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Braid Group Technique in Complex Geometry V:
The Fundamental Group of a Complement of a
Branch Curve of a Veronese Generic Projection

BORIS MOISHEZON AND MINA TEICHER!

In this paper we compute 7 (C? — S3), S3 the branch curve of a generic
projection of the Veronese surface V3 on CPP?. Throughout this paper we use
G for 7 (C? —S3). We also have a similar result concerning G = 1 (CP? — S3).

Fundamental groups of complements of curves are very important invari-
ants but it is very difficult to compute them. We obtained G' and G using
our braid group techniques.

This paper is a continuation of “Braid Group Techniques in Complex
Geometry, I, II, III, IV.” (BGT I, BGT II, BGT III, BGT IV for short.)
In BGT I we laid the foundation of our braid monodromy techniques and
applied them to line arrangements. In BGT II we dealt with the braid mon-
odromy of almost real curves and showed how to regenerate these formulas
to cuspidal curves. In BGT III we presented a series of generic projected
degenerations of the Veronese surface V3 and the branch curve S3 of its
generic projection to CP? to a union of 9 planes, and a branch curve 56
which is a union of lines. In BGT IV we computed the braid monodromy of
S3NC? using the braid monodromy of S (6) and the regeneration rules proved
in BGT II. We obtained the factorized expression for the braid monodromy
denoted by £(18). In this paper we use £(18) and the Van Kampen Theorem
to compute G and G. If the reader is only interested in the final results he
can go directly to Chapter VI.

0. Definition of Braid Group and Presentation of the Van
Kampen Theorem.

We need certain terminology in order to formulate the Van Kampen
Theorem.

1This research was partially supported by the Emmy Noether Mathematics Re-
search Institute, Bar-Ilan University, Israel.
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We first recall from BGT I (Section II) the definition of a good geometric
base of m1(D — K, *) for K a finite set in a disc D.

Definition. £(v).

Let D be a disc. Let w; ¢ = 1,...,n small discs in Int(D) s.t. w;Nw; =0
for 1 # 5. Let u € 0D. Let -y be a simple path connecting u with one of the
w;’s, say wj, , which does not meet any other w;, j 7# 2. We assign to vy a
loop (actually an element of 1 (D — K, u)) as follows. Let ¢ be a simple loop
equal to the (oriented) boundary of a small neighborhood V' of w;, chosen
such that 7' = y—V N~ is a simple path. Then £(y) = 7' UcU+' ~L. We also
use the same notation £(v) for the element of 71 (D — K, u) corresponding
to £(7) (see Fig. 0.1).

Definition. g-base (good geometric base)

Let D be a disk, K C D, #K < co. Let u € D — K. Let {v;} be a
bush in (D, K,u), ie., Vi,j y;Nvy; = u, Yiy;NK = one point, and v; are
ordered counterclockwise around u. Let I'; = £(y;) € m1(D — K,u) be the
loop around K N +; determined by «y;. {T';} is a g-base of w1 (D — K, *).

Definition. Braid group Bn, = Bp[D, K]

Let D be a closed disc in R?, K C D, K finite. Let B be the group of all
‘diffeomorphisms 3 of D such that 3(K) = K, B|lsp = Idgp . For 81,02 € B,
we say that (3, is equivalent to 35 if 31 and (3 induce the same automorphism
of m(D — K,u). The quotient of B by this equivalence relation is called
the braid group B,[D, K] (n = #K). We sometimes denote by 3 the braid
represented by . The elements of B,[D, K] are called braids.

Definition. H(o), half-twist defined by o
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Let D, K be as above. Let a,b € K, K, = K —a—b and o be a simple
path in D — 8D connecting a with b s.t. 0 N K = {a,b}. Choose a small
regular neighborhood U of ¢ and an orientation preserving diffeomorphism
f:R? - C! (C! is taken with the usual “complex” orientation) such that
flo) = [-1,1], f(U) = {z € C'||z| < 2}. Let a(r),r > 0, be a real
smooth monotone function such that a(r) = 1 for r € [0, 3] and a(r) = 0
for r > 2.

Define a diffeomorphism h : C! — C! as follows. For z € C! , z = re®?,
let h(z) = re@te() Tt is clear that on {z € C!||z| < 31, h(z) is the
positive rotation by 180° and that h(z) = Identity on {z € C' ||z| > 2},
in particular, on C' — f(U). Considering (f o ho f~!)|p (we always take
composition from left to right), we get a diffeomorphism of D which switches
a and b and is the identity on D—U . Thus it defines an element of By,[D, K],
called the half-twist defined by ¢ and denoted H (o).

Definition. Frame of B,[D, K]

Let D be a disc in R?. Let K = {a1,... ,a,}, K C D. Let 01,... ,00_1
be a system of simple paths in D — dD such that each o; connects a; with
a;+1 and for

if i — 5] > 2
ije{l,...,n—1},i<j , o—majz{w ifi -1
Git1 ifj=i4+1.
Let H; = H(o;). We call the ordered system of (positive) half-twists
(Hi,...,Hpn-1) a frame of B,[D, K] defined by (o1,... ,0n-1), or a frame
of B,[D, K] for short.

Notation.
[A,B] = ABA™'B~1.
(A,B) = ABAB~'A-'B1,
(A)B = B~ 14B.

Theorem (E. Artin’s braid group presentation). B, is generated by
the half-twists H; of a frame {H;} and all the relations between Hy,...,Hp 1
follow from
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Proof. See proof in [MoTed4], Chapter 4. a

Proposition-Definition. A2 (€ By)
A2 = (Hy...H,)" ! for any frame Hy ... H,_, of B,.

We shall need the following definition:

Definition. R(e), N(e),G(e) where € 1s a factorized ezpression in B,
Let D beadiskin C, K C D, #K =m.
Let F, = mi(D — K). Consider the natural action of B, = B[D, K] on
F,., denoted by (T')g;.
Lete=gy----- g: be a factorized expression in By,.
Let I'y - - - Ty, be a good geometric base of Fy,.
Let M(e) be the subgroup of B, generated by {gi}’_;.
Let R(e) be the subgroup of F,, generated by {(I'j)g; o I‘;l}t.:lz?:l.
Let N(e) be the normal subgroup of F,,, generated by R(e).

Let G(e) = —]\]f;(";—)

Lemma 0.1. (i) N(e) ={(@)B-a"!|a€Fn, B€ M)}

(ii) G(g) = F,, with the relations induced from R(e).

Proof. Trivial. g

We recall from BGT IV [MoTe7] the definitions of Hurwitz equivalent
factorizations and factorization invariant under h € By,.

Definition. Hurwitz move

Let g;----- gk = h;---- - hy be two factorized expressions of the same
element in a group G. We say that g;----- gk is obtained from h;-- - -- hy by
a Hurwitz move if 31 <p<k—1st. gi=h;i i #p,p+1, gp = hphp1h,!

and gp4+1 = hp or gp = hpy1 and gpp1 = h;_,l_lhphp_,.l

Definition. Hurwitz equivalence of factorized expressions

Let g; -----gx = h; - --- - hg be two factorized expressions of the same
element in a group G. We say that g; - --- - g is a Hurwitz equivalent to
hi-----hg if b ---- - g is obtained from h; - --- - hy by a finite number of

Hurwitz moves. We denote it by g1 - -+ - gx = hj----- hg.
e
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Definition. Factorized expression in By, invariant under h € By,

We say that a factorized expression g; ... g; is invariant under h if (g1)p -
-+ --(g¢)p is Hurwitz equivalent to g; ... g, i.e., can be obtained from g; ... g;
by a finite number of Hurwitz moves ((g), = h~'gh).

Lemma 0.2. If a factorized expression € = g;...g; in B, is invariant
under h € By, then h induces an automorphism of G(g).

Proof. The group By, acts on 71 (D — K, u); thus there is a natural action of
h € By, on (D —k,u) = F,,. Therefore, h induces an automorphism of F,,.
Since ¢ is Hurwitz equivalent to (g);, we get that h"!M(e)h = M(e) and
thus (N(¢))h C N(e), and h induces an automorphism of F/N(e) = G(e).
a

Certain factorized expressions of A2, in B,, play an important role in
the computation of the fundamental group of complements of curves, as we
shall see in Theorem 0.3.

Let S be a curve in CP? of degree m.

We refer the reader to BGT I, Chapter VI, [MoTe4] for the definition of
a certain factorized expression in By, related to S: S-factorization of A?n
or S-factorization or product form of A2 or braid monodromy
factorization w.r.t. S and u.

Theorem 0.3. Zariski-Van Kampen Theorem. (see [VK]) Let S be a
curve in CP? of degm, s.t. S is transversal to the line in infinity. Let
S =S8NQC2. Let € be the braid monodromy factorization w.r.t. to S and wu.
Let C, =u x C. Let {T';} be a g-base of m1(Cy — S,u). Then:

71 (C? — 8,%) = G(e) and m(CP? — §,%) = G(e) with extra relation
m

[IT: =1
=1

Remark. We shall use this theorem for S3, the branch curve of a generic
projection of V3 (the Veronese of order 3) to CP?. In BGT IV we computed
the braid monodromy factorization related to Ss. We denote it £(18). We
shall again present £(18) in the next chapter.

We are going to reformulate the Zariski-Van Kampen Theorem in a more
precise form for a cuspidal curve, i.e., for a curve with only nodes and cusps.
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Theorem 0.4. (Zariski). If S is a cuspidal curve, then the related braid

p :
monodromy factorization € is of the form [] V}VJ, where Vj is a half-twist

j=1
and v;j =1 or 2 or 3.

Theorem 0.5. Zariski-Van Kampen (precise version). Let S be a
cuspidal curve in CP?. Let S = C2 N S. Let € be a braid monodromy fac-

P ;
torization w.r.t. S and u. Let ¢ = ] VjVJ, where V; is a half-twist and
)

v; =1,2,3. !

For every j = 1...p let Aj, B; € m(Cy — S,u) be such that Aj, B; can
be extended to a g-base of m (Cy — S,u) and (A;)V; = Bj. Let {I';} be a
g-base of m(Cy — S,u). Then m (C? — S,u) is generated by the images of
{T;} in 71 (C? — S,u) and the only relations are those implied from {V;’j },
as follows: :

4;-Bi'=1 i y=1
[Aj,Bj] =1 'l,f v; = 2
(Aj,Bj) =1 Zf v; = 3

71 (CP? — 8, ) is generated by {T';} with the above relations and one more
relation [[T; = 1.
i

Remark 0.5'. How to determine A; and B; from V;
or how to determine Ay and By from V = H(o) (see formulation
of Van Kampen Theorem).

To be able to use the Zariski-Van Kampen Theorem, we must know how
to compute A; if B; for every j = 1...p. Assume, for simplicity, that u, is
below real lines and {¢;} = C, NS are real points. Assume that p(é;) = ijj )
where V; = H(o), a half-twist corresponding to a path o from ¢; to g. Take
a homotopically-equivalent path o’ that passes through ug. Let 01,02 be the
part of ¢’ from ug to g1, go respectively. Let A; = £(01) B; = £(02) be the
loops of 71 (C? — S, up) built from 71, 02 as in the definition in the beginning
of the Chapter. See Fig. 0.2 for an example how to determine Ay and By
for V = H(o).

Proposition 0.6. If an S-factorization A? =[] g; is invariant under h €
B,, then R((g:)) is also a relation on w1 (C? — S, *).
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Figure 0.2.
Proof. Zariski-Van Kampen Theorem and the fact that an invariant factor-
ization of a braid monodromy factorization, namely [](g;)s, is also a braid
monodromy factorization (see Proposition VI.4.2 from BGT I, [MoTe4]). O

Remark. Proposition 0.6 indicates why it is important to prove invari-
ant properties of S-factorizations. We use such properties to induce more
relations on the fundamental group. O

I. The braid monodromy related to S, the branch curve of a
Vs-projection.

Notation. V3, f, 53,5
Let V3 be the Veronese surface of order 3, i.e., the following embedding
of CIP? into CPV :

(z,y,2) = (... ,xiyizk L )itjtk=3-

Let f = f3 be a generic projection: V3 1, cp2.

Let S5 be its branch curve in CP2.

Let C? be a “generic” affine piece of CP?.

Let S = 53N C2.

deg S = deg S3 = 18.

We are interested in 71 (CP? — S3,*) and 71 (C? — S, ).
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We constructed in BGT III [MoTe7] a projective degeneration of V3 EA

CP? into Z(©® ]ﬁ) CP? where Z®) is a union of 9 planes P;,j=1...9, the
ramification curve is a union of 9 intersection lines .z-/i,i =1...9, as in Fig.
IL.1. (Each L; is an intersection line of 2 P;’s.) S©), the branch curve of
£® in CP?, is a union of 9 lines L;,i = 1...9. (L; = n®(L;)).

K® =Cuns®.

# K0 =9

Definition. «,C,, K.

Let us choose u in the z-axis of C? far away from the z-projection sin-
gularities of the z-projection of S3 and of S(®).

C,=uxC

K=C,nS.

From the regeneration process it is obvious that for every point g; that
we had in K(®) we have 2 points g, gy in K which are close to each other.
Recall that we used a “real model” of (C,, K). Thus, we assume that K =

{gi»q#}3_1, Gi, gi are real.

Remark. For arbitrary n we would get that V;, — CP? degenerated into
Z — CP?2 where Z = a union of n? planes with a ramification curve which

. 3 . N .
consists of —n(n — 1) intersection lines, and a branch curve consisting of

2
§n(n — 1) lines. Thus, S,, the branch curve of V,, — CP?, is of order
3n(n —1).
In BGT IV we computed a braid monodromy factorization of S3 denoted
€(18).

We also proved those invariance properties of £(18) and invariance under
complex conjugation. We shall repeat these results here. For this we have
to recall some notations.

Notations.

2;; = zij = a path below the real line from g; to g;.

Zij = H(z;5)
Zij = a path above the real line from g; to g;.
Zij =H (7,_7)

(@)
AR

Zij = a path above a and below the real line elsewhere from g; to g;.
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(a)
Z;; = H(z;5)

Zij = a path below a and b above the real line elsewhere
(a)(®)
from g; to g;.
Zi; = H(zij)
(a)(b) (a)(®)
Pi = Z;» = H(z;y) = half-twist corresponds to the shortest line

between g; and g

(2) 2
Y H ¥i5)e5"
m=0
o 11
NV H H PiPj
£=0 m=0
3) -
Yiiyg = H (¥:5)05
m=-—1
For B>« L . A

286/ (v) =
With the above notations we recall the braid monodromy factorization
of § = S, denoted £(18) and some invariance properties.

Theorem I.1. ¢(18) = H C, H

v="T
where H;, the braid monodromy of S around v; factors as follows:

H, = Z§1?  Zog()
Hy = Zflf) - Zgz(1)
Hs =23 Zog
Hs = Zsfs? - Zog(s)
He = Zé?,)wr Zs (1)
Hy = Z{yy - Zag (o)
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Figure 1.0(a).
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Figure 1.0(b).

3) 5 2 2 (3 2) \* 2) \* &/
H4"=Z§',):’,3'Z88’Z££42 8 (Z?(,s),) Zss)' (Ziy),s) (Z:g:v),s) Fi(F1)
28 23 i =8,87,1,5,5 Doy 23 i=8,87T,7,5,5 Zn

where Zoyr, Zgg correspond to the paths Zay, Zgg described in Fig. 1.0(a).
e denotes conjugation by a braid b* induced from the motion described

in Fig. 1.0(b).
(In fact, b* = 23y 23y Zrig 21 -)

(4)
=2
Fy = 20, 753 100 231 Ty
(4)

o= (#0) 7 (22, (), (2) @'

aM) = ajay
where oy and oy are the curves described in Fig. 1.0(c), 1.0(d), respectively.

p = p1p3 - -
(@W)p = (W) p3tp7! = (a1)(p5 07 ") - (a2)(p3pr) ™!
and
Ci=0Cy=14
_ »(2) (2
C3 = Zl(l’,44’ H Zii’?ﬁﬁ’
i=1,2,3,5

=(2) =(2) =(2) (2
Cy= Z11' 55t 4 Z11 gy Zes)' 88/

6)117, 777
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Figure 1.0(c).

I

Figure 1.0(d

7
— (2
05 - H Zi’i'399’
i
Coe=Cr=14

The following remark gives an explicit description of a half-twist conju-
gated by some p; and will help us later to deduce relations from ¢(18) using
the Van Kampen method.

Remark 1.1.

(4)
(i) 28, = 25,2328 (Fig. L1(a))

(@) _ 7272 2 :

(i) Zy ;5 = 22 Z; Z (Fig. 1.1(b))

(iii) Let Y;; = H(yi;) where y;; is a path connecting ¢; or gy with g; or
gj- The followmg graph (see Fig. L1(c)) indicates the conjugation of
Yi; by pj, pJ y Pis P ~1 for dlfferent types of y;;. In the graph we only
indicate the action of p; and p; ! on the “head” of yi; within a small
circle around g and g; and the action of p; and p;” ! on the “tail” of y;;
in a small circle around ¢; and qy. The “body” of y;; is not changing
under pj ! and ,oz
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Theorem I.2. Invariance Theorem (BGT IV, Proposition 18, [MoTe7])

Let p = Pm;..mg,mg,me — p11'n1 (p2p8)m2 : (p3p7)m3 : (P4ps)m4 'P76n6 -pglg then,
£(18) s invariant under p for every m; € Z. p; = Ziy).

Theorem 1.3. Complex Conjugation Theorem (BGT IV, Proposition 19,
[MoTeT]) '
£(18) is invariant under complex conjugation.

A finite set of generators for m1(C? — S,ug) and 71 (CP? — S3,up).

Let us choose ug € C,,up below the real line. Let {[';,T'#} be a g-
base of 71 (C, — S,u,). When considered as elements of 71 (C? — S, ug) and
of 71 (CP? — S3,u,), they generate (not freely) the groups. Thus we have
{Ty,Tw}2_,, a set of generators for m1(C? — S, up) and m; (CP? — S, up).

We want to compute G = 71 (C? — S, ug) and G = 71 (CP? — S3,up).

By the Zariski-Van Kampen Theorem, G ~ G(£(18)) and G = ______G;(S(IS)) .
H Il

=1

Corollary 1.4. G = m1(C? — S,uq) satisfies all the relations induced
in R(e(18)), all the relations induced from (R(€(18))pmy,.. msmemo GNA
all the relations induced from the complexr conjugation of €(18), where

Prmy..mamemo = P (0208)™2 + (p307)™ - (paps)™ - pg° - py*° and p; = Zyy.
Moreover,
G ~ G(¢(18))
i
Proof. Theorems 1.1, 1.2, 1.3 and the Van Kampen Theorem. a

Corollary 1.5. Let G = m(C? — S,uq). If R is any relation in G
then (R)Pm,,....msme,mo 18 also a relation in G, where (R)pm,,....mameme
is the relation induced from R by replacing T; and Ty with (I;)p]" and
(Ti)pi™, i =1,2,3,4,6,9, respectively and replacing I's,I'g/, I'7, 7,5, T's
with (Ts)l1, (Car ), (T2)p, (T )0, (Ts)pl™ (T )oJ™, respectively.



13

Braid Group Technique in Complex Geometry V

~
>

N
~N
.

.

(a)

Figure I.1.
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Proof. Proposition 0.6 and Theorem I.2. | a

Remark. In other words, pm, .. .ms,me,me defines an automorphism of G.

Notation.
I['; = any element of the set {(I';)p;"},, € Z.

Corollary 1I.6. (Complete invariance in 3-points)

Let (e, 8) = (1,2) or (1,3) or (4,6) or (5,9) or (6,7) or (8,9). Any
relation R in G that involves only I'q and I'g is true when 'y replaces Ty,
amd T'g replaces T'g.

Proof. Without loss of generality assume (&, 8) = (1,2). Let I'; = (I'y)p™
Ty = (T'2)p5*2. By Corollary L5, (R)pm;,m,,0,0,0,0 1S also a relation on R, and
differs from R by replacing I'; by I'y and I'y by T's. a

Corollary 1.7. Let R be a relation in G that involves at most one index
of each of the pairs (2,8), (3,7), (4,5). For every index i that appears in R
choose some T';. Then R is true when we simultaneously replace I'; by T'; (or

E;) and T, by (T;)ps (or (E;)pi, respectively), for i € {indices that appear in
R}.

Proof. We can assume w.l.o.g. that I's,I'y,I'7I'»,I's,I'ss appear in R
and T'9,T'y,I'3,T'3, T4,y do not appear in R. Let 4 be st. TI'; or T'y
appears in R (i € 1,5,6,7,8,9). There exist m; s.t. I; = (I';)p;". Let
p = Tlicis680Pi )05 tp3 Py °. By Corollary 1.5 (R)p is also a relation
in G. Since I'y,T'9,T'3,T'3,T4,Ty do not appear in R the relation (R)p is
actually equal to (R)[];—;5659p0; and it differs from R by replacing T';
with (T';)p™ and T'y by (Ty)p;" for i = 1,5,6,7,8,9. But (I';)p;"* =T and
(Ta)py" = (Ti)pipy = (T:)p;* pi = (T's)pi, s0 we get the corollary. o

Remark. We can replace every I'; that appear in R by any I'; = (T;) 0"
(i-e., different m;’s for different I';’s) since both I's and I'7 (I'; and T'g, I's
and T4, respectively) do not appear in R. If both I's and I'7 appear in R,
then we could only replace I's by (I'3)p5* and I'7 by (I'7)p%* for the same m.
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II. List of relations in G.

We are going to describe G using a different set of generators than those
introduced in Chapter I. We use all the notations from Chapter I, all the
relations induced from the braid monodromy factorization £(18) (Theorem
1.1), the complex conjugation (Theorem 1.3), and Corollaries 1.5 and I.6.

Remark I1.0. First set of generators for G
Let {I';,I'y#} be a g-base of m1(C, — S, ug). Considered. as elements of
G = m(C? — S,up), {I;,Ts} generates G.

Definition.
B = I z # 2,7
Pi/ 1= 2, 7
Ey = (E;)pi.
Notations.
pi = Z;y the half-twist corresponding to the shortest path between g;
and g;.

E; = an element of {(E;)p["}m € Z.
I'; = an element of {(I';)p["}m € Z.
In order to use the invariance theorem we need the following lemma.

Lemma IL.0. (i) (Ty)p; =T (Tj)pi =Ty for i # j.
(i) (T)pi=Ty (Ci)ps =TyTiT;" (Ty)p; ' =T; Tl

(iil) Let p = pmy,...ma,memo = P71 (0208)™ - (0307)™ - (Paps)™ - pg® - py -
Then (T';)p = T;.

(iV) Fi € (I‘z,I‘Z:)

Proof. Geometric observation (Fig. I1.0(a) and (b)) or BGT I, Section II,
§2. O

Ty i £ 2,7

Lemma II.1. (i) Ey = -1 .
Fil I‘,I‘i, 1= 2, 7
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Gi) TyT; = By E;
(iii) (Ei)p; = Ey
(iv) (Es)pi = EyE;Ej;!

E; i 427
(v) Ti=4 : -2 -1
EEqE; i=2,7 (=(Es)p;” = (Ei)p; ")

13

Proof. Trivial. a

Lemma I1.2. {E;, E;} generate G.

Proof. Trivial. a

Remark I1.2. A second set of generators for G
We start with a set of generators I';,I'y and exchange it for a set of
generators E;, E;.

Definition. Let 1 be the classical monodromy homomorphism from G to
the symmetric group of order 9 induced by the projection V3 — CP2.

Lemma I1.3. ¢(I;) = ¢(Ty) = ¥(E;) = ¥(Ey) = (ki,t;) where L; =
Py, N Py, and {L;} and {P;} are arranged as in Fig. IL1.

