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In this paper we compute 7ri(C2 -53), S3 the branch curve of a generic 
projection of the Veronese surface V3 on QP2. Throughout this paper we use 
G for TTI (C2 — S3). We also have a similar result concerning G = TTI (QP2 —S3). 

Fundamental groups of complements of curves are very important invari- 
ants but it is very difficult to compute them. We obtained G and G using 
our braid group techniques. 

This paper is a continuation of "Braid Group Techniques in Complex 
Geometry, I, II, III, IV." (BGT I, BGT II, BGT III, BGT IV for short.) 
In BGT I we laid the foundation of our braid monodromy techniques and 
applied them to line arrangements. In BGT II we dealt with the braid mon- 
odromy of almost real curves and showed how to regenerate these formulas 
to cuspidal curves. In BGT III we presented a series of generic projected 
degenerations of the Veronese surface V3 and the branch curve £3 of its 
generic projection to QP2 to a union of 9 planes, and a branch curve 5(6) 
which is a union of lines. In BGT IV we computed the braid monodromy of 
SsHC2 using the braid monodromy of S^6' and the regeneration rules proved 
in BGT II. We obtained the factorized expression for the braid monodromy 
denoted by £(18). In this paper we use £(18) and the Van Kampen Theorem 
to compute G and G. If the reader is only interested in the final results he 
can go directly to Chapter VI. 

0. Definition of Braid Group and Presentation of the Van 
Kampen Theorem. 

We need certain terminology in order to formulate the Van Kampen 
Theorem. 

1This research was partially supported by the Emmy Noether Mathematics Re- 
search Institute, Bar-Ilan University, Israel. 
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Figure 0.1. 

We first recall from BGT I (Section II) the definition of a good geometric 
base of n^D — K, *) for K a finite set in a disc D. 

Definition.   ^(7). 
Let D be a disc. Let wi i = 1,...,n small discs in Int(D) s.t. WiDwj = 0 

for i 7^ j. Let u E dD. Let 7 be a simple path connecting u with one of the 
Wi's, say Wi0 , which does not meet any other Wj , j ^ io • We assign to 7 a 
loop (actually an element of 7ri(jD — K, u)) as follows. Let c be a simple loop 
equal to the (oriented) boundary of a small neighborhood V of Wi0 chosen 
such that 7'= 7 — VHj isa, simple path. Then £(7) = 7' U c U 7'_1. We also 
use the same notation £(j) for the element of 7ri(D — K,u) corresponding 
to £(7) (see Fig. 0.1). 

Definition,     g-base (good geometric base) 

Let D be a disk, K C D, #K < 00. Let u E D - K. Let {7;} be a 
bush in (D^K^u)^ i.e., Vi,^ 7$ fl jj = w, Vi 7; fl if = one point, and 7$ are 
ordered counterclockwise around u. Let F; = £(7^) E 7ri(Z? — if,ii) be the 
loop around K fl ji determined by 7^. {F^} is a ^-base of 7ri(D — if, *). 

Definition.    Braid group Bn — Sn[D,if] 
Let D be a closed disc in E2, K C D, if finite. Let B be the group of all 

diffeomorphisms /3 oiD such that /3(if) = K, /3|aD = Id^D . For fa, fa € B , 
we say that fa is equivalent to fa if fa and /?2 induce the same automorphism 
of TTI (£> — if, u). The quotient of B by this equivalence relation is called 
the braid group .Bn[Z),if] (n = #if). We sometimes denote by (3 the braid 
represented by fa The elements of Bn[D,K] are called braids. 

Definition.   H(a), half-twist defined by a 
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Let D? K be as above. Let a, b G K, K^ = K — a — b and a be a simple 
path in D — dD connecting a with b s.t. a D K — {a, 6}. Choose a small 
regular neighborhood U of a and an orientation preserving diffeomorphism 
/ : E2 —> C1 (C1 is taken with the usual "complex" orientation) such that 
/(<T) = [-1,1], f{U) = {z e C1 \\z\ < 2}. Let a(r),r > 0, be a real 
smooth monotone function such that a(r) = 1 for r G [0, |] and a(r) = 0 
for r > 2. 

