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1. Introduction. 

In a recent paper [7], two of the authors2 of this paper used the theory 
of theta constants with rational characteristics to study automorphic forms 
and functions for the prime level principal congruence subgroups T(k) of the 
modular group T. A byproduct of this investigation was a new cubic theta 
constant identity, and explicit mappings of the Riemann surfaces EP/I^fc) 
onto punctured spheres for the cases k = 3, 53. In [5] this theory is extended 
from primes to arbitrary positive integers. One of the main tools used is 
the association of theta characteristics to the cusps of the group. This again 
leads to new theta constant identities and explicit construction of covering 
maps for the cases k = 4 and 6. In this second paper, much of the theory is 
extended to two other families of groups: G(k) and ro(A;). 

The cubic identity in [7] led to a paper [3] where a general k power 
identity was derived with k any odd positive integer. The techniques used 
in [7] also gave rise to identities of Ramanujan type [4]. The main theorem 
of [4] is a tool for the construction of quartic three term theta constant 
identities which we will, among other things, interpret in this paper. 

Many facts are known about the congruence subgroups of the modular 
group and the Riemann surfaces they define. For example, we learn from 
the theory of group representations that for every odd prime k > 3 (see 
[11]) the finite group r/T(k) admits a faithful representations as a subgroup 
of GL(^^,C); but no lower rank will do. We (almost) realize these repre- 
sentations using concrete Hilbert spaces of functions. We only get a repre- 
sentation p of r(k) into PGL(^i,C); however, the image group, p(r(A;)) 

1 Research by IK supported in part by NSF Grant DMS 9204092. Research by 
HF sponsored in part by the Edmund Landau Center for Research in Mathematical 
Analysis supported by the Minerva Foundation (Germany). 

2YK thanks R. Livne and A. Reznikov for the time and effort they devoted to 
a discussion of aspects of this work. 

3Notation from [7] and [5]. 

207 



208 Hershel M. Farkas, Yaacov Kopeliovich, and Irwin Kra 

consists of unitary matrices.   In particular, for odd fc, we shall obtain an 
_r> k — 3 

explicit holomorphic map of Hr/r(A;) into PC~2~, and a group of projective 
transformations of this space that is, for k prime, an isomorphic image of 
r/r(fc), the automorphism group of Rft/r(k). 

The novelty of our approach is in that we are able to connect the repre- 
sentation of T/r(k) to the geometry of the image of the compactification of 

the surface HI2/r(fc) in PC-^". While the representations in these dimen- 
sions were known previously there was no connection with the geometry of 
the curve. The very explicit form of the representation allows us, for exam- 
ple, to use the punctures on Hl2/r(A;) to obtain an ideal triangulation of this 
surface that contains significant geometric information about the surfaces 
represented by the congruence subgroups. Previously all that one knew was 
that the group operated transitively on the punctures. The fact the group 
now acts as isometrics in the projective space gives much more information. 

The functions which appear in our theory for k — 3, 5 are in fact the 
automorphic forms which appear in Ramanujan's theory of congruences for 
the partition function and the automorphic forms which appear in the cel- 
ebrated Rogers Ramanujan identities. This suggests that the ideas whose 
exploration is begun here are candidates for a great deal of further develop- 
ment. 

We give a partial description of the curve ]HI2/r(fc) sitting in projective 
fc-3 

space PC 2 in terms of theta constant identities. We obtain, for k prime, 
generators for the field of meromorphic functions on the compactification 
BP/r(fc) of e2/r(fc). This theory begins with the case k = 5; although 
in [7] we also obtained a representation of r/r(3) as a group of fractional 
linear transformations. Our work, especially for the case k — 5, overlaps, 
in part, with the study of Pricke-Klein [8, pg. 613, vol. I and pg. 383, 
vol. II]. See, in particular, [12] and [13] for classical work of F. Klein on 
related questions. Our methods and results are quite different and allow 
considerable generalization. We treated the case k = 5 in some detail in [7]; 
we present an alternate development which leads naturally to the appearance 
of the regular icosahedron, and suggests generalizations of the Platonic solids 
to be investigated in subsequent papers. We study in detail the case k = 
7 obtaining the classical uniformization of the Klein surface, the unique 
(see [17] and [18] and the literature quoted there) surface of genus 3 with 
automorphism group of order 168. We also trecbt the cases k = 11, 13 and 9; 
in part to suggest future directions for our research. The main point of the 
paper is to illustrate how the theory of rational characteristics is useful 
in concrete computations.   We are mostly interested in the study of the 
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holomorphic functions on the upper half plane 

for a restricted class of characteristics x and various positive integers kr\k. 
Whereas [7] and [5] considered the case k' = 1, this paper deals with k' = k. 
The more general case remains to be studied. We concentrate mostly on 
the case where k is an odd prime4; however, in some instances we lay the 
groundwork for a forthcoming in-depth study of the composite case. 

2. A prescription for obtaining the equations of the modular 
curves. 

2.1. The function field /C(IHP/r(Jfc)). 

The j-function on M2 is invariant under F; hence certainly under T(k). 
It defines a degree kn(k) function on the compact Riemann surface HP/r(A:) 
that is holomorphic on the punctured surface if /T(k). Choose any point a G 
HI2 not fixed by an elliptic element of F. Let us choose a set of representatives 

al>   •••J   akn(k) 

for the orbit {(T/T(k))(a)}. Let w be any meromorphic function on E?/T(k) 
produced as a ratio of theta constants. Such a function is regular (holomor- 
phic and nonzero) on E?/r(k). Assume that the kn(k) values {^(a^)} are 
distinct. We now construct a second meromorphic function 

kn(k) 
W=Y,-,—- f    J    Inn — mil 

3=1 
—f (w — w(aj))ki' 

where the positive integers kj are chosen so that the orders of the poles of 
W are distinct. Then the arguments in the proof of [6, Proposition IV.11.7] 
show that J, the projection of j to EP/r(A;), and W (hence also J and w) 
generate /C(E!2/r(fc)), the field of meromorphic functions on the compact 
Riemann surface Hl2/r(fc). Since it is difficult to produce the function w, we 
turn to other methods to find generators for the function field /C(]Hl2/r(A;)). 

4Throughout this paper k is an integer greater than 1. Unless otherwise stated, 
it represents a prime greater than 2. 
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2.2. Primitive pairs. 

Let M be a compact Riemann surface. Let 9Jt* be the set of analytic 
configurations (equivalence classes of convergent Puiseaux series). We are 
using the language and results from [6, §IV.ll]. Let z and w be two non- 
constant meromorphic functions on M (thus elements of/C(M)). These two 
functions define a nonconstant holomorphic map 

<p : M -> 9JI* 

such that for all x E M, 

(2.1) w(x) = eval((^(a;)) and z(x) = proj((^(a:)). 

We are interested in simple conditions that guarantee that the map <p is 
injective (equivalently, that z and w form a primitive pair on M or that 
they generate /C(M)). 

Proposition 2.1. Xetf 2r and w be nonconstant meromorphic functions on 
M. If deg z is prime and proj is not injective on (p(M), then ip is injective 
(on M). 

Proof. Prom the second equation in (2.1) we conclude that 

(2.2) deg z = (deg proj) (deg <p). 

If proj is one-to-one, <£>(M) is (conformally equivalent to) the Riemann 
sphere; otherwise, deg proj = deg z. O 

2.3. Zeros and poles. 

Let z and w be nonconstant meromorphic functions on the compact 
Riemann surface M. The map ip assigns to each point P E M, the Puiseaux 
series of w at P in terms of z. Assume we know the divisor (z) and the 
leading terms of the Laurent series expansion of w at the support of (z). 
Equation (2.1) or equivalently (2.2) is then a useful tool for determining 
when cp is injective. Prom the divisor (z) we easily compute deg z. We 
compute deg proj as the number of zeros (counting multiplicities) of the 
function proj on (p{M).   Let Pi, ..., Pr be a complete list of the distinct 
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zeros of z. Assume that w weakly separates these points in the sense that 
for 1 < i < j < r either 

(2.3) w(Pd ^ wiPj) or bw(Pi) y£ bwiPj), 

and for each i, 

(2.4) (bz(Pi) + l, bw(Pi) + l) = l. 

The first condition (2.3) tells us that the r Puiseaux series {cp(Pi); i = 
1, ..., r} are distinct; the second (2.4) allows us to compute the ramification 
number of proj at each Pi (from purely local data). We conclude that under 
these hypotheses, 

r 

deg proj = ^2(bz(Pi) + 1) = deg z; 
i=l 

which shows, of course, that cp is injective whenever (2.3) and (2.4) are 
satisfied. 

2.4. The degree of the map (p. 

Let t be a local coordinate vanishing at Pi such that in a neighborhood 
of Pi, 

z(t) = ta 

for the positive integer a = ordp^. Then (p(Pi) is a Puiseaux series of the 
form 

oo 

w(z) = J^CJZ*, /3 = ordp^. 

It now easily follows that if (p(P) = ^p(Pi) for some P € M, then z vanishes 
at P and hence P = Pi for some i, i = 1, ..., r. If, for example, 

ordp^ 7^ ordp^, 2 = 2, ..., r, 

and 

(ordp.w, ordp.z) = 1, 2 = 1, ..., r, 

then deg <p = 1. 
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3. Old theta identities. 

We list some basic identities among theta constants that we will use 
repeated' 

teristics 

(3.1) 

y. A 1 of them have analogues for theta functions. For all charac- 

= 9 

and if we also fix a pair of integers m and n, then 

(3-2) 

For all characteristics 

e + 2m 
ef + 2n 

= exp{men} 0 
€ 

G M2, all positive integers n, and all r G O2, 

(3-3) 
n-1 

(0,T) = X> 
J=0 

2Z+e 

ne 

Finally, for all characteristics x = 

SL(2,Z),andallr GO2, 

(0,n2T). 

E W1, all matrices 7 = 
a   b 
c   d 

(3-4) 

where 

%](0,7(T))=^(x,7)(cT + d)^[x7](0,r), 

«(x,7) = exp27rz i -jfae + ce')6d - ^(a^2 + cde/2 + 26cee/) \ K(0,7). 

Note that the ambiguity of sign in [7, (6)] is absorbed in the last term in the 
above product (since it is independent of x; but does depend on the choice 
of square root of (cr + d)). 

We will use the quasi-periodicity of the theta function [7, (1)] 

(3-5) 
x                   f ^e — me' m2   1   . f e 

{z + n 4- rar, r) = exp 2m < mz —— r > 0     , (^1^)1 
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for all n, m G Z, all z € C, all r E BP, and we will need to relate the value 
of the theta function (with a given characteristic) at a point of finite order 
on the torus to the value of a related theta constant [7, (2)] 

(3.6) 

for all a G R 

(err, r) = exp — m{a2T + aer} 6 
e +2a 

j (0,T), 

4. Primitive invariant automorphic forms. 

4.1. A Hilbert space of modified theta constants. 

Let V{k) be the finite dimensional vector space of holomorphic functions 
on H2 spanned by the modified theta constants 

where the characteristic5 xi — 

21 

21+1 
k 
1 

,  / = 0,  ...,   ^o^, for odd k and 

Xl k 
0 

, I = 0, ..., |, for even k. Define V0(k) to be the linear span of 

those modified theta constants <pi for which the characteristic xi 6 X0(k)6. 

Lemma 4.1. For each k G Z, k > 1, 

fc — 1 A; 
dim y(fc) = —-— for odd k and dim V(k) = - + 1 /or even fc. 