Proof. Let «y; be a path in C? connecting ug to ¢; s.t. I'; = £(y;) (see
the definition of £(y) in Chapter 0). One has to consider the degeneration

of V3 1y op? 1o 2© jﬁ) CP? and of S5 to S, constructed in BGT III,
[MoTe7]. The surface Z(® is a union of 9 p}anes, Py Py. The configuration
of the planes and their intersection lines L1, ..., Lg are as in Fig. II.1. Let
f® be a generic projection Z(©) Jﬁ) CP? and S® its branch curve in C2.
We choose V; to be close to Z(®). Let p§6) = P,Nx®~" (up). Let p; be a point
in 771 (u,) which is close to pz@ . Fix i between 1 and 9. It is clear that when
we move along ; from ug to g;, the lifted path in Z(®) which starts in pgj)

will lie in Py, and will end on a point in L; above g;. The lifted path in Z(©)
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44
)

-

Figure II.1.

. that starts in pg;) will lie in Pp, and will end in the same point in L;. Thus,
in the regenerated case, the lifted path of I’y that starts in p; will end in
p;. The lifted paths of ; in Z(® that start in p\”), t # k;, £ will be closed
loops. Thus, in the regenerated case, the path obtained from lifting I'y that
starts in pg, t # k;, 4; is a loop. Thus, 9(I'x) = the transposition (k; ¢;) of
the symmetric group on 9 elements In the same way ¥(I'y) = (k; ¢;), and

EN]
o

thus Y(E;) = P(Ey) = (ki &). 0
Corollary I1.38. The transpositions ¥(FE;) are as follows:
P(Er) = (1 2)
P(Ee) =(2 3)
P(Bs) = (2 4)
Y(Ey) =(3 5)
Y(Bs) =4 7)
P(Ee) = (5 6)
PY(Er)=(5 8)
)=(7 8)

$(Hs) = (7 9) -
Moreover, ¥(E;) and ¢(Ej) have one common index < L; and L; are
edges of some triangle in Fig. 11.1.
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Proof. Immediate from the previous Lemma. a

Before continuing with G, we want to prove some claims concerning an
arbitrary group.

Claim IL4. (a) If (4, B) =1, i.e., ABAB~TA"'B~! = 1, then
ABA = BAB
A7'BFA = BA*B™!
AB*A™'=B7'A*B
A™'B71AF = BFAT1 B
(b) [A,B]=1[A,Cl=1=[A,D]=1 for D € (B,C) = subgroup generated
by B, C.
(¢) [Ac,Bp]=1, [C,B]=[C,D]=[A,D]=1=[A,B]=1.
(d) [A, XY Z]=[A,X] [AY]x1[A Z]y-1x-1.
(e) [X},’A] = [Ya A]X‘I[Xa A]
(f) [ACaBC] = [A, B]C
(8) [X,Z2]=1=[X,Yz] = [X,Y]z.
(h) If(z,y) =1, then (Az,y) =1 Ay1,-1 = A7 A1 A

Proof. (a) — (g) are easy to verify.
We shall only prove (h) here.
If (Az,y) = 1, then:
1 = (Az,y) = Azyzy 'z~ 1Ayt
=A- Ay—1m-1:I:ycr:y_lcr:_lA_ly_lyA_ly_1
=A-Ayrp-1- A;_ll
#Ay-1x-1 = A_lAy—l.

If A_lAy—l = A,-1,-1, then

y
Ady i1 AL =11
=Azy Ay_lzv_ly A_ly_1 =1

—N—
= Azy Azy~lz7! A7yl =1
SAz-y- Az -yl (Az) oyl =1
=(Az,y) = 1.
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Lemma I1.5. (a,) [F,-,I‘j] = [Fi/,rj] =1= [Fi’ Fl] =1.
(b) [[3, T3] = [[;'TeTy, Iyl = 1= [y, Ty] = 1.

Proof. We only prove (a); (b) is the same argument. Since I'; is a product
of 'j and I';/, we can apply Claim IL4 (b) to get [[';,I';] = 1. In particular,
[Ty, (I‘j)pj‘l] = 1. We use invariance under p;p; and Lemma 0.2 on it to get
[[s#,T;] = 1. We use invariance under p;p; and Lemma 0.2 on [I';,T';] = 1 to
get [I‘,-:,I‘j/] = 1. From [Fil,Fjl] = [I‘,-:,I‘j] =1 we get, using Lemma II4(b),
that [[';,[';] = 1. From [I';,T';] = [['»,I';] = 1 we get, using Lemma IL.4(b),
that [Fb Fﬂ =1. - - d

Proposition I1.6. The following relations hold in G :
(1) (B, Ej) = 1Vi,] s.t. p(E;) and (Ej) have ezactly one common indez.
(2) [Bi, Ej] =1VY4,j s.t. P(Ei) and ¢(E;) have no common index.
(3) 1= (ErEsE; \Ef ' E;E4B3 E5 E7 Eg ') (pspr)'(paps) Vi, j € Z.
(4) EyE\EyEsEyE;'EZ'E{'E,' = B,.

(5) Ey'E;'E;'E;'EsEp E7E5 Es = Ey.

(6)
Eﬁ/ = E;lE;/lEﬂEa’Ea (a, :3) = (13 2)
= (17 3)
= (4,6)
= (5,9).
(7)

Eo=EyEgEyEg'Eg' () =(6,7)
= (81 9)

Definitions of 9(E;) as in Corollary I1.3.
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Proof. We divide the proof into the following 48 claims:

Claim 0. [I;,I';] =1 for 4,5 s.t. Lin f,j do not intersect, 5 # 9, i.e., for

(3,7) = (1,4), (1,5), (1,6), (1,7), (1,8), (2.6), (3.6), (6.8).

Claim 1. ([;,T;) =1 (i,5) = (1,2),(1,3), (4,6), (5,9), (6,7), (8,9)
Claim 2. (T'y,T'3) =1.

Claim 3. T3 =3T3t =T, T3ly.

Claim 4. I'§ =T, T3/ T35 .

Claim 5. (T'7,Tg) = 1.

Claim 6. T3 = [gl7I7T;, Ty .

Claim 7. T3 =Tgl'7Ty =T Tgly.

-1

Claim 8. T3 =Ty3T9l; Ty
Iy =Ty I/ Tslply.

Claim 9. F; = F2’F§’ = FS’aFZ = F4,FZI = F4/,Fg, = F5I,F; = F5,
Claim 10. [I'p,T] =1 1=25,7,8.
Claim 11. [y,Tj]=1 =34

Claim 12. [Tg,Tj=1 i=34.

Claim 13. Ep = E;'E'EsEyE, (a,8) =
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Claim 14.

Claim 15.

Claim 16.

Claim 17.

Claim 18.

Claim 19.

Claim 20.

Claim 21.

Claim 22.

Claim 23.

Claim 24.

Claim 25.

Claim 26.

Claim 27.

Claim 28.

Claim 29.

Claim 30.

Claim 31.

Claim 32.

Claim 33.

Boris Moishezon and Mina Teicher
s, rs]=1.
[[3,07 0705 = 1.
[F3/,F7IF7F7_,1] =1.

[[s,T7T7T5 N = 1.

[['3,T7] = 1.
3,77 =1
(T3, T3) = 1.
(I's, %) = 1.

TST§Ts ™ = T3 T3TS (p3p7) (paps).

) o e e lne!
0%, Tl Ty 1=1

(r3,T3) = 1.
(r3,T3) = 1.
(F3,T5) = 1.
(C7,Tg) = 1.
[C4,Ts] = 1.
[[4,Ts] =1

[[4,Ts] = 1.
[[4,Ts] = 1.

[Cy,T3] = 1.

3,13 = 1.



Claim 34.

Claim 35.

Claim 36.

Claim 37.

Claim 38.

Claim 39.

Claim 40.

Claim 41.

Claim 42.

Claim 43.

Claim 44.

Claim 45.

Claim 46.

Claim 47.

Claim 48.

Braid Group Technique in Complex Geometry V
[T, T20I52) = 1.
[Ty, 205057 = 1.
[[3,Ty] =1
[r3,, T35 752 = 1.
7, I'y] =1, T, T3] = 1.

[[4,T2TsT5% = 1.

[[s,T7] = 1.
[[5,T7] = 1.
(Tg,Tg) = 1.
(Tg,Tg) = 1.
([7,Tg) = 1.
(T5,Tg) = 1.
[y = D503 T T Ty TsT5 1T

[y = TypT43 3Ty Dol T T3 T3 T T L
Ty =50 T T, Tl T Ts.

[, Tol =1 i=1,2,3,4,6,T7.

Proofs of the Claims.

We use the braids in £(18) (see Theorem I.1) to induce relations on G
via the Van Kampen Theorem (Theorem 0.5). For every factor V¥ in ¢(18),
we have to find Ay and By to get a relation. In Remark 0.4 one can find an

algorithm how to determine Ay and By. In €(18) we have sometimes used

23

a compact notation for a product of a few factors. Then we use Remark 1.1
to determine the factors precisely. Sometimes, instead of using a factor b
in £(18), we shall use its complex conjugation b. In that way, we get R(b)
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and/or R(b) a relation on G induced by the Van Kampen Theorem. We also
use Corollary 1.5 to get other relations using (R)pom,,...,m4,me,mo-

Proof of Claim 0. Taking the factors C; or the complex conjugate of C} i =
1...4 and applying the Van Kampen method on it to produce relations on
G, we get [Tiy,Tjy] = 1 Vi,jst. LinL; =05 #7,9. By Lemma IL5 we
get [[;, ;] = 1Vi,j s.t. L; ﬂf/j =0j#7,9. For j =7 we consider Cj. In
! T ! — . [l 4
Cjwehave Zir = 7, U <.
(6,6")

Its complex conjugate is Z;7 ¢ . (. ... .. .. " ..
which implies on G the relation: I I’\_/C;'\? #
[[1,T5' T T/ Te) = 1.

Since we already know that [I'1,I's] = 1 we get [[';,['7] = 1. Now, we are
using the Invariance Theorem (Corollary 1.6) and we get [['1,T'7] =1. O

Proof of Claim 1. From H}, i # 4 and Corollary L5. O

Proof of Claim 2. By using Zé?’):,,'g, of Hy we get (I'y,I's) = (I'y,Ty) =
(Tgr,Tgr F3F3_,1). We apply on it the invariance automorphism (p3p7)™3 for
all possible values of mg to get (I'y,T's) = 1. O

Proof of Claim 3. By definition of e (see Theorem I.1).
IR 1PV S % Al ) Y ) s e
=TyI3(0; TyTs) Ty (I3 Tyls) - I35
by Claims 2 and I1.4(a) PyTp T

by Claims 2 and II.4(a) F‘II‘31"2/
= o .

Proof of Claim 4. By definition of e (see Theorem I.1).
[y = Dy Tsly T30, T3y T3 I T3 ' T5
L
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by Claims 2=and I1.4(a) Ty T (F51F§1F3I‘3:P3)_1P2/
(T35 ' T3Tsy [3)05 T30
= ].—‘3711-‘3/]:‘31_‘2/1_‘;11_‘;11—‘3

by Claims 2 and I1.4(a) __1._
Y 2and AR Pty Ty,

Proof of Claims 5,6,7. Arguments symmetric to 2, 3, 4. a

Proof of Claim 8. Easy to see from the geometric observation of the action
of b°. O

Proof of Claim 9. b* does not affect those loops. O

Proof of Claim 10. By Hj we have Z3 ; and Z3; for i = 8,8,7,7,5,5'.
Thus, by the Van Kampen Theorem, [y, ;] = [[2,Tis] =1 i = 5,7,8.
By Claim IL5, we have [I'y,I;] = [['2,T3] =1 ¢ =5,7,8. By Claim IL5,
again [['y,T'j] = 1. O

Proof of Claim 11. By Hj we have Z§4,) g+ Using the Van Kampen method
[[4,Tg] =1and ['y,l'g] =1By Lemma IL. 5, [['4,Tg] = 1. We have in Hj,
(Zs3 )% By the Van Kampen method we have [1"3,I‘8,] = [Is,Ty] = 1.
By Claims 4, 3, and 9, 1_‘, = ]._‘2, I‘31“2/ P3 = 1—‘2, PB P3/P3P2/ FS’ =
I's and thus [F2_,1P3P2/,F81] [P2,1P3 T3 sy, Pg/] = 1. [Ty Pgl] = 1.
Since [I'y,T'g] = 1, (Claim 10) we get by Lemma II1.4(g), [['sy,I's] = 1 and
[';'I'3T3,Iy] = 1. By Lemma IL5, [['3,Tg] = 1. O

Proof of Claim 12. By Claim 11, [I's,I'g] = 1. We apply on it Corollary 1.5
with (Zgg Zoo)™ to get [['3, '] = 1. Similarly, we get [I'4,T'g] = 1. O
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Proof of Claim 13. We shall only prove (o, ) = (1,2). In H] we have
Zs9(1)- By the Van Kampen Theorem we get I'y = [T'T'};'T'; Ty Ty Ty
We apply on it Z2, to get

ST B M Al %) ST

Thus, Ef = E] lEl‘,lEQ,El:El. The other relations are induced from
H), HY, H}, Hg, HY. a

Proof of Claim 14. In F we have (73,7,). . After complex conjugation this

braid transforms to (Z2.,)° . By Corollary 1.4, (Z2%.,)° implies, via the Van
37 37

Kampen method, the following relation on G: [I'},, I'},] = 1. a

Proof of Claim 15.

1 92 ¥ s, T3] = [[5'TsTy, Tl Ty Ty
Claims 10=and 11.4(g) [1_,3, P8F7/F7F;1P8]

Claims 12 and I1.4(g) [Fg T, F7F_1]
= , ’ |

O

Proof of Claim 16. :

By Claim 1: [I'1,T'7] = 1. Thus, [[v T, T2 005 = 1.

By Claim 15: [['3, [ [7[, = 1.

Thus, [[7' T TsT T, T D705 = 1

But by Claim 13: T'y = ['T'T'TsTy/Ty.

Thus, [Ty, #7051 = 1. a
Proof of Claim 17. Claim 16, Claim 15 and Claim II.4(Db). O

Proof of Claim 18. We apply (Z33 Z77)™ on [1"3:,1"7:1"7F;,1] =1 and on
[[3, 7707 = 1 to get [['3,I'] = [[3T'3 3%, T'7] = 1. By Claim IL.4(b)
I'3,I'7] = 1. We use Claim 17 and Claim I1.4(b) to get [I'3,I'7] = 1. O
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Proof of Claim 19. [I'y,I's] = [I'yT'7] = [['¢I'7] (Claim 10), thus [['y,I'},] =
[Cy,T3] = 1 = [[y,T%] = 1. Now, [T, 7] = [[s,Ts] = 1 (Claim 11, Claim
18). Thus, [I's,I'}] = 1. From [I'y,I'}] = [['3,I'}] = 1, we get [I'§,T'3] =
[3, T3] = 1. Thus, [, T3] = 1. ) - O

Proof of Claim 20. In F we have (Z?Eg'),44').’ which by the Van Kampen
Theorem implies (I'§, ') = 1. We apply on it (Z3g Z77)™3 (Zsar Zss )™ for
all possible m4 and m3 to get (I'3,I')) =1 ({(I'3)p™} =T73). O

Proof of Claim 21. Same proof as Claim 20. a

Proof of Claim 22. In F we have o where o is described in Fig.1.0(d).
By the Van Kampen Theorem we get

I -0 RS B o - ) P A
Since, (T3, T'3) = 1 we can apply Claim IT.4(a) to get
o oo e Moo~ lne—!
= F4I F4F4 F31F4F4 4!
=TTy .
We apply Claim II.4(a) again to get

= 1—\5,-1 FZ/ F;l .

2
(44') R
Proof of Claim 23. Directly from (&}7) in F. a

Proof of Claim 24.
By Claim 20 (I, T3T% ", T3) = 1.
Thus(I'§, T3, T3T5) = 1.
Since [['§, T3] = 1, (I3, Ty 'T;0yCg0s) = 1.
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By Claim 22 (I'},,T's) = 1. O
Proof of Claim 25. Follows from Claim 21, as in Claim 24. O
Proof of Claim 26. Follows from Claim 24, using [['y,T's] = 1. O
Proof of Claim 27. From Claim 25, using [I's,T'4] = 1. d

Proof of Claim 28.
By Claim 23 [T, T3 T3y Ty ] = 1.
Thus [T T30S, Ty ] = 1.
From Claim 27, Claim 20 and Claim II.4(a) [1"—',]?‘;,1";_1 T3 T§ry] =1
By Claim 22 [[3T T, 3Tl '] = 1.
Thus, [[4,Tg] = 1.
Since I'j, = 'y, I'§ = I's we get the Claim. O

Proof of Claim 29.
By Claim 13 T'y = 71T, !T'T'y Ta.
Thus, T4Te Ty =T, Tely.
By Claim 1 and Claim II, 4(a)

I 'TyTg =TTyl

Thus,
ry= F6/F6P4IP51P&1.

We substitute the last equation in Claim 29 to get
[LeTelyTg T3, T5] = 1.
By Claim 9 [I'5,T's] = 1. Thus,

[F4I,P5] =1.
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Proof of Claim 30. By Claim 28, Claim 29 and Claim II1.5(a). O

Proof of Claim 31. We apply Zsy Zss on [['y,I's] =1 and on [I'4,T's] =1
to get [[4T4l',',Tsy] = [[a,T'5y] = 1. We then use Lemma IL.5(b) to get
[['4,T's] = 1. Together with Claim 30, we get the Claim. a

Proof of Claim 32. By Claim 7 and Claim 10. a

Proof of Claim 33.

[F3, ;] _ [F3,F8F7/Fg1] By Claims 1=2 and I1.4(g) [Pg,F7I]1"- By Cléim 18 1.
a
Proof of Claim 34.
[F;, F2P3F5 2] Claims 10 and 32 [F F2F;1F3F2IF5 2] Clalm 3 [ ;, P%F;, 1-,5_2]
Thus, [[3, T30 5?) & [[5-103T5, [s05 T3 1) = 1.
Now:
[[5!03Ts, [sy 5]
Claim 9 ee—! oo °—
- - 3 V- o A 1]
cl 21, 24, and I1.4( R o=lrere
aims and IL4(2) pepepe= peripepe )
Claim 22
alm [P3I F4F3/ I F5P3/] = ].
Clalm 11.4(f)
[F4,F5]1"3,o =1
Cl 9
w9y, Lsr,e
Claim 29 |
a

Proof of Claim 35. Let f: Bs — G be as follows:
Bs = (X1,..., X4 | [X5, Xj] =1 i — §| > 2, (Xi, Xip1) =1, i =1,2,3).
f(X1) =T, f(X2) =T, f(X3) =T5, f(X4) =T
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By Claims 10, 32, 33, 2, 26, 21, f is well-defined.
Let d be the braid that satisfies (X;)q = X5-4, 1 =1,2,3.
Then

1 =[5, T30 %] = fX4, X3 X2 X5
= fl(X1)a, (X2)3(X3)a(X2);7]
= f([X1, X5 X3.X57]a)
= [f(X1), f(X2)? f(X3) £ (X2) 2] (a)-

Thus, [f(X1), f(X2)2f(Xs)f(X5%] = 1.
Thus, [[o, [30'5057] = 1.

Proof of Claim 36.
[T3,Ta] 2 ° (T3, T3] “*2 % [0y, Ty 3073 T .
Thus,

[[3,T4) =1

& [, TS0 T | =1
Cla.imsg and 19 [Pg,F?yP;F;:_I] -1
& [[3, 15 T35 T3 Ty] = 1
N LR Y S o S A v A R
G2 10 [Py Tyly ! TylsTs 1] = 1
Claims di 1L.4(a) [F371P2'F3, F3F5F3—1] -1
& [, Ti0sI5% =1

which is true by Claim 35.
We get [I's, I'4] by Corollary I1.5.

Proof of Claim 37. Similar to Claim 34.

Proof of Claim 88. Claim 18, Claim 10, Claim 12, Claim 3.
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Proof of Claim 39. Let f: Bs — G be as follows:

f(X1) =T, f(X2) =T7, f(X3) =Ty, f(X4) =T3.

By Claim 12, Claim 38, Claim 5, Claim 27, Claim 20, f is well defined.
Let d be a braid such that (X;)q = X4, i =1,2,3,4.

Now:
1= [Tp, P20 072 = [£(Xa), £ (Xs)2f (Xa) £(X5) 2]

= f[ X2, X3 X4 X57]
= f[(X3)d, (X2)3(X1)a(X2)7”]
= [f(X3), f(X2)?f(X1) f(X2)"*|5(a)
= [T, T%TsT7%] 4(a)-

Thus, [['4,T2TsT;% = 1. O

Proof of Claim 40. Follows from Claim 30, like in Claim 36. O

P7‘00f Of Claim 41. Apply (Z44/Z55/)m4 (Z77/Z331)m3 on [F5,F7/] = 1 from
Claim 40. O

Proof of Claim 42. In Hj there is 79,)44/. We take its complex conjugate

ZS”)M, and apply Corollary 1.4 on Zg,;’)ﬁl to get (I'y,I'4) = 1 and then apply

Corollary 1.5 to get (I'p,T'y) = 1. O
Proof of Claim 43. We apply Corollary 1.5 on Claims 2 and 5. O
Proof of Claim 44. Similar to Claim 42. a

Proof of Claim 45. By Claim 22, T3[$['s =Ty ['$T%. Since (I, T3) = 1
we have . B
Iy T3re =T3 T3ry.

Thus, [y = TgTy T3Ts T
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We substitute the formulas for I'}, and I'} to get

T;'Tgly =[50y T3 Ty Ty ol T3
Since (I'y,T'y) = 1 (Claim 42)

IR MY RTIED 1P Al et A ) AP Y iy e
Since [['s,T'y] = 1

[Ty =T TsT5 T Ty Tysl; 1Ty
Since [Ty, Tg] = [Ty, ] =1

| YR N P W Y W Y e

and
Tg = I D505 1Ty T Ty T3T5 1T

Proof of Claim 46. By Zyy of H} we have:
Ty = [yT4Ty 3T I3 T, T T L

We apply on it Zgg'Zsy using Corollary 1.5 to get (recall that (')
Zby Zsy =Ty and () Zoy Zgy = (T) Zay = T2 Tol';")

Ty = DplyTa T3y Tl TSI T T,

Proof of Claim 47. By Zgy of H 4 we get, using the Van Kampen Theorem:

I'y =3 T, 'T; ' Tsl'# 75 Ts.

Proof of Claim 48.
In C! we have Z2 = H(%y)? for i = 1,2,3,4,6,7, where:
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Zio= Z
(889
Case 1. i #7 _
The complex conjugation of Z;q is Z;o = H(%;) and
- 8,8 ... . . -
Zig = (gig) which implieson G (asin Claim0) [[;,T'g ll"gijgI‘g/l"g] =1.
By Claim 10, for ¢ = 2, 3,4 we have [I';,T's] = 1.
By Claim 0, for i = 1,6 we have [I;,T'g] = 1.
Thus, [I';,I'g] = 1. We use Corollary 1.5 to get [I;,T'g] = 1.
Case 2. 1=17
In C{ we have g%,g which implies [I'7,T'g] = 1 and thus, by Corollary 1.7,
[[7,Tg] = 1.
From Case 1 and Case 2 we get Claim 48. a

Thus we have proved all the Claims.

We shall now prove the statements of the Proposition. We use the above
claims, the definition of E;, Ey and the facts {I';} = {E;} and EE; =
IryT; Vi.

(1) From Claim 1, Claim 26, Claim 27, Claim 42, Claim 43, Claim 44.

(2) From Claim 0, Claim 10, Claim 12, Claim 18, Claim 31, Claim 36,
Claim 41, Claim 48.

(3) From Claim 45, definifions of E; and Corollary L.5.
(4) From Claim 46, definitions of E; and Corollary II.1.
(5) From Claim 47, definition of E; and the above fact.
(6) From Claim 13.

(7) From Claim 13.

O Proposition II.6

We need the following corollary in order to obtain in Chapter IV, §8 a
smaller set of generators for G.

