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into 3-dimensional Riemannian manifolds 
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This paper investigates the existence of solutions of generalized 
H-surface equations for 3-dimensional target manifolds. A class of 
equations which contains the constant mean curvature equation for 
compact target manifolds is considered and a variational structure 
for these equations is formulated. By this variational consideration, 
a sufficient condition for the existence of a solution of the equation 
for negatively curved target manifolds is obtained. A non-existence 
result is also obtained, when the target manifold is a flat 3-torus. 

0. Introduction. 

Let S be a two dimensional closed Riemannian manifold and N a 3- 
dimensional closed Riemannian manifold. 

Definition 0.1. For a smooth 3-form a on iV, we define the (2,l)-tensor H 

by 

(0.1)     ap{U,V,W) :={U,H{p)(V,W))    for   peN,    U,V,W 6 TpiV. 

A map u € C2(E; N) is called an H-surface of S into N, if u satisfies 

(0.2) trace(Vdu) = 2i?(u)(Vn A Vw) 

where right hand side of (0.1) stands for 

H(u)(Vu^Vu):=a-2H(u)M^)^(^)) 

where z = x1 + V^T x2 denotes an isothermal coordinate and the metric 
tensor of E is written as ^{(dx1)2 + (dx2)2). 

1This work is partially supported by JSPS Research Fellowships for young 
scientist. 
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Note that a solution u of (0.2) gives a parametrization (at regular points) 
of a surface with the mean curvature prescribed by the tensor H(-) if it 
satisfies the conformality condition; 

\uxi|2 - \ux212 = (uxi,ux2)= 0. 

H-surfaces defined by Definition 0.1 generalizes that given in section 0 
of [8]. In [8], an H-surface is defined as an extremal of conformally invariant 
functional; 

(0.3) I^u) := ^ / \Vu\2dVv + 2 f u*u 

defined for 2-form CJ on iV, which corresponds to the case a = dw (i.e. a 
is exact) in the present definition. The present generalized definition has 
an advantage that we can deal with the constant mean curvature equation 
which corresponds to the case a = Hvoljq for some constant H in Definition 
0.1. We remark that for compact target manifold JV, the volume form of N 
can never be an exact form. On the other hand, an H-surface in the sense 
of Definition 0.1 can not be considered as a solution of the Euler-Lagrange 
equation of functional (0.3). However, equation (0.2) can be considered as 
the Euler-Lagrange equation of the multi-valued functional which will be 
defined and considered in detail in section 1. To write down the statement 
of the main theorems, we need the following definition. 

Let 7 be a given homotopy class of C00—maps of S to TV. And fix any 
^o £ 7- For u G 7, choose a homotopy /(■,£) G C00^ x [0, l];iV) with 

(0.4) /M)=tio(s),    /(x,l)=ii(a;). 

Then, we define quantity I(U,UQ\ f) by 

(0.5)       I(u,uo'J) ~\ I \Vu\2dx- \ I |VTio|2<fc + 2 // /'a. 
* JY, l JT, J J £x[05l] 

Set 

Iff I := sup{|ff (14) |; u G N} = |a|    (the comass of 3-form a) 

for the tensor ff defined by (0.1). 
In section 2, we will show that if N is a manifold of negative sectional 

curvature, I(u, UQ] f) defined by (0.5) is globally defined in a given homotopy 
class 7 of maps of S to TV independent of choice of homotopy /. In this case, 
we can define the functional IH(U) ~ I(U,UQ', f) fixing UQ G 7. 

In section 3, we shall prove the following existence theorem. 
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Theorem A. Assume that the sectional curvature KN of N is bounded from 

above by —K2 for some K > 0. Moreover, assume that 

(0.6) H < K. 

Then, in any homotopy class 7 of maps of E to N, there exists a solution 

of (0.2) which is a global minimizer of /#(•) in 7. 
Moreover, if a = HVOIN for some constant H with \H\ < K, a solution 

of (0.2) is unique in any homotopy class unless its image is a closed geodesic 
of N or constant map. If the image is a closed geodesic, every solution in 

the homotopy class is obtained by the rotation of the geodesic. 

Finally, in section 4, a simple argument implies the following non- 
existence theorem. 

