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ABSTRACT Perturbation series for Bloch eigenvalues and their spec- 
tral projections in a vicinity of von Laue diffraction planes are con- 
structed. They are converging series with respect to a model operator, 
roughly taking into account the diffraction inside a crystal. The be- 
havior of the isoenergetic surface near von Laue diffraction planes is 
described. 

1. Introduction. 

The motion of a particle in a bulk matter is often described by the 
Schrodinger operator with a periodic potential. Therefore, it is interesting to 
have a detailed mathematical analysis of its spectral properties, in particular, 
to construct perturbation formulae for its eigenvalues and eigenfunctions. 

Thus, we consider the operator 

(1.1) tf = -A + F 

in L2(RS)) where V is the operator of multiplication by a periodic po- 
tential, a trigonometric polynomial. 

In [1] and [2], perturbation series for Bloch eigenvalues and spectral 
projections were constructed on a rich set of quasimomenta. On this set, 
the perturbed and unperturbed eigenvalues and spectral projectors turn 
out to be close. Our aim here is to study the case when there exists a 
real refraction in the crystal, i.e., the perturbation is significant. Namely, 
we construct perturbation formulae for quasimomenta in a vicinity of the 
Laue diffraction planes. We describe Bloch eigenvalues and their spectral 
projections of if, which are close to those of some model operator, roughly 
taking into account the refraction inside the crystal. 

To simplify notation, we consider the case where the cell of periods is 
orthogonal.   All arguments go through, with obvious modifications, for a 
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nonorthogonal lattice. We use a representation of the potential V(x) in the 
form : 

(1.2) V(x)=       "£2       Vmexpi(jTm(0),aO, 
meZ3 ,\m\<Ro 

where 0 < Ro < oo, (•, •) is the inner product in R3 and Pm(Q) is a vector 
of the dual lattice: 

pm(0) =27r(miaj;1,m2a^1,m3a^1). 

The potential V is real, so Vm = v-m. It may be assumed with no loss 
of generality that VQ = 0. 

1. M. Gelfand [3] showed that the investigation of the spectral properties 
of H reduces to the study of a family of regular operators H(t), t € K, 
where K is the elementary cell of the dual lattice, 

K = [O^Tra^f1) x [O^TTO^"
1
) X [O^TTG^

1
). 

The vector t is called the quasimomentum. Let Q be the elementary 
cell of the periods of the potential, Q = [0, ai) x [0,a2) x [0,03). The 
operator fl"(t), t e K acts in L2(Q)- It is described by formula (1.1) and 
the quasiperiodic conditions: 

u(ai,X2,xs) = exj)(itiai)u(Q,X2,%3), 

(1.3) u(xi,a2, xs) = exj>(it2a2)u(xi,0, xs), 

u(xi, X2, as) = exip(itsas)u(xi, X2,0). 

The first derivatives with respect to Xj, j = 1,2,3 must also satisfy 
similar conditions. 

The operator H(t) has a discrete, bounded below spectrum A(t): 

A(t) = U^=1Xn(t), Xn(t) -^n^oo 00. 

The spectrum A of the operator H is the union of the spectra of the 
operators H(t): 

A = UteKMt) = Un€iv,*€*:An(t). 
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The functions \n(t) are continuous, so A has a band structure: 

A = LELxfenjQn], qn = mmAn(t), Qn = maxA^^). 
tGK t€K 

The eigenfunctions of operator H are obtained by quasiperiodic contin- 
uation (see (1.3)) of the eigenfunctions of all the operators H(t) to R71. 

Let flo(i) be the operator corresponding to the zero potential. Its eigen- 
functions are the plane waves: 

(1.4) exp(^(i),aO), j e Z\ fj(t)=pJ(0)+t. 

The eigenfunction (1.4) corresponds to the eigenvalue p2(i) =| pj(t) |2. 
Thus, the spectrum of the free operator Ho is: 

Ao(*)={p?(*)}i€Z»- 

Using the basis (1.4) we write the matrix of H(t) in the form: 

(1.5) H(t)mj = PmtySmj + Vm-j, 

where 6mj is the Kronecker symbol. 
The important problem is to construct perturbation formulae for eigen- 

values and spectral projections of H(t) in a high energy region. To explain 
the difficulties of this problem let us consider the eigenvalues p^it) when 
m —► oo. It is easy to see that the average distance between them goes to 
zero. In fact, let us consider p^t) in the interval ((k — c)2, (k + c)2), when 
k —► oo, c is a constant. The average distance d is given by d — 2ck/Ny 

where 2ck is the length of the interval, N is the number of the eigenvalues 
inside the interval. It is easy to see that p^(£) is in the interval if and only if 
Pm(t) is in the spherical shell {k — c < \x\ < k + c}. Using the fact that pm(t) 
are points of the dual lattice, it is not hard to show that N is of order of 
the volume of the spherical shell, i.e., N « cik2. Thus, d « C2k~l. The last 
relation means that the average distance between p^(t) goes to zero when 
\m\ —> oo. So, under a perturbation the eigenvalues influence each other 
strongly. To describe the perturbation of one of them one has to consider 
the perturbations of its neighbors. It turns out that under perturbation 
the eigenvalues show a different behavior. So do the corresponding spectral 
projections. Most of them are stable in the sense that their perturbations 
are asymptotically small when \m\ -» oo (see [1], [2]). However, there are 
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eigenvalues, which are strongly influenced by the perturbation, and so are 
their spectral projections. We shall study the latter situation here. 

Naturally, the type of behavior of an eigenvalue is determined by m, i. 
For physical applications it is important to consider m, t such that p^(t) = 
A;2, k2 being fixed. According to this, in the physical literature the important 
concept of the isoenergetic surface So (A;) of the free operator is used (see f.e. 
[4]). This is the set of t in K, for which the free operator Ho(t) has an 
eigenvalue equal to k2. It is obvious that t € So(k) if and only if the relation 
Pm(^) r- &2 for some m e Zs. The set So(k) is obtained by partitioning the 
sphere of radius k centered at zero into pieces by the dual lattice. After this 
the pieces are translated in a parallel manner into K. 

Let Si(k) be a subset of 5o(fc). We say that Si(k) has an asymptotically 
full measure on So(k) as k —> oo if 

(L6) KSoW -*'"» h 

here and below s(-) is the surface area. 
In [1] a nonsingular set S(k, ¥,8) C So(k) was constructed, so that for 

any point t of the (fc~2~2<5)-neighborhood of it, the perturbed and unper- 
turbed spectral projections and eigenfunctions are close - more precisely, 
the corresponding perturbation series converge. The nonsingular set has 
an asymptotically full measure on So(k) (from this it easily follows that 
most of the eigenvalues p^(£) are stable). However, besides the nonsin- 
gular set, there exists a part of Sb(fc), where perturbed and unperturbed 
eigenvalues and eigenfunctions are, generally speaking, not close. We call 
it the singular set. To explane the nature of this set let us consider the 
plane wave expi(^(t),a;), such that its momentum pj(t) satisfies the von 
Laue diffraction conditions, i.e., pj(t) = Pj+q(t) for some q ^ 0. It is well- 
known [4] that this wave is refracted by the crystal, the refracted wave being 
aexpi(pj+q(t), x), a e R. The latter wave interferes with the initial one and 
distorts it strongly. Hence, perturbed and unperturbed eigenfunctions ob- 
viously are not close, when t satisfies the von Laue diffraction conditions. 
Thus, the existence of the singular set is connected with diffraction condi- 
tions - in the simplest situation with the von Laue diffraction conditions. 

The unstable case was studied by J. Feldman, H. Knorrer, E. Trubowitz 
[5] in the two and three dimensional situations. In the three dimensional 
case they study the eigenvalues of i?, which are not close to the unperturbed 
ones, but can be approximated by eigenvalues of the operator — A+Ky, where 
7 some vector of the dual lattice and Vy is independent of x in the direction 
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7 i.e., 

Vy(x) = Vr(x-'Y(x,'y)\'y\-2) -       Y,      ^expi(a;,^(0)). 
j:(ft-(0),7)=0 

It was proved that for arbitrary 7 of the dual lattice and any eigenvalue of 
H7(t) corresponding to a sufficiently large momentum in the direction 7, 
there exists a close eigenvalue of the operator H(t) with the same quasimo- 
mentum, multiplicity being taken into account. The same result was proved 
for n = 2. Moreover, in the two-dimensional case it was shown that on the 
rich set of t the corresponding eigenfunctions are close, too. O.A. Veliev 
discussed this problem [6]. 

We use another approach here, which has its own peculiarities. It pro- 
vides formulae not only for unstable eigenvalues, but also for their spectral 
projections in the three-dimensional situation. Converging perturbation se- 
ries, with respect to some model operator roughly describing the refraction, 
are constructed. Having an asymptotic character in a high energy region, 
they give an infinite number of asymptotic terms. It is proved that these 
series can be differentiated any number of times with respect to the quasi- 
momentum and preserve their asymptotic character. From the geometrical 
point of view, we consider the singular set not only as a part of the whole 
cell K, but more precisely, we consider its "trace" on the isoenergetic surface 
So(k) in K of the free operator for a fixed energy A;2. Namely, we study the 
perturbations of the eigenvalues p2(£) and their spectral projections, which 
satisfy the conditions k2 = Pj(t) » pj+q(t), for some given q and fc. It is 
proved that for a fixed q and sufficiently large k there exists a rich set of t 
- an essential part of the singular set - for which perturbation series with 
respect to the model operator converge. Although the main geometrical 
problems arise because of fixed k - one has to prove that perturbation series 
converge on a rich subset of the surface in K - the consideration of the 
singular set with a fixed energy turns out to be very useful. It enables us 
to describe the perturbed isoenergetic surface near the self-intersections of 
the isoenergetic surface of the free operator (they obviously are formed by 
the points satisfying the von Laue diffraction conditions). We can observe 
how these intersections are transformed into quasi-intersections under the 
perturbation. This approach also turns out to be effective in solving the 
semicrystal problem (see forthcoming papers). We approximate unstable 
eigenvalues and eigenfunctions of H by those of a model finite-dimensional 
operator. This operator roughly takes into account the diffraction inside a 
crystal and is directly connected with some periodic Schrodinger operator in 
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a one-dimensional space. To clarify the results for the singular set we first 
describe the results for the nonsingular set. 

2. The Perturbation Formulae for the Nonsingular Set. 

It is proved in [1], [2] that there is a rich set of quasimomenta where 
perturbed and unperturbed eigenvalues and eigenfunctions are close. That 
is why we call it the nonsingular set. We constructed the nonsingular 
set S(k,V,6) on the isoenergetic surface So(k) of the free operator., i.e., 
S(k,V,6) C So(k). It is proved that S(k) V, 6) has an asymptotically full 
measure on So(k). To obtain perturbation formulae for t e S(k,V,6) we 
considered the unperturbed eigenvalue p|(t) = k2. The index j is uniquely 
defined by the last relation for t € S(k, V, 6). Moreover, it is proved that the 
nearest point p?(t), i ^ j, is on the distance greater than k'1'26 for such 
t. Then, we consider a circle of radius (l/2)k~1~~26 centered at the point 
z = Pj(i).  The main result is that a perturbation series for the resolvent 

converge with respect to some auxiliary operator H. Note that the series 
diverge with respect to HQ, because there are not only the von Laue diffrac- 
tion conditions, but also another ones, depending on the potential. From 
the series for the resolvent we easily get series for the perturbed eigenvalues 
and spectral projection. Replacing H with the free operator HQ in a long 
segments of the series, we obtain simplified formulae valid with a high accu- 
racy. To describe the results rigorously we construct the auxiliary operator 
H(t). We also will use it for the case of the singular set. Thus, we construct 
perturbation series with respect to an auxiliary operator H(t). We describe 
the operator H(t) for a trigonometric polynomial (1.2). Let r(i?o) be the set 
of q, q e Z3, \q\ < Ro, such that any vector j?m(0), | m |< RQ, is a constant 
multiplier of one and only one vector of r(i?o). This means that any vector 
Pm(0), | m \< RQ can be uniquely represented in the form pm(0) = r^(0), 
where q G V(Ro),r G Z. It is easy to see that 

(2.1) V=    J2   V*> 

where Vq depends only on (a;,^(0)), 

Vq=      ^2      vrq exP MPg(0)>x)' 
reZ,\rq\<Ro 

Let 0 < 6 < 1/5. In Z3 we consider the subsets: 
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(2.2) IK*1/5-8*) = U^BoWfc1/^), 

(2.3) ^(fcVB-W) = {j :| (PMM) \< k1'5-86}, 

(2.4) T(k, 6) = ug>q,er{RQ)!q^ (n^fc1/5-85) n iV(fc3/5)) = 

{j : 3q,q' € r(ife),g ^ ?' : |®(0),^(0))| < k1/5-86}, |®(0),p>(0))| < k3'5}. 

We define the diagonal projection Pq and the auxiliary operator H as follows: 

{ (0V (p^    _/ Ilfj6ll,(«:1/B-M)\r(fc,«); 
W Wjj-S  o otherwise; 

(2.6) H® = Ho(t) +   Yl   P^P<i- 
ger(Ro) 

Let us introduce the notations: 

(2-7) W = V-   ^   P^P,, 
ger(Ro) 

(2.8) 5r(fc, t) = y^TY / ((fl-o) - «)"'VYdz 
Zwr      JCo 

(2*9) 

Gr(fc,*) = ^^ i ((Ho(t) - z)-lVnH0(t) - z)-ldz. 
Zltl      Jc0 

(2.10) gr(k,t) = t-^-Tr I ((H(t) - z^wydz 
2mr      JcQ 
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(2.11) 

Gr(k, t) = ^- f ((H(t) - zy'wnHit) - zy'dz, 

(2.12) 

T^ = dtmidtm2dm3'   meR'   Im| = m1+m2 + m3. 
1 Z o 

Here and below Co is the circle of radius AT1-*5 centered at the point 
z — k2. Let Ej be the spectral projection of the free operator i?o(^) 
corresponding to eigenvalue p2j{t): (Ej)nm = SjnSjm. The functions 

<7r(A;, t) and operator-functions Gr(fc, t) are correctly defined in the (k~2~28)- 
neighborhood of the nonsingular set S(k, 6, V). In [1] the following theorem 
of expansion into the modified perturbation series is proved. 

Theorem 2.1. Suppose t belongs to the (k~2~26)-neighborhood in K of the 
1 nonsingular set S{k16, V), 0 < 26 < 1/100. Then for sufficiently large k, 
k > fco(V,<5); the interval £{k) 8) = [k2—k~~1~6,k2+k~1~6] contains a unique 
eigenvalue of operator H. It is given by the absolutely convergent series: 

oo 

(2.13) A(t)=$(t)+£$r(M). 
r=2 

where the index j is uniquely determined from the relation p2l(t) e e{k)6). 
The spectral projection, corresponding to \{t) is determined by the series 

(2.14) E{t)=Ei + YiGr{k,t), 
r=l 

which converges in the class Si. 
For functions gr(k,t) and the operator-valued functions Gr(k^t) the fol- 

lowing estimates are satisfied: 

(2.15) | T(m)gr(k,t) \< m!fc-1-^-^+2H(i+^)) 

(2.16) l|T(m)Gr(M)|| < m!fc-7ir+2lml(i+*). 

7i = 1/15 - 205. 
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Furthermore, in [1] it is shown that GV(fc,£) = Gr(k,t), if r < M{k) and 
&.(M) = ^r(fc,*), if r < 2M(k), where M(k) = k1'6^1. The next theorem 
follows from this. 

Theorem 2.2.  Under the conditions of Theorem 1 the eigenvalue A(t) and 
its spectral projection E(t) can be represented in the form 

2M(k) 

(2.17) m=pf(t) + E Srik.t) +<p(k,t), 
r=2 

M(k) 

(2.18) E(t) = Ej+J2 Gr(k,t) + ip(k,t), 
r=l 

M(k)=k1-SR^1. 

For the functions gr and the operator-valued functions Gr estimates (2.15) 
and (2.16) are fulfilled, while for <p(k,t) and,ip{k)t), the following ones hold: 

(2.19) | T(mMM) l< m\k-^R»lkl ^^(i+^H^ 

(2.20) ||r(m)^(Jb,t)||i < mlAT^o1*1 26A:2(1+6)H 

Corollary 2.3. For the perturbed eigenvalue and its spectral projection the 
following estimates are satisfied: 

(2.21) |T(m)|(A(t) -pf (t))| < cmlfc-^^-^^NCW), 

(2.22) \\T{m){E{t) - EfiW < cm\k-^+2^^s\ 

Note that for r,m small enough estimates (2.15), (2.16), (2.21), (2.22) 
can be improved so that there will be only negative powers of k on the right 
sides. 
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3. The Perturbation Formulae Near the Planes of 
Diffraction. 

