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On the nonlinear parabolic equation
owu = F(Au+nu) on S™
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1. Introduction.

In this paper, we consider the following initial value problem on the unit
n-sphere S™ = {zx € R™" : |z| =1}

(1.1) Owu(z,t) = F(Au(z,t)+nu(z,t)) 2xze€S", t>0
uw(z,0) = wup(x) xzeS"

where F' : R — R is an arbitrary smooth increasing function with F' > 0
everywhere and A is the Laplace operator on S™ with respect to the standard
Riemannian metric.

Technically speaking, this is a fully nonlinear second order parabolic
equation, however because of its special form, it is perhaps more similar to
a semilinear equation. The difficulty in studying this equation, in particular,
proving long time existence, is to obtain apriori estimates strong enough to
bound the solution in C** norm, after which standard theory yields the
existence of a smooth solution.

One importance of equation (1.1) is that it is equivalent to a geometric
equation, which may be interpreted as follows. If in addition, the symmetric
2-tensor (VVu+ug)(z,to) is positive definite for all x € S™ (here g denotes
the standard Riemannian metric on S™ and V the corresponding covariant
derivative) at a given time o, then u(-, ) is the support function of a smooth
convex hypersurface My,.

More precisely, we can extend u(-,tp) to be a smooth, homogeneous
of degree one function on R"t! — {0}. Since (VVu + ug)(x,to) is positive
definite for all = € S™, u(-, o) will then be a convex function on R™*! —{0}.
It can be shown that u(-,tp) is the support function of a unique convex
hypersurface My,, which is the boundary of the convex body By, given by

Bto = Ngesn {y € Rn+1 : <x7y> < U(w,to)}-
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Furthermore the eigenvalues of the 2—tensor (VVu + ug)(-,t0) at the point
x € S™ are exactly the principal radii of the convex hypersurface M;, at
the point with outer unit normal . We refer the readers to the paper by
Urbas [14] for more details.

At such times, if in addition ' > 0 on (0, 00), equation (1.1) corresponds
to deforming the convex hypersurface Mz, in the direction of its outward unit
normal with velocity F/(H), where H is the inverse of the harmonic mean
curvature, that is, H = ,—3;+ ,%2 +eeeee +é, where k1, ..., K, are the principal
curvatures of My,.

It is well-known that there exists a unique smooth solution to (1.1) on
S™ x [0,T) for some short time 7" > 0. We shall prove that the solution
exists for long time. More precisely, the solution exists on S™ X [0, Tax)
,where either Tipax = 0o or lim mi?} |u| = co. In section 2, we recall the

t—Tmax SPx{t

gradient estimate of Chow-Gulliver [2]. In section 3, we prove the crucial
Laplacian estimate. In section 4, we prove the long time existence theo-
rem. This raises the question of the asymptotic behavior of the solution.
For example, one can ask the following questions: Is ||Vul|ck(gny uniformly
bounded for some or all £k > 0?7 Under what conditions, does the solution
satisfy (VVu +ug)(z,t) > 0 for all time (i.e. evolving hypersurfaces remain
convex) if (VVug + ugg) > 0 on S™? Under what conditions, does the solu-
tion satisfy (VVu +ug)(z,t) > 0 (i.e., u is the support function of a convex
hypersurface) for ¢ sufficiently close to0 Tmax?

In section 5, 6 and 7, we impose additional hypotheses on F' and answer
these questions in part. In section 5 we show that the second derivative of
u is uniformly bounded under suitable assumption on F. Therefore we have
(VVu + ug)(z,t) > 0 if we know u(z,t) becomes positively large eventu-
ally and hence u(z,t) is the support function of a convex hypersurface for
t sufficiently close t0 Tmax- In section 6 we assume F' > 0 on (0,00) and
assume the initial data ug is the support function of a given smooth convex
hypersurface My. We then investigate the long time behavior of the evolv-
ing hypersurface M;. In section 7 we show how to rescale the hypersurface
M so that it converges to the unit round sphere S™ in C! or C? norms.