Theorem B. Let N be a flat 3-torus and 7 a homotopy class of maps of E to 

3-torus N. Then, 7 contains no H-surface with a = HVOIN for a constant 
H ^ 0; unless 2-homology class w*(E) G H2(N\'L) induced by homotopy 
class 7 vanishes. 

Remark. 
1. Theorem A can be considered as a H-surface version of theorem of 

Eells-Sampson [2] and Hartman [4] which states the existence and uniqueness 
of harmonic maps into manifolds of non-positive sectional curvature. (These 
corresponds to the case H = 0 in Theorem A.) On the other hand, Theorem 
B shows us that, in general, the condition that the sectional curvature is 
strictly negative is necessary for the existence of H-surface in the present 
sense. 

2. Let us compare Theorem A and Theorem B with Theorem 0.1 in 
[8] which ensures the existence of local minimizer of functional (0.3) for 
sufficiently small \duj\ without the curvature bound on target manifold N. 
Theorem A is an improved version of Theorem 0.1 in [8] in the sense that 
Theorem A gives us an effect of geometry of N, while the contrast between 
the non-existence result of Theorem B and the existence result of Theorem 
0.1 in [8] shows us the essential difference between the present definition of 
H-surface and that of [8]. 

3. An existence results for a solution of equation (0.2) with small range 
was obtained by Gulliver [3]. 

Acknowledgement. The author would like to thank Prof.T.Ochiai for his 
continuous encouragement.  He is grateful to Prof.  Dr.  S. Hildebrandt for 
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reminding him of the result by Gulliver [3]. He also thanks Prof.T.Sunada 
who reminds him of paper [6] by Novikov which also proposes multi-valued 
functional in connection with dynamical systems. 

1. Variational problem for a multi-valued functional. 

To investigate the dependency of I(n, UQ, f) defined in (0.5) on the choice 
of homotopy /, we shall compute I(u, UQ) f) — I(u, UQ] g) for two homotopies 
/ and g with (0.4) as follows. Since N is compact, it is possible to decompose 
a as 

(1.1) a = avoljsi + dp 

for some constant a and 2-form /3 on N. And set 

(1.2) Ffe,):.!^'2''     f<*°S<^, 
\5(z,2(l-t))    for \<t<l. 

Since / and g satisfy (0.4), F can be considered as a Lipschitz map of S x S1 

to N. Thus, (0.5) and (1.1) imply 

(1.3) I(u,uo-J) -I(u,UQ',g) 

=2a\[[ rvolN- [f g*volN\ 
UJ  £x[0,l] JJ   Ex[0,1] I 

=2a /       F*volN = 2adeg(F)VN 
IS1xTl 

where VN denotes the volume of N. 
This computation shows us; 
(1.4) The quantity I(u^UQ]f) depends only on the homotopy class 

(relative to boundary condition (0.4)) of homotopy f as a map of S x [0,1] 
toiV. 

(1.5) /(u, UQ'I •) is defined modulo 2aVN. In particular, if a = 0,1(u, UQ] f) 
is uniquely determined and it coincides with functional (0.3) essentially. 

As for the global situation, (1.4) and (1.5) state that we can define the 
multi-valued functional {I(u)} by 

{I(u)} := {/(i^-uo;/); / is a homotopy with (0.4)} 

whose value is determined modulo 2KVN depending on the choice of UQ. On 
the other hand,   (1.5) enables us to define a single valued functional in some 
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neighbourhood U of u E 7 (with respect to the C1-topology, for example). 
In fact, taking U sufficiently small, we can connect any map v G U to u by 
a homotopy g with 

(1-6) I / 5*a| < jVN. 
./Ex [0,1] 4 

(For example, for C1- section X of T*E ® u*TN with sufficiently small 
|X| and jV-X"), we can cover some neighborhood of u in C1(S, JV) by map 
t? := expu(X) and taking a homotopy g{x,t) := expu(tX), we can establish 
(1.6).) In view of (1.5), I{v,u',g) is well-defined in the neighbourhood U 
of u. Fix a homotopy /o with (0.4). Then, we can define single valued 
functional //0(^) on U by 

//0(i;) ~I(v,u^G) =I(v,u;g) +I(u,uo'Jo) 

where G is a homotopy between UQ and v defined by 

^(x, 2t - 1)    for i < t 
^2' 

I<t<l. 