In the case of the polyharmonic operator with a periodic potential we 
constructed the perturbation series with respect to the free operator on 
the nonsingular set [7] and with respect to a model operator on the sin- 
gular set [8]. This model operator roughly took into account the diffrac- 
tion inside the crystal. In the case of the Schrodinger operator the mod- 
ification of the perturbation series (Ho —► H) is needed even for the 
nonsingular set [1]. The series diverge with respect to HQ, because there 
are not only the von Laue diffraction conditions, but also another ones, 
depending on the potential. Fortunately, it turns out that such modi- 
fied series converge even on the essential part of the singular set, i.e., it 
is not necessary to reconstruct additionally these series. The perturba- 
tion series for the eigenvalue and its spectral projection converge on the 
essential part of the singular set, when we take the operator H(t) as the 
initial one. Note that the operator H(t) has a block structure. The diag- 
onal part of H coincides with the corresponding part of the free operator: 

V-Egerm^HM = ('-Esercfio)^)^)- The blocks of H(t) are de- 

termined by the orthogonal projections Pq, PqH{t) = H{t)Pq - PqH(t)Pq. 
Each block is a "piece" of the matrix of the Schrodinger operator with the 
potential Vq, i.e., PqH(t)Pq = Pq(Ho(t) + Vq)Pq. Thus, each block is sim- 
ply connected with the matrix of a periodic Schrodinger operator in the 
one-dimensional space, because Vq depends only on (XjP^O)) In the case 
of the nonsingular set the perturbed eigenvalue \(t) is asymptotically close 
(k —> oo) to an eigenvalue pf(t) of the diagonal part of H(t); i.e, A(£) is 

close to the eigenvalue pf(t) of the free operator Ho(t). Accordingly, the 
spectral projector of i?C0, corresponding to A(£), is close to that of HQ^), 

corresponding to pf(t). We prove that in the case of the singular set (more 
precisely of its essential part) eigenvalues and spectral projection of H(t) 
are close to those of the block part of H(t). We construct the perturbation 
series for an eigenvalue and its spectral projection on the essential part of 
the singular set, taking H(t) as the initial operator. We obtain this result by 
constructing the converging perturbation series for the resolvent and inte- 
grating it over a small contour. Thus, the blocks PqHPq = Pq(Ho(t)+Vq)Pq 

describe roughly the refraction inside the crystal for t of the essential part 
of the singular set. We call this essential part of the singular set the simple 
part of the singular set, because on the relatively small rest of the singular 
set the picture of diffraction is even more complicated. 
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The proof of the formulae contains the analytical and geometrical parts. 
In the analytical part we formulate the conditions of the convergence of 
the series in the form of the inequalities for quasimomentum t (see (3.7)- 
(3.12). Note that these conditions are similar to those for the nonsingular 
set up to the replacement of an eigenvalue p^t) of the diagonal part of H(t) 
by an eigenvalue of the block part. In the geometrical part we prove that 
the conditions are satisfied on the essential part of the singular set. Note 
that the analytical part is similar to that for the nonsingular set up to the 
mentioned above replacement. The geometrical part is much more technical. 
The singular set is only a small part of the isoenergetic surface of the free 
operator. Therefore, to prove that the conditions of convergence can be 
satisfied on it, one has to make more subtle considerations than in the case 
of the nonsingular set. 

Thus, we consider the spherical layer on the sphere \x\ = k: 

(3.1) Sq(k,-8) = {x : \x\ = k,\\x\2 - Iz + p^O)!2! < k6}, 

Let /C be the mapping 

(3.2) /C:i?3->tf,   JCpj(t)=t 

It is easy to see that the isoenergetic surface of the free operator iSb(A;) 
is given by the formula So(k) = £5*, where Sk is the sphere \x\ — k. It 
is clear that the translation iJLq(k,6) = JCSq(k,-6) of the set Sq(k,—6) to 
the elementary cell of the dual lattice K belongs to the isoenergetic surface 
So(k) of the free operator HQ, but does not belong to the nonsingular set, 
described in [1], where perturbed and unperturbed eigenvalues are proved to 
be close. Next, we denote the eigenvalues of H (see (2.6)) as p2(i) +AAjj(t), 
AAjj(t) depending continuously on t for every j. It is clear that AAy = 0 
when j G Uq^k1/5) \ T(fc,6). Let us consider also the part jjLq(k,6) of the 
isoenergetic surface of H situated in the (cAr^-neighborhood of /ig(A;, 6). It 
is described by the formula: 

(3.3) 
fig(k,6) = {t: 3jJ e Z^pjit) + Akjjit) = k2, |p3(i) -p2

j+q(t)\ < k6}. 

In fact, p,q(k, 6) is very close to the corresponding part of the isoenergetic 
surface of the operator Hg = —A + Vg, because Pj(t) + Akjj(t) coincides 
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with an eigenvalue p^(i) + AA#(t), of Hq(t) up to a value of order k~ck 

(see [1]). All following assertions are also valid for fi,q{k,8) being the corre- 
sponding part of the isoenergetic surface of Hq. 

Note, that jj,q(k,6) = KSq{k) —8), where 

(3.4) 

Sq{k, -8) = {x : \x\2 + <po(x) = k\ \\x\2 - \x+pq{Q)\2\ < k6}, 

<Po(x) being uniquely determined from formulae 

(3.5) <po(x) = AA^(i),    x = Pj(t). 

It is not hard to show that Sq(k, —8) is the union of curve cylinders, 
because AA#, in fact, depends only on the projection of pj(t) on pq(t). 
Note that AAjj ^ 0 in (3.3), because j e ^(fc1/5). We construct pertur- 
bation series with respect to H(t). In the case of the nonsingular set the 
corresponding pieces of the isoenergetic surfaces of Ho(t) and H(t) coincide. 
Clearly, describing the nonsingular set on the isoenergetic surface of one of 
them we, of course, describe for the other too. In the case of the nonsin- 
gular set these surfaces are not the same, i.e., fiq(k,8) does not coincides 
with [jLq(k,6). Therefore, the question is : on which isoenergetic surface 
the simple part of the singular set should be described? Since we construct 
perturbation series with respect to H(t), it is natural to describe this set 
on jlq(k,8). We formulate the corresponding geometric lemma here. It will 
be proved in Section 6. We also describe the simple part of the nonsingular 
set on iiq(k,8) there. However, the first description is more convenient for 
applications. Thus, we shall show that there exists a subset x^(fc, V,5) of 
an asymptotically full measure on ilq{k,8), such that for t e %£(&, V, 8) the 
perturbation series with respect to H{t) converge. For such a t the operator 
H(t) has an eigenvalue which can be represented in the form p^{t)+AA(i)7j, 

j being uniquely determined from the relation p2(t) + AA(i)^ = k2. The 

series for H(t) converge with respect to H(t). Now we give the formulation 
of the main geometric lemma. 

Lemma 3.1. Let 0 < 8 < 1/300. Then for sufficiently large k, k > ko(V, 8), 
there exists a set x^(A;, V, 8) C jj,q(k, 8) , such that for any t of this set there 

is a unique j € Zs such that p2(t) + AA(t)# = k2, 

(3.6) \p2(t)-p2
+q(t)\<ks, 



Perturbation Series for the Schrodinger Operator 351 

and the following conditions hold: 
1 

(3.7) min \pj(t) + AA(% -pj+m(t)| > k1 

(3.8) 
^i = {m : m G Z3, \m\ < ks; m ^ 0; m ^ noq, no e Z}. 

2' 

(3.9) 
ll&H+iW - f3(t) - AA(i)i,| > fc-^I^W - jfti) - AAC^I"1. 

/or o/Z m : |p^+j(i) - p|(t) - AA(t)jj| < fc_205
; m ^ nog, no e Z, and 

\i\ <k6, i^O. 
3' 

(3.10) 
min |p^+j(t) - pf (t) - AA(i)jj| > 2fc-1-5 

m€Z6 ,Tn^noq,noEZ 

Af. For any q* in T{RQ) and m e Tlqi(k
1^) the eigenvalue p^(t) + 

AA(£)mm o/ ^/ie operator Hq(t) lies sufficiently far from the point p^i) + 
AA(t)jj, namely, 

(3.11) 
\p2

m(t) + AA(t)mm - p%t) - AA(t)^| > {(prnM&mr1*. 

5' IfmeT(k,6), then 

(3.12) \p2
m(t) - pJCt) - AA^I > k1/*-* 

T/ie5e properties hold in a small neighbourhood ofXq(kyV,6): ift is in 
the (k~2~26)-neighbourhood of Xq(k,V,6)), then there is a unique j e Z3 

such that \pj(t) + AA(t)jj — fc2   < k~l~26, inequality (3.6) and conditions 
1' - 5f are satisfied. 
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The set Xg(fc, V, 6) has an asymptotically full measure on ^(k, 8); more- 
over the inequality 

(3,3) mtM 
^ valid. 

Conditions V — 5' coincide with conditions 1° — 5° of the convergence of 
the series in [1] up to replacement of Pj(t) by p|(t) + AA(t)#. Note, that 
inequalities (3.10) and (3.11) yield that the eigenvalue pj(t) + AA(t)jj of 
operator H(t) is simple. We denote its spectral projection by Ej. Let 

(3.14) g'r(k,t) = y^TVjf  A(tydz, 

(3.15) 

G'r(k, t) = ^^ £ (^w - zr^A^txm - zr^dz, 

where Ci is the circle of radius k-1'6 centered at the point A = Pj(t) + 
AA(%, 

A(z,t, W) = (H(t) - z)-1/2W(H(t) - z)-1/2, 

W being given by formula (2.7). 

Theorem 3.2. Suppose 0 < 6 < 1/300, t is in the (k~2~2S)-neighborhood 
of set Xq(k, V, 6). Then for sufficiently large k, k > fco(V, 6), there exists a 
unique eigenvalue of the operator H(t) in the (k'1"26)-neighborhood of the 
point A = p2(t) + AA(t)jj- . It is given by the absolutely converging series: 

oo 

(3.16) A(i) = pj(t) + AA(% + J3^r(fc, t), 

T/ie spectral projection corresponding to X(t) is determined by the series: 

oo 

(3.17) E(t) = Ej + y£lGUk,t), 
r=l 
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which converges in the class Si. For the functions g'r(k,t) and the operator- 
valued functions Gf

r(k,i) the following estimates hold: 

(3.18) |^(M)l<fc-8/5+7*, 

(3.19) H^CM)!!! < fc-1*", 

(3.20) WG'^m^k-7^66, 

(3.21) |&(M)l<fc-1-'-w> 

(3.22) ||G'r(A;,i)||1<A;-^, 

Corollary 3.3. 

(3.23) |A(t) -p^t) - AA(%| < cfc"1-^, 

(3.24) \\E(t) - EjW < cAT371, c ^ c(k). 

Theorem 3.4. Under the conditions of Theorem 3 the functions g'r(k,t) 
and the operator-valued functions G'r(k,i) depend analytically on t in 
the complex (k~2~26)-neighborhood of each simply connected component of 
Xq(k, V, 8). They satisfy the estimates: 

(3.25) | T(m)g'2(k,t) \< m!fc-
8/5+7*+2(1+*)H) 

(3.26) HIXm^MMI <m!A;-1+4*+2(1+^H) 

(3.27) HlXm)^*;,t)\\ < mlk-7'**68**1^™, 

(3.28) | TimYg'rik,t) |< m\k-^-yir+2(i+s)\m\^ 

(3.29) \\T(m)G'r(k, t)\\ < m!fe-n»-+2(i+«)H) 
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Corollary 3.5. The function X(t) and the operator-valued function E(t) 
analytically depend on t in the complex (k~2~2S)-neighborhood of each sim- 
ply connected component of the set Xq(k, V, 6). They satisfy the following 
estimates: 

(3.30) 
| T(m)(A(i) -pj(t) - AA(%) |< cmlfc-1-271^1^!^ 

(3.31) \\T(m)(E(t) - E^Wi < cm!A;-37l+2(1+6)lm|. 

Note that for r, m small enough , estimates (3.25) - (3.31) can be improved 
so that there will be only negative powers of k on the right sides. Theorems 
3 and 4 enable us to conclude, that the points, satisfying the equation A(i) = 
A;2, are situated near the isoenergetic surface of the operator H. 

The similar results hold for f/,q(k,8), which belongs to the isoenergetic 
surface of the free operator. 

Lemma 3.6. LetO < 6 < 1/300. Then for sufficiently large k,k> ko{V, 8), 
there exists a set Xg(fc> V, 8) c iiqfa 6) , such that for any t in its (k~2~26)- 
neighborhood there exists a unique j e Z3 such that 

(3.32) 
lp2{t)_k2l<k-i-6  (p5(t) = A.2 fortof%(k,V,6)), 

inequality (3.6) and the conditions 1' — 5' are satisfied: The set Xq(k> ^ ^) 
has an asymptotically full measure on iiq{k^8); moreover the inequality 

(   33) s{»q{K8)) <k 

holds. 

The proof of this lemma is similar to that of Lemma 1. Naturally, for 
Xq(k, Vj 8) the theorems similar to Theorems 3 and 4 hold: 

Theorem 3.7. Suppose 0 < 8 < 1/300 and t is in the (k'2"26)- 
neighborhood of the set Xg(fc, V, 8) Then, for sufficiently large k, k > koiV) 
there exists a unique eigenvalue \{t) of operator H(t) in the (k~2~26)- 
neighborhood of the point p2(t). It is given by the absolutely converging 
series (3.16), j being uniquely determined by the relation (3.32). The cor- 
responding spectral projection is given by formula (3.17). Estimates (3.18)- 
(3.22) hold. 



Perturbation Series for the Schrodinger Operator 355 

Corollary 3.8. Ift is in the (k'2'26)-neighborhood dfXq(k,V,6), then es- 
timates (3.2S)-(3.24) hold. 

Theorem 3.9. Under the conditions of Theorem 5 the functions $.(&,*) 
and the operator-valued functions Gf

r(k)t) depend analytically on t in the 
complex (k~2~26)-neighborhood of each simply connected component of the 
Mtx!q(k,V,6). They satisfy estimates (A.2b) - (3.29). 

Corollary 3.10. The function A(i) and the operator-valued function E(t) 
analytically depend on t in the complex (k~2~26)-neighborhood of each sim- 
ply connected component of the set x^(fc, V^S). They satisfy the esti- 
mates (3.30), (3.31). 

4. The behavior of the isoenergetic surface in a vicinity of 
the singular set. 

Since the eigenvalues and the spectral projections of operator H are 
close to those of H on the essential part of the singular set, the isoenergetic 
surface of H is close to that of H. We denote by Ag(fc, t) j the part of /ig(fc, 6), 
corresponding to some given j; i.e., point t belongs to jj,q(k,6)j if and only 
if 

(4.1) pjW + AhWj^k2. 

Let pj±(t) be the component of the vector fij(t) orthogonal to pq(0). Equa- 
tion (4.1) is resolvable with respect to IJ^XC*)!* since AA(i)jj depends only 
on (pj(t),Pg(0)): 

l^±l=/o((ft-(t),^(0))), 

(4.2) 

/o ((PJWMO))) = (k2 - AA(% - (&(t),pg(0))2pg(0)-2)1/2 . 

Thus, point of ^(fc, —<5) can be represented by formula for a curve cylinder: 

x± = fo(x\\),   x\\ = (^,pg(0))p-1(0). 

To obtain (iq(k,6) one has to break this curve cylinder into pieces by the 
dual lattice and to translate all pieces into elementary cell of the dual lattice. 
According to Theorem 3 there exists a subset x£(fc, V, 6) of an asymptotically 



356 Yulia Karpeshina 

full measure on tiq{k,8) on which the perturbation series converge. We 
denote by Xg(£:, V, 6)j the intersection of x^(fc, V, 5) with /ig(&> 5)j- In Lemma 
6 we will prove that the (fc~2~2(5)-neighborhoods of pieces X°(fc, V,<5)j do 
not intersect with each other for different j. This means that there are no 
X°(fc, V, <5)i, i^j'm the (£r2-2*)-neighborhood of ^(ifc, V, 6) ^ 

Let e(t) be the unit vector orthogonal to p,q{k^S) at point i. 

Theorem 4.1. For 0 < 6 < 1/300 and sufficiently large k, k > ko(V,6) 
there exists a unique piece Sf

H(k) of the isoenergetic surface of H in the 
(k~2~26)-neighborhood of each simply connected component of Xg(k, V,5). 
In fact, it is in the smaller (Ar2~72)-neighborhood ofXq(k,V,6) and can be 
described by the equation 

(4.3) A(i) = k2, 

where the function X(t) is determined by the converging series (3.16).  The 
corresponding spectral projection is given by formula (3.17).  The terms of 
these series are satisfied to estimates (3.1%) -(3.22), (3.2%) and (3.2S). 