The main innovation of this paper is that we consider certain nonhomo-
geneous curvature flows of closed convex hypersurfaces. There are numer-
ous important works on homogeneous curvature flows. One should consult
Gage-Hamilton [4], Huisken [10], and Tso [13] for contracting flows; Ger-
hardt [6], Huisken [9] and Urbas [14] for expanding flows; Andrews [1] for
general flows. See also Chow-Tsai [3] for nonhomogeneous expanding cur-
vature flows of closed convex plane curves.
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2. The Gradient Estimate.

The first main estimate is a uniform bound for the gradient of u. This is
a special case of Theorem 3.1(iv) in Chow-Gulliver [2], which provides a uni-
form gradient estimate for more general equations based on an Aleksandrov
reflection argument.

Proposition 2.1. Let u(x,t) be the unique smooth solution to equation
(1.1) on S™ x [0,T) where F : R — R is an arbitrary smooth increas-
ing function with F' > 0 everywhere. There ezists a constant C depending
only on ug such that

|[Vu(z,t)| <C  onS™ x[0,T).
An immediate consequence of this is
Umax(t) — Umin(t) < Cm  on [0,7),

although umax(t) may blow up as t approaches T.

3. The Laplacian Estimate.

In this section we obtain a crucial estimate for the Laplacian of 4 on S™ x
[0,T), which depends on F, T, up and su[p )|u| . To prove this estimate,
Snx[0,T
we first show that |F(Au + nu)| < C. To do this, we would like to apply
the maximum principle to the evolution equation satisfied by F/(Au + nu).
However, there is a uncontrolled bad term which appears on the right-hand
side. To overcome this, the idea is to consider the new quantity

Q = (IVul® + o) F(Au + nu),

where a is some large constant (this idea first appears in Liou [12]). Choosing
a to be a large constant depending only on the initial condition ug, we
estimate @, which implies an estimate for F(Au + nu). The estimate for Q
holds roughly for the following reasons. The evolution equation for |Vu|?
introduces good (i.e., negative) term which dominates the bad term in the
evolution equation for F'(Au + nu). One also shows that any positive term
introduced by |Vul? is controllable by using the fact that we already know
IVul2 is bounded by Proposition 2.1. Once we have shown |F'(Au + nu)| <
C, we can apply the maximum principle to the evolution equation for Au+nu
to get an estimate for Au. We provide the details of our argument below.
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Let ¢ = F(Au +nu) and H = Au + nu. Recall that Q = (|Vul? + a)y,
where a is a constant to be chosen later. First, we compute the following
evolution equations.

Lemma 3.1. Under the evolution equation (1.1) on S™ x [0,T), we have
(a) & |Vul? = F'(H) [A |Vuf? — 2|VVuf® + 2 |Vu|2]

and

vV |Vul?
b) 8:Q=F(H){ AQ—-2———— -VQ+R
(b) 2Q = F'( ){ Q Vul +a Q 90}
where )
) 2|V |Vul?
R=(n+2)|Vu> +na—2|VVu|* + 5 .
|Vul“+a

Proof. (a) It is easy to see that
8 |Vul? = 2F'(H)V;i(Au + nu) Viu,

where we have followed the usual summation convention. That is, V;(Au +
nu)V;u means ¢ V;(Au + nu)V,u and we sum over repeated indices. The
formula for commuting the Laplacian and covariant derivative on a general
Riemannian manifold is given by

AVif —=ViAf = RV f

where f is a smooth function and R;; is the Ricci tensor. On S™, we have
R;; = (n — 1)g;; and hence the equations

AViu — ViAu = (n — 1)V,

and
A|Vul? = 2AViuViu + 2 |[VVul?,

which we substitute into the right hand side of 8, |[Vu|? to obtain (a).
(b) Using (a) and

Owp = F'(H) [Ap + 1y,
we obtain

0:Q = F'(H) {AQ -2V |[Vul?- Vo —2|VVaul2 o + 2 |Vul? ¢ + n(|Vul|? + a)fp}
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Now (b) follows by the formula

2 2 2|2
v Vul? - Vo = {ku[ -VQ-golvwm}}.
a

|Vu|2 +
O

Proposition 3.2. Under the evolution equation (1.1) on S™ x [0,T), there

exists a constant C depending on F, ug and sup |ul|, such that
Snx[0,T)

|F(Au+nu)| < C onS™ x [0,T).

