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Hyperbolic 3-Manifolds with Two Generators 

COLIN C. ADAMS 

We show that if there are two parabolic elements that generate 
a non-elementary Kleinian group that is not free, then there is 
a universal upper bound of two on the "length" of each of those 
parabolics, length being measured in a canonical choice of cusp 
boundaries. Moreover, there is a universal upper bound of ln(4) 
on the "distance" between those parabolics, where the distance 
between them is the distance between a pair of horoballs corre- 
sponding to the canonical cusps. We prove a variety of results 
with these, the most interesting of which is: An orientable finite 
volume hyperbolic 3-manifold that has fundamental group gener- 
ated by two parabolic isometries must be a 2-bridge knot or link 
complement. 

1. Introduction. 

Since the advent of the study of Kleinian groups and the hyperbolic 3- 
manifolds and 3-orbifolds that they generate, mathematicians have realized 
that certain special relations and restrictions apply to these groups. For ex- 
ample, the Shimuzu-Leutbacher Inequality or its generalization Jorgensen's 
Inequality, puts severe restrictions on the pairs of isometries of hyperbolic 
3-space that can generate a discrete non-elementary group. 

In this paper, we will determine restrictions on the pairs of isometries 
that can generate a non-elementary Kleinian group that is not free. In 
particular, we will begin by proving Theorem 3.2, which states that if there 
are two parabolic elements that generate a non-elementary non-free Kleinian 
group, then there is a universal bound of two on the "length" of each of those 
parabolics, length being measured in a canonical choice of cusp boundaries. 
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9302843 1991 AMS Subject Classification: Primary 57M50, Secondary 57M25. Key 
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Moreover, there is a universal bound of ln(4) on the "distance" between those 
parabolics, where the distance between them is the distance between a pair 
of horoballs corresponding to the canonical cusps, each parabolic preserving 
one horoball in the pair. 

It will follow that a Kleinian group can have at most a finite set of pairs 
of parabolic generators, up to conjugacy of the pair. In the case that the 
Kleinian group is finite volume, we give a bound on the number of such pairs 
as a linear function of the total volume in a canonical set of cusps. 

We then limit ourselves to the special case of finite volume hyperbolic 
3-manifolds that are generated by two parabolic isometrics. Perhaps the 
most interesting result is a proof that if M is a finite volume hyperbolic 3- 
manifold that is generate by two parabolics, then it must be the complement 
of a two-bridge link in S3. This proof does depend on Thurston's Orbifold 
Theorem, which, at the time of this writing, has not appeared in print. 

As an example of the utility of Theorem 3.2, we make a complete deter- 
mination of all of the pairs of parabolic generators up to conjugacy in the 
figure-eight knot complement. 

Our proof of Theorem 3.2 is geometric. After having discovered this 
proof, we came across a paper by J.L. Brenner [8] obtaining restrictions on 
pairs of parabolic generators that generate non-elementary non-free Kleinian 
groups using non-geometric techniques. At the end of Section 3, we show 
that Theorem 3.2 and Brenner's result imply one another. 

In the last section of the paper, we examine constraints on pairs of 
generators of non-elementary Kleinian groups that are not free, when the 
generators are both hyperbolic isometrics. For example, we prove that in 
the case of two hyperbolic generators, it is either the case that one of the two 
hyperbolic generators has length less than 2 ln(V2 + 1) or it must be that 
the distance between their axes is less than 2(lii(y/2 +1). Similar arguments 
can be applied when there are two generators, one of which is parabolic and 
one of which is hyperbolic, however, the results are not as strong. 

The rest of this section is devoted to background. Every Kleinian group 
corresponds to a hyperbolic 3-manifold or 3-orbifold that is obtained by 
taking the quotient of hyperbolic 3-space by the action of the Kleinian group. 
If there are parabolic isometrics in the group, the 3-manifold or 3-orbifold 
will have cusps. Each cusp is covered by a set of horoballs in hyperbolic 
space. By shrinking the cusps back if necessary, we can assume that all of 
the horoballs covering all of the cusps are disjoint. Given a particular choice 
of a set of cusps for a manifold or orbifold, we define the length of a given 
parabolic isometry in the fundamental group to be the length of the shortest 
loop in the cusp boundary that lifts to this parabolic isometry, where the 
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length of the loop is measured with respect to the hyperbolic metric. Since 
we are only interested in at most one or two parabolic generators, we will 
be concerned with only one or two of the cusps. 

In the case of a manifold or orbifold in which the two parabolic genera- 
tors occur on the same cusp, we will take that cusp to be a maximal cusp, 
meaning that the cusp has been expanded until it first touches itself on the 
boundary. Such a cusp lifts to a set of horoballs in i?3, some of which are 
tangent but all of which have disjoint interiors. We denote the volume of the 
resulting cusp by vc(M). The length of the parabolic isometry a, denoted 
|a|, is then defined to be its length with respect to this cusp. 

In the case that the two parabolic generators correspond to diflferent 
cusps, we shrink one of the two cusps back in size until both parabolic 
generators have the same length with respect to the cusps. We then enlarge 
the two cusps at rates that keep the two lengths of the parabolic generators 
equal, until the two cusps either touch one another or one of them touches 
itself. The length of a parabolic generator then refers to its length with 
respect to these cusps. In either the case when we are concerned with only a 
single cusp or when we are concerned with two cusps, we call the particular 
set of cusps that we have constructed a canonical set of cusps. 

A finite volume noncompact hyperbolic 3-manifold M has a compact 
core Mf with toroidal boundary components, which is obtained by discarding 
the interiors of a disjoint set of cusps. A loop in M represents a parabolic 
isometry in the fundamental group if and only if the loop is freely homotopic 
into the boundary of Mf. 

We say that a loop in the complement of a knot is a meridian if it is 
freely homotopic to a curve on the boundary of a regular neighborhood of 
the knot that bounds a meridional disk in the regular neighborhood. We say 
that two parabolic elements in a hyperbolic 3-manifold are parallel if loops 
corresponding to them are freely homotopic to curves on the boundary of a 
single cusp, such that those curves do not intersect one another. Note that 
two curves that are parallel are either freely homotopic to one another or a 
power of one is freely homotopic to a power of the other. Given two disjoint 
horospheres, we define a connector to be a geodesic path from one to the 
other such that it is perpendicular to both. Given two parabolic generators 
that do not share a fixed point, each one preserves a horoball that covers 
one of the canonical cusps. Define the distance between the two parabolic 
generators to be the length of the connector between these two horoballs. 
When counting distinct pairs of parabolic generators, we will not distinguish 
between the pair {a,/3} and the pairs {a,/J-1}, {aT1,/?} and {a-1,/?"1}. 
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Given a hyperbolic generator a, it corresponds to translation and ro- 
tation about a geodesic. We define its length. |a| to be the length of the 
translation along the geodesic. 