//0(v) is defined up to a constant depending on choice of homotopy /Q. 

It is easy to check that (0.1) is a Euler-Lagrange equation for the func- 
tional If0 on U independent of the choice of UQ. 

In a word, our problem is local variational problem. Thus, all the local 
concept in the calculus of variation can be defined for this problem. Here, the 
term "local "means "local in the space of admissible maps ". For example, 
stability (or equivalently locally minimizing property) and instability can be 
defined. 

2. Functional for manifolds of negative sectional curvature. 

Throughout section 2 and 3, we assume that the sectional curvature KN 

of iV is bounded from above by —K2 for some K > 0. We work in smooth 
maps or at least Lipschitz maps, since we do not have to analyze in a larger 
space of admissible maps because of the strong smoothing effect of the heat 
flow under our assumption. 

2.1. Global well definedness of functional. 

Lemma 2.1. Let 7 be a given homotopy class of maps of S to N and h a 
harmonic map in 7.  Then, we have 
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(1) For any smooth map u E 7, I(u, h\ f) defined by (0.5) is independent 
of choice of homotopy f. 

(2) For any smooth map u E 7, there is the homotopy f connecting u 
and h with 

(2.1) /(•,<)) = MO, 
(2.2) /(.,!) = «(■), 
(2.3) t \-+f{x,t) is a geodesic for any x E S. 

Proo/. Let / and g be two homotopies connecting u and /z. And define the 
map F : S x S1 -» JV by (1.5). We will consider the heat flow equation; 

(2.4) dtW£ = trace(Vdw£), 

(2.5) ^(•,0)=JP(-,O. 

By the results of Eells-Sampson [2] and Hartma,n [4], the solution of equation 
(2.4)-(2.5) exists for 0 < t < 00 and tuf (•, t) converges uniformly with respect 
to £ as £ -> 00 to 1-parameter family of harmonic maps £ H* h^ := /i(-,£). 
Thus, F and /i(-, •) are homotopic as maps of E x S1 to TV. Again by the 
result of Hartman [4], a harmonic map in 7 is unique unless its image is 
a closed geodesic; in this case every harmonic map in 7 is obtained by the 
rotation of the geodesic, or it is a constant map; in this case every harmonic 
map in 7 is constant map. In every case, we obtain deg(h(-, •)) = 0. Hence, 
from (1.3), I(u,h',f) = I{u,h\g). This proves assertion (1). Assertion (2) 
is a direct consequence of the Hadamard-Cartan theorem and the lifting 
argument. □ 

Lemma 2.1 (1) implies that we can consider the functional IH(U) := 
/(ix, h] f) as long as we restrict ourselves to maps in a given homotopy 7. 
Moreover, by Lemma 2.1 (2), we can always use the homotopy with (2.1)- 
(2.3) to estimate the functional. In the sequel, we fix a homotopy class 7 
and consider functional /#. 

2.2. Estimates of volume functional. 

To estimate the volume functional V^u^h) := /Sxro 1] /*<* where / is a 
homotopy between u and /i, we need some Jacobi field estimates. For the 
definition and further details on Jacobi fields, see [1] for example. 

Let Cj(s,i)(i = 1,2) be two families of geodesies parametrized by t and 
J^s) := ^-(5,0)(i = 1,2) corresponding Jacobi fields,  jf and jf* denote 
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the tangential and normal component of J;. We assume c(s) := ci(s,0) = 
C2(5,0). In the sequel, "/"and "-"denote derivatives with respect to s and t 
respectively. We adopt the normalization; 

|c'| = d := length of c. 

By this normalization, parameter s moves in the interval [0,1]. 
Set 

(2.6) p(s) :=volN(JuJ2,cf), 

(2.7) q(s):=l{(JuJi) + (J2,J2)}. 