Proof. Recall that ¢ = F(Au + nu) and the evolution of ¢ is given by
Bip = F'(H) [Dp +ng] = F o F~Y(p) [Ap +ny] .

Since the term npF’o F~1(y) is nonlinear in ¢, we cannot immediately apply
the maximum principle to estimate ¢. In fact, looking at the corresponding
O.D.E.

dyp

2= npF' o F~1(1)

suggests that ¢ may blow up in finite time and before u blows up. We over-
come this difficulty as follows. By Proposition 2.1, we have a uniform bound

for |Vu|. Let a be a positive constant (to be chosen equal to 7 sup  |Vul?),
Snx[0,T)

we consider the quantity @ = (|Vu|? + a)y. By Lemma 3.1 (b) we have

V | Vul?

8Q = F'(H) {AQ T

-VQ + ch}
where R is defined by

2 ‘V|Vu|2'2

R = (n+2)|Vu* + na—2|Vvul* + -~
|[Vul® +a

Using the fact that

2
]v1w|2| < 4|VVul? |Vu?
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and choosing a =7 sup |Vul?, we obtain
Snx[0,T)

2

2 lV |w|2| X

————— < |VVy on S™ x[0,T).

Vu|®+a

This implies
R<(n+2)|Vul> +na—|VVu> on S*x[0,T).

Since )
VvVl > E(AU)Z

anda=7 sup |Vul?, we have
57x[0,T)

R<(8n+2) sup |Vul®-— l(Au)"’.
Ss7x[0,T) n

Hence, at any point in S™ x [0,7") where @ > 0 (this is equivalent to ¢ > 0),
we have

8:Q < F'(H) {AQ — 2M VQ+ {(8n+2) sup |Vul®- (Au)2] (,0}

1
[Vul® +a Snx[0,T) n

(The same statement holds with the inequality reversed wherever Q < 0).
We may rephrase the above inequality as follows. At any point in S™ x [0,T)

where
|Aul > 4/n(8n+2) sup |V
S x[0,T)
and @ > 0, we have

, V(vu)
%Q < F'(H) {AQ — 2qu|“’ — VQ} :

Let p; and ¢ be points in S™ at which max @ = Q(p¢,t) and min Q =
Snx {t} Snx {t}
Q(g:,t) . Define

M=8( sup |Vu|2) F(y/n(8n+2) sup |Vu|+n sup wu)

S x[0,T) Snx[0,T) S x[0,T)



On the Nonlinear Parabolic Equation 8u = F(Au + nu) on S™ 421

Since F' is an increasing function and by the definition of a, we have that

if @ > max{M,0}, then |Au| > +/n(8n+2) sup |Vu|. Hence, if @ >
Snx[0,T)
max{M, 0} at (p,t), then
0@ <0.

Therefore
Qz,t) < max{maxQ(w,O), M, 0} .
r€ES™

Similarly, one shows that

Q. ) 2 min{ mig Q(2,0), m, 0]

where

m=8| sup |Vul®|F(—v/n@Bn+2) sup |[Vu|+n inf wu).
) Snx[0,T) Smx[0,T)

Snx[0,T
Hence @ is bounded from above and below by constants depending only
on F, sup |u| and sup |Vu|, and the proposition follows from the

57x[0,T) 57 x[0,T)
uniform gradient estimate. O

Proposition 3.3. Under the evolution equation (1.1) on S™ x [0,T), there

exists a constant C' depending on F, T, up and sup |u| such that
Snx[0,T)

|Au(z, t)| < C on S"x|[0,T).