Define a diffeomorphism /i : C1 —> C1 as follows. For z E C1 , z = rezv?, 
let h(z) = re^^^W). It is clear that on {^ G C1 | |z| < §}, /i(^) is the 
positive rotation by 180° and that h(z) = Identity on {2: G C1 | \z\ > 2}, 
in particular, on C1 - f(U). Considering (f oho /~~

1
)|JD (we always take 

composition from left to right), we get a diffeomorphism of D which switches 
a and b and is the identity onD — U. Thus it defines an element of Bn[D, if], 
called the half-twist defined by a and denoted H(a). 

Definition.   Frame of Bn[D,K] 
Let D be a disc in R2. Let K = {ai,... , an}, K C D. Let <7i,... , ovi-i 

be a system of simple paths in D — dD such that each ai connects a; with 
aj+i and for 

r , f0 ifN-il>2 
z,j G {1,... ,n-l} , 2 < j    ,     oriflcrj^^ 

Let Hi = H(ai). We call the ordered system of (positive) half-twists 
(iii,... , Hn-i) a frame of jBn[Z?, if] defined by (<7i,... , <Jn-i) •> or a frame 
of Bn[D,K} for short. 

Notation. 
[A,B} = ABA-lB-1. 
(A,B)=ABAB-1A-1B-1. 
(A)B = B-lAB. 

Theorem (E. Artin's braid group presentation). Bn is generated by 
the half-twists Hi of a frame {Hi} and all the relations between Hi,... y Hn-i 
follow from 

[Hi,Hj] = l       if   \i-j\>l, 

(Hi,Hj) = l       if   \i-j\ = l, 

1 < ijj < n — 1. 
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Proof. See proof in [MoTe4]5 Chapter 4. □ 

Proposition-Definition.   A^ (G jBn) 
A^ = {Hx... ifn)71"1 /or any frame H^.. Hn-i of Bn. 

We shall need the following definition: 

Definition.   R(E),N{e),G{e) where e is a factorized expression in Bm 

Let D be a disk in C, K C D, #Jft: = m. 
Let Fm = ITI(D — K). Consider the natural action of Bm = B[D, K) on 

Fm, denoted by (F)^. 
Let e = gi 5^ be a factorized expression in Bm. 
Let Fi • • • rm be a good geometric base of Fm. 
Let M(e) be the subgroup of Bm generated by {5i}*=1. 
Let R(£) be the subgroup of Fm generated by {{Tj)gi o rT1}^_1^_1. 
Let N(e) be the normal subgroup of Fm generated by R(e). 

Lemma 0.1.      (i) N(e) = {(a)fi • a"1 | a e Fm;    fie M{e)}. 

(ii) G(e) = Fm with the relations induced from R(e). 

Proof.   Trivial. D 

We recall from BGT IV [MoTeT] the definitions of Hurwitz equivalent 
factorizations and factorization invariant under h £ Bm. 

Definition.     Hurwitz move 
Let gi Qk — hi hk be two factorized expressions of the same 

element in a group G. We say that gi g^ is obtained from hi hk by 
a Hurwitz move if 3 !<£><& — 1 s.t. gi = hi i ^ p,p + 1, gp = hphp+ih~l 

and #p+i = hp or gp = hp+i and 5^+1 = h'^hphp+i 

Definition.   Hurwitz equivalence of factorized expressions 
Let #£ gk = hi /ifc be two factorized expressions of the same 

element in a group G.   We say that gi g^ is a Hurwitz equivalent to 
hi fefc if /it gk is obtained from hi hk by a finite number of 
Hurwitz moves. We denote it by gi gk — hi hk- 

He 
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Definition.     Factorized expression in Bm invariant under h G Bm 

We say that a factorized expression gi... gt is invariant under h if (gi)h * 
— (gt)h is Hurwitz equivalent to gi... gt, i.e., can be obtained from gi...gt 
by a finite number of Hurwitz moves ((g)h = h~lgh). 

Lemma 0.2. If a factorized expression e = gi... gt in Bm is invariant 
under h G J5m, then h induces an automorphism of G(e). 

Proof The group Bm acts on 7ri(D — K.u)\ thus there is a natural action of 
h G Bm on 7ri(D — kj u) = Fm. Therefore, /i induces an automorphism of Fm. 
Since e is Hurwitz equivalent to (e)^, we get that h~lM{e)h = M(£) and 
thus (N(e))h C iV"(£), and /i induces an automorphism o{¥/N(e) = G(s). 
□ 

Certain factorized expressions of A^ in Bm play an important role in 
the computation of the fundamental group of complements of curves, as we 
shall see in Theorem 0.3. 

