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0. Introduction. 

Let Mn [n > 2) be the set of n-dimensional compact complex man- 
ifolds which admit Kahler metrics with quasi-negative sectional curvature 
(i.e., non-positive everywhere and negative somewhere). Despite the general 
belief that such manifolds should be abundant, there are very few known 
examples constructed. In fact, before 1980, the only known such examples 
are the locally hermitian symmetric ones. In 1980, Mostow and Siu ([M-S]) 
constructed a sequence of negatively curved surfaces which are not locally 
symmetric. This sequence of examples are still the only known manifolds in 
A/n, other than the locally symmetric ones, for any n > 2. 

In this paper, we shall construct three new sequences of surfaces in A/2. 
The idea is very simple, one starts with a compact complex ball quotient 
Xn which contains a totally geodesic divisor D. If Y is a finite branched 
covering of X with ramifications R over D (of simple type), then one can 
add a suitably choosing metric, which supports in a neighborhood of the 
divisor i?, to the pull-back of the canonical metric of X. The sum metric 
is then quasi-negatively curved. When n = 2, there are such surfaces Y 
constructed by Hirzebruch in his famous paper on the arrangement of lines 
([H]). These surfaces are different from the ones constructed by Mostow and 
Siu, since they have different ratios of the two Chern numbers (cf. §3). 

For n > 2, the same constructions should also give manifolds in A/"n, 
if we knew examples of such Yn over such a pair (Xn,D) of compact ball 
quotient and totally geodesic divisor D in it. 

In §4, we also discuss the finite volume case. Theorem 3 says that if Xn is 
a smooth compact complex ball quotient and D is a smooth totally geodesic 
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divisor in X. Then the complement Z = X\D admits complete Kahler 
metric with finite volume whose complex curvature operator is negative and 
bounded from below. As a consequence, the complex structure on any of 
these three families of surfaces of line arrangements is unique. 

For any n > 2, the existence of such a pair (X71, D) is proved by Kudla 
and Millson (cf. p.129-130 of [K-M]). So one has negatively curved complete 
Kahler manifolds of finite volume in any dimensions. 

The main technical contribution of this paper is the proof of Theorem 
2 in §2, where we need to compute the curvature of the sum of two met- 
rics. It is technically much more difficult than the smooth divisor case of 
Theorem 1. In this regards, we should mention the work of Cheung and 
Wu ([C-W]), where they initiated the systematic study of the sum of two 
complex hyperbolic type metrics. 

In the Riemannian case, in 1987, Gromov and Thurston constructed 
in [G-T] many examples of negatively curved Riemannian manifolds in all 
dimensions. Their starting point was a compact manifold X with constant 
negative curvature which contains a (real) codimension two totally geodesic 
submanifold Z?, and they perform geometric surgery on a cyclic cover Y of 
X which is branched along D. So this paper can be regarded as a complex 
analogue of their work, although the way to prove the negativity of the 
curvature is totally different. 

Acknowledgements. We would like to thank mathematicians Pat Eber- 
lein, John Millson, Mark Stern, Gang Tian and S-T Yau for valuable sug- 
gestions, helps, and encouragement. 

1.   The metric. 

First of all, we need the following terminology 

Definition. Let / : Y —)• X be a surjective holomorphic map between 
two compact complex manifolds of dimension n. Y will be called a good 
covering over X, if for any p E y, there exits holomorphic coordinates 
{zi,... , zn} near p and {u>i,... , wn} near f(p) such that p = (0,... , 0) 
and in a neighborhood of p, f is given by Wi = z™^ i = 1,... ,n, where mi 
are positive integers. 

Note that for a good covering / : Y —> X, the branching locus D is a (lo- 
cally) normal crossing divisor (the components may have self-intersections). 
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Next, let Xn be a compact smooth quotient of the complex n-ball Bn C 
Cn, equipped with the canonical metric g. Let D be a smooth totally 
geodesic divisor in X. Let p = pp be the distance from D. It is a smooth 
function in U\D for some tubular neighborhood U of D. 

Definition. For X, D and p as above, the function d = dp = (f^j)2 will 
be called the Poincare (square) distance from the divisor D. It is a smooth 
function in a tubular neighborhood U of D. 

Note that for the n-ball  Bn = {\zi\2 + h \zn\2 < 1}   and the totally 
geodesic divisor D = {zi = 0}, the Poincare distance takes the simple form 

Mz) = i-i^-.—i^p • 
Next, suppose / : Yn -> Xn is a good covering over a ball quotient 

X with totally geodesic branching locus D. Let g be the canonical metric 
on X and Ug its Kahler form. Let R = {p E Y\det(dfp) = 0} be the 
ramification locus. Since the metric f*g degenerate along i?, we want to 
define a correction metric near R and add it to f*g. 

For a sufficiently small 8 > 0, let U = Us be a ^-neighborhood of D 
and let V be the components of f~l{U) that contains i?. For any p € R, 
choose holomorphic coordinates {zi, • • • , zn} centered at p and {wi, • • • , wn} 
centered at f(p) such that / is given by Wi = ^J71* for each i. Let us 
assume that rrii > 1 for 1 < i < r, and raj = 1 for r < z < n. Write 
Di — {wi = 0}, 1 < i < r, and let d; be the Poincare distance function from 
the divisor Di. Define 

* = Gmi(x1)---Gmr(xr)-r(u>2) 

where 
^   , x      (l-raa;)(l-xm)       _     ra-1 Gm{x) - -—  .-m_,      ,    m - 

(1 - a;)3^771"1      ' ra + 1 
i 

771 and r^i = f*(p o dz
mi) , with p a smooth, non-decreasing cut-off function 

defined on [0, oo], such that p(t) = t near £ = 0 and p = c near and after 
t — 5. Here c is a small positive constant. It is not hard to check that $ is 
well-defined, and is smooth and positive along R. So it is a volume form on 
Y. 

Now the desired metric on Y is just 

u>e = f*(u>g) + eV=ldd\ag$ 

It is straight-forward to verify that a;c is indeed everywhere positive-definite 
on Y for all sufficiently small e > 0. 
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This correction term was first used by Mostow and Siu in [M-S] in the 
case of n = 2 with D smooth and on the universal covering level. In that 
special case it is just the Bergmann metric of the Thullen domain {l^i |2m + 
\z2\2 < 1} . We observe that it can be realized at downstairs by using the 
Poincare distance function. 

The next section is devoted to the proof of the fact that the above 
constructed metric (jOe has quasi-negative complex curvature operator (hence 
strongly quasi-negatively curved in the sense of Siu). In fact the complex 
curvature operator is negative definite everywhere in Y\S, where S is the 
singular point set of i?, which has codimension at least 2. 