Proof. Note that in terms of the local coordinate described below 

(4.1) 
(21 + I)2 I2 

oidooipi = for odd k and ordoo^ = — for even k. □ 
8 2 

5The characteristic xo defined above and the characteristic Xo of [5] are related. 
For odd fc, xoA is equivalent to Xo- 

6 This symbol is defined in [5]. For the special case under consideration here it 
means that (21 4-1, k) = 1 if k = 1 mod 2, (21, k) = 2 and Z is even if k = 2 mod 4, 
and (2/, fc) = 2 and / is odd if k = 0 mod 4. 
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The modular group T acts on V(k) (Lemma 4.2). It does not act on V0(k) 
(Remark 3). We record for future use the useful observations concerning the 
Fourier series expansions of the modified theta constants have. In terms of 
C = exp {^f1} , r G O2, they are given by 

*«(C) = C    •     (expj-^j 

+ exp{7r^+
2fc

1-2fc)}cfc(^)  + -) 
/m(2l + l)\ .(JLtlf. (.       k(k-2i-i\ \ 

and hence (for lf also in Z with 0 < /' < ^) 

$ 

r1_cK^f^)+cK&*i) + 

Lemma 4.2. For eac/i 7 E F, the linear operator on functions 

7*:  /^(/°7)(7')1/4 

maps V(k) onto itself. 

Proof. In defining the operator 7*, we are making a specific choice for (7') 4. 
If we view 7 as an element of SL(2, C) (respectively, PSL(2, C)), the operator 
involves a choice of square (fourth) root of unity. Since for each 71 and 72 
inT, 

(4.2) (71 o 72)* = c (72)* o (7^*, 

where c is a fourth root of unity, it suffices to show that the operators defined 
by the generators B and A of F preserve V(k). 

Assume k is odd. We start with the generator B. For r E B2, we find 
from the transformation formulae [7, (6) and (3)] (or (3.4) and (3.2), above) 
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for theta constants that 

(4.3)    9 
2l+\ 

k 
1 (0,*(r + l)) = 

/T 2fcfci 1      ,\ 21+1 

1 + 21 + 2 + (Jb - 1) 

= c(JB,A;)exp{^(Z2 + /)}e 

(0,fcr) 

■ 2m 
it 
l 

(O.fcr); 

that is, 

B+itpi) = c{B, k) exp {j{l2 + /)} <ph c{B, k) = exp {£} . 

In the above and subsequent formulae 0(7, k) is a constant of absolute value 
1 that depends only on the transformation 7 G F and the integer A;. At 
times we specify the constant for future applications. 

The situation for the second generator A of F is both more complicated 
ciiid more interesting. Again for r G H2, 

(4.4) 

T-2 e 
21+1 i 

1 
o>-^)=c(iM)«p{^}0 21+1 

= c(i4, fc) exp {T}S» k       J 3=0 

2,7+1 
A: 

2/ + 1 
(0, fcr), c(il, fc) = -j= exp j TTZ— I. 

We have used (3.3) to obtain the last of the above equalities.   Now it is 
obvious that the last expression can be rewritten as 

fc-3 
2 

j=0 

2j+l 
k 
1 

(0,kT). 

In the last expression the numbers Cj (that depend on A, A;, and j) are easily 
computed. We can rewrite our last equation as 

fc-3 

A* ^=V^k eXP I m2k J ? i4y¥'i 

Lengthy but routine calculations show that 

(4.5) 

.Ay = exp < 2in ^      ' \ + exp -j -m- \ exp i -2^^        ^ I 
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Define A as the ^ x ^ matrix whose Ij entry, Z,j = 0,  ...,   K^, is 

(exp {TT^^}) My If for z G M2, we choose the branch of z* to have positive 
imaginary part, then we conclude that A^ = —a/. In particular, we see that 
A~l = %A*. If we identify the operator A* with the matrix that represents 
it with respect to the basis {<po, ■••, ^i^}, then we see that 

2 

A.= 
x/zfc 

^4 and A2 == hi. 

The matrix A is obviously hermitian (that is, A = tA). It now follows 
easily that A* is unitary (that is, A~l = *A+). The matrix representing 
the operator 5* is obviously unitary. Hence for all 7 G F, the matrix 
representing 7* is unitary7. 

For even fc, the formulae corresponding to (4.3) and (4.4) are 

r 2[ 
k (0,fe(T + l)) =c{B,k)exp {mlk}{ 

21 
k 
0 

(0,*T), 

and 

respectively. 

r"2 e 
2[ 
A: 
0 A;   /        ^=0 

22 
k 
0 

(0,fcr), 

n 

Remark 1. The transformation formula for B* shows that w is an eigen- 
vector for 5*; this formula and the one for A* will facilitate computations of 
the divisors of certain r(A;)-automoriMc functions, as well as the images of 

fe-3 
the punctures on HI2/r(fc) under a holomorphic map $ : IH2/r(fc) -► PC 2 
that will be defined in §4.3. 

4.2, A second Hilbert space of modified theta constants. 

For k € Z"1", let W(k) be the finite dimensional vector space of holomor- 
phic functions on M2 spanned by the modified theta constants 

(4.6) r i-» ^(r)=exp{«^}fl|x»](0>l)> 

7The next subsection contains a second proof of this assertion. The next propo- 
sition gives an orthogonal basis for V(k). 
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where the characteristic xi — 

Xl '- 

1 
21+1 

k 
,  / = 0,   ...,   ^, for odd k and 

0 

k   J 

, I = 0, ..., |, for even A;. Define W0(A;) to be the linear span of 

those modified theta constants ^ for which the characteristic xi £ X0(k). 
Let us asume for the remainder of this subsection that k is an odd integer. 
The appropriate Fourier series expansion for these functions ^ is 

./(      J7r(2[+1)\ 
xC* 

f37r(2Z + l) 

2A:       I+COSV      2k }--) 
The spaces V(k) and ^(A;) become Hilbert spaces under the Petersson 

pairing 
dzdz 

<<P,il>>= /   / (Sz)   *<p(z)il>(z) 
J Jw/r(k) 

ip and if) both in either V(k) or W^A;). An easy calculation now shows that 
for each 7 G F, the linear operator 7* is unitary; that is, 

< 7*(¥>)i7*(^) >=< ¥>>^ >5 

for all 7 G F and all (p and ^ both in either V(k) or W(A;). Since A*(V(k)) = 
W(k) (because 

(4.7) 

for I = 0, 

A*((pi) = 
Vik 

ipl 

k-S 
•'      2 ), and A* preserves V(k), we conclude that V(k) = W(k). 

Proposition 4.3. For each odd prime k, the ^^ functions {(/?o, ..., c^fc-a} 
2 

/orm an orthogonal basis for the Hilbert space V(k). 

Proof. We compute for integers I and l' with 0 < lf < I < ^p, 

< <Ph<Pi' >=<B*((pi),B*((plf) >=exp| — (Z2 + Z-Z'2-Z/)j < ^,^/ > . 

Since k does not divide (/ — /')(/ + 1* + 1) we conclude that 

exp{^(Z2+Z-r2-0}^l, 
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and hence 

<<^,W>=0. 

We have reproven, in this setting, the well known fact that eigenvectors 
belonging to distinct eigenvalues are orthogomd. □ 

4.3. Projective representation of Aut KI2/r(A;). 

It is a consequence of (4.2) that we can define a homomorphism of F into 
the group of linear transformations of V(k) modulo nonzero multiples of the 
identity by sending 7 G T to the linear operator 7~1. We have hence a well 
defined homomorphism of F into the projective linear transformations of 

k — 3 
PV(fc)5 projectivized V(k), which can be identified, for odd A;, with PC~2~. 
Let 

0:  r-> AutPV^fc) 

denote this homomorphism. We have already observed that each <pi is an 
eigenvector for the operator B*. Except for k = 3, the operator B* has two 
or more distinct eigenvalues. Hence B is not in the kernel of 0 for A; 7^ 3. 
We claim that V(k) is in the kernel of 0 for odd k. We start with a slightly 
more general situation and use a "cheap (apparently classical) trick."   Let 

7 E T0(k) be represented by the matrix       _   , /    , _ ,) \     in SL(2, Z) 

(hence c is a multiple of A;). Therefore for r 6 IP, ^(r) = fc^g = ^g. 

It hence makes sense to associate to the motion 7 6 ro(k) another motion 

€ F, the full modular group8. Assume that k is odd. Observe 7 = f     d 

8
The map 7 *-> 7 is a group isomorphism of T0(k) onto ro(A;). The definition 

of this last symbol can surely be left to the reader. It is clear that * defines an 
automorphism of PSL(2,C) with the property that 

k<y(z) =Af{kz), 

and 
i(z) = 7'(M, 

for all 7 G  PSL(2, C) and all z 6 C U {oo}. The automorphism ~is conjugation by 
A*      0 
0     fc-i 
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that for the characteristic x = 
2m 

k 
1 

and r G H2, we have 

0[X](O, A;7(T))7'(T)4 = eM(0,7(*r))f (fcrji = K(X,7)%7](0,*T). 

One easily sees that the characteristic X7 is equivalent to 
2i/+l 

A; 
1 

for some 

integer /' with 0 < V < K^-.  Hence there is a permutation o = <77 of the 

integers in [0, ^"^ such ^at 

(4.8) 7*W = ^Xz>7)¥V(0> / = 0' !» 
fc-3 

(The constant k is a 2fc-th root of unity, and differs from K whenever Xa(l) ~ 
XH 7^ 0 as characteristics.) It is a lengthy, but routine, calculation to 
show that each <pi is an eigenvector of 7* provided that 7 G T(k) and that 
the eigenvalue is independent of I.   For even A:, one easily sees that the 

characteristic 
r 21 i 

k 
0 

7 with / G Z and 7 G ro(fc) is equivalent to 
2l!_ 
k 
0 

for 

some l' G Z.   However <£/ need NOT be an eigenvector for 7* even when 
7 G r(fc). However, for such motions, for I = 0, 1, ..., |, 7* maps (pi into a 
constant nonzero multiple of either cpi or (fk,. Hence we have obtained 

2 

Lemma 4.4. (a) For odd k, the vector space V{k) consists of e-automorphic 
functions for a factor of automorphy e for V{k) of weight ^. 
(b) For even k, each (fi, I = 0,  1, ...,  |; is mapped by 7*, 7 G r(A;), into a 
constant nonzero multiple of either (pi or ipk_v 

Remark 2.If k is an odd prime, and 71 and 72 belong to ro(fc), then cr71 = 
Gry0 if and only 0(71 o 72~1) = ±1 mod k. '72 

Remark 3.The above calculations have shown that V0(k) is ro(fc)-invariant. 
The Hilbert space V0{k) is not in general F-invariant (for example, from (4.5) 
we see that AQI 7^ 0 for all k > 3). 

Remark 4.The theory for even A;, leads to the appearence of new families 
of subgroups of F. Their study will be pursued elsewhere. 

Lemmas 4.2 and 4.4 tell us that for odd k we have a holomorphic map 
(see §7 for more details) 

fe-3 
$ :  HP/r(ib) -> PV(k) S PC—, 
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and, as observed before, that we have a homomorphism 

O :  Aut m2/T(k) ^ T/T(k) -> Aut PV(k). 

The two maps are related; see (7.2). It is important to determine conditions 
under which $ (hence also 0) is injective. See §7. 