Lemma 2.2.  There holds 

(2.8) \p(S) -p(0)| < ^ L'(s)-q'(0)-SJ2\J?m2\ 

for any s G [0,1] 

Proof. Differentiating p(s) and g(s), we have 

(2.9) p'(s) = volN(Ji J2,c,)+volN(Ju J^c'), 
2 

(2.10) (/(«) = ^(Ji,^), 
2=1 

2 

(2.11) «"(«) = Ed^ + W'^')} 
i=l 

2 

2=1 

where RN denotes the curvature tensor of iV. Since we assume RN < —K2, 
(2.11) implies 

(2.i2)        g"(5)>x:{i^i2+^2rf2i^i2}- 
2=1 

On the other hands, (2.9) implies 

(2.13) \p'\(s) < d{|Jf ||J^| + I^H^'l} - 
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By (2.12), (2.13) and Schwarz inequality, we have 

(2.i4)        iP'm^^L'^-^ijrisA. 

Since {J? (s)| = | J? (0)|, we obtain the desired result by integrating (2.14) 
with respect to s. □ 

Lemma 2.3 (Jager-Kaul). Suppose J is a Jacobi field along c and satis- 
fies 

(J,c') = 0. 

Then 

(2.i5) (j, J')00-<J, J'Xo) > ^H4(iJ(0)l2+iJ(5)l2)--^rTlJ(0)llJ(5)l 

where SKdi8) — ^ sinh(iiCd5). 

Proof. Noting that we adopt the normalization Ic'l = e/, the proof of [5] 
implies the inequality (2.15). □ 

Set 
2 

(2.16) <&(*) == UFW        <?Ar:=5>Us)- 
1=1 

Lemma 2.4. For any 9 G (0,1); there exist constants d(K,9) and C(K,9) 
such that if d > d(K,9), the following inequality holds; 
(2.17) 

qN(l)-qN(0)-qf
N(0)>2K0j  {\p(s)\ + |p(0)|} ds-C(K,e)(^- + q(0)). 

Proof. Applying (2.15) to J/^, we have 
(2.18) 

d/w - A'w > ^^^(Aw+AW) - a^j vtoiowfcw- 
Estimating (2.18) by Schwarz inequality and summing up with respect to i, 
we obtain 

(2.19) qN'(S) - qN'(0) > KdCOSh{Xd°]-\qN(0) + qN(s)). 
sinn(Aar5j 
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Integrating (2.19) with respect to 5, we have 

(2.20)     ^(1) - QNiO) - 4(0) > Kd ^ "^yJT^g^O) + qsi*)). 

For 6 6 (0,1), let M(0) be a positive number such that 

cosh(0 - 1 
sinh(0 >9, 

if f > M. 
Set d(K,e) = $. Noting that |p(a)| < ldqN(s) and 0 < ^ffe1 < 1 

for any £, from (2.20), we obtain 

(2.21) qN(l) - qN(0) - ^(0) > 20K f   {\p(s)\ + |p(0)|} ds. 
I M 

Jkd 

Since q(s) is a convex function of 5 by (2.12), we have 

(2.22) q(s)<sq{l) + (l-s)q{0). 

Thus, by (2.21) and (2.22), we obtain 

(2.23) 
^(1)-MO)-9^(0) 

>20K /    {\p(s)\ + |p(0)|} rf5 - 2^rf /       {q(s) + q(0)} ds 
Jo Jo 

>2^^ /   {|p(5)| + |p(0)|} ds - KOd [s2q(l) - (s - l)2q(0)]«d - 20Mq(O) 
Jo 

=MK]   {b(s)l + b(0)l} dS ' ~Kdq{1) ~6\Kd~ 4MJ 9(0)- 

This proves the desired result. □ 

Lemma 2.5. For 6 E (0,1), there exists constants d(K,6) andC(K^9) such 
that if d > d(K,Q), there holds 

(2.24)    q(l) - q(0) - g'(0) >^£ ]p(s)\ds - C(K,0) (^- + q(0) 



170 Masahito Toda 

Proof. Integrating (2.8) with respect to 5, we have 

(2.25) q{\) - g(0) - m - i X; I^'(O)!2 > 2K C (|p(«)| - b(0)|) da. 

Multiplying (2.25) by ^ and summing up both sides with (2.17), we obtain 

(2.26) 

^(1) - <Mr(0) + Q (<?(!) - 9(0)) - ^(0) - 0</(O) - \ J2 \jfm2 
1
 t=i 

> 4^^ |p(S)|dS - C(K,tf) (2fi) + g(o)) . 

