W"||c<wMxr0)TooNN < C, 
which implies that \\R\\Ca{Mx[0tToo)) < C and \\F' o F"1 (WO ||Ca(Mx[0>Too)) < 
C. To get ||W||o3.«(Mx[0,roo)) 
bounded, we need V/ being bounded in Ca norm. For this purpose, we first 
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observe that sup ||/ (•, t)\\C2,oc(M) < C from (2.3) and linear elliptic theory. 

We then look at the evolution of V*/ 

dtVif = -G'e-V [AVi/ - RaVif + 2Vi/ (^ -Af-*? IV/|2) 

2(n-l) ^    2    V*IV/I  _  • 

Since both |V/| and |VV/| are bounded on [0,^) we may use Theo- 
rem 4.2 in [10] again to get W^fWc^Mxio^oo)) — ^ Hence we obtain 
ll^llc2^(Mx[o,roo)) — C from (2-6)- To get higher derivatives estimates, we 
rewrite (1.2) as 

(2.7) 

* = ff(7^2, {w^i -Af - ^|v/|2)+ G(0)' 
where __ 

-     G (spfej) ~ G(0) 
^(i?) = — =^ is a smooth function. 

2(n-l) 

Thus by linear theory and bounds on ||^||C2,a(M><[o)Too)) and II V/||Cc(M><[0)Too)) 

we easily get 

\\f\\c4>a(Mx[QtToo)) - C- 

Then by (2.6) we have HW^IIcB^fAfx^Too)) - ^ w^(^1 implies that 

ll/lla7^(Mx[o,roo)) - ^ 

from (2.7). Hence we can bootstrap to get all the Ck,a norms of / bounded 
on [0,Too), and then we can extend the solution / to a larger time interval, 
which gives us the desired contradiction and the proof of Theorem 2.1 is 
completed. 

Corollary 2.4. If we assume that (M,#) is a connected compact locally 
conformally flat manifold with scalar curvature R > 0, then either T^ = oo 
or     sup     |/| = oo. 

Mx[0,Too) 

Proof The Aleksandrov reflection method in Ye [11] can be used to get 

|V/|<C 
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for some C depending only on F and /o, hence the corollary follows easily. 
□ 

3. Expanding flows 

From now on, we shall assume that F* < 0 and F > 0, which we refer 
to as the expanding flow because / is always increasing under the flow. 
Intuitively, since the metric is getting bigger, we expect that the manifold 
will become flatter after long time. In fact, we can show that the scalar 
curvature R is exponentially decaying. 

Lemma 3.1. |JR| < Ce~Cot for some positive constants C and Co depending 
only on n, F and /o.2 

Proof. We first prove that R is bounded.  Define J?max = max #(#,£) and 
    x€M 
Rmin = TmnR(x,t) . By maximum principle and (2.5), we get 

(3.1) -Tr-Rmax ^ — F(Rmax)Rmax < 0 if Rmax ^ 0. 

Similarly, 

(3.2) -jT^min ^ — ^(^min)-Rmm > 0 if ^min < 0. 

From (3.1) and (3.2), there exists some N such that |ij| < N , hence 
F(R) > Co > 0. To show that ~Rmax < Ce~Cot we consider the following 
two cases: 

Case I . If jRmax > 0 V t, we have 

d^ 
—i 
dt 

therefore Rmax(t) < i!maX(0)e-Co*. 

j,-^max S     -t* (^maxj^max S     vyO-^max) 

Case II .   If i?max first becomes nonpositive at ^ € [0, Too), then by 
maximum principle we have i?max(^) < 0 V t G [to, T©©) . Therefore in both 

2From now on, unless otherwise stated, all the constants are positive uniform 
constants depending only on n, F and initial condition. 
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cases we have Rmo.x < Ce~Got for all i. .Rmin > -Ce~Cot can be proved 
analogously. □ 

Corollary 3.2.   -gt — C" < / < Ct + C for some constants C and Cl. 

Proposition 3.3.  There exists some constant C depending only on n, /o 
and F such that 

I v/| < a 

Proof. Recall that 

dt |V/|2 - -G'e-2* [A |V/|2 - 2 |VV/|2 - 2RaVifVif 

+41 V/|2 (spfey - A/ - ^ | V/|2) - |gf + (n - 2) V/V | V/|2] . 