2. The curvature. 

First of all, we have the following result, the two dimensional case is due 
to Mostow and Siu in [M-S] (on the universal covering level). 

Theorem 1. Let f : Yn —» Xn be a good covering over a smooth compact 
complex ball quotient Xn and with totally geodesic branching divisor D. If 
D is smooth, then Yn admits a Kdhler metric with negative definite complex 
curvature operator. 

In particular, Yn is strongly rigid (that is, any compact Kdhler manifold 
homotopic equivalent to Y must be (anti-)biholomorphic to Y). 

Proof. The metric here is of course the one constructed in §1. It suffices 
to show that there exists eo > 0 and a neighborhood Vi of R such that ue 

has negative complex curvature operator in V\ for any 0 < e < eo- Note 
that it is important here that Vi is independent of e. Then the compact 
complement V\Vi can be taken care of by letting e to be sufficiently small. 

Fix a point p G V\R. Write q = f(p) and let qo be the point on D 
that is closest to q. Let {^i,-** ^zn} be a canonical coordinates of the 
unit ball Bn such that qo is (underneath) the origin and D is (underneath) 
the hyperplane {zi = 0}. Then q = (a, 0, • • • ,0), and the Poincare distance 

function is  d = ^^t1!-^ - 
Let fi be a local inverse map of / which sends q to p, and 

(p{zi,... ,zn) = {w,Z2,..- ,zn) ,        w = 
1 + azi 

The curvature of ujt at p is the same of the curvature of the metric 

£5 = (/i o ipY{u)e) =Ug + euh =Ug + cyf^lddh 
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at the origin QQ = 0, where 

h = log 
v — mt™ 

(V — tm^V 2m-l 

and v = (l-s)m , * = \w\2 with w = f^- , s = \z2\2 + • • • + \zn\2 . Here 
m is the multiplicity of R at p. 

We ignored the cut-off function p here since we are only interested in the 
situation very close to R. 

By shifting some copies of Ug into Uh (this will result in a change of e) 
we may assume that the metric under consideration is 

CJ — uq + euh 

h = log(- 
v — mtm 

with 

1 
r) (v-t^v2™-1    (I-*-*)4' 

(The reason of doing this shifting is to guarantee that h is positive definite 
and is sufficiently negatively curved on the tangential directions of Z), and 
we will still use the same notation for e). 

At the point qo = 0, t = \a\2 and s — 0, hence h^ = 0 for i ^ j, hf- ijk 0 
except h^, and all hf-^ = 0 except those /i^.  Since g is normal at the 
origin, we have 

ijkl iiJJ 

-RiWi = 9m + ehf3ki -e2Yl hwkhjjigpp + ehPp) 
P=I 

Therefore, at qo, all the components of R{jki are zero except those Rjijj- 
Denote it by —a^. Then the complex curvature operator of the considered 
metric will be negative definite at qo if and only if the matrix A = (a2j) is 
positive definite. 

By the symmetry among ^2? • • • izm we know that the matrix A takes 
the special form 

where since 

b c c 
c d e 

A = \c e d 

c e e 

-Riij3 = 1 + sv + ehiij3 
c2y^   \h' 

p=i 

bi3V\ 

>pp 
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We have 

b = 2 + ehm-l-e2\h1-n\
2(l + ehlT)-1 

c = l + eh^-e^h^il + eh^)-1 

a = 2 + €h>2222 

e = 1 + e/12233 

Since at qo. 

'l2222 ~ ^^2233 ~~ ^"'ss|s=0 > 0 

Therefore, d = 2e, and 

A = 
6    ex* 

ex   eB 
where   re* = (1,... ,1)    and  B = In-i + xx* 

Write  y* = (1,0,... ,0),   and let U be a unitary (n — 1) matrix such that 
Ux = \Jn — \y . Then 

A 
1    0 
0   U 

1     0 
0   U* 

b cy/n — ly* 
cy/n - ly   e(I + (n - l)yy*) 

Therefore A is positive definite if and only if b > 0, e > 0, and   nbe > 
(n - l)c2 . 

Since 

/i = h(t, s) = log( 
v — mtrn 1 

(^.^jS^m-l      (l~t-5)4 ), 

Let us use   /i7 to denote   ht + thu , and write r] = 1 — t = 1 — \a\2. When 
t = \a\2 —> 0 , we have the following approximations: 

^22 

mi 

6 + i 

/i'^n^T+^Ot^^ikil    =  a{rf{h,)t-2rifh!) 

ar/3[(- - l)at™-2 + (— - l)/?^"2] 
7/1 776 

/looi    —   hstwwi  w   arjmatm   1 

^ilil   =:   ^Vnl2 + (^OVil4 + (ZiOt^nW2 +S5?Sir^i) 
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=   tfitiy-ttrfWt + itrfti 

„   ^[(1 _ if at*-2 + (-- l)2(3d-2) 
m m 

^2233     -     hss   »     2+
m-m2 

Here a = 2=g , and ^ = ^3"f2) . We have 

TTh 

R2 = h22hll22 - \hi22\2  «    (6 + —^rjH™-1 

Therefore, 6 > 0, e > 0, and c > 0. Since 0<c<ci = l + ch^^ , in order 
to prove nbe > (n — l)c2, it suffices to show that Q = (1 + eh^fobe — (n — 
1)4) > 0 . Write    Q = Qo + Qie + Q262 + Qses , then 

Qo = n +1 

Qi = n^ilil - 2(n - l)^^^ + (n+ l)^iT  ^   n^iTiT 

Q2 = ni?1 + n/z2233(/ilT22 + 2%) - (n - 1)^x122(%22 + 2/iiT)   ^  ni2i 

Q3 = nh^^Ri - (n - l)/iiT(/i1T22)2 

Hence Qi > 0, Q2 > 0, while 

Q3  w  {n(2 + ---\)^-(n-l)a3}^-3  >  0 

Therefore A > 0. This shows that the complex curvature operator of w€ is 
negative definite in Y\R. For the points on R, the curvature tensor can be 
directly computed and it is also negative. Let us skip the details here. This 
completes the proof of the Theorem 1. □ 

Remark. In [K-M], Kudla and Millson constructed in all dimensions 
compact complex ball quotient Xn with smooth totally geodesic divisor 
D. But we do not know of any examples of a good cover Y over X with 
branching locus D. This amounts to looking for finite index subgroups of 
Tri(X\D) with certain property. 
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Next, we consider the general case when the branching locus D is not 
smooth but only (locally) normal crossing. In this case the complex curva- 
ture operator of ue is only quasi-negative on Y, since it will have some zero 
bisectional curvature at the singular point set S of the ramification locus R. 
The computation now becomes much more complicated. We shall only give 
the detailed proof for the two dimensional case. 