Proof. Recall H = Au + nu. We compute its evolution equation
&H = F'(H)AH + F"(H) |VH|* + nF(H).

Since |F(H)| < C, by the maximum principle, H is bounded above and
below depending on time 7.

4. Higher Derivatives Estimate and Long Time Existence.

We shall consider the evolution equation for ¢ again, which is

By = F' o F7H(p) [Ap + g .
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Since H and ¢ are bounded, F' o F~!(y) = F'(H) is bounded above and
below by positive constants. Hence we may apply Theorem 4.2 in Krylov-
Safonov [11] to conclude that ¢ is bounded in C* norm!, which implies
that F' o F~1(y) is bounded in C* norm. By standard linear theory (See
Chapter 3 of Friedman [5].) we have a bound for the C%® norm of ¢, which
implies that F'o F~1(¢) is bounded in C%* norm. In this way we can apply
bootstraps argument to get bounds on all C** norms of ¢. Because H =
F~1(p) and F~! is a smooth function, we can bound all of the C** norms
of H , which easily yields the bounds on all C*® norms of u.

From the above argument we have shown that, if sup |u| < oo,
Snx[0,T)

then all the C*® norms of u are bounded depending on F, T, uy and

sup |u|.Denote the maximal time interval on which the solution to (1.1)
S x[0,T)
exists by [0, Tmax) - We have a

Theorem 4.1. (Long time existence) The solution u(x,t) to the equation
(1.1) exists on the maximal time interval [0, Tmax) such that either Typax = 0o

or lim min |u| = oo.
t—Tmax S™x{t}

Proof. Suppose Tiax < 00 and  sup min} |u| < oo, then by Proposition

0<t<Tmax Smx{t
2.1 we have
sup |u|= sup max |u|< sup min |u|+C < 0.
57 x[0,Tmax) 0<t<Tmax 5™ % {t} 0<t<Tmax " *{t}

Therefore all the C** norms of u are bounded on [0, Tmax) and we can
extend the solution to a larger interval, which contradicts that [0, Tmax)
is the maximal time interval of existence. We hence know that the so-
lution exists on the maximal time interval [0,7max) such that either

Tmax = 00 or sup min |u| = co. Finally we observe that the condi-
0<t<Tmax S™*{t}
tion sup min_ |u| = co can be replaced by lim min_|u| = oo, since
0<t<Tmax S™*{t} t—=Tmax S™x{t}
either (a) F(n min u) < 0 < F(n max_u) for all time, in which case |ul
snx{t} Snx{t}

is bounded for all time, or (b) F(n Smi?t ) u) becomes positive for some t,
X

which persists, and min_ u keeps increasing, or (¢) F(n max u) becomes
Snx{t} S x{t}

Tn this section, all norms are with respect to space and time.
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negative for some ¢, which persists, and Sma{)g} u keeps decreasing. The proof
X

of the theorem is now complete. O

5. Second Derivative Estimate.

By now, it should be noted that up to Theorem 4.1 we only assume
that F' : R — R is an arbitrary smooth increasing function with F’ > 0
everywhere and that the initial function ug is arbitrary and smooth. In
this section we shall improve the second derivative estimate and show that,
under a weak assumption on the growth rate of the function F' near +oo, the
second derivative of u on S™ X [0, Tinax) is uniformly bounded by a constant.
The result is

|F" (H)]|
F' (H)

the evolution equation (1.1) on S™ x [0, Tmax), there exists a constant C
depending only on ug, Cy and F such that

[VVu(z,t)] < C  on S™ x [0, Tmayx)-

Proposition 5.1. If F' satisfies Il}}m sup < Cp < 00, then under
: —00

To prove the proposition, the idea is to obtain a bound on Au first. After
that, we shall consider a quantity involving both Au and |VVu|, in order
to bound |VVu|. We first need the following lemma.

Lemma 5.2. Under the hypothesis of Proposition 5.1, there exists a con-
stant C depending on ug, Co and F such that

|Au(z,t)| < C  on S™ X [0, Tax)-

Proof. We compute the evolution of Au, which is

(Au), = A[F(Au+nu))
F'A(Au +nu) + F" |VAu +nVul?.