Using R = 2 (n - 1) e-2/ (^(^Ty " A/ " ^ I v/|2) and applying maxi- 

mum principle to ^ = max|V/|2we can get the following inequality 
xEM 

J^ < (Ce-V + C \R\) * + Ce-2/. 

Hence by Lemma 3.1 and Corollary 3.2 it follows easily that * < C.        □ 

We should comment that the gradient estimate for this problem is easy, 
but in the cases of Ricci and Yamabe flow the gradient estimates are hard 
and the key.3 

By Theorem 2.1, Corollary 3.2 and Proposition 3.3 we have 

Proposition 3.4. For expanding flow, the solution f to (1.2) exists for all 
time i.e., T^ = oo. 

4. Uniform estimates for |A/| and |VV/| 

The Hessian estimate is central when studying general nonlinear 
parabolic equations. In fact, with the extra assumption that F is con- 
cave, a uniform C2 estimate combined with Krylov's theorem (see [9]) yield 

3We would like to thank the referee for pointing out this to us. 
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a uniform C2^ estimate of the solution. We then can bootstrap to get all 
the higher derivatives estimates. Although Krylov's theorem does not apply 
to more general case without assuming concavity of F, a uniform Hessian 
estimate is still the first essential step for getting higher derivatives esti- 
mates. 

In this section we are going to prove the Hessian estimate. 

Proposition 4.1. There exists a constant C depending only on n, F and 
fo such that 

IVV/| < C. 

The strategy of obtaining Hessian estimate is the following : 

I. We first obtain an estimate for A/. In fact, from (1.3) and Lemma 3.1, 
we can get a Laplacian estimate depending on time. But to get a uniform 
estimate for A/ we need to calculate the evolution equation for A/ then 
apply maximum principle. 

II. We then use the estimate for A/ to prove an estimate for | VV/| by 
estimating a quantity involving both A/ and |VV/|. The reason for doing 
so will become clear as we proceed in our proof. 

We shall start with the estimate of A/. 

Lemma 4.2. There exists a constant C depending only on n, F and fo 
such that 

I A/| < C. 

Proof. By straightforward computation we have 

(Af)t = -e-VG' [AA/ - ^y + ^A |V/|2 

+ (2A/ - 41 V/|2) (^ry - A/ - fij* | V/|2) 

+4V/ (^y " VA/ - ^V |V/|2)^ 

+e-4'G'" [4|V/|2(^Ty-A/-^|v/|2)  +Jg!,-HVA/|2 

■    ^IVlV/^'-^^ + Cn-^VA/VIV/^-^VWlV/l2 

+4V/ (^J + VA/ + ^V |V/|2) (jpfey - A/ - "y* IV/|2)] . 

(n-2)2 1^,^1212 
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It is readily seen that the main bad terms in the evolution of A/ are terms 
involving |VV/| and |VV/|2. To control these bad terms, we shall make 
use of the negative |VV/|2 in the evolution equation of |V/|2 and consider 
the quantity ^ = A/ + A | V/|2, where A is a number to be determined later. 
We have 

<Pt = -G'e-V [Av? - ^j + (n - 2 - 2A) RiNifVif 4- (n - 6) V/V^ 
+ (n - 2 - 2A) | VV/|2 + (4A - 2n + 4) V/V |V/|2 

+^V/Vil + (2? + (2A - 4) |V/|2) (jpfcj -Af-*? |V/|2)] 

+e-*fG" [4 |V/|2 (^ - A/ - ^ |v/|2)2 + ^ + VA/V^ - ^ 

+ (n-2-A)V^V|V/|2 + (A2 + i^-(n-2)A)|v|V/|2|2 

+ (A - 2^%) V^V IV/|2 + 4V/ (5^ + W - AV |V/|2 + Sy*VIV/|2) 

•(^T-A/-^|V/|2)]. 