Corollary I1.7. Let E;, E; be as in the beginning of the chapter.
Let A; = E,-,Ei_l. Then:

(1) 4s = (A4)p; 1, BB
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() A7 = (A3) s gy
(3) Ag = (AQ)E4E3E5—1E7—1
(4) A2 = EfZAfl(A)E;I(E%)E;I
(5) As = By * A7 (As) g1 (B
(6) As = Eszfl(A)E;I(E%)Egl
(7) Ao = B3 A5 (As) o1 (B2) s
(8) (A4)pr1pr1 = BfASEF As(B5?) por (A1) o1 (B %) g
(9) (A7) g1 = BF Ag(B7 %) g
(10) (As) 150 = B2 As(B5?) s
Proof. We use proposition IL.6 (1),..., (7). The claims are grouped according

to the similarity of their proofs and not according to the order that we use
them in Proposition IV.8.1.

Recall:
(Ei)pi = Ei
(Ei)pi = EyE;Ey
E; = AE;

EyE; = A,E2.

For (1), (2), (3) we use (5) of Proposition II.6.

For Claims (4)—(7) we use (6) of Proposition II.6. The 4 claims are
symmetric and we shall only prove the first one.

For (8) we use (4) of Proposition II.6.

For (9)-(10) we use (7) of Proposition 11.6. The claims are symmetric
and we shall only prove the first one.

(1) By (5) of Proposition II.6
Ey = (By ' ByEy) g, ot -
By (1), (2) and Claim I1.4(a)
Eg = (E2E4E2_1)E3E;1E;1-
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Thus,

E5'EyBs = (E)p-1p,p-1-
By (1) and Claim II.4(a)

ByEsEy' = (B4) -1 gyt

Thus,
Es = (B4)p-1p, 55y
We apply on it psp5 to get
By = (E4’)E;‘E3E;1Es'
We multiply the 2 results to get
As = (A4)E2’1E3E.,'1E3'
(2) By (5) of Proposition II.6
E;'EgE; = EsE;'Ey ' By B3 EyES .
By (1) and Claim II.4(a)
EsErEg' = EyE;'EoFsEy 'EyES Y.

Thus,
E7 = (EQ)E{1E4E5_1E8'

We apply on this pgp3 to get
Ep = (E3’)E;1E—4E—5—1E8-

We multiply the results to get

Ar = (A3)E;‘E4E5‘1E8'

(3) By (5) of Proposition II1.6

By = (E2)E4E3E;‘E;‘-
We apply on it paps to get

By = (E2')E4E3E;1E;1-
We multiply the 2 results to get

As = (42) g, 5y 5,

35



36 Boris Moishezon and Mina Teicher

(4) From (6) of Proposition I1.6

Ey = E{'E;'E — 2By E;
= AyEy = ET? A7 B A B2
= A = E1_2A1_1(A1)E;1(E%)E2‘1'

(8) From (4) of Proposition I1.6

Ey = EyE4EyE3sEy Ey 'Ey  E; ' E

= By = AWEAsES A2 b B2 AV E2AT!

= A7 'EyAy = EjAsE2 Ay Fo B2 A E?

= A7 (Ad) g1 = B{AsES A (B3 A5 Ep %)

= A7 (Aa) g1 = E{AsES Ap(E5?) oy (A1) o1 (B %) por
By Lemma II1.4(h)
(A4)E2_1E4_1 = AZl (A4)E2—1. Thus,
(A4)E;1E;1 = EA%A3E§A2(E§2)E;1 (A:JTI)E; (E4_2)E2“1'

(9) From (7)

Es = EpnE;EgE;'E;*

= E¢ = A7E2AgE¢E7 2 A7

= A7'E — 6A; = E2AcE¢E;>

= A7} (A7) gt = E2As(ET?) gt
By Lemma IL.4(h), A7'(A7) gt = (A7) p-1p-1. Thus,
(A7)g-1p1 = EgAG(E;Z)EG‘l-

III. Construction theory for B,.

Let D be a disc, K C D, #K = n. Let B, = By,[D, K] (see definition
in Chapter 0).
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(i)
_—é D I
({_\,) (V) i)

Figure I11.1.0.

IIL.1. Definition of B,.

Definition. Let D, K be as before. Let H(o1) and H(o2) be 2 half-twists
in B = B,[D, K]. We say that H(c1) and H(o3) are:

(i) weakly disjoint if o3 Noa N K = 0.

(ii) transversal if o1 and o9 are weakly disjoint and intersect each other
exactly once (and not in any point of K), i.e., 01 N o2 = one point,
o1No2NK = 0.

(iii) disjoint if oy Nog = 0.
(iv) adjacent if o4 No2 N K = one point.

(v) consecutive if they are adjacent and oy N o do not intersect outside
of K, i.e., 01 N oy = point € K.

(vi) cyclic if o1 Noy = 2 points € K.

Claim II1.1.0. Let X,Y be 2 half-twists in B,. Then:
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AL %

Figure III.1.1.

(i) If X,Y are disjoint, then [X,¥Y] =1, i.e., XY =Y X.

(i) If X,Y are consecutive, then (X,Y) = XYXY'X"'Y~! =1 and
XYX =YXY or Xy-1 =Yx. We say then that X and Y satisfy the
triple relation.

(iii) If X = H(z) =6, Y = H(y), then Yx = XY X = H((y)B).

Proof. (i) (ii) Basic properties of a braid group. See, for example, Chapter
3 of [MoTed4].

(iii) See Fig. III.1.1 for a geometrical presentation of Yx. The common
point of z and y travels under 3 counterclockwise to the other end of z. Thus
(y)B connects the 2 ends of z and y, which is not a common end of either
of them. By IV.3.4 of [MoTel2], Yx = XY X = (Y)XV (see definition or
fY in [MoTe4], Chapter 4) which is equal by Claim IV.3.0 of [MoTel2] to

H((y)B1)- O

Definition. B,

Let B, be the quotient of by, the Braid group of order n, by the subgroup
generated by the commutators [H(o1), H(o2)] where H(o1) and H(o3) are
transversal half-twists.

Notations. 3 3
Let Y € B,. We denote the image of Y in B, by Y. When possible, we
shall abuse notation and denote Y by Y. If Y is a half-twist in B, we call
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Sy

¥

C3

Figure III.1.2.

Y a half-twist in B,,. We call two half-twists ¥, X in B, disjoint (or weakly
disjoint, adjacent, consecutive, transversal) if Y, X are disjoint (or weakly
disjoint, adjacent, consecutive, transversal). If {X;} is a frame of Bp, then
{X;} is a frame in B,. We also refer to {X } as a standard base of B,.

Definition. Polarized half-twist, polarization

We say that a half-twist X € B, (or X in B,) is polarized if we choose
an order on the end points of X. The order is called the polarization of X
or X.

Definition. Orderly adjacent

Let X,Y be two adjacent polarized half-twists in B, (resp. in én). We
say that X,Y are orderly adjacent if their common point is the “end” of one
of them and the “origin” of another.

Definition. Good quadrangle

Let H(o;) i = 1,2,3,4 be 4 half-twists such that H(o;) and H(o;+1)
are consecutive, H(o4) and H(o;) are consecutive, H(o;) and H (03) are
disjoint and H(o2) and H(o4) are disjoint, and in the interior of U o; there

1=1
is no point of K. We say that {H (0i)} is a good quadrangle in B, and

{H (0,)} is a good quadrangle in B,,.

Remark ITI.1.1. (a) transversal, disjoint = weakly disjoint. consecutive
= adjacent.

(b) Any two pairs of disjoint (or transversal, consecutive, cyclic) half-
twists are conjugate to each other by an element b € B.
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(%) X;l

-
(X,
Figure III.1.3.

(c) Any two half-twists in B, (or By) are conjugate to each other by an
element of B, (or By).

(d) Every 2 transversal or disjoint half-twists in B, commute. Every
2 consecutive half-twists in B,, or in B, satisfy the triple relation

(XYX =YXY).
(e) Any two good quadrangles in B,, or in B, are conjugate.

(f) Every 2 pairs of orderly adjacent (non-orderly adjacent) consecutive
half-twists are conjugate to each other by an element b € B preserving
polarization.

Proof. Geometric observation in B, and B, and Claim III.1.0. a

Lemma IIL1.1.2. If{Y;} i=1,...,4 is a good quadrangle in By, then (a)
W =%Y, (b) VP¥=Y7 7Y

Proof.
(a) Since they are disjoint.

(b) Let X;,X2,X3 be 3 half-twists such that X; and X, are consecu-
tive, X2 and X3 are consecutive and X; and X3 are disjoint. Denote
X; = H(z;), 1=1,...,4. Clearly, X3, (X3)X;1,X3, (Xl)X2—1 is a good
quadrangle (see Fig. II1.1.3).

In B, : [X1,X3] = 1 and (X7, X3) = (X3,X3) = 1. Thus, we can use
Claim I1.4(a).
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It is clear that (X2)x,x, is transversal to X5. Thus, in B, :
[X27 (X~'2)X1X3] = ]"
Thus,
1 =[Xo, X7 X7 X0 X1 X)
= XX X XX X X X XXX X
N’

(By Claim I1.4) = Xo X3 X1 X X X5 1 X X0 X1 X 1 X X5
N————

—_—T . .
(By Claim I1.4) = XXX X0 X
(X1, X3)=1) = XX ' X' X X XM X X0 X1 X, X X
| ——
—l—
XXX

= XXX X, X3 X' XEX,

—T
(By Claim I1.4) = egdende
(Since [Xl,X3} = ].) = X2X3_2X1_2XQ_1X12X§
= (XB))_”(j—l (X1)§§1X12X32-

Thus, X7 X3 = (X1)§2;1 : (X3)§2;1'
By Remark I11.1.1, {Yz} is conjugate to {Xl, (Xg))?z—l,Xg, (5(1))22_1} and
thus satisfies Y2V = Y2V a

I11.2. ﬁn-groups and prime elements.

Definition. B, — group. 3 )
A group G is called a Bj-group if there exists a homomorphism B, —
Aut(G). We denote (g)p by gs-

Definition. Prime element, supporting half-twist (s.h.t.) corresponding
central element.
Let G be a Bj,-group.
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An element g € G is called a prime element of G if there exists a half-

twist X € B, and 7 € Center(G) with 72 =1 and 7, = 7 V b € B, such
that: '

(1) gg-r=g7'7.

(2) For every half-twist Y adjacent to X we have:
(a) 9%y-13x-1 = g;-{lgj({/—l
(b) gy-1%-1 =9 951

(3) For every half-twist Z disjoint from X, g5 =

The half-twist X (or X) is called the supporting half-twist of g, (X is
the s.h.t. of g.)

The element 7 is called the corresponding central element.

Lemma II1.2.1. Let G be a Bp-group.

Let g be a prime element in G with supporting half-twist X and corre-
sponding central element 7. Then:

(1) 9g=95-1=9"'7, gpn=g.
(2) gy-2 =97 V Y consecutive half-twist to X.

(3) [9:95-1] =7 V Y consecutive half-twist to X.

Proof.
1) 95> = 9g-1)g-1 = (@' g2 = (@ Nz = (g7i1) Ir =g =
Axiom (1) _4
9% = 9x— = g T
(2) 9% 1y-1x-1 = (9)2-1)}7—1)'(—1 = (g_lT){/—lj(—1 = (g{/-lj{—l)_l :
TAxi@ @ _1

95-1°9°T-
On the other hand:

Axiom'(2) , _
9519151 = Gg-15-19-1 = (Ggrg-1)g—1 = (97 9p-1)y-1
=95 *9g-2-

Thus, gy, = g7
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Axiom (2) _ by (1) _ _
(3) 9gp-1x-1 = 93 "9gp-1 = 9x 9xy-1 =995, T

On the other hand:

by (1) , _

Ixy-1x-1 = (97 7)y-1%-1
Axiom (2) , _ _ —
=" (g7 gp-) r=g0t g

Thus, g- g1, = g5o, - g7
Thus, gy—1 - 9 gy-1 g l=7"1=1
Thus, [gy-1,9] =T O

Lemma II11.2.2. Let G be a By-group. Let g be a prime element in G with

s.h.t. X and corresponding central element . Let b € B,. Then g, is a
prime element with s.h.t. Xy and central element 7.

Proof. We use the fact that (ap)c = (ac)p, and (ab). = acb.. We have to
prove 3 properties:

(1) gz-1 = g7t = (9510 = (0717)s = 951y, = G5 'T = Gyr15-1p =
(95) 7' = (g) g1 = (96)™ - -

(2) Let Y be a half-twist adjacent to X;. Then Y,-1 is adjacent to X
and satisfies axiom (2) of prime elements for g, X and Yb_l. Namely:

PR e =gzl
91 =9 971 and gXYb-_llx_l =93 gXYb__ll.

(9) %7151 = (95 1)z, (96) 2, 7-1-

(3) Let Z be a half-twist disjoint from X3. Then Z,-1 is disjoint from X.
Then 97,., =9 We conjugate 971 =9 by b by get: (g5) ; = go-

We need tlle following lemma on B, to prove later a criterion for prime
element in a By-group.
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Claim IIL1.2.3. Let (X1, ..., Xn_1) be a frame in B, = By[D, K]. Let
C(X1) = {b € Bnl|[b, X1] = 1}
(centralizer of X1),
Cp(X1)={be B, | (X1)p = X1, preserving polarization }.

Let o = X2 X%X,. Then C(X1) is generated by {X1,0, X3, ... ,Xn}, Cp(X1)

is generated by {X?,0,X3,... ,Xn}-

Proof of the Claim. Let K = {a1,...,an}. Let z1,... ,zp_1 be a system
of consecutive simple paths in D, s.t. X; = H(z;) (H(z;) is the half-twist
corresponding to z;; z; connects a; with a;41). Let I'1,...,T,; be a free
geometric base of m (D — K, x) consistent with (X1,...,X,—1) (that is,
(Tit1) X =Ty, (T)X; = DT D;Y, (U)X =T for § # 4, i+ 1). We can
assume that the z; does not intersect the “tails” of I'1,... ,I',.

Let K; be a finite set of D obtained from K U {z;} by contracting z;
to a point ap € z1. K; = {@,a3,...,an}. Let B,_; = B,_1[D, K;]. Let
Ys,...,Y,—1 be a frame of B,_; where Y; can be identified with X; for
i>3.

Let H = {b € By ‘ (@2)b = ag}. From the short exact sequence
1 - Ppo1 <= Bp—1 — Sp—1 — 1 (see [MoTed]) we can conclude that
H is generated by Y3,...,Y,_; and by the generators of P,_;. We re-
move the generators of P,_; that can be expressed in terms of Y3,..., Y,
(see [A],[B], and [MoTe4], Section IV) and conclude that H is gener-
ated by Y2,Y3,...,Y,. The element Y2 corresponds to the motion M’ of
a3,03,-..,a, described as follows: as,a4,...,a, stays in place and as is
moving around dg in the positive direction (see Fig. IIL.2.(a)).

We define a homomorphism @ : Cp(X1) — H as follows:

Let U be a “narrow” neighborhood of z; such that A = 9U is a simple
loop. Take b € Cp(X1). There exists a representing diffeomorphism 3 : D —
D (B(K) = K, Blap =1dap) s.t. Bl =1dy (U=UU).

The diffeomorphism 3 also defines an element of B,_1[D, K1]. This ele-
ment is in fact in H since a3 € z1 and thus (@3)8 = a2. Denote this element
by ®(b). The map ® constructed in this way is obviously a homomorphism,
® : Cp(z1) — H. Clearly, X3,...,Xp—1 € Cp(X1). Clearly, ®(X;) = Y;
for ¢ > 3. Let M be the following motion in (D,K): ay,a9,a4,...,a,
are stationary and ag goes around ai,as in the positive direction (Fig.
I11.2(b)). Let u be the braid in Cp(X;) induced from the motion in M.
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(©

Figure IIL.2.

Clearly, ®(u) = Y. Thus, ® is onto and ®(u), ®(X3),...,®(X,_1) gener-
ate h. One can check that u = Z2, Z3,. But Z3; = X2 X1 AT" and Z3; = Xo.
Thus u = 0. Thus Cp(X;) is generated by o0, X3,...,X,_1 and a set of
generators for ker ®.

Consider 71 (D — KUz, %). Let I’ be the path obtained from connecting
A with * € 9D by a simple path intersecting each of I's,... ,I';, only at *.
We get a (free) geometric base I'y,T's,... Ty of m (D — (K Uzy),*). It is
obvious that T'y = I'\T'3. ®(b) defines in a natural way an automorphism
of m(Dy U {X1}, *) s.t. ®(b) does not change the product ['ol's...T,, and
(I'2)®(b) is a conjugate of T'y.

Consider now any Z € ker®. We have ([')Z = Ty (I = I'i[y),
(I';)Z =T; Vj = 3,...,n. This implies that Z can be represented by a
diffeomorphism which is the identity outside of U, that is, Z = X1, | € Z.
Since Z € Cp(X1), we get [ =0 (mod 2).

Thus, Cp(X1) is generated by X?,0,X3,...,Xn—1. Clearly, C(X;) is
generated by Cp(X;) and X;. O the Claim

Lemma II1.2.4. Let {X1,...,Xn_1} be a frame in By, (X1,... , Xn-1)
their images in By. Let u € G (G is a Bp-group) be such that

ug-1 = u~lr with 72 = 1, 7 € Center(G), 7, = 7 Vb € By;
-1 )
(24) Ug-igrt = U Ugs
(%) g g-1x1 = U Ug, x50

(3) u)gj=u‘v’j=3,...,n—l.
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Then u is a prime element in G, and X, is a supporting half-twist for

Proof. Let Z € By, be any half-twist disjoint from X, Z be the image of Z in
B,,. 3b € By, such that (X1)y = X1, (X3)» = Z. By Claim I11.2.3, b belongs
to t}~1e subgroup of B,, generated by X1,X3,... ,Xn-1 and 0 = X2X12X2.
Let b and ¢ be the image? of b and o in B,. We have uz-1 = Ug g2l =
(’U.X lX ) 1X—1 = (u_ ’u.)-(2—1))~(1—1)~(2—1 = ('T'U,)X-Z—l '“)‘(;15(;1)2;1 = 'TuX-z—l .
UX1—1X2—1X1—1 = TUX2_1 . (T'L[,_l)X2_1XI—1 = 7-2u)22_1u‘}‘_{z_17-(7-u) = u. Then
usy = u. Now: ug, =u for j > 3 (by assumption (3)) and ug: = u (by
assumption (1)). Thus, if X; appears in b an even number of times, then
up = u. Otherwise we replace b by bX;. The “new” b satisfies the same
requirement for b, as above and u; = u. Thus, we can assume u; = u. We
have

Uz = Up-1%35 = Uxp = Up = U-
Let Y be a half-twist in By, adjacent to X;. 3b; € By, s.t. (X1)p, = X1,
(X2)p, =Y. Let b; and Y be the i images of b; and Y in B,. As above, we

can choose by so that uy = u. Applying b, on the assumptions (2,) and
(25) we get (since uj = u, (X1); = X1, (X2)5, =Y):

T e ay ==L o -
’U,Y_1X1—1 =u" uy_, and 'U.le_lxl—l =ug Ug -1 Od
II1.3. Polarized pairs and uniqueness of coherent pairs.

Definition. Polarized pair

Let G be a Bn-group, h a prime element of G, X its supporting half-
twist. If X is polarized, we say that (k,X) (or (h,X) is a polarized pair
with central element 7, 7="hhg_;.

Definition. Coherent pairs, Anti-coherent pairs

We say that two polarized pairs (hi, X1) and (hg, Xg) are coherent (anti-
coherent) if 3b € B, such that (h1); = ho, (X1)s = Xo, and b preserves
(reverses) the polarization.

Corollary II1.3.1. Coherent and anti-coherent polarized pairs have the
same central element.
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Proof. The prime elements of coherent and anti-coherent pairs are conjugate
to each other. Thus by Lemma II1.2.2 we get the corollary. a

We need the following Lemma to prove later the unique existence of a
prime element with given s.h.t. conjugate to a given prime element.

Lemma II1.3.2. Let h € G, a prime element with s.h.t. X. Let b € By,.
Then: Xz =X = hy = h.

Proof. We can choose a set of standard generators for B,[D, K], {Xy,...,

Xp—1} with X7 = X. Let 0 = X3X?X,. Consider C,(X1), the centralizer
of X; preserving polarization. By Lemma I11.2.3, C, (Xl) is the subgroup
of B, generated by X?,0,X3,...,Xn—1. Since X3, .. X _1 are disjoint
from X7, they do not change h (by axiom(3) of prime elements). By Lemma,
III.Z.I, h}zlg = h. Consider ho-—l = h;(2—1)~(1—25(2—1. We have:

hsg-1 = hXZ—IXI—ZXZ—l = (hx;l}?l—l))‘zl—lkz—l

by Axiom(2) of prime element h-1h
= ( Xz—l )XI—IX2—1
= (hZl hg-19-1)g5-1
( Xl'1 X, 1Xl )Xz
by Axiom(2) of prime element _1
= Th-h " "hg-1)g-1 =Thg-—2
( %1% %;

by Lemma II1.2.1(2
Y = @ ThT = h.

Thus hs = h. Thus, for every generator g of Cy,(X), hg = h. Since b € C'(X),
hz = h. a
B

Proposition II1.3.3. Let {h, X} be a polarized pair, h € G, X € B,. Let
T be a polarized half-twist in B’n; Then there ezists a unique prime element
g € G such that {9, T} and {h, X} are coherent.

Proof. Let X,T € By, be polarized half-twists representing XandT. Fbe
By, such that T' = X, preserving polarization. Let b be the i image of b in Bn
Taking g = h; we obtain a polarized pair {g, T} such that {g,T} and {h, X}
are coherent. To prove the unigueness of g, assume that {g;,T} is another
polarized pair coherent with {h,X}. Then 3b; € B, with g = h;, and
T = Xy,, preserving polarization. We have T' = X, = X and X3 -1 = X.
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Denote by = b1b™1, so X;, = X (preserving polarization). By the previous
lemma, hy, = h. Thus, hy, = hy or g = g3. 0

Definition. L, ¢ (T)

Let (h, X) be a polarized pair. T € B,. L, %) (T) is the unique prime
element s.t. (L(h,;() (T"),T) is coherent with (h, X).

From uniqueness we get a simultaneous conjugation:

Lemma I11.3.4. Assume (h, X) and (g, X) are polarized pairs. Let T be the
central element of (g, X). If (h, X) is anti-coherent to (g, X) then h = g~'.T.

Proof. By assumption, 3b € By, s.t. g = h; and X = X}, reversing polariza-
tion. Thus Xjx-1 = X, preserving polarization. Thus (hj 51, X) is coherent
with (h; g1, X;5-1). Clearly, (h, X) is coherent with (h;z_1,X;5-1). From
uniqueness, h = h;g_1 = gg_1. Since 7 is the central element of (g,X’ )s
T=g-g%-1- Thus, gx-1 = g 7. Soh=g"1r. a

Corollary I11.3.5. If (a;, X) is coherent with (g;,Y) i = 1,2, then there
ezist b € B s.t. (a)p=9;s1=1,2.

Proof. Let b be the element of Bn st. (a1)p = gl, (X)y = Y. Now,

((a2)p, (X)p) is coherent with (ag, X). Since (X)y = ((ag)b,Y) is co-
herent with (az, X). The pair (gz,Y) is also coherent Wlth (a2, X). From
uniqueness, (a2)p = go. O

II1.4. B, -action of nondisjoint half-twists.

Proposition II1.4.1. LetT,Y be 2 orderly adjacent polarized half-twists in
By, {h, X} be a polarized pair, h € G, X € B,,. Denote by Y' the polarized
half-twist obtained from Y by changing polarization (that is, T,Y' are not
orderly adjacent). Denote by

L(T) = L{h,)'(}(f'),

L(Y) = Ly, 5T),

L(Y,) = L{h7)2} (Y,).
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Then

(1) L(T)por = L(T) '

(2) L(T)g1 = LT)LY);
(3) L(T)gryr = L(Y)'L(T).