The normal e(t), to Sf
H(k) at a point t satisfies the asymptotic: 

(4.4) e(t)=e(t)+0{k-2^). 

Thus, iS# is close to the corresponding part of the isoenergetic surface of 
the Schrodinger operator Hq = Ho + Vq, where Vq depends only on (#,Pg(0)) 
(see (2.1)). 

The short version of results is already announced in [9]. Here we repre- 
sent the proofs. 

5. Proof of the Perturbation Formulae on the Singular Set. 

The formal construction of the perturbation series on the singular set 
is quite similar to that on the nonsingular set. The proof of convergence is 
based on the conditions I7 -S7, which are analogous to the conditions 1° — 5° 
on the nonsingular set, and so it is similar to the proof of Theorem 1 in [1], 
In this section we prove Lemma 4, which, in fact, asserts the convergence of 
the perturbation series for the resolvent of the operator H(t) with respect to 
the model operator H(i) . The validity of estimates (3.18)-(3.20) is verified 
in Lemma 5. Basing on these two lemmas we prove Theorems 3 and 4. 

Lemma 5.1. Ift is in the (k~2~2S)-neighborhood of the set Xq(k, V, 6), then 
the operator H(t) has a unique eigenvalue inside the circle C\.   For any 



Perturbation Series for the Schrodinger Operator 357 

z G C\ the following estimate holds: 

(5.1) ||(tf(i)-2)-1/2||<fc1/!WM. 

Proof. We first prove estimate (5.1). According to Lemma 1 for any t of 
Xq(k, V, 6) there exists a unique j G Z3 such that p|(t) + AAjj(t) = k2. By 
the definition of the circle Ci the point k2 = p|(t) + AA^t) is at its center 
and 

(5.2) Ip^ + AAj^-^Ar1-*,   zed. 

Let P = Ylqer(Ro) ^9- Suppose i: Pa = 0. Than, using (3.10) and (5.2), we 
get 

(5.3) \P
2

i(t)-z\>k-1-s. 

Since H(t) acts as Ho(t) in (/ — P)/| and inequality (5.3) holds, we easily 
obtain 

(5.4) ||(/ - P)(H(t) - ^)-1/2|| < fc1/2^/2. 

Suppose i: Pii = l, i^ j. It is clear that 

|p?(t) + AAii(t) - «| > 

(5.5) 
|pf (t) + AAi^t) - pj(t) - AA^(f)| - b|(t) + AAjjit) - z\. 

Using relations (3.11) and noting that |($(0),^/(0))| < A;1/5-8'5 when g' € 
Ug^k1/5-86) (see (2.3), we get 

(5.6) |p?(i) + AA*(t) - p}<f) - AktM > 2k-1/5-6S. 

Taking into account (5.2), we easily obtain: 

(5.7) |p?(t) + AAuit) -z\> k-1'*-™  i ? j. 

Note that pf(t) + AAii(t) are the eigenvalues of PHP. Therefore, 

(5.8) \\(P(H(t) - ^)-1/2|| < fc1/10^6. 

Inequalities (5.4), (5.8) together give estimate (5.1). 
Now we prove that H has a unique eigenvalue inside Ci. It follows from 

relations (3.10) and (5.7) that the points p?(t), i: Pa = 0 andp?(t)+AAu(t), 
i : Pii = 1, i ^ j lie outside the circle Ci. Since they are all eigenvalues of 
operator H(i), this means that there are an unique eigenvalue of operator 
H(t) inside this circle. It is equal to p^i) + AAjj(t). The lemma is proved. 
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Lemma 5.2. Suppose t is in the (k~2~2°)-neighbourhood of the set 
Xq(k, V, 6), z G Ci. Then for sufficiently large k, k > A;o(V, 6), the following 
estimates hold: 

&6 (5.9) IIACM)!^*1 

(5.10) \\Az{z,t)\\<k-ll*+zl6. 

Proof. We consider the operator A\: 

(5.11) Ai = A0 + A^ + A^ + 43), 

where 

(5.12) Ao = (H0 - zy^BoiHo - z)'1/2, 

(5.13) Bo = (I-P)V(I-P), 

(5.14) 
4° = (H0(t) + AA - zy^B^iHoit) + AA- z)"1/2, 

(5.15) B™ = PbSiil - Pfi, 

(5.16) B™ = B^* = (I- P0)£gPo, 

(5.17) Sf) = ^Po, 

Po being the diagonal one-dimensional projection: (Po)jj — 1. The formal 
description of £q is given in [1]. Its main properties are the following: 

(5-18) £q = £*,   \\£q\\<\\V\\, 

(£q)ij =0,   if i - j ^ log + lq', 

(5.19) 
where q' £ q, q' € r(i?o),   ^o, ^ € .R,   |Zo| < fc1/5"8*, 1 < \l\ < EQ, 
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(5.20) Pk2(kl/s-*6)£qPk2{klls-*6) = 0. 

Here and below Pk2(k1^'~86) is the diagonal projection 

(5.21) Fk2{k )M-| ^   otherwise 

To prove estimates (5.9), (5.10) we verify the following relations: 
1) 

(5.22) Pill < k7S, 

2) 

(5.23) llA-AiKSib-W*, 

3) 

(5.24) || A? | < Sk'1^306. 

First, we check that 

(5.25) 43) = M3) = 0. 

Indeed, from relation (5.20), taking into account that PoPk2(k1^ 86) — PQ, 

we obtain B[^ — 0 and, therefore A\ ' = 0. 
1) We prove inequality (5.22). Let us estimate ||Ao||. It is clear that 

(5.26) (4)),* = v^tfjt) - z)-xl\v\(t) - 2)-1/2. 

We prove that 

(5.27) l(^(i)-2)(p?(t)-*)l>fc-4* 

i, m € Z3, i ^ m, |i — m| < fc6, Pmm = Pii = 0. 

for all z € Ci.  Inequality (5.27) is symmetric with respect to m,i, so we 
can assume that |p^(t) - zl ^ |j^(*) - ^1-   If |Pm(*) - ^1 > fc~2<5j tI:len 

inequality (5.27) is obvious. Suppose 

(5.28) ^(t) - z\ < k-2S. 

Let m ^ j + notf, no 6 Z. Using inequalities (3.7)-(3.10) and considering 
as in the proof of Corollary of the Geometric Lemma in [7] we verify that 
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relation (5.27) holds. Next, let m — j + rioq, no e Z. Suppose, |no| > 
k1'*-96. Then Ip^t) -pj(t)\ > ck1/5-96, because |(#(*)>&(<>))I < A:1/5-10*. 
Considering relation (5.2), we obtain that 

(5.29) \p2
m(t)-z\>kl/5-m, 

where m — j+noq, no e Z, |no| > k1/5'96. This inequality is in contradiction 
with the assumption (5.28). Therefore, it remains to consider the case \n\ < 
k1'*-96, i.e., m e ttqik1/5-96). It is easy to see that m <£ ng(A:1/5-^)\r(A;, 6). 
Otherwise Pmm — 1, but we consider inequality (5.27) in the case i,m : 
pmm = Px = o. Thus, m € r(A:,5). Hence, inequality (3.12) holds. This 
inequality contradicts to (5.28). Thus, estimate (5.27) is valid. Taking into 
account that Ro < k6^, we obtain 

(5.30) |Mo||<Jfe7'. 

We estimate A\ \ Considering (5.2), we get: 

(5.31) P^ll2 < k^sY,(£q)Up2i + AAi, - z\-\ 

We prove the estimate 

(5.32) 3|p? + AAu -z\> k1-116. 

By (5.19) (Sq)ij can differ from zero only if i—j = loq+lq*, where qf € T(Ro), 
Q' ^ ^ |fo| < efc1/5"9^, 1 < |Z| < Ro. First we estimate |p?(t) -p|(t)|. It is 
easy to see that 

\p2i{t)-p2m> 

(5.33) 
Wfr) + ^'(0)|2 -P?(t)| -^©(t) +^(0),Zft(0))| -igpJCO). 

Taking into account inequality (3.7) and the relation |(pj(0),Pg(0))| < 
fci/5-8<5? ^ich holds because j e ng(A:1/5"8<5), we obtain 

(5.34) \VKt)-V2
j{t)\>k1-116. 

Considering (5.2) and (5.34) we obtain (5.32). Prom estimates (5.31) and 
(5.32) taking into account (5.18) , we get 

(5.35) \\A{?)\\<ck™. 
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Similarly we prove estimate 

(5.36) ||A<2)||<cfew. 

Adding estimates (5.30), (5.35), (5.36) and considering that A^    =0, we 
get (5.22). 

2) Estimate (5.23) is proved similarly to the analogous estimate (5.51) in 
[1]. The difference is that we use conditions 3' and 4' instead of conditions 
3° and 4° and we consider the operator (/ — Po)£q{I — Po) instead of £q in 
the definition of eiq. 

3) We prove estimate (5.24). The proof up to some modifications is 
similar to the proof of relation (5.52) in [1]. In fact, first we verify that 

(5.37) P^fc1/5-8^!^^175"8*) = 0. 

We represent Ai as the sum (5.11) and prove relation (5.37) for each of the 

operators AQ, A^\ A^ (A^ = 0). The relation 

(5.38) Pk2 {kl/5-8S)AoPk2 {k1/5-8S) = 0 

is proved just as the similar relation (5.54) in [1].  (instead of condition 5° 
we use the condition 5'). The relation 

(5.39) P^ik^-^A^P^ik1/5-86) = 0. 

easily follows from relation (5.20). Similarly, 

(5.40) P^ik^^A^P^k1/5-86) = 0. 

Summing equalities (5.38)-(5.40), we get formula (5.37). Further, we repre- 
sent Ai in the form: 

(5.41) Ai = Mo + M+ + M_, 

(5.42) Mo = (I - Pfc2(fc1/5-86))A1(J - P^k1/*-86)), 

(5.43) 

M+ = PtfCfcVB-w^j - P^k1/*-86)) = PtfCfc1/5-8*^, 

(5.44) 

M. = (I - P^k^-^ArP^ik1^-86) = AiP^fc1/5-8*). 
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Obviously, 

(5.45) Ml = M*= MoM+ = M_Mo = 0. 

Prom this, 

Al = M0
3 + M0

2M^ + M+M0
2 + MoM_M+ + M+MQM+M-M+MQ 

(5.46) +M+M_M+ + M-M+M-. 

Using the definition of P^fc1/5-86) it is easy to see that 

(5.47) ||Mo||<Ar1/5+9*,   ||M_||<A:3*,   ||Af+|| < A;3^. 

From (5.47) we obtain 

||Mo3|| + ||M0
2M_|| + ||M+M0

2|| + ||MoM_M+||+ 

(5.48) ||M+MoM-|| + ||M_M+Mo|| < Ar1/5+15*. 

Assume that we have proved the inequality 

(5.49) \\M+M-\\ < k'1'**2*6 

Then, we have 

(5.50) HM+M-M+H, ||M_M+M_|| < fc-1/5+32^, 

and summing the estimates (5.48) and (5.50), we get (5.24). Thus, to prove 
the necessary relation (5.24) it remains to check the estimate (5.49). 

First, we consider the diagonal part of the operator M_|_M_: 

(5.51) 

(M+M_)ii=   £ 
\(Bi)i, i+m| |2 

where 

(5.52) 

5! - PvikV^XBo + B™ + B?)(I - P^ik1/5-86)). 
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Since Po(I - P^A;1/5-8*)) = 0, 

(5.53) Bi = Pvlk1'*-86)^ + BWl - PfcaCftVB-W)). 

Let us consider different i in (5.51). If i ^ j, i : Pu = 1, then taking 
into account the definition of BQ (formula (5.13)), we get (M+M-)u = 0. 
The same is valid if i : P^A;1/5-915)™ = 0. It remains the case i : Pa — 
0, Pfc2(A;1/5-M)ii = 1. It is not hard to show (see Lemma 11 in [1] (4° -> 4')) 
that formula 

(5.54) 

(M Ms   _   v- M2(P?(«)-*+gg>(0)) 
" " J&o ^W " Z^lrn(t) - Z)(plm(t) - Z) 

holds. We prove that 

(5.55) 2|(M+M_)ii| < AT1/^25*. 

Let % : |p?(t) - A;21 > A:"1/5"4^. Considering the definitions of M+, M- and 
PA.2(ifc1/5-8^) we get (5.55). Suppose t : |p?(t) - A;2| < fc-1/5"46. Considering 
as in the proof of (5.22), we obtain that 

(5.56) 36|(p?(t) - ^(pL^W " *)\ > * -46 

Using formula (5.54) and the last inequality, it is not hard to show that 
estimate (5.55) holds. 

It remains only to consider the case i = j. It is clear that 

(5.57) 
 \\£q)jj+m\  (M+M_)tf =       J2 

According to (5.19) (8g)jj+m can differ from zero only if m = loq + lq', 
\lo\ < A;1/5, q' € T(Ro), q' ^ q, 1 < \l\ < RQ. From this we obtain 

(5.58) 
p2

j+m(t) + AAj+m,j+m -z = 2l(pj(0),pq,(0)) + 0(fc2/5). 

From relation (3.7) it follows 

(5.59) wMMm >fcl"10'- 
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Let 
al —     2^    \(£q)jj-frn\   > 

tow = {m : Pm(0) = kq + lq'}- 

Using relations (5.57)-(5.59), it is not hard to show that 

(5.60) 

{M+MJU = (T am-1) (pfr)+AAX - zr^muAm-1+o{k-^+w6 

Using again relations (5.2) and (5.59) we get 

(5.61) 

(M+M-)# - ( Y,a^2l)~l ] 0(fc11^) +0(A:-3/5+20*). 

We prove that ai — a-i. Indeed, recalling the definition of Sq (see [1]), we 
verify that 

(5-62) ai = £ \UM-tfi<iu*q'U}+iiq+iqt+l2q\  , 

where U is the unitary operator reducing H to the diagonal form. Summing 
with respect to indexes h and fa, we get: 

(5.63) ai = |%/|2 = a_z. 

Now we see that Yli ^(2Z)~1 = 0. Therefore, 

(5.64) |(M+M_)^| < cA:-3/5+m. 

Next, we consider non-diagonal elements: (M+M-)^, i ^ i, 

(5.65) (M+M-)iZ = 

(-Bl)zm(5i)mi 

5 (p?(*) + AAii(t) - z)^(pf (t) + AA„(t) - zy/>(pl(t) + AAmm(t) - z)' 
where 

(5.66) Pfc2 (k^-^h = Pfc2 (fcVs-W)^ = i, 
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(5.67) Pk<kllb-^)mm = Q. 

From the last relation it follows that m ^ j. Suppose i = j, then I ^ j 
(because we consider non-diagonal elements). It is clear that j — I = loq + 
Iq', |io| < A;1/5-8*, 1 < \k\ < Ro, h + 0. Since |(p,(0),^(0))| > A;3/5, 
l(Pj(0),P9(0))| < e/c1/5-8"5, we readily obtain 

(5.68) |rf(t) - fc2| = |rf(t) - v){t)\ > k^-6. 

This inequality contradicts relation (5.66). Therefore % ^ j. Similarly, we 
obtain that I ^ j, otherwise (M+M_)^ = 0 (for i ^ I). Since 

(5.69) (Bi)im — (Bo)im 

for i ^ j, m / j, we have 

(5.70) 

(M   M  )    = V (£o)im(£o)mZ  

Using relation (5.27), which is valid for all i, ra : |i — ra| < k6, we get 

(5.71) 6|(p?(t) - *)(pz
2(*) - ^l1/2 > k-26. 

Taking into account that |p^(t) — k2\ > k1/5'86, (see (5.67) we arrive at the 
estimate 

(5.72) |(M+M_)iZ| < AT1/5-*-106,   i ^ I. 

Since (M+M_)tf = 0 if \i -1\ > 2Ro, it follows that 

||M+M_|| < ^inax|(M+M.)y|. 

Taking into account (5.55), (5.64) and (5.72), we get (5.49). Thus, esti- 
mate (5.10) is proved. The lemma is proved. 

