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1. Introduction. 

In this paper, we consider the following initial value problem on the unit 
n-sphere Sn = {x e Rn+1 : \x\ = 1} 

(1.1)        dtu(x,t)   =   F(Au(x,t) + nu(x}t))     xeS71,  t>0 
u{x, 0)   =   UQ(X)      x € Sn 

where F : M —* R is an arbitrary smooth increasing function with F1 > 0 
everywhere and A is the Laplace operator on Sn with respect to the standard 
Riemannian metric. 

Technically speaking, this is a fully nonlinear second order parabolic 
equation, however because of its special form, it is perhaps more similar to 
a semilinear equation. The difficulty in studying this equation, in particular, 
proving long time existence, is to obtain apriori estimates strong enough to 
bound the solution in C2'a norm, after which standard theory yields the 
existence of a smooth solution. 

One importance of equation (1.1) is that it is equivalent to a geometric 
equation, which may be interpreted as follows. If in addition, the symmetric 
2-tensor (Wu + ug)(xy to) is positive definite for all x € Sn (here g denotes 
the standard Riemannian metric on Sn and V the corresponding covariant 
derivative) at a given time to, then u(^to) is the support function of a smooth 
convex hypersurface Mt0. 

More precisely, we can extend w(-,£o) to be a smooth, homogeneous 
of degree one function on JR™-1-1 — {0}. Since (VV^ + ug)(x,to) is positive 
definite for all x e Sn, u{-, to) will then be a convex function on K1^1 — {0}. 
It can be shown that ^(-^o) is the support function of a unique convex 
hypersurface Mt0, which is the boundary of the convex body Bt0 given by 

Bto = nxesn{y e Rn+1: (x,y) < u(x,to)}. 

415 
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Furthermore the eigenvalues of the 2—tensor (VVw + ug){^tQ) at the point 
x € Sn are exactly the principal radii of the convex hypersurface Mt0 at 
the point with outer unit normal x. We refer the readers to the paper by 
Urbas [14] for more details. 

At such times, if in addition F > 0 on (0, oo), equation (1.1) corresponds 
to deforming the convex hypersurface MtQ in the direction of its outward unit 
normal with velocity F(H), where H is the inverse of the harmonic mean 
curvature, that is, H — '^■ + -^ + + ^J where KI, ..., Kn are the principal 
curvatures of Mt0. 

It is well-known that there exists a unique smooth solution to (1.1) on 
Sn x [0, T) for some short time T > 0. We shall prove that the solution 
exists for long time. More precisely, the solution exists on Sn x [0, Tmax) 
,where either Tmax = oo or   lim     min  Id = oo. In section 2, we recall the 

gradient estimate of Chow-Gulliver [2]. In section 3, we prove the crucial 
Laplacian estimate. In section 4, we prove the long time existence theo- 
rem. This raises the question of the asymptotic behavior of the solution. 
For example, one can ask the following questions: Is HV^H^^n) uniformly 
bounded for some or all k > 0? Under what conditions, does the solution 
satisfy (VV^ + ^)(a:,^) > 0 for all time (i.e. evolving hypersurfaces remain 
convex) if (VV^o + ^osO > 0 on Sn7 Under what conditions, does the solu- 
tion satisfy (VVtz + ug)(x, t) > 0 (i.e., u is the support function of a convex 
hypersurface) for t sufficiently close to Tmax? 

In section 5, 6 and 7, we impose additional hypotheses on F and answer 
these questions in part. In section 5 we show that the second derivative of 
u is uniformly bounded under suitable assumption on F. Therefore we have 
(VV^ + ug)(x,t) > 0 if we know u(x,t) becomes positively large eventu- 
ally and hence u(x, i) is the support function of a convex hypersurface for 
t sufficiently close to Tmax- In section 6 we assume F > 0 on (0, oo) and 
assume the initial data UQ is the support function of a given smooth convex 
hypersurface MQ. We then investigate the long time behavior of the evolv- 
ing hypersurface M*. In section 7 we show how to rescale the hypersurface 
Mt so that it converges to the unit round sphere Sn in C1 or C2 norms. 