Here we used 

and 

VA/ = V^-AV|V/r 

|VA/|2 = VA/Vy? - AV^V |V/|2 + A2 V |V/| 

Define v?max = max<p(x,t). Substituting 

E 
2 (n - 1)     ^ 2 

and using the estimate on |V/|. we have 

-A/-^|V/P=    eVR 
2(n-l) 

l^max < -G'e-V 
P?f 

(n - 2 - 2A) IVV/|2 + C10 (-2n + 4 + 4A) |VV/| 

R\ 
+CnA + C12 + 2(^1) (2 l^maxl + CnX + Cu) 

+ |G"| e"4/ [Cise4^2 + (CieA2 + C17) |VV/|S 

+ ((C18 + C19A) IVV/| + C20) e2^ \R\ + (C2i + C22A) |VV/| + £23] 

Let A — n — 1 and use Lemma 3.1 and Corollary 3.2, we obtain 

(4.1) 

1 
dt 

VW < C24R2 + C25 \R\ + C26 \R\ |yw| + C27e-2f for t > Ti, 
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where Ti is a positive number. Therefore we can integrate (4.1) to get 
Vmax ^ C. In the same manner we can show <£min > — C by choosing A 
negative. Hence we have proved |A/| < C. □ 

We are going to use the estimate on A/ to prove an estimate on | VV/|. 
Let's compute the evolution equation for |VV/|2.   We have 

(|VV/|2)t = 2ViVJ-/V^/,. 

Straightforward computation shows that 

ViV,/, = -e-VG' [ViVyA/ - ggg + ^V^V,- |V/|2 

+2ViVi/ (jpfey - A/ - fflyS | V/|2) + 2V,/ (jg^y - V^/ - ^Vi |V/|2) 

+2Vi/ (sgSy - V.A/ - ayav, |V/|2) - Wi/V,-/ (^j - A/ - ^ |v/,2)] 
+e-VG" [2V,/ (^IJ - A/ - 2^ |V/|2) - aggy + V^A/ + ^Vi |V/|2] 
• [aVi/ (^ry - A/ - aj* IV/|2) - sgSy + V.A/ + ^V,-1V/|2] . 

Therefore, by all the estimates we have so far, we can get 

Lemma 4.3. (a) 

(lVV/|2)t < -e-VG> (A IVV/|2 - 11VVV/|2 

+C281VV/|3 + C29 |VV/| |VA/| + C30) 

+e-^ \G"\ (C31 |VV/|3 + C32 |VA/|2 |VV/| 

+C33|VA/||VV/|2+C34). 

and ^ 

(lV/12)^ < -6-2/G, (A IV/l2 - |VV/|2 + C35) . 

Prom Lemma 4.3(a), it is easy to see that the bad terms in the evolution 
of |VV/|2are |VA/| |VV/|2, |VA/|2 |VV/|, |VV/|3 etc.. Now the idea is 
to produce good terms from some function of A/, then use these good terms 
to dominate those bad terms. We let a =    sup    |A/| +1 and consider the 

Mx[0,co) 
quantity Q = A/ + a. 
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Calculating the evolution for Q2 and using estimates on |V/| and A/, 
we have 

(Q2)t < -e-2'G' (AQ2 - 21VA/|2 + 3,6 + C37 |VA/| + Css |VV/|2) 

+e-^ |G?"| ((739 + C401VA/|2 + C411VV/|2) 

< -e-^G" (AQ2 - IVA/|2 + C42 + C43 IVV/|2) for t > r2. 

If we multiply {ClT)t by |VV/|2 then we get a negative |VA/|2 |VV/|2 term 
to dominate those bad terms such as |VA/| |VV/|2and |VA/|2 |VV/|, but 
at the same time we also get a bad positive | VV/|4 term , hence we need to 
add in some negative | VV/|4 term which can be produced by multiplying 
the evolution of |V/|2 by |VV/|2. We shall consider the quantity 

w = (Q2 + /?) I VV/|2 + 71V/|21VV/|2, 

where /? and 7 are numbers to be chosen later. By computing the evolution 
equation for u and using the estimates on | V/| and A/, we have the following 
inequality 

(4.2) 

<* < -e-2'G' [Aw + C44 IVV/| IVA/| |VVV/| - |VA/|21VV/|2 

+C4571 VV/|2 IVVV/| + (C46 + C477) IVV/|2 + (Qg - 7) IVV/|4 

-\& |VVV/|2 + (/S + 7 + C49) (C501VV/|3 

+C51IVV/IIVA/I+C52)] 
+e-4/ |G"| 08 + 7 + C53) (C54 IVV/|3 + C55 IVA/| |VV/|2 

+C56 IVA/|2 |VV/| + C57) for t > T3. 

Let 7 = C48 + 2 and choose 0 so large that 

11VVV/I2 + I |VA/|2 |VV/|2 > C44 IVV/| |VA/| |VVV/| 

and 
/? |VVV/|2 +1VV/I4 > C4571vv/121 VVV/|. 