Lemma 5.3. If t is in the (k~2~26)-neighborhood of the setXq(k,V,6) and 
z e Ci, then for sufficiently large k, k > koiV^S) the following estimates 
hold: 

(5.73) ||G'i(M)lli<*-1+4', 

(5.74) IK^MJIlK*-7"*", 

(5.75) \9'2{k,t)\<k-^+&s. 
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Proof. Evaluating the integral UGi(k, t)U* (U is the unitary operator, re- 
ducing H(t) to the diagonal form) by a residue, we obtain (UG^kj t)U*)im = 
0, if i ^ j, m ^ j or i = m — j and 

(UGKkrfU*)^ = (UG^k^U*)^) = 

(5.76) Bji (fdt) + AAii(i) - pfct) - AAjjitj) 
-i 

where B — BQ + Y^q £q + L + A operators L and D being described in [1]. 
Here we only will use their properties. Taking into account that {Bo)ji = 
Lji = 0 (j e JIq(k

6)) and (£q>)ji = 0ifq'^q, we get 

(5.77) Bji = (Sq)ji + Dji. 

From (5.77), using (5.76), we obtain 

where 
* = \(Sq)M(t)+AAu(t) -pj(t) - AA^WI"1, 

ft = PjillP?(*) + AAif (t) - pj(t) - AAtf^r1. 
Terms similar to a* were estimated in the proof of Lemma 4 (see formu- 
lae (5.31)-(5.36)). Using estimate (5.32) and (5.2) we get 

(5.78) 2a; < KSqtjilk-1*116. 

Relations (5.1) and (5.2) yield 

(5.79) a < {Djilk1*6. 

It is clear that 

(5.80) 

l|Gi(M)ll? - WG'^wm < 'EW&tfrfU*)^2. 
i 

Considering estimates (5.78)-(5.80) we get 

Taking into account that 

(5-81) II^H < ||V1 
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(5.82) \\D\\ < k-kl/5~aS 

(see citel), we arrive at estimate (5.73). 
Next, we consider ||(?2(fc>*)lli- Evaluating the integral by a residue, we 

get 

(5.83) 
(UG'2(k,t)U*)im = (UG'^tW^ijiUG'^k^U^m, 

when i ^ j, m ^ j and 

(5.84) (UG'2(k, t)U*)jm = (UG'2(k, t)U*)mj) = am + cm, 

am = -BjjBjmipKt) + AAmm(t) -pj(t) - £jLjj(t))-
2+ 

Cm = 

^5iiJBim(pf(t)+AAii(i)-p5(i)-AAJJ(i))-
1(pL(t)+AAmm(i)-^(i)-AA^(t))-1 

when m ^ j and 

(5.85) 

(UG'^m*)^ = - £ \Bjm\2(p2
m(t) + AAmm(t) -pj(t) -AAjjit))-2. 

Prom relations (5.80)-(5.85) we see 

IIG'2(M)II?<IIG;(M)II?+2/, 

(5.86) 7 = ^|(C/G/
2(A:,i)C/*)im|2. 

m 

To estimate / we represent it as a sum I = Ii + h + h, where Ik corresponds 
to the summation over the set Qk'. 

Sl2 = {m : m € Ugi^k1^88) \ Uq^k1/*-*6)}, 

Q3 = {m:m^ng(^
1/5-85)}. 
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Suppose me tti. Then, Lim = (Bo)im = 0 and, therefore, 

Considering as in the proof of (5.73), we obtain 

(5.88) Ji < c£r2+8*. 

Suppose m e ^2- Using (5.84) we get 

J2 l(tf#2(M)tf*);m|2 < E a-+ E 5- 

To estimate am note that Bjm is given by formula (5.77). Considering as in 
the proof of (5.73) we get 

To estimate cm we recall [1] that for any m G JI2 

|l4(t) + AAmm(t) -p|(i) - AA^(t)| > ck2'5. 

Using this inequality and (5.32) we get 

Thus, 

(5.89) J2 < cA;-7/5+8*. 

If m e Slz, then in formula (5.84) Bim = (5o)im. This means that 
\i — m\ < RQ. On the other hand Bji is given by (5.77). We con- 
sider that pj(0) -pi(p) - loPq(P) +lpq>(0), where |Zo| < A;1/5-8'5, 1 < 
|/| < RQ, because otherwise (£q)ji = 0 while Dji is estimated by tiny 
value k~k . Therefore, p}(0) — Pm.(0) = ^1^(0) + faPfiO), where 
|Zi| < k1/5-8S, Ihl < 2Ro, l2Pq»(0) ± 0 (the last relation holds because 
otherwise m € ng(3A;1/5-^/2) ^ fig). Considering as in the proof of (5.73) 
we show that 

|pf (t) + AA«(t) -p|(t) - AA^^I > cfc1-8*, 

|p^(i) + AAmm(t) -V]{t) - AA^WI > cfc1"8*. 
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Using this inequality and the estimate ||£|| < ||F||, we get 

(5.90) J3<dr2+8*. 

Adding estimates (5.88), (5.89) and (5.90), we get 

(5.91) / < cAr7/5+86. 

Using formula (5.86) and estimates (5.73), (5.91), we obtain (5.74). 
Inequality (5.75) we obtain, calculating g^k^t) by a residue: 

^(M) = ^2 iBjmWpKt) + AAmm(t) -p^t) - Akjjit))-1. 

Using formula (5.77) and the inequalities 

\\D\\<k-kl/5-8\ 

2\p2
m(t) + AAmm(t) - pj(i) - AA^(t)| > A;"1-*,   m ^ j 

(see inequalities (3.10) and (3.11)), we obtain 

&(*, *) = E I(^)MI2(P2.(*) + AWi) - Pfc) - AA^i))-1 + 0(k-2). 

Prom the last relation, (5.57) and (5.2) it is easy to see that I^C^J*)! 
= 

KM+M-JtflAT1-* + 0(fc-2). Using (5.64), we get estimate(5.75). 
The lemma is proved. 
The proofs of Theorem 3 and 4 are quite similar to the proofs of Theo- 

rems 1 and 2 in [1], Lemma 4 being using instead of Lemma 11 in [1]. 
Next, we consider the behaviour of the isoenergetic surface in a vicinity 

of the singular set. Since the eigenvalues and the spectral projections of 
operator H are close to those of H on the essential part of the singular set, 
the isoenergetic surface of H is close to that of H. 

According to Theorem 3 there exists the subset Xq(k> V,6) of £iq(k,6) 
on which the perturbation series converge. This subset has an asymptoti- 
cally full measure on /ig(fc, S). We denote by x|J(fe, V, S)j the intersection of 
X°(fc,y,<5) with Mbfy (see (4.1)). 

Lemma 5.4. In the (k"2"26)-neighbourhood of a piece Xq(k, V,6)j of the 
isoenergetic surface there are no other ones Xg(fe, V,5)i, * ^ J- 
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Proof. Suppose, that in the (fc~2~2(5)-neighbourhood of point t, t e 
Xq(k, V, 6)j there exists point ^o, ^o € j<%(k, V, 6)i, i ^ j. Then, 

(5.92) pj(t) + AAflji = k\   pfoo) + AA(to)ii = k2, 

\t-to\<k-2-26. 

It is obvious that 

(5.93) |pf (t) + AA(t)« - pKh) + AA(td)u| < AT1"2*. 

Therefore 

(5.94) Ip^t) + AAWjj - p?(i) + AA(t)«| < k'1-26. 

However, it can not be so, because t e Xq(k,V,6) (see inequali- 
ties (3.10), (3.11)). 

The lemma is proved. 
The proof of Theorem 7. Suppose t belongs to the (fc~2~2<5)-neighbourhood 

of Xq(k,V,6). According to Corollaries 2 and 3 the following estimates hold: 

(5.95) m - pj(t) - AAWal < cAT1-2^, 

(5.96) | VA(t) - V(p?(t) - AA(t)#)l < ck1'2^6. 

From the last relation it follows 

(5.97) |VA(i)| > ck. 

Using estimates (5.95) and (5.97) we obtain that equation (4.3) has a solu- 
tion in the (A;~2~271 ^neighbourhood of any point £o, belonging to Xq(k> V, 6). 
These solutions form a surface in the (A;~2~271)-neighbourhood of Xq(k, V, 6), 
because (5.96) holds. 

Next, we prove that equation (4.3) has no other solutions in the 
(fc~2~2<5)-neighbourhood of Xq(k, V, 6). Indeed, suppose i is in the (k~2~26)- 
neighbourhood of Xq(k, V, S) and there exists an eigenvalue A(t) of oper- 
ator if, which cannot be represented as the series (3.16), i.e., A(i) / 
A(i). According to Theorem 4 A(i) is a unique eigenvalue in the interval 
(A;2 - AT1-16,*;2 + Ar1"*). However, A(t) = A:2. Prom this it follows that 
X(i) = A(f). The theorem is proved. 
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6. Geometric Constructions on the Singular Set. 

We construct now the subset x^(fc, V, 6) of /ig(fe, 6) on which conditions 
I7 5' hold.  The analytical description of I7 S7 is similar to that of 
1° 5° for the nonsingular set. Howver, to prove that I7 57 in fact can 
be satisfied, we have to develop much more subtle reasoning than in [1]. This 
is due to the fact that conditions 1° 5° were proved to be satisfied for 
some t on iJLq which is, as a matter of fact, only a small part of £*. So more 
precise estimates and complicated reasoning have to be done. We proved 
that the nonsingular set has an asymptotically full measure on Sk- Here we 
will prove that Xg(fc, V, 6) has an asymptotically full measure on /ig(A;, <5). 

We consider 

(6.1) x0
q(k, V, 8) = (iq(k, 6) \ ufUt^ft, V, (5);, 

where the set 'Tq(k,V,6)i contains all points £, for which condition z7 (see 
Lemma 1) does not hold. These sets will be described below. The defini- 
tion of the set Xg(fc, V, 6) is similar to the definition of the nonsingular set 
S(k, V, 6) in [1], where conditions 1° — 5° are satisfied. 

First, we introduce the notations. Let nm(A;, a) be the plane layer: 

(6.2) lWfc,a) = {x : \\x\2. - \x + p7n(0)|2| < 4Ara} 

Let nm(fc, a) be the curve analog of the plane layer nm(A:, a): 

(6.3) fWM) = {* : IW2 + Y?o(aO - |z + Pm(0)|2| < 4Ara}, 

where the function </?o(#) is given by formula (3.5). 
We determine Tg(/c, V, 8)\ by the formula: 

(6.4) TgCfc, V, S)x = /C (UreniDrC*, -1 + 105) n Sq% -<5)) , 

fti is given by (3.8), K is defined by (2.4). Next, 

(6.5) f *(*, V, 6)2 = /C (umGn2,i€n3tg(fc, V, <!>)f n ^(fc, -5)) , 

(6.6) ^2 = {m, m e Z3, m ^ nog, no 6 Z}, 

(6.7) fg(fc, V, (5)f = U^=0f.(fc, 7, (5)fn,   ^ = [1/5] - 19, 



372 Yulia Karpeshina 

(6.8) 
rq(k, V, <5)rn = tLm(k, V, l-6n)n Um+i(k, V, -1 + 6(n + 11)). 

Furthermore, let 

(6.9) rq(k, v, 5)3 = /c (um€fi2nm(fc, -i + 8)n sq(k, -6)), 

(6.10) f q(k, v, s), - uq^rmr q(k, V, 6)4q>, 

where Tg(A;, V, 6)4q> is set of t in jj,q(k, 6) such that 

(6.11) \p2
m(t) + AAmm(t) - pj(t) - AAtfM < fc-1/5-M 

for any m of ^/(fc1/5). This means that Tq(k, V, 8)±q' the eigenvalues p^(i)+ 
AAmm(£) are situated rather close to the point p^^+AA^^) = k2. Finally, 

(6.12) f g(Jb, 5)5 = /C7r(fc, 1/5,3/5,1/5 - 85), 

where TT is determined by the formula: 

.jtqq, = I a;, a: € .R3 :  ||a;| - A;| < fc1/5, 

!(*, jrg(0))| < 2fc1/5-w
> 1(^^(0))! < k*'*) . 

Lemma 6.1. Ift belongs to Xg(fc, F,<5); then there exists a unique j, such 
that pj(t) + Akjj(t) — k2 and conditions lf — 5' hold. For t in the 
(k~2~26)-neighbourhood of Xq(k> V^S) there exists a unique j such that 
\p!(t) + AA^(i) - A;21 < k'1"26, and conditions 1' - 5' hold. 

Proof. Since t € /ig(A;,<5), there exist at least one j such that pj(t) e 
Sq(k,-6), i.e., pfa) + Akjj(t) = k2, and \pj(t) ~-Pj+q(t)2\ < ks. Suppose, 
inequality (3.7) does not hold. Then for x — pj(i) and some r € fti: 

(6.14) \\x\2 + Mx)-\x + Pmm
2\ <k1-106. 

Thus, we have x e Umfa -1 + 105) n Sq(k, -6). Therefore, t e /C(nm n 
Sq) C TqikMS)!. However, j$(k,V,6)nTq(k,V,6)i = 0 (see (6.4)). This 
contradiction proves inequality (3.7). 
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Next, suppose condition 3' does not hold. This means that there exists 
m such that m ^ noq, (no e Z) and 

(6-15) \p2
m+j(t) -pj(t) - AA(%| < 2k-1-s. 

The last inequality means that for x = pj(t) the next relation is valid: 

(6.16) \\x\2 + cp0(x) - \x + Pm(t)\2\ < 2k-1-8, 

i.e., x e flm(k, l+6)r\Sq(k, -8). Therefore t € IC(ilm(k, l+6)nSq(k, -8)) C 
fg(k,V,6)3. However, x0g{k,V,6) n rg(k,V,6)3 = 0. This contradiction 
proves that condition 3' holds. 

Suppose condition 2' does not hold. This means that there exists m,m^ 
noq (no € Z), such that 

(6-17) \p2
m+j(t) -pj(t) - AA(%| < AT20*. 

Additionally, there exist some i, \i\ < ks, i ^ 0, such that the inequality 
opposite to (3.9) is satisfied: 

(6.18) 
\p2

m+j+i(t) - pjit) - AA(%| < k-12S\p2
m+j(t) - p}{t) - AACt^l"1. 

Inequalities (6.17) and (3.10) mean that 

(6.19) 

fiit) e (u%=0hm(k, 1 - 6nj) \ flm(k, 1 + S)}N = [1/(5] - 19. 

The sets nm(A;, 1 — 5n), n = 0,..., iV, form a sequence of expanding sets. It 
is clear that 

(6.20) pjit) e nm(fc, 1 - Sn) \ nm(fc, 1 - S(n - 1)) 

for some n G {0,..., JV}. Relation (6.18) means that 

(6.21) \p2
m+i+j(t) - p}(t) - AA(t)Ji| < fc1"*-1".. 

i.e., pj(t) e n;+m(fc, — l + 6n + ll6). Using relation (6.20) and formula (6.8), 
we get 

(6.22) ^(t) e tg(k, V, 6)?™ C f g(k, V,S)f. 

Therefore, t € rq(k,V,6)2. However, ?q(k,V,8)2 n jQ(k,V}8) = 0. This 
contradiction proves that condition 2' is satisfied. 
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Suppose, condition 4' does not hold. Therefore, there exists m e Ho (A;), 
Ho = U<7/€r(Bo)IV(fc1/5) such that 

(6.23) IpKt) + AA(t)mm - pj(t) - AMt)^ < k-^-m, 

i.e., t e fq(kJ Vj 6)4. Since Xg(fc, V, 6) fl tg(£:, V, 5)4 = 0, condition 4' holds. 
Next, suppose condition 5' is not satisfied. This means that there exists 

m e T(k, 6) such that 

(6.24) \p2
m(t) - pft) - AA(i)^| < fc1'5-95. 

By the definition of T^k, S) the relation m e T(fc, 8) means that there exists 
the pair </, g", where g7, g77 G r(i?o), qf ^ g77, such that 

(6.25) \(pm(t),M0))\ < k1^86,   |(ft»(*),|^(0))| < fc3/5. 

Let a; = Pmit). Prom inequalities (6.24) and (6.25), considering that 
\AA(t)jj\ < k6, we obtain the estimates: 

(6.26) 
\\x\2 - A:2| < 2fc1/5, |(a:,9

7)| < 2A:1/5-8^ |(a;,g7,)| < 20*. 

This means that x £ Tiyg" (see (6.13)). Hence, t e JCTT = Tq(kJ V, 6)5. How- 
ever, Xg(fc, Vj S) n Tg(fc, V, 5)5 = 0. This contradiction proves that condition 
57 holds. 