The main innovation of this paper is that we consider certain nonhomo- 
geneous curvature flows of closed convex hypersurfaces. There are numer- 
ous important works on homogeneous curvature flows. One should consult 
Gage-Hamilton [4], Huisken [10], and Tso [13] for contracting flows; Ger- 
hardt [6], Huisken [9] and Urbas [14] for expanding flows; Andrews [1] for 
general flows. See also Chow-Tsai [3] for nonhomogeneous expanding cur- 
vature flows of closed convex plane curves. 
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2. The Gradient Estimate. 

The first main estimate is a uniform bound for the gradient of u. This is 
a special case of Theorem 3.1 (iv) in Chow-Gulliver [2], which provides a uni- 
form gradient estimate for more general equations based on an Aleksandrov 
reflection argument. 

Proposition 2.1. Let u(X)t) be the unique smooth solution to equation 
(1.1) on Sn x [0,T) where F : R —> R is an arbitrary smooth increas- 
ing function with Ff > 0 everywhere. There exists a constant C depending 
only on UQ such that 

|Vti(M)|<C      on^xlO.T). 

An immediate consequence of this is 

Umaxit) - Untoit) < ClT On [0, T), 

although umQ,x(t) may blow up as t approaches T. 

3. The Laplacian Estimate. 

In this section we obtain a crucial estimate for the Laplacian of u on Sn x 
[0,T), which depends on F, T, UQ and    sup    \u\. To prove this estimate, 

Snx[0,T) 

we first show that \F(Au + nu)\ < C. To do this, we would like to apply 
the maximum principle to the evolution equation satisfied by F(Au + nu). 
However, there is a uncontrolled bad term which appears on the right-hand 
side. To overcome this, the idea is to consider the new quantity 

Q = (\Vu\2 + a)F(Au + nu), 

where a is some large constant (this idea first appears in Liou [12]). Choosing 
a to be a large constant depending only on the initial condition UQ, we 
estimate Q, which implies an estimate for F(Au + nu). The estimate for Q 
holds roughly for the following reasons. The evolution equation for iV^I2 

introduces good (i.e., negative) term which dominates the bad term in the 
evolution equation for F(Au + nu). One also shows that any positive term 
introduced by \Vu\2 is controllable by using the fact that we already know 
|Vu\2 is bounded by Proposition 2.1. Once we have shown \F(Au + nu)\ < 
C, we can apply the maximum principle to the evolution equation for Au+nu 
to get an estimate for Au. We provide the details of our argument below. 
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Let </? = F(Au + nu) and H = Au + nu. Recall that Q = (|Vu\2 + a)^, 
where a is a constant to be chosen later. First, we compute the following 
evolution equations. 

Lemma 3.1. Under the evolution equation (1.1) on Sn x [0,T); we have 

(a)   dt \Vu\2 = F'(H) [A \VU\
2
 - 21VVu|2 + 2 |Vu|2] 

and 

(b)   dtQ = F\H)[AQ-2^lXul2   -VQ + ifol 
[ |Vwr + a J 

2 
2 

fl = (n + 2) |Vu\2 +na-2 \VVu\2 + 
V|Vw| 

\Vu\2 +a 

Proof, (a) It is easy to see that 

dt \Vu\2 = 2Ff(H)Vi(Au + nu)ViU, 

where we have followed the usual summation convention. That is, 1Vi(Au + 
nu)ViU means gljVi(Au + nu)VjU and we sum over repeated indices. The 
formula for commuting the Laplacian and covariant derivative on a general 
Riemannian manifold is given by 

AVif - ViA/ = RijVjf 

where / is a smooth function and Rij is the Ricci tensor. On S™, we have 
Rij = (n — l)gij and hence the equations 

AViU - ViAu = (n- 1)Vw, 

and 
A |Vu|2 = 2AViuViU + 21VVu|2 , 

which we substitute into the right hand side of dt\Vu\2 to obtain (a), 
(b) Using (a) and 

we obtain 

dtQ = Ff(H) {AQ - 2V \Vu\2 -V<p-2 \VVu\2 ip + 2 \Vu\2 tp + n{\Vu\2 + a)^} 
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Now (b) follows by the formula 

V | Vu|2 • Vtp = 
|V« |2 + al 

V |Vu|2 • VQ - <p V |V«| '}• 
□ 

Proposition 3.2.  Under the evolution equation (1.1) on Sn x [0,r); there 
exists a constant C depending on F, UQ and    sup   |tt|, such that 

5nx[0,T) 

\F(Au + nu)\<C       onSnx[0>T). 