Proof.

(1) By Lemma III1.2.1(1).

(2) Let b € By, be s.t. L(T) = hy, T = X}, preserving polarization. Let
Y1 = Y,-1. Then {X,Y1} is a pair of adjacent half-twists (X = Ty-1, ¥ =
Y,-1), and so hl}l——l o1 = h_lhl-,lq. Applying b to that equation, we get
(L(T))g-15-1 = L(T) T L(T) -1, or

L(T)j-1 = L(T) - L(T)gern

Let by = bY'T~1. Then Xy, = Xpy-1p-1 = Ty-1p-1 = Y (since
Ty-1 = Y7 by II1.0). Using that T,Y are orderly adjacent and X, = T,
preserving polarization, one can easily check that actually X;, = Y, pre-
serving polarization. Because of the uniqueness of L(Y) = Ly 5y (Y), we
get L(Y) = kg, = hjg-15-1 = L(T)p-15-1. Together with the previous
equation we get: L(T)y-1 = L(T)L(Y'), which is (2).

(3) Using Yy-1 = Y’ (preserving polarization) and uniqueness, we can
write L(Y') = L(Y)y-1. By (1), L(Y)y-» = L(Y)~!7. Thus, L(Y') =
L(Y)"'r. From (2) we get: L(T)y,-» = L(T)L(Y') = L(T)L(Y) ! =
L(Y)~'L(T), which is (3).

(We used [L(T), L(T)¢-1] = 7, from Lemma III.2.1, which implies 7 =
[L(T), L(T)L(Y)] = [L(T), L(Y)]. ) O

Lemma I11.4.2. Let h be a prime element in G, X € B, a supporting
half-twist of h, Z a half-twist in By, transversal to X. Then hz = h.

Proof. Let X, Z be transversal half-twists in By, representing X, Z. Let z, 2
be 2 transversally intersecting simple paths corresponding to X, Z (see Fig.
I11.4).

There exists a simple path y such that the corresponding half-twist Y is
adjacent to X and Z, and Z; = Zy -2 is disjoint from X. Let 2; be the path
corresponding to Z; (see Fig. II1.4). Denote by Y, Z, the images of Y, Z; in
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e 4

Figure II1.4.
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IT1.5. Commutativity properties.

Proposition II1.5.1. Let {gl,f'l},{gz,?g} be 2 polarized pairs in G. As-
sume that they are coherent or anti-coherent. Let T be the corresponding
central element of (g1,Y1) (T=g1 (gl))-,l—1).

Then

(1) if Y1,Y; are adjacent, then [g1,90] = 7;

(2) if Y1,Y, are disjoint or transversal, then [g1,g2] = 1.

Proof.

(1) Assume first that {g1, ¥}, {g2, Y2} are coherent. Take b € B, with
92 = (91)b Ys = (Y1) (preserving polarization). Let by = Y, 1Y1
Then (Yl)b1 = Y,. Assume that b; preserves polarization of Y1, Ys.
We have {(g1)s,,Y2} and {go,Y3} coherent with {g;,Y;}. By Proposi-
tion II1.3.3 (the wuniqueness part) we get (91)s;, = g2 Thus we have
g2 = (g1)p, = (91) Syl = 91 (91)92—1, and [g1,92] = [gl’gfl(gl)i;‘l] =

by Lemma II1.2.1(3)
9197 (91) 5191 ' (97 D191 = 91, (91) 1] = Toy =T
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If 131 doe§ not preserve the polarization of }71,}72, consider by = b117'2.
Then Y, = (Y1)s,, preserving polarization. As above, we get

92 = (91)n,
(gl)y O ly, = (gl)yl Syt (91 )y 23 7ah =T(gf1)f/2—1g1,

and then

[91,92] = [91,7(97 )y—lgl]

by Lem II1.2.1(3
= lon, 675 = Lo @il

If {g1, Y1}, {g2, Y2} are anti-coherent, denote Y3 the half-twist obtained
from Y, by changing polarization. One can then check that {gi, Yi},
{gz;?z—l , Yy} are coherent. We have from the above that 7 = [g, (gz)y2 1]. By

Corollary I11.3.1 7 is also the central element of (go, ¥3). Thus 7 = g, (gz)f,z_l
which implies (g92)y-1 = g5 7. Thus 7 = [g1,(92)y-1] = [g1,92'7] =
l91,95 "] = [91,92)5,}- Thus, [g1,92] = 7t = 7.

(2) We can assume that {gl,?l}, {92,17'2} are coherent. (Otherwise, we
replace Y3 by Y3 and g by (g2)y-1 and use [g1, (92)Y; '] = [91,92]5," (see
above).)

Consider first the case where Y;,Y; are disjoint. We can choose a stan-
dard base of By, say ()Z'l,Xg, X’n 1) such that X,=Y1, X3 =Y, and
the given polarizations of Vi, Y, c01nc1de with “consecutive” polarlzatlons of
Xl,X3 (“end” of X, = “origin” of Xz, “end” of X, = “origin” of X3) Let
b = X2 1X1 1X3 1X2 Then Vs = (Yl)bl, preserving polarization. From
Proposition II1.3.3 (uniqueness) it follows that

92 = (91)n,
= (9 525 = (00 (9 g ) 50 %00 = (01 D g1 (90) 201 x50 20
=(g1_) 1(91) TIXIR! —(91 ) 2-1(91))(2-1)(3--
By II1.2.1(3) (g1, (91))22—1] = 7, which implies
91, (91) 571 %71] = (91, (91) ;1 )30 =730 =7
We can write

[91,92] = [91, (91_1)5(2—1( 1) "—1)“(—1]

= [gla (gl 1] [glv gl 1X3 1](91) _1 =T-T= T2 =1
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Assume now that Y;,Y; are transversal. As in the proof of Lemma
111.4.2, we can find a half-twist 7" € B, such that T is adjacent to Y;,Y>
and V) = (f’g) P TS disjoint from Y. Let b € B, be such that ¥ = (¥7),,
g2 = (91)p- Let ' =bT2, g = (q1)y = (92)T'2 Then {g2,Y2} is coherent,
or anti-coherent, with {gl,Yl} Since Y2,Y1 are disjoint, we get from the
above [g1,95] = 1. By Lemma IIL2.1 gj = (g2)f-2 = g7, Or g2 = ghT.
Therefore, [g1,92] = [91,957] = [91,95] = 1. O

Recall that here exists a natural homomorphism vy, : B, — Sy. ¥, (X;)
is the transposition (i ¢ 4+ 1) for X; a half-twist connecting the points ¢; and

qi+1-

Definition. P,
P n = ker 'l)bn.
Recall from [MoTed4] that: P, is generated by ZEJ, where:
ZU = (Xiz)Xi.H...Xj_l .

Definition. P,
P, = ker(Bn L Sn) where 1, is induced naturally from .

Proposition II1.5.2. Assume n > 4. Let X1, X, be 2 adjacent half-twists
in By. Let ¢ = [X?, X2]. Then the commutant P! of P, is generated by c
where ¢y = ¢ Vb € By, and ¢ = 1. Moreover, if (}71,172) and (Zl,ZQ) are
two pazrs2 of adjacent half-twists, then [Z2,23] = [Y2, V3] = (22,25 =
[Zl 7 3 ] =c.

Proof. Let B, = By(D,K)). Complete X; and X3 to Xi,...,Xn_1, a
standard base of Bn, X = (H(z;) and z1,...,Zn—1 are simple paths in
D. Let ¢ = [X2,X2]. Let z = (1) 4 %%, We have a quadrangle formed by
z1,T2,T3,%, (see Fig. 111.5(a)).

Denote by X € B, the half-twist defined by z. Evidently, X1, Xs, X3, X
form a good quadrangle in By,. Thus by Lemma II1.1.2

(1.10) X2X2 = X2Ix2.

Denote y; = Xf, Yo = X2, Y3 = X3, Ys = X2, (the squares of the

edges), d = X’lX' 2X7Y, dp = X, X3X5 !, (the squares of the diagonals),

y' = X,X2X; ' (the square of the outer diagonal)
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Figure IIL.5.

See Fig. II1.5(b) where we denote the paths corresponding to the half-twists
whose squares we considered here.
Clearly:

Y193 = Ysy1
d]. = (y,)yl_l
(y3)ar = (dz)ma—z = (dz)y3-1

y1y2d1 = yoy1y' = A2 (a central element of P;).
We rewrite (1.10) to get

(1.11) Y1 =y193y;
Conjugating (1.11) by X, we get:
(1.12) dy = y1ysy' ™
conjugating (1.11) by X, we get yq = dl(dg)ya—l -yz_l. Since d; = yly’yl_l,

_ _1 _—1 by (1.12) _ 1 —1 —
ya = 19y tysdeyzs Myt = vy tusyiysy sty

We compare the last expression with (1.11) to get:

(1.13) y'ysy lyzt =ys, or [v,u3] =1

Since y,ys are squares of two adjacent half-twists in By, and any two
pairs of adjacent half-twists are conjugate, we conclude from (1.13) that:

(1.14)  V pairs of adjacent half-twists, say Z1,Z, in B, : [22,Z3] =1,

which also implies that [Z2, Z3] = [272, Z3] = (22, Z5 %) = [272, Z5 2.
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Conjugating (1.11) by X3! we get:

-1 - 1 o1 (114
dy = y1ys(da) -1 = y1ys - yady 'y3 ' = 193 - dylys ! 029 g a5y,
We have by (1.14) that 1 = [y?,y2] = [yl,yg]yl_l - [y1,y2]. Denoting
¢ = [y1,y2], we can write:

(1.15) ot = ¢l or ¢y =ch

1

Denote by P the subgroup of B, generated by y1,y2,d;1, and by @ = A% =
y1y2d1 = Y211y’ (a central element of Ps), so that

(1.16) v =yt

So, cg, = uwlz, = v ™ S L urlvrtel = v - yilvrte - ot
o tyayr = Y3 'y ey = [y 'y ] = [y2,51] = ¢ 1. Thus we have czp =
(c‘l)j{1 =c.

By (1.15) Cxz =0y = c L.

We compare the last two results to get ¢ = ¢™! or

(1.17) =1 and cg, = ¢

Using a conjugation which sends (XI,XQ) to (Xg,X’l), we obtain from
(1.17)

(1.18) c}é =c7 !, or cg, = C-

~ (1.17) and (1.18) show that V z € Bs (the subgroup of B,, generated by
X1, X5) we have

(1.19) c; =c.
. by (1.12) -
Consider now c3, = [y, 423, = W1.d2] ~ = [y1,91939 =
o o _1 _1 by (1.19) 4
yiyysy Yyt = wys s (Y Tl s et T = wseys Tyt =

Cyrlys! = o3 = cyi = Cx2, shortl): Cxz = 0}23.‘ This implies %, =~c.
Since ¢ = [X?, X2], we have VX, j > 4, g, = C. Thus Vb € B, ¢y = ¢
and ® =1.
Let (Y1,Y2) be a pair of adjacent half-twists. Since every 2 pairs of ad-
jacent half-twists are conjugate in B,, 3b€ B, s.t. [Y2,Y2] = [X1, X2, =



Braid Group Technique in Complex Geometry V 55

cp- Since ¢y =c Vb € Bn, [YIZ,YZ] =c Sincec? =1, c€ Center(Bn) we
also have [YZ,Y, %] = [¥; Y2 ] = c. In particular, lf (Z1, Zy) is another
pair of adjacent half- tw1sts, [Z2,Z3] = [Y2,Y#] = c. Because any two dis-
joint and transversal half-twists of B, commute, and P, is generated by
ij = (Xt?))?i“---)?j—ﬂ 1 <i<j<n (see [MoTed]), we conclude that P! is
generated by c. a

I11.6. 1'5'n as a ﬁn-group.

Recall: Ab(B,) ~ Z (B, is generated by the half-twists and every 2
half-twists are conjugate).

Definition. P,
P, o = ker(P, — Ab By,) (“degree zero” pure braids).

Definition. 1—:’n,0
15,170 is the image of P, o in Pn.

Lemma I11.6.1. Let X, X2 be 2 consecutive half-twists in B,. Let u =
(X2 )X—1X2 . Then u € P,y wu is a prime element in P, (considered as a

By, -group), and X1 is the supporting half-twist of u.

Proof. Clearly, u € P,p. Since X;XoX1 = XoX1X2, (X1) x;1 = (X2)x,
and thus, u = ()21)?2_1)22"2 = ()22)3215{2_2. We often use here the fact that
2 ~ ~ ~
(X1)x;1 = (X2)x, as well as the fact that (X2, XF2] = ¢, ie., X;2X3 =
cX2X? and (X%)Xgl = (X2?)x,c for ¢ € Center(B,), ¢ = 1. Complete
X1,Xs to a frame of B, : X1,..., Xp_1. ((Xi, Xsq1) =1 and [X;, X;] =1
| — j| > 2.). We shall use Lemma III.2.4, that is, we must check conditions
(1), (24), (25), (3) of Lemma III.2.4.

i (12 We have Ug-t = (X%)f( X1 (X{Z)Xl—l =~X§ . (X1_2))'{2. Since ¢ =
[_~X12,X~§] (see Proposition I11.5.2), (X; 2)X2 = (X1_2))'(2-10- Thus: ug-1 =
X2 (X7 )X;lc =u"lec

(24) Since [X7, X5] = ¢, ug-1 = (X g2 - X3 = XPX;? = X% - X,
and ug-13-1 = (X572 ) X2 (X7 ) X2 = C(Xf2))'(2—1 - X2,
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) On the other hand, 'U.u—lu)'(;1 = X2. ()~(1_2))~(2_1 X532 X2 =c(X7%) g
X2. We get

2

B
Ug igol = U Ugst

(2p) Using (1) and (2,), we can write

s SN L
quXZ-1—-(u c)X-l—uX_1 c,
ufﬁff{lfffl:(u )% 1X-1—ux_1u-c,

-1

_1 . _ _
Ug Ug gyt = CU-U Toic=ug

X2 X21U'C

(we use [u, u)-gl] = [(X~12)Xv2—1 X572, X;2X2 =c-c-c=c). Thus,
— o=l
’U,X—lj(;l)'{l—l -—'u,)-{lquxz—l.

(3) Clearly, Vj > 4, ug, = u. Consider ug-1 = (X}) 2 ~1%-1 (X )X_
Since u can also be written as u = (Xl)X—l X2 = X2 2 (Xl)x*l c=
X2 (Xl)XZ, we have:

ugor =u e (KD goagr - (B = %57 (g, & K- (D) go1501
= (X2)g, - (XB) g1

which is true, because {(5(1)5(2,)2'2,()?2))23_1,()21)5(;15{3_1} form a good
quadrangle (see Fig. IIL.6). O

Construction of G(n).

For n > 3 we define the group G(n) as follows:
Generators: si,ui, ug,... ,Up—1-
Relations:

[s1,ui) =1 Vi=1,3,...n—1;[uj,u;] =1 when |i — j| > 2;
[s1,u2] = [us, uit1] = [u1,u2] Vi =2,3,...n — 2;
[u1,u2 [ul,ug]s1 [u1,ugy, Vi =1,2,... ,n —1;

[u1,ug

] =
]2
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Figure III.6.

Equivalent construction of G(n).

Consider a free abelian group A(n) with generators Sq,Vi,...,V,-1 and
a skew-symmetric Z/2- valued bilinear form Q(z,y) on A(n) defined by:
Q(Sh‘/'t) =0Vi=1,3,... ,n—1; Q(‘/;: V?) = 0 when IlL_Jl > 2, Q(Sl) ‘/2) =
Q(Vi,Viz1) =1Vi=1,2,... ,n—2. One can check that there exists a unique
central extension G of A(n) by Z/2 with Ab(G) ~ A(n), G’ ~ Z/2 and such
that Vz,y € G[z,y] = Q(T,y) where (Z and 7 are the images of z,y in A(n)).

Claim II1.6.2. (1) The above central extension is isomorphic to G(n).

(2) Ab(G(n)) is a free abelian group with n generators (i.e., A(n)) and
G(n) ~7Z/2 (generated by [u1,uz]).

(3) The following formulas define a Bn-aftion on G(n) for (Xi,...,
Xn-1), a standard set of generators in By, and v = [u1,usg).

X1-action Xy-action Xk-action, k>3
81 — 81 81 — U281 81— 81

up —> ui‘lu U] — UUY Uk_1 — UpUk—1
Uy — UIU2 Uy —> u2_11/ up — u;lu

Uj — Uj Vj >3 wuz — uous; Ukl — UgUg+1

uj >uj Vi >4 uj—u; Vi#FE—-1kkE+1

(4) Letbe Bn,y= (X'l)b. Then the y?-action on G(n) coincides with the
conjugation by (s1)p.
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(5) Let
(1.20)
( . o .
(s1) if (1,5) = (1,2);
Claim II1.6.2(3, - .
(s1)%,.%;_, ( = ()'”'j—l---u231) ifi=1,722
Sic =
VTN ()%, % K Ky =
_Jveuir U U1 URST if1>3, j>1
L V-Uj_1...U181 ifi=2, j>1.
Then:

(84, Sk1) = {V, if ({i,5} N {k,1}) = 1);

1, otherwise.

(6) Let Fo_q be the subgroup of G(n) generated by (sn—1n, Sn—2,ns - S1n)-
B,_1 acts on Fp,_1 as follows:

(1.21) (sjn) Xk =sjn  j#kKk+1; k=1..n—1
(k0) Xk = Skt1n

% -1
(3k+1,n)Xk = SknV = Sk+1,nS5knSk 41 pn

This action is a Bp_1-action, where the action of the gemerators
Xn—2,...X1 of Bp—1 correspond to standard Hurwitz moves on

(Sn—l,na Sn—l,na cre 'Sln)'
(See the definition of Hurwitz moves in Chapter 0.)

(7) There is a natural chain of embeddings G(3) C G(4) C --- C G(n —
1) € G(n) corresponding to the chain: (s1,u1,u2) C (s1,u1,ug,u3) C
... C (sl,ul, . un—-l)-

Proof.
(1), (2), and (3) are easy to verify. )
(4) Consider first the case b= Id. From (3) we get for the X?-action:
81— S1, U1 —> U1, U — UV, U; — u; V5 > 3.

At the same time by the first construction:

(31)81 = 81, (Ul)sl =u, (u2)31 = 31_1’“231 = ugv, (uj)sl = Uj VJ 2 3.



Braid Group Technique in Complex Geometry V 59

Thus X 2-action and s;-conjugation coincide. Consider now any b € B, and
any g € G(n). Let h = g;-1. We have:

9x2), = 1226 = (M) 22)6 = (Bs1)o = (A6)(s1), = G(s1)s-
(5), (6), (7) are easy to verify. O

Lemma I11.6.3. Let n > 3.
Let {X1,...,Xn-1} be a frame of By,
Let
X1 if (4,5) = (1,2);
Zij = § (X1)x3..X; ifi=1,723
(X)X X, 1 X1 X Y122, 5>

Let Zij be the image of Z;; in B,.

Consider G(n) as a By-group as in Claim I11.6.2.

Then there ezists a unique Bp-surjection Ay, : P, — G(n) with A, (X?) =
sy and An(ZfJ) =55 for1<i<j<n.

Proof. Use induction on n.

For n = 3, A3 P3 — G(3) must be defined by )\3(Z~i2j) =s;5,1<i<j<3.
One can check directly that Az is well defined, and that it is a Bs-surjection.
Uniqueness of such A3 is evident.

Assume now that n > 4 and that the desired A,_; : Py — G(n—-1)
exists.

Considering (X3, X2) C (X1,X2,X3) C ... C (X1,... ,Xn—1), we get
a chain of embeddings B3 C By C ... C B, and the corresponding chain
P; C Py C...C P,. To the latter corresponds a chain of homomorphisms:

BB B33 B, where Py is obtained (by definition) from Ps
by adding the relations: [23,, 23] = (275, Z33] = (233, Z35) and [Z3,, Z35]* =
1.

It is known that the set {Zz?j,l < i < j < n} generates P,, and P, ~

P, ;1 X F,_1, where P,_; is the subgroup of P, generated by {Zizj, 1<i1<
j <n—1}, F,_1 is a free subgroup of P, generated by {Z2,,1 <i<n-—1},
and the semi-direct product P,_; X F,_; is defined according to the P,_;-
action on Fj,_; which comes from the B,_j-action by conjugation (using
B,_1 C B, D P,). The latter coincides with the standard B,,_;-action on
F,_; (the generators X,,_s,... , X1 of B,_; correspond to standard Hurwitz

moves on (Z2_) ,Z2_4p,.-. » Z1,) (see [MoTed], Chapter 4).
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Using canonical P,_; — Isn_l, we obtain from A,_; a B,_1-surjection
f\n 1: Ppo1 = G(n). For the free subgroup F,_; of P, generated by
{72, n—1 < i < 1} define py_y : Fy -1 = G(n) by pn—1( z2) =
Considering P, as P,_1 X F,,_1, we define A,: P, > G(n) which on Pn 1
coincides with A,_; : P,_; = G(n —1) C G(n) (see Claim IIL6.2(7)) and
on F,_ coincides with p,_1 : F_1 = G(n). To show that such A, exists
one has to check the following:

1) The conjugation of p,_1(F,_1) by elements of An_1(P,_1)(C G(n))
coincides with the P,_i-action defined by P,_; C B,-1 C B, — B, and
the given B,-action on G(n). That is, Vf € pin_1(Fn_1) and VA of the form
f&n_l(f") (Y € P,_1) we must have h~! fh = fy-

2) The P,_j-action on pn,_1(Fp_1) (defined by P,_1 C Bp_1 C
B, — B, and the given Bp-action on G(n)) comes from B,_i-action on
pn—1(Fn—1) in which X,,_o,... X; correspond to the standard Hurwitz moves
on (3n—1,m Spn—2ny Sln)-

Proof of 1). Since Vb € Bp_1, Aq_1((X2)s) = (s1)p we see from Claim
I11.6.2 that Vf € ,un—1(Fn—1), ff\n-l((X?)b) = (fsy)o = f(f(f)b' Since P,_1 is
generated by {Z%,1 <4 <j <n—1},ie., by {(X})s,b € Bp} we get 1). O

Proof of 2). It follows immediately from Claim III1.6.2(6). O

Thus, 1) and 2) are true and we can extend A1, ln—1 t0 & homomor-
phlsmA P( Pn 1 X F_1) = G(n) such that forl1<i<j<n-1
A n(Z%) = An_1(Z%) = sij, and for 1 <& < n—1An(Z2) = pn-1(Z7,) = sin,
in short An( ij) = sm for1<i<j<n.

Using induction, one can check directly that A, is a Bp-homomorphism
(recall that by Claim III.6.2 we have explicit formulas for s;;’s).

Because sy, = Up—_1 - ugs1 (by 1.20), that is, up—1 = S1n(Un—2 ... u28) 7L,
we see that G(n) is generated by G(n—1) = An(Paz1) (= Ap_1(Pa_1)) and

= An(Z2,). Therefore A, is a By-surjection.

Let N = ker(B, — By) (= ker(P, —» P,)). Let T = X?X3X;27; 7.
Clearly, N is generated by {T},b € B,}. We have A,(T) = A4(T) = 81-834-

1 _1 Claim 111.6.2 -1 -1 -1 -1
S93 514 = 81 ° MU3UUL - UST * ST Uy Up Ly sTlugtug A— S1Mu3Ug -
51 lu2 1u3 = Id. Since A, is a B, homomorphlsm we get A, (Tp) = Id

Vb € By, and thus An(N) =1d. Hence A, defines canonically a B,-surjection
Ay : B, = G(n) with Ap(X?) = s1.
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Uniquene§s of such A,, follows from the fact that 13n is generated by the
By,-orbit of X2. O

Theorem II1.6.4. There exists a unique Bp-isomorphism A, : B, — G(n)
with Ay (X}) = s1. In particular:

(1) AbP, is a free abelian group with n generators, P! ~7./2 (generated
by c = [X12,X22]);

(2) Pno is By-isomorphic to the subgroup Go(n) of G(n), generated by
Ulyeee yUp—_1, Atlpn,o is a free abelian group with n — 1 generators
(€1, vbnr}, Phg = /2, generated by ¢ = [€1,&]; (v € Goln)
corresponding to ¢ € 13n,0).

