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Examples of non-positively curved
Kahler manifolds !
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0. Introduction.

Let M, (n > 2) be the set of n-dimensional compact complex man-
ifolds which admit Kahler metrics with quasi-negative sectional curvature
(i.e., non-positive everywhere and negative somewhere). Despite the general
belief that such manifolds should be abundant, there are very few known
examples constructed. In fact, before 1980, the only known such examples
are the locally hermitian symmetric ones. In 1980, Mostow and Siu ([M-S])
constructed a sequence of negatively curved surfaces which are not locally
symmetric. This sequence of examples are still the only known manifolds in
N, other than the locally symmetric ones, for any n > 2.

In this paper, we shall construct three new sequences of surfaces in No.
The idea is very simple, one starts with a compact complex ball quotient
X™ which contains a totally geodesic divisor D. If Y is a finite branched
covering of X with ramifications R over D (of simple type), then one can
add a suitably choosing metric, which supports in a neighborhood of the
divisor R, to the pull-back of the canonical metric of X. The sum metric
is then quasi-negatively curved. When n = 2, there are such surfaces Y
constructed by Hirzebruch in his famous paper on the arrangement of lines
([H]). These surfaces are different from the ones constructed by Mostow and
Siu, since they have different ratios of the two Chern numbers (cf. §3).

For n > 2, the same constructions should also give manifolds in N,
if we knew examples of such Y™ over such a pair (X", D) of compact ball
quotient and totally geodesic divisor D in it.

In §4, we also discuss the finite volume case. Theorem 3 says that if X™ is
a smooth compact complex ball quotient and D is a smooth totally geodesic
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divisor in X. Then the complement Z = X\D admits complete Kéihler
metric with finite volume whose complex curvature operator is negative and
bounded from below. As a consequence, the complex structure on any of
these three families of surfaces of line arrangements is unique.

For any n > 2, the existence of such a pair (X", D) is proved by Kudla
and Millson (cf. p.129-130 of [K-M]). So one has negatively curved complete
Kéhler manifolds of finite volume in any dimensions.

The main technical contribution of this paper is the proof of Theorem
2 in §2, where we need to compute the curvature of the sum of two met-
rics. It is technically much more difficult than the smooth divisor case of
Theorem 1. In this regards, we should mention the work of Cheung and
Wu ([C-W]), where they initiated the systematic study of the sum of two
complex hyperbolic type metrics.

In the Riemannian case, in 1987, Gromov and Thurston constructed
in [G-T| many examples of negatively curved Riemannian manifolds in all
dimensions. Their starting point was a compact manifold X with constant
negative curvature which contains a (real) codimension two totally geodesic
submanifold D, and they perform geometric surgery on a cyclic cover Y of
X which is branched along D. So this paper can be regarded as a complex
analogue of their work, although the way to prove the negativity of the
curvature is totally different.

Acknowledgements. We would like to thank mathematicians Pat Eber-
lein, John Millson, Mark Stern, Gang Tian and S-T Yau for valuable sug-
gestions, helps, and encouragement.

1. The metric.
First of all, we need the following terminology

Definition. Let f : Y — X be a surjective holomorphic map between
two compact complex manifolds of dimension n. Y will be called a good
covering over X, if for any p € Y, there exits holomorphic coordinates
{21,... ,2n} near p and {w;,... ,wp} near f(p) such that p = (0,...,0)
and in a neighborhood of p, f is given by w; = 2], i =1,... ,n, where m;
are positive integers.

Note that for a good covering f : Y — X, the branching locus D is a (lo-
cally) normal crossing divisor (the components may have self-intersections).
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Next, let X™ be a compact smooth quotient of the complex n-ball B™ C
C", equipped with the canonical metric g. Let D be a smooth totally
geodesic divisor in X. Let p = pp be the distance from D. It is a smooth
function in U\D for some tubular neighborhood U of D.

Definition. For X, D and p as above, the function d = dp = (2,‘;;%)2 will
be called the Poincare (square) distance from the divisor D. It is a smooth
function in a tubular neighborhood U of D.

Note that for the n-ball B" = {|z1|2 + --- + |z,]?> < 1} and the totally

geodesic divisor D = {z; = 0}, the Poincare distance takes the simple form
2
di(z) |21

= TPl

Next, s|u2;pose ! f| : Y™ - X™ is a good covering over a ball quotient
X with totally geodesic branching locus D. Let g be the canonical metric
on X and w, its Kéhler form. Let R = {p € Y|det(df,) = 0} Dbe the
ramification locus. Since the metric f*g degenerate along R, we want to
define a correction metric near R and add it to f*g.

For a sufficiently small 6 > 0, let U = Us; be a d-neighborhood of D
and let V be the components of f~!(U) that contains R. For any p € R,
choose holomorphic coordinates {z1, - - , 2, } centered at p and {wy,- - ,wy}
centered at f(p) such that f is given by w; = z"* for each ¢«. Let us
assume that m; > 1 for 1 < i <r,and m; =1 forr < i < n. Write
D; = {w; =0}, 1 <i<r,and let d; be the Poincare distance function from
the divisor D;. Define

P = Gml (5171) e Gm, (:L-T) . f*(wn)

9

where (1 —mz)(1 ) .
—mz)(l —z™ . m-—
Gm(z) = (1—z)3gm-1 i ——

1
and z; = f*(pod*) , with p a smooth, non-decreasing cut-off function
defined on [0, 0o], such that p(t) =t near t =0 and p = c near and after
t = 6. Here c is a small positive constant. It is not hard to check that ® is
well-defined, and is smooth and positive along R. So it is a volume form on
Y.
Now the desired metric on Y is just

we = f*(wy) + €V/—1801og @

It is straight-forward to verify that w, is indeed everywhere positive-definite
on Y for all sufficiently small € > 0.
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This correction term was first used by Mostow and Siu in [M-S] in the
case of n = 2 with D smooth and on the universal covering level. In that
special case it is just the Bergmann metric of the Thullen domain {|z;|?™ +
|z2|?> < 1} . We observe that it can be realized at downstairs by using the
Poincare distance function.

The next section is devoted to the proof of the fact that the above
constructed metric we has quasi-negative complex curvature operator (hence
strongly quasi-negatively curved in the sense of Siu). In fact the complex
curvature operator is negative definite everywhere in Y'\\S, where S is the
singular point set of R, which has codimension at least 2.