Theorem 2. Suppose that X2 is a smooth compact quotient of the complex 
2-ball, and f : Y2 —» X2 is a good covering with totally geodesic branching 
locus D. Then there exists a Kdhler metric on Y which has negative definite 
complex curvature operator away from the finite set S = Si'ng{R), where R 
is the ramification locus of f. 

In particular, such surface Y is strongly rigid. 

Proof Again the metric on Y is the sum metric uje constructed in §1. 
It suffices to show that there exists a constant r > 0, such that, for any 
0 < e < eo, the complex curvature operator of cje is negative definite in 
f~l(UBr(pi) — D) , where {... ,pi,... } is the set of nodes of .D, and Br(p) 
is the geodesic ball of radius r centered at p (with respect to the canonical 
metric g on X). Then the smooth part of D can be dealt with as in Theorem 
1 to give a neighborhood V of R such that uje is negatively curved in V\R 
for any small e. 

Let po be a node of R. Fix a point p near po which is not on R. Denote 
by q = fip), Qo = fiPo)- Let -Ri, R2 be the two branches of R that pass 
through po, and Di, D2 be the two branches of D that pass through go- 
And let rrti be the multiplicity of / along J?;, i = 1,2. For simplicity, we 
will assume that Di is perpendicular to D2 at qo, and that mi = 1712. The 
general case is similar, but more technical and tedious. 

Again let {21, Z2} be the canonical coordinate of the complex 2-ball such 
that qo is underneath the origin, and Di = {zi = 0}, i = 1,2. Choose a local 
inverse map /1 of / which sends q to p, and let (p be the local isometry on 
X which is defined by 

(p{zuz2) = {x,y) = (8a + azi - jZ2,5b + bzi + -22) 

where q = (5a, Sb) with d > 0,   \a\2 + \b\2 = 1, and A - (1 - S2)'^ . 
(p maps the origin to q. So in order to compute the curvature of u)e at 

the point p, we may consider instead the metric  (/1 o (p)*u)e = uig + eujh at 
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the origin. Here 

where 

Uh = \f—iddh 

h = h(t, s) = log( 
 i_    i_ 

v — mtm  u — msm 2_) 
2m-l' 

'(v-tm)*(u-Sm)S(UV) 

ti = (l-3)m,   t; = (l-*)m,   t=\x\2,   s = \y\2 

At the origin, we have 

c C1 a boa 
x = da,   y = 6b,   xi = -^,   ^2 = -^,   Vi = ^'   y2 = X 

and 
A2 A2 

where an = —2, ai2 = — 1, and (722 = 0. 
Again let us use the short notation h! = ht + thu,   h" = hs + shss. We 

have 
hij = h Xix] + h yiy] + htsfasj + stfj) 

hijk = fokXj + i^ihTj       with 

<l>ik 
Ak 

— &ikXik — ^>2 ik 

XiXjs 

ViVk 

where 

&ik 

\2 \2 
 /T ,        A  (7    »x              —9/7              ^ (7       v 

^("t + Tfih > W \htss + TTTo'^s) 

\20, & 

vK 

x2y(htts + T^2hts)       yW + Tj^h")       xh'l 

(cr = aik in this identity).   Therefore at the origin, 

2 

E htjfkhhl(I + .eh^ = det(I + eh^XikiM + elfjX^ 
p,q=l 

where 

M= Kik-g 
1 — t    —xy 

_—xy    1 — s\ 
>ji 
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N = 'Sik 
1 h" 

A   l-xyhts 

-xyhts 

ti 
H 

If we write a — cr^ and a = aj/, and use a to denote the term obtained from 
a with a in it all replaced by a . Also denote the entries of S by 

S — Sik = 

S = Sji = 

xai     xy2b2   yh' s 
x ybi     ya2     xh 

—ur xai     xyzb2   yh1 

ya2     *iH x2ybi     ya2     xh" 

Then we have 

M = 
A2 

ci    di    3,2 

di    c^   ds 

[d2     0?3     C3. 

where 

C2 

di 

d2 

dz 

t(l - t)aiai + t2s(l - 5)6161 - £2s(ai6i + &iai) 

t52(l - ^6262 + 5(1 - 5)0202 - ts2(a2b2 + 6202) 

s(l - t)(hf
s)

2 + t(l - s){h'l)2 - 2tstiX 

x2y2[(l - t)aib2 + (1 - s)&i<?2 - (0102 + *«&i^)] 

xy[(l - tjai/ii + t(l - ajfti/ij' - {(ai^ + shti,)] 

xy[s{l - t)b2tis + (1 - 5)02/1'/ - 5(02^ + thh?)] 

N = >? 

■ci  4 4 

d'. 

d'    <£ ^J 

where 

4 thl'aiai + t2sh'bibi — t2shts{aibi + biai) 

cf
2   =   ts2h"b2b2 + sh'0,202 - ts2hts{o2b2 + 6202) 

4    =   shn{hl
s)

2 + th'{h,l)2-2tshtsh,
sh

ll 

d!l    =    x2y2[h,faib2 + h'b^ - hts{oi02 + 456162)] 

4    =   xy[h"aih,
s + th'blh'l -thts(aih" + shtis)] 

d'3    =   xy[sh"b2tis + tia2h" - shts{o2h's + ^h'l)] 

Next, we compute at the origin: 

hijki =   XikHXji 



Examples of non-positively curved Kahler manifolds 139 

where 

H 
fi   h   H 
Jl    62    h 

h   h   e3. 

with 

ei    =    (/»')' +(a+ cr)A2|ar2^ + CTorA4|or4tV 

e2    =   (/»")"+ ^ + ^)A2|&r2a/»" + acrA4|6|-4a^" 

/i    =   x2y2[huss + aX2\a\~2htsS + dX2\b\~2hus + aaXi\ab\~2hts] 

h    =   xy[/4 + aA2|a|-2^] 
/3    =   xy^+aA2!^-2^'] 

Since at the origin, the canonical metric g is normal for the coordinate 
{^i? ^2} 7 so the curvature components of the metric g + eh at the origin is 

-Rijki   =   dijkJ + eh^j-e^hipkhj^I + ehr 

=    -R(9)iM+ %k(eH - e2det(I + eh)-\M + eN^Xji 

Write ei — -§-^ and let 
0Zi5 

ui -V2^\ + 2/162 ,      ^2 = #261 - #162 , 7 = #12/2 - Z2yi 

Then  e; = —7  ^a^-ui -\-yiU2) . Hence 

[      2|ui|4 2(^iJ^)2 2|ui|2(ui,tZ2) 
G = 7-4      2(ti2,ur)^ 2M4_ 2|^2|

2(^2,ur)_ 
_2|?ii|2(w2,^r)    2|tX2|2(txiJS2)    |tii|2|w2|2 + |(ui,tZ2)|2. 