(3) Pnpo is a primitive Bn-group generated by the By-orbit of a prime
element u=X2Y"2 where X,Y are adjacent half-twists in B,, T =
XY X1 is a supporting half-twist for u.

Proof. Clearly, B, is generated by {X?Z; > 21 <4< j < n} Because
X?-Z;? = X} 2% Z3; - Z;;” and both X372, Z% - Z;;* are conjugates of
u, we see that Pn,O is generated by the B,- orbit of u, and since u is a prime
element of P, (, this means that f’n,o is a primitive Bn-group. By Lemma,
II1.6.1, the s.h.t. of u is Y ' XY. Thus, we proved (3).

Polarize each X; (and X;) according to the sequence (X1, . o X 1) (the

“end” of X; = the “origin” of X;1). By Proposition II1.3.3 Vz =1,...,n—

1 3 unique prime element § = Ly, Xl}(X ) € P, such that {§z,X }is
coherent with {u, X 1}. Clearly &; = u.

By Proposition 111.4.1 we have Vi=1,... ,n —1:

(122) (E)x1 = &0 (&)x = Gimti = (E)xz = Gitinn.
It is clear also that Vj #14, i —1,i+1
(1.23) &)z, =&

We see from (1.22), (1.23) that the subgroup of 15"0 generated by
(&1,... ,€n—1) is closed under the B,-action. Since P, ,0 is generated by
the B,-orbit of u = &1, we conclude that Pn o is generated by (¢1,... ,&n—1).
This implies that P, is generated by (Xl 1,60, ,€no1)-
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We have & = Ly, ,1(X2) = (€1) g1 51 = (X7 )¢, - X7, which implies
that

(1.24) [X7,6] =c.
By Lemma II1.5.1 we have

¢ ifli—jl=1
1 ifli—j>2

(1.25) [, &3] = {

Observe also that
(1.26) (XD)z, =& X3

Formulas (1.22)—(1.26) show that we can define a Bj,-homomorphism
M, : G(n) — P, with M,(s1) = X2, M,(u;) =&, i=1,...,n—1. (See
Claim II1.6.2.)

Since P, is generated by the By-orbit of X? and G(n) is generated by
the B,-orbit of s;, we conclude that A, and M, are inverses of each other.
a

II1.7. Criterion for prime element.

Proposition II1.7.1. Assume n > 5. Let G be a Bn-group,

(X1, X2, , Xn—1)

be a standard base of Bn. Let S be an element of G with the following
properties:

(0) @ is generated by {Sy,b € B,};

(La) Sgo1gs1=5""S%-1;

() Sz, 27157 = Sg, Sxxzs

(2) Form= SS)'(I—I, T= Sf({l we have:
(24) TRe =7T;

(%) 7 =15
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(3) Sx, =5Vi=3;

(4) Se =S, where ¢ = [X?, X3].

Then S is a prime element of G, X1 is a supporting half-twist of S and T
is the corresponding central element. In particular, 72 =1, 7 € Center(G),
=17V b€B,.

Proof. The proof includes several lemmas. From Theorem IIL5.2, ¢ €
Center(B,), ¢ = 1. From Theorem IIL.6.4 it follows that P is gener-

ated by c. Pl isa normal subgroup of B,. Denote by an = B,/P.,
P =P,/P. =AbPB,. P,isa commutative group. We have ¥n : Bp = Sn.

By abuse of notaion we use 1, for wn Let Y € B,. By abuse of notation we
denote the image of Y in B, or in B, or in P, by the same symbol Y. It

is clear that B, acts on P (through conjugations) as the symmetric group
Sn = Bn/Py.

Since S, = S and ¢ € Centean, we have Vb € B, (Sb)e = Spe =

(S¢)p = Sp. Since G is generated by {Sp,b € B,} we have Vg €EG g.=g.

In particular, we conclude that B, acts on @ as its quotient Bn; in other

words, G is a B,-group.

Let (D, K) be a model for B,, K ={ai,... ,an}, Bn = Bp[D, K]. Take
any a;,,a;, € K. Let 1,72 be two different simple paths in D— (K —a;, —a;,)
connecting a;, with as,, let H(y1), H(y2) be the half-twists corresponding

to 1,72, and let H(vy;), H(72) be the images of H (1), H(v2) in B,,. O

Lemma 1. Let y;,7v2 be 2 simple paths in D — {K — a;; — a;,} connecting
ai, with a;,. Then: H(y1)? = H(y)2

Proof of Lemma 1. Choose a frame of B, (Y7,... ,Yn_l)~ s.t. Y1 = H(y1)-
Let b € By, s.t. y2 = (71)b, that is H(y1)s = H(72). Let ¥; be the image of

Y in B,.

Let o1 be the image of b in S,,. Since gai)b = a;, (a;)b = aj, 01 €
Stab(i) N Stab(j) in Sp. The subgroup of B, generated by ¥3,...,Y,_1
is mapped by 1Zn : é — Sy, onto Stab(i) N Stab(j). Choose by in this
subgroup with its image in S, equal to o1. Clearly, (Y1) = Y1 Since the

image of b1 15 in S, is equal to oy 151 = 1d, we have b 1b S P Since P
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is commutative when considering Y as an element of P, (17'12) p=1h = }712.
1
Thus, we have

H(m2)? = Hm)} = W) 5015 = sy = ¥ = H(n)* O Lemma 1

Definition. f;;

Vi,j € (1,...,n), i # j, we define f;; € P,, as follows: Take any simple
path v in D — (K —a; — a;) connecting a; with a;. Let fi; = H(v)?. Lemma
1 shows that this definition does not depend on the choice of y. We choose
fori<j:

(Xi2)Xi+1 """ Xj—l 2<j5—1
X? i+1l=j.
It is clear that for o, the image in Sy, of b € Bn we have:

()b = F@yor,(j)onr -
Tt is clear from our choice of «y for f;; = H(v)? that:
Yn(H () = (5,5)-

It will be convenient to use the following notation for g € G and b € B, :

Notation. [9,b] : For g € G, b € én and the action of én on G, we
denote [g,b] =g - gb__ll.
One can check that:

g=9[g0=1

[9,01: = 9:(92), -

[, 8] = 9,0

9,671 = [g,8]; "

[9192,b] = [g2,b] 1 - [91, 0]
[9,b162] = [9,b1] - [9, ba] -1

Notation. derlineQpm
Vbe B,, VlL,me(l,...,n), | #m, we denote Qp1m = [Sb, fim]-
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Lemma 2. (i) Letb € én be such that ({1,2})¢n (b) N {l,m} = 0. Then
Qb,l,m =1

(i) Let Q = Quu3 =[S, fi3']- Then Qg1 = Q.

Proof of Lemma 2.
(i) Let {I1,m1} = ({l, m}D)Yn(0) ™. So (fim)p-1 = fi;m,- We have {1,2}N

{l1,m1} = 0, that is, 3 < 11,3 < my. By our choice, fim, is a product o X;
for j > 3. Thus, using property (3) of S we get th,ml = S. In other words,
[S, fl:,lml] =1. We get
(@v1m)e-1 = [y FimTo-t =[S, (Fi )o-1] =[S, i 0] = 1,
and so Qp1m = 1. 0O Lemma 2(1)
(ii) From S ikt = S-S %5 (assumption (1,) of the Proposition) it
follows that S X1 = SS %y1Ro Applying f({ 1 we get

(1.27) Sz Sixs =555 S enben
which, after applying )2'2_ 1. gives:
Sg-15-15-1=83-185-15-15-15-1.
XXX XWX TIXTXS?
Since SX;IX;IX;I = S)'(;IX;IX’;I = S)’(;U’(;1> we obtain SXZ—'I)'(a—l =
S)?QISXJI}?;IX;IXZ;I’ or

(1.28) S)"{z—l :SX IX IS_ 1X 1X 1X_

Let b; = X'_IX_IXJIXQ_I. Observing that (f13))'(2‘1 = f12, we get from
(1.28): Qg1 =[Sk~ 5 (FEh) %1 =[Sz Xa.ls,gl, fi3']- Thus:

(1.29) Qi1 = [Sil’fﬁl]sgi.l,-{a—l [Sgrizsn 2]

Since ¥ (b1) = (2 3) (1 2) (3 4) (2 3) (products of transpositions),
(1, 2})1/)n n) = {3,4}. Since {3,4} N {1,2} = 0, we get from (i) that
Q2 = 1. Thus, [Sp5 '] = [Sh,fi'l5, = (Q510)s,- (1.20) now
gives:

(1.30) Qg1 =[Sz fia' )
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. Qy

ay Qs

Figure IIL.7.1.

Consider a quadrangle formed~by {a1,a9,as3,as5}, as in Fig. I1I1.7.1. By
Lemma II1.1.2, we can write in P,: f3sfi2 = fosfis, or fio = f3_51f25f13,
fiz' = Fi3' f35' fas

From (1.30) we get:

(1.31)
Q}Z‘;l = [S)Z',;l)"(glafl_:alfzglf%] = [SX2—1)~(3—1,f1_31] : [S)?gl}?;l’f{f)lf%]fls

Consider [Sg-1g-1,f3 fas] = [Sgrig-1fas] - [Sxrizo1s fasls

—13-1 -1 :

Q}'{Z‘I)'(g~1,2,5‘[3)”(2—1)'(3—1’ fss ]f3—51f25 = Q)"(,;l)”(;lg,s‘(Q)~(2-1X§173,5)f3—51f25- Since
Y(X,; X7 = (2 3)(3 4), the images of {1,2} under it are {1,4}. But
{1,4} n {2,5} = 0 and {1,4} N {3,5} = 0. Thus, we get by (i) that
QX;IX;1,2,5 = QX2_1)'(3—1’3’5 = 1, and so [SX2—1)~(S—1,f2_51f35] = 1. (1.31)

. . -1
n0VfI lml.)lles ijz—l = [S}Z-Q—lj(s—l,fw ]- By (1.27) S)"{glxs—l =5 SX2—1X1—1)~(3—1
which gives

Qi1 =18 Sgrig-1gz1, fi3) = [Syogoign, fials— - 18, f5']

= (QX2—1X1—2)~(3—1,1’3)S—1 - Q.
The value of (X, X 'X;Y) (= (2 3)1 2)(3 4)) on {1,2} is

{2,4}. Since {2,4} N {1,3} = 0 we get from part (i) of the Lemma that
QX{I)'(I‘I)??J,;:, = 1, therefore,

QX2_1 = QD Lemma 2(ii)

Lemma 3. 7= QL.

Proof. By the assumption on 7, S = S~17. By definition of T, TXT2 =
Sg-1%-2- We apply assumption (1,) twice to get, using Sg-1 = S~17, that
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(S—IS)'(;l)qu = S).-;:'_IS)‘{Z’—I)"(I—I =7715. 5_15)22—1 = 7‘15)-{2_1 = 77IT.

Tg-2=1"'T,
or
(1.32) 1= TXI_ZT—l.
Applying X? on (1.32) and using TRz =T (assumption (2,)), we get
T =T Ty = [T X77] = [Sgo 2] =[S, (g, 550 = 18 'z
— Qe by Lemma 2 0,

2

(1.33)0 Lemma 3 T =Q, or T=QL

Lemma 4. Vj >3, T%, =T

Proof of Lemma 4. From 7 = SS)‘(I—I and S)"(,- = S Vj > 3 it follows that
Tk, =T Vi 23 O Lemma 4

Lemma 5. T, =T
1

Proof of Lemma 5. Let us use now T;{ll = 77 ((25) of the Proposition).
By Lemmas 2 and 3 75, = 7.

— — g1 - . —=(q-1 I -

Thus, 77 = TS}Z;I = S)'(Z_ITS S = (S TS)X2-1 = (TS)XQ—I.
~ — ~ = -1 _ —1 >

So g1 =Tg, =710 = (15 )x;, 0

(1.34) TS = 7';(131)'(2-
Since 74, = 7 and Sg, = 5, we get (75) ¢, = 75 and

(1.35) TR %Ry = (Ts )z, =75 = TR1%,:
Applying Xz_l on (1.35), we get 7}21—1;{25{3)‘({1 = 7')'{1—1. Since Txs =T and

(X2,X3) =1, TR R XaXyt = TR KoKy = TRPIRD RoXs = TR KR
Thus:

(1.36). ’7'5{1—1)'(25(3 = T)Zl—l
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Combining formulas (1.35)-(1.36) we get TRl = Ty, Applying it to
X1 we get T = TR T TR S TR Thus 7 = TR %1 OF

Tg, =Tg, =T 0O Lemma 5
Lemma 6. Tx; =T Vi=12,...,n—1.
Proof of Lemma 6. By Lemmas 2, 3, 4, 5. 0

Lemma 7. 7 =771,

Proof of Lemma 7. From 73 =75, =7 and (1.34). O
Lemma 8. 7¢ = 7.
Proof of Lemma 8. Consider assumption (1;) of the Proposition:
_ o-1
SXI)‘(?Z-I)"(I—I = S)?ls)zljgl.

: - -1 ~1 -
Using .S’~l-1 = S~ 17 and Tg, = T, We get S = S)?l'r, or S)-(1 = Sr71,

Sz = 7871, Assumption (1) now gives (using %, =TVi=1,...,m— 1):
-1 _ a1, _ao-1 _ co-1 _ qp-1
TS)~(2_1)~(1_1 = ST TS}-(?_l = S.S')-{;1 = ST,

On the other hand, by (1,) and (2), 5’5(2—1;(1—1 = S71T. Thus
TS)—(i_le—l =7T7'8.

We compare the last 2 expressions to get 77718 = ST~!, or
(1.37) T=8T7'S7'T, or Ty, =7T""
By Lemmas 3 and 6

-1
Q= Q)?I'IX'QIX';I = [SXle;1X§1’ (fi3 ))"(1-1)'(2-1)"(;1]'

Thus:

(1.38) Q=[Sxr1x;1x0 fau]



Braid Group Technique in Complex Geometry V 69

Figure II1.7.2.

(we use ({1,3})%(X" X5 X5 1) = (1,31 2)(2 3)(3 4) ={4,2}).
Considering a quadrangle formed by a3, a3,a4,a5 (see Fig. I11.7.2)

we can write in P, (Lemma T11.2.2) fsf2e = fosf34, or f24 = fg,s f25f34,

f24 = f34 f25 f35. From (1.38) we get, denoting by b = X X2 X3 ,

(1.39)
Q = [S)?;l)z{l)"(gl’fil] = [Sb’f.’s_zllfz_51f35]
= [Sb,f3—41][5baf2_51f35]f34 = Qb,3,4 : [Sb>f2_51]f34 : [Sbaf35]f25f34
= Qv3.4 (Qb2,5) s ° [Sb,fg},l]g-lslf%m = Q34" (Q,25) fz - (Qb,35) %
Now, ({1,2))%(b) = {L,2}1 2)(2 3)3 4) = {4,1}. Since {4,1} N

{2,5} = 0 and {4,1}N{3,5} = 0, we get by Lemma 2 that Qp25 = Qp35 = 1,
and by (1.39)

Q = Q34
We can write:
_ -1 - —_m-1
S)E.l-l)'(z-ljgl =(S T)X 1571 = S IX'IT _TXQIT
(using 75, =7 Vi). So
by faa=X% _ _
Q=Quaa=Sirgngnfa]l = Thn X3

= [n X e - [T K371 = [T;EI,X3 =117 X3 % ¢,
Since @ %, = @, we get
(1.40) Q=[T" %7
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This implies

_ tion 3 . _
Qs-1= (T Tgg)s1 2 Tgh - (Ts1)zs

= [T_la X;;Z]T‘l[T, X?,_z]

Y -1 %52

by Lemma 4 {1 o_ (1.
= [T 1’X3 2]7"1 =

Using Q = 77! we get TS__ll = 'rT__ll. Thus, 7g-1 = 7 and 7g = 7.
O Lemma 8

We can now finish the proof of Proposition II1.7.1. _

By Lemma II1.2.4, we only have to prove that 72 =1, 7, = 7 Vb € B,
and 7 € Center(G).

By the previous Lemma, 7¢ = 7, and by Lemma 7, 7¢ = 7~!. Thus,
r=7"land 72 =1. .

By Lemma, 6, T, =T Vie (1,...,n—1). Thus 7, = 7 Vb € B,,.

By Lemma 8 75 = 7, i.e. [1,8] = 1. Let b€ B, : [, 8] = [1p-1,8]p =
[7', S]b = 1. 5

Thus 7 commutes with Sy Vb € B, Since ker(B, — Bn) acts trivially

on G, B,, acts on G via Bn, and thus 7 commutes with Sp Vb € B,.
By assumption (0) of the proposition, G is generated by {Sp},c_ - Thus
7 € Center(G). O Proposition I11.7.1

IV. New Set of Generators for G.

Recall from Chapter II that G = G(e15) = m1(CP? — S3, %) is generated
by E;, E! and satisfies the relations listed in Theorem II.6.

In this chapter we shall introduce new generators for G, using the braid
group Bg and the quotient Bg from Chapter IIL.

IV.1. New presentation of Bg.

Definition. T; i=1,...,9 i#4
Consider a geometric model (D, k) for #K =9 as in Fig. IV.1.1.
Let {ti}?=1 ;24 be paths connecting different parts of K as in Fig. IV.1.2.
Let T; be the half-twist corresponding to t; 1 =1,...,914¢ # 4. (T3 =
H(%))
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IS € (3 ¢

Figure IV.1.1 Fig. IV.1.2.

Figure IV.1.3.

Lemma IV.1.0. T; and T; are adjacent for (i,j) as follows:
i, €{1,2,3}
i=5 j=3,8,9
i=6,7,8 j=i+1.
T; and T} are disjoint for (3,5) as follows:
i€{1,2,3} je€{6,7,8,9}

i=25 j=1,2,6,7
i=26 j=38,9
1=17 =09
Proof. From Fig. IV.1.2. O

Remark. The choice of the model comes from the configuration of planes in
the degeneration of V3 to the union of planes as in Fig.I.1. (We constructed
this degeneration in BGT III [MoTe7].) In each of the triangles we choose
a point (Fig. IV.1.3).

We choose a path connecting 2 points in neighboring triangles as in Fig.
IvV.1.4.

We then get a configuration which is basically equal to the one in Fig.
Iv.i.2.
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Figure IV.1.4.
L

Figure IV.1.5.

Since we do not need all possible connections to get a set of generators
for By, we skip the connection between the points in P; and P;.

Lemma IV.1.1. There exists a presentation of the braid group By, as fol-
lows:

By=(T; |i=1,...,9, i#4)

and the following is a complete set of relations:

(T3, T;) =1 if T; and T are consecutive
T, T3] =1 if T; and T; are disjoint
[Ty, Ty ' T5T%) = 1

[Ts, Ty ' ToTs) = 1.

Proof. Consider the geometric model (D, K), #K = 9 as in Fig. IV.1.1. We
choose a frame in Bg|D, K| where each half-twist in the frame corresponds
to a path, as in Fig. IV.1.5.

In terms of T;, this frame is

Ty, T, Ty *T3Ts, Ts, T, ToTsTy ', Tr, Te.

By E. Artin’s presentation of the braid group (see Chapter 0), we know
that By is generated by the above frame and the only relations are triple
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Figure IV.1.6.

relations for non-neighboring elements and commutation relations for neigh-
boring elements. Thus, a full set of relations is:

(T1, To) = (To, Ty ' T3 To) = (T3 ' T3 To, Ts) = (Ts, Th)
= (Ty, ToTsTy ') = (ToTeT5 ', Tr) = (T7,Ts) = 1

and all possible commutation relations between other elements of the frame.

Since T3 = Ty (T, 'T3T2) Ty' and Ty = Ty ' (ToTxTy ') Tp, then
Ty, Ts, T3, Ts Ty, Ts, Ty, Ts generates By. Translating the above rela-
tions to these generators and using simple facts about commutators, we
obtain the Lemma. O

Definition. Tjy.

Ty =T, T3 T;7 Ts Ts Ty * Ty T;' To. 1t is possible to notice that Ty
is the half-twist that corresponds to the path t4 as in Fig. IV.1.6, and thus
Ty is adjacent to T» and Tg, transversal to T7 and T35 and disjoint from the
others.

IV.2. Presentation of Bg.

Let By be as in Chapter III, By = By/T, where T = ([X,Y]), and X, Y
are transversal. ~ ~
Let T; be as in §1. Let T; be the images of T; in By.

Lemma IV.2.1. By is generated by (T; I 1=1...9) and the only relations
are:

(1) (T;,T;) =1 T;,T; are consecutive 1,5 # 4
2) [Ty =1 T;,T; are disjoint i,j # 4
(3) [Tl,fz_lfhj:'z] =1
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(4) [T5,T5 'ToTs] = 1
(5) Ty =Ty ‘LT T Ty ' To Ty T

Proof. By the previous Lemma, By is generated by 7T}, 4 # 4 with a full set
of relations (1)...(4). We add one generator and express it in terms of the
other relations to get T4 and relation (5). O

Lemma IV.2.2. (1) (T4,T2) =1.

(2) (T4aT6) =1

Proof. We use Theorem II1.3.1 from BGT 1.
Since T} is consecutive to T;, 1 =2, 6~an(~i Te is consecutive to T7 then
(T4, T2) = (T4, Ts) = (Ts,T7) = 1. Thus, (Ty, Tz) = (Ty, Ts) = (T, T7) = 1.
Ty and T; for i = 1,9 are disjoint, therefore, [Ty, T;] = 1 for i = 1,9.
Thus, [T4,T;] = 1 for i = 1,9. The half-twists T4 and T; i = 3,5,8 are
transversal and, thus, [Ty, T;] = 1 for i = 3,5,8 (Remark IIL.1.1). O

We need the following relations of T} in order to get a smaller set of
generators for G.

Lemma IV.2.3.

(Ty) P lTy Ty = Ts preserving polarization
(T2) 7 T 1f = Ty preserving polarization

(T3)1=2-1:,-,4._,-15-1.1-18 =Ty preserving polarization

Proof. 1t is actually true for 7T} instead of T}. It can be verified geometrically
using Fig. III.1.1 for a geometric presentation of a half-twist conjugated by
another half-twist. g

Lemma IV.2.4. Another presentation of Ba.
Let Ty = TI~’2+2 Ty T2‘2 T/ =T, i+# 1. Then By is generated by T; and

(2
the following is a complete set of relations:
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(1) (T,T)) =1 if T,,T; are adjacent 4,5 # 4.

2) [T}, T)=1 if T, T; are disjoint 1,5 # 4.

(3) [}, T304 5 =1
@ [T T -1

(5) T} =Ty Ty TTuTy - Ty 1Ty,

Proof. Clearly, T; = T! i # 1 Ty = T~2T|T}?. We substitute these expres-
sions in the relations of Lemma IV.2.1 to prove the Lemma. O

IV.3. a: Bg = G.

We want to prove that there exists o : By = G s.t. a(Ti) = F;, for E;
that were introduced in Chapter II. For that we prove certain relations that
E; satisfy, based on Proposition II.6.

Lemma IV.3.1. (1) (E;,E;) =1 if T;,T; are adjacent 1,5 # 4.

2) [Ei,E;)=1 ifT;,T; are disjoint 4,5 # 4.

(4

2 |

(3) (B, E2E3E;' =1
) [Eo,E'EsEs] =1
)

(5) E4=E;'E3E;'EyEsE; ' E1E; ' Es.