Proof. Recall that <p = F(Au + nu) and the evolution of <p is given by 

dtip = F'(H) [Aip + mp] =F'o F'^ip) [Aip + n<p}. 

Since the term mpF'oF'1^) is nonlinear in <p, we cannot immediately apply 
the maximum principle to estimate ip. In fact, looking at the corresponding 
O.D.E. 

dt 
= nipF' o F'1^) 

suggests that </? may blow up in finite time and before u blows up. We over- 
come this difficulty as follows. By Proposition 2.1, we have a uniform bound 
for | V«|. Let a be a positive constant (to be chosen equal to 7   sup    | Vw|2), 

5" x [0,T) 

we consider the quantity Q = (|Vti|2 + a)ip. By Lemma 3.1 (b) we have 

dtQ = F'(H) \AQ-2Z.'I"1    • VQ + Rip iv«r+o 

where R is defined by 

R = (n + 2) | Vu|2 + no - 21 VV«|2 + 

Using the fact that 

V|V«|: 

|Vnr + a 

V|V«|2    <4|VVu|2|V«|' 
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and choosing a = 7   sup    |Vifc|2, we obtain 
Snx[0,T) 

V | Vu|s 

\Vu\2 + a 
<|VV^|2      on Snx[0,T). 

This implies 

Since 

R < (n + 2) |Vu|2 + na - \VVu\2     on 5n x [0, T). 

IVVw|2 > -(Au)2 

n 

and a — 7   sup    IV-u] , we have 
Snx[0,T) 

R<(8n + 2)    sup    |V^|2 - -(A^)2. 
5^x[0,T) n 

Hence, at any point in Sn x [0,T) where Q > 0 (this is equivalent to (p > 0), 
we have 

dtQ < F'(H) { AQ - 2|Y7
(I^|2) . VQ + (8n + 2)    sup    |Vti)2 - -(Au)2 

V 

(The same statement holds with the inequality reversed wherever Q < 0). 
We may rephrase the above inequality as follows. At any point in Sn x [0, T) 
where   

\Au\ > ^/n(8n + 2)    sup    |Vu| 
Snx[0,T) 

and Q > 0, we have 

d,Q<F'l„)LQ-i^l.VQ). 
[ \Vu\  +a J 

Let pt and qt be points in Sn at which  max Q — Q(pt,t) and   min Q — 
Sn x {t} Sn x {t} 

Q(qut) . Define 

M = 8      sup    |Vw|2 ] F(v/n(8n + 2)    sup   |Vtz| + n   sup   u) 
V^x^T) J 5nx[0,T) S"x[0,T) 
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Since F is an increasing function and by the definition of a, we have that 
if Q > max{M,0}, then \Au\ > y/n(8n + 2)    sup    \Wu\. Hence, if Q > 

Snx[0,T) 

max{M, 0} at (pt,^), then 
dtQ < 0. 

Therefore 

Q(x, t) < max < max(3(a;, 0), M, 0 >. 
\<x^sn J 

Similarly, one shows that 

Q(x, t) > min < min Q{x, 0), m, 0 > 
yxts71 ) 

where 

m = 8      sup    \Vu\2   F(-^/n(8n + 2)    sup    |V^| + n    inf    u). 
\S"x[0,T) J ^x[0,T) S"x[0,T) 

Hence Q is bounded from above and below by constants depending only 
on F,     sup    1^1 and     sup    \Vu\, and the proposition follows from the 

5nx[0,T) S"x[0,r) 
uniform gradient estimate. □ 

Proposition 3.3.  Under the evolution equation (1.1) on Sn x [0,T), there 
exists a constant C depending on F, T, ^o and   sup    |^| such that 

5nx[o,r) 

\Au(x,t)\<C on   Snx[0,T). 

Proof,   Recall H = Au + nu. We compute its evolution equation 

dtH = F'(H)AH + F"(H) \VH\2 + nF{H). 

Since \F(H)\ < C, by the maximum principle, H is bounded above and 
below depending on time T. 