Assume that k is odd. We have produced a homomorphism 

cr:r0(A;) -» Sk^, 
2 

where SN is the permutation group on the iV nonnegative integers {0, 1, ..., 
N — 1}, whose kernel contains G(k). For 7 e ro(fc), the ^ x ^^ matrix 
7* has precisely one nonzero entry in each column. For the column I = 
0, ..., ^^, the unique nonzero entry kixhl) is in the cr7(Z) row (rows are 
numbered 0 to ^^). Whereas cr7 depends only on 7 E ro(k)/G(k), k 
depends on 7 G ro(A;)/r(A:). Assume for the remainder of this section that 
k is an odd prime. 

Lemma 4.5. For each odd prime k, ro(k)/G(k) is a cyclic group of order 
k-l 

2   • 

Proof. We have the following inclusions of groups (with each group normal 
in the succeeding one): 

IXA:) < G(k) < T0(k). 

By the first isomorphism theorem of group theory 

T0(k)/G(k) - (r0(k)/r(k))/(G(k)/T(k)). 

The groups T0(k)/T(k) and G(k)/r(k) can be naturally identified with their 
images f 0(k) and G(k) in SL(2, Zfc) under reduction mod k. The group G(k) 
is cyclic of order k with generator B viewed as an element of SL(2, Z/-). The 
elements of the group f 0(k) are upper triangular. Therefore the problem 
is reduced to showing that the factor group of upper triangular elements in 
SL(2,Zfc) modulo the upper triangular elements with diagonal elements 1 

is a cyclic group. Let     n    ^     be an arbitrary upper triangular matrix in 

SL(2,Zfc). Then since 
0   d 

a   b 
0   d 

a   0 
0   d 

1    6a-1 

0'      1 
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it is clear that the coset decomposition of ro(k)/G(k) is of the form 

■Z?iG(A0, ..., Dk^1G{k)1 
2 

with Dj a diagonal matrix in SL(2, Z^). All that remains for us to do is show 
that the group of diagonal matrices in SL(2, Z^) is cyclic. For the diagonal 
terms of these matrices ad = 1 modulo k. Hence each a and d is unit in 
the field Z^. The group of units in Z^ is cyclic of order k — 1; so let a be 
a generator. Hence a*"1 = 1 in Z^, and no smaller integral power of a will 

k — 1 k — 1 
be the identity. It thus follows that a~2~ = — 1. Similarly, d~2~ = — 1. It 
follows that 

" a   0 

u 0   d 

has order *=! in PSL(2,Zfc). 
Let 7 E ro(fc) be a representative for the generator of the group 

ro(k)/G(k). This cyclic group of order ^^ acts transitively on the set of 
^i characteristics {xo? •••J Xtzi} (see [5]). It follows that a = <77 is cyclic 

permutation of the first ^^ nonnegative integers (in some order), and that 
hence that this permutation has no fixed points. □ 

5. Orders of automorphic forms at cusps. 

Our calculations of orders of automorphic forms are simplified by a num- 
ber of simple observations. For each odd k and / = 0, 1, ... or ^^, 

(5.1) oidy+icpi = ordyB*((pt) = ord^j, 

and 

(5.2) ord_i<^ = oidyA*(<pi) = ord^z, 
y 

for ally GQU{oo}. 

5.1. Calculations via T0(k). 

As remarked in [5], it is a consequence of [20, Proposition 1.43] that the 
cusps oo and 0 project to the two punctures on Hl2/ro(fc); thus every cusp 
in Q U {oo} is ro(A;)-equivalent to either oo or 0. 
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Lemma 5.1. Let 1 = 0, 1, ..., or ^.  Then 
(a) ord^ = |7 if the cusp x G Q U {oo} is T0(k)-equivalent to zero. 

(b) Let the cusp x G Q U {oo} be r(k)-equivalent to j-, j = 1, 2, ..., ^p 
(this is a complete list of representatives for the T(k)-equivalence classes of 
cusps that are Y0{k)-equivalent to infinity). Choose a 7 G Y0{k) such that 
7(00) = x. Then 

. (2(T7(0 + 1)2 

Proof For x = 0, part (a) is a consequence of (4.4). For any 7 G F, and 
every y G H2 U Q U {00}, we have 

ord7(2/)^ = ord2/(7*(/^). 

If we take y = 0 and 7 G ro(A;), then using (4.8) we obtain 

ord7(o)W = ordo<A77(o; 

which completes the proof of part (a). We next take y = 00 and 7 G ro(A;). 
Using (4.8), once again, and (4.1), we obtain 

^                        A                    A                  (2tr7(Q + l)2 

(5.3) ord7(oo)W = ordoo^i) = "— . 

D 

Definition 1. We will call a puncture on IHI2/r(fc) distinguished if it is the 
image under P of a cusp that is ro(fc)-equivalent to 00. This definition 
makes sense for arbitrary k. For k an odd prime, these are the punctures 

fa-'-1 **}■ 
Remark 5. The ^-^ punctures on HP/F^) split up into ^^ disjoint sets; 
one of these sets consists of the ^^ distinguished punctures, each fixed by B, 
and each of the other ^^ sets consists of k punctures, cyclically permuted 
by < B >. The k^^- nondistinguished punctures are ro(fc)/r(fc)-equivalent 
to PQ- 

Remark 6. The above lemma (except for the parenthetical remark) also 
holds for odd composite k. However, in the composite case there are cusps 
that are ro(A;)-equivalent to neither 0 nor 00. To compute the order of a 
modified theta constant at one of these cusps, we must use the methods 
discussed in next subsection. 
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Remark 7. We saw in [5] that if we identify the puncture PQQ with the 
class of the characteristic Xo? then for each 7 € F, the puncture P7-i(00) 
is naturally identified with the class of the characteristic Xo7- Similarly, 
if we identify the puncture PQQ with the class of the characteristic XoA 
or xo? the puncture -Py-i^) is naturally identified with the class of the 
characteristic xo7- Further, the distinguished punctures can be listed as 
Pi,,   with {71, ..., 7^} a complete set of representatives for the factor 

group G(k)\ T0(k). The corresponding list of characteristics is then TiA 
(the characteristics {xo? •••5 Yfc-3}). 

2 

Lemma 5.2. Let I be an integer with 0 <l < ^p. As x in the last lemma 
runs over representatives of the distinct T(k)-equivalence classes of cusps 
ro(k)-equivalent to oo; the corresponding integers <T7(Z) run over the non- 
negative integers {0, 1,  ...,  ^j^}. 

Proof. We use the fact that ro(k)/G(k) is cyclic of order %p and in one- 
to-one correspondence with the tower 7i in X0(k), the basis for V(k) given 
by the functions {<£>o,  •••, Vh^i}^ and the distinguished punctures {Poo = 

2 

#1, ..., Xfc-i} on B2/r(A;) determined by the cusps ro(A;)-equivalent to 00. 
2 

Choose a generator 7 of ro(k)/G(k). We reorder the punctures {£2? • • • 5 

Xk-i k if needed, so that ^(xi) = xi+i (we are using two identifications 

in this last equation: punctures are identified with cusps that project onto 
them, and addition is interpreted modulo ^p). Then we can rewrite (5.3) 
as 

,            (2^-1(/) + l)2 

ordXj(pi = , 

where a = cr7. Since < 7 > acts cyclically on the distinguished punc- 
tures {#1,  ..., xj^i} (or equivalently on the classes of the characteristics 

2 

{Xo>  •••5 Xkzi} in some order), for each Z, the powers of a evaluated at / 
2 

define an element of Sj^i. □ 
2 

We record the following useful 

Corollary 5.3. Let 7 G ro(A;). If a7(l) = I for some integer I with 0 <l < 
^, thenjeG{k). 

Corollary 5.4. For each integer I with 0 < I < ^■7 the orders of cpi at the 
^p distinguished punctures are distinct. 
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Remark 8. The last two lemmas imply that 

degfa) = ^Hk2 - 1) = \(2p(k) - 2 + n(k)), 

as expected. It is also of interest to note that the generic element of V(k) 

has J—~4^ ~ ' simple r(A:)-inequivalent zeros on O2. 

5.2. The general case. 

In order to develop a general alternate method for computing OTdx(pi at 
an arbitrary cusp x for r(fc), we must study in some detail the invariance of 
modified theta constants under F. We need an analogue of (3.4) for elements 
7 with 7 G PSL(2,Z). 

If C £ F, then we know that for every integer / with 0 < I < ^^, we 
have 

Now for r eB2, 

(C*VI)(T)=0 

oidc(oo)<Pl = ord00(C'*(/?/). 

21+1 
k 
1 

(0,kC(r))Cf{T)^=e 
21+1 

k 
1 

(0,C(kT))C'(kT)*. 

If C G ro(A;), we can continue the last equation and obtain 

(5.4) (C*<pi)  (T) = K 
21+1 

k 
1 •0) 

e 
21+1 

k 
1 

(Cfcr). 

Prom which it follows, as seen before, that 

OTdc(oa)<Pl =   OldoQ(pac(l). 

However, if C G T — T0(k), we need an alternate approach. We have seen 
that9 

B*(pi = c(pi and A*(pi = c fy. 

An arbitrary element C G T is a word in the generators B and A. Hence of 
the form 

BnioAoBn2oAoB713... oAoBnr, 

9In each of the next two displayed equations c is a nonzero constant, not neces- 
sarily the same in the two equations, that can easily be computed. 



Uniformizations of modular curves 225 

for some integer r > 1, where the indices 

ni, 712, ••• ,nr 

are integers with all but the first and last nonzero. This formula, can be used 
to determine the action of an arbitrary unimodular matrix on the modified 
theta constants. 

6. The field of meromorphic functions on W/r(k). 

6.1. Functions of small degree. 

As a consequence of Lemmas 4.4 and 5.1, for odd fc, a ratio of any two 
linearly independent functions in V(k) defines a meromorphic function on 
HP /r(fc). In particular, if I and I' are unequal nonnegative integers < ^J^, 
then ^ projects to such a function. We are interested in producing functions 
of low degree. 

Let us assume that k is an odd prime. The divisor of the projection of 
^L to HP/r(A;) is supported at the ^—^ punctures that are ro(A;)-equivalent 
to oo. It can have either zeros or poles at at most half of these points. 
Without loss of generality we assume that the function has fewer (or equal 
number of) zeros than poles. We estimate the degree of such a function by 
counting the number of zeros (with multiplicities) that it has. An upper 
bound for the order of a zero of ^ at a point is obtained by maximizing 
the order of the zero of tpi and minimizing the one of </?//. Using the fact 
the the orders of the zeros of one of these automorphic forms at the ^^ 
distinguished punctures are permutations of the rational numbers 

I2    32 (£;-2)2 

8 '   8 ' "■'        8      ' 

we conclude10 that we can produce such a function of degree at most 

j-(k - I)3, if k = 1 mod 4 and -^-(2k - 5){k2 - 1), if k = 3 mod 4. 
u4 128 

10We use the following well known formula. For the positive odd integer n, we 
have 

^(2i + l)2 = ln(n + l)(n + 2). 
i=0 
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We have shown that for odd primes fc, the compact surface I^/T(k) carries 
a function of degree O(^), k -» oo which is smaller than its genus: 0(|^), 

k -> oo, and an improvement on the result for generic surfaces (O(f^), 
k -> oo; see, for example, [9, pg. 261]). The method we have used can 
probably be modified to guarantee the existence of functions of lower degree. 

The Hilbert space V(k) allows us to study a number of interesting 
divisors11 onHP/T^). 