Finally, we prove that j is determined uniquely. Suppose, there ex- 
ists m ^ j, such that pm(t) G ^(fc, —6) and conditions I7 — 57 are sat- 
isfied. Since pm(t) G Sq(kj—6), we see that m G ^(A;1/5). Therefore, 
estimate (3.11) holds. But, this contradicts the assumption that pm(i) and 
Pjit) belong to Sq(k, -6) (pj(t) + AA(i)^ - p^t) + AA(t)mm - A;2) . Esti- 

mates (6.14)-(6.26) are stable with respect to a perturbation of order k~~2~26. 
Therefore conditions I7 — 57 hold in (Ar2~2(5)-neighbourhood of Xg(fc, V", 5), j 
being uniquely determined from the relation \p2j{t) + AA(t)^ — k2\ < k~2~2S. 
The lemma is proved. 

Next, we prove that the set Xq(k,V,8) has an asymptotically full mea- 
sure on the set jjLq(k, 6) (see Lemma 1). To prove this we verify that each of 
the sets Tg(fc, V,<5);, i = 1,...,5 has an asymptotically full measure on the 
set [j,q(k,6). Lemmas 9-14 are devoted to the proofs of these assertions. 
Lemma 8 estimates the area of Sq(k, —6) n IIm(fc,£). Technically compli- 
cated, but nevertheless important parts of the proofs, are carried out to 
Appendixes at the end of the paper. 



Perturbation Series for the Schrodinger Operator 375 

Firstly, we introduce some notations. Let Tq be the body of the torus 

with the radii equal to k and kf, k1 = Jk2 - Pg(0)/4 — (p(pq(Q)/2), the main 

circle Oq of the radius kf being centered at the point pq(0)/2 and lying in 
the plane orthogonal to pq(0). Thus, 

Tq = {x : \x - xs\ < fc, xs € Og} , 

Off = {a:: |x -pg(0)/2| = fc7, (^(0)) = 0} . 

It is clear that the sphere \x - Pm(Q)\ = k, intersects with the circle Oq if 
and only if pm(0) belongs to Tq. Let pqm be the distance from pm(0) to the 
torus (pmg is positive if Pm(0) is inside torus and negative otherwise). 

Let us estimate the area of Sq(k, -6) nnm(fc, £). to undestand the struc- 
ture of Sq(k, —8) nnm(fc, 0 note that in the case ^o(^) = 0 this is the inter- 
section of the shpere |aj| = k and two plane layers: n^fc, —5) and U^k^). 
So, this is a vicinity on the sphere of two points, which are the intersection 
of two circles. When <po(x) ^ 0, the picture is a little bit "curve". Let us 
give more precise description of these two points. Using the definitions of 
Sq(k, —8) and nm(fc,£) it is easy to show that 

(6.27) sq(k, -8) n nw*, o = sq(k, -8) n Sm(fc, o - 

[x:  \x\2+Mz)=k2, |N2-|a: + ^(0)|2|<^, 

\\X\2 +MX) - \X+Pmm2\ < fc""€-} 

Thus, Sq(k, —S)r)ILm(k,£) is a neighbourhood on the surface \x\2 + (po(x) = 
k2 of the points defined by the equations 

M2 + ¥>o(aO =k2
i 

\x\2-\x + pqm
2 = 0, 

\x+pm(0)\2 = k2. 

It is easy to see that this equations define the intersection of the circle Oq 

with the sphere |:r+pm(0)| = fc, which is, obviously, two points. As it is noted 
above Oq intersects with the sphere if and only if pqm is positive. Moreover, 
it turns out that the area of Sq(k, — 8) nnm(fc, f) essentially depends on pqm. 
Naturally, it depends on k, 8, £. The following lemma give estimates for the 
area of Sq(k, —8) n IIm(fc, ^). 
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Lemma 6.2. If 8pq(0) < k, 0 < 6 < 1, -1 < £ < 1, then the following 
estimates for s(Sq(k, -6) n nm(fc, ^)) hold: 

(6.28) 

s(Sg(k, -6) n iU*, 0) < ckfi-tp;l(Q)i^(0)l1/2p$2, 

when pmq > k~26; 

(6.29) 
*&(*, -5) n nm(fc, 0) < ^/2-^3/2p-1/2(o)pm(0)-3/2(4A:2 - ^(O))-1^, 

when pmq < k6; ku < pm(0) < 2A; - A;"1+3<5 arzd 

(6.30) s(Sq{k, -8) H EUCfc, 0) < ck6-^%\Q), 

when pmq < k6; Pm(0) >2k — k6. 

The proof is only a slight modification of Lemma 5 in [8], where we 
consider the area of Sq(k,—6) n ILrn(k^) for tpo = 0, i.e., the case when 
Sq(kj —6) is a plane-spherical layer and IIm(fc, £) is a plane layer. We give it 
in Appendix 1. 

Lemma 6.3. For 0 < 6 < 10~3 and sufficiently large k, k > koiV^S) the 
following estimate holds: 

,~ o-, x s({iq(k,8)nrq(k,v,6)1))       S6 {0.61)     < k 

Proof. By the definition of T^(fc, V, 6)i (see (6.4)) we have 

(6.32) 

s(rq(k, v, s)i) < J2 s&(k>5)n ^(fc' -1 +10(5))- 

Taking into account that fii contains less than ck36 elements, we obtain: 

(6.33) 
s(f g(k, V, S)i) < ck36 max s(Sq{k, -8) n nm(A;, -1 +105)). 

We prove now that 

(6.34) 2prnq>k-6. 
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Indeed, by the definition of pmq, we have 

(6.35) 
(k - pmq)2 = {k1 - rm)2 + 42,   z'n = zm - vq{$)/2, 

where rm = Pm(0)j. is the absolute value of the projection of the vector 
Pm(0) onto the plane orthogonal to Pg(0) and Zm is the projection of pm(0) 
onto Pg(0). It is clear that rm — (p^(0) — zfy1!2. Taking into account that 
^ + ^m=Pm(0)=O(^)weget 

(6.36) Pmq{2k - Prm) = 2A:rm + 0{k26). 

Prom the relation 

(6.37) rro = ||^(0),^(0)]|p-1(0), 

considering that the vectors pm(0) and Pg(0) are linearly independent we ob- 
tain rm > cp~1(0) > cik~6. Estimate (6.34) follows from the last inequality 
and (6.36). Using formula (6.36) and taking into account that rm = Pm(0)± 
and Pmq > k~26\ we obtain from (6.28) that 

(6.38) s(Sq(k, -6) n nm(fc, -1 + 106)) < ckl-*spq(0)-1. 

Noting that 

(6.39) s(jiq(k, 6)) « k1+6pq(0)-\ 

we get 

(6.40) s(Sq(k, -6) n nm(A;, -1 + 105)) < k-gss(jiq(k, 6)). 

Using estimate (6.40) in inequality (6.33) yields (6.31). The lemma is proved. 

Lemma 6.4. For 0 < 6 < 10~3 and sufficiently large k, k > ko(V,6), the 
following estimate holds: 

(6 41) ^(fc^nf^v;^)) < k-36 

Proof. By the definition of Tg(fc, V, 6)s we have 

(6.42) 

s((Lq(k, 6) n f g(fc, v; 6)3) < 8(tq(k, v, 5)3)) < J2 5(^(fc' "^ n nm(fc, i + (5)). 
771 

Arguing further as in Lemma 6 in [8] and using inequalities (6.28)-(6.30) we 
verify relation (6.41). The lemma is proved. 
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Lemma 6.5. For 0 < 6 < 10~3 and sufficiently large k, k > ko{V, 6) the 
following estimate holds: 

(6.43) ^(*^ntg(jbytg),))<jb^ 
s(^(M)) 

The proof of this lemma is very technical, so in this consideration we 
describe the principal steps. Technically complicated parts we send to Ap- 
pendixes. 

Using the definition of Tg(A;, V, 8)2 (see (6.5)- (6.8)) we obtain 

s(/i,(M)nfff(fe,v;$)2)< 

(6.44) AT   max    V    V  s{Sq(k,-8)niim{k,l-8n)), 
71—l,...,iV 

\i\<k6meQni 

where Qni is the set of the indeces m, such that m ^ noq, no 6 Z, and 

(6.45) 
4(fc, -(5) n Um(k, l-6n)n Um+i(k, -l + 6n + 108) + 0. 

Let us estimate the terms of the sum (6.44). 
Using estimates (6.28)-(6.30), we obtain that 

(6.46) 

s{Sq{k, -8) n EU*, 1 - 8n)) < fc-1+^n+1^g-1(0)p4/2Pm(0):1/2, 

when pmg > k-26; 

s(Sq(k, -8) n ilm(k, 1 - 8n)) < 

(6.47) fc1^(-+i/2)p-i/2(o)pjn(o)-3/2(4A;2 _^(0))-i/4) 

when p^ < k2S; k36 < pm(0) <2k- k-1+3S and 

(6.48) 
s(Sq(k, -8) n nm(k, 1 - Sn)) < k-vww+Vp^io), 

when pmg < k6; pm(0) > 2k - fc5. 
We represent Qni in the form Qni = l-,^=1Q*i, 

(6.49) Qii = {m : m € Qni, /W > A;25}, 
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(6.50) 
Qli = {m : m € QnhPmg < k2S,rm > k^^^k - rm > k1'36}, 

(6.51) 
Qli = {m : m e Qni, Pmg < k2S, rm < k1-66,?^) > k26}, 

(6.52) 
Qii - {m : m e Qni, pmq < k26,2k-rm< fc1"3*, 2k - pm{0) > k26}, 

(6.53) 
Q^i = {m : m e Qni, pmq < k26,2k - pm(0) < k3S, \zm\ >k2S}, 

(6.54) 
Q6

ni = {m : m G Qni, pmq < k26,2k - Pm{0) < k2S, \zm\ < k26}, 

(6.55) Q7
ni = {m : m € Qni, Pmg < k2S,Pm(0) < k26}, 

where rm as before is the projection of pm(0) onto the plane orthogonal to 
Pq(0) and zm is the projection of ^.(0) onto pgO). We break the sum over 
Qni in (6.44) into six sums corresponding to Q^, k = 1,..., 6. Taking into 
account that the summation with respect to i contains less than ckas terms 
we get: 

(6.56) 
7 

s((ig(k,6)nrg(k,V,6h)<ck3S       max      (^l), 

where 

(6.57) £i=   Yl  s(Sq(k,-5)nflm(k,l-6n)), 

We estimate each sum Efn separately. 
1) The estimate of S^. 
Using inequality (6.46), we obtain 

(6.58) Si < ck-^+Vp^iO)  Y, OWV)-172, 
mZQ1. 
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Let us estimate the sum by an integral. Let us define p(y), r(y) and z(y) for 
y just as pmq, Vm and zm for pm{0). Suppose a point y belongs to a cell of 
the dual lattice, including the point Pm(0). It is clear that \y -Pm(0)| < A, 
A = 27r(a]"2+a^2+aJ2)1/2 and p(y) > pmq-A. From the relation pmg > 2ks 

it follows that 

(6.59) 2p(y) >Prru}> k2S. 

Similarly, since 

(6.60) rm > pmq, 

we have 4r(y) > rm. Relations (6.59) and (6.60) enable us to estimate the 
sum S|n by the integral Ji: 

(6.61) EL < c^fc-i^ VW'i. 

(6.62) h = I   (p(y)r(y)r1/2dy, 

where Q^ is the ^-neighbourhood of Q^.  In Appendix 2 we obtain the 
formula for Q^: 

Qi; C {y : 2p(y) > k26,3xo £S0:\y- Xo\ = k, 
(6.63) |(j, - a;o,^(0))| < 4fc1-^-10* + ^(r^p^))"1^}, 

where So the middle circle of the layer Sq(k, —6): 

(6.64) 50 = {x,xe Sq(k, -(5), \x\2 - \x +pq(0)\2 = 0}. 

In Appendix 3 we prove the estimate 

(6.65) h < ck2-716'96 

Using estimates (6.61) and (6.65) we obtain 

(6.66) Si<cfc1-4^-1(0). 

2) The estimate of the sum Efn. For m e Q^i (see (6.50)), estimate (6.47) 
holds. Note that 

(6.67) MO) = AA£+ *£>*•* 
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We estimate 4fc2 -p^(0). It follows from relation (6.35) that 

(6.68) 
4k2 - p^(0) = 2k{2k - rmk'/k) + 2pmqk -p2

m + 0{k1+s) > k(2k - rm). 

Since m € Q^, we have 2k-rm> k1'66, rm > k1'66. T herefore, 

(6.69) pm(0) > k1-66, 

(6.70) 4k2-p2
m(0)>k2-6S. 

Using the last pair of the estimates in inequality (6.47), we obtain 

(6.71) 
s(Sq(k, -S) nUm(k, V, 1 - 6n)) < cp-^Q)^3/^6^12^. 

Using this estimate in formula (6.57) for S?n, we get: 

(6.72) sfn < cp-'m-^+^+w Yl1- 

The series on the right of estimate (6.72) can be estimated by the volume 
of the A-neighbourhood Q^i of the set Q2

n: 

(6.73) Ei < cp^m-^+^MQli). 

In Appendix 4 we obtain the formula for Q^ k > 2 in a cylindrical coordi- 
nates. In Appendix 5 we show that 

(6.74) V(Q2
ni) < feH-w^i-na-iw + j. W^ 

It follows from estimates (6.73) and (6.74) that 

(6.75) ££*<c*1-4V(0). 
3) The estimate of the sum Efn. 
For m e Qni the estimate (6.47) is valid. It follows from relation (6.35) 

that 

(6.76) rl + zi^ 2rmk' - 2pTruik + p2
r^ + 0(k1+s). 

Taking into account that pmq < k26, we obtain 

(6.77) p2
m(0) =r2

m + z2
m = 2k'rm + 0(ft1+5). 



382 Yulia Karpeshina 

Using this inequality and considering that rm < fc1"6*5, we arrive at the 
relation 4k2 -pj^(O) > k2. From the last estimate and inequality (6.47), we 
get: 

(6.78) 

s (£,(*, -6) n EWfc, 1 - 6nj) < ck'WQp^p-WiO). 

Substituting (6.78) in formula (6.57) for S?n, we obtain: 

(6.79) Si < ck^+WpAo)  J2 Pm(0)-3/2. 

Since pm(0) > k2S, when m € Q^, the series on the right of (6.79) can be 
estimated by the integral: 

(6.80) Efn < ck'WQp^Mh, 

(6.81) h= f   (r2 + z2)-3/4rdrdzdV. 

In Appendix 6 we show that 

(6.82) h < Sk1/2-116-96 + 4k26. 

Substituting the last estimate in the inequality (6.80) yields: 

(6.83) Sfn<Cp-1(0)A;
1-4*. 

Next, we consider S|n. Since m € Q^, then estimate (6.47) holds. Using 
relations pm(0) > rm> k and Pg(0) < ks, we rewrite (6.47) in the form: 

(6.84) 

S(Sq(k, -6) n ilm(k, 1-Sn)< cp-'m-'+^+'Hik2 -rl- z2
m)-

l/\ 

Substituting estimate (6.84) in formula (6.57) for I]fn, we obtain: 

(6.85) Xt < cp-Ho)*"1^1)   2 (^2 - r2
m - z2

m)-"\ 

It is clear that Qni can ^e described by the formula similar to that for Q^. 
Since Ak2 -r^-z^ > k1*26, when m e Q^, the series on the right of (6.85) 
can be estimated by the integral 

(6.86) St < Cp-1(0)fc-1+^ri+1)J4, 
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(6-87) /4 = y^(^_r2_,2)i/4- 

In the Appendix 7 we prove that 

(6.88) /4fc7/4""6n"66 + fc1+2^ 

Using this estimate we (6.86), we get 

(6.89) VL^cp^m1-4* 

for any #(0), #(0) < ks. 
5) Let us consider Sfn. We prove that 4fc2 -p^(0) > A;~1+3<5. Indeed, 

using (6.35), we obtain 

(6.90) (2A/ - rm)rm - z^2 + 2pT^k - p2
mq + 0(k2S). 

Therefore, 
Ah2 -r2 - z2 - 

(6.91) 
{z'J + 2pmqk -p2

Tru} + 0(k2S))(2k + rm)r^ -z2
m>z2

m> k46. 

From this 2k-pTn(0) > /c""1"1"3^. Thus, estimate (6.47) holds. Using relations 
Pm(0) > rm > fc, pq(0) < ks, we rewrite (6.47) in the form (6.84). Taking 
into account (6.91), we obtain 

(6.92) EL^fc-^^+^HO)^;1- 

Obviously, 

(6-93) X4 < ^-1+*(n+1Vg-1(0)F(^), 

where Q^ is the A-neighbourhood of Q^. In Appendix 8 we show that 

(6.94) V(Q5
ni < k7/^6n-6S + k1+26. 