In all of what follows, we will be working in the upper-half-space model 
of hyperbolic 3-space. Hence it makes sense to talk about the highest point 
on a horosphere or geodesic, where highest refers to the point with largest 
z-coordinate. We call such a highest point the peak of the horosphere or 
geodesic. All size comparisons between pairs of horospheres, or pairs of 
geodesies are made in reference to which has the higher peak. Given a word 
w = anibn2anz...bnrn in a free group generated by two elements a and 6, 
where each ni is a nonzero integer, we define a syllable of the word to be a 
maximal subword of the form ani or bni. 

We will use the same symbol to represent an isometry of hyperbolic space 
corresponding to an element of the fundamental group and to represent a 
loop in the equivalence class of loops that corresponds to that element in 
the fundamental group, when it is not confusing to do so. 

Thanks to Alan Reid for several helpful conversations, particularly with 
regard to Corollary 4.6. 

2. Geometric Lemimas. 

In this section, we prove a sequence of geometric lemmas and corollaries 
that will be of use to us in the rest of the paper. All of these lemmas refer 
to situations occurring in the upper-half-space model of if3. 

Lemma 2.1. If Hi and H2 are two horospheres bounding disjoint horoballs 
and connected by a connector of length x, and if yi is the distance on Hi 
from its peak to the connector for i = 1,2, then yi = l/(y2ex). 

Proof. Let H3 be a horoball centered at 00 that is tangent to #2, as in 
Figure la). Then there exists an isometry of hyperbolic space taking H2 to 
a horoball ff^ centered at 00 with height 1 above the x — y plane and taking 
Hi to a horoball H[ centered at the origin. The isometry will take H3 to a 
horoball H3 centered a distance 2/2 from the origin, as in Figure lb). The 
fact that Hi and H2 are a distance x apart forces Hi to be sent to a horoball 
of Euclidean diameter e~x. 

We will rotate 180° about a geodesic of radius 2/2 that is centered above 
if{, with one endpoint at the center of Hf

3. Then if{ is sent to a horoball 
Hi centered at 00 of height yl/6^ as m Figure lc)-   The horoball H2 is 
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sent to a horoball centered at the origin of diameter y|. The horoball H'3 is 
fixed under the rotation. Then the horizontal line segment in the boundary 
of Hi of hyperbolic length yi has a Euclidean length of 2/2 and a Euclidean 
height of yi/e"*, giving it a hyperbolic length of l/(y2ex). □ 

Figure 1c) 

Figure 1. 

Corollary 2.2. Let H be a horosphere connected to a second horosphere at 
least as large as itself by a connector of length x.  Then the distance on H 
from the connector to its peak is less than or equal to e~x'2. 

Proof   When the two horospheres are the same size, the distances from 
the connector to the peak on each of them are equal. By Lemma 1.1, that 
distance y then satisfies y   — e x, so y — e 
grows in size relative to if, y will shrink. 

~xl2. As the second horosphere 
□ 

Lemma 2.3. If gi and g2 are two geodesies in the upper-half-space model 
that intersect perpendicularly, and ifyi andy2 are the respective distances on 
each from the point of intersection to their peaks, then y\ < ln(coth(y2/2)). 

Proof. Suppose first that gi and g2 both lie in the same vertical plane. As in 
Figure 2, yi and 2/2 each depend on ^i and 02, where (fri+fo = n/Z- Since 

yi =-ln(tan(</>i/2)), 

we know 
tan((7r/2-(/>2)/2)=e-2/1. 
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Applying trigonometric identities, this becomes 

1 - tan(02/2) o-yi 
1 + tan(^2/2)' 

Since 
2/2 = -ln(tan((/>2/2)), 

we can substitute e~y2 for tan(02/2), obtaining 

eyi = 
i + e-y* 
1 - e-2/2' 

Solving for j/i, we obtain yi = ln(coth(y2/2). 
If we now rotate gi through space while fixing #2 and the point of inter- 

section, so that the two geodesies no longer lie in a common vertical plane, 
yi will decrease, thereby showing that yi < ln(c:oth(y2/2). □ 

Figure 2. 

Lemma 2.4. Let H and g be a horosphere and a perpendicular geodesic. 
Then if x and y are the distances on each respectively, from their point of 
intersection to their peak, then y — ln(l/:r). 

Proof. Let g' be a vertical geodesic that passes through the peak of g and let 
g" be a vertical geodesic passing through the center and peak of H. We will 
take an isometry that sends the center of H to oo and oo to 0, keeping the 
designations of the horosphere and geodesies after the isometry acts. We 
will also normalize so that the Euclidean height of the resultant H above the 
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x — y plane is 1. The horizontal length along H from its intersection with g" 
to its intersection with g' is x. Hence the Euclidean radius of gf is equal to 
x. Therefore y is the hyperbolic distance obtained as the vertical distance 
between a point at height x and a point at height 1, which is ln(l/x).      D 

Note that if the peak of the geodesic g occurs inside the horosphere H, 
we will consider the distance along g from its peak to H to be negative. 

Lemma 2.5. Let Hi and H2 be two horoballs with disjoint interiors con- 
nected to a third horoball H3 by a pair of connectors of length x. Then one 
of the connectors must intersect Hi or H2 at a point that is a distance of at 
most 2 from the peak of that horosphere. 

Proof. For convenience, expand #3 until it becomes tangent with each of Hi 
and H2, which occurs at the same instant. Now we are interested in points 
of tangency rather than points of intersection with connectors. Suppose first 
of all that Hi and H2 are of the same Euclidean diameter, and that they 
are tangent to one another. Then the point of tangency with Hz occurs on 
the first two balls at points that are within 2 units of their peaks, the points 
being exactly two units from their peaks when the point where the third ball 
touches the x — y plane is in line with points where Hi and H2 touch the 
x — y plane. (Note that if three horoballs are pairwise tangent, the distance 
on any one of them between the points of tangency is exactly one). 

Suppose now that we allow one of Hi or H2 to expand. However, in 
order to prevent Hi and H2 from overlapping, we have to shrink the second 
ball at the same time. This second ball will still have its point of tangency 
with H^ a distance of at most 2 from its peak. Finally, the case where Hi 
and H2 are not tangent is realized by taking the case where they are tangent 
and then shrinking either Hi or H2. The smaller ball will still have its point 
of tangency with H^ a distance no more than 2 from its peak. □ 

3. A Pair of Parabolic Generators. 

Lemma 3.1. If a and (3 are two parabolic isometrics that generate a non- 
elementary Kleinian group, then relative to the canonical set of cusps, their 
lengths are both equal to each other and their lengths are both at least 1. 