Since 

2 2 

m - ^(o)=E^W' jr(o)) < E {^I^WI
2+fi jf (°)i2} - 

(2.26) implies 

g(l) - 9(0) - 9'(0) >^ll W)\ds - C{K,6) (^ + ^(0)) . 

Thus, we obtain the desired inequality. □ 

Now, we are in position to estimate the volume functional Va defined by 

Va(u,h):= [ pa. 
./Ex [0,1] 

By Lemma 2.1, we may assume / is a homotopy with property (2.1)-(2.3). 
For O C S, Set 

D{u\to) := \ [ \Vu(2dx. 
2 Jn 

Proposition 2.6. For any 6 G  (0,1),  there exists a constant C(K,6,h) 
such that 

(2.27) \Va{u,h)\ < ^(D(U,E) - D(h,-S) + C(K,e,h)). 
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Proof. Let e; G TXE(2 = 1,2) be a orthonormal basis at x E E. First, note 
that 

iV^ti,/!)! < M / \volN(Veif,Ve2f,dsf)\dVvds. 

So, we only have to estimates the term; 

(2.28) V:=  I \vdN(Veif,Ve2f,daf)\dVvd8. 
7EX[O,I] 

For x 6 S, we define Jacobi fields Ji(x,s)(i = 1,2) along the geodesic 
Or : 5 i-)- /(z, 5) so that 

Ji(x, 0) = Ve^/i^),        J^rr, 1) = Veiu(x). 

Let p(rz;,5),g(a;,5) and qN(x,s) denote the functions defined by (2.6),(2.7) 
and (2.16) for Ji(x,s). And set dx := length of cx. In these notations, 

jD(tx,E)= [ q(x,l)dV(x)., 

D(/i,S) - [ q(x,0)dV{x), 

V= [ \p(x,s)\dV{x)ds 
JEX[0,1] ([0,1] 

Setting S^ := {x G S;^ > i?} for sufficiently large R > 0 and integrating 
(2.24) over S^, we have 

(2.29) 

^(ti, EH) - £>(/i, Efl) - /   (V/i, Vas/(0))dF 

x[0,l] ^        ■" 

On the other hand, integrating (2.8) over (S \ S^) x [0,1], we obtain 

(2.30) 

£>(«,£ \ SB) - !>(/», E \ EH) - /      (V/i, V^/(0))dF 

+KRD(h, E \ Efl) > 2ii: / |p(a:, a)|dV<is 
J(S\S«)x[0)l] 
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Since h is a harmonic map, there holds 

(vh,vdsf(o))dv = o. k 
Thus, summing up (2.29) and (2.30), we obtain 

0 + ^f^) (1>(u'E)" D{K s)) - TTdv ' C{K'e'h>R)- 
Taking 6 sufficiently close to 1 and R sufficiently large, we obtain the desired 
result. □ 

3. Completion of Proof of Theorem A. 

To prove Theorem A, we use the consequence of Proposition 2.6, mini- 
mizing process in [8] and the technic due to Eells-Sampson [2] and Hartman 

[4]- 
We consider the heat flow equation associated to the functional Ia de- 

fined in the previous section ; 

(3.1) dtu = trace(Vdu) - 2H(u)(Vu A Vu), 

(3.2) ii(-,0)=fio(-) 

for given initial data UQ G C00(T>,N). 
In the computation of section 3 and 4, we shall use the notations in the 

tensorial calculus. We adopt the Einstein summation convention. Fix the 
orthonormal frame ei, 62 near x G S. V; denotes the covariant derivative in 
the direction of e;. For example, 

Let i?zcs denote the Ricci tensor of E and set Ricfj ~ Ric^fa, ej). 

Lemma 3.1. Let u be a smooth solution 0/(3.1) and (3.2). If\H\ < K, we 
have the following inequality ; 

(3.3) -(4-^)|V«|2-ifccE(Vu,Vu)>0 

where RicP^u.Vu) := Ricfj(ViU,Vju). 
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Proof. Direct computation implies 

(3.4) -(A - Q-t)\Vu\2 = |V2u|2 - (RN(Vau, Vpu^au, Vpu) 

+ RicE{Vu, V«) + 2(VQ {H{u){Wu A Vu)} , Vau). 

