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0. Introduction.

In the last two decades,much progress has been made on the regularity
theory of harmonic maps between manifolds,for instance,one can see [GG1],
[GG2], [SU],[E],[B] etc. Since the methods used in these papers are variations
of Schauder’s device of freezing the coefficients they need assume that the
metrics are at least uniformly continuous while in [SU],[E],[B] they assume
g € C%(M). If the image of a map is contained in a convex ball; the met-
ric of the domain is only bounded measurable,Hildebrandt-Widman proved
the map is Holder continuous(see[H-W]). On the other hand,M.Gromov
and R. Schoen established the existence and regularity theory of harmonic
maps into singular space(see [GS]). It may be more interesting,in view of
analysis,to consider the same problem when the domain is singular. In this
paper, we shall consider this problem and prove partial regularity results of
energy minimizing maps from manifolds with bounded measurable Rieman-
nian metrics. We will consider the more complicated case,for example, the
domain is a algebraic variety, in elsewhere.

Suppose M is an n-dimensional differentiable manifold, g is a metric on
M ,then g can be represented by a positive definite matrix (g;;) in each
coordinate chart (D,z") of M.If g;; merely belongs to L*°(D,R), then g
is called bounded measurable Riemannian metric,or simply L°-metric.Let
(N, h) be a smooth compact Riemannian manifold, by the Nash embedding
theorem, we can always assume (NN, h) is isometrically embedded in some
Euclidean space R,

In order to discuss harmonic maps from (M, g) to (N, h) , we work in the
seperable Hilbert space L#(M, RF) | the set of maps u : M — RF, whose
component functions have first derivatives in L2. As in the smooth case,
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we can define the space L%,O(M ,R*);energy functional E(.) on the space
L3(M,R*); E-minimizing map from (M, g) to (N, h), (see [SU],pp309).
Since we are interested in the regularity theory, we assume (M, g) is sim-
ply (Bi,9) where Bj is the unit ball in R™,g is an L®°- metric on it. For
convenience,we identify the matrix (g;;) representing g in standard coordi-

nates (z!,...,z") of R™ with g itself. In addition we adopt the notation:
ou’
2
|Vu|? = Z Z (6?)2.
1<a<n 1<i<k

The main result of this paper is the following:

Theorem 1. Suppose B, is a ball in R™ with radius r, g 1s an L -metric
on By,with A™1I < g < AI , where A is a positive constant, I is the unit
matriz. Assume (N,h) is a smooth compact Riemannian manifold, u is an
E-minimizing map from (Bi,g) to (N,h). Then there exists a € = €(A) >
0,such that if fBl |Vul? de < €%, thenu € CO‘(BI/Q,R’“) for some 0 < a < 1.

Remark 0.1. Meyers’example (see [G],pp 157-158) shows that the c*-
regularity in the theorem is optimal.
As a corollary of Theoem 1,we have:

Theorem 2. Let Sing(u) be the set {z € M : u is discontinous at z}, and
H"2 be (n — 2)-dimensional Hausdorff measure, then H"~2( Sing u) = 0.

We follow the approach of Hardt and Lin in [HL].However,there is a
major difficulty in this approah when the metric is merely measurable,i.e.
one cannot do the domain blow-ups and take the limit.To overcome this
difficulty,we use the Green functions(cf.[H-K-W],[H-W]) to get the necessary
estimate.

The rest of the paper runs as follows: In §1, we will introduce some no-
tations and prove Lemmas.In §2 we will prove energy improvement theorem
(Theorem 2.1).Once the energy improvement is obtained , one can prove
Theorem 1 and 2 easily by standard technique,for the details see [SU] or
[HL],we will omit them in this paper.

1. Preliminaries.

Let a®® = g®8(det(gap))'/? ,where (9°%) denotes the inverse matrix of
(gi;) . Without loss of generality, we may assume A~!] < (a*f) < AL
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We say that u is a minimizer under a®® if u is an E-minimizing map from
(B1,9) to (N, h).It is easy to verify that,u satisfies the equations:
0,
0(a®? —12
—_c:?:z_gx— = A(v)(Vu,Vu) in Bj.

where A is the second fundamental form of N in RE.

Let Fp = {(a®?) : A~'I < (a®P) < AI in B,}. Clearly, F, is invariant
under rescaling and translating. i.e. (a®(\z +y)) € Fp whenever (a®5) €
Fa and Az +y € B;.

Lemma 1 ([HL],Corollary 2.3). There ezist postive constants c and q such
that if 0 < X\ < 1/4,and u is an E-minimizer in L?(B,N) with Ei(u) =
I3, |Vul? dz < ¢c"IAY/2,then

Eyjp(u) = (1/2)*7" / IVul? dz < AE(u) + A9 |Ju—7af* d
B2 B,

where T = fpu dz = ﬁfB“ dz.

Main Lemma. Let (a;*%) € Fa,k = 1,2, ....Assume that v, € L2n
L*®(B;,R¥) and 5, |Vg|? dz < 1.Suppose that
ov

(ar® (5 5))

© e,
ox®
and wg, is the solution of:
6(ak“ﬂ%)

(x+) oz -

wklop, = vklos,
If hy converges strongly to 0 in L'(By,RF) as k — oo, then fr = wg — v

converges weakly to 0 in L?(B1,RF).

Proof. Let Gg(z,y) be the Green function of operator:

a(+)

af Z\J

O ozh )
0z,

Ly ()
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and G{(z,y) = TJCB,,(y) Gi(z,2) dz, then Gi(z,y) and G{(z,y) enjoy the
following properties, see [GW].
0) 0 < Grlz,y) <z —y|*™, c=c(n,A).