188 Colin C. Adams 

Proof. In the case that both parabolic generators correspond to the same 
cusp, we know that the cusp has been expanded until it touches itself. There- 
fore, a horoball Hi centered at oo that covers the cusp must be tangent to 
another horoball #2- The horoball if2 must be moved off itself by any- 
parabolic isometry fixing 00, and therefore that isometry must correspond 
to a path of length at least one in the cusp boundary. (See [2] for more 
details.) 

Any two such parabolic elements are conjugate in the group of all hy- 
perbolic isometries. In particular, given two parabolic isometries that do 
not share the same fixed point on S^ (as our generators cannot, since the 
group is non-elementary), there exists a geodesic g' perpendicular to the 
geodesic g between their fixed points, such that the isometry r obtained by 
rotating 180° about the geodesic g' conjugates the one parabolic isometry 
to the other. Since the isometry r switches the two generators under conju- 
gation, it conjugates the entire group back to itself. Let Hi and H2 be the 
two horoballs covering the canonical cusp at the endpoints of g. If we can 
show that r sends Hi to #2, then we will have shown that the two parabolic 
isometries have the same length. 

However, since Hi and H2 both cover the same cusp, there exists an 
element 3 in the Kleinian group G that identifies Hi to #2- Then rjr~l 

sends the center of H2 to the center of H\. Since rjr~l is an element of G, 
it must send H2 to Hi. If r does not send H2 to iJi, then either r(H2) is 
contained in Hi or r(H2) contains Hi. In either case rjr~1(H2) ^ Hi, a 
contradiction. 

Suppose now that the two parabolic generators correspond to distinct 
cusps. By our choice of canonical cusps, we are assured that the two gener- 
ators have the same length. If the two canonical cusps touch one another, 
then when either one is lifted to a horoball centered at 00, it has a tangent 
horoball which must be moved off itself by any parabolic isometry fixing 00. 
Hence, each parabolic isometry has length at least 1. 

However, it could be the case that one of the canonical cusps touched 
itself before it touched the other cusp. By the same argument that we used 
in the case of a single cusp, any parabolic isometry corresponding to this 
cusp will have a length of at least 1. As in the case of a single cusp, there 
exists an isometry r that conjugates the one parabolic generator to the other, 
and therefore conjugates the entire group to itself. Since the two parabolics 
have the same lengths with respect to the two cusps, the isometry r must 
send the horoballs covering the first canonical cusp to the horoballs covering 
the second canonical cusp. In particular, if the first cusp touches itself, so 
must the second cusp. Hence the parabolic isometries corresponding to the 
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second cusp must also be of length at least 1. □ 

Note that a non-elementary hyperbolic 3-manifold or 3-orbifold that is 
generated by two parabolic isometrics always has a Z2 + Z<i action on it, 
one Z2 action coming from the isometry r described in the preceding proof, 
and a second Z^ action coming from 180° rotation about the geodesic g 
connecting the two fixed points of the parabolic isometrics, sending a to 
a-1 and /3 to f5~x via conjugation. (See [16], p. 5.17 for more details.) 

The geodesic g must project to a non-singular curve in the manifold, 
in order that it be an involution axis. (If it were singular, the lift of the 
involution to U3 would have to simultaneously rotate about two or more 
axes that crossed one another, which is not possible.) 

Theorem 3.2. Suppose that a and ft are a pair of parabolic isometries that 
generate a non-elementary Kleinian group G that is not free. Then, with 
respect to the canonical choice of cusps, 1 < \a\ = |/3| < 2. Moreover, 
the distance x between a and /3 must be less than ln(4/|a|2). In particular, 
x < ln(4). 

Proof. Given the two parabolic elements a and /?, each one must correspond 
to a particular cusp, possibly the same cusp. By Lemma 3.1, we know 
that the two parabolic elements have the same length with respect to the 
canonical cusps, and that length is at least 1. 

For simplicity, we choose a basepoint for the fundamental group of the 
manifold or orbifold on the boundary of one of these cusps. One of the two 
parabolic generators a can be realized as a loop a' entirely contained in the 
cusp boundary, and therefore lifting to a path that is entirely contained in 
a single horosphere. The second parabolic generator (3 can be realized as a 
loop /?' that begins at the basepoint, travels along a path UJ passing though 
the complement of the interior of the cusps from the basepoint back to a 
point on the cusp boundary, follows a closed loop in the cusp boundary, call 
it 5, and then returns to the basepoint along a;-1. Lifting the path a; to a 
path a/ in iJ3, we obtain a path that begins and ends in the horospheres 
covering the cusp boundary. If u/ begins and ends on the same horosphere, 
a! and /?' lift to two parabolics that share a fixed point on the sphere at 00. 
However, this would imply that the group G was elementary. 

Hence, we can assume that u/ connects two distinct horopheres. We 
may homotope a/ to a connector of the two horoballs. Call that connector 
7. The homotopy of u/ projects to a homotopy in the manifold, and induces 
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a homotopy of ft onto a loop (3" that consists in following a geodesic path 
from the basepoint on the boundary of the canonical cusps, through the 
manifold or orbifold, back to the boundary of the canonical cusps, around a 
cusp boundary and then back to the basepoint along the geodesic path. Let 
x be the length of the connector 7. 

It could be the case that a! and (3" intersect one another, however that 
intersection can occur only in the cusp boundary. In particular, this means 
that a' and 5' are not parallel curves in the cusp boundary. In this case, 
we will homotope a small segment of 8 slightly into the complement of the 
cusps at each of their points of intersection, so that they are now disjoint. 

Now we take the preimage of a' and f3n = 7^7"1 in iif3 and look at the 
graph K that results. First note that K is connected. If this were not the 
case, we could form a path in i?3 from one component of K to another, 
such that the path began and ended at lifts of the basepoint in M. Such a 
path projects to a loop in the manifold which must be homotopic to a loop 
given as a word in a and /?. The homotopy must lift to a homotopy of the 
path into K, a contradiction to the fact that the path connects two distinct 
components of K. 

Since the Kleinian group G is not a free group, we know that there exists 
a word w in a, a-1, f3 and f3~l that is trivial. This implies that there must 
be a nontrivial loop in K corresponding to w. Let 

w = anipn2an\..pnm. 