Using this estimate we get 

(6-95) SL < cp^m1-46 

for any #(0), pi(0) < k6. 
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6) Next, we consider Sf^. Using estimate (6.48), we get: 

(6.96) Efn < JTVs+nW^o) ^ 1. 
Q6' 

It is clear that the sum on the right can be estimated by the volume of the 
A-neighbourhood of Q^: 

It is not hard to show that Q^ can be described by the formula similar to 
the formula for Q^ 

Qli - {V : I4A;2 - r2 - z2\ < 2kl+26, p < 2k6, \z\ < k26}. 

It is not hard to show that Qni belongs to the (2fc2(5)-neighbourhood of the 
circle: r = 2A;, z = 0. Therefore, ^(Q^) < ckl+26. Using the last estimate 
in the inequality (6.96), we get: 

(6.97) Efn < cpr1^)* 1-4(5 

7) Finally, we consider Ejn. We proved in Lemma 5 that pmq > k"26 

(see (6.34)), when r^ + z^ < k2S. Arguing as in the proof of Lemma 5 and 
using estimate (6.46), we obtain the inequality: 

(6.98) SL < pp-^O)* 1-46 

It follows from (6.56) and estimates (6.66), (6.75), (6.83), (6.89), (6.95), 
(6.97) and (6.98) that 

s((iq(k, 6) n fq(k9 v, 6)2) < cp-'m1-46. 

Taking into account (6.39), we get (6.43). The lemma is proved. 

Lemma 6.6. For 0 < 6 < 10~2 and sufficiently large k, k > A;o(V,<5); the 
following estimate holds: 

(6i99) ^(Jb>g)nf(jbv;g)4) <Ck-2S)c + c{ki6)> 
S([JLq{k)0)) 

Proof. Using formula (6.10) for T(fc, ¥,6)4 and the inequality {q'l < k6 

we obtain 

(6.100) 
s(f (k, V, 5)4 n Uk, 6)) < ck36   max  s(f g(fc, V, 6)4^ n £<,(*;, 5)). 
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We prove that 

(6.101) s(Mk,8)nr(kv,8)w) <fc_55 
s(nq(k, 6)) 

Then, estimate (6.99) easily follows from inequalities (6.100) and (6.101). 
In the case of linearly independent q and q' the proof of estimate (6.101) 

is similar to that of Lemma 3 in [1]. Indeed, the layer Sq(k, —8) consists of 
the pieces Sjy n Sq(k, —8), where 

(6.102) Skj = {t,t€ K,p}(t) + AAjjit) = k2}. 

Using estimate (6.28), it is not hard to show that the sum area of the pieces 
Skj, such that j € Tlqi(k

l~126), (f ^ q, \q'\ < ks, is infinitely small with 
respect to s(Sq(k,—8)), namely 

(6.103) s (ui6n,,(fci-i")Sjy) < cAT^S^fc, -8)). 

Considering relation (6.103), we obtain: 

s(fiq(k,6)nrq(k,V,6)4ql) < 

Y^      s(Skj D fq(k, V, 8)4,') + 0(k-6S)s(Sq(k, -8)) 
j0nq(fci-i2*) 

(6.104) 
<cs(Sq(k,-8)){     sup      s(Skjnrq(k,V, 8)4ql) + 0(k-6S)). 

To prove (6.101) it sufflces to show that 

(6.105) *(Sjy n f q(k, V, 8)4q/) < k-™. 

The proof of this relation is quite similar to that of estimate (4.4) in [1], 
where instead of the inequality |VAmm(t)| < k71 we use the following one: 
|VAmm(t) - Vltf (t)| < W,   71 = 1/5. Thus, 

(6.106) s(fiq(k, 8) n f q(k, V, 8)4q>) < ck1'46, 

when q' ^ aq, a e R. Next, suppose q' = aq, a e R. It is clear that 

(6.107) f q(k, V, 8)4q, = rq(k, V, 8)'4q, n f q(k, V, 8)lgl, 
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where 

tg(fc, V.flS, = {t: \p2
m(t) + Aklm(t) -pj(t) _ AA^t)! < AT1/*-", 

(6.108) m € UiikV^ftnip) -^,(0) = n^(0),n € Z}. 

Naturally, 

t,(*, V.fli, = {* : |^(i) + AA^m(t) -p|(t) - AA^t)! < AT1"5-8*, 

(6.109) m € UiikW^ftniO) -fj(0) ^ npq(0),ne Z}. 

We consider Tq(k,V,8y4ql. Arguing as in [1], we obtain: 

p2
m(t) + AA^m(t) - p?(t) - AA^t) = (Xl{m) - Xl{j))(T(t)) + 0(k-k2/5), 

where A/(r) are eigenvalues of some one-dimensional periodic Schrodinger 
equation; /(m), l(j)} r{t) are determined by the formulae: 

Km) = [(^(t),^(o))p72(o)], uj) = mwMtyp^m, 

T(t) = 2iT(fm(t),fqmPg2(0) -2^(m).. 

It is well-known that for eigenvalues of a one-dimensional Schrodinger equa- 
tion with a smooth potential the relation 

(6.110) l(AI(ro)-AI(i))(T)|<fc-1/8-« 

can be satisfied only when min{r2, (r—TT)
2
, (r — 27r)2} < ck~l/5~86. There- 

fore 

(6.111) t^Vi^GM, 

M = {x,x e Sq(k,-6)M(x,Pq(0))Pq(0y
2-l/2\ < k-l's-*6,le Z}. 

It is not hard to show that M is the union of the layers with the width 
7r~1pg(0)fc~1/5~8<5 that that all of them belong to ^(fc, —S) and, so there are 
no more than k6 of them, we obtain the estimate 

(6.112) s(Sq(k, -6) H M) < cfc4/5-™. 
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Using relations (6.111), (6.112), we obtain: 

(6.113) s(rg(k, V, 6)'^) < cp-'m1-46, 

It remains to consider Tq(k, V, <5)4 ,. It is clear that 

(6.114) 

fq(k, V, S)lql c Um6Q (5g(fc, -6) n ftUfc, 1/5 + 8^)) , 

where 

(6.115) il'm(k, 1/5 + 86) = 

{x : Ha;]2 + <p(x) - \x +pm(0)|2 - <p(x +^(0))| < A;-1^^}. 

(6.116) Q = {m: |(^(0),^(0))| < Ai1/5}. 

It is not hard to show that the set Sq(k, —6) n il'm(k, 1/5 + 86) satisfies 
the estimates similar to (6.28), (6.30) and inequality (6.29) when pm(0) > 
£i/5+(5 Fm-ther considerations will be quite similar to those in Lemma 11. 
Indeed, we estimate s('Tq(k,V,6)^ql) as follows: 

6 

(6.117) s(fq(k,V,6)'iql)<J2xk, 
k=l 

where 

(6.118) Sfe=  ^ s(4(fc>-*)nnJ»(M/5 + 86)), 
m€<9fc 

the sets Qk being given by the formula 

(6.119) Q1 = {m : m e Q, p^ > k26}, 

(6.120) 
Q2 = {m:m(=Q,pmq< k26, rm > A;1-5,2k - rm > k1'68}, 

(6.121) 
Q3 = {m:meQ,pm< k26,^ < ^"'.^(O) > fc2*}, 
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(6.122) 
Q4 = {m:meQ,prru1< k2S, 2k-rm< k1-66,2k - pm{0) > k26}, 

(6.123) 
Q5 = {m:meQ,pmq< k26,2k -Pm(0) < k2S, \z\ > k2S}, 

(6.124) 
Q6 = {m:meQ,pmg< k2S, 2k - Pm(0) < k2S, \z\ < k2S}, 

(6.125) Q7 = {m : m G Q, Pmg < k2S,pm(0) < k26}, 

We estimate the sums S* in Appendix 9. Adding the inequalities for Sfc we 
get 

(6.126) S(rq(k, V, S)"w) < cp-\Q)k1-*6- 

Adding (6.113) and (6.126), we get 

(6.127) S(f q{k, V, 8)^) < cp^Wk1-*6. 

Taking into account (6.39) we get (6.99). The lemma is proved. 
Suppose ti'(k,6)   C   fig(k,6).     Let r(/z/(M),fc~r)  be the (Arr)- 

neighbourhood in K of the surface pf(k,6). 

Lemma 6.7. Suppose 0 < 6 < 10-2 and p,'(k, 8) C fig(k, 6), and 
s(tJ,'(k,6)) > k1-26. Then for sufficiently large k, k > ko(V,6) the volume of 
the (AT1-3'5)- neighbourhood of p/(k, 6) is greater than k~5S: 

(6.128) Vmrfik, 6), k-1-36)) > k-5S. 

Proof. We consider the set 

x = fc{xonsq(k,-6)), 

(6.129) Xo = Um6lIg(fce)l4(fc,26). 

It is obvious that 

(6.130) rO*', k-1-36) D T(jjf \ x, fc-1"35). 
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The surface fiq(k,6) consists of the pieces Skj (t e Sjy, if x e Sq(k,-6), 
x — Pj(t)). We denote the intersection of the j-th piece with fjf by /J/J. 

Thus, 

(6.i3i) rQ/,*-1-8*) = uir^\x,*"1"w)- 

Using the definition of x we readily show that 

(6.132) 
r(/4 \ x, k-1-36) n T(n'j2 \ x, k-1-3*) = 0, if j! * 32. 

Prom this we obtain: 

(6.133) ypv, k1-™)) = Y,v (r(^ \ x, k1-36)). 
3 

It is not hard to show that 

(6.134) 

VWi \ X, k1-36)) = gtfi \ X)^1"3^! + o(l)). 

Therefore, 

(6.135) m/A k1-36)) > cs(n' \ x)^1-36. 

Set % coincides with Yq(k, V,<5)4 up to replacement of n^fc1/5) by Tlq(ks) 
and (1 + |(pWi(0),^(O))!)"1 by A;~2<5. Arguing as in Lemma 12, we obtain 
that 

(6.136) s(x)<cp;1(0)k1-46. 

Taking into account the hypothesis of the lemma on ^(fc, (5), we get 

(6.137) 28Qi'\x)>k1-2S. 

Using the last inequality in relation (6.135) we obtain estimate (6.128). 
The lemma is proved. 

Lemma 6.8. For 0 < 6 < 10"2 and sufficiently large k, k > fco(V,<$) the 
following estimate holds: 

(6.138) s(Mk,6)n?(k,6)5) < k_„ 
s(nq(k,6)) 
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Proof. Suppose inequality (6.138) does not hold. Then, 

s(fiq(k, 6) nf^MW >k1-2S. 

By the previous lemma 

(6.139) VXIW*, 6) nf^Mk k-1-36)) > AT5*.. 

On the other hand 

fxq(k, 6) n f q(k, 5)5 C f q(k, (5)5 = /CTT. 

(see (6.13). In [1] we proved that 

(6.140) F(r(/C7r, AT1-3*)) < A:"6^. 

Thus, inequalities (6.139) and (6.140) are in contradiction. This means that 
estimate (6.138) holds. The lemma is proved. 

Lemma 6.9. For 0 < 6 < 10"2 and sufficiently large k, k > koiV^S), the 
following estimate holds: 

/Bun *(Ag(M)\x°(W))    ._4, 

Proof. From (6.1) it follows that 

5 

5(A#, 6) n x;(fc, v, 6)) < J2sdhfr, s) n tq(k, v, 5),). 

Adding estimates (6.31), (6.41), (6.43), (6.99) and (6.138) for s((iq(k,6) n 
Tg(A;, V, 5)i), i = 1,2,3,4,5, we obtain inequality (6.141). The lemma is proved. 

Geometric Lemma 1 is the union of Lemma 7 and Lemma 15. 
Let us consider the set 

(6.142) ^(fc, V, S) = iiq{k, -8) \ utiT,(fc, V, (5),, 

where Tg(A;, V, 8)^ i = 1,2,3,4,5 coincide with Tg(fc, V, <5)i given by formulae 
(6.4)-(6.13) up to replacement of Sq{k, —8) for Sq(k, —8) and 

(6.143) Tefo 6) = /C (Um^3nm(A:, 1 + 6) n 5ff(fc, -(5)). 
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Lemma 6.10. If t belongs to Xq(k, V^S), then there exists j, such that 
p?(t) = k2 and conditions lf—5f hold. Fort in the (k~2~~2S)-neighbourhood of 
Xq(k, V, S) there exists j such that \p2(t)—k2\ < k'1"26, and conditions 1'—5' 
hold. The set Xg(fc, V, S) has an asymptotically full measure on Sq{k) —6) and 
the following estimates holds: 

(b■144, e(S,(k,-S)) <ck   ■ 

Proof. It is easy to see that j is uniquely determined from the relation 
\p2(t)—k2\ < AT

1
"

66
 for any t in A;"2~<5-neighbourhood of ^{k, V, 6). Indeed, 

suppose it is not so. Then, there exists m ^ j such that |p^(t) - k2\ < 
AT1-2*, i.e., IpJ^t) -p?(t)| < 2k-1-2S. From the last relation it follows that 
t is in the (k~2~26)- neighbourhood of Te(ki6). But this contradicts the 
initial assumption that t is in the neighbourhood of Xg(A:, V, 6). Considering 
just as in Lemma 3, we check that conditions I7 — 5' are satisfied. To obtain 
estimate (6.144) one has to repeat the considerations of Lemma 6 in [8] 
which asserts that Y^k, 6) has an asymptotically full measure on iiq{k^S). 
The lemma is proved. 

7. Appendixes. 

7.1. Appendix 1 (The Proof of Lemma 8). 

Firstly we prove estimate (6.28). We split the layer Sq(k, -6) into parallel 
layers Mn(fe,f + £), |n| < k^2S of the width k'^'6. It is clear that 

(7.1) 
s(Sq(k, 6) n ILmik, <£)) < k^26 maxs(Mn(fc, £ + 6) n nm(^<£))- 

n 

Inequality (6.28) immediately follows from the estimate: 

(7.2) 

s(Mn(k,t + 6) niim(k,0) < c£r2«-V(%m1/2(o)-LP4/2- 

We verify the last inequality. For each layer Mn(fc) £ + 6) the relation 

(7.3) ipo(x) =(pn + 0(A;~?),   (pn ^ <Pn(x),   \<pn\ < ks. 

holds. Therefore, from the inequality 

(7.4) \\x\2 + Mx) -\x + pmm2\ < k-t-s 
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it follows that 

(7.5) \\x\2+Vn-\x+Prnm2\<'Zk-^    m G Zn. 

This means that 
Mn(fe^ + (5)nnm(fc,<e)c 

(7.6) 
{x : x e Mn(A:,$ + (5), ||^|2 + ^n - ^ + Pm(0)|2| < 2^}. 

Now we have the intersection of a plane layer and a "quasi"-spherical shell. 
Arguing as in the proof of Lemma 5 in [8] and taking into account that 
|^n| < k6, we obtain estimate (7.2), and it gives (6.28). Estimate (6.30) is 
proved similarly. 

To prove inequality (6.29) we direct axis xi along pm(0). We consider 
axis X2 to be situated in the plane of the vectors pq{0) and pm(0). We 
introduce the spherical coordinates #,#,<£ such that x\ = .Rcostf, X2 — 
Rsinficosfi, xs = Rsiw&siiKp. Arguing again as in Lemma 5 in [8] and 
taking into account that |^o(#)| < k6, we get: 

(7.7) Sqfc-QnfLnfcl+Oc 

Ix :| cos??-cos$1 + $(-R,^,^) |<ei, 

| sin^^os^ — costpi) \< 62, 

R = k + OCAT1)], 

where cos^i = pm(Q)/2R, cos tpi = (p2(0)-2pg(0)\\kcos$)(2kpq(0)±sm'&)-1, 
$(R,0,0) = (2Rr1p^(0)Mx), ii = k-Z-lp^{$)/2, and £2 = 
A:~<5~1pg(0)±

1. We will prove that from the inequality 

(7.8) | cos^ - cosh + *(£, J>,(p)\< ii 

it follows that 

(7.9) | cos??-cost?i \<ii. 

Indeed, it is easy to see that 

(7.10) 
a$ 

dcostf 
lufi ^Ithn^sm^k 
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Suppose that for all ?? satisfying inequality (7.8) the following estimate holds: 

(7.11) <?:|pm(0)sin??| > 2k6, 

Then (7.9) follows from (7.8). If for some # we have the opposite inequality 
|pm(0)sin^| < 2k6, then (7.8) gives 

(7.12) cosi?i = l + O(p-2(0)fc26). 