Proof. We use Proposition I1.6, which states a list of relations satisfied by
the Ei. ’

(1), (2) By Fig. IV.1.3, T;,T; (i,j # 4) are adjacent, < L; and ij are edges
of some triangle, < (by Corollary II.3) #(E;) and ¢(E;) have one
common index. Moreover, T; and T} are disjoint < %(E;) and ¢ (Ej)
are disjoint. By (1) and (2) of Proposition II.6 we get (1) and (2) of
this Proposition.

(3) By Proposition 1.6 (3), Es = E;EsE;'E;'E,E4E3E;'E;. By
Proposition I1.6 (2), [Es, E4] = 1. Thus, Eg = E;EsE; 'E; 'E2F3E,y
E;'E;'. By Proposition 116 (1), E;'E2E3; = E;E3E;'. Thus,



76

()

Boris Moishezon and Mina Teicher

)5

Figure IV.3.1.

E, E3 E;' = E4 E;' E7! Es E; Es E;'. By Proposition 116 (2)
E;, for i = 4,5,7,8, commutes with Ey. Thus, [Ey, Ey B3 E;'] = 1.

By (3), Es = E1EsE;'E;'E2E\E3E;'E;Y. By (2), [Es,Eq] = 1.
newline Thus, E; 'EgEs = E7E; ' E; ' E; E4E3E; L.

For i = 7,3,4,2, E; commutes with Ey. Thus, [Ey, E'EsE5) = 1.
By Proposition IL6 (3), E;'EsEy = EsE;'E;'EgErEsE;'. By
Proposition 11.6 (2)(1), E;*E2Ey = E2E4E;' and [Es,Eq] = 1.

By Proposition I1.6 (1) EZ lEsEs = EsEsEg ! Thus, E, ELE5 b=
EsE;'E;'EgEsFBrE;'. Ey = E, ' E3E; ' EsEs By ' E7ES By,

O

We first prove that there exist o/ : By — @ such that o/ (f’z’) = E;.

Lemma IV.3.2. There ezists a homomorphism o!, o : By — G such that
a”(j:;-’) = Ei.

Proof. By Lemma IV.2.4, By is generated by f’i’ . Thus, we define o/ (TZ’ ) =
E;. To prove that o/ induces a homomorphism, we have to show that E;
satisfies any relation that T! satisfies. In IV.2.4 we presented a full list of
relations for T}. In Lemma IV.3.1 we proved that these relations are satisfied
when TZ’ is replaced by FE;. O

Lemma IV.3.3.

[Ei, E;' E3 Ep) = 1.

Proof. Ty is transversal to Ty T Ty L. (See Fig. 1V.3.1)
Thus, [T;TT; ', T3] = 1.
Thus, o/ [T3T]Ty *, T4 = 1.
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Thus, [E,E1E; ', B3] = 1.
Thus, [El, E2_1 E3E2] = 1. O

Lemma IV.3.4. There exists o : By — G such that o(T}) = E;.

Proof. We use the presentation of By from Lemma IV.2.1 where By is
generated by 7. We define a(T}) = E;. The relations listed in IV.2.1 are
satisfied when T} is replaced by E; by Lemma IV.3.1 and Lemma IV.3.3.
Thus we can extend the definition of a to the whole of By in a natural way.
O

IV.4. Prime elements in Bg.

We now recall a few results from Chapters II and III concerning the
braid group B, and the quotient group B,,. We refer the reader to Chapter
III for the definition of prime element with s.h.t. (supporting half-twist) T,
and central element c.

We quote here a few results from [MoTe4], Chapter II and Chapter III.

Lemma IV.4.0. If X and Y are 2 consecutive half-twists in By, then
(a) XYX =YXY.

(b) XYX~ 1 =Y-lXY.

(d) (Y)x-1 is consecutive to X and to Y. It is the half-twist corresponding
to a path connecting those ends of X and Y which are not a common
indez of X and Y.

(e) u= 5(}2-,_117‘2 = }7)3( Y2, is an element of P,; u is a prime element
with s.h.t. X and central element ¢ = [Y2,X?] (ie, 2 =1, c€

Center(F,)).

(f) [X'2,Y?] = [X'2,Y? = [X'"2,Y'"%] = ¢ VX", Y a pair of consecu-
tive half-twists where c* = 1, ¢ € Center(G).

(g) ?_2(?2))?_1 = ¢ (inverse of a prime element of B, with s.h.t. X).
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e‘\e;\t'\é, 3

>

L
L

Figure IV.4.1.

(b) If Z is transversal to X, g a prime element with s.h.t. X, then (g9)z =
g.

Proof.

(a) From Lemma III1.3.1 [MoTe4].

(b) From Lemma II.4 and (a).

(c) From (b).

(d) Let Y = H(y), y connects a and b and X = H(z) = connects b and
c. Assume X corresponds to a diffeomorphism §: D — D s.t. ((b) = c.
Then (Y)x-1 = H((6)87!). Clearly, (¢)8~! is a path connecting a and c.
(See Claim II1.1.0 and Fig. II1.1.1.) ’

(e) Lemma IIL.6.1.

(f) Proposition I11.5.2.

(g) We shall prove that c(Y ~2(Y2)x-1)"! is a prime element:

(Y 2(YY)x1) =¥ ) Y2 = Y2(Y D)1 (by (b)).

Let T = (Y)x-1. By (e) and (c), (T)%( -T~2 is a prime element. But
(T)x = ((Y)x-1)x =Y. Thus Y2(Y));2, is a prime element.
(h) Lemma IIT.4.3. a

¢-situation:.

Consider By, Py as Bg-groups by conjugation.

Let f‘l,...,f’g be as in §1.

We choose a polarization on T; from smaller end index to bigger end
index as shown in Fig. IV.4.1.

Let & = (Th)2 1(T2)—2’
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By Lemma IV.4.0 (), £ is a prime element in Py with s.h.t. 7; and
central element [T, T?].

Let ¢ be the corresponding central element. Thus, ¢ € Center(P), ¢ =
1, c = [T2,T?).

Let &; be the unique prime element in Py s.t. (&,Ti) is coherent with
(£1,T1) i =2,...,9. (See Proposition II1.3.3).

Claim IV .4. 1

(1) c is the corresponding central element of (&;,T;) Vi=
1...9, ¢ =1

(2) ¢ € Center(By).

3) &= (Y)?,—,}Y‘2 for some Y half-twist adjacent to T;.

(4) c= [T,?,TE] Vk,£ s.t. Ty, and Ty are consecutive.
(5) & is a prime element of By.

(6) Let X,Y, be 2 half-twists, X = H(z), Y = H(y), T, = H(;)
s.t. z,y,t; make a triangle. Assume that z and y meet in v, and a
counter clockwise rotation around v inside the triangle meets x before
it meets y (Fig. IV.4.2(a) and (b)). Then T;, the s.h.t. of & satisfies
T; = XYX™'. And: (i) If the polarization of T; goes from z to y,
then & = X2 Y2, (ii) If the polarization of T; goes from y to x, then
&= X~?y2

Proof.

(1) The pair (¢;,T;) is coherent with (¢1,71). Thus, & is conjugate to Ty
and T; is conjugate to fi; by some B;. Then by Lemma III.3.1, their
corresponding central element is equal.

(2) A priori, ¢ € Center(ﬁg) We have to prove that ¢ € Center(Bg)
Consider Py as Bg- -group. &; is a prime element in Py as a a By- -group
where c is the central element of (¢;,7T;). Thus, we have (c)b=c Vb€
Bg. (( )b = action of By on Py), but (c)b = ¢, by definition. Thus,
cp=c VbeBy=>ce Center(Bg).

(3) The pair (¢;,T;) is coherent with the pair (§1,T1) Thus, 3b; € B s.t.
& = (&), and T; = (T1) Denote (T3)p, = Y and apply conjugation
by b; on &) = (T2 )Tsz .
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X T ) &
(b) (a)

Figure IV.4.2.

(4) By Proposition II1.5.2.

(5) By construction, ¢; is a prime element of Py with central element c. In
(2) we proved that ¢ € Center(Bg). Thus, &; is also a prime element of

By.

(6) Consider the two triangles (Fig. IV.4.2(a) and (b)):

If the polarization of T; goes from X to Y as in Fig. (a) (from Y to X
as in Fig. (b)) then we take b € By s.t. (T1)b =T} (Ty)b =Y preserv-
ing polarization of T} (reversing polarization), respectively. Clearly,
((T3)1,)b = X. Consider the polarized pair (¢;,T}) = ((Tz)%l’f’z_z,’f’l).
We apply b on it to get a coherent (anti-coherent) polarized pair
(X2Y~2,T;). Recall that (&,T;) is coherent with (¢1,71). Thus by
Proposition II1.3.3 (or by Lemma II1.4.1) X2Y 2 = ¢; (or X2V 2 =
& 1c), respectively. To get & = X~2Y? from X2Y2 = & le we use
(4) above.

O

The next Corollary is technical in nature, to be used later in order to
obtain a smaller set of generators for G.

Corollary IV.4.2. (1) & = (Tz);l_j;?.
(2) &= TfQ(Tl)?fz—l o = T42(T4);;1 &2 = TJQ(T?))%;I
() & =17 (T1)z
(4) &= (T4)%3-1 g2
(5) & =T *(T8) 1

6) &= (T @z, &' = TFIN2
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v-(@) T Y= @O T, xem
K=Ty T, X=T, T, = 0-3)'-:
@ (b ©
Figure IV.4.3.

(7) & = TS_Z(TB)%I—I
(8) & =T5 (o)}
(9) & = T2(T5); 2,
(10) (€a)frrygidy = €5
(11) (&g pirrer = s

(12) ()i rpyrris, = &

Proof. In the entire proof we use Lemma IV.4.0(f) to interchange squares of
consecutive half-twists, and multiplying the product by c. We also use the
facts that ¢ = 1, ¢ € Center(G). The main tool is Lemma IV.4.1(6). We
also use Lemma IV.4.0(d) to present an edge of a triangle as a conjugation
of the other 2 edges.

(1) By definition.

(2) Consider the triangle from Fig. IV.4.3(a):
Since the polarization of T, goes from Y to X, we apply Lemma IV.4.1(6)

to get: ~ B
by =X"2Y2= T;Z(TI)QT-Q_I.

Consider the triangle from Fig. IV.4.3(b).

Since the polarization of T goes from X to Y, we apply Lemma IV.4.1(6)
to get o
&2 = X2V % = TH(Tu);2.
2

Consider the “triangle” from Fig. IV.4.3(c)
Since the polarization of T goes from Y to X, then:
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Y=T1
f

X= (Ti) 73 T3

Figure IV.4.4.

Figure IV.4.5.

(3) Consider the triangle from Fig. IV.4.4:
Since the polarization of T3 goes from Y to X, then:

&= XY = (T) Tt
We apply T3_2 on the above equation to get:
(63)'_1'1;2 = (Tl)%azl(fl)%s—z-

By Lemma IT1.2.1, (53):,:;2 = €.

By Lemma IV.4.1(4), (T12)T~3_z = cT2.
Thus,
{3 = C(Tl);sngf
=T{(T1);2  (Lemma IV.4.0(5)).
3

(4) Consider the triangle from Fig. IV.4.5:
Since the polarization of Ty goes from X to Y

(5) Consider the triangle from Fig. IV.4.6:

Since the polarization of T3 goes from X to Y

& = (Ty)% T 2.

5
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N=Tg

%= (T, Ts

Figure IV .4.6.

Y= (’T"’)T;‘ Te . %=T;y
w
%= T % Y= 71
@ &)

Figure IV.4.7.

(6) Consider the triangle from Fig. IV.4.7(a):
Since the polarization of T goes from Y to X

56 = T4-2(T3)T€1 .

Consider the “triangle” from Fig. IV.4.7(b).
Since the polarization of Ty goes from Y to X

£6 = T;Z(T'?)Tgl = 56_1 = CT?(TfZ)TJL

(7) Consider the “triangle” from Fig. IV.4.8:
Since the polarization of T% goes from Y to X

(8) Similar to (7).
(9) Similar to (3).

Tx  %=Ts
\_ﬁ

Figure IV.4.8.

83
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For (10)—(12) we shall only prove the first assertion. The others are sim-
ilar. By Lemma II1.2.2, (({2)7:41:37:;1:;1;1, (TQ)T4T3T5—1T7—1) is a polarized pair

coherent with (£2,7%). By Lemma IV.2.3 (TQ)T4T3T5—1T,7—1 = Tg, preserving
polarization. Thus ((§2)7:4T37:5-1T7_1,T8) is coherent with (§2,T2). But also
(és,Tg) is coherent with (¢3,7%). From uniqueness, (62)7*47"37"5‘1:?‘;1 =¢&. O

IV.5. n-situation.

In §3 we constructed a homomorphism of groups « : By — G s.t. a(fi) =
E;.
We introduce G as a Bg-group by (9)Y = ga(f,)(z a(Y) g a(Y)).

The homomorphism « here then becomes a homomorphism of Bg—groups.
Claim IV.5.1. Let u = a(c), c=[T2,T?], then:
(a) p=[E2, E}| Vk,L s.t. Ty, and T; are adjacent.

(b) Let p be any automorphism of the type pm, ms,mas ma,me,me 8-t. Ijo with
mj, # 0 and all other m; = 0. Then (u)p = p.

(c) p € Center(G).

(d) p=[(ED)pP.(Ee)*p}] Vk,L s.t. Ty and Ty are adjacent, and (k, £) #
(3,7),(2,8),(4,5).

(e) w*>=1.

f) If )g and~l7 are 2 consecutive half-twists, then a(X)%a(Y)? =
pa(Y)2a(X)2.

Proof.

(a) ¢ = [TZ,T2] Yk, st. Ty and T, are adjacent (Claim IV.4.1 (4)).
Then p = a(c) = o[T2,T?] = [E2, E}] Vk,{ such that T} and T} are
adjacent.

(b) p = P (p2p8)™(p3p2)™ (paps)™ pg Py, and (Ei)p = EBi if p;
appears in p to the power 0. If jo # 1,2, then (Ey)p = E
and (E3)p = E,. We take p = [E?, E2] and apply p on it to get
(w)p = (B}, E3)p = [(E})p, (E3)p] = [Ef, B3] = p. If jo = 1 or 2, we
apply p on p = [E?, E?] and continue similarly to get the result.
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(c) Since ¢ € Center(By), then p € Center(a(By)). Since o(T;) = E;,
we get [u, E;] = 1 Vi. We want to prove [u,Ey] = 1 Vi and then
we get u € Center(G). (G is generated by {Ej,Ej:}?zl.) Take p =
P1" (p2p8)™2 (p3p7)™ (paps)™ pg °pg ° such that p; appears in p to the
power 1 and all other m; = 0, Thus, (E;)p = Ey and there is exactly
one mj, # 0. Thus, by (b) (1)p = p. Thus,

1= (1)p = [Ei, ulp = [(Ei)p, (1)p] = [Ew, p]-

(d) Since (k,£) # (2,8),(3,7),(4,5), then Ly and L, are not on the same
me Me

line. Let p' = p1" (p2p8)™ (p3p7)™2 (paps)™ pg ° pg ® Where pj, appears
to the power m and all other m; = 0. In partlcular pe¢ appears to the

power 0- ((k,£) # (2,8),(3,7), (4,5)). Then (Eg)p = (Bx)of", (Be)p =
E,. Let p' be as above s.t. py appears there to the power n and all
other m; = 0. Then, (E,)p’ = (E¢)py, (Ex)p' = Eg. Thus, p = (u)pp’ =
[(Bk)oR"s (Ee) o |-

(e) u?=alc)? =a(c?) =a(l) =1.
(f) From Lemma IV.4.1 (4).
O

Corollary IV.5.2. n; = a(§1) is a prime element in G with s.h.t. T, and
central element .

Proof. ) is a prime element of By with s.h.t. 7} (see Claim IV.4.1). Thus,
m = (1) is a prime element of o(Bg) with s.h.t. 7} and central element
u = afc), from the previous lemma, p € Center(G). Thus, 7; is a prime
element of G. O

n-situation.

Consider G as a Bg-group.

Let 71 = a(£;) be a prime element of G with s.h.t. Ty and central
element u = a(c).

Let n; = L, (T;) be the unique prime element of G such that (n;,T})
is coherent with (n1,T%).

Claim IV.5.3. Consider the n-situation. Then:
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(a) (n,T;) is a polarized pair of G with s.h.t. T; and corresponding element
p. In particular, n; is a prime element with s.h.t. T;.

(b) 7 = a(&).

(c) Every m; is of the form a(X2Y ~2) where X,Y are adjacent half-twists
and the s.h.t. T; is XY X1 (= Y~1XY).

(d) m = (Ez),zgl-l 22

ng = El“2(E1)2Ez_1.

m= E%(El)z—l

m = (Ba) o Bg ™.

ns = (Es)%, Eg”.

ne = (Ba) 2(Ba)yx 75" = pEF(Br) 2.
= Es—z(Es)%;l-

n8 = EQ—Z(EQ)ZES—I-

no = B3 (Bs) g2

s = (14) 71 fy 717

M = (M8) g1y 71 -

18 = (M2)fyfyf iyt

Proof.

(a) By the construction of ;, the pairs (7;, T;) are coherent polarized pairs.
(m,T1) has p as central element and coherent pairs have the same
central element (Corollary I11.3.1).

(b) & is a prime element with s.h.t. T; s.t. (&Jﬁ) coherent with ({1,T1).
Thus, «(;) is a prime element with s.h.t. T; s.t. (a(&), T;) is coherent
with (a(£1),T1) = (1, T1). From uniqueness a(§;) = ;.
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(c) From Lemma IV.4.1.(6).

(d) Apply a on the formulas of Corollary IV.4.2.

IV.6. N-situation.

N-situation.

Let G be a Bg-group.

Assume there e)fists a Bg-homomorphism X : By — G s.t.
(g)b = ga(b) Vb€ By, VgeQG.

Let f be a prime element in G with s.h.t. 7} and central element v.

Let f; =L « f,f"l)}(fi)} be the unique prime element s.t. (f;,T}) is coher-
ent with (f;,T1) i =1,...,9.

By Corollary II1.3.1, v is the central element of f; Vi.

Let 1 = A(£1), 1 is a prime element with s.h.t. 77 and central element
p = Xc). )

Let n; = L{m,ffl}(ﬂ')-

It is easy to see that, similar to the situation in Claim IV.5.3, n; = A(&)-

Let 1 = A(c) be the central element of 7;, Vi.

Let Ny = {n; | (ni,T;) be a polarized pair coherent with (n1,T}), i =
1...9}.

Let Ny = {f; | (f;,T;) be a polarized pair coherent with (f,T1), i =
1...9}.

Definitions.

Let a,b € N1 UN,. We say that a and b are weakly disjoint (transversal,
disjoint, adjacent, consecutive or cyclic) if their s.h.t. are weakly disjoint
(transversal, disjoint, adjacent, consecutive or cyclic respectively). (See def-
initions in the beginning of Chapter IIL.)

Let @ € Ny U N, with s.ht. X. Let Z € By. We say that a and Z
are weakly disjoint (transversal, disjoint, adjacent, consecutive, cyclic) if X
and Z are weakly disjoint (transversal, disjoint, adjacent, consecutive, cyclic
respectively).

Lemma IV.6.1. a€ N{UN,, Z € By pn = Xc), then:
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al a€ N >

av a € N.

(ii) a, Z are weakly disjoint or commonly supported = az: = a.
In other words,

(i) a,Z are adjacent => az, = {

ik a € Ny, a,Z adjacent
[A(Zz), aﬂ] = [/\(Z_2), ail] =<V a€Nsy, a,Z adjacent
1 a,Z weakly disjoint or cyclic.

Proof. Let X be the s.h.t. of a.
(i) There exists v € Py s.t. Y = v~!Zv is consecutive to X. By the
definition of prime element:

alt a€N;
a<r_ =
Y-z av a € Ns.

On the other hand, Y2 = v"1Z"%22Z2 = [v™},Z7%] Z~2. Since v € Py
and Z? € Py, then [6‘1,2_2] € Py. But P} is generated by ¢ (Lemma

1M.5.2), & = 1,50 Y2 = ¢¢Z72 ¢ = 0,1. Thus, a5, = Ay =
a/\(ce))‘(z_a - auEA(Z_z) = a)\(Z"_z) - aZ_z- SO, 012_2 = ai}_z. ThllS,

ap a€N;
A5_9 =
z-2 av a € Ns.
Since v, p € Center(G)
{a,u ac€N;
0;22 =
av a € Ns.

(ii) If a and Z are weakly disjoint (cyclic), then: There exists v € Py
st. Y =91 Z v and X are disjoint (commonly supported). As above,
ay2 = aj2. By the definition of prime element ay» = 1. Thus, az, =1. O

Proposition IV.6.2. (i) If a,b € N; U Ny are adjacent, then

[a bﬂ] _ B a,be N
’ v otherwise.

(ii) If a,b € Ny U Ny are commonly supported or weakly disjoint, then
[a,bil] = 1.
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Y:=T,

Figure IV.6.

Proof. For a,b € Ny and a,b € Ny, the proof follows from Lemma IT1.4.2.
Consider the case a € N1, b € Ny. Assume a = 7; with s.h.t. i’i, and b € Ny
with s.h.t. Tj. By Claim IV.4.1(6), a is of the form A\(X?Y %) where X and
Y are consecutive half-twists s.t. X, Y,T; create a triangle as in Fig. IV.4.2.

Now, [a,b%1] = [)\(X'2 -, bﬂ] - [A(f'—z), b—l] e \(X2), 521,
( by Claim I1.4). By the previous Lemmas and the fact that v € Center(G),
we get:

v Y and T} are adjacent

[A(f’z_z),bﬂ] AE2) = (1 Y and Tj are weakly disjoint or
? commonly supported.

v X and T} are adjacent
[MX5 2), v =<1 X and Tj are weakly disjoint or
commonly supported.
These are the only possible values since Y (or X) are never cyclic with Tj.
Since v2 = 1, in order to get [a,b*!] # 1, we need one factor to be v and
the other one to be 1. Thus we need T; adjacent to Y, and T} is weakly
disjoint or commonly supported to X, (or vice-versa). This can happen in
four different cases (Fig. IV.6). But in all of the four cases Tj is adjacent to
T; (see Fig. 1V.6). O
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Lemma IV.6.3. Consider the N -situation. Then:

fi_lu k=1
N )i T;, Ty weakly disjoint
(Fi)z, = frfi T;, Ty orderly adjacent
fifet T, T are not orderly adjacent.
fz-_lz/ k=1
_ ) fi T;,Tx ~ weakly disjoint
(fi)fk_l ) fife T, Tk orderly adjacent

fk_lfi T;, Ty are not orderly adjacent.

Proof. Recall that f; is a prime element with s.h.t. T;. Moreover, v €
Center(G),v = [ fiil, f;ﬂ] for T;, T; adjacent half-twists (previous Lemma).

One can see from Fig. IV.1.6 that if T; and T} are weakly disjoint then
they are disjoint unless £ = 4 and 2 = 3,7, in which case they are transversal.
We shall treat separately the case where T; and T}, are disjoint and the case
where T; and T}, are transversal.

For k = i and for T} and T; disjoint we get from the definition of prime
element that:

(fi)gr = il i=k
(fi)jr=fi  for Ty and T; disjoint.

We conjugate the above formulas by T}, to get the correct formula for ( fi)Tk
where k = ¢ or when T; and T} are weakly disjoint.
For T; and T}, orderly adjacent we use Proposition II1.4.1 to get:

(fi)r = fi fr-

Thus, (fi)f-2 = (fi)j- (f) gt = fifefitv=fiv

Since v2 = 1, v € Center(G), we get: f; = V_l(fi)fk-z = (fi)fk_w.