Given a choice of a lift of the basepoint, each syllable of w has a horosphere 
covering a cusp that is associated to it in if3, as follows. A lift of ani 

which begins at the lift of the basepoint will be a path in a horosphere 
containing that basepoint. Lifting f3n2 to a path that begins at the end of 
the lift of ani, we will obtain a path that leaves the original horosphere 
along a connector, travels to a new horosphere, travels along the surface of 
that horosphere a distance equal to n times the length <5, and then leaves 
along a connector, depositing us at a third horosphere. The lift of an3 would 
then be a path on the surface of this new horosphere. We continue in this 
way. Hence we associate to each syllable a horosphere, which in the case 
of ani is the horosphere that the lift of ani lies in and in the case of /?n-? 
is the intermediate horosphere that the lift of /^ travels along. Choosing 
one of the horospheres in the sequence to be centered at 00 in the upper- 
half-space model, we know that there exists a smallest horosphere in the 
sequence of horospheres. That is to say, there must be a horosphere H in 
the sequence that is connected to two horospheres that are at least as large 
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as it is, and such that one of them is strictly larger than it is. If there is a 
set of consecutive smallest horospheres, take one on the end of the sequence. 
We count the horosphere centered at oo as the horosphere of largest (in fact, 
infinite) radius. 

Since any two horospheres that are connected by a lift of 7 are connected 
by a geodesic of length #, we know by Corollary 2.2 that each of the two 
endpoints of the connectors corresponding to the two ends of the syllable 
must be within a distance e~xi<1 of the peak of H. In particular, the length 
of the parabolic isometry corresponding to that syllable as measured in B. 
must be less than 2e~x'2. This implies that in particular, the length of that 
parabolic isometry is less that 2. Moreover, since any parabolic isometry 
has length at least 1, we know that the syllable must be a primitive element 
given by either a,a-1,/? or j3~l. Since Lemma 3.1 gives us that |a| = |/3|, 
we have 

1 < H = |/3| < 2. 

In fact, we actually know more, namely that 

1 < |a| < 2e-*/2. 

Solving 
M < 2e-*/2, 

for re, we have that x < ln(4/|a|2). In particular, since |a| > 1, 

x < ln(4). 

a 

We are particularly interested in the special case that G is the funda- 
mental group of a hyperbolic 3-manifold. Note that a 2-generator subgroup 
of the fundamental group of an irreducible atoroidal 3-manifold must either 
be free, free abelian or finite index (c.f. [11], Theorem VL4.1). Since a hy- 
perbolic 3-manifold is both irreducible and atoroidal, every non-elementary 
subgroup of the fundamental group of a hyperbolic 3-manifold that is gen- 
erated by two parabolic elements must either be free or finite index. Thus, 
Theorem 3.2 is giving us restrictions on the pairs of parabolic elements that 
can generate finite index subgroups. 

After having proved Theorem 3.2, we discovered a paper by J.L. Brenner 
[8] where he proves that if (l/i|01) and (10|/xl) are matrix representations 
for two parabolic isometrics that generate a Kleinian group, and if |/x| > 2, 
then the group is free. Here, we show how Theorem 3.2 can be derived from 
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that result. Let a and /? be two parabolic isometries that generate a non- 
free non-elementary Kleinian group G. Since G is non- elementary, a and /? 
have distinct fixed points and hence we can normalize so that a and /? fix 
oo and 0 respectively and have matrix representations of the forms (l/i|01) 
and (10|/il). By Brenner's result \\i\ < 2. Expand the cusps until the two 
horospheres centered at 0 and oo become tangent. Note that in order to 
do this, we may have had to allow a cusp to overlap itself or, if two cusps 
are present, to have the two cusps overlap each other. When there are two 
cusps present, we can choose the rate of expansion in each cusp so that the 
two parabolic generators move points in the two horospheres an equivalent 
distance. 

Note that conjugation by (01|10) sends the second generator to the first. 
Since the isometry corresponding to (01|10) fixes the point (0,0,1) in the 
upper-half-space model, the horosphere centered at oo must be plane z = 1 
and the horosphere centered at 0 must be a sphere of Euclidean diameter 1. 
Since |/x| < 2, each of the two parabolic generators moves points in these two 
horospheres a distance less than 2. As we shrink back the cusp or cusps to 
obtain a maximal disjoint set of cusps by removing any overlap, the length 
that each generator moves points in the horospheres shrinks by a factor 
of e~x/2 where x is the distance between the horospheres. Hence, if the 
group is not free, each parabolic generator moves points in the horospheres 
corresponding to a canonical set of cusps a distance less than 2e~rc/2, which 
is certainly less than 2. We can then derive the fact that 

x < ln(4/|a|2) < ln(4) 

exactly as in the proof of Theorem 3.2. Simiteixly, Theorem 3.2 can be used 
to prove Brenner's result. 

4. Corollaries and Related Results. 

Note that any two-generator Kleinian group always has infinitely many 
distinct pairs of generators, even after conjugacy. If a and /? are a partic- 
ular pair of generators for the fundamental group, so are a and an/?, for 
instance. Infinitely many of these pairs cannot be conjugate, as an/3 must 
have increasing "length" as n increases. Hence, the next corollary is a bit 
surprising. 

Corollary 4.1. A two generator finite volume Kleinian group has at most 
finitely many distinct pairs of parabolic generators, up to conjugacy of the 
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pair. In particular, if M is a one-cusped or two-cusped hyperbolic 3-manifold 
and if n represents the number of non-conjugate pairs of parabolic genera- 
tors, and vc(M) is the volume in one of the canonical cusps, then 

i). For a 1-cusped hyperbolic 3-manifold, 

rn<3(^ii_6)  ifVc(M)<2 

jn<32^_6        ifVc(M)>2 

ii). For a 2-cusped hyperbolic 3-manifold, 

r    < 15(32^M) _ i)    ifVc{M)<2 

{n<32^_5 ifVc{M)>2. 

Proof A finite volume Kleinian group has at most a finite number of cusps, 
each of which is generated by a Z + Z subgroup. For each cusp individually, 
and then for each pair of cusps, we take a canonical set of cusps, and see 
that there are finitely many pairs of parabolic generators in each case. 

In particular, given a specific choice of a single cusp or a pair of cusps 
and the corresponding canonical cusps, the shortest nontrivial curve in the 
canonical cusps' boundaries has length at least 1. The set of nontrivial curves 
of length less than 2 in any one cusp boundary is finite. Hence the total 
number of pairs of nontrivial curves such that both have length less than 2 is 
finite. We now look at connectors between the horospheres covering cusps. 
Each pair of parabolic generators corresponds to a pair of curves in the cusp 
boundary as above and a connecting geodesic between cusps that lifts to a 
connector of length less than ln(4). Lifting one of the cusps to a horoball 
centered at oo of height 1 above the boundary plane in the upper-half-space 
model of if3, each of these connecting geodesies lifts to a connector that 
connects the horoball centered at oo with a horoball of diameter at least 
1/4. Since each distinct horoball of diameter at least 1/4 requires a certain 
amount of area in the fundamental domain for the cusp subgroup fixing oo 
and since the area of the fundamental domain of the cusp is finite, there 
can be at most finitely many distinct connecting geodesies. Hence there are 
only finitely many ways to put together pairs of nontrivial curves in the cusp 
boundaries with connecting geodesies between them, yielding only finitely 
many pairs of parabolic generators (a,/3), up to conjugation of the pair. 