4. Higher Derivatives Estimate and Long Time Existence. 

We shall consider the evolution equation for ip again, which is 

dtip = F' o F-l(ip) [Ay + wp]. 
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Since H and ip are bounded, F/ o F'1^) = F'(H) is bounded above and 
below by positive constants. Hence we may apply Theorem 4.2 in Krylov- 
Safonov [11] to conclude that <p is bounded in Ca norm1, which implies 
that F7 o F~l^p) is bounded in Ca norm. By standard linear theory (See 
Chapter 3 of Friedman [5].) we have a bound for the C2yOL norm of <£, which 
implies that FfoF~l((p) is bounded in C2,a norm. In this way we can apply 
bootstraps argument to get bounds on all Ck,a norms of ip. Because H = 
F~1((/?) and F-1 is a smooth function, we can bound all of the Ck,a norms 
of H , which easily yields the bounds on all Ck>a norms of u. 

From the above argument we have shown that, if     sup    \u\  < oo, 
Snx[0,T) 

then all the Ck,a norms of u are bounded depending on F,  T,  ^o and 
sup    |^|. Denote the maximal time interval on which the solution to (1.1) 

Snx[0,T) 

exists by [0, Tmax) • We have □ 

Theorem 4.1. (Long time existence) The solution u{x^t) to the equation 
(1.1) exists on the maximal time interval [0, Tmax) such that either Tmax = oo 
or   lim     min  \u\ = oo. 

Proof. Suppose Tmax < oo and     sup      min  \u\ < oo, then by Proposition 
o<*<rmaxs

nx« 
2.1 we have 

sup      \u\=     sup      max \u\<     sup      min  \u\+C < oo. 
Sn x [0,Tmax) 0<t<rm« sn x « (KKTmax Sn x W 

Therefore all the Ck,a norms of u are bounded on [0, TmaX) and we can 
extend the solution to a larger interval, which contradicts that [0,Tmax) 
is the maximal time interval of existence. We hence know that the so- 
lution exists on the maximal time interval  [0,Tmax)   such that either 
Tmax = oo or     sup      min  \u\ = oo. Finally we observe that the condi- 

o<t<rma*snx{*} 
tion     sup      min  Id = oo can be replaced by    lim     min  Id = oo, since 

0<t<Tmax^x{*} t^TmaxS"x{t}1 

either (a) F(n min u) < 0 < F(n max u) for all time, in which case Id 
V  J      V    S"x{t}   } ~      - S"x{t} 

is bounded for all time, or (b) F(n min u) becomes positive for some t, 
Sn x {t} 

which persists, and   min u keeps increasing, or (c) F(n max u) becomes 
Snx{t} Snx{t} 

Hn this section, all norms are with respect to space and time. 
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negative for some £, which persists, and max u keeps decreasing. The proof 
Snx{t) 

of the theorem is now complete. □ 

5. Second Derivative Estimate. 

By now, it should be noted that up to Theorem 4.1 we only assume 
that F : R —► R is an arbitrary smooth increasing function with F7 > 0 
everywhere and that the initial function UQ is arbitrary and smooth. In 
this section we shall improve the second derivative estimate and show that, 
under a weak assumption on the growth rate of the function F near ±00, the 
second derivative of u on Sn x [0, Tmax) is uniformly bounded by a constant. 
The result is 

\F,/ (H)\ 
Proposition 5.1. If F satisfies   lim   sup   ^//rj>;   ^ Co < 00, then under 

\H\—►00 r   (H) 

the evolution equation (1.1) on Sn x [0,Tmax)5 there exists a constant C 
depending only on UQ, Co and F such that 

\VVu(x9t)\ <C      onff^x [0,rmax). 

To prove the proposition, the idea is to obtain a bound on A^ first. After 
that, we shall consider a quantity involving both Au and |Wu\, in order 
to bound IV Viz I. We first need the following lemma. 

Lemma 5.2.  Under the hypothesis of Proposition 5.1, there exists a con- 
stant C depending on UQ, CQ and F such that 

\Au(x,t)\ <C      on S" x [0,Tmax). 