Plug in the values of Xj, t/j at the origin, we get 

G = A8 
2(1 - s)2        2^2y2 2(1 - s)xy 

2x2y2 2(1 - t)2        2(1 - t)xy 
2(1 - s)xy   2(1 - i)^y   1 - t - s + 2ts_ 

Therefore 

-RiWl = de<(/ + e/l)      '   Xikpx3l 
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P   = det(I + eh)-(G + eH)-e2(M + eN) 

= PQ + Pie + P2e2 + Pae3 ,    where 

Po   = G 

Pi   = tr(h)G + H 

P2   = det{h)G + tr{h)H - M 

P3   = det(h)H-N 

Write 
P = PW + aPW + aPW* + aePW 

where P^1^ and P^3) are hermitian symmetric, and define 

p = P^1) + UP^1 + p(2)*t/* + UP^U* 

where 

If we write 

U = - 
'2 a\2 0 2ab' 

0 2|&|2   2ab 
06 ab      1 _ 

'A D   E' 
D C   F 
E F   B 

then it is not hard to verify that up to a common positive scalar factor, the 
entries are just the component of the curvature tensor under the tangent 
frame {ui,U2}. On the other hand, the complex curvature operator — Q is 
a hermitian bilinear form over the tensor of the tangent space Tqo ^ ^ 
Under the basis Ui ® uj, Q becomes 

'-go- 

Q = 

A B E E 
B C F F 
E F B D 
E F D B 

Since Q = Qo + Qie + Q2e2 + Q^e3 , and —QQ, the curvature operator of g, 
is negative definite, therefore, it suffices to show that Qi > 0 for 1 < i < 3 
when the point p is very close to the node po, or, equivalently, when S is 
sufficiently small. We want to write down the leading terms of the entries 
of P when 8 —> 0. Without loss of generality, we may restrict ourselves to 
the following two cases: 
Case I:   5 -4 0 ao , b -+ bo ,  aobo ^ 0. 
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Case II:   S -» 0 ,  a -> 0   (hence |6| -> 1). 
In the first case, t and 5 approach zero at the same speed, while in the 

second case, t <^ s. 
We shall need the following simple fact from linear algebra, the proof is 

omitted. 

Lemma. // the entries of P   satisfy 

A,j3,C>0;    (l-r)2AC>£2;   (I - r)B > \D\- 

r2AB>4\E\2-   r2BC>4:\F\2 

for some constant 0 < r < 1 .  Then  Q > 0. 

In the following, we shall compute the leading terms in the asymptotic 
expansions of the entries of P and check that they satisfy the conditions in 
the above lemma. 
Case I:    t ~ s. 

We shall use « to denote the first two leading terms approximation, 
where the second term is equivalent to the first one multiplied by 5m. We 
have 

 i_   _i_ 
L L/.L      \ i        ,V-mtrn       U-msrn ^l-2m\ 
h = h(t, s) = log( y — • (ut;)1  2m) 

V — tm U — Sm 

where u = (1-t) m , « = (l-s)m . Again let a = ^ , 0= 2(3~f2) . Also 
let a1 = (i-l)a,a2 = (^-l)2a,aiid I3l = (&-1)0, f32 = (± -1)2 (3 . 
We compute 

ti   «   crfm^+^tm-1 

/i7'    «    asm-1+/3sm"1 

^s    «   /I' + ZI'' 
1       9 ^2 

(hfy   «   a2i-~2 + ^-~1 

1 1 2 2 
(^Ots    «    —aitm~2 H /3it™~2 

m m 

1 1 2 2 1 2 
(/Os    «    —aitm-1 H /^m-1 + ^m"1 + f3s™~1 

m m 
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(h'y 
I/1! 1-K 2^,2-, 21x —a(tm -1 + s^"1) + — /3(£™     + s^""1) 

htss    «    (—+ l)ai(^-2 + 5^-2) + (—+ l)/31(^-1 + 5m-1) 
m m 

Since  A « 1 , we also have 

tr(h)    =    ^((l-t)/i
, + (l-5)/i/,~25^s)   «  Zi' + Zi" 

det(/i)    =    ^{h'h" -sth2
ts)  «  /I'/I" 

7   / ^ T 7   / ^tS 

|a|2 |a|2 

Therefore 

We have 

mhtf xVKK      xyKK 
MW* //\2 «) 

M(2) 

xyh'lK 
s{h'sf +1(^)2 

2—2 
x y h h> -Whuht 

0 

x"y* xy 

a 
, |9 htsh'' -r-^h'h! 
\a\ 

s   uffuft "v uiiui 

W   ' W   < 
0 0 

M(3) 

^2„,2 

wm2 ww*1-^ 0 

* 

0 
w{h) 

UM^ W - 

UM^U* 

2th'h. 'ui 2x2y2htsK        2xytih's 

2x2y2htstit      2sh"h"s 2xyh"h,( 
xyh'h't xyh"h'Z      sh'h's+th"h 

4t(ti)2   4x2y2(h2
ts-tih")        2sy(/l')

2     ' 
* 4s{h")2 2xy{h")2 

* * s{h')2 + t(h")2 
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Therefore, by comparing the orders, we know that  M is 

T+(hi\2 

M 
my xYKh 2„2UIUII 

s(K) n\2 
xy(h's-h')h't 

xy{h'l - h")til 
s(h's - h')2 + tih'l - h")2 

Similarly, 

tti'ih't)2   x2y2(h' + h" - hts)h'X 
sh'{K)2 

* 

Nm 
\a\2 

h h h+ w 

JVO) 

o 
t 

x y 1.1 u" i," 
|o|2 

0 

xyh"h'sh't 

xyh'h'ih'l 
sh"{h's)

2 + th'(til)2 

2-/i h hs 

j^hh ht 

i\2ui {h'fh 
x2y'2 

S 

h h hts    0 

\b\ 
4h'(hr 

Hence 

UNM « _ 

UN^U* 

'  2th'h"h't 

2x2y2h'h"h't 

xyh'h"h't 

2x2y2h'h"h^ 2xytih"h's    ' 
2xyh'h"h'l 

xyh'h"h'!      h'h"(sh's + th'l) 
2sh'h"h^ 

4t(h')2h"   4x2y2h'h"hts 
* Ash'{h")2 

2xy(h')2h"   ^ 
2xyh'(h")2 

h'h"(sh' + th") 

So iV becomes 

'th"(h't)
2   x2y2(h' + h" - hts)h'th'! 