We will now obtain an explicit bound on the number of such pairs in the 
case that M is a hyperbolic 3-manifold with one cusp. Since the length of 
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any curve in the cusp is at least 1, there are at most three possibilities for 
each of a and /? such that 1 < |a| = |/?| < 2. Either a corresponds to the 
shortest nontrivial curve in the cusp, or to the shortest nontrivial curve that 
is linearly independent from the shortest curve. This follows from the fact 
that if we have normalized the lift of the cusp boundary so that it occurs 
as a plane of height 1, a fundamental domain to the cusp subgroup must 
be a parallelogram that is large enough to contain two disks of diameter 1, 
those disks being the projections of two full-sized horoballs. (See [2]). This 
gives at most three possibilities for a, and three possibilities only occurs 
for a hexagonal cusp. Once a has been determined, there are at most two 
choices for 8 {8 defined as in the proof of Theorem 3.2), the option of two 
choices occurring only when there exists a linearly independent translation 
in the cusp subgroup of the same length as the shortest translation. Since 
we have not specified which element in the pair is which, we have at most 
a total of three distinct pairs of possibilities for a and J. Note that it is 
always the case that vc(M)/ > A/3/2 (c.f.[2]). If vc(M) > 2, then there is 
at most one parabolic translation (ignoring inverses) with length less than 
2 and therefore there is only one possibility for each of a and 8. 

Now we would like to determine a bound on the number of distinct con- 
necting geodesies for these pairs of elements. Given a cusp of volume vc(M), 
then after normalizing so that a horosphere covering the cusp boundary is a 
horizontal plane at height 1, the cusp subgroup fixing oo has a fundamental 
domain that is a parallelogram of area 2vc(M). Within that parallelogram 
each ball of diameter 1/4 projects to a disk that requires an area of \/3/32, 
when attempting to pack them in so that they respect the cusp subgroup. 
Hence, we can fit at most 2vc(M)32/y/3 disks of diameter at least 1/4 into 
the fundamental domain. By choosing an orientation on each connecting 
geodesic, we see that each such lifts to two vertical geodesies modulo the 
action of the subgroup fixing oo, one oriented up and one oriented down. 
Hence the horoballs corresponding to a given connecting geodesic come in 
pairs, and there are only 32vc(M)/y/3 possible distinct vertical connectors of 
length less than ln(4). But because there must always be a pair of full-sized 
balls in the cusp diagram, and since a ball of diameter 1/4 must have center 
a distance 1/2 from the center of a full-sized ball, the disk of diameter 1 that 
is the projection of each full-sized ball acts as if it has room for 7 disks of 
diameter 1/4. Hence, if there are n connecting geodesies, all of length less 
than ln(4), there is enough room for the equivalent of 14 + 2(n — 1) balls, 
all of diameter at least 1/4. Each such ball contributes an area of \/3/32 to 
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the area of the cusp. Since 2vc(M) is the area of the cusp, we have 

2vc(M) > ^3/32(14 + 2(n - 1)). 

Thus, the number of connectors of length less than ln(4) is bounded above by 
32vc(M)/y/3 — 6. Therefore, when the cusp volume is less than 2, the total 
number of pairs of parabolic generators up to conjugacy is bounded above 
by 3(32vc(M)/\/3 — 6). When the cusp volume is at least 2, the total number 
of pairs of parabolic generators is bounded above by 32vc(M)/V3 — 6. 

If M is a hyperbolic 3-manifold with two cusps, let Ci and C2 be the 
canonical set of cusps. Let a correspond to Ci and /? correspond to (72- If 
Ci touches itself, then by symmetry, C2 touches itself. As in the case of a 
single cusp, we then have two possibilities for a and two for /?. 

On the other hand, if the cusp Ci touches the cusp C2, but neither cusp 
touches itself, there is only one full-sized ball per cusp diagram and we are 
only assured of a volume of \/3/4 in each cusp. In particular, this means 
that there are five possibilities for a. Checking the number of possibilities 
for 5, given a particular choice of a, we have a total of fifteen possibilities 
for the pair of a and /?. 

Note that the symmetry of the manifold ensures that the volume in each 
of the two canonical cusps is equal. If that volume is greater than 2, we 
again have at most one choice for a and one choice for S. We now obtain an 
upper bound on the number n of connectors of length less than ln(4) exactly 
as we did for the one-cusped case. However, there is now potentially only 
one full-sized horoball in the cusp diagram for either cusp. Hence, if vc(M) 
is the cusp volume in either one of the two canonical cusps we have that 

2vc(M) > V3/32(7 + 2(n - 1)). 

so n < 32vc(M)/V3 - 5/2. □ 

Note that Corollary 4.1 implies that if a and ft are a pair of parabolic 
generators, then an/3 and a/3n must be hyperbolic isometries for all but a 
finite number of values of n. In fact, a stronger result is true. The isometries 
corresponding to an/3 and a/3n must be hyperbolic isometries for all non- 
zero values of n. This follows from the proof of Theorem 3.1 of [1], where it 
is shown that if the product of two parabolic isometries that do not share a 
fixed point is another parabolic isometry, then the two parabolic isometries 
preserve a common circle on the sphere at 00. In our case, the two parabolic 
isometries are a and /3n or an and (3. However, then a and /3 generate a 
Fuchsian group, contradicting our assumption that the fundamental domain 
for the group is finite volume. 
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Lemma 4.2. Let M be a non-elementary finite volume hyperbolic 3- 
manifold with fundamental group generated by two parabolic elements, both 
corresponding to the same cusp. Then the following hold: 

i) M has a single cusp. 
ii) Any pair of parabolic generators are freely homotopic to one another 

or their inverses. 
Hi) There exists an involution of the manifold that lifts to a parabolic 

isometry. 