The 2nd term of (3.4) is computed and estimated as 

(3.5) 
-(RN{Vau,Vpu)Vau,Vpu) = -2(RN {Viu,V2u)V1u,V2u) 

> 2K'2\Viu x V2MI2. 

Since VaiJ and H are skew-symmetric, we can compute and estimate the 
last term as 

(3.6) 2(Va{H(u)(VuAVu)},Vau) 

=2(#(u)(Va(Vu) A Vu + Vu A Va(Vw)), Vau) 

=2(JH'(M)(VI Viu, V2U), Viu) + 2(H(u)(Viu, V2V2U), V2U} 

> - 2\H\2\Viu x V2u|2 - {|ViViu|2 + IV2V2UI2} 

Thus, combining (3.4)-(3.6), we obtain 

1 £) 

-{A-—)\Vu\2-Rici:{Vu,Vu) > 2|V1V2«|2 + {K2-H2)\Viux V2«|2 > 0 

D 

Lemma 3.2. Let ^(x;^) be a smooth 1-parameter family of initial values 
and u(x,t;£) the corresponding solution of (3.1)-(3.2). If H(-) is a tensor 
defined by (0.2) for a = HVOIN for some constant H, we have 

(3.7) 1-{A - |)|^|2 > {K2 - H2) f: K x V^l2 

dt' 
1=1 

where u^ := ||. 
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Proof. Direct computation implies 

1,.      d„    |2 

=|V^|2 - (RN(uxi,Viu)u^Viu) + 2(Vd_ {H(u)(VuAVu)},u() 
dt 

>|V^|2 + K2 ]r |^ x V^|2 + 2H((ViUf: x V2U + Viw x V2^), u^) 

2 

D 

Lemma 3.3. Let u G C2(S x [0,T];N) be a solution of (3.1)-(3.2), then 
there holds 

\dtu\2dVdt = IH (u). / 
T] 

Proof. Multiplying —<9^ to (3.1) and integrating on E x [0,T], we obtain 
the desired result. D 

Proof of Theorem A.   Existence: By Proposition 2.6, we have the estimate; 

(3.8) IH(U) > (1 - ^)(D(u,i:)-D(h,E)) - \a\C(KAh). 

Since |a| = \H\ < K by assumption, we may assume 1 — ^ > 8 > 0, 
taking 0 sufficiently close to 1. Then, (3.8) denotes the coersiveness of 
Iniu^h) with respect to the Dirichlet integral. Take a minimizing sequence 
{ui} C C00(E,iVr) of IH and consider the heat flow equation; 

(3.9) dtWi = trace(Vdwi) - 2H(wi)(Vwi A V^), 

(3.10) Wi(.,0)=Ui(.). 

The short time existence for the equations of this type is established by 
usual fixed point argument. (See, for example. Section 3 of [6]) Since the 
flow generated by (3.9) does not increase Iff by Lemma 3.3, jD(^(-,t),E) is 
bounded by some Mo(if, 0, h) > 0 uniformly with respect to t and i by the 
coersiveness of IH as long as the solution exists.  At the same time, since 
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iH^ii'^^ih) is bounded uniformly with respect to t and i, by Lemma 3.3, 
we have the uniform bound ; 

(3.11) // \dtWi\2dVdt < MxiK.e.h) 
J J  Sx[0,Tl Sx[0,T] 

for any T^a:E > T > 0 and i where T^ax denotes the maximal existence 
time of the solution Wi. Then, by the boundedness of Dirichlet integral and 
inequality (3.3), we can apply the same argument as Lemma 3.1.1 of [6] to 
obtain 

(3.12)     sup{|V^(M)|2;;eN,    *eE,    0<t<T4ax}<C(S,Mo). 