Ntt lfh"\2 sh'{K) 
xyh'h't{h's - h!) 
xyh'h'^h'i - h") 

sh"{h's-h,)2+th,{h'{-h")2 

We also have 

H^ = 
(h')'   x2y2httss   xytits 
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H® = A2 

'l2ht 
x2y2 

tss 

x2y2 

H2 htts 

H^ = A4 

0 

■;—nh 
a4 

—h" 
\b\2  s 

0 

~x2y2 

ww 
—h" 

0 

h, ts 

|a|2 n> 

xy .„ 
W * 

0 

0 

0 

0 

Hence 

UH & „ - 
'    2ttit 

2x2y2htts 
xyh't 

2x2y2hts 

2sh» 
xyh'l 

UH^U* w 
'4th'   4x2y2hts 

* 4sh" 
* * 

2xyh'l 
sh's + th'l 

2xyh' 
2xyh" 

sti + th" 

Therefore  H is 

H = 
\h') 

* 
* 

l\l    -z3.„ ,2 % V {httss - 2htss - 2hus)   xy(h'ts - h't)' 
xy{h'ls-h"s) 

(h')"      . 

While 

G 

(h")" 
* 

2x2y2 

2 
* 

2xy" 
2xy 

1 

Note that in all cases, the order of the entries of Xr is no greater than the 
order of the corresponding entries in X'1), for  X = M, iV, or H. 

For H, the entries satisfy 

^-2 .A ~ C ~ t' B~t' |-D| < i™ ;     1^1, l-P1! < t™' 

Here we omit the positive constant coefficients. So we have A > 0, C > 0, 
£ > 0, and   AC > B2 » |L>|2,   AS > |E|2,   SC » |F|2 , hence the 
associated Qg > 0, and Qi = tr(h)QG + Qjj > 0. 

For  K = det{h)G + tr(/i)H - M , we have 

* * h'h" + hts(h')" 
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So the entries satisfy 

A - C - t-"3 ;   B - t™'2 ;   |JD| , \E\ , |JP| < t^""2 

Again we omit the positive constant coefficients here.   Therefore A > 0, 
C> 0, £ > 0, and AC > £2, AB > l^l2, CS » |F|2. Also 

\D\      «      telfcj/l^     W    Oifajm"1 

Since ai = (^ — l)a, rB > |Z)| for some constant 0 < r < 1.  Therefore, 
Q2>o. _ 

For  P3 = det{h)H - N , since  /i' + /i" - /it5 = O^m"1) , we have 

"/i
,,[/^,(/^,), - t(^)2]    -x2y2(h' + h" - hts)tittil    xyh"\h'h,

ts - h^h'8)' 
h'[h"(h")» - s(h»)2}        xyh'ih'Xs - hHK) 

* * tih"{h')" 

Since 

tiiti)' - t(tit)
2 - (a/?2 + a2p - 2a1pl)t%-3 - ^t^'3 > 0 

m 

Therefore, A > 0, C > 0, 5 > 0, and 

^^C-tm"4,   B ^ \E\ - |F| - t^"3 ,   \D\ ~t™-3 

So they satisfy the conditions of the Lemma. Hence Q3 > 0. This completes 
the proof of the first case. 
Case II:  t < s. 

In this case, t —> 0, s -» 0, and. f -> 0. In the following, we shall use ~ 
(or « ) to denote the approximation of the ( first two) leading terms. We 
have 

v 

h"    w   a5^ ^ +/?5r 
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(h')s « 

(h")t « 

(h')t   « 

mvm-t-i. rn 

a      i 
^2771+1 

1       1 ^    z       1 Lt tn-1 +f3t™-1 + —srn a   j, — < 
m 

rnu        ~   al+
J--2   ,   /Q  .^--2 V    htts   W    t"i    ' + pit™ 

ais ±-2 
+ PlS> 

--2 

1 
(! + -)«   i 

v 2771+1 
t- "^ + A^-"2 + (1 + — )crfm -1 

m 

«1      .-1—2   ,   2A,-2._2 
 TT^rn       H £m 
rnvm+L m 

(ai   J—2  ,   2a   i _! 
m 

«2    1-2 

771 

{tiy * ^±t^-2+(32t r-l 

(/i")"   «   a25m-2 + /925^-1 

(1 + —)aitm- 
m 

w a   i 

m 

also 

tr(h)   «   vmh' + v2mh" « a^-Hm-i+^^^ + asm" 

det(/i)    »   f;3"1/!'/!" » a2i--1s--1 + a/3i™~1s-"1 

As in the first case, we have 

r<(/i't)
2 x2y2tithtss xytittis 

M^ ^vm\    *       a(^)2 + ts2{htss)
2   xy{h'lh"s + s^/iiss) 

* * s{h's)
2 
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M(2) 
\a\*hht 

x2y2 

M2 

x2
y\ h> 

s 

W\ 

(tihtss + (vmhts - h')h^ 

^(vmh"h^ + tShtshtss) 

xy 

W 

\a\2     s 

{vmh"h'l + shtstis) 

M^ 
F^')2 

* 

0 

5 

\b\ 

x2y2 

\a\2\b\2 h'hts 

T^(v™(h")2 + tsh2
ts)   0 

Hence 

[/M(2) « - 
xyh'h't 

UM^U* 

2th'h't       2x2y2(tihtss + (vmhts - ti)ti!.) 
2x2y2htsh't 2s(vmh"h'l + tshtshtss) 

xy{sh'htss + vmh"h^) 

2xyh'h's 

2xy{vmh"h,l + shtstis) 
sh'h' 

'At{h')2 Ax2y2tihts 2xy(h')2 

* 4:s(vm(h")2 + tshl)   2xy{vm(h")2 + sh'hts) 
* * s{h')2 

So M becomes 

'v^ih't)2 

M 
x2y2h't{htss - 2hts) 

s(h^2 + ts2(htss-2hts)
2 

* 

xytit(v
mtis - h') 

xy[h'X + s{h's - h')(htss - 2hts)} 
s(h's - h')2 

(Here we only need the second leading terms for the ci and c^ positions, as 
there will be cancellation later on.) 
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Similarly, 

NW W v3rn 
'th"{h't)

2   x2y2[hW(h'-hts) + h"h'thtss}   xyh"h'th's 

* sh'(h")2 + ts2h"(htss)
2 xyh'h'X 

* * sh"(h's)
2 

N(2) ..2m ^V./.w 
\b\< 

■h h ht 

h'hl'htts 

x2y2 

h h! htss    -r-Tzh'hl'h' 

tf(3) 

Hence 

UN® » -y2m 

UN^U* K,vm 

' V 

0 

t 

^h'h"h" 

0 

J^hh ht 

0 

I.'\2LW 

* 

0 

'    2th'h"h't 

2x2th'h"htts 

XV 

|a|2|6|- 

0 0 

2x2y2h'h"htss 
lU'U'l 2stih"h 

2xytih"h's 

2xyh'h"h'l 
xyh'h"tit       xyh'h"(ti! + shtss)     stih"tis _ 

'4t(h')2h"   4x2y2h'h"hts 2xy(ti)2h 
Ash'{h")2      2xytih"(h" + sht,) 