Proof We compute the evolution of A^, which is 

{Au)t   =   A[F(A^ + n^)] 
2 =   F'A (Au + nu) + F" \VAu + nVu\ 

Here F' = F'(H) and F" = F"(H), where H = Au + nu. To control the 
second and the third terms on the right hand side, we consider the quantity 

X = Au + 6\Vu\2, 

where e is a constant to be chosen sufficiently small.  The reason for con- 
sidering x is as follows.  On the right hand side of the evolution equation 
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for Au there are two uncontrolled terms: F'Au and F" |V«|2. On the other 
hand, the evolution equation for the quantity e |V«|2 introduces a good term 
—2eF' | VVtt|2 on the right hand side which dominates these two bad terms 
when Au is sufficiently large. However, to apply the maximum principle, 
we need to introduce a gradient term of e | V«|2 to match the gradient term 
F" |VAu\2 + 2nVAK • Vu . One then finds that in order to make the right 
hand side nonpositive when x is sufficiently large, one needs to choose e 
sufficiently small. We provide the details below. 

The evolution equation for x is given by 

Xt   =   F'A(Au + nu)+F"\VAu + nVu\2 

+eF'A |V«|2 - 2eF' \VVu\2 + 2eF' |V«|2 

=   F'Ax + nF'Au + F" \\VAu\2 + 2nVAu ■ Vu\ + n2F" |Vu|2 

-2eF/|VV«|2 + 2eF/|Vu|2. 

We can convert the term 

F" 

into the gradient terms as 

| VA«|2 + 2riVAu • Vu] 

p" 

F" 

|VA«|2 + 2nVA«-Vu 

(V* - eV |V«|2) • VAu + 2n(Vx - eV |V«|2) • Vu 

=   F"Vx • VAu - eF"V \Vu\2 • (Vx - eV |Vu|2) 
+2nF"Vx • Vu - 2neF"V \Vu\2 • Vu 

=   F"Vx ■ VAu - eF"Vx • V |V«|2 + 2nF"Vx • V« 

+€2F" V | Vu|2 2 - 2mF"V | Vw|2 • Vu. 

Therefore we get 

Xt   =   F'Ax + nF'Au + F"Vx-VAu-eF"Vx-V\Vu\2 

+2nF"Vx ■ Vu + e2F" V |Vu|2 2 - 2neF"V \Vu\2 • Vu 

+n2F" |Vu|2 + 2eF' |Vu|2 - 2eF' |VVu|2 

and hence 

(5.1) xt   <   F'Ax + nF'Au + F"Vx • VAu - eF"Vx • V |Vu|2 

+2nF"Vx • Vu + Cie2 \F"\ |VVu|2 + C2ne \F"\ |VVU| 

+C3n
2 \F"\ + C4eF' - eF' |VVu|2 - -F' (Au)2, 
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where all the constants d are uniform constants depending on n and ^o. 
Here we have assumed that e > 0 and used Proposition 2.1, inequalities 
I |2 
VIVu\2    < 41VVu|2 \Vu\2 and |VVu|2 > ^ (Au)2 in deriving (5.1). From 

the hypothesis of Proposition 5.1, it is easy to see that \F"\ < C^F1 for some 
positive constant C5 depending on Co and F. Therefore we can choose e > 0 
so small that 

-F'e |VV?x|2 + Ci \F"\ e2 |VVtx|2 < --F'e |VVu|2 . 

By the maximum principle we get 

^Xmax     <    -P,[--(A«)2+n(A«)+C46l 
at L   n J 

-\F'e I VV«|2 + dCsneF' | VVM| + CzC^F'. 

Hence there exists a constant Ce such that ^Xmax < 0 if Xmax > C'e. This 
implies x = ^ + e|Vw|2 < C The inequality Aw + 6|Vti|2 > —C can 
be proved analogously by simply choosing e < 0 with |e| small. Therefore 
I Aw I < C, and the lemma is proved. □ 

Proof. [5.1.]We now compute the evolution of |VVw|2 , which is 

ViV^t   =   F1 [ViVj Au + nViVj-w] 
+F" [ViAu + nViw] [VjAu + nV>]. 