" dp 0GY(z,y
a(y)

VB,(y) C Bi.

iii) G%(.’l:,y) € L%,O N L*(B;,R) 7”Gz($,y)”L°°(B1,Rk) < ¢(o),for any
fixed y € B;.

By (*) (**) we have

O(vg — wg)
——5"))
oz

aap?(

= hg.
One can show that vy —wy € L? ;NL*(By, R*) with the help of the max-

imum principle. Taking G{(z,y) as a test function of the above equations
and noting the propertity (ii) of G§(z,y) we get:

{ w-w)ds = [ hGimyde  vye B
B (y) B
hence,

/ \hel - GL(z, ) dady.
B

B2,

[ 1 oe-w sl ay <
Bi_2s B, y)
Due to property (iii) of Gf(z,y), we can obtain:
/ | fi da| dy < c(a)/ Ihi| dz — 0,28 & — oo.
Bi-2c JBo(y) B

However,it is easy to see, for every sequence {fx,} C {fx}, there exists a
subsequence of {fi,} which is also denoted by {fx},and a fy € L%’O(Bl, RF)

such that f converges weakly to fo in L%’O(Bl, R*) and f; converges strongly
to fo in L?(B1,R¥). Thus, we arrive at:

/ | fo dz| dy =0, for every y € Bi_g,-
Bi-25 Ba(y)

Since o is arbitrary in (0, §), for some small positive d, the above equality
implies fo =0 in By, the Main Lemma follows. O
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2. Proof of Energy improvement Theorem.

Theorem 2.1 (Energy-improvement). There ezists 6 and € with 0 < § =
O(A) < 1/2,e = €(A) > 0, such that if u is a minimizer under a®? where
(a®P) € F.then we have

g2 / Vul? do < 1/2 / Vul? dz.
By B

Provided fBl |Vul? dz < €.

Proof. Were the thoerem false, there would exist, for each § with 0 <8 <
1/2,a sequence {ug} of minimizers under (azﬂ ) € Fp, such that:

|Vug|® dz = €2 — Oas k — oo, and 92"”/ |Vug|? dz > 1/2€2
B; By

we may form an associated normlized sequence:

U, — Ck
Vg = —)
€k
where ¢, is a constant vector which will be determined later.
Clearly,
|Vop|2 dz =1
B

9> / |Vog|* dz > 1/2
By

and 5
Uk
(e (5))
——— O — ¢, A(ug) (Vg, Vug) for every k > 1.
oz©
We will prove this theorem by showing 62~" || B, |Vug|? dz < 1/4¢;2 when
0 is sufficently small, and & is sufficiently large.
First,as in [HL], we can apply Lemma 1 to get the estimate (see [HL]

pp564):

62" | |Vug|? dz < N (279)3™) / |Vug|? dz
By szo

(1) j-1 \
+cA7? Z P 7/ lug — Uk(h'H)l dx
h=0 B

2h+1g
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for sufficiently large k (may depend on 6), where af = +5 ng Uk dz, and j is
2

a positive integer such that 1/4 < 276 < 1/2.
Secondly,we want to show:

7[ |uk _ ﬂk(h)|2 dz < c(2h9)2°‘6k2,provided k is large enough.
B

2hg

where 0 <h <j,0<a<1,and cis constant independents of k.
Suppose r € (8,1/2),take ¢ = T = UCBT ug dz in the definition of
vg,and set:
T U — ﬁk (T)
v = ———.
€k

Let w}, denote the solution of the equations

2(agf (%)) |
(2) T =0 m Bl

r T —
wy — UklaBl =0

By the definition of v} and Main Lemma,it is easy to see f; = w}, — v}, con-
verges weakly to 0 in L? 10(B1, R k),fr converges strongly to 0 in L?(B;, RF)
and wi = fp wj dz — 0 as k — oo.

Next,we will show [ B, |v£|2 dz < cr?® when k > k(6) is sufficiently large.
Obviously we have:

{ 1P do<af i - il do+ o Juf -7 do + )
B, B, B,
Notice that w}, is the solution of (2),we can obtain ( see [G],Theorem 21

pp.53):
|wi(z) — wi(y)] < en, A)lz - y|%,

for every z,y € By/9, here a = a(A,n), then:
() — @] <f (. (z) — wi ()] dy < c(n, A)(2r)°.

Since v, — w}, converges strongly to 0 in L?(B;1,R*) and
w_lrc—>0ask——>oo;r29>0,weget:

[vf|? dz < er?e
Br
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or
2
f luf — we™| dz < er?®e,?,

1‘

when k is sufficently large, where ¢ = ¢(n, A).
Choosing r = 2"0,where 0 < h < j ,we can see that, for any fixed 8 > 0,if
k > k(0) is sufficiently large, there holds:

(3) f lug — u_k(h)|2 dr < (2" - 6)2* . &2
2he

Finally,it follows by substituting (3) into (1) and letting k& — oo;that

92_”/ |Vug|? dz < ¢ - ex2(M + 62 - A7), where ¢ = ¢(n, A).
By

Choosing 6 sufficiently small such that c- (§2¢A=9 + \) < 1/4 (since 1/4 <
290 < 1/2) we can get the estimate:

62" / |Vur|® de < 1/4e;2;
By

which contradicts the original choice of u;. This completes the proof of
Theorem 2.1. O
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