Proof. Since the two parabloic generators have distinct fixed points, we know 
that the manifold has a Z2 + Z2 action on it, as explained in Section 3, before 
Theorem 3.2. Each of these isometrics of the manifold is realized in the 
universal cover by an elliptic isometry that permutes the horoballs covering 
the canonical cusp. In particular, we will normalize so that a lift Li of one 
of the three involutions fixes the horoball at 00 and the horoball centered 
at 0 while lifts L2 and L3 of the second and third involution switch those 
two horoballs. However, there must exist an isometry T in the fundamental 
group that takes the horoball centered at 0 to the horoball centered at 00. 
Therefore Li,TL2 and TI/3 are all lifts of the three involutions that fix a 
single common point on the boundary of hyperbolic space and that preserve 
each horosphere centered at that point. Hence, each of these lifts must 
either be elliptic or parabolic. Suppose that two of them are elliptic. Then 
the third nontrivial isometry lifts to the product of these two, which is a 
parabolic isometry. Therefore, at least one of these three involutions lifts to 
a parabolic isometry, proving iii). Suppose that TL2 is the parabolic lift of 
an involution. But L2 must conjugate a to ft or /3_1, and by switching /? 
for /3~1 if necessary, we will assume L2 conjugates a to /3. Then, since TL2 
and a commute, 

a = TL2a{TL2)-1 = T/JT"1. 

Hence a and f3 are conjugate in the fundamental group. This implies that 
they are freely homotopic as loops in the manifold. 

In particular, they are freely homotopic to the same curve in the bound- 
ary of the manifold, proving ii). If we do a Dehn filling along a primitive 
element in the boundary of the manifold that generates this curve, we ob- 
tain a 3-manifold with trivial fundamental group. If there was more than 
one cusp, we can discard the interiors of the remaining cusps, to obtain a 
compact 3-manifold with trivial fundamental group and toroidal boundary 
components, a contradiction. Hence, this manifold has only a single cusp. 
□ 
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Theorem 4.3. Let M be a non-elementary finite volume hyperbolic 3- 
manifold. Then the fundamental group of M is generated by two parabolic 
elements if an only if M is the complement of a two-bridge link in S3 that 
is not a 2--braid.  The two generators correspond to meridians. 

Proof. Corollary 4.2 shows that if both of the parabolic generators corre- 
spond to one cusp, they must be freely homotopic. Since each parabolic 
element must have length at least 1 and Theorem 3.2 says that the gener- 
ators have length less than 2, each of the generators must correspond to a 
loop in the boundary of the manifold that yields a primitive element in the 
fundamental group of the boundary. In particular, if we glue one or two 
solid tori to the one or two cusp boundaries so that a meridian of each solid 
torus goes to the one or two boundary curves corresponding to the parabol- 
ics, we obtain a compact 3-manifold with trivial fundamental group. This 
manifold has a nontrivial involution coming from extending any one of the 
three nontrivial involutions on M to the surgered manifold. By Thurston's 
Orbifold Theorem, (which has not yet appeared in print but see [17] and 
[10]), a compact 3-manifold with an involution that has fixed point set of di- 
mension at least one satisfies the Geometrization Conjecture. In particular, 
the surgered manifold must be S3. Hence, M is a knot or link complement 
in S3 and the Dehn filling was along a meridian. However, Corollary 6.3 of 
[7] shows that a link complement in S3 generated by two meridians must be 
a 2-bridge link complement. 

Note that every 2-bridge link complement has fundamental group gen- 
erated by two meridians. If the 2-bridge link complement is hyperbolic, 
those meridians will lift to parabolic isometrics. But every 2-bridge link is a 
prime non-splittable alternating link, and in [12], it is proved that a prime 
non-splittable alternating link that is not a 2-braid is hyperbolic. Hence, 
we know that a compact orientable hyperbolic 3-manifold has fundamen- 
tal group generated by two parabolics if and only if it is the exterior of a 
2-bridge link in S3 that is not a 2-braid. □ 

A compact orientable 3-manifold with boundary consisting of tori is said 
to be tunnel number one if it is obtained by gluing a 2-handle to a genus two 
handlebody, and the two-handle is known as an unknotting tunnel Any pair 
of generators for the fundamental group of the handlebody can then serve 
as a pair of generators for the fundamental group of the manifold. In [15], it 
was conjectured that a compact orientable 2-generator 3-manifold is tunnel 
number one.    Since every two-bridge link complement is tunnel number 
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one, Theorem 4.3 confirms the conjecture in the case that the manifold 
is hyperbolic and the two generators are parabolic. In fact, it was this 
conjecture that motivated the original work on this paper. Since there are 
many manifolds that are tunnel number one but that are not two-bridge 
knot or link complements, we have the following corollary to Theorem 4.3. 

Corollary 4.4. There exist hyperbolic 3-manifolds of tunnel number one 
and unknotting tunnels within them, such that among all of the pairs of 
generators corresponding to the given unknotting tunnel, there is no pair, 
both of the elements of which are parabolic. 

Corollary 4.5. A meridian in a hyperbolic 2-bridge knot is represented by 
a nontrivial loop in the maximal cusp boundary of length less than 2. 

Proof. This follows immediately from Theorem 3.2 and the fact that the 
fundamental group of the complement of a 2-bridge knot is generated by 
two meridians. □ 

As mentioned previously, when counting distinct pairs of parabolic gener- 
ators, we will not distinguish between the pair {a, /3} and the pairs {a, /J-1}, 
{a-1,(5} and {a"1,/?"1}. 

Corollary 4.6. There are exactly two distinct pairs of parabolic isometrics, 
up to conjugation of the pair, that generate the fundamental group of the 
figure-eight knot complement. 

Proof. Taking a maximal cusp for the figure-eight knot complement, the 
shortest translation in the cusp boundary has a length of 1 and corresponds 
to a meridian, while the next shortest translation has a length of 2\/3. 
Hence, Theorem 3.2 implies that both a and 8 are meridians of length 1. 
There are two connectors between horoballs of length 0 and four connectors 
between horoballs of length ln(3). See Figure 3. ([5] contains many addi- 
tional cusp diagrams, and an explanation of what they represent.) Each 
connector, once it is given an orientation, appears twice in the cusp dia- 
gram, once coming into the cusp, and once leaving the cusp. (A connector 
of length less than ln(4) corresponds to a horoball of Euclidean diameter 
greater than 1/4 where the largest horoballs in the cusp diagram have been 
normalized to have diameter 1.) There are many more connectors of length 
exactly ln(4), however, we needn't consider them. 
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Figure 3: The cusp diagram for the figure-eight knot. 

The two pairs of parabolic generators corresponding to the two connec- 
tors of length 0 each generate the entire group. In the decomposition of the 
figure-eight knot complement into two ideal regular tetrahedra, with two 
equivalence classes of edges, the two connectors of length 0 appear as the 
two equivalence classes of edges, each class corresponding to an edge in the 
manifold that is perpendicular to a point where the maximal cusp boundary 
is tangent to itself. (See [16] for this decomposition of the figure-eight knot 
complement.) 