* s{h')2h" 

So the entries of N are 

c' 

vZmth"(h't)
2 

v3msh'(h^2 

—1 c!z   ~ sh"{tis-h')2  ~ aalsnt 

~ x2y2[aQ:ft^_3sm"1 + o(tm'"2s^_3)] 

4   « xy(vmh's - ti)v2mh"tit  ~ syaa?*-"^™-1 

^3   ~ xyh'h"h" ~ a;ya2Q!i<^-2s^_2 
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Finally,  iifW ,  H^   and  H^   are given in the first case, and we have 

2ttit           2x2y2htss ZxyK 
-v '"   2x2y2htts            2sh^ 2xyh'l 

xyh't xy(h"s + shtss) stis 

UH^U* nv'2171 
'4th'   4:X2y2hts 2xyh' 

* Ash"       2xy{h" + shts) 
* * sh* 

Therefore the entries of H are 

6!     «     gW    =    (h') (1)    _    fu'M   ~    a2+±-2   .   P^-2 «     —tm     Z+f32tm- 
V 

62 .C1) (ti')"    «    a2Sm-2+/?2Sm- 

63     ~     C«    =    (h')'' 
a   i. 

-  — t 
m 

^-i 

A    ^   x2y2{httss-2htts)  ~ x2y2a2t™~2 

A    «    xy(tits-v-mtit)  -  xya2t™-2 

h    ~   xy(h'ls-2h'i-h^)  ~ xy(a25m-2 + 2ai*m-1) 

By comparing the leading orders, we know that ej > 0, eie2 ^> ei S> e2 , 

es » |A| ? and 6163 > |A|2 , 6263 » |A|3. Hence Q^ > 0, and 
Qi = tr.(/i)QG + Qfi > 0. 

Next, consider tr(h)H — M, since 

tr(/0ei-ci    «   tr(/i)(/i/),-i;mt(/i;)2 

1 _3._s i—2   -i 1 

tr(h)e2 — C2    ~   aa2t^~15^~2  >  0 

1        2 
tr(h)es — C3   ~    —a2t^~2  > 0 

m 

tr(h)fi -di    -    -x2y2[alt™-2s™-2 + o^-3)] 
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771^ 

tr{h)fo — ds   ~   xy(2aaitm  2 + ( 2)aaitm   lsm  2) 
m 

So the entries of the matrix tr(h)H — M satisfy 

rs-» 
3      o 1      o      1       i 

C      ~      t™     1Sm     2 

\D\   <   t™-ls™-l + o(st™-2) 

\E\      <      \/ts{t™-3 + tn-^S™'1) 

\F\       <      y/is(tm-1Sm-2 + tm-2) 

Here again we ignored the positive constant coefficients. Therefore, it is easy 
to check that 

A > 0, B > 0, C > 0, AC » B2 » l^l2, AB » |E|2, BC » |F|2 

Hence  Q2 > 0. 
Similarly, for the matrix det(h)H — iV, we compute 

det(h)ei - ^   «   ^^'^(fc')'-*^)2]  -  J^^^-^m"1  > 0 

det(h)e2-02   «   v3mti[ti'{ti')" - sititf]  -  -^a2/?^"^-"3  > 0 
mz 

det(h)es-cz    ~ —ast™  2s™   1  >  0 

det(h)fi - c?!    - -x2y2[o(tm-3
5^-1) + o(t-~25m-3)] 

det^h-d't   « vSmhfh,,-xy(h[s-v-mh,
t)-xy(vmh,

s-h')v2mh,fh[ 

~ xyhn(—KOi3t™~s + aaitm"2^^:"1) 

det(h)fs — ^3   ~ a;y(a2a2t^:~15^~3 — a2^!^^-2^^"1) 
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Hence the entries of the matrix det(h)H — N satisfy 

J---*   JL_i 
A       ~       t™     *Srn     i 

(j        ^       t™        Sm 

\D\      <      t™-2S™  +tm-1S™~2 

\E\    <    Vts^^s^'1 H-^m-2
5^-2) 

\F\    <    Vtsit^s™-3 + t™-2s™-2) 

Therefore, these entries satisfy 

A > 0, B > 0, C > 0, AC » £2 » |£>|2, ^15 » |£;|2, 5C » l^j2 

Hence  Q3 > 0. Thus we have completed the proof of Theorem 2. □ 

Remark. In the general case when the two multiplicities mi and 1712 are 
not equal or the two branches Di, D2 are not perpendicular to each other at 
the node qo, the proof is similar but more tedious. We omit the details here. 
The most complicated part in the explicit computation of the asymptotic 
expansions is of course when the leading terms cancelling each others and 
one has to go to the next leading term. Especially in A, B, C, one needs 
their leading coefficients to be positive. However, since locally, away from i?, 
the metric ue is the sum of two metrics, each of them is negatively curved 
by Theorem 1, so we know that the sum metric u€ at least has negative 
bisectional curvature. Hence all the ^4, 5, C terms should have the right 
sign. 

When the dimension is higher than two, we have checked that the same 
metric is still quasi- negatively curved (in the strongest sense). However, 
at this moment we don't know of any examples in dimensions n > 2 of 
good coverings over a compact ball quotient with totally geodesic branching 
locus. When n = 2, there are three sequences of such surfaces constructed 
by Hirzebruch ([H]). We shall discuss them in the next section. 
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3. Examples. 

Let us recall Hirzebruch's surfaces constructed from arrangements of 
lines. Let ip : P2 -> P^ be a linear embedding defined by k + 1 linear forms 
Zo, • •. , Ik- Let fn :P

k -> P*3 be the map defined by f([xo : ... : Xk]) = 
[XQ : ... : Xfr] . Then the inverse image Xn = /~1((p(P2)) is an irreducible 
normal surface, with singular point set S being the inverse image of So, 
the set of points in P2 where there are more than two /;'s pass through it. 
Blowing up points of S in Pfc will give a smooth resolution Yn of Xn. Let 
D = D^ be the union of the exceptional curves and those curves above the 
lines li% 

When m|n, one has good coverings Yn -> Ym, with branching locus Z)(m) 
and ramification locus D^ (each curve ha^ multiplicity ^). 

Hirzebruch computed the Chern numbers of Yn in terms of the combi- 
natorial data of the line arrangement A = {ZQ, • • • , h}- He found that there 
are three cases where c2 = 3c2, (and ci < 0), hence by Yau's Theorem 
([Y]), these three surfaces are complex ball quotients. The corresponding 
divisor D is totally geodesic, since its components are pointwisely fixed by 
some deck transformations of the covering hn : Yn —> P2, where P2 is the 
blowing up of P2 at the points in So; while the canonical metric for a ball 
quotient is invariant under any biholomorphism, so the curve D must be 
totally geodesic with respect to the canonical metric. 