Proposition 6.1. For each integer I, 0 < / < ^, let 

k-l 
2        ord j ipj — - 

A-n^*  • •    T       A; 

Then 
{k-l)(k-3)(k-5) 

i(Di) > 
48 

Proof. We first observe, for future use, that 

degDl = ±(k2-l)(k-3)<p, 

for k > 11.   Since for every cp G V(k), the projection of -^- to &/T(k) 

belongs to L I jj- j, we conclude that 

rli-U*-1 

Vl 

DiJ -     2 

The inequality on the index of specialty follows from the Riemann-Roch 
theorem. □ 

Corollary 6.2.   The class of the divisor Di is independent of I. 

Proof. For / and lf as above J^- is a meromorphic function on HP /T(k) with 

divisor -S1-. □ 
Di' 

11 We use, throughout this paper, standard (multiplicative) notation ([6, Chapter 
III]) for divisors and the indices appearing in the Riemann-Roch theorem. 
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Remark 9. For certain low primes fc, we will reprove the above proposition 
in the sequel. Note that for k = 7, the divisors Di have degree 4, and 
are hence canonical as a consequence of the proposition. The proposition 
implies trivially the existence of a meromorphic function of degree at most 
±(k2-l){k-3)onW/r(kj. 

6.2. G(A;)-invariant functions. 

The material of this subsection is valid for odd integers k > 3. Let c^ G Z 
for i = 0, 1, ..., ^^, be chosen so that 

fc-3 fc-3 
2 2 

y^ o^ = 0 and k \ 2j(i + 22)az 
2=0 i=0 

Then 
fc-3 

is a G?(A;)-invariant meromorphic function on O2.  It hence makes sense to 
call (ao, ..., a fc-3) an admissible ^--tuple if it satisfies the above conditions. 

2 
For example, for k = 7, we can choose as the triple of integers 

(3, -1, -2), or (1, 2, -3), or (-1, -2, 3). 

For k = 11, we can choose the 5 integers as 

(2, -1, 0, 0, -1) or (-1, 0, 2, -1, 0), 

and for k = 13 the 6 integers as 

(-1, 1, -1, 0, 0, 1). 

Assume that the prime k > 7. Given any collection of ^^ — 2 integers, 
a2, as? ..., afc^, it can always be completed to an admissible ^^-tuple by 

2 
setting 

fc-3 fc-3 
2       •    ,     -2 2 

ai = kr - ^2 ~~^—ai and ao = -^2ai> 
i=2 z=l 

where r € Z is arbitrary. In particular, 

(^, -^> 0, ..., 0, -1, 1), (-3, 3, 0, ...,0, -1, 1) 
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(2, -3, 1, 0, ..., 0), and (-k + 2, k - 3, 1, 0, ..., 0) 

are always a nontrivial admissible ^^-tuples. 

6.3. Generators for the function field. 

Let us restrict our attention to primes k > 7. It is convenient to work 
with the functions 

fi = —, and /2 = —. 

The divisors of the functions Fi and F2 are supported at the ^^ distin- 
guished punctures {P^; j G Z,  1 < j < ^-}. For each such j we can 

k 

choose integers b = b(j) and d = d(j) such that 

jd-bk = l. 

Then the Mobius transformation 

€ro(A;)5 7i = 
3    b 
k   d 

and 7j(oo) = ^. We have already seen that (the definition of ra(-) is given 
in [5]) 

(Pi) = JIP'i 

k-1 

"■" 8 and (F2) = H p: 

k-1 
2 m(x27j)   -mjxii'jr 

i=i i=i 

An examination of cases shows that there are only two possibilities for the 
jump in the function m on characteristics; for example: 

rn{Xiij) = m{Xoij) + 2j if 1 < j < 
fc - ^(xofj) 

and 

mUxii) = 2{k - j) - m(xo7i) if ^^l <,•<** 

221 
A; 
1 

, with m G Z, m We are dealing with characteristics x 0f the form 

odd, and 1 < m < k — 2.   Thus the equivalence class of x is completely 
determined by ra(x). We conclude that each Fi has either a pole or a zero 
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at each puncture Pj_. Let Qi, ..., Qr be the complete list of distinct zeros 
k 

of Fi. Then in some local coordinate t vanishing at Q;, we can write 

z = Fi(t) =ta 

for some a G Z, a > 0, and 

oo 

where (3 G Z, (3^0, and the c's are the appropriate Laurent series coeffi- 
cients. Of course, 

a = ordp^-Fi and /? = ordp^i^- 

We study (see §2) the map (p : IHl2/r(A;) -> 9JI* defined by the functions 
^ = JFi and ty = i^. Since 

ordp^Fx = 1 and ordp^^ = 2, 

(^(Poo) is the Puiseaux series 

w (z) = cz2  + 

If (p(P) = ip{Poo) for some P E HP/]?(*;), then we must have 

ordpFi = a and ordpi^ = 2a, 

for some positive integer a. Thus P = Pi for some integer j with 1 < j < 
k 

^i. If j 7^ 1, then we must have that 

= —^—" and 2a = —^——-, 
8 8 

where mi, m2, and ma are odd integers with 

1 < mi < m2 < ms < fc; 

which leads to the diophantine equation 

ml - 3m2 + 2mi = 0. 

Under special circumstances it might be possible to determine solutions of 
these equations and decide when ip is injective.   It is easier to use more 
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terms of the respective Taylor series expansions.   In terms of the natural 
coordinate £ in a neighborhood of PQO, we have 

*i(C) z = = F1(C)=exp(^)c(l-C^ + ...) 
*o(C) 

and 

*MC) = exp(^) C2(i-C^ + •..)• *2(C) w = 
*i(C) 

Hence for (p(P-i) we have 
k 

w = w(z) = CQZ
2
 (1 + CiZ + ...) . 

In the above and subsequent equations in this subsection, Cj, with i G Z, is 
a nonzero constant (that can easily be computed). The last three displayed 
equations show that fr^Poo) = 012. Thus to show that deg <p = 1, it 
suffices13 to prove that (p(P) ^ (p(Pi) for all P e WJf(k), P ^ Pi.   If 

 k_ k 

(p(P) = ip(Pk) for some P E IHI2/r(fc), then it must be the case as above 
k 

that P = Pi for some integer j with 1 < j < ^1. We need to obtain the 
k 

Taylor series for z and w in terms of a good local coordinate vanishing at Pi. 
  k 

The functions z and w are the projections to EI2/r(fc) of the r(A;)-invariant 
functions g and jg. on HI2 U Q U {oo}. Choose 7 G ro(fc) such that 

7(00) = I 

Thus we want to study 
^Pioj^^oj 
<po 0 7 ¥>i 0 7 

in a neighborhood of zoo. Prom (4.8) it follows that 

yi07 =: HJXU 7)^(1) and ^207 = ^(X2,7)^(2) 

with a = (7^. Thus, for these purposes, 

^ = a—- and w = p-—, 

12The function z is a perfectly good local coordinate at both P^ G EP /r(k) and 
at </?(Poo) G 9JI*. In terms of these coordinates ip is the identity map. 

13We use the symbol P to denote at times a point on HP /r(fc) and the natural 
projection B2 UQU {00} ->- H2 /T(k). This identification should cause no confusion 
to the reader. 
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for distinct nonnegative integers /, /', and m each at most ^p and constants 
a and /3 of absolute value 1. Further, if j ^ 1, then cr(0) > 0 (because a 
acts without fixed points) and 

m > l>l' > 0 

(the first two inequalities are consequences of the fact that both z and w 
vanish at Pi). It follows that for (p{P) we have 

k 

(m+/+l)(m-0    / 2 \ 
W = W(z) = C2Z (l+l'+W-lf)   M  + C32(/+/'+1W-/')  + ...J . 

Hence 
_ (rn + l + l)(m-l) 2 

(l + l' + l)(l-l')   anai      (/ + // + !)(/-//)■ 

We have arrived at a contradiction since 

(Z + /' + l)(J-0>4, 

and hence obtained 

Theorem 6.3. For each prime k >7, the functions Fi and F2 generate the 

function field /C(BP/r(fe)). 

The same methods establish 

Theorem 6.4. For each prime k >7, the functions J and Fi generate the 

function field lC(WJf(k)). 

Problem 1. Find the algebraic relation satisfied by Fi and F2. For k = 7 
we solve this problem in §10. The form of the algebraic equation satisfied 
by J and Fi is given in §14. 

7. Projective representations. 

k — 3 
A coordinate vector in the finite dimensional projective space PC-^- is 

k — 1 
the equivalence class of a vector in C~2~ with precisely one nonzero coordi 

(Pk-S 
2 

nate. For / = 0, 1, ..., ^, 

is a meromorphic function on the compact surface HP /T(k) whose divisor is 
supported at the distinguished punctures of HP/F^). 
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Lemma 7.1. Let x e Q U {oo}. // 

k — 3 
ordx(pi  >  ordx(po, for I = 1, ...,  ——, 

then Px — PQQ. 

Proof. For each fixed / as above, the function ^ vanishes at Px. Hence Px 

is a distinguished puncture. Thus x = 7(00) for some 7 E T0(k). Now for 
arbitrary / as above, we have 

ord7(oo)W = ordoo7*(w) = ordoo^7(0- 

We conclude that cr7(/) > 0 for all I > 0. Thus cr7(0) = 0, and hence 
7 G G(k).  It now follows that x and 00 project to the same puncture on 

Proposition 7.2. For each odd integer k > 5, the map 

T^(/O(T), /I(T), ..., /^(r), 1) 
2 

from H2 U Q U {00} ^0 C"2~; or equivalently the map 

(7.1) $:TH-> (¥?O(T), (pi(r), ..., (£AL=J>(T), (^^^(r)) 
2 2 

/rom HPuQUJoo} to C^~; defines a holomorphic mapping (also to be called 
  k — 3 

<&) from W /T(k) into PC-^". If k is prime, the distinguished punctures on 
the surface HP/F^)  are sent (injectively) onto the coordinate vectors in 

k — 3 
projective space PC^~. Further, in this case, the map $ restricted to the 
punctures is injective, and of maximal rank at each distinguished puncture. 

Proof. Only the last three statements need verification. 
We need to study the map $ in some detail. It is convenient to view $ 

as a holomorphic map from HP/F^) into PF(fc)*, the space of continuous 
linear functionals on (lines in) PV(k). In this setting $(P) for P E HP/T(k) 
is the projective equivalence class of the linear functional14 

Lp :tp\->tp(P), (peV{k). 
14In the next and many subsequent formulae we identify points in on the surface 

KP /T(k) with their preimages under P in HP UQU{oo}, and T(k)-invariant functions 
on HP U Q U {00} with their projections to (HP U Q U {oo})/r(ft). 
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In this setting, (7.1) identifies LpT with the matrix representation of this 
linear functional with respect to the basis {(po, ..., (pk=3}. If, as can happen 

2 

(for example, at P = Poo)? <p(P) ~ 0 for all <p G ^(fc), then we let I be the 
minimum of the orders of vanishing at P of the nonzero elements in V(k) 

and interpret Lp as evaluation at 0 of the functions in -4r? where ( is a 
local coordinate vanishing at P. A similar interpretation applies to the map 
F in neighborhoods of points where the meromorphic functions have poles 
(or vanish simultaneously). 

An element 7 G T/T(k) acts as an automorphism 7 of the Riemann 
surface HP/]?(&), a projective linear automorphism 7* of PV(fc), and a pro- 
jective linear automorphism 7* (where j*(L) = £(7*) for L G PV(fc)*) of 
the projective space PVft)* such that 

(7.2) $07 = 7* 0$. 

We use the elements of F, to compute the images in PV(ky of the 
punctures on H2 /T(k) under the map <&. We observe that 

$(00) = (1, 0, ..., 0). 