On the other hand 

(7.13) cos^i =Pm(0)/2fc. 

by the definition of #i. By hypothesis pm(0) > k?6\ 2k -pm(0) > Ar1+3<5. It 
is not hard to show, using the last two inequalities that the inequalities (7.12) 
and (7.13) are in contradiction. Thus, (7.11) is proved, and therefore esti- 
mate (7.9) holds. Using inequality (7.8) instead of (7.9) in relation (7.7), we 
get: 

(7.14) Mn(A^ + (5)nnm(fc,0c 

{x :| cost? -cos^i |< £1, | sintf^cosy? — cos</?i) | ??i < ^R = fc + 0(fc"'1)}. 

Thus, we arrive to the case of a plane layer. This was considered be- 
fore in the proof of Lemma 5 in [8]. Thus, we obtain estimate (6.29). 
The lemma is proved. 

7.2. Appendix 2. 

Considering formulae (6.45) and (6.49) we get: 

Q1^ C {m : p^ > k26,3x e Sq(k, -6) : ||rr|2 - \x+pm(0)\2 + <po(x)\ < AT1^, 

(7.15) l(z + Pm(0),pH0))| < 2k1-6n-106} . 

Let us prove that 

Qni C {y : 2p(y) > k26, 3XQ e So : \y - xo\ = fc, 
(7.16) |(» - a*, j7i(0))| < 4fc1-^10^ + AkMyMy))-1'2}, 

where So the middle circle of the layer Sq(k, —6): 

(7.17) So = {a?, x € Sg{k, -6), \x\2 -\x+ pg(0)|2 = 0}. 
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Indeed, let y e Qnr Hence, there exists Pm(0) : \pm(0) - y| < A, Pm(0) e 
Q^. Estimate (6.59) means that the distance from the point y to the circle 
5o is less than k — k2S/2. Therefore the sphere of the radius k centered at 
the point y intersects the circle So at two points x±: 

(7.18) \y-x±\=k,  z±eSo. 

It remains to prove that 

(7.19) 
1(0 - z±,Pi(0))| < ik1-6"-106 + k1+26(r(v)p(v))-^. 

Since m e <3ni> by the definition of Q^ there exists x € Sq(k, 6) such that 

(7.20) \k2 + ^(a:) - \x + pm(0)\2\ < k-1+Sn 

and 

(7.21) \{x+Vrn{0)Mm<kl-6n-m. 

From estimate (7.20), using the obvious inequalities |j?m(0) - y\ < A and 
\(p(x) - <P(XQ)\ < \\V\l we get that the point x is in the (2A + \\V\\)- 
neighbourhood of the sphere centered at y with radius A;, i.e., in the spherical 
shell {x: ||y-a:|-fc| < 2,4 + 211^11}. We show (see Appendix 2A) that the 
intersection of this spherical shell and the quasi-spherical layer Sq(k, —6) lies 
in the (A;1"l"<5(r(y)p(y))~1/2)-neighbourhood of the points x±. Thus, x lies in 
this neighbourhood, i.e., 

(7.22) l*-a*l<*1-w(r(y)p(y))-1/*, 

where xo one of the points x±. Considering (7.21), (7.22), we arrive at (7.19) 
and, therefore (7.17). 

7.3. Appendix 2A. 

. Suppose x is in the intersection of the 2(A + ||F||^neighbourhood of 
the sphere of radius k centered at the point y and the layer 5g(fc, —6). We 
prove that x is in the (fc1+<5(p(y)r(y))'"1/2)-neighbourhood of the points x± 
defined by (7.17), (7.18); i.e., 

(7.23) Ix-xol^k^WyMy))-1/2, 

where xo is one of the points x±. 
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We direct axis xi along Pq(0); axis X2 is situated in the plane of the 
vectors Pq(0), y and directed so that the projection of y on this axis is positive 
(the vectors Pq(0) and y are linearly independent because p(y) > k26). The 
axis xs is orthogonal to the axes xi, X2. In this coordinate system vector y 
has the form: (z,r, 0). It is clear that vector x satisfies the relations 

(7.24) 
x\ — a, 

xl + xl — k2 + <£o(a) — a2, 
(z-a)2 + {r-X2)2 + xl = (k-l)2 

for some a,I : \a\ < ks, \l\ < 2(\\V\\ + A). Note that vector XQ satisfies the 
same relations with a = pq(0)/2 and I = 0: 

(7.25) 

301 = P«(0)/2, 

PffO 
(z -pq(0)/2)2 + (r - X02)2 + 4i = fc2- 

x2
02 + x2

03 = k'2,    k'2 = k2+ <po(pq(0)) - pq(0)2/4, 

We prove that 

(7.26) 
dx 
da 

+ dx 
dl 

< 
12k 

VpiyMv) 
Then, inequality (7.23) easily follows from relations (7.24)-(7.26). Let us 
now prove (7.26). Thus, we calculate dx/dl. By differentiation of equa- 
tions (7.24) we obtain 

dx\ 
= 0, 

(7.27) 

(7.28) 

9x2 ,      dxz 

(x2-r)^+xa^ = k-l. 

We consider this as a linear system with respect to 8x2/dl, dxs/dl.   Its 
determinant is: 

(7.29) 

Therefore, 

(7.30) 

A = 
Y  %2 X3  \ 
\\ X2-r   xz ) 

= rx3. 

3X2 
In -{k-l)r-\ 
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(7.31) i£*     ^(fc-Qr-i,,.: 

Prom the relations (7.30) and (7.31), taking into account that dx\/dl = 0, 
we get 

(7.32) 

/(f^)2+(^)2 = (* - Or-W*2-«)(«)-a2 < 2k2r-W- 

2        /Q^\2        /Q_\2 
^i\ (dX2\ fdX3\     ^r>u2-l   -1 

Similarly, 

<7-33>    vw +w +m <2kr x 

Next, we prove that rx^ > kpl/2r1/2. Prom (7.24) we easily obtain 

(7.34) xi + a% = R\, 

(7.35) xl + {r-X2)2 = Rl 

where 
i?f = k2 — <po(a) — a2, 

I% = (k-lf-{z- a)2. 

Hence, 

(7.36) (r - 2x2)r = R2- R2, 

i.e., 

(7.37) -2X2 = {(Rl - R2) - r2) r"1. 

From relations (7.34) and (7.37) we get 

(7.38) 4 = Rl-(I%-Rl- r2)2/4r2. 

Thus, 

(7.39) 
4xy = mlr2 - (il| -Rl- r2)2 = -r4 + 2(i?2 + i?2)r2 - (ij| - R\)2. 
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Considering the right as a polynomial with respect to r, we obtain 

(7.40) 4xjr2 = -(r - y1+)(r - yi-)(r - y2+)(r - jfc.), 

where yi±, y2± are the roots of the polynomial 

(7.41) 

yi+ = Ri + #2,   2/1- = -(Ri + #2),     2/2+ = #1 - #2,   2/2- = #2 - Ri- 

We define pa so that k — I — Pa is the distance between the point y and the 
circle {x : xi = a^x^ + #3 = -Rf}. Then pa satisfies the equation 

(7.42) (k - I - pa)2 = (Ri - rf + {z- a)2. 

It is easily follows from the last relation and the formula for R2 that 

2(k-l)pa-pl = (k-l)2-{Ri-r)2-{z-a)2 = {R2-Ri+r){R2+Rl-r) = 

(7.43) =_(r-j,2+)(r-j/1+). 

Note that \k — I — pa — k + p\ < a + 0(afc"'1)) since the circles iSb and Sa 
are separated the distance a + 0(ak~1). Hence, \p — Pa\ <2a + l. From the 
relation p > k8, it follows that 2pa > p. Considering the inequality pa < k, 
we obtain 

(7.44) 2(k-l)pa-pl>pk/2. 

Relations (7.43) and (7.44) together give: 

(7.45) pk < -2(r - 2/2+)(r - yi+). 

Note that 

(7.46) r - yi_ = r + Ri + R2 > Ri > k/2. 

Suppose z > k2S. Then, R2 < JRI, because a < ks. Therefore, 2/2- < 0 and, 
naturally, 

(7.47) r - 2/2- > r. 

liz< k26, then i?2 - Ri = ©(A:46""1) and using that 2r> p> k26:, we obtain 
r — y2- > F/2. Therefore, 

(7.48) r-y2- >r/2. 
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Substituting inequalities (7.45), (7.46) and (7.48) in the relation (7.40), we 
get 

4xlr2 > pk2r/8. 

Hence, 
6xsr > ky/pr. 

Using the last relation in inequalities (7.32) and (7.33) we obtain (7.26). 
Thus, estimate (7.23) is proved. 

7.4. Appendix 3. 

. We prove the estimate 

(7.49) Ji < ck2-nS-96 

Firstly, suppose $(0) and pq(0) are linearly independent. We introduce the 
cylindrical coordinates 2, r, #, where z is directed alone Pg(0), and angle # is 
assumed to be zero on the projection of the vector pi(0) on the plane z = 0. 
In these coordinates 

(7r{n\ #(0) = (72,71,0), 
1      ; xo = (pq(0)/2,U,#o), xoeSo, 

where 

(7.51) k' = <JkZ-ipo(xo)-P
2(0)/4, 

72 is the projection of the vector $(0) onto pg(0) and 71 = JpfiO) —72- 

Note that in the cylindrical coordinates Q^ is described as follows: 

QL = {y = (r, z, &) : p(y) > k2S, 3i?o : r2 - 2rk' cos(i? - 0o) + z'2 = b, 
(7.52) 171(7-cos 1? - fc'cos^o) + 72^1 < 4A;1-^n + A;1+*(rp)-1/2}, 

b = k2-k'2 = <po{xo)+p2(0)/4. 

Taking into account that 

(7.53) (p - k)2 = (r - k')2 + z'2, 

we get that the relation r2 — 2rk' cos(^ — t^o) + z'2 = b can be rewritten in 
the form: 

(7.54) r(l - cos(ti - tfo)) = P (^T2 
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Thus, 

Q'm = {y = (r, z^):p>ks, Btfo : r(l - cosC^ - ^o)) = '>(*~P/2), 

(7.55) |7i(rcos0 - ifc'cos^o) + 72^1 < ik1-*"-28 + k^fjrp)-1^}. 

To calculate Ii we change the variables: r, z, ft —> i?o, I, ft 

(7.56) I = 7ir cos i? + 722', 

r2 + z'2 -b 
(7.57) cos(fl - t^o) =       0 ,, ,   -7r/2 < 1? - ^o < 7r/2. 

We describe the set Q^ in the new coordinates.    It follows from for- 
mula (7.54) and relations k2S < p(y) < k and r(y) < 2k that 

(7.58) 2(1 - cos(tf - fto)) > k-1+2S. 

Thus, 

(7.59) Qli C{y = (fto,l,ft)-.0 <ft <2n, 

{l-^k'cosftol < 4k1-6n-los+k1+2S(r(y)p(y))-1/2,2(l-cos(ft-fto)) > k-1+2S}. 

Thedeterminant corresponding to this change of variables is given by the 
following calculation: 

D(y) = 
dr        dz 

z'2-b     M 
^5 r 

71 cos 1?     72 

-1   z'  —0     zz' 
r2 r 

2A;/sin(^-i?o) 

72 (r2 + z'2 - b) 
k'rsinffl — #o) 

I z'ji cost? — 72^ + 
2r 

(7.60) 
\zf/yi cos # — 72r + 72 A/ cos(i9 — i?o)| 

fcV sin(i? — ??o) 

Introducing the new coordinate 77 orthogonal to / in the plane of variables 
z' and r: 

(7.61) rj = z'li cos 1? — 72'r, 



400 Yulia Karpeshina 

and defining a, ai and ai by the formulae:   d = A/TI COS
2
?? + 72, 0^1 

d"17icos^, and #2 = d~172, we obtain 

,7 fi9x n, A _ la(y?a"1 + a2fc/cos(^-^o))| 

To estimate D{y) we rewrite (7.57) in the form 

(r - ifcosCt? - i?o))2 + 2/2 = A;'2 cos2(t? - i?o) + 6. 

Using formulae (7.56) and (7.61) for I and 77, we obtain that 

(rt - aiA/ cos(i? - tfo))2 + (a-1?? + 02Jf cos(0 - i?o))2 = 

(7.63) A;/2cos2(i?-i?o) + &. 

Prom this, using the relation (7.59) and taking into account that 

(7.64) Z = 7iA:/costfo + r, 

|f| < 2A;1-*1-10* + Jb^Crp)"1/2, 

we obtain the estimate for the determinant: 

(7.65) D > (r sm(0 - tfo))"VM^o,0» 

where 

/(t?,i?o,0 = 

(7.66) 
a2 cos2(i? - i?o) - (71 costfo - 7icos#cos(i? - i?o) + VA;')2 + a2M:'~2. 

Using relation (7.66), we get the estimate for the integral: 

r2 sin(0 - t?o) (7.67) /! < / zdtfdtiodl. 

It follows from relations (7.54), (6.60) and the estimate p > k2S that 

(7.68) k-1+26 < r/p < 2(1 - cos(0 - ^o))"1- 
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Using this relation and producing the change of the variable #o -* r, r = 
cos(i? — i?o), we get 

(7.69) h < f 
JQI. Qlmy/mr,l)(l-T) 

drdMl. 

Taking into account formula (7.59) for <5rm, it is not hard to show that 
h < h + h, where h and h are the integrals over uz and uz given by: 

wa = {y : 0 < i? < 27r, |i - Tifc'costfol < Sfc1-5"-^, 2(1 - r) > Ar1+26}, 

0,3 = {y : 0 < i? < 27r, |/ - 7ifc'cosi?o| < fc1+6(rp)-1/2, 2(1 - r) > A;-1+2*}. 

Integrating with respect to I and taking into account (7.68), we obtain 

(7.70) 

/2<fc max^        (1_r)1/2yo     jj^^jy 

(7.7i)     h<k^max[
i-To-^r-M 

K     J i   Jo      1-TJO   vTOiiv 

rl-ro    dr      ^27r  

^): 

where ro = k~1+26/2. It is not hard to show that 

/(tf, r, I) = 7lr2 + 7?r2 cos2 0 - ^(1 - r2) sin21? 

+271A;'-1^! - T2
 sin i? + Pfc'-2 + k'~2b(^ + 7? cos21?) = 

(7.72) -(MI sin2 0 + 2a sin 0 + 0), 

where 

(7.73) a = -^lAT^Vl-T2, 

(7.74) 0 = -(7? + 72
2
)T

2
 - k'-2P - (7? + 7!)k'-2b, 

(7.75) Aii=7i(l + fc,"26). 

We show in Appendix 3A that integral with respect to $ has only logarithmic 
singularities in some points rn = Tn(l), I = 1,2,3,4. Therefore, 

z-,^ /■1_To     dT      f2* M      ,2s 
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Hence, h < k2-Sn-8S. Similarly, we prove that h < k1+26. Thus, 

(7.77) h < 2k2-Sn-8S,   when 71 ^ 0. 

If 7i = 0, then we direct the semiaxis ■& = 0 arbitrary. It is not hard to show 
/(tf, tfo, I) = h\2T2 + fc'-2/2 + k'-2\^\2b2. Therefore, 

I<kf dl (l~T0 -  2~     yUKifci-'-iM      y0 (l_T)l/2(|7|2T2 + jfc/-2/2 + ^-2^2^)1/2 

(7.78) <A;/ \nldl<k2-en-*8. 
J\i\- i\i\<ki- -Sn-WS k 

Similarly, I3 < k1+2S. Therefore, Ji < k2-Sn-9S for any #(0), Pi(0) < Jb*. 
The estimate (7.49) is proved. 

7.5. Appendix 3A. 

We prove that for 71 7^ 0 

(7.79) 

/= /    /(#,T,0~1/2di? = y>ln(T-Ti(0)+co,   Ci^CiW, i = 0,1,2,3,4. 

It is clear that 

** dip 
I 

^/(smip — bi) (sin tp — 62) 

v=my-ix/(i-(e2)^-6i)^-62)' 

h — bi(l,T), i = l,2. 

It is easy to see from the linear independence of Pi(0) and ^(0) that 
17! I > k-2S. Suppose MH^il"1 > 1/2. Then, in formulae (7.73)-(7.75)) 
a^T1 = o(l), 0HY1 = 7r2|7|2T2 + o(l); therefore 61 « 7r1|7k > V2> 
62 « — 7J"

1
|7|T < —1/2. Considering the last two equations, it is not hard 

to show that 
J<cIn|l-&i(Z,T)||l+&2(J,r)|. 
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We see that / has singularities on the curves 6I(Z,T) = 1 and b^il^r) — -1. 
It is not hard to show that these equation are satisfied by roots TI+, TI_, T2+ 
and T2- of a polynomial of the fourth power and rf^db = 7i M"2 + 0(1)> The 
function (1 — &I(Z,T))(1 + &2(J,T)) is infinitely differentiable in these points, 
because 

(1 - 6i(Z, r))(l + 62(/, r)) = (1 - ^tf-P? - a\ 

6? = -^-la2 = Pk'-2(l-T2) - o(l), 

-i9 = Air1i9 = 7r2l7|2r2 + o(l)«l. 