Thus, (fi), = (filgoiv = fi frv = Lfelf s 7Y = fifef N i =
frfi

For T; and T} be non-orderly adjacent, we use III.4.1 again to get:
(fi):f“;l = f;l fi-
Thus, (fi)g2 = (fe) g (Fgpr = v7 U fafi fi= v =
(fidr, =v (fi)Tk-l =v i o= U FNF i = fif 7 e = fifi
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For T; and T}, transversal we get from Lemma II1.4.2 that
(figr = fil

We conjugate the above formula by T} to get the correct formula for ( fi)a,
for T; and T}, transversal. O

IV.7. New set of generators for G : {A;,E;}.

Recall
E, - T; z #2,7
i 1=2,7
E{ = (E)ps
Aj = E;Ej_l

Claim IV.7.1. {A;, E;}}_; generates G.

Proof. By Lemma II.2, {Ej,Ej,}*;:l generates G. Since Ej = A;Ej,
{A;, E;})_, generates G. O

Definition. H; = B,-orbit of A;.

Proposition IV.7.2. A= A, is a prime element of Hy with s.h.t. T}.

Proof. Consider the following frame of Bg: X; = T1, Xo = T3, X3 =
(Ts)1y, Xa=Ty. X5 =Ts, Xe¢ =Ty, X7 =Tg, Xg = (T2)T3_1T5_1T8_1T7_1T6_1
(see Fig. IV.7.1).

In order to prove that H; is a prime element of A;, we shall prove
that all the necessary conditions of Proposition II1.7.1 are fulfilled using the
above frame of Bg. Let v = A - A»fl—l. It is easy to see that v = Ef, ET 2,

(v=A-Ap1=A-Ag1 = BEvE[ E\EyET B = B} B

(O)F By definition of Hy, H is the full orbit of A; = A.
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Xy Xe KT Xe¢

Xgl X3
Xa

Xy

Figure IV.7.1.

(T2

-1 T3
)% Z
11

Figure IV.7.2.

(1) We have to prove A)?z—l)zi—l = A_lA.Xz—l.

(la) Since AE; = Ef, we can use Proposition I1.6 and Corollary I1.3 to get
(AE1, E3) = (E1, E3) = 1. Thus, by Lemma II1.4(h) we get AE2—1E1—1 =

A1 -AE3_1. Since Ay = A, %) and a(X1) = o(Th) = E1, o(Xs)

a(T3) = Es, we get (1a).

(1b) Az = Ap = Ayfyy = Ap,- Thus, Ag By = Ap By = E{'AE B,

E['E\E{'E\E, = E{'E\E; = (E1)py'. By Proposition IL6 and
Corollary 11.3 we get (A E1,FE3) = (Ep,E3) = 1. By Lemma
11.4.(h) we get A)'{IES-I EfY = A;éiAXlEg_l' Since a(X;) = E; and

o(X3) = o(Ts) = E3, we get (1b).

(2a) We need to prove Vgs = V. Since a(Xl) = a(T}) = Ej, then Vs = Vg2

To prove vgz = v, it is enough to prove [E}, Ef] = 1.

Consider the following 4 half-twists in By: T, T, Ty 'TsTs, ToTh Ty .
Obviously, the above half-twist consists of a “good triangle” in By (see

Fig. IV.7.2).
By Lemma II1.1.2,

Tl -Tz_lf’;;j:'g = T2_1T3T2 . j:'l

and T2 T, ‘T3 = T2 - T,
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By Lemma IV.3.4, there exist o : By = @ s.t. a(T;) = E;. Thus,

[E1, Ey'E3Ey) = 1
and E}-E;'EIE, = E2E,- E?E; .

Thus, E} = E} - BE}E; ' - E;'E; 2 Es.
We shall find the commutator of E? with each of the 3 factors a = Ej,
B =EE}E;!, v=E;'E;?E,.

To find [E,v] we apply on [E;, E; ' E3E,] = 1 the Invariance The-
orem (Corollary I.5) with p; (m; = 1 and all other m; = 0) to
get [E},E;'E3Ey] = 1 and thus, we get [E%,E;'E2Ey) = 1. ie.,
[E%’,’Y] =1L

[EY,o] = [E},Ef] = ((BY)er, B3] = (B}, Ef])pr = (u) p1 =
p (By IV.5.1).
(B}, 6] = B}, E2EYEy '] = (B}, By 'E3Ey] = (Claim I14)
= B}, By - B{ B3 B{Ey* - 3B
= [E%,Ey - u- E2E{'] = (u € Center(G))
= [E}, B\ B3 E;
= (B, B By, B3] g
= [(Bf) o1, B3] g
= ([Ef,E%] Pl_l)El—l
= ((w) pl_l)El—l (Lemma IV.5.1)
= ppot = ( € Center(G))
= u.

To find [EZ, a8y] we use Claim I1.4(d),

[E%”E%] = [E%/,Otﬂ’)’] = [Ef’a o] [E%”:B]a‘l ) [E%’a’)’]ﬂ‘l'y‘l
=p-(wa- (1), = (since u € Center(G))
=p-p-l= (since pu? =1)
=1.
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(2b) Let B = (A)Xz_l = (A)Ts-l = (A)E3-1. To prove (2b) we have to show

= E3E1 E'E;' - E% E{? - BsE E'E;l =
N e’

(By Claim I1.4(a))
= E3F\E3 E;' E;'E;?Es EvE{'Eyt =
N e N e’

(By Claim IL.4(a))

—Y
= E}E3EE;' E\E; E;Y EvET'E;!
= ElE3E? E{'E;'Ey E;2E{'EvE, E{2E;!

= E}E3E} (E1)p; ' - B3 *(E1)p; " E;°Ey' =

~ 7

By Claim I1.4(a)
and Prop. I1.6 (1)

——N—
= EXE3E;% E3(E})p; "Byt E2Ej!
=B} BaBi By - BY(BY)py By ” - BB "By

v V

( By Claim II.4(a) and )

Lemmas IV.3.4, IV.4.1

= E?-E['E3E: p- (BY)py' - E'E3°E, =
(1 € Center(G))

= uE? - E7E2E, - E['E?E, - E['E;*Ey

= uEE}E;*E;*E,

= pE\pE;” - By =
(Since p?, 1 € Center(G))

= B E*E;

Thus, vg = E\E;?E1.

On the other hand, v;! = E['(E2 E{?) 1By = BiE;E,y.
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(3) We have to prove AX], = A Vj >3 Werecal: A= EyE;! and
AXj = Aa(Xj)- Since X3 = (T5)1y, X4 = To, X5 = Tg, X¢ = T%
and X; = Tp, we get a(X;) for j > 3 is a product of E; for
i =5,9,8,7,6. [E1,E;] = [Ey,E;] =1 for i = 5,9,8,7,6 (Propo-
sition IIG) we get A- = A o(X;) = AVj = 3,4,5,6,7. Now:
Xs = ( ) 3 lT 1T 1T 1T—1 Thus a(Xg) = (EQ)EglEs-lEs—lE_,—lEé_l.

1 p—lp—lp—1p—1"
E3 Eg "Eg "E; "Eg

We first prove that (A)(Ez) = A
By

Since (Tg)T3-1 and Ty are disjoint [T}, (TQ)Ta—l] = 1. Thus

(64 ([Tl, (TQ)Ts—l]) = 1.
Thus, [E1, (E2) Egl] = 1. We apply on this relation the invariance The-

orem (Corollary 1.5) to get [Ey, EQ)E— ] = 1. Since A = EpEj*
we get [A,(Ez)g ] = 1. Thus, A(Ez) = A. Thus, Aj =

AE—IE—IE—lE—— Slnce E for i = 5,8, 7 6 commutes with Ej, E]
5 8 7
(Proposition II.6), we get Az = A.

(4) Let c= [X2, X2]. We have to show that A, = A. Since ¢ = [X?, X2] =
[T2,T2), a(c) = [E?, E3] = p, where u € Center(G). Thus, A, = A, =
A.

Thus all the conditions of Proposition II1.7.1 are fulfilled and A is a prime
element of H;. O

Proposition IV.7.3. A is a prime element of G with s.h.t. T}.

Proof. By the previous propositions, A is a prime element of H; with s.h.t.
T; and central element v = A - Afl_l, v € Center(H;). By the definition
of a prime element, in order to prove that A is also a prime element of
G, it is enough to show that v = A ATfl € Center(G). Since A is a prime

element of H; with central element v, we get (), = v Vb € By. In particular,
(V)f, = v Vi=1...9. Thus, vg, = v Vi = 1...9. For i # 1, we apply p
on vg, = v, to get using the Invariance Theorem, the relation vg = v (for
1#1 (v) pi=v). For i =1 we use [v, E1] = 1 (from above), and [z/ Al=1
(since A € Hy and v € Center(H;)) to get [Ey,v] = [AE;,v] = 1. Thus
[Ei,v] = [Ey,v]=1Vi=1...9 = v € Center(G). O



96 Boris Moishezon and Mina Teicher

IV.8. New set of generators for G {Ej,hj,nj}?zl.

We introduce here a new set of generators for G. In §3 we introduced
a homomorphism « : By = G s.t. a(T}) = E; and introduced G as a Bo-
group using a. In §5 we proved that a(é;) = m = (E)E, - Ey? is a prime
element of G with s.h.t. T, and central element p = [E2,E2] We proved
in §7 that A = Eyp E; is a prime element of G with s.h.t. 77 and central
element v = A o E12,E1_ 2 In §6 we introduced the N-situation. Here we

consider the N-situation for a: Bg — G, and h; = A € G.

Consider the N-situation with n;, h;, N1, Ny as follows:

h; is the unique prime element with s.h.t. ff’z s.t. (hi, ff’,) is coherent with
(A, T}). The central element of h; is v.

n; is the unique prime element with s.h.t. T} s.t. (n;,T;) is coherent with
(m/T1). The corresponding central element is .

Ni={n i=1...0}.

No=1{h; i=1...0}.

Lemma IV.8.0. (i) Let f be a prime element in G with s.h.t. T;. Then f
commutes with E?.
(ii) If T; is transversal to T; then f commutes with Ej.

(i) If T; is consecutive to T; then [(El)EJil,Ef] = 4.

Proof.
(i) By Lemma IIL.2.1, (f)s

T2
(f)’f‘f = fa(Tz) Since o(T}) = E; (Lemma IV.3.4) we get (£)gz = f- Thus,
f commutes with EZ2.
(ii) By Lemma III.4.2 (f)T = f. But fa(T) fE;- Thus it commutes
with Ej.
(iii) Lemma IV.5.1. O

= f. By definition of G as a By-group:

Lemma IV.8.1. Let A; = E{El_1 Let h;,n;u, v be as above. Then,

(1) Ay =A=h.
(2) Az =h3'n.
(3) A3 = hany .
(4) Aq = hing pv.
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6)
)

(
(
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heng > .
Ag = n hiuv.
A7 = ho7 .
Ag = hg 'ng.
Ag = hgng

Proof. We use the definition of prime element and Lemmas I1.7, IV.5.3,
IV.6.11V.6.2, IV.6.3, and IV.8.0. Recall that 12 = p? = 1, v, u € Center(G).
We use here often the following two facts: If f is a prime element in G with

s.h.t.

T;, then f commutes with E? (Lemma IV.8.0(i)); (E?) g1 and E?
J

commute up to p for T; and Tj consecutive half-twists (Lemma IV.8.0(iii)).

(1)
(2)

(4)

By definition of h;.

By Corollary 117, Ay = E;2A;1(A1)E;1(E%)E2_1. Since A; is a
prime element with s.h.t. 7} (Proposition IV.7.3), A; commutes
with E2. Thus, Ay = Al“lEl_2(E%)E;1(A1)E2_1 AT! = hT! from (1).
El-?(bi%)E;l = by Lemma IV.5.3. (A1)g-1 = (h)g1 = hythy
since T} and T4 are not orderly adjacent (by Lemma IV.6.3).

Thus, Ay = hl“lnghz“ 'hi. By Lemma IV.6.2, 7, commutes with hy !
and noh1 = hynov (v € Center(G)). Thus, Az = vh*hy ' hyns. By the
same Lemma, hy'hy'hy = vhy!l. Thus, Ay = v2hy 'ny = hy 'n,.

By Corollary 11.7, A3 = E[2AT Y(A1) - (EZ)E-1 Like in (2) we can
write, A3 = A7 By *(E}) o1 (A1) g1

AT = hT! from (1). E;Z(E%)Ea_l = n;' p. (Lemmas IV.5.3 and
IvV.5.1(d)). (Al)E-1 = (hl)T~ = hphs. (Lemma IV.6.3). Thus,

A3 = h1 ,un3 'hihs. Since [h1 ,n3'] = v, and p € Center(G),
As = pny 'hT vhahg.

Since u,v € Center(G), A = pvnz *hy' Since 73 commutes with hs,
Az = hgn3tpv.

By Corollary I1.7,

(A4) g1t = BfAsBSA2(E3?) i (A31) g1 (B ) o
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S\ ==
(N) 12
Figure IV.8.

Since As is a product of prime elements with s.h.t. T3, Az commutes
with E? (= o(T%)) (Lemma IV.8.0). Thus,

(144)E2_1E4_1 = EZE?%A?,AQ(E?,%)EZA (A;l)E2_1 (E4—2)E2_1.

Now, Es = a(Ty), Ty is a half-twist which is transversal to T3. Thus,
by Corollary IV.8.0(ii), E; ? commutes with A3 *. Thus, (A4) EFLES =
(T4)T2_1 are 2 half-twists which are adjacent to 75 and to T (Fig.

IV.8). Thus, by Lemma IV.6.1, [a(Z2), f] = v where f is a prime
element with s.h.t. T3 or 75 and central element v and [a(Zz?),n] =p
where 7 is a prime element with s.h.t. T35 or 75 and central element p
(i=1,2).

A3Ay is a product of 4 prime elements with s.h.t. Ty or T5. Two
of them have a central element p, and 2 of them have a central
element v. Thus, A3A2a(Z1_2)a(Z2_2) = (wp)a(Z7?)a(Z5%) A3 A,.
Since a(Z;) = (E3)E2—1, a(Zy) = (E4)E2-1 and p? = 1?2 = 1, we

have A3A2(E3"2)E;1(E;2)E;1 = (E;Q)Ez_l(E;"‘)Ez_l - A3A,. Thus,
(A4) g1 g1 = BFE3 (B3 ?) g1 (Bp?) g1 AsAa (A5 1) o1

From Corollary 1V.4.2, TZ(Tf)IT;I = T3_2(T32)T2_1. We use Lemma
IV.4.1(4) and c~2 = 1 to exchange factors and rewrite this equa-
tion as T2T2(Ty 2)7:2-1(T4_ 2)f-1 = 1. We apply a to it to get:
EZE%(E3‘2)E2_1(E;2)E2.1 = 1. Thus, (A4)p-1p1 = A3A2(A§1)E2_1.
By (2) (3),

(A4)E2"1E4—1 = h3"73_1/1Vh2—1772(773h§1)T2—1/-W
= hang thy tnananehs thsl. (By Lemma IV.6.3)

Since [hy*,m3'] = v and [n2,7;'] = p (Lemma IV.6.2), we get
(Aq) BB = pvhshy 1n%hz_ lhg !, Since hy commutes with 79 and
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[ha, b3 '] = [ha,ma] = v, we get (A4) g1 g1 = voumshy® = vunghy >,
Thus,
Ay = (vun5hs®) BuE, -

Since
(m)p, =m5 " p
(h2)p, = h3'v
(ha)E, = hah'
(774)E'2 = 774772—1,
So,

Ag = vp (03 pman V)% o (hy ko) 2

= vpung *hy.

(56) By Corollay IL.7.

As = (A4)E2‘1E3E;1E8 = (from (4))

— -2 2
- VM(,,]4)E;1E3E;1 ES (h4)E2—1E3E;1E8-

By Lemma IV.2.3 , (hg,T}) is coherent with ((h4)E2-1E3E7_1E8,CZ~’5).
But, (hs,T5) is coherent with (hy,7}). Thus, ((h4)E2“E3E;1Es’T5) is
coherent with (h1,T}). From uniqueness (hy4) E'BsE7 Bs = hs. Simi-
larly, or from Claim IV.5.3, (n4) By BB Es = 5 Thus,

As = 1//,&175"2]1,;"2.

(6) By Corollary II.7,
Ag = E4_2AZ1 (A4)Eg'1 (Ez)Es—l .

By (4) above, A4 is a product of prime elements, with s.h.t. Ty. Thus,
A4 commutes with E2. Thus:

Ag = AJ'E*(E?) et (Ad) g1
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By Lemma IV.5.3, E;2(E}) gzt = n. Thus,
Ao = vp b n  nevp(ng®) o1 (hf%) g
Since Ty and Tg are not orderly adjacent,

(774)56—1 = (774)T6—1 =g M4
(ha) g1 = hg 'hy.

6

Thus,
Ag = kg2 ne(ng 'na) "2 (hg tha)?
= hy?nf’neny 'neny ‘nehg * hahg  ha.

Since Ty and Ts—l are adjacent, [hq,n6] = [h4, he] = v (Lemma IV.6.2),
and thus, hghg 1= hg lpsv and nehs = hanev. Moreover, hy and 74
commute. Thus,

As = Vo0 neny 'neng nehg 2

Since [n6,m4] = p, Menz " = ng Mok, and thus, Ag = 1 udndhs? =
3.2
Nshg V.

(7) and (8): Similar to the proof of (5).
(9) By Corollary I1.7,
Ag = E5_2A5_1(A5)E9—1 (Eg)Eg—l .

Since As is a product of prime elements in G with s.h.t. T, it com-
mutes with E2. Thus,

Ay = A7 E5*(B3) g1 (As) g
By Lemma IV.5.3, E;%(E}?) Bl = png *. Thus,
Ag = V/‘h52"7§ : :‘“79_1 ) (V“n52h;2)]§;1 .
Since T and Ty are orderly adjacent,

(775)13;1 = (775)1"'9—1 = 7579
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Thus,
Ag = h3nZpung (nsme) "% (hshe)?.

Since [15,7m9] = p, then ng 'n5" = n5'ng ' u. Since [hs, ho] = [hs, no] =
v, then hghs = hshg 1y and Mg Lhe = hsng 1y. Thus we can collect all
hs and 75 at the left to get

Ag = h3ning *hing g °hg - p* VP,

Thus, Ag = n;?’hgu.

Lemma IV.8.2. (a) R} =n} Vi=1...9.
(b) vp=1.

Proof. For T; and T; orderly adjacent

(hi)Ej—lEi-l = (hihj)Ei—l
= vh;'h;h; (By Lemma IV.6.3)
= vh; 'vh;h; (By Lemma IV.6.2)
= h;j (Since v = 1,v € Center(G)).

Similarly,
(m)Ej"lEi'l =1y

Thus
(hj)E:E; = hi
(nj) B:E; = -
(a) By Corollary II.7,
(A9) g1 = B§ As(Eq?) g1 = E§ hg' ns(Eg ) 1.

Since Ty is a half-twist adjacent to Ts and hg,7s are prime elements
with s.h.t. T3, we get by Lemma IV.6.1 that E? hg' = vhg' E2 and
Eg N8 = U8 Eg. Thus,

(AQ)E8—1E9—1 = Eg Ag(E9_2)E8—1 =V U h8—1 78 Eg(Eg_z)Es—l
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By Lemmas IV.5.3 and IV.8.0 B3 (Ey”) 51 = prig . Thus,
E§As(Eg?®) o1 = vhg'.

Thus, (Ag)E—lE—l = vhg! and Ag = v(hg')gyms = vhg'. We compare

this with the previous Lemma to get ng *h3v = hg'v. Thus, ng°hd = 1.

Since (ng,Tb) is coherent with (n;,T}) and (hg,Tg) is coherent with

(hz, T;), we can use Corollary I11.3.5 to conclude that Vi 3B; € By s.t.
= (n9) 5, and h; = (hg) 5.. Thus, 7; “3h3 =1 Vi.

(b) By Corollary IL7, (Ag) p15-1 = E2A4(E5?) Bt

Thus,
= E9 %(hgny V)EglEgl(Es;?)Egl = (See above)
= Ey *h3ng *v(E3) gt = (See IV.6.1)
~ (Eg)E8-1 R3ng *vPu® = (See IV.5.3)
= nghlng Svp = (See IV.6.2)
= 15 *hgvp.

We compare with the previous result to get vy = 1.

O

Proposition IV.8.3. Let A; = EyE . Let hi,m;p, v be as before. Then:

(1) Ay = hy.

(2) Ay = hy'tn.

(3) Az = hanzt.

(4) Ay = hy'n,.

(5) As = hy'ns.

(6) Ag =h

(7) A7 = hont.

(8) As = hg 'ns.
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T@ T) Tg . T9

Figure V.1.

(9) Ag = hy'v.

Proof. Immediately from the previous 2 lemmas. g

Lemma IV.8.4. {Ej,nj,hj}?zl generates G.

Proof. By Lemma IV.7.1, {A;, E;} generates G. By the previous lemma, 4;
is a product of v, hj,7;. However, v is the central element of (hy,T1). Thus,

v= (hl)(hl)’f‘l . O
V. Construction of Gy, é&: Gg = G.

Construction of Gg(9).

~ Let Go(9) be the group generated by g; 2 = 1...91% # 4 with the following
list of relations:
[91,92)* = 1.
(91, 92] € Center(Go(9).)
{[gl,gg] T;, T are adjacent
l9i,95] = L
1 T;,T; are disjoint.
where T; are described as follows:
Denote v = [g1, g2]-
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Let us reformulate the relations of Go(9) as follows:

GO(Q) = <g11 oo 04544599 l [gzagj]
_ {7’ T;,T; are adjacent, 2

1 T;, T; are disjoint. 90 )

Remark. Gy(9) or Go(n) in general can be described in a different way:
Take A,_1, a free abelian group on n —1 generators An,_1 = (wi,...,Wn—-1).
Define a skew-symmetric form on A,_; as follows:

1 li—jl=1
W; Wi =
Tl li-dl AL

Let Go(n) be the unique central extension that satisfies
152/25% Go(n) % Ap_y — 1

where Go(n) is generated by wj...up—1, a(u;)) = w; and [u;u;] =
1 fimgl£1
T li—jl=1

and b(1) = 7. We have: Ab(Go(n)) = Ap—1, Go(n) = {r,1} ~Z/2.

Go(9) as a Bg-group.

9; Lr 1=k
(gi) 7 = i T; and Ty, are disjoint
i 9kGi T; and T} are orderly adjacent

gi gk_l T; and T are not orderly adjacent.

Remark V.0. Let Go(9) and g; be as above. Then g; is a prime element
of Gy(9) with s.h.t. T, and central element 7.

Proof. By the actions of By on g; and the axioms of prime element. g

Consider the semidirect product: By x Go(9).
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Construction of & : By x Go(9) = G.

A
lg=a
a(Ty) = E;
a(&) = a(&) = n; (Lemma IV.5.3)
X
afc) =alc) =p
A x
a IGO(Q) defined by a(g;) = h;.
&(r) = afg1, 92] = [h1, ho] = v.

Since v is the central element of h; it belong to Center(G) and is of order
2. Thus, by Proposition IV.4.2 all relations that g; satisfy are also satisfied

by h;, and thus o IGO ) is well-defined.
By Lemma IV.4.3, & l Go(9) is compatible with the action of By on Go(9)

and thus we have & : By % Go(9) — G.
Construction of Gg.

Let g; be the generators of Go(9) as above.

Let 7 = [g1, 92]- 3

Let &; be the prime elements in By defined in Chapter IV.4 (¢-situation).
Let c be the central element of &;. ¢ = [T2, TZ].

Let Ng C B, xGo(9) be the normal subgroup generated by 7c and (g;&;)*:
Ny ={((rc™Y, (g:i&1)Pi=1...9i#4).

Gg = Bg % Go(g)/Ng
Construction of &, &: Gg = G.