Then the inequality (4.2) becomes 

ut < -e-VG1 (Aw - i IVA/|2 |VV/|2 - |VV/|4 

(4.3) +C58 + C59 |VV/|3 + Ceo |VA/| |VV/| 
+C6i IVA/|2 IVV/| + C62 IVA/| |VV/|2) for t > Tt. 
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To take care of the bad terms in (4.3) we have 

-± |VA/|2 |VVjf + Cei |VA/|2 |VV/| + CM IVA/| |VV/|2 + Ceo IVA/| |VV/| 
= (-J |VA/|2 + C62 |VA/|) |VV/|2 + (-i |VV/|2 + C«i |VV/|) |VA/|2 

+ (-1 |VA/|21VV/|2 + C6o IVA/| |VV/|) 

< Cea |VV/|2 + C64 if |VV/| > 6C6i. 

For the other terms, we have 

- IVV/|4 + C591VV/|3 < -i IVV/|4 + Ces. 

Therefore we obtain the following inequality by maximum principle 

(4.4) dt^1™3* " 0 if a;max " C'66 and t-T^ 

where ct;max = maxa; (#,£). Hence we have shown v = (Q2 + (3) |VV/|2 + 
xeM 

1 |V/|2 |VV/|2 < C and the proof of proposition 4.1 is completed. 
Since |VV/| is bounded, the inequality Lemma 4.3(a) now becomes 

(|VV/|2)  < -e-^C (A IVV/I2 - f |VVV/|2 

+C67|VA/|+C68) 
(4.5) +e-4/ |G//| ^9 IVA/|2 + C70 IVA/| + C71) 

< -e-^G' (A I VV/I2 - I VVV/|2 + C72) for t > T5. 

Here we used |VVV/|2 > i |VA/|2. 

5. Uniform |VA/| estimate 

In general, for fully nonlinear parabolic equations, a uniform Hessian 
estimate is not strong enough for bootstrapping to obtain all the higher 
derivatives estimates. Therefore we still need to estimate some other higher 
derivatives of /. We shall see in section 7 that a uniform estimate on | AA/| 
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is good enough for bootstrapping to get all the Ck,a estimates. In this 
section we are going to get an uniform estimate on |VA/|, and in the next 
section we will use this estimate to prove an uniform estimate on |AA/|. 

Proposition 5.1. There exists a constant C depending only on n, F and 
fo such that 

IVA/| < C. 

Proof. The idea in proving this proposition is similar to that used in section 
4. We first compute the evolution equation for |VA/|2 to see what kind of 
bad terms we have in the equation, then we try to make use of the good 
negative |VVV/|2 term in the evolution of |VV/|2. It turns out that the 
quantity x = (|VV/|2 + Z/WA/|

2
 is the right quantity to look at. With 

some patience we calculate that 

(ViA/)t = -e-VG' [ViAAf - %£% + ^A |V/|2 

+ (2V«A/ - 4V, | V/|2) (gpfey - A/ - 2^ IV/|2) + (2A/ - 41V/|2) 

• (#Ty - ViA/ - ^V, |V/|2) + 4ViVi/ (jgjy - V.A/ - ^V,-1V/|2) 

+4V,-/ ($*§ - ViV.A/ - a^ViVj |V/|2) - 2AV,/] 

+G"e-*f |4V« |V/|2 (jpfey -Af-*? |V/|2)2 + 8 |V/|2 (^ -Af-*p |V/|2) 

• (a^Sy - VM - ^Vi |v/|2) + gEgJ + 2v*viA/viA/ + ^v* | v |v/|2|2 

-IS=TJ (ViV.A/V^ + VjAfViVjR) + (n - 2) (ViV.A/V,-1V/|2 + V^A/ViV, |V/|^ 

"fel (ViV^V,-1V/|2 + V^ViV,-1V/|2) + 4ViVi/ (^§ + VjAf + *pVf |V/|2 

^ - A/ - fl^ |V/rt + 4V,-/ f ^?ff + ViVyA/ + ^ViV,-1V/|2) 
^ - A/ - Oya | V/|2) + 4V,/ (^ + V,A/ + ^ V, | V/|2) 
'jgSy - ViA/ - ^V* |V/|2) - 4BV«/ + A [2V«/ (^ - A/ - ^ |v/|2) 

-^J+ViAZ + ^VilV/l2]} 

-BC'e-V [2V,/ (^ " A/ " ^ lV/|2) " 3^% + V<A/ + ^^ IV/|2] , 
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where 