2. The curvature.

First of all, we have the following result, the two dimensional case is due
to Mostow and Siu in [M-S] (on the universal covering level).

Theorem 1. Let f:Y"™ — X" be a good covering over a smooth compact
complez ball quotient X™ and with totally geodesic branching divisor D. If
D is smooth, then Y™ admits a Kahler metric with negative definite complex
curvature operator.

In particular, Y™ is strongly rigid (that is, any compact Kdahler manifold
homotopic equivalent to Y must be (anti-)biholomorphic to Y').

Proof. The metric here is of course the one constructed in §1. It suffices
to show that there exists ¢y > 0 and a neighborhood V; of R such that w,
has negative complex curvature operator in V; for any 0 < € < €. Note
that it is important here that V; is independent of e. Then the compact
complement Y\V; can be taken care of by letting € to be sufficiently small.

Fix a point p € V\R. Write ¢ = f(p) and let go be the point on D
that is closest to g. Let {z1,---,z,} be a canonical coordinates of the
unit ball B™ such that qq is (underneath) the origin and D is (underneath)
the hyperplane {z; = 0}. Then ¢ = (a,0,--- ,0), and the Poincare distance

2
C e 21
function is d = —l—l———;l_|z2| v Py 2

Let f; be a local inverse map of f which sends g to p, and

21 +a
w = —
1+(1,21

o(215-+ y2n) = (W, 22,... ,2n) ,

The curvature of w, at p is the same of the curvature of the metric

@ = (f1 0 9)*(we) = wy + ewp, = wy + €V—190h
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at the origin gy = 0, where

1
v —mim

(v— t;‘;)3v2m—1

h =log

and v=(1—s)m , ¢t=|w|? with w= BEL, s=|2l’+ - +|2|* . Here
m is the multiplicity of R at p.

We ignored the cut-off function p here since we are only interested in the
situation very close to R.

By shifting some copies of wy into wy, (this will result in a change of €)
we may assume that the metric under consideration is

W= wg + €wp, with

v — mtm 1
(v — tm)3p2m=1 (1 —t—s)*
(The reason of doing this shifting is to guarantee that h is positive definite
and is sufficiently negatively curved on the tangential directions of D, and
we will still use the same notation for €).

At the point g = 0, t = |a|? and s = 0, hence h;z =0 for i # 7y h, =0
except h., and all hi}ki = 0 except those hﬁﬁ. Since g is normal at the
origin, we have

h = log(

)

n
~Rigii = 90+ ehigg = € ) hipehi(9pm + ehgp) ™
p=1

Therefore, at g, all the components of R - k1 are zero except those Rij5-
Denote it by —a;;. Then the complex curvature operator of the considered
metric will be negative definite at go if and only if the matrix A = (a;;) is
positive definite.

By the symmetry among z,... ,2,, we know that the matrix A takes
the special form

b ¢ ¢

®

where since

- i 2 |hijpl?
—Rg;5=1+0;j+ehg5—¢ Zl+eh
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‘We have
b 2 + ehygy1 — € by P(1 + ehyp) ™!
¢ = 1+ ehigy5— € lhoym |2 (1 + €hyz) ™
d = 2 + 6h2'2'2§
e = 1 + 6h2'2'3§

Since at qo,

hogyz = 2hogsg = 2hss|s=0 > 0
Therefore, d = 2e, and
[ b cz*

cx eB

}; where z*=(1,...,1) and B=1I,_1+zz*

Write y* = (1,0,...,0), and let U be a unitary (n — 1) matrix such that

Uz =+n—1y . Then

R R i

Therefore A is positive definite if and only if 6 > 0, e > 0, and nbe >
(n—1)c2.
Since
v — Tt 1

h = h(t,s) = log((v —tE)sypemt (1—-t— 3)4) ’

Let us use h' to denote hy + thy , and write n = 1 —¢ = 1 — |a|?>. When
t = |a|? — 0 , we have the following approximations:

hip = Ko = rPlatm=t 4+ ftm ]

1
hys = hs = 6+ —
22 s +m

hipy = hwn®i+ (K)@w|w|® = @’ (k') — 20°R)
1 1 2 2
— 3 L1 o 2 9
S — —1atm — —1)Btm
@~ Datw 2 + (= — 1)ptn 7]
hys; = hgww, = Enmat#_l

h1T1'1' = hl|w11|2 + (hl)l|’w1|4 + (h,)t(’w’wu’w_12 + ’w’wll'w%)
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= n*(n') - 4tn3(h')t + 4tn?H
1 1_ 2 2_
~ on'l(= = 1Pt (— = 1)Btm

m

1_

b1z = (hs)' w1 ~ nlatm!
4 2

h2§3§ = hss ~ 2+E_W

Here a =37  and ﬂzg;%@ . We have
— 2 6,23 1 1
Ry = highig — | |” = n'tm (Egaﬁtm)

1 1_
Ry = hyghyrg — |higl* = (6+ E)anZtm !

Therefore, b > 0, e > 0, and ¢ > 0. Since 0 < c < ¢y =1+¢€h;7,3 , in order
to prove nbe > (n—1)c?, it suffices to show that Q = (1+eh,1)(nbe— (n—
1)2) > 0. Write Q = Qo + Q1€ + Q2¢® + Q3€3 , then

Qo = n+1

Q@ nhint —2(n — Dhjgs + (n+ Dhyp =

Q2 nRy + nhyssz(hites + 2hi7) — (0 — Dhygs(higes + 2hi7) = nky
Qs = nhyggzR — (n— 1)h1T(h1I2§)2

nhinit

Hence @1 > 0, Q2 > 0, while

Therefore A > 0. This shows that the complex curvature operator of we is
negative definite in Y\ R. For the points on R, the curvature tensor can be
directly computed and it is also negative. Let us skip the details here. This
completes the proof of the Theorem 1. O

Remark. In [K-M], Kudla and Millson constructed in all dimensions
compact complex ball quotient X™ with smooth totally geodesic divisor
D. But we do not know of any examples of a good cover Y over X with
branching locus D. This amounts to looking for finite index subgroups of
m1(X\D) with certain property.
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Next, we consider the general case when the branching locus D is not
smooth but only (locally) normal crossing. In this case the complex curva-
ture operator of we is only quasi-negative on Y, since it will have some zero
bisectional curvature at the singular point set S of the ramification locus R.
The computation now becomes much more complicated. We shall only give
the detailed proof for the two dimensional case.