The three surfaces are: 
1). 15(A), where A is the arrangement of 6 lines in P2 defined by {x^ 0 < 

i < 2; xi — Xj,0 < i < j < 2} in the homogeneous coordinate [XQ : xi : X2] of 
P2. It is a real simplicial arrangement. 

2). 13(B), where B is the 12 lines in a Hesse pencil (fix a smooth cubic 
curve E in P2, let S be the nine reflection points of E, then all the cubics 
containing S forms a pencil. There are exactly 4 degenerating curves in that 
pencil, each is the union of three lines. B is just those 12 lines). 

3). 15(C), where C is the arrangement of 9 lines coming from the nine 
reflection points of a smooth plane cubic by dualizing. 

Lemma. For each of the three surfaces above, the divisor D is not only 
totally geodesic and normal crossing, but also intersect perpendicularly at 
all the nodes. 

Proof. For the perpendicularity, let p be a node of D, and Di, D2 be the 
two branches of D passing through p.  In each case, there always exists a 
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biholomorphism / of the surface such that / fixs both Df, and dfp is not 
a scalar multiple of the identity. (We leave this verification to the reader). 
Now the two tangent directions of Di at p are eigenvectors of dfp G ?7(2), 
which is not a scalar multiple of the identity, so they must be perpendicular 
to each other. □ 

In [H], Hirzebruch also computed the ratio of the two Chern numbers: 
FoxY = Ybn(A), its 

c?      5 lOn - 7 
= - + 

For Y = Y^B), 

FoiY = Y6n(C), 

C2      2     2(10n2 - lOn + 3) 

c?      5 27n -19 1 = - + 
C2      2      8(7n2-7n + 2) 

c?      8 lOOn - 63 
— - - +  
C2      3     3(75n2 - 50n + 12) 

All three sequences are monotonicly decreasing in n. 
By Theorem 2, we know that these three sequences of surfaces all admit 

Kahler metrics with quasi-negative complex curvature operator. In partic- 
ular, they are all strongly rigid. 

Let us conclude this section by giving a couple of remarks on an obser- 
vation of Enoki, which gives an alternative way to detect the totally geodesy 
of a smooth curve C in a ball quotient X2. His result is the following (cf. 
[HI], p.142): 

Any smooth curve C in a compact ball quotient X2 satisfies the inequality 
KxC > —3C2, and the equality holds when and only when C is totally 
geodesic (with respect to the canonical metric of X). 

We remark here that the same is true when X2 is non-compact but of 
finite volume and C touchs the infinity. To be more precise, one has: 

Lemma. Let X2 be a smooth finite volume ball quotient. Let X be any 
smooth compactification of X such that E = X\X is a normal crossing 
divisor. Then for any smooth curve C in X which is not contained in E, C 
satisfies 

(Kx+E)C>-3C2 

with equality holds when and only when C + E is normal crossing and CdX 
is totally geodesic in X. 
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Proof. Let {61,62} be an unitary frame along Co = C fl X such that ei is 
tangential to C. Then by the Cohn-Vossen equality ([Hu], p.58, Theorem 
11, the conditions are satisfied because for the punctured disc with Poincare 
metric /i, the circles centered at the origin with (euclidean) radius r will have 
/i-length goes to zero when r —> 0, then one can use the Schwartz lemma), 
one has 

e{Co) = hJc ^TlTfota) 
Here e denote the Euler number and g is the canonical metric of X. Since 
Rnnidlco) ^ ^1111(9) 5 where the difference is the square of the norm of 
the second fundamental form (so equality holds identically when and only 
when Co is totally geodesic), and #1111(5) = 2^1122(5) — |^cchl(ff) 5 we 

get 

-{Kj? + E)C =^Jc RiccilT(g) > ^e(Co) > |(e(C) - CE) 

where the last inequality becomes equality only when C + E is normal cross- 
ing. Prom this one gets the desired inequality, with equality holds when 
C + E is normal crossing and Co is totally geodesic. □ 

An example of such kind is again given by Hirzebruch in [H2], where E 
is the disjoint union of a bunch of elliptic curves, and C is one of the Lj in 
his paper. The intersection numbers are: 

C2 = -n3 ,   CE = 4n2 ,   e{C) = -2n3 + 4n2 

so (K+E)C = -e{C)-C2 + CE = 3n3 . Therefore, from the above lemma, 
we know that Co is totally geodesic in the non-compact ball quotient X. 

Of course one can also use the deck transformation and the invariance 
of the canonical metric to show this. 

By using the fact that the bisectional curvature of a complex submanifold 
is always smaller than or equal (when totally geodesic) to the curvature of the 
ambient manifold, together with the nice curvature behavior of the complex 
ball, we know that the high dimensional case of Enoki's result is also true: 

Lemma. If Xn is a smooth compact ball quotient of finite volume. Let X be 
a smooth compactification of X with D = X\X a normal crossing divisor. 
Assume C is a smooth divisor in X such that C is not contained in D and 
the second fundamental form of C fl X in X has bounded norm. Then for 
any integer 1 < r < n, it holds: 

{K + C + D)r-{K + D)n-l-r • C > {-^YiK + D)"-1 • C 



Examples of non-positively curved Kahler manifolds 155 

where K = K^ is the canonical divisor. If any one of the above is an 
equality, then C fl X is totally geodesic in X. In this case all the above 
become equalities. 

4. Non-compact case. 

We would also like to construct non-compact, finite volume complete 
Kahler manifolds with negative complex curvature operator. The previ- 
ously known examples are those (non-compact) ball quotients. We claim 
the following: 

Theorem 3. If Xn is a complex ball quotient with finite volume and D 
is a smooth compact divisor in X which is totally geodesic with respect to 
the canonical metric g on X. Then the complement Y = X\D admits a 
complete Kahler metric with finite volume such that its complex curvature 
operator is everywhere negative definite and bounded from below. 

Such Y can not be biholomorphic to a ball quotient by Mumford's pro- 
portionality principle on the Chern numbers ([M]). 

Proof. Let g be the canonical metric of Xn, and d be the Poincare distance 
function from D. Also let p be a smooth non-decreasing function on [0, oo] 
such that p(x) = x for 0 < x < 5i and p is constant for x > 82- Here 
0 < 5i < 62 are two sufficiently small constants. Then di = pod is a smooth 
function on X, and is positive in Y. 

Consider the Poincare metric 

Uh = V-lddh ,       h = 3 log $ - log[di (log di)2] 

where $ is the volume form of g. h is a metric in a deleted neighborhood 
U0 = C/\D, where U is a small tubular neighborhood of D. 