A = AA/ - ^ + ^A |V/|2 + (2A/ - 4 |V/|2) (^ - A/ - ^ |v/|2) 

+4V/ (^J " VA/ - ay*VI V/|2) and 
__  ..o  /        T-> „    r» .        _.o\^ Ir? D|2     .    _.o (^    o\2 .o|2 ^ = 41V/|2 (^y - A/ - ^ IV/|2)2 + Jg^ + IVA/|2 + ^f- IV |V/|2 

-SgF + (n - 2) VA/VIV/|2 - j^yVHV |V/|2 

+4V/ (^y + VA/ + 2yaVIV/|2) (jpfey - A/ - fiy2 |v/|2) . 

By all the estimates we have gotten and the fact that |VVA/| > -^ |AA/| 
, it is easy to get 

(5.1) 

(|VA/|2)f < -e-^G' (A IVA/I2 - § |VVA/|2 + CVs 

+C74 I VA/I2 + CV51 VVV/| |VA/|) 

+e-^ IG"! (c™ + C77 |VA/|3 + Crs |VVA/| |VA/| 

+C791VVA/| |VA/|2 + Cgo IVVV/| IVA/| 
+C8i |VVV/| |VA/|2) 

+e-^ IG'"! (Csa + Cgs IVA/I4) for t > T6. 

We then consider the evolution equation for the quantity x = 
|VA/|2 (|VV/|2 + v), where u is a number to be determined later. Prom 
(4.5) and (5.1) we have 

X* < -e-'2fG' [Ax + C84 |VVA/| |VVV/| |VA/| 
-| (lVV/|2 + */) IVVA/|2 + (|VV/|2 + 1/) (C73 + C74 IVA/I2 

+C75 |VVV/| IVA/I) + C72 IVA/I2 - IVVV/|2 IVA/I2' 

+e-4' |G"| (|VV/|2 +1/) (C76 + C77 IVA/I3 + C78 IVVA/| |VA/| 

+C79 |VVA/| IVA/I2 + C8o IVVV/| (VA/I + Cgi |VVV/| |VA/|2) 

H-e-6' \G"'\ (|VV/|2 + 1/) (C82 + Cga IVA/I4) , for t > T7. 

We let v = 2 (C84 + I)2 then 

1/1VVA/|2 + 11VVV/|2 IVA/I2 > (C84 +1) IVVA/| |VVV/| |VA/|, 
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so we have 

(5.2) 
Xt < -e-2fG' (Ax - |VVA/| |VVV/| |VA/| + C85 

+C861VA/|2 + CST |VVV/| |VA/| - i IVVV/I21VA/|2) 

+e-V \G"\ (Cm + CSQ |VA/|3 + C901 VVA/| |VA/| 
+C911VVA/| |VA/|2 + C92 IVVV/I |VA/| 
+C93 IVVV/I |VA/|2) 

+e-6/ IG'"! (c94 + C95 |VA/|4) , for t > T7. 

Using the fact that | VVV/| > ^ | VA/| we get 

- IVVA/I IVVV/I |VA/| < -=i |VVA/| |VA/|2. 

Therefore 
/ = -e-VG> (- IVVA/I IVVV/I |VA/|) 
+e-^ IG"! (Cgo IVVA/I |VA/| + C9i |VVA/| |VA/|2) 

< -e-2/G' (^ iwA/l |VA/|2 + C9o |VVA/| |VA/|) for t > r8. 

Hence we have 

/ < 0 if |VA/| > 2v/nC9o and i > r8. 

For the rest terms in (5.2) we have 

-e-2fG' (-i |VVV/|21VA/|2 + Css + Cse IVA/|2 + C871VVV/| |VA/|) 

+e-4f \G"\ (Css + C891VA/|3 + C921VVV/| |VA/| + C931VVV/| |VA/|2) 

+e-6/|G"'|(c94 + C95|VA/|4) 

< -e-^G' [(-i |VVV/|2 + C96 |VVV/|) |VA/|2 

+ (-i |VA/|2 (VVV/I2 + C97 |VA/| |VVV/l) 

+ (-il lVA/|4 + Cwe-V |VA/|3 + C99e-
4/1VA/|4 + doo |VA/|2 + doi)] 

< 0 for t > Tg and |VA/| > C102. 