Let S be a curve in QP2 of degree m. 
We refer the reader to BGT I, Chapter VI, [MoTe4] for the definition of 

a certain factorized expression in Bm related to S: S-factorization of A^ 
or S-factorization or product form of A^ or braid monodromy 
factorization w.r.t. S and u. 

Theorem 0.3. Zariski-Van Kampen Theorem, (see [VK]) Let S be a 
curve in QP2 o/degra, s.t. S is transversal to the line in infinity. Let 
S = S fl C2. Let e be the braid monodromy factorization w.r.t. to S and u. 
Let Cu = u x C. Let {1^} be a g-base of TT^CU — S,u). Then: 

7ri(C2 - 5,*) = G(e)    and   7ri(QP2 -S,*) = G(e) with extra relation 
m 

n r* = i. 

Remark. We shall use this theorem for S3, the branch curve of a generic 
projection of V3 (the Veronese of order 3) to QP2. In BGT IV we computed 
the braid monodromy factorization related to 53. We denote it £(18). We 
shall again present £(18) in the next chapter. 

We are going to reformulate the Zariski-Van Kampen Theorem in a more 
precise form for a cuspidal curve, i.e., for a curve with only nodes and cusps. 
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Theorem 0.4. (Zariski).   If S is a cuspidal curve, then the related braid 
P 

monodromy factorization e is of the form fl Vp ? where Vj is a half-twist 
3=1 

and Vj = 1 or 2 or 3. 

Theorem 0.5. Zariski-Van Kampen (precise version).    Let S be a 

cuspidal curve in QP2. Let S = C2 fl S. Let e be a braid monodromy fac- 
P 

torization w.r.t.   S and u. Let e —  fj V-'7, where Vj is a half-twist and 
3=1 

Vj = 1,2,3. 
For every j = 1.. .p let Aj^Bj G TT^C^ — S', u) be such that Aj,Bj can 

be extended to a g-base of 7ri(Cu — S:u) and (Aj)Vj = Bj. Let \Yi} be a 
g-base of ^(C^ — S,u). Then 7ri(C2 — S,u) is generated by the images of 

{Fi} in 7ri(C2 — S', u) and the only relations are those implied from \ Vj3 > , 

as follows: 

Aj-B-^l if ^• = 1 

te.S;] = i if Vj = 2 

(A^Bj)^! if !/_,• = 3 

7ri(QP2 — *9, *) is generated by {1^} with the above relations and one more 

relation Yl^i = 1- 

Remark 0.5'. How to determine Aj and Bj from Vj 
or how to determine Av and Bv from V = H((j) (see formulation 
of Van Kampen Theorem). 

To be able to use the Zariski-Van Kampen Theorem, we must know how 
to compute Aj if Bj for every j = 1.. .p. Assume, for simplicity, that UQ is 
below real lines and {qi} = C^ nS are real points. Assume that p(Sj) = V-j, 
where Vj = H((j), a half-twist corresponding to a path a from qi to #2- Take 
a homotopically-equivalent path a' that passes through UQ. Let ai, (72 be the 
part of a' from UQ to 91,92 respectively. Let Aj = ^(cri) Bj = tfa) be the 
loops of 7ri(C2 — 5, UQ) built from <7i, a2 as in the definition in the beginning 
of the Chapter. See Fig. 0.2 for an example how to determine Ay and By 

foTV = H(a). 

Proposition 0.6.    // an S-factorization A2 = Ylgi is invariant under h E 

Bm then R((gi)h) is also a relation on 7ri(C2 — 5,*). 
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Figure 0.2. 