Define 
ue = ujg + euh 

It is not hard to see that uje is a complete Kahler metric of finite volume on 
Y — X\D for all sufficiently small e > 0. We want to show that there exists 
a small neighborhood Ui of D such that, for all 0 < e < eo, the complex 
curvature operator of uje is negative and bounded from below in U® = Ui\D. 
For this purpose, let us fix a point p G Y near D. Let q G D be the closest 
point to p. Again let {zi,... , zn} be the canonical coordinate of the complex 
unit ball so that q is (underneath) the origin and D is (underneath) the 
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hyperplane {zi = 0}.   Then p has coordinate (a,0,... ,0).    Let <p be the 
local isometry of g defined by <p(zi,... , zn) -- (w, Z2,... , zn) where 

zi+a 
w 

1 + azi 

The curvature of the metric u)e at p is the same as the curvature of <p*(ci;c) 
at q. Let us still denote this metric by cjg + ea;^, only now h becomes 

h = -\og[(l-t-s)2d(logd)2},    d=-!—,    t=\w\2,s = \z2\2 + ---\zn\2 

1 — 5 

Here again we throw away the cut-off function p, as we are examining the 
situation very close to D. 

We want to show that there exists r > 0, independent of e, such that 
the above metric has the desired curvature property at the origin q = 0 
whenever  0 < a < r. 

As in the proof of Theorem 1, since h = h(t,s) and 5 = 0 at q = 0, so 
at the origin all the components of the curvature tensor vanish except those 
bisectional curvature terms -R^-j. Denote it by — aij. Then the complex 
curvature operator is negative definite at q if and only if the matrix A = (aij) 
is positive definite. Again by the symmetry cimong {z2,. ■ ■ zn}, A takes the 
special form 

A = (ay) = 

where  x = (1,... , 1)*   and 

ex   e(I + xx*) 

b   =   2 + 6/ilIlI-e2|/ilTl|
2(l + e/ilT)-1 

C     =     l+6%22-€2|/l221|
2(l + €/l22)"1 

e   =   1 + 6/12233 

So A > 0 is equivalent to 

b > 0 ,    e > 0 ,      and   nbe - (n - l)c2 > 0 

Since   h = — log[(l — t — s)3d(logd)2] , we compute the expansion when 
t=\a\2^0: 

h22    ~   2 

^2233     ~     2 
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"1122     ~ i(-logt)3 

2 
^11     ~     +Ci„rr4\2 

hU.l     ~ 
2a 

i2(logi)2^1 + logP 

2^4 6     N 
(i + T—. + TTZnvl) hnl1    ~    i2(log<)2^ ' log< '  (log*)2 
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Hence 

Ri =%%!!- |/iin |" 

it2 — 'l22"'1122      l"22ll 

t3(logt)6 >0 

r(2 + 77r7)>0 f(-iog<)3V     logr 

Hence c > 0.   Since 0<c<ci = l + e^1X22 J 
SO
 ^n order to show that 

nbe > (n — l)c2, it suffices to that 

Q = (1 + e/ilT)[n6e - (n - l)c?] > 0 

But  Q = (n + 1) + Qie + Q2e2 + Qse3 , with 

Qi    =   n(/ilTlT + 2/i2233 + 2/ilT)-(n-l)(/ilT + 2/ilT22)  ~ n^mT 

Q2    =   n[i?i + /i2233(/liTiT + 2hn)} - (« - 1)^iT22(/liT22 + 2/I
IT)  ~ ni?i 

Q3 ni?i/i2233 - (n - 1)/I1T(/I1T22)
2 

8n 

i4(log<)6 

Hence all Qi > 0 and we have proved that A > 0. 
For the lower bound, denote by  a = 1 + e/ijy ,    /? = 1 + e/i22 , and let 

{ei,... , en} be the natural basis at the origin. Write 

ei = -pei »    e'i = —m ei    2 < % < n 

Then {e^} becomes an unitary tangent frame for the metric g + eh. Let 
—Q be the complex curvature operator of g + eh at the origin. Under this 
unitary frame, Q has the form 

Q = 

A' 
c'hn-2 

B'IN 

A' c'x* b' 
dx   e'(In-i + xx*) 
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where N = (n - l)(n - 2) ,  x = (1,... 1)* , and 

ti = — r' - — J - — 
a2 ' a/3 ' /?2 

The eigenvalues of Q are therefore  c', e',  and Ai^: 

Ai,2 = \$ + ne') ± i^'-ne')2 + (n - l)c'2 

So the curvature operator will be bounded from below if 6', c', e' are all 
bounded from above. Since we have fixed e now, it is straight forward to 
verify that they are indeed bounded when t — |a|2 —► 0. 

It is also not hard to see that d -> 0 when t —> 0. This says that the 
curvature is not uniformly negative. 

We have completed the proof of Theorem 3. . □ 

In [K-M], Kudla and Millson proved the existence in any dimension of 
the pair (Xn,D) of smooth compact complex ball quotient with smooth 
totally geodesic divisor. So the above theorem implies: 

Corollary. For any dimension n, there exists complete Kdhler manifold 
(Y71,*?) of finite volume whose complex curvature operator is negative and 
bounded from below, and Y can not be biholomorphic (or even properly ho- 
motopic) to any locally hermitian symmetric manifolds. 

Let us conclude this section by making a couple of remarks about the 
Theorem 3. 

Remark. In Theorem 3, if D has more than one components, then 
the same conclusion still holds. But the computation is more tedious. In 
another case, if X is non-compact and D touches the infinity, then the 
complement is still negatively curved. However, in this situation, one needs 
to add a contribution term from each infinity torus to the metric a;e, as 
the injectivity radius goes down to zero at infinity. The computation is 
possible by the nice explicit expression of the complex hyperbolic metric in 
the coordinate neighborhood at the infinity, given by Mok in [Mo], where 
he treated both the arithmetic case and the non-arithmetic case. 

It is perhaps worth mentioning that in the example of [H2], the totally 
geodesic divisor C and the infinity divisor E satisfy (E + C)2 = 0. So 
the curve E + C can not be blown down to a singular point. So by the 
result of Siu-Yau [S-Y], the complement  Y = X\C = X\(E U C)  cannot 
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admit any complete Kahler metric of finite volume with sectional curvature 
bounded between two negative constants. So in order to improve the result 
of Theorem 3 to get uniformly negative curvature, one has to take into 
consideration the (global) information that the divisors to be deleted are 
resolutions to isolated singularities. 

There are some related problems that can be studied. For instance, 
let (Xn

:D) be a Kudla-Millson pair of ball quotient with smooth totally 
geodesic divisor. Then what can we say about the universal covering space 
of X\D ? Is it sometimes a bounded domain? 
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