If the cusp x G Q is ro(A;)-equivalent to 00, then we choose 7 G T0(k) with 
7(00) = x. Then 

$(x) = Lx = L^oo) = 

= 7*(^OO) = («(XO57)VIT(O)(OO)I ■••> ^(x^357)^(^3)(oo)), 

where a = <J7. It follows that $>(x) is a coordinate vector with the unique 
nonzero component in the cr~1(0) + 1 slot. Taking 7 to be a generator for 
the cyclic group T0(k)/G(k): we obtain a cyclic permutation a which implies 
immediately the injectivity of $ restricted to the distinguished punctures. 
For the general case, assume that <&(x) = $(y) with x and y in Q U {00}. 
Write x = 7(00) with 7 G F. Then with z = 7~1(y), we have 

-r* moo)) = #(7(00)) = $(7(*))=7*(*(*))- 

Since 7* is injective, $(00) = $(2). We conclude from the previous lemma 
that PQO = Pz. Hence 00 is r(fc)-equivalent to 7~1(y); that is, x = 7(00) is 
F(/^-equivalent to y. Finally in a neighborhood of PQQ the map $ is given 
in inhomogeneous coordinates by 

(mi    **?«;)\ 
^  {my "" MO )' 
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Since ^ has a simple zero at P^, $ is of maximal rank at this point. It 
is, by now, routine to reduce the study of the map $ near an arbitrary 
distinguished puncture to the case where the puncture is PQO- d 

Corollary 7.3. For every prime k > 7, the inap $ is also defined by ^^ 

linearly independent abelian differentials of the first kind on W/T(k). 

Proof. The corollary is an immediate consequence of the previous proposition 
and Proposition 6.1. □ 

Remark 10. $(W/r(k)) is a curve of degree fc2-1^-*) in pc^. For 
k = 7 it is a curve of genus 3 (see §10) and degree 4 in 2-dimensional 
complex projective space; as a consequence of the last corollary (or as can 
be seen directly (§10)), the canonical curve. 

Problem 2. Is the map $ injective? 

Proposition 7.4. For each prime k > 3; the homomorphism 

G:T/T{k) -►AutPV(fc) 

is injective. 

Proof. If 7_1 G F belongs to the kernel of 0, then there exists a nonzero 
complex number A so that for each integer I with 0 < / < ^p, 

7*(w) = *<#. 

By Corollary 5.4, 7 must map infinity to a r(A;)-equivalent cusp. Thus 
7 G G(k) (see [5]), and 

7 = Bmo71, 

with raGZ, 0 <m < k — 1, and 71 E T(k). Since 7* = (71)* o (B*)m and 71 
is in the kernel of G, we conclude that 7 is in the kernel if and only if Bm 

is. Using (4.3) for I = 0 and 1, we see that A = c(J5, k) = c(B, fc) exp(^p). 
Hence m = 0. □ 

Remark 11. It is probably true that $ is injective. The injectivity of 0 
would follow trivially from this conjecture. 
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8. k 

Combining the results developed here with those of [7], we get the fol- 
lowing identity for r E H2: 

9* 
i i 
3 
1 

(0,3T) 

1 
i 

L   3 
(O,T)0 (O,T)0 (CT) 0 (0,r) 

1     \/3 
-2 + ir'- 

The above formula for ^-constants is a special case15of a more general rela- 
tion for ^-functions. For all z G C 

*♦£• 

e3 

i 
i 

L   3 

(0,3r) 9 
r i i 

3 
1 

(3z,3T) = 

(0,T)9 MO (Z,T)6 M- 

We turn now to an application in number theory.    Dedekind's eta- 
function (see, for example, [16, pg. 129]) 

V(z) = *& U (i - *") = E (-1)"^, * e C, |^| < l, 
71=1 

arises most naturally in the theory of the partition function for the positive 
integers. If N is a positive integer, we define P(N) to be the number of 
ways TV can be expressed as a sum of nonincreasing positive integers. It is 
well known [10, Chapter XIX] that if we define P(0) = 1, then 

Z 24 

EP(^n = ^M'^C'  IsK1' 
71=0 

7](z) 

For r G H2, we set z = exp(27rzr). We can hence view 77 as a function 
on the upper half plane. It is an interesting observation, nontrivial to verify 
[19, pgs. 95 and 109], that 77 satisfies a functional equation. It is routine to 
verify (by comparing Fourier series expansions) that 

77(T)=exp(-^) 0[|](O,3T), r E 

15 The relevant theory will be developed in a forthcoming paper. 
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We conclude from (4.3) and (4.4) that 

7](T + 1) = exp I —) 7i(T) and r) I — j = \/—ir ^(r), for all r E 

y. /c — o« 

We begin with a result that, as above, combines ideas from two different 
approaches. It is the identity for r E M2: 

0 
r 1 i 

5 
i (0,5T) 

e r 3 i 
5 
1 

(0,5r) 

Am 
exp — 

e 
r 1 i 
! 

L   5   J 
(O,r)0 

r L i I 
.   5   - 

e 
r 3 i 

? 
L  5  J 

(O,T)0 
"   3   ■ I 
.   5   - 

(0,T) 

(O,T)0 

(0,T) 

(0,T)e 
5   J 

(0,T) 

e (0,T)6 
L  5  J 

(0,T)0 
I  5 

(0,r) 

We now apply the theory developed in this paper to construct a special 12 
punctured sphere and a group of fractional linear transformations isomorphic 
to r/r(5) which in turn is isomorphic to PSL(2,Z5). We shall also recover 
the classically known fact that this group is isomorphic to the symmetry 
group of the regular icosahedron [1, pg. 2]. 

The Riemann surface EI2/r(5) is a 12 times punctured sphere (see [7, 
§11] for related results). The mapping 

T^(^o(T),^i(T)),rEe2UQU{oo}, 

defines an embedding of HP/I^S) into PC. This follows from the observation 
Pi 

that for / = /o = ^, we have (F) = 
<pi' P2 ' 

and 

Our formulae for the matrices A* and B* give 

_ J_rexp(^)+exp(-^)     exp(^)+exp(-f) 
* " V5i [ exp(f) + exp(-^)   exp® + exp(-^) 
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We may identify <£ with /, in this case. Hence for 7 G F, we may identify 
7* with 7. 

We need to digress to discuss a metric on PC^, N G Z, N > 1. Let 
(•, •) and || • || represent the usual complex inner product and norm in CN+1. 
Then 

\\u-v\\2 = M2 + \\v\\2-2tlM. 

If the equivalence classes of u, v are now thought of as points in PC^, we 
can always choose representatives which lie on the the unit ball in CN+1. 
We then define 

d(u,v) = inf \\u — {i||, 

where the infimum is taken over all elements tt, v in the unit ball of CN+1 

equivalent to u, v respectively. Clearly, 

mf{Mett}{2-2»(e^ii,e,*i;)} 

= inf {2-2SR(e^-*)(tx,t;))}=2-2|(Ti,t;)|. 

It is interesting to note that when n = 1 the distance we have defined is 
related but not equal to the chordal metric on the sphere. If we identify the 
sphere with the one point compactification of the plane by stereographic 
projection 

f        2x 2y x2+y2-l\ ~      „     r    , 
\x2' + yJ' + l  xz + yz + l  xz + yz + lj 

then the chordal metric is given by 

131 -^21 
d(zi,Z2) = 

yr+^Fv^+NF 
Under the usual identification of PC with the Riemann sphere (zi, Z2) G PC 
corresponds to f- E C. The chordal metric between (31,^2) and (^1,^2) on 
PC is therefore 

\zi_ _ Wl\ 
    I Z2 W2 ' 

V^H^A/ 1 + \wi 12 
I W2 ' 

If we assume that \zi\2 + \z2\2 = |^i|2 + |^2|2 = l? then the above reduces 
to IziW2 — wiZ2\ which can be written as 

y/l - \Z1W1 +Z2W2\2 = y/l - \{(zU Z2), (wU W2))\2. 
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Hence we see that our distance differs from the chordal distance. The com- 
mon feature which is important however is that both of these distances are 
invariant under the unitary group. 

We can now return to the special case under consideration.  Write the 
Zl       Z2 

Wi     W2 

Using the prescription of [7, §2], we see that the 12 punctures on EI2/r(5) 
correspond to the equivalence classes in PC of the following 12 points in C2: 

matrix \/5L4* as where, of course, Z2 = u>i, W2 = —zi = —zi. 

(1,0),   (0,1),   (*i,Wi),   (Z2,W2), 

2m\      \     ( f2m\      \     ( (km 
zi,exp[— jwij,  I ^2,expl — 1^2 I ,  I ^i,exp I — ) wi ) , 

Z2> exp ( — l W2 I , I zuexp I — I wi I ,   I 2:2, exp I — ) W2 

8m\      \     ( f%m 
zu exP I -T- J ^1 J '   I ^2, exp I — J ^2 

Under the usual identification of projective space PC with the extended 
complex plane C U {00} the 12 punctures on /(H2 U Q U {00}) are: 

00, 0,  —,  —, 
Wi     W2 

f—2m\  zi /—2m\  Z2 f—4:m\ zi ( — krKi\  Z2 
exp    —-—    —, exp    ——    —, exp    ——-    —, exp 

5    / w\ \   5    / W2 \5/ttfi \   §    ) W2 

GTTZX Z\ (—§m\ Z2 f—8m\ zi f—8m\ Z2 
exp    -——    —, exp    ——    —, exp    —-—    —, exp 

\   o    J wi \   5    J W2 \    5    J wi \   5    J W2 

Pairs of antipodal points on the sphere are given as z and ^ . Thus 
the 12 punctures come in pairs of antipodal points. Furthermore, the five 
points of absolute value |^:|, i = 1,2 form a pentagon V).  The pentagon 

V<z (Poo) is inside (outside) the unit circle. It is obvious that B fixes 0 and 
00 and permutes the vertices of each of the pentagons. We view C as the 
unit sphere in E3. If the vertices of each of the pentagons are joined by 
a straight line in R3 and then the vertices of Ve ('Poo) are connected by a 
straight line with the origin (00), we obtain 10 triangles; 10 of the 20 faces of 
the icosahedron. The remaining 10 faces are obtained by suitably joining the 
the vertices of the pentagon around 00 with those of the pentagon around 
the origin. In fact the entire construction can be summarized by joining 
the points of minimal distance either in the chordal metric or in the metric 
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we have defined above. The triangles we obtain in this way are equilateral 
triangles because the transformations 7, 7 G F, are isometries in the metric 
under consideration. 

10. k = 7. 

10.1. The function field /C(M2/r(7)). 

Using the 3 modified theta constants (^0, ¥>! and (^2, we construct 3 
r(7)-automorphic functions 

Jo = —, Ji = —, 72 = —• 
<£2 ^2 <Pl 

The divisors of these functions are easily computed. 

Proposition 10.1.   We have 

p2p3 p3 p3 

(^0) = ^a1' (^i) = prp; and m = jr^- 
•* 00 ^oo-^l ^cx)-^^ 

7 7 

We use z = FQ and w = Fi and study the correseponding holomorphic map 

ip:W/T(7) ->ar. 

We know that in this case (see Proposition 2.1), 

3 =  deg z = (deg </?)(deg proj). 

Now (p(P2) is a Puiseaux series of the form 
7 

00 

^ az*, c_i 7^0, 

while ^p{Ps) is of the form 
7 

00 

^CiZ1, C3 7^0; 

z=3 

which implies that proj is nonconstant. Hence deg proj = 3 and deg </? = !. 
We hence conclude that the meromorphic functions JFb and Fi generate 
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/C(IHP/r(7)). (We could also conclude this from Theorem 6.3.) It also follows 
immediately that PQQ is a Weierstrass point on the compactified surface 
EI2/r(7). Since the automorphism group acts transitively on the punctures 
in IHI2/r(7), we conclude that each puncture is a simple Weierstrass point. 