Proof. Zariski-Van Kampen Theorem and the fact that an invariant factor- 
ization of a braid monodromy factorization, namely Wig^hi is also a braid 
monodromy factorization (see Proposition VI.4.2 from BGT I, [MoTe4]). □ 

Remark. Proposition 0.6 indicates why it is important to prove invari- 
ant properties of 5-factorizations. We use such properties to induce more 
relations on the fundamental group. □ 

I. The braid monodromy related to S, the branch curve of a 
Va-projection. 

Notation.     V^ /, S^S 
Let V3 be the Veronese surface of order 3, i.e., the following embedding 

of OP2 into QP^ : 

(rr, !/,*)-►(..., xly3zk,... )i+j+k=^ 

Let / = /a be a generic projection: Vz -> QP2. 
Let S3 be its branch curve in QP2. 
Let C2 be a "generic" affine piece of QP2. 
Let S^SsHC2. 
degS = degS3 = 18. 
We are interested in 7ri(QP2 - S3, *) and 7ri(C2 - Sr, *). 
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We constructed in BGT III [MoTe7] a projective degeneration of V3 -4 

OP2 into Z^ f^ QP2 where Z^ is a union of 9 planes Pj,j = 1...9, the 
ramification curve is a union of 9 intersection lines Z^, i = 1... 9, as in Fig. 
II. 1. (Each Li is an intersection line of 2 Pj's.) S^6\ the branch curve of 
/(6) in OP2, is a union of 9 lines Lh i = 1... 9.   (L; = TT^

6
){Li)). 

Definition.     u^Cu^K. 
Let us choose u in the x-axis of C2 far away from the rc-projection sin- 

gularities of the x-projection of S3 and of S't6). 
Ca = U X C. 
K = Ca n 5. 
Prom the regeneration process it is obvious that for every point qi that 

we had in K^ we have 2 points qt^qt' m K which are close to each other. 
Recall that we used a "real model" of (C^jK). Thus, we assume that K = 

{QuQi'}i=v ftjft' are real. 

Remark.    For arbitrary n we would get that Vn —> CP2 degenerated into 
Z —> CP2 where Z = a union of n2 planes with a ramification curve which 

3 
consists of -n(n — 1) intersection lines, and a branch curve consisting of 
3 
-n(n - 1) lines.   Thus, 5^, the branch curve of Vn -> QP2, is of order 

3n(n — 1). 
In BGT IV we computed a braid monodromy factorization of 53 denoted 

e(18). 
We also proved those invariance properties of £(18) and invariance under 

complex conjugation. We shall repeat these results here. For this we have 
to recall some notations. 

Notations. 

z^j — Zij = a path below the real line from <# to qj. 

Zij = H{Zij) 

z^ = a path above the real line from qi to qj. 

Zij = H(zij) 

(a) 
z^ — a path above a and below the real line elsewhere from qi to qj. 
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(a)(6) 

(a)   _ 

= a path below a and b above the real line elsewhere 

from qi to qj. 

Zij = H(zij) 
(a)(b) (a)(6) 

p^ = Zw = H(zii') = half-twist corresponds to the shortest line 

between qi and ^/ 

»? 
771=0 

1       1 

i=0 m=0 

m=—1 

For /3 > 7 

l7y(/5) = 

f r1 

With the above notations we recall the braid monodromy factorization 
of S = S'^0), denoted £(18) and some invariance properties. 

Theorem 1.1. 6(18) = fl   G/ ^ 
i/=7 

w;/iere Hi, the braid monodromy of S around Vi factors as follows: 

Hi = ZlV2 ' ^22'(l) 

H2 = ^n/g ' ^'(l) 

^3 = ^44/,6 ' ^66'(4) 

HS - Z55'i9 ' Z99'(5) 

HQ = Z&j7l • Z66/(7) 

H7 = ^8',99' ' ^88'(9) 
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y.. 7> n  r\ 
* <*, %N^   *Sl3 % iy ^H   ft^    »?- V      »«X?fc        1,  f, 

Figure L0(a). 

»   •       •   • 

^ *i vii. ^^    ^^S     ^b^V^^/^^      ^?J 

Figure 1.0(b). 

#4 = ^jw^SV (^y'^sls (^.s)' (^s)'^(AVi 
■^',8 Zl'Pi = 8'8' 7'>7'5''5   ^',44' Zli  * = 8''8' 7', 7,5', 5    Z22( 

where Z22', Zs&' correspond to the paths £22', ^88' described in Fig. 1.0(a). 
• denotes conjugation by a braid b* induced from the motion described 

in Fig. 1.0(b). 
(In fad, &' = ^y^y^JZfg2.) 