Here we used |VVV/|21VA/|2 > ^ |VA/|4 . Thus there exist constants 
C103 and Xio such that 

^Xmax < 0 if xmax > C103 and t > TIQ, 
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which proves that | VA/| is uniformly bounded and the proof of Proposition 
5.1 is completed. □ 

6. Uniform |AA/| estimate. 

In this section, we are going to use all the estimates we have gotten so 
far to show that |AA/| is uniformly bounded. Then in the next section we 
shall use a bootstrapping argument to bound all the Ck,a norms of /. 

Proposition 6.1.  There exists a constant C depending only on n, F and 
fo such that 

|AA/| < a 

Proof. We first rewrite (5.1) as 

(6 1) (|VA/|2)t " -e~2fG' (A |VA/|2 " |VVA/|2 

+C104 IVVV/| + C105) for t > Tn. 

With some lengthy calculations (we omit the details), we can obtain the 
following inequality. 

(6.2) 

((AA/)2)^ < -e-VG' [A (AA/)2 - |VAA/|2 + C106 

+C1071AA/|2 + Cios IVVA/| |AA/| + dog |VVV/|2 |AA/|] 

-NT4' \G"\ (dio + Cm |AA/|3 + Cm |VAA/| |AA/| 

+C113 |VVA/|2 |AA/| + CIMJVVV/I2 |AA/|) 

+e-6/|G"'| (Cus + Cue |AA/|2 + Cur |VVA/| |AA/| 

+C1181VVV/| | AA/|) + Cnge-8/ |G(4) 11AA/|. 

We shall consider the quantity 

£ = |AA/|2 (|VA/|2 + M) + |AA/|2 |VV/|2, 
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where fi will be chosen later. We use (4.5), (6.1) and (6.2), then 

(6.3) 
6 < -e-W [A£ + C1201VAA/| |AA/| |VVA/| 

+(7121 |VAA/| |AA/| |VVV/| - |VVA/|2 |AA/|2 

+Ci22 |VVV/| |AA/|2 - /. |VAA/|2 - |VVV/|2 |AA/|2 

+ (1 + n) (Ci23 + C124 |AA/|2 + Ci251VVA/| |AA/| 

+Ci26|VVV/|2|AA/|)] 

+e-^ IG"! (1 + fi) (C127 + C1281VAA/| |AA/| 
+Ci291VVA/|2 |AA/| + Ciao IAA/|3 

+C1311VVV/|2 |AA/|) 

+e-6/ |G/ff| (1 + fi) (C132 + C1331AA/|2 

+C1341VVA/| |AA/| + C135 |VVV/| |AA/|) 
+Ci36e-^ |G(4) | (1 + A*) |AA/|, for i > ri2. 

Let fj, be a number so large that 

-£ |VAA/|2 - i |VVA/|21AA/|2 < - (C120 +1) IVAA/| |AA/| |VVA/| 

and 

-| IVAA/|2-i |VVV/|2 |AA/|2 < - (C121 + 1) |VAA/| |AA/| |VVV/| 

Using the fact that |VVA/| > ^ |AA/| we have 

IVAA/| IAA/| IVVA/| > -L |VAA/| |AA/|2 
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Thus (6.3) becomes 

(6.4) 

6 < -e-2/G' [A* - -fa lVAA/l IAA/|2 

-f |VVA/|2 |AA/|2 - 11VVV/|2 |AA/|2 

+C1371VVV/| |AA/|2 + C1381 AA/|2 + C139 

+Cuo IVVA/| |AA/| + Cu! |VVV/|2 |AA/| 

+e-^ |G"| (C142 + CMS I VAA/| | AA/| 
+C1441VVA/|2 |AA/| + CMS |AA/|3 

+Ci46|VVV/|2|AA/|) 

+e-^ IG'"! (C147 + Ci481AA/|2 + C1491VVA/| | AA/| 

+C15o |VVV/| |AA/|) + C151e-
8' |G(4)| |AA/|, for t > r13. 

We can group the terms in (6.4) as follows. 

-e-*fG' (-fa | VAA/| | AA/|2) 
+C143e-4> IG"! iVAA/| |AA/| < 0, if |AA/| > C^. 