Theorem 2. Suppose that X? is a smooth compact quotient of the complex
2-ball, and f : Y2 — X2 is a good covering with totally geodesic branching
locus D. Then there ezists a Kahler metric on' Y which has negative definite
complez curvature operator away from the finite set S = Sing(R), where R
is the ramification locus of f.

In particular, such surface Y 1is strongly rigid.

Proof. Again the metric on Y is the sum metric we constructed in §1.
It suffices to show that there exists a constant » > 0, such that, for any
0 < € < ¢, the complex curvature operator of w, is negative definite in
f~Y(UB,(p;) — D) , where {...,p;,...} is the set of nodes of D, and B,(p)
is the geodesic ball of radius r centered at p (with respect to the canonical
metric g on X). Then the smooth part of D can be dealt with as in Theorem
1 to give a neighborhood V' of R such that we is negatively curved in V\R
for any small e.

Let po be a node of R. Fix a point p near py which is not on R. Denote
by ¢ = f(p), @0 = f(po). Let R;, Ry be the two branches of R that pass
through pg, and D;, D2 be the two branches of D that pass through qo.
And let m; be the multiplicity of f along R;, i = 1,2. For simplicity, we
will assume that D; is perpendicular to Dy at qo, and that m; = my. The
general case is similar, but more technical and tedious.

Again let {21, 22} be the canonical coordinate of the complex 2-ball such
that go is underneath the origin, and D; = {z; = 0}, i = 1,2. Choose a local
inverse map f; of f which sends q to p, and let ¢ be the local isometry on
X which is defined by

(6a + az — ’?\‘22, 0b + bz + §zz)

‘,0(21,22) = (‘Tay) = 1+ (521
where g = (6a,6b) with § >0, |a2+ b2 =1,and A= (1 —62)"2 .

¢ maps the origin to ¢g. So in order to compute the curvature of w, at
the point p, we may consider instead the metric (f1 0 ¢)*we = wy + €wp, at
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the origin. Here

wp, = V—100h

where . .
v —mtm u—msm 1 )
(v —tm)3 (u— sm)3 (wv)?™!

3|~

u=(1-s)m, v=_~1-8m, t=|z° s=]y

> 9l

137

b b
.’B—(SG,, y_db7 xl_AZ’ x2:_Xa yl_xia Y2 =
and
A2 A2
Tik = Uzkl ’ -'E-'Ezwk y  Yik = Oik 179 !b’2 YYiYk
where g11 = —2, 012 = -—1, and 099 = 0.
Again let us use the short notation k' = hy + thy, h"” = hs + shgs. We
have
hg = B'zT; + hyig5 + hes(tisy + sit3)
higr = ¢ikZ; + Yiky;  with
bir ZiTk
[df.k] = S Xir, = Six Yilk
‘ ZiYk + YiTk
where
Ao _ Ao _
z(hy + —ghl) 2 (htss + o tts) ghs
S a o
’ 2 )‘2 - II ’\2 " =1

(0 = o4k in this identity). Therefore at the origin,

2
> hagkhz (I + eh)P! = det(I + h) ™ X (M + eN) X7,

p,g=1

where

n

1—-¢t —-zyl|__
il

1
M= tsikﬁ{
—zy 1-—s
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¢ 1 " —Zyhys _
N=Sug| _ | S
—xYhtg h

If we write o = 0, and ¢ = oy, and use a to denote the term obtained from
a with o in it all replaced by o . Also denote the entries of S by

= i
o _ | Tar zy°be gh,
§ =S = [Ebel Tas fh;’]

=~ =27 =1/

~ Ta; zy°by Tyh

S=8;,=|%% s
7 [E2yb1 a3 ih;’}

Then we have

ci di dp
1 (=
M = 2 ﬁ 2 ds where
2 d3 c3
= t(1—t)aray + t2s(1 — s)biby — t2s(a1by + b1d1)

]_ —_
ts2(1 — t)baby + s(1 — 5)azdz — ts%(azbs + bads)

cy = s
e3 = s(1—1t)(hL)? +t(1 - s)(h})? — 2tshLh)
di = 21 —t)arby + (1 — 5)b1ay — (a1d3 + tsbiby)]
d2 = 7zy[(1—1t)arh, +¢(1 - s)bihy — t(a1hy + sbihl)]
d3 = :B@[S(l — t)bzhls + (1 — S)ClQh;I — s(agh's + tbzhi’)]
¢y dy dy
1 |=
N = N fdi ﬁ d where
dy dy c3
¢, = th'"aia1 + t2sh'biby — tzshts(alli + bray)
& = t52h"boby + sh'asds — ts%hys (agb2 + b2as)

L= sh"(hL)2 + th'(hY)? — 2tshyshl k) B
d’l ':z:—zyz[h"albz + h’blaﬁé - hts (0,1[{2 + t8b1b2)]

’2 = Ey[h"alh's + th’blh;’ — thys (alh;' + Sblh;)]
dy = zy[sh"boh), + h'ash — shis(agh + thohy)]

Q
w
1

Next, we compute at the origin:

- Y. HX.,
hz‘jki— zkHXJl
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where
et fi fo
H=|fi e fs| with
fo f3 e
e1 = (M) + (o +6)22|a|2th, + o6\ |a|~*th
e2 = (B")" + (0 +)22|b|"2shY 4+ oo\t |b|~sh"
e3 = (h/)"
fi = T2Y2[huss + 0N 2hyss + GN2|D| " 2hyss + 05 A ab| 2hys]

fo = mylhy, +oX’|a|72R]
Js = aglhl,+oNb| 2]
Since at the origin, the canonical metric g is normal for the coordinate

{21, 22} , so the curvature components of the metric g + eh at the origin is

2
~Rgg = g+ ehgyg— € Y higrhyg(I + eh)™
p,q=1
= —R(9)5q + Xik(eH — det(I + eh) ™' (M + eN))Xj

Write e; = a%, and let
uy = —yoe1 +yi1€2 , U2 = T2€1 —T1€2,7 = T1Y2 — T2Y1
Then e; = —y~!(zsu1 + ysu2) . Hence
—R(9) ;50 =" X G X1
2Juy|* 2(u, 3)? 2|ur|?(u1,73)