We can now take appropriate products; the projections to E!2/r(7) of 
P7 P7 

functions /j/2, /0/1 have divisors pf,  pf. 
Prom the definitions of the functions we know that 

/0/2 = 
^0 /    f 2 
 2'   ^0^1 

<P0<Pl 

Both of the functions in question are lifts of univalent functions on El2/G(7) 
P2 Ps 

with the pole at the same point (their divisors are jr- and -p1-, respectively); 
which implies that one of these two functions is obtained from the other by 
post composition by an affine map. This affine map is easily computed to 
yield the identity 

which we can rewrite as 

3       '        ' € = €:xp (=), 

(10.1) 

ur30 
T\  3 

UJ9d 

+ ^e ^0 

+   u)-30 t])(-[l]): 

r 5 
7 
1 

\ 3 

)   = 0, u = exp f 
7r2\ 

28/ 

The above identity is also deriveable abstractly from the theory of [4] (see 
also Theorem 15.4), and it tells us that the Riemann surface El2/r(7) is 
realizeable as the locus X3Z + Y3X + Z3Y = 0 in PC2. Alternatively, 
starting with the functions FQF2 and FQ, we can describe EP/r(7) as the 
Riemann surface of the algebraic equation w7 — z2(z — 1). Furthermore, we 
have realized its automorphism group as a subgroup of the projective linear 
maps of PC2. 

10.2. The projective embedding of HP/r(7). 

We use the two degree 3 functions FQ and Fi to embedd ]HP/r(7) into 
PC2 by the map 

y:Q^(Fo(Q), Fi(Q), 1). 
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We claim that this map ip is injective. We first observe that for the 3 
distinguished punctures, we have in homogeneous coordinates 

^(Poo) - (1,0,0), \p{P2) = (0,1,0) and ^(Pa) = (0,0,1), 
7 7 

while for Q E H2 /r(7) or Q a nondistinguished puncture on this surface, 
ip(Q) never lands in a coordinate hyperplane (where one of the three homo- 
geneous coordinates vanishes). Thus if 

(FoiQi), Fi(Qi), 1) = (Po(02), Fi(Q2), 1) 

for distinct Qi and Q2 in HP/T(7), then for Fi(Qi) = ^ G C*, i = 0, 1, 
we have (as divisors) P0~1(^i) = Q1Q2R1 and P1~

1(^2) = Q1Q2R2 for some 
points Pi and P2 in EI2/r(7). The surface W/T(7) has genus 3 and is not 
hyperelliptic (see, for example, [6, Proposition III.7.10]). Hence 

i(QiQ2) = i{PL) = HPZo) = HPZoPi) = 1- 

We have seen that 

f    '    A>3. 
P&Pi 

Riemann-Roch then tells us that 

7 

The divisor FQ"
1
^!) = Q1Q2R1 is equivalent (-) to PQ"^

00
) = Pci-  This 

implies that Q1Q2R1P1 ~ P^QPI which is canonical. In the same way we see 
7 7 

that Q1Q2R2P00 ~ P3P00 is canonical.  This tells us that P1P2 = R2P001 
7 7 

an obvious contradiction. 
We already know that $ is of maximal rank at all the distinguished 

punctures. The above argument with Qi = Q2 shows that $ is globally 
of maximal rank. Hence $(lHP/r(7)) is nonsingular. Further, every hy- 
perplane in PC2 intersects $(EP/r(7)) in 4 points counting multiplicities. 
By [6, Theorem III.10.5], $(IHP/r(7)) C PC2 is canonical. Computing the 
intersection of image curve with the hyperplane where the first coordinate 
equals to zero, we conclude that 

i(P?P3) = l. 
7   7 

Similarly P3P1 and (as we already know) P?P2 are canonical divisors. We 
77 77 

have established a seemingly odd duality between V(7) and the vector space 
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T-i of abelian differentials of the first kind on the compact Riemann surface 
EP/r(7) leading to a construction of all the integral canonical divisors on 
this surface. The construction goes as follows. Choose a nonzero <p G V(7). 
Divide the divisor (y?) by the | power of the divisor D of r(7)-inequivalent 

cusps in QU {oo}. The projection of this divisor to the surface HP /r(7) is an 
integral canonical divisor on this surface, and conversely every canonical in- 
tegral divisor on E!2/r(7) is so obtained. It is natural to seek an explanation 
of this phenomenon. We offer two possible explanations. 

Choose a generic element f0 G V(7). The function f0 will have 4 in- 
equivalent simple zeros at points in O2 and a zero of order | at each cusp. 
A ratio -£- with ip G V(7) will project to F, a constant function or a function 

of degree 3 or 4 on IHP/r(7). In the case of a degree 4 function, (F) will be 
canonical (see Proposition 6.1 and Remark 9). Choosing a holomorphic 1- 
differential u) on IHP/r(7), we see that an arbitrary holomorphic 1-differential 
is given as uF. For the second explanation, let W be the lift to B2 of a 
Wronskian of a basis for %. The divisor of the 6-form W consists of the 
Weierstrass points of IHP/r(7) and hence equals D. The map $ of e2/r(7) 

into PC2 is defined by the two triples (<£>o, y>i, ^2) and T'Fs^o, </?i, ^2)- 
One easily sees that W* cpi, I = 0,1,2, projects to a holomorphic 1-form 
on IH2/r(7). Alternately, we have seen that $ is defined by the 3 functions 
(FQ, i7!,  1).  We know that the divisor P^Pi is canonical.  We can hence 

 7 

choose a holomorphic 1-form UJ on lHP/r(7) with (cu) = P^Pi and con- 
lude that $ is defined by the 3 linearly independent holomorphic 1-forms 
^(Fo,-/7!, 1), as expected from Corollary 7.3. 

Remark 12. The injectivity of the map (p implies at once that /C(H2/r(7)) 
is generated by Fi and F2. That a primitive pair does not lead to a projective 
embedding is illustrated in the next section. 

11. A; = 11. 

In this case, k = 11, we are dealing with a compact surface of genus 26 
punctured at 60 points. The book-keeping can already be a bit troublesome. 
Using the 5 modified theta constants <ft, i = 0,  1,  ..., 4, we construct 4 
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r(ll)-automorphic functions fi = ^S 2 = 0, 1, 2, 3. Their divisors are 

PiP\PjL PjLPi 
11    11 

{Fo) - pgh11'{Fl)" P?OPIP± ' 
11 n      n 

^ 2>, p7 p6       '   ^ ^ p4 p5   p3   ' 

ii ii     ii 

The material in §2.3 now shows that z = FQ and w = F3 generate 
/C(H2/r(ll)), and the formulae in §6.2 show that the two functions on HI2 

and ^0    _ /o  _, yW3 _ /0/3 

^1^4 /l     "        ^2 /I 

project to functions of degree 2 on the torus HP/G^ll) whose divisors are 

PJLPJL PJL^JL 
-^-^ and -^HrS 

11 11    11 

respectively.  Even though the meromorphic functions FQ and F3 generate 
the function field on the surface HP/I^ll), they do not embedd this surface 
into PC2 because the two punctures P_2_ and P_3_ are sent by the map 

11 11 

(1, Fo, F3) to (0,0,1).  Note that FQFI G i(P~19) - ^(P^18); so that all 
the punctures are Weierstrass points and the lowest "non-gap" is at most 
19.   The fact that the punctures are all Weierstrass points comes as no 
surprise since there is an automorphism of the surface which has more than 
four fixed points (all the distinguished punctures).  We do not understand 
why the Weierstrass "non-gap" sequence contains 19, nor do we know if we 
can produce a function with a single pole of lower degree.  The map $ is 
defined by linearly independend holomorphic 1-forms16. To see this, choose 
a holomorphic 1-form u whose divisor is a multiple of Pj^P^P^Pj., and 

11    11    11 
observe that UJ(FQ: PI, P2, ^3? 1) also defines <&. We have once again used 
Corollary 7.3. 

12. k = 13. 

It was shown in [5] that HP/G(13) is a closed surface of genus 2; hence 
hyperelliptic (see also [20, Proposition 1.43]). The function 

^5 <Pi z = 
¥2 <P0 

16In contrast to the k = 7 case, not a maximal set of such forms. 
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is (j(13)-invariant; a straightforward calculation shows that z is also invari- 
ant under the elliptic transformation (of order 2) 

5    -2 
13   -5 7 e r0(i3). 

OnEP/G(13), 
Pi PA 

P±PjL 
13       13 

We conclude that on S = HP/ < G(13), 7 > we have a function of degree 
one (with a simple zero at Pj^ and a simple pole at Pj_).   Hence S has 

13 13  

genus zero, and 7 induces the hyperelliptic involution on IHP/G(13) (Z is 
a function of degree 2 on this surface and a function of degree one on S). 
Moreover, the 6 fixed points of 7 are the Weierstrass points on HP/G(13). 
We can easily find one fixed point (in H2) z0 = ^ of 7; its projection to 
EP/G^IS) is fixed by the hyperelliptic involution. To find the other fixed 
points, we introduce the motion 

5 = 
2    1 

13   7 
e r0(i3), 

that defines an automorphism of order 6 ofIHP/G(13). Since 53oj~1 e G(13), 
63 also induces the hyperelliptic involution on IHP/G(13). The projections 
of the 3 points S^~1(z0), j = 1, 2, 3, are 3 of the 6 Weierstrass points on 
EP/G(13). It is not clear how to locate the other 3. 

We have produced a meromorphic function (Z) of degree 26 on the closed 
surface H2/r(13) of genus 50. It is not clear whether EP/r(13) carries a 
function of lower degree, nor is it obvious how to generalize the material 
of this section to primes > 13. The material of this section hints at the 
complexities involved in studying the general case. 

13. k = 9. 

The purpose of this section is to illustrate what goes wrong when k 
is not prime and to hint at the possiblities in the study of the composite 
case. The case k = 9 corresponds to a compact surface X of genus 10 
punctured at 36 points. The punctures correspond to the characteristics in 
X0(9) and are given concretely as the images under P : O2 U Q U {00} -> 
X = (HI2 U Q U {oo})/r(9) of the rational numbers 

1    3    5 17 
0, 1, 2, 3, 4, 5, 6, 7, 8,    -, •-, -, ..., y, 
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3'  3'  3'  3' 3'  3'     4' 4' 4'   "' T'     9' 9' 9" 

The techniques we have developed for the prime case (§5.1) will allow us to 
determine the orders of divisors of forms and functions at 30 of the punctures 
of Hl2/r(9); the general theory (§5.2) is needed for the remaining 6 punctures 
(the projections of the first 6 rationals in the second row above). The punc- 
tures on HI2/r(9) fall into 4 disjoint sets [20, Proposition 1.43]: (1) those 
r0(9)/r(9)-equivalent to P^ (Pi, P2, Pi), (2) those ro(9)/r(9)-equivalent 

to Pi (Pi, Pi, PT), (3) those r0(9)9/r(9)-equivalent to P2 (P2, Ps, Ps), 
3333 3333 

and (4) those ro(9)/r(9)-equivalent to PQ (the remaining 27 punctures). Be- 
cause of (5.1) and the fact that the divisor of each tpi has degree ^, we need 
only compute, in addition to the answers provided by Lemma 5.1, oj:dx(pi 
for x = |, |, I = 0, ..., 3. The results are summarized in the following table 
with entries 8oidx(pi. The calculations at x = I and I can be based on the 

fact that Ci = AoB-6oA = andC2 = BoAoB3oA 
2 -1 
3 -1 

map 00 to these points, respectively. It follows that the matrices (Ci)* and 
(C2)* are both of the form (the blank spots represent nonzero entries) 

0 
0 0   0 

0 
0 

Values of 8 oidx(pi 

cusp x   I = 0   / = 1   I = 2   / — 3 
1 9 25 49 

49 9 1 25 
25 9 49 1 

1 9 1 1 
1 1 1 1 

12     4     5     7     8 
l      3.   ^3'   3>   3'J 

U,   ...,   O,   2 5   •••5    2 '   4'   —'    4 

We are dealing with the map 

$ : r >-> (</?O(T), (^I(T), (^(T), </?3(T)), Tee2UQU{oo}. 