By Lemma IV.4.5, vp =1, (g 1)% = 1, so &(Ng) = 1. Thus & induces
a map on Gg denoted by &. &: Gy — G.

Construction of B :G - Gg.

We start by using a set of generators for G, {T;,[y}Y_;.
We then choose as a set of generators {E;, Ey}}_; where E; =
T, i#£27

d By = (E;)ps.
r, =gy B =Ee
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The third set of generators was {E;, A;}}_, where A; = E;E".
Finally, we take the following set of generators for G : E;, h;, ;.
We define B: G = Gy on the third set of generators as follows:
BE)=T; i=1...9.

B(A1) = g1

B(A2) = g5 &

BlAs) = gs65

B(Ad) = g5 *6a.

B(4s) = g5 'és.

B(As) = ge.

B(AY) = gits™.

B(4s) = g5 's.

B(Ag) = 795 .

Remark. By definition of & and by the formula for expressing A; in terms

of h; and 7; (Lemma IV.8.3), if 3 is well-defined, then 68 = Id.

Theorem V.1. ,B is well-defined.

Proof. We recall that G = F13/G(¢(18)) where Fig is the free group gener-
ated on {I';, [y })_; and G(£(18)) is the subgroup generated by the relations
induced from the factors in the braid monodromy factorization £(18) (see
Theorem 1.1) by the Van Kampen method. To prove that B is well-defined,
we have to prove that all relations induced by the Van Kampen Theorem
are valid when each generator in a relation is replaced by its image under B.
In what follows we shall take every braid in the braid monodromy factor-
ization £(18) and use the Van Kampen method to deduce from it a relation
on 71 (CP? — S) in terms of T'; and T'y. Then we shall present the relation
in terms of E; and A;. The next step is to substitute T; instead of E; and
B(A;) instead of A; and confirm that the relation holds.

Denofe: 5
t; = B(E;) = Ti.
tir = B(E]).

~

tin = A,B(EzEllEt_l)

a; = B(Ai) = B(E« B ') = tut; .

We have expressions for a; in terms of g;,&;, 7.
ay = gi.

az = g; &

a3 = gsé3 .
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as = g7 &
as = g5 'és.
a6 = gé-

ar = gr&; "
ag = g3 '&s.
ag = 7'99_1.
Then:

t; = T’,

ti/ = aiti.

tin = (aiti)ti = (ai)ti A ti(ai)t? = t;a; (Lemma II.3).

€(18) implies relations of type (b1, be) = 1 relations of type [b1,b2] = 1
and relations of type b; = by. We shall treat all relations of type (b, b2)
together. To do this we prove the following two lemmas:

TQ; 1=1,6,9
Lemma 1. (a;)s; = (a:),-1 =4 ] !
i a; otherwise.

Proof of Lemma 1. The elements g; and £; are prime elements with s.h.t.

t;. By Lemma II.5, for a prime element g with s.h.t. ¢, we have:

(9)e = (9)-1 =797

For such g we then also have:

(71 = (g7 =779

Since 77! = 7 we have for every f a prime element with s.h.t. ¢ or an
inverse of a prime element with s.h.t. t:

(e =l =7F.

For 1 = 1,6,9, one can see from the above list that a; is a prime element,
or 7 multiplied by an inverse of a prime element, and since 7 € Center(G),
we get the Lemma for 2 = 1,6,9.

For 7 # 1,6,9, a; is a product of a prime element with an inverse of a
prime element. Write a; = f; - f}, thus, (a;)s, = (ai)ti—l will be the product
of the inverse of the 2 factors times 72 (7 € Center(G)). By Lemma IV.6.2
such two factors commute. Thus,

(@i)e; = (fi)e: (fD)e

-1 -1 2p—1 g1 11 —1p— -1
=7'fi T(fz’) =7'fi zl =fi 1,’ =fz’ fi1=ai

The same is true for (a;),-1. 0 Lemma 1
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Lemma 2. IfT; and T are adjacent and d; = a; or (a;); then (d;),-1,-1 =
3 Y

di_l(di)tﬂ for t; =t; or tj or tjm.
7 ]

Proof of Lemma 2. By the above list:
a; = g; or g; "¢ or gi&; ! or Tg; .
By the above Lemma:
(ai)i; = Tg; ' or & 1g; or &g or g;.
Thus, d; = g; or 7'g;1 or (gifi_l)ﬂ(gi_lﬁi)il. O

If d; is of the form g; or 7g; ! it satisfies the Lemma by the definition
of prime element (axiom 2). For symmetry reasons we shall only treat the
case d; = g[lfi.

Case 1. t; =1

(di)tj—lti—l = (gi_l&)tj—lti—l = (9@')%11%-1 : (fi)tj—lti—l

By axiom 2 of the prime element , _7 1 =1
= (9; git;l) & (ﬁz)tj—l

= (9{1),5].—1 g9 &' (€)1
By Proposition IV.6.2 —
= 51 191'(91' 1)tj—1 : (fz)tj—l

= (gi_lfi)_l(gi_lf)tj—l = di_l(di)tj—l'

Case 2. tj =ty

(di)t;.—l = (di)(tjaj)-l = ([aj’di]di)tj‘l = [ajdi]tj—l : (di)tj—l-

By Proposition IV.6.2, Claim II.4 and by the formulas for a;, [aj,d;] is
a product of 7. Since 7 is of order 2, [aj,d;] = 7° € =0, 1. Thus, (di)t.‘,l =
7°(d;),~1. So we get the claim from case 1 when multiplying each side of the

equation there by 7° to get the equation for #;.
O Case 3

t; =ty
As in Case 2 we get (di)tg.' = (d;)¢;7° and we use Case 1 to get Case 3.

O Lemma 2
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Since T; and Tj are adjacent, (t;,t;) = 1. We use the above Lemma to
deduce from Lemma IV.3.1 that (dit;, ;) = 1 j = j,5',7". Since d; = a;

or (a;):; we get (i, tj) = 1. This covers all the triple relations which are
induced from £(18).

Lemma 3. For 4,5 s.t. T; and Tj are disjoint or transversal, we have
lai,t;] =1 and [t;,t;] =1 wherei=1dori', j=j orj'.

Proof of Lemma 3. It is enough to prove [a;,t;] = [ti,t;] = [tr,t;] =
[tir, t; ] =1.

If T; and Tj are disjoint, then [T3,Tj] = 1. If T; and T; are transversal,
then [T}, T}] = 1 In any case, [T}, T;] = 1 and thus, [t;, ;] = 1.

Now, a; is a prime element with s.h.t. ¢; or a product of 2 prime elements.
If t; is disjoint from ¢; we know that each of the prime factors in a; commutes
with ¢; by the definition of prime element. If ¢; is transversal to ¢; then each
of the prime factors in a; commutes with ¢; by Lemma III.3.5. In any case,
[a;, t;] = 1. Now, ty = ait;, [ti,t;] = [asti, t;]. Since t; commutes with ;
and a;, then [ty,t;] = [as,t;], which equal 1. Now, [ty t;] = [a;t;, ajt;]. Since
t; commutes with a;t; and a; commutes with ¢; to prove that ¢; commutes
with ¢;; it is enough to prove [a;,a;] = 1. This follows from Proposition
1V.6.2. O

We use the following Lemma to show that all commutation relations in
£(18) are satisfied when t; is replacing E; and a; is replacing A;.

Lemma 4. Let ZZZJ be a braid in Big s.t. Zij connects g; or gy with q; or
gjr where outside of 2 small discs centered at g;,qy and qj,q; Tespectively,
the path goes below the real line, except when it goes above some of the pairs
gk, qx (for i <k <j k € K). Assume T; and T; are disjoint or transversal.
Then the relation induced by Zf] via the Van Kampen-Zariski method is
mapped to 1 under (.

Proof. We cut ZJ into 2 pieces, one connects u with the disc around ¢; and
gy from below and the other one connects u with the disc around g¢; and g;/
above the pairs qiqir k € K. Thus the relation induced from 22 is

{ri, (H P,;lr,;}) r; (H rk,rkﬂ =1
keK keK
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where T'; = (I';)p* for some m. Since (I';)p; = Ty, (Tw)p; = Ty, we
know that I'; € (T, Ty).

It is enough to comsider I'; = I'; or I'y and I'; = T'j or I'y, since by
proving that T; and I'y commutes with XI';X ™!, we can conclude that
XT;X~! commutes with every element g from (I';,I'y); in particular, T;
commutes with XT'; X ~1. Similarly, T; commutes with X ryX ~1, Thus,
[X_IFQX, Fj] = [X'_ll-‘iX, Fjl] = 1. So, [X_IF:L‘_X, Fj] =1.

Now, ﬂ(I‘Z_) =t; or tj, ,B(Fj) =tj or tj, B(TxTy) =tg -t = aktz. So

B <<H 1“,;11“,;,1) T, <H rk,rk)) = (H t,;2a,;1) alt; <H aktz) :
keK  \kek keK keK

which is a product of squares of half-twists and prime elements. Thus, we
can use Propositions IV.6.1 and IV.6.2 to rearrange the factors in the above
product while multiplying the product with the appropriate v¢ which is a
central element to get

- -2
'Tfa,g H akl(a‘k)tj—l H ty (tz)tj_1 . tj-

k€K kEK
Now,
) (ar);-1,-1 t;,tr adjacent (Lemma 2)
ay (ak)-1 = Pk .
J 1 t;,t disjoint or transversal (Lemma 3).

Since ay, is a product of prime elements with 7 by Lemma II11.2.2, (a),-1 £
. J
is also such a product. Thus, a;l(ak)tﬂ is 1 or a prime element supported
on tj. ’
By Lemma IV.4.0 when ¢ and ¢; are adjacent, (t;z)(ti)t.—l is a product
J

of ¢ with an inverse of a prime element supported on ¢;. By Remark III.1.1,
if ¢ and t; are disjoint or transveral then t;z(t%)tfl =1.
J

Thus,

keK keK
e ot 1—[ prime elements supported .
=T Qa:C . .
J on t; or their inverse I

i 1 t orted
_ CtTE(tjlt;1)6 (H (pnme elements supporte )) 4.

on t; or their inverse
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We have to check if this product commutes with §(I';). Since I'; belongs to
the subgroup generated by I'; and I';; which is the same as the subgroup
generated by E; and Ey, B(I';) is a product of 8(E;) (=t;) and of B(Ey) (=
t;). Thus it is enough to check that the above product commutes with ¢; and
ti.

Now, ¢; = T, and t; = TJ are transversal or disjoint, thus by Remark
II1.1.1(d) t;,ty commutes with ¢;,¢;;. By the definition of prime element
(Axiom 3) and Lemma II1.4.2, a prime element supported on ¢; commutes
with ¢; and ¢]. Finally, ¢, 7 € Center(Gy), and thus all the factors in the above
product commute with ¢; and #; and, therefore, the product commutes.
O Lemma 4

Lemma 4 covers all degree 2 elements that appear in £(18).
We still have to check the degree 1 elements that appear in £(18).
r, i#2,7

and A,,, =
Ty i=2,7

We recall from Lemma I1.2 that for E; = {
EyE; ! we have

(1) Ty, = EyE; = A1E12

(2) T; = B; 12T
: E7'EyE;=E'AE? i=2,7.

3 Ty = {Ez = A,E; z:;é 2,7
E; 1=2,7

We have to consider each of the degree 1 elements in £(18) and to apply
[ on both sides of the induced relation in order to prove that we get the
same element of Gg.

We want to rewrite each side of the induced relation as a product of the
following form: 7€ - prime elements - half-twists, and then use formulas for
the action of By on Gg and Lemma, 1.

We shall only consider here one braid which is a degree 1 element. We

shall consider Z 2(1)-
2 (1) ‘{f/ ;
Zyy (1) implies by the RMS method the relation

Iy =TT Ty Ty
From (2) above, this relation is actually:
Ey = E[?AT'E; Ay B2 A B2
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Recall that t; = B(E;). a; = B;(A;). Thus,

B(ls) =to
B(rs) = t72a7t; tagtia t? =

= (al)t}l2 (ag)tzt;rz (al)tl‘%zt;” . t7 %512 = (using Lemma 1)

=ai" - (a3 g (@)t 2t ] =
(using Lemma II1.2.1(2) applied on ag and on (ai)t,)
=97 1 (976) "N (g1)y - 17 2ot} =
=91 & 929195 -t tat] = (using [g !, 2] = 7 and [g; 1, &5 "] = 7)
=72 L0207 "g195 " - t1 “tat]
= &M 835 - 1y
= 52—1 . t1_2(t%)t2‘1 1y

=&t & -tg=ty (LemmaIV.4.2)
O Theorem V.1

Lemma V.2. 83 = I, Ba = I,

Proof. By definition of & and by the formula for expressing A; in terms of
h; and 7; (Lemma IV.8.3), &8 = Id.

For & recall that Gy is generated by T; and g;, i.e., by t; and g;, i.e., by
Ti,az and ¢&;. X ) )

pa(ti) = pa(T;) = B(E;) = T; = ti.

By PropositionIV.8.3 and by &(&;) =n;, &(g;) = hi, we get &(a;) = A;.
ThllS, Bd(ai) = ,é(A,) by:def. a;

In Lemma IV.5.3 we have expressions for 7;, in terms of E;. If we apply
,3 on these expressions, we get the same expressions where E; is replaced by
T;. These expressions are exactly the expressions for & as products of Ty’s
from Lemma IV.4.2. Thus, B(n;) = &.

For 14 we could also use the expression 74 = (7’]5)7'—:8—17'17T3—17'12. Apply

from_above

on it the By homomorphism 3 to get B(ns) = (3(775))11;1..12

(55)1'“8—1___1'['12 Lemm;IV.4.2 64-
So Ba(&) = B(m) =& by IV.42 and IV.5.3.
Thus, & = Id. O
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Corollary V.3. G ~ BL“NGﬂ = Go
9

Proof. B:G— Gy is an isomorphism. : a

VI. Main Results and Formulations of Additional Results.

In this chapter we shall state the main results concerning the fundamen-
tal group of the complement of a branch curve of a Veronese surface of order
3 proven in the previous chapters. The theorem is formulated in Theorem
VI.1. We shall also formulate additional results on fundamental groups that
were proven in earlier works as well as future results.

VI.1. Main results and “forthcoming” results.
In order to phrase the main results we recall a few definitions.

Definition. Braid group B, = By[D, K|

Let D be a closed disc in R?, K C D, K finite. Let B be the group of all
diffeomorphisms 3 of D such that 3(K) = K, Blap = Idsp . For 1,02 € B,
we say that (1 is equivalent to B9 if 8; and 9 induce the same automorphism
of m(D — K,u). The quotient of B by this equivalence relation is called
the braid group B,[D, K] (n = #K). We sometimes denote by 3 the braid
represented by (. The elements of B,[D, K] are called braids.

Definition. H(o), half-twist defined by o

Let D, K be as above. Let a,b € K, K, = K —a—b and o be a simple
path in D — @D connecting a with b s.t. o N K = {a,b}. Choose a small
regular neighborhood U of ¢ and an orientation preserving diffeomorphism
f: R — C' (C! is taken with usual “complex” orientation) such that
flo) = [-1,1], f(U) = {z € C'||z|] < 2}. Let a(r),r > 0, be a real
smooth monotone function such that a(r) = 1 for r € [0,2] and a(r) = 0
for r > 2.

Define a diffeomorphism A : C! — C! as follows. For z € C!, z = re¥
let h(z) = refl¢+(M) . Tt is clear that on {z € C!||z] < 3}, h(2) is the
positive rotation on 180° and that h(z) = Identity on {z € C!||2| > 2},
in particular on C! — f(U). Considering (f o ho f~1)|p (we always take
composition from left to right) we get a diffeomorphism of D which switches
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a and b and is the identity on D—U . Thus it defines an element of B,[D, K],
called the half-twist defined by o and denoted H(o).

Definition. Frame of B,[D, K]

Let D be a disc in R?. Let K = {a1,... ,an} K C D. Let 01,... ,0n_1
be a system of simple paths in D — dD such that each o; connects a; with
a;+1 and for

i il >
iie{ln—1},i<j , ano=(0  Hli-d=z
a1 ifj=i+1.

Let H; = H(o;). We call the ordered system of (positive) half-twists
(Hy,...,Hp_1) a frame of B,[D, K] defined by (o1,... ,0n-1), or a frame
of B,[D, K| for short.

Definition. Transversal half-twists

The half-twists H(o1) and H(o2) will be called transversal if C; and Co
intersect transversally in one point which is not an end point of either of the
Ui’S.

Definition. B,

Let T,, be the subgroup of B, normally generated by [X,Y] for X,Y
transversal half-twists. B, is the quotient of B,, modulo 7T;,. We choose a
frame X; of B,,. We denote their images in B, by X;.

Proposition-Definition. Gy(n), ,u;
Let A,,_1 be the free abelian group on ws, ..., wn—1d. Let us define a Z/2
skew-symmetric form on An,_1 as follows:

wi.wj={1 i—j) =1

0 otherwise.

There egzists a unique central extension Go(n), of Z/2 by Ap—_1, with gener-
ators uy ... un—_1 that satisfies

15 2Z/2% Go(n) S Ap_q — 1
a(u,) = w;
T li—-jl=1
i) = b(w; - wj) =
[ s} (wi - w;) {0 otherwise.
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We always consider Go(n) with the standard By-action as follows:

u{l'r k=1
(’U,i))'(k = § UrU; |’I, —k| =1.
u; i — k| > 2

Claim. Ab(Gy(n)) = An—1 (free abelian group on n — 1 generators),
Go(n)' = {r,1}(~ Z/2).

Proof. Claim II1.6.4. a

Let 1, be the standard homomorphisms B, L Sn (= symmetric group).

Let Ab be the standard homomorphism B, 7.
Since 9 ([X,Y]) = 1, and Ab([X,Y]) = 1, ¢, and Ab induce homomor-
phisms on B,,.

Definition. 'gzn, Isn, 15n,0, c
QZn : B, = Sn, the induced homomorphism from ,,.
Ab: B, Ap Z, the induced homomorphism from B, A7,
P, = ker 1,71,, .
P, o = ker ¢, Nker Ab = ker P, — Ab(B,) = Z.
c=[X?,X3] for 2 consecutive half-twists.
Consider By x Go(9) with respect to the standard By action on G(9).

Definition. w1, Ny, Gg,%9 : Gg — Sy
v = (X'gX'lX{l)?X{Z for a frame X1,..., Xg of By.
Ng = normal subgroup generated by cr7L, (urvy h3,
qg = Bg G()(g)/Ng. _
Y9 : Gg = Sy o(a, B) = g(c).

Definition. Abg, Hg, Hg’()
Abg: Gy = Z Abg(a,B) = Ab(a).
Hy = ker q..
Hy o = ker )y Nker Abg.

Theorem VI.1. Let V3 be the Veronese surface of order 3. Let S3 be the
branch curve of a generic projection V3 — CP?. Let C? be an “affine piece”
of CP2. Let S = S3NC?. Let G = 71 (C?> —S). Then G = Gy s.t. 1 : G = Sy
is compatible with 1g : Gg — So.
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Proof. Corollary V.3. O

Proposition VI.2. Let V3 be the Veronese surface of order 3. Let S3 be
the branch curve of a generic projection V3 — CP2. Let G = m (CP? — S3).
Consider vi as an element of Gg. Then there ezist wg € Hgy s.t. G ~ Gy
where Gy = Gg/(viBwp).

Proof. To appear in [MoTe9)]. O

Proposition VI.3. Let X; be a frame in By,. Let ¢ = [X?, X3]. Then

c= [X%aXz] [Xz X+1] = [X2 Xn—-l]

Moreover, (P.) = (P,o) = {1,c} ~ Zo.

Ab( P,) = free abelian group on n generators.

Bn acts on PnO by conjugation.

Pn o with this action is isomorphic to Go(n) with the standard B,,-action
as defined previously.
_ There exists a series: 1 C ( no) C Pn() C B, Cﬁn s.t. By/P, = Sy,
Pn/Pn,O ~Z, Pn,O/( n,0 ) ~Apq = Ab(GO( )) (Pn,O)’ ~ Zsa.

Ab(B,) =Z

Proof. See in [MoTe4], Chapters 4, 5, definitions of B, and 13,,,0 and Theorem
111.6.4. O
Proposition VI.4. There ezists a series 1 C Hgo C Hgo C Hy C Go,
where Gg/Hg =~ Sg, Hg/Hg,o =~ Z, Hg,o/H{;’O ~ (Z+ Z/3)8,
Hg’,,0 =Hj={1l,c} =Z/2.

Proof. To appear in [MoTe9]. a

Proposition VI.5. Let Hg and Fg,o be the images of Hgo and Hy in Gy.
Then ﬁ;’o = ﬁ; and

1 _C_Flg’o g _ﬁg’o g _ﬁg C ag

o ~

where Go/Hg =~ Sy, Ho/Hop =~ Ly, Hop/Hgg =~ (Z+Z/3)%, H
Z./2.

,0
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Proof. To appear in [MoTe9]. O

VI1.2. The Galois cover of V.

We shall quote here other results on fundamental groups related to
Veronese surfaces proven in earlier works.

Theorem. Let V, be a Veronese surface of order n. Let (Vy)ga be its
Galois cover with respect to f, a generic projection. Then m1((Vn)2) the
fundamental group of the part of (V,)gal that lies over a generic affine part
of CP? is a direct sum of n?> — 1 cyclic groups of order n.

Proof. See [MoTe3]. O

Theorem. Let V,, be a Veronese surface of order m. Let (V,)gal be its
Galois cover with respect to f, a generic projection to CP2. Then 711 (Va)gal
is a direct sum of n? — 2 cyclic groups of order n.

Proof. See [MoTe3|. O

The above results concern the computation of ker 1) for

7T1((C2 - S)
(r3)

for S, the branch curve of a generic projection to CP? of V,, and {I';} a
g-base for m;(C - S, %). To carry out the computation we used the relations
induced from the Van Kampen method (Chapter II), ]."? = I‘?, =1 and the
RM S method without using the computations of Chapter IV. These results
are easier since we assume there that all generators of fundamental groups
are of order 2.

P

— Sy

V1.3. The Galois cover of X,},.

We shall also quote here a few results concerning the fundamental group
of the Galois cover of X.

Definition. X,
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Let X = CP! x CP!. Let #; be the first CP! and ¢ the second one. Let
a,b € N*. Look at E = af; + bly. Embed X in some PV with respect to the
linear system |E|. Denote the image of the embedding by X .

Theorem. The fundamental group m1((Xqp)2H) is a finite commutative
group on n — 1 generators (n = 2ab), each of order C (c = g.c.d.(a,b)) and
there are no further relations.

Proof. Theorem 10.1 from [MoTe5]. a

Theorem. The fundamental group 71 ((Xap)cal) s a finite abelian group
with n — 2 generators, each of order ¢ (c = g.c.d.(a,b)) and there are no
further relations.

Proof. Theorem 10.2 from [MoTe5]. a

Corollary. If a,b are relatively prime, then (Xsp)gal s simply connected.

These results give us very interesting examples of surfaces of general type.
The Galois covers are minimal surfaces of general type. Their index is zero
for a =b =5 or for a = 4, and b = 7 and positive for a > 5, b > 6. By the
above Corollary, they are simply connected for a, b relatively prime. Thus we
get a series of simply connected surfaces of general type with positive index
unlike the Bogomolov-watershed Conjecture (see [FH]). Moreover, Xs5 is an
example of a surface of general type with zero index and even type with finite
commutative fundamental group whose universal cover is homomorphic to
a connected sum of S? x S2. Xs5 gives also an exotic differential structure
on a connected sum of several copies of S? x S2. There are only a few other
such examples (one of them is X4 7). The other 3 examples will appear in
[MoTel0].

In this work we have computed fundamental groups of complements of
branch curves as part of our research on algebraic surfaces. This work also
has implications to the topology of complements of curves in general. For
general singular curves see, for example, [L1] and [L2].
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