G=7"| 2(up,u)? 2|ual* 2|ua|? (uz, u1)
2lur|*(ug, 1) 2Jug|?(u1,u3) |uilP|ugl® + |(u1,72) |

Plug in the values of z;,y; at the origin, we get
2(1 —s)? 27292 2(1 - s)zy

G=X]| 2227 201 -2  2(1—t)zy
21 —-9s)zy 2(1—-t)zy 1—t— s+ 2ts

Therefore
—Rg =det(I + eh)™t- th’kPX—jl
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P = det(I +e¢h)- (G +eH) — (M + €N)
Py + Pie + Pyé® + P3é® , Where

P, = G

tr(h)G + H

det(h)G + tr(h)H — M

P; = det(h)H - N

F P
I

Write
P=PW 4 5P® 4 5P@* 4 55pP0)

where P() and P®) are hermitian symmetric, and define

P=pPY L yp? 4 pOy* L ypOy*

where
2al? 0 2ab
U=-] 0 26> 2ab
ab ab 1
If we write
) A D FE
P=|D C F
E F B

then it is not hard to verify that up to a common positive scalar factor, the
entries are just the component of the curvature tensor under the tangent
frame {uj,u2}. On the other hand, the complex curvature operator —Q is
a hermitian bilinear form over the tensor of the tangent space Ty, ® Tg,-
Under the basis u; ® uj, (Q becomes

Q

I
SN RevRN
o EQ W
Ol &
SRR o)

Since Q = Qo + Qie+ Q262 + Q3€® , and —Qy, the curvature operator of g,
is negative definite, therefore, it suffices to show that Q; > 0for 1 <7 <3
when the point p is very close to the node pg, or, equivalently, when 4 is
sufficiently small. We want to write down the leading terms of the entries
of P when § — 0. Without loss of generality, we may restrict ourselves to
the following two cases:

Casel: § 20, a—>ap,b— by, apby #0.



Examples of non-positively curved Kahler manifolds 141

CaseII: § -0, a—0 (hence |b] — 1).

In the first case, ¢t and s approach zero at the same speed, while in the
second case, t < s.

We shall need the following simple fact from linear algebra, the proof is
omitted.

Lemma. If the entries of P satisfy

A,B,C>0; (1-7r)AC>B?% (1-r)B>|D|;
r2AB > 4|E|*; r?BC > 4|F)?

for some constant 0 <r <1 . Then @Q > 0.

In the following, we shall compute the leading terms in the asymptotic
expansions of the entries of P and check that they satisfy the conditions in
the above lemma.

Case I: t~s.

We shall use = to denote the first two leading terms approx1mat10n
where the second term is equivalent to the first one multiplied by 5m. We
have

h = h’(t, 3) = log( 1 1 ( U)l 2m)
v—1im U — 8§m
where u = (1—t)% ,v=(1-s )% Againleta =32 g= __;TW_Q Also
let a1 = (-1, ap=(L—-1)2a,and g = (——1),8 B=(%2-1)8.
We compute
B~ otm™l 4 Btm!
" ~ asm™l4 Bsm!

his ~ K +n"
(Bt = hys = atm” +ﬁ115__1

(n) = agt;lz‘2+ﬁ2t7?:“1
1 2
(h)ts = —aytm 2 4 Zpytm2
m m
1 2 2
W) ~ —aptm 4 ZBitm T+ asm 1
(h)s —a + — By tasml 4 s
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1
N/
(W) ~ —a(tn

1
hitss = (m + Doy (tm

Since A =1, we also have

Fangyang Zheng
Lpem )4 2 ﬁt(t“1

2
tm2 4 sm2) (

3735'1)

F1)B (tmt + 5wl

tr(h) = —)‘—2((1 —t)h' + (1 — s)h" — 2sthys) ~ A + A"
det(h) = %(h’h” — sth?) ~ h'R"
h’ hts
a1 = hi+o—, b = hi+o—%
|al? " af?
hll hts
ay = h;’—‘-dw, b2 ~ h;’ O'W
Therefore
t(h)® T’y Tyhghy
1)
MO s aghin
* * s(hL)? + t(h))?
_ 22y -
W""" To s
M® ~ |22 72 s Yy
ht ! v nyn hllhll
B2 T T e TP
0 0 0
R o -
®) ~
M % W(h‘”)z 0
|0 0 0]
We have
2th'h,  2z%y2hyshl 2Zyh'h.,
UM®P ~ — |2z y2htsht 2sh" ! 2zh" h!!
zyh'h} zyh"h!  sh'h +th"h}
4t(h')?  4z%y?(h%, — W'R") 27y (h')?
UMOU*~ |« 4s(h")? 227 ()2
* * s(h)? + t(h")?
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Therefore, by comparing the orders, we know that M is

 [HR)? TPyPhikl zy(hy — h')hy
M =~ * s(h!")? zy(hy — h")h!
* * s(hl — h')2 + t(hY — h'")?
Similarly,
th”(hé)2 §2y2(h’ + A" — hyg)hihlY zyh"hih;
NO~ | sh'(hY)? zyh' b b
* sh”(h’s)2 + th’(hg’)2
_ o o _ -
#h’h”hg altayl{" B BB %h’h”h’s
N® 2272 s Ty
hlhllhl _hlhllhll __hlhllhll
(o[> Lopf? * b2 t
i 0 0 0 ]
t 9 E2y2
ot VR o e O
N(3) ~ S
* I_l;l'a‘hl(h”)2 0
0 0 0
Hence

2th'h"h;  2z%y*W' "Ry 2Zyh'R"R),
UN® ~ — [22252K'h"h,  2sh'h"R! 2zgh W' h!!
gy’ Rk, TYh'h"RY  K'B"(shl + th!)

4t(h')’h" 4Z*y’hW'h"hys  2Ty(R')*RH”
UN®U* ~ * 4sh/ (h'")2 2ch (h")?
* * h'h" (sh’ + th'")
So N becomes
_ [th"(R)? TPYE(R + B — hes)hihd Tyh'hi(hy — h')
N = * sh/(h!)? zyh' B! (R — B")
* * sh” (R — 1')? + th! (B} — h'")?