(4) 
p   _ 7(3)    7(3)    .,(1) 72   y2 

A=(za)*.-'(^,L1(«("L1u,  ^J'P-- 
(4) 

al1) = aia2 
where OL\ and 0.2 are the curves described in Fig. 1.0(c), 1.0(d), respectively. 

p = P7P3 

(aC^Jp = (c^K V - («i)(P3"Vf') • MCpsPr)-1 

and 

Ci = C2 = /d 

C3 = ZlVMI      |j[     ^,66' 
z=l,2,3,5 

r-   _ y(2) Z^        ^ 7(2) 

O4 — ^11^55/   * ^11',88'  ^66',88' 
C6)11/j77/ 
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Figure 1.0(c). 

Figure 1.0(d). 

(2) 
Cs = llZ^ 99' 

Ce = C7 = Id. 

The following remark gives an explicit description of a half-twist conju- 
gated by some pj and will help us later to deduce relations from £(18) using 
the Van Kampen method. 

Remark LI. 

(i)^,=4,4-4-,    (Fig. 1.1(a)) 

(") 4^< - 44'^'- (Fis-L1(b)) 

(iii) Let Yij = H{yij) where y^ is a path connecting qi or ft/ with qj or 
qy. The following graph (see Fig. L 1(c)) indicates the conjugation of 
Yij by PjiP^iPuPT1 for different types of j/y. In the graph we only 
indicate the action of pj and pj1 on the "head" of j/y within a small 

circle around qj and qy and the action of pi and p"1 on the "tail" of j/y 
in a small circle around ft and ft/. The "body" of j/y is not changing 
under p^1 and p, ±i 
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Theorem 1.2.   Invariance Theorem (BGT IV, Proposition 18, [MoTe7]) 

Letp = pmi...m4,m6,m9 = pT1 (p2P8)m2 • (P3P7)m3 • (P4P5)m4 -pT* -pr then, 
e(18) is invariant under p for every mi E Z. pi'= Z^/). 

Theorem 1.3. Complex Conjugation Theorem (BGT IV, Proposition 19, 
[MoTe7]) 

£(18) is invariant under complex conjugation. 

A finite set of generators for 7ri(C2 — S,uo) and 7ri(QP2 — 83,110). 

Let us choose ^0 £ QI^UQ below the real line. Let {r^IV} be a g- 
base of TT^CU - 5, u0). When considered as elements of 7ri(C2 - S^UQ) and 
of TT^QP

2
 — 53, Uo)> they generate (not freely) the groups. Thus we have 

{Pi,r^}?__!, a set of generators for 7ri(C2 — S^UQ) and 7ri(QP2 — £3,^o)- 
We want to compute G = 7ri(C2 - S, UQ) and G = 7ri(CIP2 - Ss, UQ). 

By the Zariski-Van Kampen Theorem, G ~ G(e(18)) and G ^   J^18^. 

n r^ 
2=1 

Corollary 1.4. G = 7ri(C2 — S, UQ) satisfies all the relations induced 
in JR(e(18)), all the relations induced from (i?(£(18))pmi)...)m4)m6jm9 and 
all the relations induced from  the complex conjugation  of £(18),   where 

Pm1...m4,me,m9 = P?" (p2Ps)m2 ' (PlPl)™* ' {plPs)™* ' pT ' pT   <™d Pi = Zii' ■ 
Moreover, 

G - G(e(18)) 

G^G/JlTiTi,. 

Proof.  Theorems 1.1, 1.2, 1.3 and the Van Kampen Theorem. □ 

Corollary 1.5. Let G = 71*1 (C2 — S^UQ). If R is any relation in G 
then (R)pmu...}m4,m6,m9 is also a relation in G, where (-R)pmi>...jm4jm6>m9 

is the relation induced from R by replacing Ti and P;/ with (P^p™1 and 
(Fj^p^S i = 1*2,3,4,6,9, respectively and replacing FajPs'^7^7/^5^^ 
with (r8)p^, (FgOpr, (Tr)^, FrW3, (T^p?4, (F^Jp^, respectively. 
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(a) 

^ foV- ^ 

c 

(O 

u. 

tc 

Figure LI. 
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Proof.   Proposition 0.6 and Theorem 1.2. □ 

Remark.   In other words, Pmi...m4,m6,m9 defines an automorphism of G. 

Notation. 
Fj = any element of the set {{Tii)p^'i}7n G Z. 