As with primes, we can compute the images under $ of the cusps ro(A;)- 
equivalent to 00. We see that 

Pi »-> (1,0,0,0), P2 H^ (0,0,1,0), and Pi ^ (0,0,0,1). 
99 9 
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The last table also shows that (0,1,0,0) g $(]HP/r(9)). The map $ is also 
defined by the meromorphic functions (FQ, i7!, i^j 1) and the holomorphic 
1-forms (JJ(FQ, FI, F2, 1), where a; is a holomorphic differential on HP/r(9) 
whose divisor is a multiple of P^Pf. Since the surface IHP/r(9) has genus 

10, there is always such a a;. More information on the map $ is given in the 
proof of Theorem 15.5. 

We have observed that for primes fc, the support of the divisor of any 
quotient F = ^ is precisely the set of distinguished punctures, 

{pt p!' -' PM} 

This fails17 for k = 9 as illustrated by / = 1,  Z' = 3.   We find that in 
this case the function F has a pole of order 5 at Pi = P^ and a pole of 

9 
order 2 at P2. If the support of the divisor (F) were at the 3 distinguished 
punctures, then F would be forced to have a zero of order 7 at the point 
Pi.   We find however that F indeed has a zero at P4 but only a simple 

zero.   It follows that the function F has at least 6 additional zeros.   The 
above table allows us to conclude that F has simple zeros at the 6 points 

\ Pi, P2, Pi, Ps, P?, Ps >, and is regular elsewhere. We summarize the 
Is 3 3 3 3 3j 

above and related calculations (for I = 0, I' = 3 and for / = 2, lf = 3) in 

■$,\      P4P1P2P4P5P7P8     /$n\       PfPf /$9\ Pf 
_   I   —       9      3      3      3      3     3      3        /  J^i  1   —       9     9    arlr|    (  2_£   1   — 9 

^J"      PIP?     ' W _ p?      Us;" w 
99 9 99 

Since we have produced a meromorphic function of degree 6 on X which 
is holomorphic on X — {Poo}7 we conclude that PQO is a Weierstrass point 
and thus all 36 punctures on HI2/r(9) are Weierstrass points. In fact we can 
determine 8 of the first 10 "non-gaps" at PQO; they are: 6, 9, 11, 12, 15, 17, 
18, 20. 

There is an additional observation to be made. We consider in place of 
$, the map 

*i : r H> (^(r), ^(r), ^(r)), r E M2 U Q U {00}. 

The reader can check that the mapping in this case is certainly not injective, 
and in fact that here we have a map from Y = HP/r(9)/G to PC2, where 

17Recall that for k = 9, we have only 3 distinguished punctures: { Pi, Pi, Pi \. 
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G is the group generated by JB
3
. NOW J53 is an automorphism of Hp/r(9) of 

period 3 with exactly 9 fixed points, all at the punctures of H2/r(9). The 
fixed points are the images under P of the points 

124578124 
3' 3' 3'  3' 3' 3' 9' 9' 9' 

and the quotient ]HI2/r(9)/G is a torus with 18 punctures. 
The equations of X and Y will be given at the end of this paper as an 

example of our general theory. We now use the functions z = §jj- and w = |^- 
on Y. The divisors of these functions are 

P2P4 P1P2 
(z) = -LyS. and (w) = -j^L. 

9 9 

For the resulting map </?, we have (proj o cp)(P2) = 0 = (proj o <^)(P4). 
9 9 

Hence by Proposition 2.1, ip is injective. Since B induces an automorphism 
of period 3 of Y with a fixed point, Y is conformally equivalent to Ti    yg. 

2+Z  2 
It might be interesting to determine the involution with the same fixed point 
as P. 

We return to a study of the two maps into projective space. The map 
$1 : Y —)> PC2 is injective18 and of maximal rank. For if not, we can derive 
a linear relation 

Cl(po<P2 + C2^0^3 + C3(p2(p3 + C^ifl =0,  C; G C,   i = 1,2,3,4; 

which is seen to be a contradiction by examining the orders of the zeros at oo 
of the functions appearing in the above equation. Since the map $1 may be 
viewed as the map $ followed by a projection19, we conclude at once that $ is 
of maximal rank. As a map from IHl2/r(9), it is injective. For if &(x) = $(?/) 
with x and y in IHP/r(9), then <fri(xi) = $1(2/1), where xi and X2 are the 
projections of x and y under the canonical map IHI2/r(9) = X —$> Y. It 
follows that y = P3-7 with j = 0,1, or 2. As a consequence of (4.3), j = 0. 

18This assertion implies at once that the map ip is injective. 
19 This assertion follows from the fact for each cusp x G QU {00}, there is at least 

one j = 0,2, or 4, such that 

ord^i > orda^j. 
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14. The function field of E?/r(k) over EP/F. 

The following theorem is an immediate corollary of a result of E. Artin. 
It is independent of Theorem 6.3. 

Theorem 14.1. For each prime k > 5, the meromorphic functions 

fi = 5 Z = 0, 1, ...., , 
(pk-3 2 

2 

generate the function field of 1$/r(k) overEP/F. Furthermore, /C(IHI2/r(fc) 
is a Galois extension o/ZC^HP/F) tyz'tA Galois group Y/Y{k). 

Proof. Recall that the j-invariant generates the function field /C(fflP/F) of 
EP/F; that is, every meromorphic function on the Riemann sphere EP/F 
is a rational function of j. Let K denote the field over C generated by j 
and the -=^ functions listed above. The group T/T(k) = PSL(2,ZA;) acts 
as a group of automorphisms of IK as a consequence of Proposition 7.4; its 
fixed field is precisely C(j). By a theorem E. Artin in [15, page 194], IK is a 
Galois extension of /C(EP/r) of degree |r/r(fc)|. So is, /C(EP/r(A;)). Since 
IK C /C(EP/r(ifc)), we conclude that K = /C(EP/r(fc)). □ 

Remark 13. As a consequence of Theorem 6.4, the single function w = ^ 

generates the function field of IHP/r(fe) over H2/r. Furthermore, w satisfies 
an equation of the form 

kn(k) 

Y[(w- a,) = 0, 
3=1 

where aj 6 C(j). 

15. Equations that are satisfied by the embedding. 

Let k be an odd integer. Having mapped El2/r(fc) into PC-^-, we would 
like to find the equations which define the image. In this section we will 
obtain a method for deriving such equations and then use the method to 
obtain some quartic relations between the functions defining the mapping. 
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15.1. The residue theorem. 

The next theorem is proved just as in [3], 

Theorem 15.1. Let r G O2. Let f be a holomorphic function on the plane 
C which satisfies the two functional equations: 

and 

Then 

f(z + l) = -f{z), zeC, 

f(z + T) = — exp 2m \ —kz — k- > f(z), z 6 C. 

A:~1 (I2   I £(-l)< exp^^-r^ 
1=0 l J 

/\-kr)=0. 

Proof. The main observation is the following lemma. 

Lemma 15.2. For each TEH2, the function on C 

Zh+0 
(*■*) 

satisfies the above two functional equations and vanishes to order one at all 
the lattice points {n + ra^; n5m E Z} (and only at these points); hence in 
particular at the k points {^r, Z = 0,  ..., fc — l}. 

Proof. The functional equations follow at once from [7, (1)] (equation (3.5) 
above). The vanishing claim follows from the fact that the theta function 
with odd integral characteristic vanishes only at the lattice points (we are 
using the lattice generated by 1 and ^). Note that for the lattice generated 
by 1 and r, this function has precisely k inequivalent zeros located at the 
points listed above. □ 

Returning to the proof of the theorem, 

Z H-» g(z) 

e 
-, z 6 C, 

(*.i) 
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is an elliptic function with periods l5r with (at most) simple poles at the 
points in our list. The sum of the residues of an elliptic function in a period 
parallelogram must vanish; so we have 

k-l 

Y^ Res£Tg = 0. 
1=0 

Proceeding as in [3], we see that for each Z, 

m) Resz  g = 

('k i) 

where as usual ' = ^ (provided the denominator in the above expression 
does not vanish). Using once again (3.5) or [7, (1)], we see that 

6' (^) = exp™{-;-^}*'[;](o,l :)• 
The observation that 

«' IK'''0 

(see, for example, [2]) completes the proof of the theorem. (A similar argu- 
ment was used in [3].) □ 

15.2. The algorithm. 

We describe a general method (consisting of three steps) for obtain- 
ing theta identities among sums of products of theta constants of the form 

6 (with variable i G Z and k fixed and odd). 

Step 0.  Start with the following set of characteristics , where i G 

—k + 2 < i < k, and i is odd.  Denote this set by X.   Note that |X| = k. 
To simplify notation, we shall abuse language and identify the characteristic 

i 
k 
1 

Step 1. Choose m G Z, 1 < m < k. Pick lr G Z such that 1 < r < m and 
Y^Li ^ = 0 mod k. Without loss of generality (see next displayed equa- 
tion), we may and hence do assume that 0 < lr < k for each r. 

with the integer i. 
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Step 2.   For each r,  1 < r < m, delete from X the unique characteristic 

for which 

This means that 

k 
1 

(^r)=0. 

thf        K Zlif 

Denote the deleted set by A. From the characteristics in X — A, we choose20 

m characteristics ar with the property that X^i ot-r = 0 mod k. The ar's 
are not necessarily distinct. We define two functions on C: 

0(*)=ii* 
r=l 

A: 
1 {ZiT)i 

and 

/w= n ^ 
JGX-^ 

(z,T)g(z). 

A straightforward calculation (using (3.5)) tells us that the function / satisi- 
fies the conditions of the last theorem (because Ylrtziftr ~ ar) = 0 mod 2fc), 
and vanishes at k — m points {^r; j G Z, 0 < j < k, j ^ /r}. Hence the the- 
orem yields an identity involving a sum of m products of k theta functions 
evaluated at proper points. (There may, of course, be the possibility of lots 
of cancellation, and we can by changing the variable and the characteristic 
replace theta functions by theta constants, as we do in the next subsection.) 