We also have

(h,)l E2'3/2 httss Tyh:ts
HO=| « (W) aghl,
* (R
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[ ¢ T2 Ty ]
—h! ZJ LI g
|a|2 t |a|2 ht.ss |a|2 hs

H® =\? xzyz S i n T

TEMe Rt

0 0 0 |

1% .

o TP

H® = ! S0
|b[*

0 0 0

Hence
2th,  2T%y%hys,  2Tyh
UH® ~ — 2% hyts 2sh!! 2z7hy
zyhy Tyh!  shl 4 th!
4th! 47%y’hy,  2Tyh'
UHOU* ~ | « 4sh 2z7h"
* * sh! +th"

Therefore H is

. (h') T2y (httss — 2htss — 2Pits) zy(hy, — ht)
= (" oy, — 1)
* * ( hI)II

While

* 1

Note that in all cases, the order of the entries of X' is no greater than the
order of the corresponding entries in X M, for X =M, N, or H.
For H, the entries satisfy

2 2z%y% 27y
Gr [+ 2 2zy
* -

L1

AnCrtw™?y Brotihs D|StR; |Bl, F|<tn?

Here we omit the positive constant coefficients. So we have A > 0, C > 0,
B > 0,and AC > B? > |D|?, AB > |E|?, BC > |F|?, hence the
associated Q4 >0, and Q; = tr(h)Qc + Qg > 0.
For P, = det(h)G + tr(h)H — M , we have
WY —ZPyPhihy Tylhs(his — hi) + Ry(h — hy)]
P x W(R")"  zlhes(his — hg) + 5 (A" — R)]
* * hlhll + hts(h,)”
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So the entries satisfy
2_3 2 _9 2 _9
A~C~tm™; B~tm *; |D|, |E|, |F|<tm

Again we omit the positive constant coefficients here. Therefore A > 0,
C >0, B>0,and AC > B?, AB> |E|?>, CB> |F|?. Also

ID| ~ ts|hjh!| ~ of(ts)m !
B > Wh' =~ o?(ts)m~!
Since o1 = (L — 1)a, rB > |D| for some constant 0 < r < 1. Therefore,

Q2 > 0. e A X .
For P3 =det(h)H — N , since A’ +h" — hyy = O(tm 1) , we have

P~
R'IB (B') — t(h})?] —Z2y* (R + h" — hys)hihy  Tyh'(h'hi, — hih})
: WIR"(R")" = s()?]  oh! (A, — hihE)
* * hlhll(hl)ll
Since
B'(R') —t(h})? ~ (B2 + 2B — 2a1ﬂ1)t“3 ﬂt—‘3 >0

Therefore, A >0, C >0, B > 0, and
AnCntn ™t Bel|BE|~|F|~tm=3, |D|~tm=3

So they satisfy the conditions of the Lemma. Hence )3 > 0. This completes
the proof of the first case.
Case II: t < s.

In this case, t = 0, s = 0, and g — 0. In the following, we shall use ~
(or = ) to denote the approximation of the ( first two) leading terms. We
have

a
B o~ asm! +,Bs%"1
a
his = w1y ﬂtm +asm!

pm+1
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2
(h)s = mvmﬂtﬁ-l + -@trl +asml
B ~ t;-—l t——l a L
(R 2m+1 + Bt ms
ap 1 _ 2 _
(h)y = v"hys = 7} w2 4 Bitm
(h'")s ~ 0[151:l + ﬂls_“2
1
L9 (1+—)a 1 2_9 2 2_1
hiss = (1sm~" + ——2',;;1——75 )+ Bism T+ (1+ E)at’"
/ ~ (23] 1_9 2;31 2_9
(F)es = mom 1" Htm

ayp 1_ 2,1 _
(h”)ts ~ (Esm 2+_,,;L—tm 1)

02 ___2

tm

2
+ Botm 1

=
2

a23m 24 ﬂgs__l

=
2

, 1 1
hitss  ~ (1+ )altm 2

Y o~ Epm-t
Wy ~ 2
also
1
—)—\5 ~ 1_8:'Um

tr(h) =~ ™R +0*"R" = ™ Lm =l 4 Btm=! + sm !
det(h) =~ v*™W'R" ~ otm~lsmLl 4 aftmLsm1
As in the first case, we have

MO ™ * s(h!)? + ts?(hiss)?  xG(hYRY + shihiss)
* * s(h%)?
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[t 1.1 5292 ' m NIt
M®? ~ | 2272 s
|b|y2 heshl I—I;|—2(vmh”h’s’ + tsheshess)
0 0
TY L,y
= p'h
la2” °
%(vmh”hg’ + shyshl)
0
¢ 722
—(h")? — < __p'p 0
N [
~ o —TT
MY = v * #(vm(h”fﬂ-t‘shi) 0
0 0 0

Hence

URR,  2T2y2 (W hyss + (V™hgs — KR
UM® ~ — | 22252k bl 2s(v™ R By + tsheshyss)

zyh'h), Ty(sh'hyss + v™h"hY)
2Tyh' k),
227 (v™h" by + shyshl)
sh'hl,
4t(h')? 4z2y%h' by 27y (h')?
UMOU* x =™ * 4s(v™(h")? + tsh2) 2zy(v™(h")? + sh'hys)
* * S(hl)2
So M becomes
. 'Umt(h::)2 Ezyzhg(htss — 2hys)
M =~ s(h? + ts%(hyss — 2hys)?
* *
Zyhy(v™h!, — h')
:E@'[hgh;’ + S(h; - h,)(htss - 2hts)]
s(h, — n')?

(Here we only need the second leading terms for the é and dy positions, as
there will be cancellation later on.)
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Similarly,
U () TRRRRL (R — hus) + H'Rhess] Tyh Ry,
N g 3m * sh'(R")? + ts2h" (hyss)? zyh'hihl
* sh (h%)?
K z2y? z ]
|;I_ihlhllhi #hlh”ht‘gs ﬁihlhﬂh;
NG n p2m | 272 s Y
hlhllh __hlhllhll __hlhllhll
N T S T
i 0 0 0 ]
N2 E2'!/2 1o
o |a|4(h) h |a|2|b|2hh hts 0
Nz ™ S prpmy2
* e h'(R") 0
0 0 0
Hence
’2t‘h’ h"h, 27242 h' R hygs 2Zyh' bk
UN® x~ —®™ | 222520 h By 2sh' B B! 2aGh' h'" b
zyh'h" b, Zyh'n" (hY + shyss)  sh'A"h.
4t(R)2R"  4Z%92h b hyg 2zy(h')2h!
UN®U* x o™ * 4sh/ ("2 2zh' B (K" + shes)
* * s(h')2n"
So the entries of N are
& ~ o*"th"(hy)?
& =~ v3™sh/(hY)?
& ~ sh'(h,—K)? ~ aolsmim2
dy ~ TPYP[W'hihyss + (B hygs — Ryshi)RY — 2R B hyss)
~ 52y2[aa%t%‘3s'rlﬁ"l + o(t#“zs%_3)]
dy ~ Ty(™h, —hv¥mA"h, ~ Eyaa%t%—g’s#_l
dy ~ zgh'hih! ~ xya2a1t%_zs#_2
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Finally, HY) | H® and H®) are given in the first case, and we have