The four connectors of length ln(3) correspond to the four edges obtained 
by gluing one face of one tetrahedron to the corresponding face of the oppo- 
site tetrahedron, and then running an edge perpendicular to this conjoined 
face from the opposite vertex on one of the tetrahedra to the opposite ver- 
tex on the other. Each of the four faces on one of the tetrahedra generates 
an edge in this manner. Symmetries of the figure-eight knot complement 
allow us to send any one of the four connectors of length ln(3) to any other. 
Therefore it is enough to show that one of these connectors produces a pair 
of parabolic elements that together do not succeed in generating the entire 
fundamental group of the figure-eight knot complement in order to see that 
there are only two pairs of parabolic generators. 

The fundamental group for the figure-eight knot complement has pre- 
sentation (a,& : b~1a~1bab~1aba~1b~1a) where a and b are meridians. The 
subgroup corresponding to one of these four connectors of length ln(3) is 
generated by b and c = a~lb~1aba. 

As in [14], we will take the homomorphism sending a to (11|01) and b to 
(1 0| — u 1) where a; is a complex number such that u2 4- to + 1 = 0. Then 
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c is sent to 
(-2^v-3cj|-a;2v-2u;2). 

Alan Reid pointed out that the quotient by the ideal (\/—3) turns this into a 
map onto the non-abelian group PS'Z^CFs), where i^ is the field with three 
elements. However, the element c goes to (1 0| —a;2 1) which commutes with 
the image of b. Hence they generate an abelian subgroup, which must be 
proper. Therefore, b and c generate a proper subgroup of the fundamental 
group of the figure-eight knot complement. □ 

Note that we can state the above result without reference to the hy- 
perbolic geometry. Namely, there are exactly two pairs of generators, up 
to conjugation of pairs in the fundamental group of the figure-eight knot 
complement, such that each element in a pair is freely homotopic into the 
boundary of a regular neighborhood of the missing knot. 

Corollary 4.7. If M is a hyperbolic 3-manifold with a choice of cusps such 
that all parabolics have lengths with respect to the cusps of at least 2, then 
all two-parabolic generator subgroups are either free or free abelian. 

Proof. If M is a one-cusped manifold, this is immediate. If M has multiple 
cusps, then for any pair of cusps in the manifold, we can obtain a canonical 
set of cusps, without shrinking one of the two cusps. In particular, by our 
involutions, we obtain a canonical set of cusps such that all parabolics have 
length at least two with respect to them. Hence, all two-parabolic generator 
subgroups are either free or free abelian. □ 

This next lemma demonstrates that the rela,tors for a Kleinian group gen- 
erated by two parabolic generators are restricted to certain types of words. 

Lemma 4.8. Let a and {3 be a pair of parabolic generators generating the 
fundamental group of a hyperbolic 3-manifold or 3-orbifold. Let w be a 
cyclically reduced word in a and /3 that is trivial.  Then: 

i) w contains at least two one letter syllables. 
ii) w contains a subword consisting of a pair of adjacent syllables in w 

of the form a2/?-7, a-7/?*, /3la^ and ft a1 where i — ±1 and j = ±1, ±2 or ±3. 

Proof. Given the word, we have a corresponding set of horoballs, one for 
each syllable. Divide the sphere at oo into subsets of points, one for each 
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horoball in the set, consisting of all of the points that are farther from that 
horoball than from any other horoball in the set. When we say that a 
point x is farther from a given horoball H, we mean that if a horoball H' is 
centered at x and then expanded, the last horoball from the set that it hits 
is H. This construction will result in at least two non-empty regions on the 
sphere at oo. Hence, there are at least two distinct choices for the point at 
oo in the upper-half-space model resulting in two different horoballs in the 
set appearing as the smallest horoball relative to this choice. The syllables 
corresponding to each of these horoballs must be of the form a,l3,a~l or 
/3~l by the proof of Theorem 3.2, proving i). 

To see ii), choose the center of one of the horoballs in the set to be the 
point at oo. Let Hi be the smallest horoball in the set. As in the proof 
of Theorem 3.2, the syllable corresponding to Hi must be either o^1 or 
Z^1. For convenience, say it is a. Each of the two corresponding connectors 
leaving Hi must lead to horoballs at least as large as Hi. 

Let H2 and H3 be these two connected horoballs. By Lemma 2.5, one of 
these two neighboring horoballs, call it H2, is intersected by its connector 
at a point that is a distance at most 2 from its peak. In order that the 
horoball following H2 in the chain be no smaller than Hi, the parabolic 
translation corresponding to H2 must have length at most 4. Since \/3\ > 1, 
the syllable corresponding to this horosphere is /?n, where n must equal 
±1, ±2 or ±3, ±4. We will show that we can find a pair of syllables where 
we have eliminated the possibility that n = ±4. If either of the adjacent 
horoballs has its connector a distance less than 2 from its peak, n ^ ±4. 
If neither of the adjacent horoballs have the connector a distance less than 
2 from their peaks, then they are tangent to one another. In this case, 
|a| = 1 and x has length 0 to prevent |a| from being shorter than 1. If 
n = ±4, then \/3\ = 1. If each of H2 and .#3 corresponds to a syllable of 
the form /J^4, then the next horoball in either direction must correspond 
to a^1, or else Hi is not the smallest horoball in the set. Going one ball 
further out in either direction, either the distance on that ball from the 
point of tangency to the peak is strictly less than 2, in which case we can 
show that this ball corresponds to the syllable f3l with i = ±1,±2 or ±3, 
or we repeat the construction two balls out further still in each direction. 
Unless we eventually come across a ball corresponding to the syllable (3l with 
f3 = ±1, ±2 or ±3, the construction continues ad infinitum with all centers 
of balls in a line and the sequence of balls never closing up into a cycle, a 
contradiction. □ 
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Corollary 4.9. Let M be a one-cusped hyperbolic 3-manifold that has at 
least n distinct pairs of parabolic generators up to conjugacy of the pairs. 
Then vc(M) > V3(n + 6)/32 and vol(M) > (n + 6)vo/16; where vo is the 
volume of an ideal regular tetrahedron, approximately equal to 1.01494. 