(3.11), (3.12) and usual parabolic boot strap argument implies that T^. = 
oo and there is a sequence tj -» oo as j —> oo with 

where Vi is a solution of equation (0.1). Since Vi enjoys the same gradient 
estimate (3.12), routine elliptic estimate implies 

and v(') is a desired minimizer satisfying equation (0.1). 
Uniqueness for constant mean curvature equation: This is a direct con- 

sequence of Lemma 3.2 and the argument of Hartman [4]. □ 

Remark. 1. If harmonic map h in the homotopy class 7 maps E to 
a closed geodesic in N or it is a constant map, harmonic map h itself is 
a global minimizer in the existence part of Theorem A. Moreover, since 
Vi^z x V2U = 0 in this case, h satisfies equation (0,1) for any H. To see the 
minimizing property, we only need Lemma 2.2. Since p(0) = 0 in this case, 
the integration of (2.8) over S x [0.1] implies 

\V\<^{D(u^)-D(h;E)} 

where V is the quantity defined by (2.28). This leads us to the estimate 

IH(U) > (1 - i|l) {D(u; E) - D(h; S)} . 
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Thus, h is the unique minimizer up to rotation of the geodesies, if \H\ < K 
and, even in the case \H\ = K, h is still a minimizer. 

2. Suppose a = HVOIN for some constant H. Lemma 3.2 and the 
argument in [4] implies that, even in the case \H\ = K, if there exists an 
H-surface UQ in 7, any H-surface u in 7 is minimizing functional i# and 
there is a homotopy u(x, s) between ^0 and u with the properties; 

(1) ^(-,5) is a H-surface for any 5, 
(2) cx : 5 »-> w(rz;, 5) is a geodesic with \c'x\ = 1. 

4. Proof of Theorem B. 

Notations. Since 7r2(T3) = 0, we may assume g = genus of E > 1 to 
prove Theorem B. Let {a;, bi}i_1 be a canonical generator of 7ri(S) with 

single relation H^i.^gCLibia^b^1 = 1. 
f2(S) denotes a fundamental region of E in the universal covering E of 

E which is bounded by a curve n^i.^a^a^1^1. Here, a^, bi denote curves 
obtained by lifting a^, bi. 

Suppose flat torus N is represented as a quotient space R3 /T by lattice 
F in M3. Then, by lifting the map, solutions of the constant mean curvature 
equation of E into N with prescribed homotopy class 7 can be identified 
with a class of solutions of the constant mean curvature equation of E into 
M3. The class consists of u (E C00(E,R3) satisfying 

(4.1) Au = 2HViu x V2U, 

(4.2) u{cx) = u{x) + 0(c)     for any c G 7ri(E) 

where c G TT-^E) acts E as the deck transformation and 9 denotes the con- 
jugacy class 7ri(E) -> 7ri(JV) = Y G E3 induced by homotopy class 7. 

Proof of Theorem B. Integrating the first component of equation (4.1) over 
fi(E), we obtain 

(4.3) /      AuldV = 2H [      (Viu2V2K3 - Viu3V2W2) dV. 
JCUP) ./ft(E) 

Let P1 (u) denotes the parallel field on N induced by the vector field ^ in 

M3. Then we have 

(4.4) Au1 =div(Vu,Pl). 
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Since the representation of right hand side of (4.4) is defined on E, the left 
hand side of (4.3) vanishes by Stokes Theorem. On the other hand, since 

(Viu2V2U3 - Viu3V2U2) dV = ld{u2du3 - u3du2) 

where d denotes the exterior differential of forms, we obtain 

H [       {u2du3 - u3du2) = 0. 

Since 90(S) = n^i.^a^a^1^"1, 

(4.5) /       {u2du3 - u3du2) 

+ [{u2dv? -u3du2) + [(u2dv? - u3du2)\. 

Since we aj and (a^1)-1 only differ by the deck transformation induced by 
bi, we compute as 

(4.6) / u2du3 + (    u2duz = -^(ft'^Oi). / u2duz + / 
Jcii Jd- 1 

Applying the same computation to all terms in (4.5), we obtain 

9 

u2du3 -u3du2) = 2H' 
r 9 

2H /        (u2du3 - u3du2) = 2HY (02{aiW3{bi) - d3{a^O2(bi)) = 0 

Applying the same argument for 2nd and 3rd component of equation (4.1), 
we obtain 

(4.7) 2ff J^0(ai) x0(&i) =0. 
i=l 

Thus homotopy classes (which is uniquely determined by conjugacy class in 
this case) which admit a H-surface except for harmonic maps should satisfy 

g 

(4.8) ^0(0 x 0(6,) =0. 
i=l 
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(4.8) is equivalent to u*(E) = 0 E H2(N]Z).  Thus we obtain the desired 
results. □ 
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