-e-^G' (-1 |VVA/|2 |AA/|2 + G14o |VVA/| |AA/|) 

+Ci44e-4/ \G"\ |VVA/|21AA/| + C149e-
6' |G"'| |VVA/| |AA/| 

< Cisae-2' if |AA/| > C154. 
_e-2/G/ ^_ 1 |VVV/|21AA/|2 + Gi371VVV/| IAA/|2 

-K7i4i IVVV/|2 IAA/|) + e-4' IG"! (G^G I VVV/|21AA/|) 
+G15oe-6^ |GW| |VVV/| |AA/| 
< Gisse-2-^ IAA/|2 if |AA/| > Gi56. 
|e-^G' IVVA/|2 IAA/|2 + G^e"47 |G"| |AA/|3 

< ie-^G' |AA/|4 + Guse-4^ |G"| |AA/|3 

<ie-
2/G'|AA/|4if |AA/|>Gi57. 

Therefore there exist constants G158 and Tu such that 

^max < 0 if ^max > Ctfs and t > Tu, 

which implies that |AA/| is uniformly bounded. 
D 
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7. Rescaling and convergence. 

Using estimates on |A/| and |AA/|, we may apply standard elliptic 
theory to get 

(7.1) ||A/(-, t)\\cl,a{M) < C for some a e (0, 1). 

Define /= / - G(0)t, then 

(7.2) ft = ft-G(0) = G 
2(n-l)J 

G(0). 

We note that the covariant derivatives of / with respect to the space x is 
the same as those of /. By Lemma 3.1, we have ft -+ 0 exponentially. Hence 
/ converges to some function /oo as t —> oo. In particular / is uniformly 
bounded. Therefore from (7.1) and elliptic Schauder estimate we can get 

(7.3) /(•, *) Cs>a(M) 
<c. 

We are going to prove that all the derivatives of / are also uniformly bounded 
—   QOO       — 

and then it follows easily that / —► /oo. 

Proposition 7.1.  There exists uniform constants Ck depending on n^F 
and fo such that 

/(•, *) 
Cfc»a(M) 

<Ck. 

Proof Let R = e2G^tR be the corresponding scalar curvature of the metric 
g = e2?g. From (2.1), it is easy to calculate the evolution equation for R 

dtR = (1 - n) e-2f (F'(R)AR + F"(R)VRVR + (n - 2) F'(R)VfVR) 

where 

Km ggfafes)-2^) 
R 

2(n-l) 

is a smooth function. 
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Let R(x, T) = R (x, a (r)), where a (r) satisfies the O.D.E. 

\a(0) = 
= exp(2G(0)<7(T)); 

0. 

Then the evolution equation for R is 

dTR = (1 - n) e"2^ (F'(R)AR + F"(R)VRVR + (n - 2) F'(R)VfVR^ 
K(R)   p2 

which satisfies the uniform parabolicity condition. Now define 

a{x, T) = F'{R)e-_^^i{x, r) = F"(R)e-2lViR + (n - 2) F'ifyVif 
and c(x, r) = K(R)R. 

From (7.3) and recall that 

R = 2 (n - 1) e"2/ (^ - A/ - ^ | v/|2) 

fl = 2 („ - 1) e-2/ (^T) " A/" ^ | V7|2) 
(7.4) 

we easily get ||J?(-, £)||ci,a(M) ^ C" and   i?(-, t) < C, hence 
^^(M) 

6i('' r) c-(M)' "^'5 T)I
^(M) < C- l|fl(-i r)llai.-(M) 

Thus we can apply Schauder estimate(see [8], p.80) to get 

(7.5) 

Prom (7.4) we have 

R(; r) 
C2.<*(Af) 

<C. 

(7.6) A/+^ V/ 
R 

+ ■ 
R 

2(n-l)     2(TI-1) 
6^ = 0. 

Hence by (7.3) and (7.5) we get 

/(•, r) 
C4-0,(Af) 

<C. 
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Because of (7.5) we have 

IR-, T)IIC2,<*(M)>    bi(;T) cl , \\c(',T)\\C2la{M)<C. 

Using Schauder estimate again we get   i?(-, r) 
C3>a(M) 

< C, which implies 

In this way we may bootstrap to get 

C5^(M) 
<C. 

R(; r) 
Ck><*(M) 

< Ck and /(-, r) 
Ck'a(M) 

<ck. Q.E.D. 

Proof. [1.3.] By taking the covariant derivatives of (7.2) and using (1.2), we 

Vkft = e~2f(sum of terms involving derivatives of /). 
— —   QO=> 

Therefore V ft —► 0 exponentially and hence / —> /©©, which proves 
Theorem 1.3. □ 
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