Here F/ = F'(H) and F" = F"(H), where H = Au + nu. To control the
second and the third terms on the right hand side, we consider the quantity

X = Au+€|Vul?,

where € is a constant to be chosen sufficiently small. The reason for con-
sidering x is as follows. On the right hand side of the evolution equation
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for Au there are two uncontrolled terms: F'Au and F” |Vu|?. On the other
hand, the evolution equation for the quantity e [Vu|? introduces a good term
—2¢F"|VVu/|? on the right hand side which dominates these two bad terms
when Auwu is sufficiently large. However, to apply the maximum principle,
we need to introduce a gradient term of € |[Vu|? to match the gradient term
F" [|VA’U.|2 +2nVAu - Vu} . One then finds that in order to make the right

hand side nonpositive when y is sufficiently large, one needs to choose €

Bennett Chow, Lii-Perng Liou and Dong-Ho Tsai

sufficiently small. We provide the details below.
The evolution equation for x is given by

F'A (Au + nu) + F" |VAu + nVul?

+eF' A |Vul® — 2¢F' |[VVu|? 4 2¢F |Vul?
F'Ax +nF'Au+ F" [[VAuf* + 20V Au - Vu| + n?F"[Vul?
—2¢F! |VVu)? + 2¢F' |[Vul®.

We can convert the term

Xt =

F" [|VAu|2 +2nVAu - Vu]

into the gradient terms as

F" [|VAu|2 +2nVAY - Vu]
fad [(Vx — €V |Va?) - VAU + 20(Vy — €V |Vul?) - Vu]

F'"NIx - VAu — eF"V |Vul? - (Vx — €V |[Vul|?)
+2nF"Vx - Vu — 2neF"V |Vul? - Vu
F'"Vx - VAu — eF"Vy - V [Vul? + 2nF"Vy - Vu

2
PR VIVu|2l — 2PV [Vuf? - V.

Therefore we get
. = F'Ax+nF'Au+ F'Vy-VAu—eF"Vy-V|Vul?
X X

and hence
(6.1) xz

<

2
+2nF"Vx - Vu + 2F" |V |Vu|2| — 2neF"V |Vul? - Vu
+n2F" |Vu|? + 2¢F |Vul|? — 2¢F |VVul?

F'Ax +nF'Au+ F'Vy - VAu — eF"Vx - V | Vu|?
+2nF"Vx - Vu + C1€® |F"| |[VVul? + Cone |F"| |V V4|
+C3n® |F"| + C4eF' — eF' |VVul? — %F’ (Au)?,
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where all the constants C; are uniform constants depending on n and up.
Here we have assumed that ¢ > 0 and used Proposition 2.1, inequalities

2 .
|V|Vu|2| < 4|VVul*|Vul|? and |VVu|® > %(Au)2 in deriving (5.1). From
the hypothesis of Proposition 5.1, it is easy to see that |F”| < CsF” for some

positive constant Cs depending on Cp and F. Therefore we can choose ¢ > 0
so small that

—F'e|VVul? +C |F"| & |VVul? < ——;—F’e IVVu?.

By the maximum principle we get

d [ € 2
zi—tXmax < F [—; (A’u) -I—n(Au) +C4E]

—éF’e IVVu|? + CoCsneF' [VVu| + CsCsn?F'.