Corollary 1.6.    (Complete invariance in 3-points) 
Let (a,/3) = (1,2) or (1,3) or (4,6) or (5,9) or (6,7) or (8,9). Any 

relation R in G that involves only ra and Tp is true when T^ replaces Fa 

amd Tp replaces Tp. 

Proof. Without loss of generality assume (a, (3) = (1,2). Let I\ = (T^p™1 

^2 = {^2)P™2' By Corollary 1.5, (R)pmi ,7712,0,0,0,0 is also a relation on i?, and 
differs from R by replacing Fi by Fi and F^ by T2. □ 

Corollary 1.7. Let R be a relation in G that involves at most one index 
of each of the pairs (2,8), (3,7), (4,5). For every index i that appears in R 
choose some F^. Then R is true when we simultaneously replace F; by F^ (or 
Ei) and F^ by (T^pi (or {E^jpi, respectively), for i G {indices that appear in 
R}. 

Proof. We can assume w.l.o.g. that rgjFg^ryry/jFsjrs/ appear in R 
and r2,r2',r3,r3/,r4,r4/ do not appear in R. Let i be s.t. F^ or IV 
appears in R (i € 1,5,6,7,8,9). There exist m; s.t. F^ = (F^p^. Let 
p = (Ui=i,5fifi,9PF)pTP?7P?*- By Corollary 1.5 {R)p is also a relation 
in G. Since r^r^rsjF^r^r^ do not appear in R the relation (R)p is 
actually equal to (R) Yli=1 5539 p™1 and it differs from R by replacing F; 
with (r*)/C and rif by (F^V^ for i = 1,5,6,7,8,9. But (T^p™* = Ti and 
(rrfp?* = (V^pip^ = [T^p^pi = {TJpu so we get the corollary. □ 

TTli Remark. We can replace every F^ that appear in R by any Fj = (F^)^ 
(i.e., different m^'s for different F^'s) since both Fa and Tj (T2 and Fg, Fs 
and r4, respectively) do not appear in R. If both Fs and Tj appear in i2, 
then we could only replace Fs by {T^p™ and Fy by {T7)p^1 for the same m. 
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II. List of relations in G. 

We are going to describe G using a different set of generators than those 
introduced in Chapter 1. We use all the notations from Chapter I, all the 
relations induced from the braid monodromy factorization £(18) (Theorem 
1.1), the complex conjugation (Theorem 1.3), and Corollaries 1.5 and 1.6. 

Remark II.0.   First set of generators for G 
Let {r^r^} be a g-base of 7ri(Cu — 5, UQ). Considered, as elements of 

G = 7ri(C2 - S,uo), {Ti.Yif} generates G. 

Definition. 
(r,       ^2,7 

\IV * = 2,7 

Ev = (Ei)pi. 

Notations. 
Pi = Zai the half-twist corresponding to the shortest path between Qj 

and qf. 
Ei_ = an element of {(E^p^jm G Z. 
r[= an element of {(F^pf }m G Z. 
In order to use the invariance theorem we need the following lemma. 

Lemma 11.0.      (i)    (rj)pi = Fj    (Tji)pi = Tji for i ^ j. 

(ii)   (I^p^IV    {Vv)pi = TilYiT^    {Tijp-1 = T^YifTi. 

(hi)   Let p = /9mi)...,m4,ra6,m9 = PT
1
{P2P^ ■ (P3P7)

m3 • (P4P5)m4 -PT-PT- 

Then {Ti)p = Fj. 

(iv)   TiZpuYff). 

Proof.   Geometric observation (Fig. 11.0(a) and (b)) or BGT I, Section II, 
§2. □ 

Lemma II.1.      (i)   Ev = \Ti'        ,    1112>7 

{FeTiTZ1    t = 2,7 
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2U' 

W Zt 

^Pc 

rvUti 

Figure II.O. 
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(ii)   Ti/Ti — EiiEi 

(iii) (Ei)pi = Ei> 

(iv) {$*)& = EvEiE*1 

Ei i?2J 

E^EvEi   t = 2,7    (= {E^pr* = (EJpr1). (V)     ^ - {  jp-1 v   ip        ._ n\      f,ip\„-2_np\„-l 

Proof. Trivial. □ 

Lemma II.2.   {Ei^Ei/} generate G. 

Proof. Trivial. □ 

Remark II.2.   A second set of generators for G 
We start with a set of generators F^IV and exchange it for a set of 

generators 2%, 2%/. 