15.3. Three term identities. 

We use the (m =) 3 step algorithm outlined above to produce 3 term 
identities. Choose li = 0, I2 = j, 1$ = k — j, with j G Z, 0 < j < ^k The 

characteristics to be deleted by step 2 are: 

From the remaining set of k — 3 characteristics, we choose 3 characteristics 

~k+2j 
k 
1 

k-2j   1 
k 
1 

20A We do not know if such a choice is always possible.   However, if lr ^ ^^ 
lr   zfi   £^ll   for  odd   m)   and  lr   ^    k+rn-\   ^  even  m   ^j^g   means  ^^^   ^   -^   ^ 

kr ^ k — (m — 1) for odd ?n, and &r 7^ 1 — TTI for even m), then we can choose oti = 1 
for 2 = 1, ..., m — 1, am = k — (m — 1) for odd m, and am = —(m — 1) for even m. 
This prescription could lead to trivial identities, for example if m = 2. 
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ar, r = 1, 2, 3, such that ^2=1 ar = 0 mod k. The function / is defined as 

/(*)=n^ (*>T)> 

where n^ G Z for i G X is computed as n; = 1+ the number of r for 
which ar — i if i ^ —k + 2j, k — 2j, k and n; = 0 if i = — k + 2J, k — 
2j, or fc. We need to calculate the values of the function / at the 3 points 
0, £T, and ^-r. The last theorem therefore yields 

(0,r) 

+(—l)-7 expTr^ {f} i6X, i^k-k+2j,k-2j 

+(-i)fc^exp«{^-^T}    n e71 

r'r 

fc- j 

k 
r,r    =0. 

iGX, i^k-k+2j,k-2j 

Using (3.6), we change the above formula to a relation among only theta 
constants: 

ieX, i^k,k-2j,2j-k 

(O,T) +    n    ^ 
i6X, i^k,k-2j)2j-k 

i+2j 
k 
1 

(0,r) 

»-2j 
A; 
1 

(oJr) = a +        JJ        eni 

ieX, i^k,k-2j,2j-k 

The terms involving the exponential function miraculously canceled out be- 
cause 

^2 rii = k. 

The last formula for the identity can be reduced by use of (3.1) and by (3.2) 
to one involving only the characterises 

{1, 3, ..., k-2}. 

This involves introducing some 2fc-th roots of unity and leads to cancella- 
tion of most terms.   We start with the observation that for any integer / 

r — 1 
translation of the characteristics in X by the characteristic      *      produces 
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an automorphism of X, provided addition is interpreted modulo 2k, that as 
a consequence of (3.2) does not otherwise alter any of the above formula. 
This reduces the set of characteristics in the formula for the identity to 

{-fc + 2, ..,-1, 1, 3, .., k} 

Next, using (3.1) and (3.2), we replace the term 6 
L 1 
k 
1 

(where I is an odd 

We have integer with —k + 2 < / < —1) by the term exp (TT^) 0 

reduced the set of characteristics appearing in our formulae to 

{1, 3, ..., k). 

Our final observation is that the characteristic k never appears. We then 
proceed to cancel common terms. We have obtained 

Theorem 15.3. Let j 6 Z, 0 < j < ^f1. For i = 1, 2, 3; choose odd 

integers c^ with |a^| < k — 2, |c^| 7^ k — 2j, and Y^i=i ai = 0 mo^ &• ^e 

following quartic relation holds among theta constants: 

k-Aj 
9 

fe-4.7 
k 
1 

1=1,2,3 
1 

+ exp I m 6 
k-2j 

k 
1 

-J   i=l,2,3 

Q»+2j 

1 

+ exp I TTZ 
-fc + 2i fc-2j 

k 
1 n » 

t=l, 2, 3 

az-2,7 
A; 
1 

= 0. 

Problem 3. For fixed k, the above identity is determined by the quadruple 
(j; ai,a2,as). It is obvious that both (j;ai,0^2?^3) and (j; — ai, — 0^25 —^3) 
always determine the same identity. There are other, less clear, relations 
among the identities. For k = 9, for example, the quadruples (1; 1,3,5) and 
(2; —7, —3,1) lead to the same identity. It is of interest to determine minimal 
generators for the ideal of identities and whether the identities determine 
the curve *(EP/r(ifc)) C PC^1. 

15.4. Examples of equations 

section 1 

k = 7, 9. We define21 0Z = 0 

We conclude this section by constructing explicit examples for the cases 
2Z+1   -| 

for I = 0, 1, ...,  *=S. For k = 7, we 

21 Obviously the functions 81 and (pi are closely related. We add this definition 
to emphasize that an identity among theta constants in the variable kr (or ^) is 
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choose j = 1, ai = 0*2 = 3, and as = 1. From the last theorem we obtain 

Theorem 15.4.   We have for k = 7, 

0g02 + c90|0i + e60?0o = 0, e = exp (y) . 

Remark 14. We have reproven (10.1). 

We consider next the case k = 9. We have seen that H2/r(9) is a closed 
surface of genus 10 punctured at 36 points. The compact surface IHP/r(9) 
is mapped into PC3 by $ = (<po, ¥>ij ¥>2? ^3)- Omitting the function ipi we 
obtain a mapping of the surface HI2/< r(9),B3 > into PC2. We seek the 
equation of the image; that is, equations among the ipi (equivalently among 
0i), I  ^  1. Choosing j = 3, ai = 012 = 1, 0^3 = 7, we get the equation 

0O
203 + €130gfc + e8^2^ = 0, € = exp (£) . 

This is (with each 0 replaced by a cp) a nonsingular equation of a torus; 
the torus H2/ < r(9),i?3 > sitting in PC2. The zero set of this equation is 
irreducible (hence connected); see for example, [14, p. 27]. 

We obtain equations involving the rest of the characterestics by choosing 
j = 1,2,4 respectively and ai = a2 = cts = 3: 

9291 + e593(93
2 + eX) = 0, #00? + e^! - fig) = 0, 030? - M^ + #1) = 0- 

We can however use fy instead of tpi to map our surface into projective 
space. As a consequence of (4.7) we are led to the same identities in terms 
of ipi and in terms of tpi. The introduction of the change of variable 

f    ^0    ,     ,     „ xi = exp i —— > %l)u I = 0, ..., 3, 

leads to more elegant formulae (with ±1 as coefficients) and the 

Theorem 15.5.  The intersection of the following 5 hypersurfaces in PC 

define the surface lHP/r(9): 

XQXS + xlx2 — X^XQ = 0,   -XQXI -I- X2{xl + XQ) = 0, 

-X2xl + xsixl + xl) = 0, -X3X? + xo(xl - xl) = 0, 

X-t — XnXn ~r ^CQCCQ       X0X2   \   ^2^3   '   ^O^S       ^0^2 """ 

3 

equivalent to an identity for the variable r. 
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Proof. The first 4 relations are the translates to the xi variables of our last 
4 three term identities (given in the 0/ variables). The last relation is, of 
course, not a three term identity. It is obtained through the use of the residue 
theorem. More precisely, we use the fact that the sum of the residues of the 
elliptic function (for fixed r E H2) 

03 

z t-> 

1 
3 

L   9   J 

Me* i 

L   9   J 
M 

9 

-,£EC, 

(9*,9T) 

is zero. The point (0,1,0,0) E PC3 which does not belong to $(HP/r(9)) 
will satisfy every three term identity derived from Theorem 15.3. Hence 
another type of identity is needed to describe the curve $(IH2/r(9)) in PC3. 
The fifth equation serves this purpose. 

Denote by H0 the set defined by the first equation in PC2, and by H1 the 
set in PC3 defined by the entire set of 5 equations. We have already observed 
that H0 defines the torus M2/ <r(9),J53 >. To show that H1 defines the 
closed surface H2/r(9), we study the commutative diagram where TT is the 
canonical projection ofIHP/r(9) onto W/T{§)/ < B3 >, 

X(T) = (XO{T);X1(T),X2(T),XS(T)), T E M2, 

XI{T) = {XV{T),X2{T),XZ{T)), T E H2, 

and 

u{x^xux2,x$) = (XQ,^,^), {x^xi,X2,x$) E PC3 - {(0,1,0,0)}. 

The map u) is well defined since its domain excludes the point (0,1,0,0). 
We already pointed out that the image of the map X avoids this point. We 
know that deg TT = 3, X is injective, and that 

X(HP/r(9)) Ctf1. 

The proof of the theorem can now be completed by showing that every 
point x E iif0 has (at most) 3 preimages (counting multiplicities) in Hl. If 
the i-th component of x is nonzero, then equation i + 1 shows that u)~l{x) 
has 3 preimages in Hl (counting multiplicity). It is easier to deal with set 
theoretic preimages. The primage in PC3 — {(0,1,0,0)} under TT of a point 
x = (xo,X2yXs) E PC2 consists of either 3 distinct points or a single point. 
If at least one of the 3 pairs 

(xoJX2{xl+xl)),   (X2,x3(xl+xl)),   (x3,Xo(xl-xl)) 
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has 2 nonzero entries, then TT
-1
^,^^) contains 3 distinct points. The 

points 
(1,0,0), (0,1,0) and (0,0,1) 

belong to H0; their (unique) preimages in H1 are the points 

(1,0,0,0), (0,0,1,0) and (0,0,0,1), 

respectively. The remaining points x = (^05^2,^3) in H0 have 3 nonzero 
components. Thus it involves no loss of generality to assume that XQ = — 1. 
For the preimage of such an x to consist of a single point, we must have that 
both X2 and xs are cube roots of unity. We conclude there are at most 9 
points (in addition to the coordinate vectors) in H1 which are preimages of 
branch values of the map TT; that is, points of the form 

(-1,7^,7/), 7? = exp—, ^f = 0,1,2. 

However, not all 9 points belong to H0. Only the 6 pairs (j, I) = (0,1), (0,2), 
(1,0), (1,1), (2,0), and (2,2) correspond to points in H0. We have shown 
that with 9 exceptions (corresponding to the punctures on (IHI2/r(9))/ < 
B3 >) the preimage of a point in H0 contains precisely 3 points of H1. The 
only remaining possibility is for H1 to contain the point (0,1,0,0). This 
possibility is eliminated by the fifth equation. □ 

Corollary 15.6. The map X is injective and of maximal rank. Hence its 
image is a nonsingular irreducible subvariety of PC3. 

Proof. In the proof of the Theorem we already used that X is injective; it is 
of maximal rank because Xi is. The image of X is nonsingular by Chow's 
theorem (see, for example, [9, pg. 167]); it is irreducible by the results of 
the theorem or as a consequence of the fact that it is the image under X of 
a compact Riemann surface. □ 

Remark 15. If we are willing to use algebraic sets AND their complements, 

then we can get much simpler description of the surface IHP/r(9) C PC3 as 
the set of those X = (^0,^1,^2,^3) £ PC3 that satisfy the first 4 equations 
of the theorem and X 7^ (0,1,0,0). 

We have already observed that lHP/r(13) is a closed surface of genus 50. 
It is convenient to work with the map 

X = (so, ..., x5) : IHP/r(13) -> PC5 
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where 

xi = exp I -— I fa I = 0, ..., 5. 

We define a map from 

Y = {(rz;o5 —> 0:5)6 PC5; (xoX2,xix5,xsX4:) ^ 0} 

to PC2 by £2(2:0,#1,£25£35#43£5) — (0:02:23^1^53^3^4) = Xi.   It is easy 
f   5     —2 

to see that (xQX2,xiXznX3X4) is invariant under B and 7 = 
-Lo 0 

moreover from Theorem 15.3, we obtain (by setting j = 1, ai = 1, a2 — 

5, as = 7) the identity (XOX2)(XIXS) + (XIXS)(XSX4) — (XSX4)(XQX2) = 0. The 
equation gives a quadratic curve in PC2. It is well known that a nonsingular 
quadratic curve is a Riemann surface of genus 0 (the result also follows 
from §12). Even though X(IHP/r(13)) £ Y, we have obtained a projective 
embedding Xi : lP/(< (2(13),7 >) -> PC2. We have seen in §12, that 
HP/ < G(13),7 > is conformally equivalent to PC. 
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