Hence there exists a constant Cg such that %xmax < 0 if xYmax = Cs. This

implies x = Au + ¢|Vu|> < C. The inequality Au + ¢|Vul> > —C can
be proved analogously by simply choosing ¢ < 0 with |¢| small. Therefore
|Au| < C, and the lemma is proved. a

Proof. [5.1.]We now compute the evolution of [VVu|?, which is
ViVjius = F'[V;V;Au+nV;V;ul
+F" [V;Au +nV;u] [V;Au + nVju] .
Using
ViVjAu = AViVju —2nV;Vju + 2A’u.g1;j
AVVY]? = 2AV;Vju-ViVju+2|VVVaul?
on S™, we have
(|VVu|2)t - F [A IVVuf? —2|VVVu|? - 20 |VVu[? + 4 |Au|2]
+2F" [V,-AuVjAu + nV,-AuVju
+nV;AuViu + n?ViuVju] ViVju

and hence
(5.2) (lVVu|2)t < F [A IVVul? = 2|VVVal? + Cr [VVu)?
+Cs |VVu| VAU + Co [VVa| [VAY| + 010] ,
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where we have used | F”| < CsF’. From (5.2) it is obvious that |VVu| |V Au|?
is the main bad term. We shall produce a good negative |VAu|? term by
considering the evolution of the quantity

Q" =(Au+a)™,

where a = sup |Au|+1, @ = Au+a > 0, and m is a large positive
57 %[0,Tmax)

number to be determined later. We then get a negative |VVu|? |VAu|? term
by looking at the evolution of

w=(Qm+ ) |[VVul?,

where [ is also a large positive number to be determined later. Let’s compute
the evolution for Q™

@™, = mQ™'Q;
= FAQ™ —mQ™ % [(m 1) F' — QF"] |[VAu|?
+mnF' Q™ Au+ mQ™ L F” [2nVAu - Vu +n? |Vu|2] .
Therefore

53) @™, < F {AQm — mQ™2 [(m ~1) - Qll;—ll] IV Auf?

+011QO_1 IVAUI + Cl2QO—l} .

Letm=2+ sup (QJ%—'I), then (5.3) becomes
57 x[0,Tmax)

Q™)< F' [AQm — C13|VAul? + 014] .
Combining (5.2) and (5.3) we have
(5.4) W < F {Aw _2vQ™ - V|VVuf? — 28|VVVu|?
+HQ™ + B) [Cr |VVUl + Ca|VVu| [V Auf
+Co |VVu| |VAY| + C1o]
—C13 |[VVU? [VAY? + Cia |VVu|2} .

Because
—2VQ™ -V |VVul? < C15|VAu| |VVu| |[VV V|,
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we can choose (3 to be a large number such that
013 B vy |VAuR - 28|VVVal? — 2vQ™ - V |[VVul? < 0.
Thus (5.4) becomes
w < {Aw _ % VYUl [VAU? + Cis |V V| [VAU[?

+C17|VVu| |[VAY| + Cis + C1e |[VV4| }

AN

F {Aw + [—% |VVul? + Cis |VVu|] |V Aul?
+ [ Gis =L \VAu? |[VVul? + Ci7 [ VAl |VVu|]

+C1s + Chg |VV’LL| } .

Therefore there exists Cay, Ca1, Cog such that, if |VVu| > Cag, which is
equivalent to w > C%, by Lemma 5.2, we have

we < F’ [Aw + Coo IVV’LLI2 + 021]
Now let ¢ = w 4 Coo|Vul?, then by Lemma 3.1 we get
G < F [Ag — O |VVl® + 023] <F'ACif ¢ > Co.

Thus, by the maximal principle we must have ¢ < C, which completes the
proof of Proposition 5.1. a

6. Expanding Flows.

In this section, we shall assume F' > 0 at least on the interval (0, c0).
If the initial function uo is the support function of a convex hypersurface
Moy, then equation (1.1) corresponds to expanding My in the direction of its
outward unit normal with velocity F'(H). As mentioned in the introduction,
if the symmetric 2-tensor VVu-+ug is positive definite on S™ at some time %o,
then u(-,to) is the support function of a convex hypersurface My, C R™.
Consideration of this fact leads to the following questions.

1) Under what hypothesis on F' is the inequality VVu+ug > 0 preserved
under the evolution equation? That is, when is the convexity of the initial
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hypersurface preserved under the curvature flow (with speed F'(H), where
H= ,Tll +--+ ;1; is the inverse of the harmonic mean curvature)?