Taking into account that (1 —6i(Z,r))(l+62(^/7")) is differentiable, we obtain 
estimate (7.79). 

If iN""1-?- < 1/2, then |1 - bi\ > 1/4, |1 + 6i| > 1/4. It follows from 
relation (7.80) that 

/<l7ir2ln|6i-62|=ln|a2-/3|. 

Taking into account that a2 — p is a quadratic polynomial with respect to 
r, it is not hard to prove estimate (7.79). 

k 
ni 7.6. Appendix 4 (formulae in the cylindrical coordinates for Q; 

andfe £;>2). 

Suppose Pi(0) and pq{0) are linearly independent. We introduce the 
cylindrical coordinates z, r, #, where z is directed alone p^(0), and angle # is 
assumed to be zero on the projection of the vector pi(0) on the plane z = 0. 
In these coordinates 

f7on #(0) = (72,7i,0), 
[      ; a:o = (p(r(0)/2,fc/,tfo),.a:o€5o, 

where &/ is given by (6.35), 72 is the projection of the vector $(0) onto Pg(0) 

and 71 = y/pfiO)-^. 

We prove that Q^ and Q^, k — 2,3,4,5,6,7 are described by similar 
formulae: 

Qni C {m : \^(rm-k>)Z + z>J-k\ < ks, 

(7.82) 

l7i(nn - Jb) cos0m + 72im| < 2A;1-5n-105 + Jb^^r"1/2}; 
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Qli C {y = (z,r,i?) : \y/(r - U)* + zf2 - k\ < 2k26, 

(7.83) |7i(r - fycosti + ^z] < 2k1-Sn-10S+k1+sr^2}. 

Indeed, the polar coordinates of a point x in Sq(k, -6) are 

(7 RA\ ^ = (a, A;, tfo),   k = y/k2-a2-<po(a), 
V     * \a\<k6,0<&o<2n- 

If m G Q™, then relation (6.45) holds.   This means that for some x in 

(rm cos tim-k cos tfo)2 + (rm sin tim-k sin ??o)2 + (^m - a)2 

(7.85) -fc2-^o(a) + 0(fc-1+^), 

(7.86) 
l-<5n-10<5 17i(rm cos tim-k cos #o) + 72(<Zm - a) | < fc 

^m? ^m, ^m being the polar coordinates of the vector — pm(0).   If m G 
ul=2Qnv then Pmg < A;2*, i.e., (see (7.53)) 

(7.87) \y/(rm-H)* + zU2-k\<k?'. 

Using relations (7.85)-(7.87) and the inequalities |a| < ks, 1 - 5n —105 > 5, 
we easily show that for k = 2,3,4,5,6,7 

<& C {m : 3^o : \y/(rm - U)* + ztf - k\ < k2\ 

|7I(rmcost?m -fccos tfo) +72^1 < 2kl-6n'm6, 

(7.88) Ir^ - 2rmfc cos(tfm - Vo) +&- a2\ < 4k'1+Sn}, 

From the last equality in the right part of (7.88) and (7.53) we obtain 

(7.89) 
2rm(A;/ - k cos(i?m - do)) = pmq^k - p^) + 0(k26). 
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Prom this relation we easily get: 

(7.90) rm(l - cos(tfm - 0o)) < k36. 

Thus, for jb = 2,3,4,5,6,7 

Q^i C {m : l^m-^ + ^'-fcl < k26,3Vo : rm(l-cos(*m-tfo)) < fc3*, 

(7.91) |7i(^mCosi?m - fccos^o) +72^m| < 2A;1"6n-1(W}. 

Prom inequality (7.90) we obtain that | cos^m - cos^ol < 2k26r~1/2. Thus, 
we arrive at (7.82). If y = (j2;,r,^) is in the A-neighborhood of Pm(0), 
^ € Qni, k = 2,3,4,5,6,7, then 

\rm - r\ < A, 
(7.92) |*m - ^| < A, 

| cos iDm - cos i?| < 2A/r. 

It is clear now that formula for Q^ (A-neighborhood of Q^J coincides with 
formula (7.82) with respect to constant factors, namely, (7.83) holds. 

7.7. Appendix 5. 

We prove that 

(7.93) V(Q2
ni) < fcH-3*(fci-n*-io6 + ki/2+M)m 

Indeed, from (7.83), taking into account that 2r > fc1"6* when y e Q^, we 

(7.94) Q2
ni C {y : 0 < if < 27r, (r, z) G M^, 

where M# is the intersection of a plane layer and a ring in the plane of the 
variables r and z: 

(7-95) 

M# = {r,z: \y/(kf - r)2 + z'2 - k\ <2k2S,\'n(r-k)costi+ ^1 <h}, 

h = 2k1-nS-10S+2k1/2+46. 
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It is clear that 

/»27r p /'27r 

(7.96) ViQli) <        M       rdrdz <k        s(Mv)d<&, 
Jo JM# JO 

r27r r /'27r 

/ 

where s(M#) < ck^mmlhd^^Sk}. Taking into account the obvious in- 
equality 

minlfea"1,3k} < 2h(d + AT1)"1, 

we obtain 

(7.97) 5(M^) < 
V^7i cos21? + 71 + A;- 

Using estimate (7.97) in the inequality (7.96) and integrating with respect 
to i? yields formula (7.93). 

7.8. Appendix 6. 

We prove the estimate: 

(7.98) h<dkl/2-n6-96 + 4k2€. 

Suppose pi(0) and Pq(0) are linearly independent. As in Appendix 4 we use 
the cylindrical coordinates z, r, #, where z is directed alone Pq(0), and angle 
# is assumed to be zero on the projection of the vector $(0) on the plane 
z = 0. In these coordinates 

/7qQN #(0) = (72,71,0), 

where k' is given by (7.51), 72 is the projection of the vector $(0) onto Pg(0) 

and 71 = yPiiO) — 7|. Using formula (6.37) for the linearly independent 

vectors $(0), Pg(0), it is easy to show that I71I > k"6. We represent Is in 
the form I3 = j£ + /^, i£ being the integral over the region r > k36. Let us 
consider J3. Taking into account that |r| < 2k1~66 and p < 2k26, from the 
relation (6.76) we obtain the estimates: 

(7.100) z = y/{2kf - r)r + Oik1'2*6^1'2), 

(7.101) 2z > ^(2kf - r)r > klI2rll2. 
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Considering (7.100) and the last estimate in (7.83) and taking into account 
that |72/7r1| < k6, we verify that 

(7.102) |costf-£o(r)|<£i(r), 

&(r) = 727r1\/(2fc-r)r(fc - r)"1 = 0(£r26), 

7i6 W = 2Arn*-1(M + 4ksr'1/2. 

Producing in the integral Is the change of the variables z —> p (see (7.53)), 
we get 

(7-103) I^kf      ,      ^r^sM- 

Taking into account estimate (7.101) we show that 

(7.104) 4 < A;-1/4 /   r-1/4drdpd'&. 
JQL 

Integrating with respect to p and i? (see (7.102)), we obtain: 

(7.105) ^ < fc-1/4^ /   r-^^iWdr. 
Jo 

Evaluating the integral we get: 

(7.106) I'z < 2k1/2-nS-9S + 4k2S. 

Next, we consider Ig. It is not hard to show that z2 < 2k1+3S (see (7.53)), 
when r < k3S. Taking into account that 2\/r2 + z2 > k2S, when (r,z, i?) G 
Qli, we obtain l£ < fcVa+T*. Therefore, (7.98) holds when pi(0), pq(0) are 
linearly independent, i.e., 71 ^ 0. 

If 71 = 0, then it follows from formula (7.88) that 

(7.107) 

Ql C {m : |^(rm-fc02 + ^2-fc| < fc* |^m| < fc1"^-105}. 

From this we obtain: 

(7.108)   
Qli C {y : |V(^-fc')2+^2-fc| < 2fc25,|«| < 2fc1-,5ri-105}. 
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It is not hard to show that 

(7.109) Q3
ni C {y : |*| < 2k1-Sn-106, \r - r0(z)\ < k26}, 

ro(z) being uniquely determined from the relations z2 = ro(2k — ro), ro < 
k1'36. We use again formula (6.81). To estimate Is we again represent it as 
the sum I'3 + 1%. Using (7.101), we get 

ti<k-^ fr^drdz \3 -^ 
/■ 

Taking into account (7.108), it is not hard to check estimate (7.106). The 
integral I3 we estimate as before. Thus, inequality (7.98) holds for linearly 
dependent $(0), Pq(0) too. 

7.9. Appendix 7. 

We prove that 

(7.110) h<k7/4--Sn-6S + k1+2S. 

From the relations 4k2 -r^-z2, > k1*36, p < k26 and (7.53) it easily follows 
that 2k - r > (l/4)k36. Taking into account that 2k - r < k1'36 we obtain 
from (6.76) 

(7.111) |2| = y/(2k-r)r + 0(k1/2+26(2k - r)"1/2), 

(7.112) 2\z\>k1/2(2k-r)1/2, 

(7.113) 4k2 -r2-z2> k{2k - r). 

Suppose pi(0) and Pg(0) are linearly independent. As in Appendix 4 we 
used the cylindrical coordinates z,r, 1?, where z is directed alone ^(0), and 
angle # is assumed to be zero on the projection of the vector pi(0) on the 
plane z = 0. In these coordinates 

/7114N ft(0) = (72,71,0), 
1        ; a?o = (Pg(0)/2,fc/,tfo), ^oG5o, 

where k' is given by (7.51), 72 is the projection of the vector $(0) onto Pq{Q) 

and 71 = \/p2(0) — 7^  Using formula (6.37) for the linearly independent 
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vectors $(0), Pg(0), it is easy to show that I71I > k~6 Considering esti- 
mate (7.111), the second inequality on the right of (7.83) and the relation 
2k — r>k26

J we verify that 

(7.115) |cos0-$>(r)|<&J 

(7.116) 716 - 2k-^-26 + 2Ar1/2+*, 

£o being given by (7.102). Producing in the integral I4 the change of the 
variables z -+ p, and using estimate (7.113) we obtain: 

(7.117) h < fc5/4+* /   (2k - r)-3/4drdpdl}. 
Jo4. 

Integrating with respect to p (0 < p < ks), $ (see (7.115)) and r, 0 < r < 2k, 
we arrive at the inequality: J4 < fc3/2+<5^2- Using (7.116), we get 

(7.118) h < k?/2'"*-6 + fc1+2^   , 71 ^ 0. 

Suppose 71 = 0. Using (7.111), from relation (7.108) we obtain 

Qk
ni C {y : \z\ < 2k1-Sn-m, \r - ro(z)\ < k6}, 

where ro is uniquely determined from the relations k3S < 2k — ro < kl~ss, 
ro(2k — ro) = z2. Now, from relations (6.87) and (7.113), we get: 

(7.119) 

h < k3'4 I   (2k - ryWdrdzM < k7/4-Sn-6S, ^ = 0. 
JQii 

Estimates (7.118), (7.119) together give (7.110). 

7.10. Appendix 8. 

We prove that 

(7.120) ViQ^i) < k7^-Sn-es + kl+2S. 

It is not hard to show that the formula for Q^ is similar to that of Q^. It 
is clear that 

V(Q5
ni) = f   : 

Mi 
rdrdzM. 

Q6 
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We use formula (7.83) for Q^. Considering as above (see (7.115)), we show 
that | costf - &I < 6- From the relation 4k2 -r2 - z2 < fc1+3<* and (6.91) 
it follows that z2 < kl+38. Using (6.90), we obtain 2k - rm = 0(k36). 
Considering this estimate in the formula (7.102) for £o we show that , £o = 
o(l). Therefore, F(Q^) < cfc3/2+5^2 and (7.120) holds. 

7.11. Appendix 9. 

We estimate each term of the sum (6.117) and obtain the estimate 

(7.121) s(rq(k, F, 6)4q,) < cp-'m1-46, 

Using the estimate similar to (6.28) and considering as in the proof of 
Lemma 11, we verify that 

(7.122) E1 < cAT1/5-8^-1^)/!, 

/!= f {p(y)r{y))-l/2rdrdzdV, 
JQ 

Q being ^-neighbourhood of Q. Note that 

(7.123) 2kp -p2 = 2k!r -r2-z2 + 0(k46). 

Taking into account that r > p > k26, \z\ < 2k1/5 (see (6.116)), we obtain 
p > r/2 for y e Q. Therefore, 

h< I  drdzdi) < ck6/5. 
JQ 

Using this estimate in (7.122), we obtain 

(7.124) S1 < cp-Ht))*:1"4*- 

It is not hard to show, using (6.116) and (7.123) that Q2 = 0. Therefore, 
E2-0. 

We consider S3.   Since m e <23, then estimate (6.47) is valid.   From 
relation (7.123), taking into account that pmq < k28, we obtain 

(7.125) p2
m(0) =r2

m + z2
m = 2rmk + 0(k1+2S). 

Taking into account this inequality, and considering that rm < k1'6, 
\z\ < 2A;1/5, we obtain 4k2 - p^(0) > k2. Using the last estimate in in- 
equality (6.47), we get 

(7.126) 

s (Sq(k, -6) n I4(A;, 1/5 + 8(5)) < cfc4/5-7%-1(0)p-3/2(0). 
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Substituting estimate (7.126) in formula for S3, we obtain: 

(7.127) S3 < Cfc4/6-7V(0) E P-(0)-3/2. 
m€Q3 

Since pm(0) > k26, when m e Q3, the series on the right of estimate (7.127) 
can be estimated by the integral 

(7.128) E3 < ck4'*-7^-1®!*. 

(7.129) h = f    r(r2 + z2)-^AdrdzM. 

Prom the relations p < k2S, \z\ < fc1/5 and (7.123) it follows that r < ck2S:. 
Using that pm(0) > k2S, we obtain I3 < k1/5*26. Therefore, 

(7.130) E3 < cp-^O)!*1-4*, 

We estimate E4. Since m e Q4, estimate (6.29) is valid. Using relations 
Pm(0) > rm > k, Pq(0) < ks, we rewrite estimate (6.29) in the form: 

(7.131) 

8 (Sq(k, -8) n nm(fc, 1/5 + 86)) < cp-\V)k-l,*-U{M2 -r2
m- ^)-1/4. 

Using estimate (7.131) in formula for S4, we obtain 

(7.132) 

S4 < cp-\0)k-^-7S E (4fc2 " & - ^)"1/4- 
m€Q4 

It is clear that Q4 can be described by a formula similar to the formula for 
Q4. Since 4k2 -r^n-z^n> A:1+26, when m G Q4, the series on the right 
of (7.132) can be estimated by the integral 

(7.133) E4 < cp-\Q)k-ll*-7*h, 

rdrdzd'd 
(7.134) h = f 

Jo Q4 (4k2-^-z2)1/*' 

From the relations \z\ < A:1/5, p < k26 and (7.123) it is easily follows that 
2k-r<k36. Therefore, 

I4 < ck 
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and 

(7.135) E4 < cp-^k1'46. 

Let us consider S5.   We prove that 4k2 - p^(0) > A:"1+3<5.   Indeed, us- 
ing (7.53), we obtain 

(2A/ - rm)rm = z'^ + Ip^k -p2
rrui + 0(k26). 

Therefore, 

(7.136) 
4k2 -r2

m-zl = (z'J + 2pm/1k -p2
r^ + 0(k26))(2k + r^r"1 - 4 > 4 > fc4'- 

Prom this 2fc - pm(0) > A:-1+3<5.   Thus, estimate (6.29) is valid.   Using 
relations Pm(0) > rm> k, pq(0) < k6, (6.91) and (7.135) we obtain 

(7.137) E5 < Ar1/5"7^-1^) ^ 1- 
Q5 

It is clear that 

(7.138) E5 < k-^-^p-^OMQ5), 

Q5 being the ^-neighbourhood of Q5.   Obviously, the formula for Q5 is 
similar to that for Q5 and 

Q5 

From the relation 4A;2 -r2 -z2 < k1+36 (see (6.123)) and (7.53) it follows 
that 

2k - r = -p + p2/2k + Oik36) = 0(kS6). 

Taking into account that \z\ < fc1/5, we obtain 

^(Q5) < ckW+S6. 

Using this estimate in (7.138), we get 

(7.139) E5 < cp^Wk1'46. 

The sums Ee and E7 can be estimated just as Efn, Ejn in Lemma 11. Adding 
the inequalities for Efc we get (7.121). 
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