Proof. Since all of the elements in the pairs of generators are all freely ho- 
motopic, there must be at least n distinct connectors. If we normalize so 
that a horosphere covering the cusp is given as a plane at height 1, then 
since a connector lifts to a vertical geodesic that connects the horosphere 
centered at oo with a horosphere of diameter at least 1/4 and since each 
connector must lift to two distinct vertical geodesies up to the action of the 
cusp subgroup, it must be the case that there are 2n balls of diameter at 
least 1/4 up to the action of the cusp subgroup. Since there is always a 
pair of full-sized balls, and since the center of a ball of diameter 1/4 can 
only come within a distance of 1/2 of the center of a ball of diameter 1, 
we can pack a disk of diameter 1 with seven disks of diameter 1/4, replace 
the balls of diameter 1/4 with disks of diameter 1/4, and pack these disks 
in the plane. Each disk of diameter 1/4 contributes a total of \/3/32 to 
the area of a fundamental parallelogram, yielding a total area of at least 
(14 + 2(n — l))\/3/32. Hence the total volume is at least half of this, namely 
\/3(n + 6)/32. By Meyerhoff's application of Boroczky's horoball packing 
arguments in hyperbolic 3-space (cf. [13]), we have that the volume of the 
manifold is at least 

t;c(M )2i;o/>/3 = (n + 6)i;o/16. 

□ 

Note that Theorem 4.3 implies that all of the manifolds considered in 
Corollary 4.9 are 2-bridge link complements. 

5. A Pair of Hyperbolic Generators. 

We are interested in determining what can be said in the case that we 
have a pair of generators, both of which are hyperbolic. 

Lemma 5.1. Let a and (3 be a pair of hyperbolic generators for a non- 
elementary Kleinian group that is not free, such that \a\ < \f3\. If x is the 
distance between the images of the axes of the two hyperbolic generators in 
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the quotient of hyperbolic space by the group, then x < 21ii(coth(|a|/4)). 
(Equivalently, |a| < 21n(coth(x/4)). 

Proof. Let ga and gp be the geodesies in the quotient orbifold corresponding 
to a and /? and let gx be the geodesic segment of length x that is the shortest 
path from one to the other. Lifting ga, gp and gx to H

s we have a graph in 
H3 that must be connected, since a and ft generate the entire group, and 
that contains nontrivial cycles, since the group is not free, as in the proof 
of Theorem 3.2. In particular, there must be a cyclic sequence of geodesies, 
alternately covering ga and gp that are connected consecutively by lifts of 
gx. By moving the point at oo if necessary, we can be sure that the lifts of 
ga and gp in the sequence do not all have peaks at the same height. Let 
g be the geodesic with the lowest peak from among them. If there is more 
than one geodesic with a peak at the same height as the peak of #, we can 
choose g so that one of the geodesies in the sequence that is connected to it 
by a lift of gx has a strictly higher peak than it does. The geodesic g either 
covers ga or gp. For convenience, let c represent the length of the geodesic 
9a or 9/3 that it covers. 

Then there are two lifts of gx that connect g to two geodesies in the 
sequence, both of which either cover ga or gp. Suppose first of all that the 
two lifts 71 and 72 of gx intersect g on opposite sides of the peak of g. Then 
one of them, say 71, is a distance greater than or equal to c/2 on g from the 
peak. Similarly, if 71 and 72 intersect g on the same side of the peak of #, 
then one of them, say 71, is a distance of at least c/2 on g from the peak of 

9- 
By Lemma 2.3, the distance from the intersection of 71 and g to the 

peak of 71 is no more than ln(coth(c/4)). If the three geodesies g, 71 and 
72 are all in a vertical plane, then it is clear that the distance down the 
other side of 71 to the next geodesic in the sequence must be no more than 
ln(coth(c/4)) in order for the next geodesic in the sequence to have its peak 
at least as high as the peak of g. So x < 21n(coth(c/4)). On the other 
hand, suppose that the three geodesies are not in a vertical plane. If the 
third geodesic is not in a plane with the first two, its peak is even lower 
than when it does lie in a plane with the first two. If the second geodesic 
is not in a plane with the first, then the distance to its peak goes down, 
forcing x to be even smaller than 21n(coth(c/4)). Since 21n(coth(a;/4)) is a 
monotonically decreasing function, and since \/3\ > |a|, we have that 

z<21n(coth(H/4)). 
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Note that 21n(coth(a;/4)) is a monotonically decreasing function that 
is its own inverse, so we obtain the alternative inequality that |a| < 
21n(<x>th(a?/4)). □ 

Unlike the case for parabolic elements, where we have a lower bound 
of one on the shortest length of the parabolic with respect to a certain set 
of cusps, there is no universal lower bound on the length of a hyperbolic 
element. However, there is a lower bound on the lengths of the hyperbolic 
elements in a given finite volume manifold. 

Corollary 5.2. If IQ is the length of the shortest geodesic in a hyperbolic 
3-manifold or 3-orbifold M, then for any pair of distinct geodesies such that 
the corresponding pair of hyperbolic elements do not generate a free group, 
the distance between those geodesies x satisfies x < 21n(coth(/o/2)). 

Proof The fact that the geodesies are distinct ensures that the group is non- 
elementary. The result then follows immediately from Lemma 5.1. □ 

Lemma 5.3. Let a and (3 be hyperbolic elements that generate a non- 
elementary Kleinian group that is not free. Let x be the distance in the 
quotient orbifold between the geodesies that correspond to a and ft. Then at 
least one of |a|, |/?| and x is strictly less than 21n(\/2 + 1). 

Proof. We have a cyclic sequence of geodesies that intersect at right angles, 
the odd ones alternately covering ga and gp while the even ones cover x. 
We can choose a point at oo so that they do not all have peaks at the same 
height. Let g be the geodesic in the sequence with the lowest height. We 
can choose g so that at least one of its neighboring geodesies has a strictly 
higher peak. 

Let gi and 52 be the two neighbors to g in the sequence. Let c be the 
distance between gi and 32 on g. If gi and g are both in the same vertical 
plane, then, in order for the peak of gi to be at least as high as the peak of 
#, the angle 0 in Figure 4 must be at least 7r/4, making the distance on g 
from the point of intersection to the peak at most ln(V5 + 1). 

As we rotate gi out of the same vertical plane with #, the peak of gi will 
occur at a lower level. In order to keep the peak of gi above the peak of #, 
it is necessary to shrink the distance from the point of intersection to the 
peak on g. Hence, the distance from the point of intersetion of gi and g to 
the peak of g is always at most ln(\/2 +1). The same is true for 325 implying 
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Figure 4. 

that c is at most 2 ln(\/2 + 1). Since one of gi or #2 must have a peak that 
is strictly higher than the peak of g, we have that c < 21n(\/2 + 1). The 
length c could either be equal to the length £, equal to n(|a|) or equal to 
n(|/3|) where n is a positive integer. Hence, one of a;, |a| or \/3\ is less than 

21n(>/2 + l). □ 
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