2) Under what hypothesis on F' and ug will the inequality VVu+ug > 0
hold eventually? That is, when will the solution u be the support function
of a convex hypersurface for ¢ close enough to Tiax?

To answer the first question, we assume our initial hypersurface My is
convex. Without loss of generality, we may also assume that M enclose the
origin. Hence the initial function ug is positive on S™. Let hi; = V;V u +
ugij. We have h;; > 6g;; and H = Trace h = Au+nu > né at t = 0, for some
6 > 0. The tensor h;; satisfies a special useful identity Vihij = Vihg;, which
is analogous to the Codazzi equation for the second fundamental form. In
fact, for any smooth function v on S”, the symmetric 2-tensor t;; = V;V; v+
vgi; on S™ satisfies the identity Vit;; = Vitr;. The proof is based on the
formula for commuting covariant derivatives on S”, i.e.,

ViViVjijv — V;ViViv = =Ry i Viv
and the Riemann curvature operator Ry;;; satisfies
Riiji = grigij — 9kj9il

on S™. Recall that the evolution equation of H, which is the trace of V2u +
ug, is given by

(6.1) 8,H = F'(H)AH + F"(H) |VH|? + nF(H).

Since F' is positive on (0, 00), the maximum principle asserts that H > né
on S™ x [0, Tmax). Therefore H has a positive uniform lower bound and,
by Proposition 3.3, an upper bound depending on F, Tmax, uo and
sup  |u|. This ensures that, if the hypersurface M; remains smooth,
S™x[0,Tmax
eacl[1 prin)cipal curvature k; of M; is bounded below by a positive con-
stant. However, controlling H is far from controlling the whole tensor
hij. Therefore, it is possible in principle that some x; becomes infinite at
some point ¢ € S™ x [0,Tmax) (this means that the tensor h;; has a null
eigenvector at £.) Geometrically speaking, some x; becoming infinite means
that a singularity develops in the evolving hypersurfaces. To rule this out,
we have
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Proposition 6.1. Assume the following

(i) F >0 on(0,00),
(i1) hi; > 0gi; att =0, where > 0is a constant,

(i45) =22 4 FI(H) > 0 for all H € [n6, 00),
then under the evolution equation (1.1) on S™ X [0, Tax), we have
hij > 6955  on S™ X [0, Trax)-

Geometrically speaking, if the initial hypersurface My is convex and enclose
the origin, then the evolving hypersurface M; remains smooth and convez,
has positive support function u, and expands to infinity such that its support
function u blows up as t — Tmax-

Proof. Our approach and computation is similar to Urbas [14]. The evolution
equation of h;; is given by

Oth;; = F’(H)Ahij + F”(H)ViHVjH
+ [F(H) + F/(H)H) gig - nF ()b

We can not succeed by applying the maximum principle to the above equa-
tion because the bad term F"(H)V;HV;H is uncontrolled.? To get a
stronger result, we compute, instead, the evolution equation of the tensor
h¥, which is the inverse of h;j, and obtain an upper bound for h¥. Using
the above equation, we obtain

Oh = F'(H)ARY — [F(H) + F'(H)H| h*h7* + nF'(H)h¥
—h*pt [F "(H)gpggmn + 2F'(H )gpmhqn] VihmnVihpg
Now let us suppose that the maximum eigenvalue of [h*] over S™ at time ¢

is attained at a point p; € S™. By a rotation of the frame, we may assume
that A!! is the maximum eigenvalue and A% = 0 for i # j. We get

ohtt = F'(H)AWY — [F(H) + F'(H)H] (h'*)? + nF'(H)h!!
—(h*YY2 [F"(H)gpgGmn + 2F" (H) gprmh®™] V1hpg Vs b,

2However, if F”” > 0 on (0,00), we can immediately get h;; > 6g;; on S™ x
[0, Trnax) by the maximum principle for tensors due to Hamilton [7].
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at the point (pe,t). Since Hh! > n at (pt,t), we know
— [F(H) + F'(H)H] (W'")? + nF'(H)R' <0 at (ps, ).
Let mpqg = V1hyq. The term
(W2 [F"(H)gpgGmn + 2F'(H) gpmh®™] V1hpgV1Pumn
now becomes