Using 

ViVjAu   =   AViVjU - 2nViVjU + 2Augij 

AIVVw|2   =   2AViVjU • ViVjW + 21VVVw|2 

on 5n, we have 

(| VVw|2)     =   Ff [A I VVw|2 - 2 IVVVw|2 - 2n | VVw|2 + 41 Aw|2] 

+2F" [ViAuVjAu + riViAuVjU 
+riVjAuWiU + n2ViuVju\ ViVjU 

and hence 

(5.2)  (|VVw|2)     <   F/[A|VVw|2-2|VVVw|2+C7|VVw|2 

+C8 IVVt*| |VAw|2 + C9 IVVw| IVAti| + C10] , 
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where we have used |F"| < C5F1. Prom (5.2) it is obvious that \Wu\ |VA^|2 

is the main bad term. We shall produce a good negative iVAtx]2 term by 
considering the evolution of the quantity 

where a —      sup      |A^| + 1, Q = Au + a > 0, and m is a large positive 
S"x[0,Tmax) 

number to be determined later. We then get a negative | VVtfc|2 |S/Au\2 term 
by looking at the evolution of 

a; = (Q™ + /?)|VVu|2, 

where /3 is also a large positive number to be determined later. Let's compute 
the evolution for Qm 

(Qm),   =   mQm-lQt 
=   F'AQm-mQm-2[(m-l)F'-QF"]\VAu\'2 

,772—1 77»// +mnF'Qm-1Au + mQm-1F' 2riVAu -Vu + n- 
!|V«|2] 

(m - 1) - Q \VAu\' 

Therefore 

(5.3) (Qm)t   <   F'S.AQm-mQm-2 

+CumQrn-1 \VAu\ + CiamQ"1-1} . 

/    \F"\ \ Let m = 2 +      sup      (Q1^ ), then (5.3) becomes 
S"x[o,rmax)

v ^ 

(Qm)t < F' [^Qm - Cis IVA«|2 + CM] • 

Combining (5.2) and (5.3) we have 

(5.4) wt   <   F' lAu - 2VQm ■ V | VVM|
2
 - 20 \ VVV«|2 

+(Qm + P) [CV | VVti|2 + Cs |VVtt| |VAu\2 

+C9|VV«||VA«|+Cio] 

-C13 |VV«|2 | VAu|2 + Cu |VVtt|2} . 

Because 
-2VQm ■ V |VVu|2 < C151VAM| |VVU| |VVV«|, 



On the Nonlinear Parabolic Equation dtu = F(Au + nu) on Sn      427 

we can choose j3 to be a large number such that 

-% IVVu|2 | VAu|2 - 2/? |VVVu|2 - 2VQm - V |VVu\2 < 0. 

Thus (5.4) becomes 

wt   <   y|Aw-^|VV«|2|VAu|2 + Ci6|VV«||VA«|2 

+C171 VV«| | VAti| + Cis + C191VV«|2} 

*{ <   ^^0; + -^|VV^|2 + Ci6|VV^| |VAu| 

+ _^H |vA^|2 |VVn|2 + CIT |VAw| |VVM| 

+Ci8+Ci9|VV^|2}, 

Therefore there exists C20, (^21, (^22 such that, if   |VVw| > C22, which is 
equivalent to u) > C22 by Lemma 5.2, we have 

u)t < Ff [Au; + C20 I VVw|2 + C21] 

Now let ( = u + C20 I V^|2, then by Lemma 3.1 we get 

Ct < F1 [AC - C2o IVV^|2 + C23] < i^AC     if C > ^24. 

Thus, by the maximal principle we must have £ < C, which completes the 
proof of Proposition 5.1. □ 

6. Expanding Flows. 

In this section, we shall assume F > 0 at least on the interval (0,oo). 
If the initial function UQ is the support function of a convex hypersurface 
Mo, then equation (1.1) corresponds to expanding MQ in the direction of its 
outward unit normal with velocity F(H). As mentioned in the introduction, 
if the symmetric 2-tensor Wu+ug is positive definite on Sn at some time to, 
then ^(-,£0) is the support function of a convex hypersurface Mt0 C Rn+1. 
Consideration of this fact leads to the following questions. 

1) Under what hypothesis on F is the inequality Wu+ug > 0 preserved 
under the evolution equation? That is, when is the convexity of the initial 
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hypersurface preserved under the curvature flow (with speed F(H)y where 
H = -±- H 1- —■ is the inverse of the harmonic mean curvature)? 