2th} 252y hyss  2Tyh, ]
UH® ~ —v™™ | 22272 hy, 2shl) 2zghy
zyhi  Ty(hY + shys)  shy |
4th!  4Z%y°hyg 2zyh'
UHOU* ~v™2m | 4sh”  2zG(h" + she)
* * sh/

Therefore the entries of H are

- Qg 1 _ 2 _
é1 =~ 651) = () = —’vztm 2 4 Bytm 2
& ~ ) = (") m apsm?+ fosm 2
- 1) _ @ 14
€ ~ e = (h ~ —1m

3 3 (h") m

1 _
i~ TP (huges — 2hys) ~ Tlylagtm 2

-2

"
Q

zy(hy, — v ™hy) ~ Eyagt%
fs ~ ay(hy, —2h) —hY) ~ xﬂ(ags#"Q + 2a1t%_1)

By comparmg the leading orders, we know that é; > 0, é1é3 > é; > e3 ,
es > |fil , and é163 > |fo|> , €263 > |f3>. Hence Qg > 0, and
Q1 =tr(h)Qe + Qg > 0.

Next, consider tr(h)H — M, since

tr(h)e; —é; =~ tr(h)(K) —v™t(h})?

1 3_3 1l _o9 1 _4

t"'(h')é2 —Cy ~ aa2t7}{‘13#‘2 >0
N o 1 o2 2_9
tr(h)és =& ~ —a’tm™ >0
tT(h)fl - Jl ~ —Ezyz[a:ft%‘zs;};—z + o(t‘fi‘3)]

zZy[tr(h) (bt — v™"ht) — hy(v™hs — h)]

Q

tr(h)fa — da
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_af 3 _ 1 9 1_
~ xy(;'gtri 3+ aoytm2sm D)
; 3 — 2_9 1 L3 L2
tr(h)fs —ds ~ zY(Raoytm =+ (E — 2)aaytm sm ™)
So the entries of the matrix tr(h)H — M satisfy
A ~ tm 3 pgm2gml
B ~ tm™2
C ~ tmlsm2
ID| < twlsml4o(stm~2)
Bl < Vis(t="? 41w 25w

IF| < Vis(tm=lsm=2 4 tm=2)

Here again we ignored the positive constant coefficients. Therefore, it is easy
to check that

A>0, B>0, C>0, AC> B?> |D|?>, AB > |E|?, BC > |F|?

Hence Q2 > 0. o
Similarly, for the matrix det(h)H — N, we compute

det(Wer &~ oHIHRY — ) ~ —apthSsETl > 0

det(h) éz - 6"2

Q

PR s~ pa?B iAo > 0
1
s 3;2-24 -1
det(h)és — & p— a’tm >0

det(h)fy —di ~ —zyPlo(tm3sm ) +o(tm 257w )
det(h)j;_d\,z ~ ’Ugmhlh”-fy(his mh’) (mhl hl)v2mhnh£
1 =3 —— —_—

det(h)f:i - J% ~ my(azazt#—ls%-?’ — a2a1t%—23-;;—1)
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Hence the entries of the matrix det(h)H — N satisfy
A ~ %_33 %_1

C 1 4 3 3

~ tmlgm
B ~ tm 25wl
ID| < twZsm +tm Lsm2
|E| < Vis(tmPsm 4 tm2sm2)
IF| < Vistmlsm 3+ tm25m~2)
Therefore, these entries satisfy
A>0, B>0, C>0, AC> B?> |D?, AB> |E|?>, BC > |F|?

Hence Q3 > 0. Thus we have completed the proof of Theorem 2. a

Remark. In the general case when the two multiplicities m; and my are
not equal or the two branches D;, Dy are not perpendicular to each other at
the node qp, the proof is similar but more tedious. We omit the details here.
The most complicated part in the explicit computation of the asymptotic
expansions is of course when the leading terms cancelling each others and
one has to go to the next leading term. Especially in A, B, C, one needs
their leading coefficients to be positive. However, since locally, away from R,
the metric w, is the sum of two metrics, each of them is negatively curved
by Theorem 1, so we know that the sum metric we at least has negative
bisectional curvature. Hence all the A, B, C terms should have the right
sign.

When the dimension is higher than two, we have checked that the same
metric is still quasi- negatively curved (in the strongest sense). However,
at this moment we don’t know of any examples in dimensions n > 2 of
good coverings over a compact ball quotient with totally geodesic branching
locus. When n = 2, there are three sequences of such surfaces constructed
by Hirzebruch ([H]). We shall discuss them in the next section.
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3. Examples.

Let us recall Hirzebruch’s surfaces constructed from arrangements of
lines. Let ¢ : P2 — P* be a linear embedding defined by & + 1 linear forms
lo,... ,lk. Let fn:P*¥ — PF be the map defined by f([zo:...: zx)) =
[zZ :...:z}] . Then the inverse image X, = f, !(¢(P?)) is an irreducible
normal surface, with singular point set S being the inverse image of Sy,
the set of points in P? where there are more than two I;’s pass through it.
Blowing up points of S in P* will give a smooth resolution Y; of X,. Let
D = D™ be the union of the exceptional curves and those curves above the
lines I;’s.

When m/|n, one has good coverings Y;, — Yy, with branching locus D(m)
and ramification locus D™ (each curve has multiplicity ).

Hirzebruch computed the Chern numbers of Y,, in terms of the combi-
natorial data of the line arrangement A = {lo,... ,l;}. He found that there
are three cases where ¢ = 3cy, (and ¢; < 0), hence by Yau’s Theorem
([Y]), these three surfaces are complex ball quotients. The corresponding
divisor D is totally geodesic, since its components are pointwisely fixed by
some deck transformations of the covering A, : Y, — f’2, where P? is the
blowing up of P2 at the points in Sp; while the canonical metric for a ball
quotient is invariant under any biholomorphism, so the curve D must be
totally geodesic with respect to the canonical metric.