2
(h')?F"(H) (Z npp> +2(RM)2F(H) D 1P (1pg).
P

g

Using the fact n9ig = Vihig = Vghi1 = 0 at (pg,t) for all ¢ = 1,2,3,...,n,
and assuming that h!! > 22 > ... > k™ at (pt, t), we obtain

2
(6.2) (R')2F"(H) (Z npp) +2(h')?F'(H) Z i (npq)2
P

g

2
(R')2F"(H) (Z%) +2(AM)?F (H)W™ — (anp)

, 2
o g ()

> 0 at (pt1 t):

v

\Y

where the first inequality in (6.2) is due to that the indices p, g only run
from 2 to m and the last inequality is due to our assumption. Therefore, we
obtain

8th11 S 0 at (pt)t)‘

By the maximum principle, we know each eigenvalue of A/ is bounded above
by % on S™ x [0, Tinax) and the theorem follows. O

Remark: (a). For n = 2 or 3, we can allow F(H) to be the concave
function log(H + 1) on (0, 00). (b). For arbitrary n, we can allow F(H) to
be H®, where a > 1 — 2=

To answer the second question we assume F' > 0 on the whole real line
(—00, c0) and apply the maximum principle to the equation (1.1) to yield

u(2,t) > Umin(t) > Umin(0) + F(nmin(0))t.
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That is, u increases at least linearly and the solution to equation (1.1) exists
until it blows up to +o0o. As an immediate consequence of Proposition 5.1,
we have

Proposition 6.2. Assume the following

(7) F >0 on(—o0,00),

|E" (H))|

P <
(4) Hil}l_loosup FH) S Co < o0

then under the evolution equation (1.1) on S™ X [0,Tmax) with arbitrary
initial data ug, we have

VVu(z,t) + u(z,t)g > 0

holds eventually. That is, the solution u will become the support function of
a convex hypersurface M; for t close enough to Tmax-

Remark: (a). Since F > 0 on (—o0,0), H € [C,00) for some constant
C by equation (6.1). Therefore it suffices to impose the growth condition
of F' near +oo in order to apply Proposition 5.1. (b). We can replace the
condition (i) by: F' > 0 on (0,00) and ug > 0 on S™.

7. Rescaling the Hypersurfaces.

Our final discussion shall be on the rescaling and convergence of the
evolving hypersurfaces when F' > 0 on (0,00) and the initial hypersurface
M, is convex, enclosing the origin. First of all, for any solution of equation
to equation (1.1), we have

Lemma 7.1. There exists a solution to the O.D.E.

d

on [0, Tmax) such that

0 < Umin(t) < R(@) < umax(t), V1t € [0, Trmax)-

Proof. The proof is essentially the same as Lemma 9 in Chow-Tsai [3]. O
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We will choose one R(t) satisfying above lemma to rescale the solution
u(z,t). Define the rescaled solution #(z,t) to be

u(z,t)

ﬁ‘(w>t): R(t) )

which is the support function of the rescaled hypersurface M; = '1%‘(%- We
summarize Propositions 6.1 and 6.2 in the following.

Theorem 7.2. (a). If F satisfies the assumption of Proposition 6.1, then
the hypersurface My remains smooth and convez for all time and its rescaled
support function satisfies

(@) li(z, ) —1] < % on S x [0, Tos)

. _ o
(i) |Vi(z,t)] < m on S™ X [0, Tmax),
where C is a constant depending only on uy and R(t) — 0o as t — Tiax.
(b). If, in addition, F satisfies the assumption (i1) of Proposition 6.2,
then

(i13) |VVi(z,t)| S% on 8" x [0, Tiax),

where C is a constant depending on uo, F and the constant Co in Proposition
6.2.

Part (a) says that the rescaled hypersurfaces converge to the unit sphere

S™in C! norm, and (b) says they converge to S™ in C? norm.
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