2) Under what hypothesis on F and ^o will the inequality Wu + ug > 0 
hold eventually? That is, when will the solution u be the support function 
of a convex hypersurface for t close enough to Tmax? 

To answer the first question, we assume our initial hypersurface MQ is 
convex. Without loss of generality, we may also assume that MQ enclose the 
origin. Hence the initial function UQ is positive on Sn. Let hij — ViVjU + 
ugij. We have hij > Sgij and H = Trace h — Au+nu > n6 at t — 0, for some 
8 > 0. The tensor hij satisfies a special useful identity Vkhij = Vifyy, which 
is analogous to the Codazzi equation for the second fundamental form. In 
fact, for any smooth function v on 5n, the symmetric 2-tensor Uj = ViVjV+ 
vgij on Sn satisfies the identity VkUj = Vitkj- The proof is based on the 
formula for commuting covariant derivatives on S71, i.e., 

VfcViVj-v - ViVkVjV = -RHJIVIV 

and the Riemann curvature operator Rkiji satisfies 

Rkijl = 9kl9ij - 9kj9il 

on Sn. Recall that the evolution equation of H, which is the trace of V2^ + 
ug, is given by 

(6.1) dtH = F'(H)AH + F"(H) \VH\2 + nF(H). 

Since F is positive on (0, oo), the maximum principle asserts that H >n8 
on Sn x [0, rmax). Therefore H has a positive uniform lower bound and, 
by Proposition 3.3,  an upper bound depending on F,   Tmax,   ^o and 

sup      \u\. This ensures that, if the hypersurface Mt remains smooth, 
S"x[0,Tmax) 
each principal curvature m of Mt is bounded below by a positive con- 
stant. However, controlling if is far from controlling the whole tensor 
hij. Therefore, it is possible in principle that some ta becomes infinite at 
some point £ € Sn x [0,Tmax) (this means that the tensor hij has a null 
eigenvector at £.) Geometrically speaking, some «* becoming infinite means 
that a singularity develops in the evolving hypersurfaces. To rule this out, 
we have 
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Proposition 6.1. Assume the following 

(i)   F > 0 0ra(O,oo), 
(ii)   hij > Sgij at t = 0, where 8 > 0 is a constant, 

C^)   ^T^-^1 + F"(H) ^ 0 /^ aW H e ln6> o0)' 

i/ien under the evolution equation (1.1) on Sn x [OjTmax), we have 

hij > Sgij      on Sn x [0,rmax). 

Geometrically speaking, if the initial hypersurface MQ is convex and enclose 
the origin, then the evolving hypersurface Mt remains smooth and convex, 
has positive support function u, and expands to infinity such that its support 
function u blows upast^ Tmax. 

Proof Our approach and computation is similar to Urbas [14]. The evolution 
equation of hij is given by 

dthij   -   F'(H)Ahij+F"(H)ViHVjH 

+ [F(H) + F'(H)H] gij - nFf(H)hij. 

We can not succeed by applying the maximum principle to the above equa- 
tion because the bad term F"(H)ViHVjH is uncontrolled.2 To get a 
stronger result, we compute, instead, the evolution equation of the tensor 
hlj, which is the inverse of hij, and obtain an upper bound for hij. Using 
the above equation, we obtain 

dth
ij   -   F'(H)Ahij - [F(H) + F'(H)H] hikhjk + nF'(H)hij 

_hikhji [F»(H)gpqgmn + 2F,(H)gpmhqn} VkhmnVihpq 

Now let us suppose that the maximum eigenvalue of [hl:j} over Sn at time t 
is attained at a point pt € Sn. By a rotation of the frame, we may assume 
that h11 is the maximum eigenvalue and h1* = 0 for i ^ j. We get 

dth11   =   F'^Ah11 - [F(H) + F'(H)H] (/i11)2 + nFf(H)hn 

-(/i11)2 [F^^g^gmn + 2Ff{H)gvrnh
<in] Vift^Vi/w 

2However, if F" > 0 on (0, oo), we can immediately get h^ > Sg^ on Sn x 
[OjTmax) by the maximum principle for tensors due to Hamilton [7]. 
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at the point (pt>t). Since Hh11 > n at (p£,£), we know 

- [F(H) + Ff(H)H} (h11)2 + nFf(H)hn < 0      at (R, i). 