The three surfaces are:

1). Y5(A), where A is the arrangement of 6 lines in P2 defined by {z;,0 <
i < 2;2; — 24,0 <1 < j <2} in the homogeneous coordinate [zg : z; : z2] of
P2. It is a real simplicial arrangement.

2). Y3(B), where B is the 12 lines in a Hesse pencil (fix a smooth cubic
curve ¥ in P2, let S be the nine reflection points of ¥, then all the cubics
containing S forms a pencil. There are exactly 4 degenerating curves in that
pencil, each is the union of three lines. B is just those 12 lines).

3). Y5(C), where C is the arrangement of 9 lines coming from the nine
reflection points of a smooth plane cubic by dualizing.

Lemma. For each of the three surfaces above, the divisor D is not only
totally geodesic and normal crossing, but also intersect perpendicularly at
all the nodes.

Proof. For the perpendicularity, let p be a node of D, and D;, D; be the
two branches of D passing through p. In each case, there always exists a
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biholomorphism f of the surface such that f fixs both D;, and df, is not
a scalar multiple of the identity. (We leave this verification to the reader).
Now the two tangent directions of D; at p are eigenvectors of df, € U(2),
which is not a scalar multiple of the identity, so they must be perpendicular
to each other. O

In [H], Hirzebruch also computed the ratio of the two Chern numbers:
For Y = Y5,(A), its

2 5 10n -7

w2 200n2—10n+3)

For Y = Ya,(B),

c% 5 + 27Tn — 19
cc 2 8(Tn2—Tn+2)
For Y =Y5,(C),

@ 3 3(75n? —50n + 12)
All three sequences are monotonicly decreasing in n.

By Theorem 2, we know that these three sequences of surfaces all admit
Kéhler metrics with quasi-negative complex curvature operator. In partic-
ular, they are all strongly rigid.

Let us conclude this section by giving a couple of remarks on an obser-
vation of Enoki, which gives an alternative way to detect the totally geodesy
of a smooth curve C in a ball quotient X2. His result is the following (cf.
[H1], p.142):

Any smooth curve C in a compact ball quotient X2 satisfies the inequality
KxC > —3C?, and the equality holds when and only when C is totally
geodesic (with respect to the canonical metric of X ).

We remark here that the same is true when X2 is non-compact but of
finite volume and C touchs the infinity. To be more precise, one has:

a 8 100n — 63

Lemma. Let X2 be a smooth finite volume ball quotient. Let X be any
smooth compactification of X such that E = X\X is a normal crossing
divisor. Then for any smooth curve C in X which is not contained in E, C
satisfies

(K% + E)C > —3C?

with equality holds when and only when C'+ E is normal crossing and CNX
is totally geodesic in X.
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Proof. Let {e1,e2} be an unitary frame along Cy = C N X such that e; is
tangential to C. Then by the Cohn-Vossen equality ([Hu], p.58, Theorem
11, the conditions are satisfied because for the punctured disc with Poincare
metric h, the circles centered at the origin with (euclidean) radius r will have
h-length goes to zero when r — 0, then one can use the Schwartz lemma),
one has

1
e(Co) = 5~ /C Ri111(9lc)
0

Here e denote the Euler number and g is the canonical metric of X. Since
R117(9lco) < Ri717(9) , where the difference is the square of the norm of
the second fundamental form (so equality holds identically when and only
when Cj is totally geodesic), and Ryy17(9) = 2Ry195(9) = 3 Ricciy1(g) , we
get

1 .y 3 3

—(Kx+ E)C = — | Ricciyz(g) = Se(Co) > ~(e(C) — CE)
27’(’ Co 2 2

where the last inequality becomes equality only when C'+ E is normal cross-

ing. From this one gets the desired inequality, with equality holds when

C + E is normal crossing and Cj is totally geodesic. a

An example of such kind is again given by Hirzebruch in [H2], where F
is the disjoint union of a bunch of elliptic curves, and C is one of the L; in
his paper. The intersection numbers are:

C?=-n3, CE=4n?, ¢(C)=—2n%+4n?

so (K+E)C = —e(C)—C?+CE = 3n® . Therefore, from the above lemma,
we know that Cj is totally geodesic in the non-compact ball quotient X.

Of course one can also use the deck transformation and the invariance
of the canonical metric to show this.

By using the fact that the bisectional curvature of a complex submanifold
is always smaller than or equal (when totally geodesic) to the curvature of the
ambient manifold, together with the nice curvature behavior of the complex
ball, we know that the high dimensional case of Enoki’s result is also true:

Lemma. If X" is a smooth compact ball quotient of finite volume. Let X be
a smooth compactification of X with D = X\X a normal crossing divisor.
Assume C is a smooth divisor in X such that C is not contained in D and
the second fundamental form of C N X in X has bounded norm. Then for
any integer 1 < r < n, it holds:

(K+C+D) - (K+D)" 7.0 > ( (K+D)y"t.C

n )
n+1
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where K = Kx is the canonical divisor. If any one of the above is an
equality, then C N X is totally geodesic in X. In this case all the above
become equalities.

4. Non-compact case.

We would also like to construct non-compact, finite volume complete
Kahler manifolds with negative complex curvature operator. The previ-
ously known examples are those (non-compact) ball quotients. We claim
the following:

Theorem 3. If X™ is a complex ball quotient with finite volume and D
is a smooth compact divisor in X which is totally geodesic with respect to
the canonical metric g on X. Then the complement Y = X\D admits a
complete Kahler metric with finite volume such that its compler curvature
operator is everywhere negative definite and bounded from below.

Such Y can not be biholomorphic to a ball quotient by Mumford’s pro-
portionality principle on the Chern numbers ([M]).

Proof. Let g be the canonical metric of X™, and d be the Poincare distance
function from D. Also let p be a smooth non-decreasing function on [0, co]
such that p(z) = = for 0 < z < §; and p is constant for £ > J,. Here
0 < 61 < 49 are two sufficiently small constants. Then d; = pod is a smooth
function on X, and is positive in Y.