Let r]pq = Vihvq. The term 

(/i11)2 [^(ffjft^ff^n + 2F/(jy)^m^] VihpgVih^ 

now becomes 

(/i
11)2F"(tf) ^ ^   + 2(hn)2F'(H) J^ N* (Vpq)

2 . 
\  P / P,Q 

Using the fact r]iq = Vihiq = Vqhn = 0 at (pt,t) for all q = 1,2,3, ...,72, 
and assuming that h11 > h22 > .... > hnn at (put), we obtain 

v 2 

%>P 

(6.2)        {hilfF"{H) ( $>J   + 2(hn)2F'(H) *£ h™ (^)2 

\ p       / p,q 

> (h"fF"(H) fcrj)   +2(h11fF'(H)h™^-1hri 

> 0      at  ^t), 

where the first inequality in (6.2) is due to that the indices p, q only run 
from 2 to n and the last inequality is due to our assumption. Therefore, we 
obtain 

dth11 <0      at  (p*,i). 

By the maximum principle, we know each eigenvalue of /iu is bounded above 
by ^ on Sn x [0, Tmax) and the theorem follows. □ 

Remark: (a). For n = 2 or 3, we can allow i^i?) to be the concave 
function log(i? + 1) on (0, oo). (b). For arbitrary n, we can allow F(H) to 
be Ha, where a > 1 - ^y. 

To answer the second question we assume F > 0 on the whole real line 
(—oo, oo) and apply the maximum principle to the equation (1.1) to yield 

U(x,t) > UminCO > Miiiin(O) +ir(nttinin(0))t. 
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That is, u increases at least linearly and the solution to equation (1.1) exists 
until it blows up to +00. As an immediate consequence of Proposition 5.1, 
we have 

Proposition 6.2. Assume the following 

(i) F > 0 on(—00,00), 

(«)   ^hm^sup-?7^-<Co<oo 

^/ien under the evolution equation (1.1) on Sn x [0,Tmax) with arbitrary 
initial datauo, we have 

Wu(x,t) + u(x,t)g>0 

holds eventually. That is, the solution u will become the support function of 
a convex hypersurface Mt for t close enough to TmaiX. 

Remark: (a). Since F > 0 on (—00,00), H e [C, 00) for some constant 
C by equation (6.1). Therefore it suffices to impose the growth condition 
of F near +00 in order to apply Proposition 5.1. (b). We can replace the 
condition (i) by: F > 0 on (0,00) and uo > 0 on Sn. 

7. Rescaling the Hypersurfaces. 

Our final discussion shall be on the rescaling and convergence of the 
evolving hypersurfaces when F > 0 on (0,00) and the initial hypersurface 
Mo is convex, enclosing the origin. First of all, for any solution of equation 
to equation (1.1), we have 

Lemma 7.1.  There exists a solution to the O.D.E. 

jtR=F{nR) 

on [0, Tmax) such that 

0 < UminOO < R{t) < ttmaxC*),       V t € [0, Tmax). 

Proof The proof is essentially the same as Lemma 9 in Chow-Tsai [3].    □ 
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We will choose one R(t) satisfying above lemma to rescale the solution 
u(x,t). Define the rescaled solution u(x,t) to be 

u(x,t) 

which is the support function of the rescaled hypersurface Mt — -Mfj- We 
summarize Propositions 6.1 and 6.2 in the following. 

Theorem 7.2. (a). If F satisfies the assumption of Proposition 6.1, then 
the hypersurface Mt remains smooth and convex for all time and its rescaled 
support function satisfies 

(t) |fi(B, *) - 1| < -^r    on   Snx [0, Tmax) 
K{t) 

(ii)   |Vfi(M)l   <-£fi    <m   Snx[0,Tmax), 

where C is a constant depending only on UQ and R(t) —> oo as t —> Tmax. 
(b).  If in addition, F satisfies the assumption (ii) of Proposition 6.2, 

then 

(in)   |Wfi(a,t)|   <-£-r    on   Sn x [0,TmaLX), K(t) 

where C is a constant depending onuo, F and the constant CQ in Proposition 
6.2. 

Part (a) says that the rescaled hypersurfaces converge to the unit sphere 
Sn in Cl norm, and (b) says they converge to Sn in C2 norm. 
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