Consider the Poincare metric

wyp=V—=100h, h=3log® — log[d;(log d1)?]

where @ is the volume form of g. h is a metric in a deleted neighborhood
U® = U\D, where U is a small tubular neighborhood of D.
Define

We = Wg + €Wy

It is not hard to see that w, is a complete Kahler metric of finite volume on
Y = X\D for all sufficiently small ¢ > 0. We want to show that there exists
a small neighborhood U; of D such that, for all 0 < € < ¢y, the complex
curvature operator of w, is negative and bounded from below in U = U;\D.
For this purpose, let us fix a point p € Y near D. Let ¢ € D be the closest
point to p. Again let {21,... ,2p} be the canonical coordinate of the complex
unit ball so that ¢ is (underneath) the origin and D is (underneath) the
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hyperplane {z; = 0}. Then p has coordinate (a,0,...,0). Let ¢ be the
local isometry of g defined by ¢(21,... ,2,) = (w, 22,... ,2,) where

_zn1+a
T 14az

The curvature of the metric w, at p is the same as the curvature of ¢*(w)
at g. Let us still denote this metric by wy + €wp, only now h becomes
t

h=—logl(1—t-s)d(logd?], d=—1—, t=uf’,s=lesf +- |zal?

Here again we throw away the cut-off function p, as we are examining the
situation very close to D.

We want to show that there exists r > (, independent of €, such that
the above metric has the desired curvature property at the origin ¢ = 0
whenever 0 <a <.

As in the proof of Theorem 1, since h = h(t,s) and s =0 at ¢ = 0, so
at the origin all the components of the curvature tensor vanish except those
bisectional curvature terms R, Denote it by —a;j. Then the complex
curvature operator is negative definite at ¢ if and only if the matrix A = (a;;)
is positive definite. Again by the symmetry among {29, ...2,}, A takes the

special form
b cx*
A= (ay) = [ca: e(I + mw*)]

where z =(1,...,1)* and

b = 2+ehnt — by (1 +ehyp) ™

9 _

1+ ehy1yz — €[y (1 + €hgz) ™
e = 1+e¢hys3

Cc

So A > 0 is equivalent to

b>0, e>0, and nbe—(n—1)c2>0

Since h = —log[(1 — t — s)3d(log d)?] , we compute the expansion when
t=la> = 0:
hyg ~ 2
hogss ~ 2
2

" Tilego?
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T
2
. _c
1 t(logt)?
2a 2

n ~ —tz(logt)z(l—l-logt)

hTiT 2 (1+ SR )
111 t2(logt)? logt  (logt)?

Hence 8
Ry = hyghygyy — b | ~ B(log )0 >0
. 9 4 1
Ry = hoshyyg — |hog | ~ t(—logt)3(2 + logt) >0

Hence ¢ > 0. Since 0 < ¢ < ¢; = 1 + €h753 , so in order to show that
nbe > (n — 1)c?, it suffices to that

Q = (1 +ehj7)nbe — (n—1)ci] >0
But Q= (n+ 1)+ Qre+ Q€% + Q3¢ , with

Qr = n(h + 2hggsz + 2hy1) — (0 — 1)(hy1 + 2hy109) ~ nhyny
Q2 = n[Ry+ hygsz(hipi7 +2h7)] — (0 — Dhy195(hy 193 + 2h17) ~ 1Ry

8n
Qs = nRihysy — (n = Dhip(hin)? ~ t4(log t)®

Hence all Q; > 0 and we have proved that A > 0.
For the lower bound, denote by o =1+¢€h;7, [ =1+¢€hy;, and let

{e1,...,en} be the natural basis at the origin. Write
1 1
e = e e 2<i<n

~ VB

Then {e;} becomes an unitary tangent frame for the metric g + eh. Let
—(@ be the complex curvature operator of g + eh at the origin. Under this
unitary frame, ) has the form

v dz*

!
— / r_
‘- [ s E'IN:| AT [clx ¢ (In-1 +M*)]
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where N=(n—-1)(n—-2), z=(1,...1)* , and

b c e
b’:— I:—— ,=—
b c aﬂ, (S ,82

)
The eigenvalues of ) are therefore ¢, €/, and Aj:

A2 = %(b’ +ne') £ %\/(b’ —ne')2+ (n—1)c'?
So the curvature operator will be bounded from below if o', ¢/, €' are all
bounded from above. Since we have fixed € now, it is straight forward to
verify that they are indeed bounded when t = |a|? — 0.

It is also not hard to see that ¢ — 0 when ¢ — 0. This says that the
curvature is not uniformly negative.

We have completed the proof of Theorem 3. _ a

In [K-M], Kudla and Millson proved the existence in any dimension of
the pair (X", D) of smooth compact complex ball quotient with smooth
totally geodesic divisor. So the above theorem implies:

Corollary. For any dimension n, there ezists complete Kahler manifold
(Y™ g) of finite volume whose complezx curvature operator is negative and
bounded from below, and Y can not be biholomorphic (or even properly ho-
motopic) to any locally hermitian symmetric manifolds.

Let us conclude this section by making a couple of remarks about the
Theorem 3. '

Remark. In Theorem 3, if D has more than one components, then
the same conclusion still holds. But the computation is more tedious. In
another case, if X is non-compact and D touches the infinity, then the
complement is still negatively curved. However, in this situation, one needs
to add a contribution term from each infinity torus to the metric w, as
the injectivity radius goes down to zero at infinity. The computation is
possible by the nice explicit expression of the complex hyperbolic metric in
the coordinate neighborhood at the infinity, given by Mok in [Mo], where
he treated both the arithmetic case and the non-arithmetic case.

It is perhaps worth mentioning that in the example of [H2], the totally
geodesic divisor C' and the infinity divisor E satisfy (E + C)? = 0. So
the curve F + C can not be blown down to a singular point. So by the
result of Siu-Yau [S-Y], the complement Y = X\C = X\(EUC) can not
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admit any complete Kahler metric of finite volume with sectional curvature
bounded between two negative constants. So in order to improve the result
of Theorem 3 to get uniformly negative curvature, one has to take into
consideration the (global) information that the divisors to be deleted are
resolutions to isolated singularities.

There are some related problems that can be studied. For instance,
let (X™, D) be a Kudla-Millson pair of ball quotient with smooth totally
geodesic divisor. Then what can we say about the universal covering space
of X\D ? Is it sometimes a bounded domain?
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