Definition. Let ip be the classical monodromy homomorphism from G to 
the symmetric group of order 9 induced by the projection V3 —> QP2. 

Lemma II.3. ^(Fj) = ^(^if) = ip(Ei) = ip(Eit) = (^,^) where Li = 
Pfy D P^, and {Li} and {Pj} are arranged as in Fig. ILL 

Proof. Let ji be a path in C2 connecting ^0 to qi s.t. F^ = £(7^) (see 
the definition of £(j) in Chapter 0). One has to consider the degeneration 

of Vs -4 OP2 to Z^ f^ CP2 and of S3 to S^, constructed in BGT III, 
[MoTe7]. The surface Z^ is a union of 9 planes, Pi • • • P9. The configuration 
of the planes and their intersection lines Li,..., LQ are as in Fig. ILL Let 

/(6) be a generic projection Z^  —► C3P2 and S't6) its branch curve in C2. 
We choose V3 to be close to Z^. Let p\ ' = Pi Dn^    (UQ). Let pi be a point 

in 7r~1(?/0) which is close to p\ '. Fix i between 1 and 9. It is clear that when 

we move along 7; from ^0 to q^ the lifted path in Z^ which starts in.p^.. 

will lie in P^ and will end on a point in Li above q^ The lifted path in Z^ 
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Figure ILL 

that starts in p^) will lie in P^ and will end in the same point in 1^. Thus, 
in the regenerated case, the lifted path of L^ that starts in pi will end in 
Pj. The lifted paths of 7; in Z^ that start in p\ , t ^ k^ti will be closed 
loops. Thus, in the regenerated case, the path obtained from lifting F^ that 
starts mpt, t ^ ki.ii is a loop. Thus, ^(F^) = the transposition (hi £i) of 
the symmetric group on 9 elements In the same way ^(F^) = (hi li), and 
thus^(£i)=^(£t') = (fci  4). □ 

Corollary II.3.    The transpositions ^{Ei) are as follows: 

V(£i) = (l 2) 
*1>{E2) = {2 3) 

rl>{Ek) = {2 4) 

^4) = (3 5) 
^(^5) = (4 7) 
^(JB6) = (5 6) 
$(&{) = (5 8) 
V'(S8) = (7 8) 
xKE9) = {7   9) 
Moreover, ^{Ei) and ip{Ej) have one common index <^ Li and Lj are 

edges of some triangle in Fig. ILL 
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Proof.   Immediate from the previous Lemma. □ 

Before continuing with G, we want to prove some claims concerning an 
arbitrary group. 

Claim II.4. (a) If(A,B) = 1, i.e., ABAB^A^B'1 = 1, then 

ABA = BAB 

A-1BkA = BAkB-1 

ABkA-1 = B-1AkB 

A-1B-1Ak = BkA-lB-1. 

(b) [A, B] = [A, C] = 1 => [A, D] = lforDe (B, C) = subgroup generated 
byB,C. 
(c) [A^ BD] = 1, [C, B] = [C, D] = [A, £>] = 1 =► [A, B] = 1. 
(d) [A,XYZ] = [AX) [A,y]x-i[A,Z]y-ix-i. 
(e) [XY,A] = \Y,A]x-i[X,A]: 
(f) [Ac,Bc] = [A,B]c. 
(g) [X,Z} = 1=>[X,YZ]=[X,Y}Z. 
(h)   // (x, y) = 1, ^en (Ax, y) = 1 <£> Ay-ix-i = A lAy-i. A 

Proof, (a) - (g) are easy to verify. 
We shall only prove (h) here. 
If (Ax,y} — 1, then: 

1 = (Ax^y) = Axyxy~lx~lA~1y~1 

= A • Ay-ix-ixyxy^x^A^y^yA^y'1 

= A - Ay-ix-i • 1 • Ay-x 

^Ay-lj.-! =A Ay-1. 

If A~lAy-i = Ay-ia.-!, then 

=>Axy Ay~lx~ly A~ly~l = 1 

^AxyAxy^x'1 A-1?/-1 = 1 

=^Aa; • y • Ax • y-1 • (Ax)-1 • y-1 = 1 

^(Ax,y) = 1. 
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□ 

Lemma 11.5. (a) [T^Tj] = [Ti^Tj] = 1 => [r^Tj] = 1. 
(b) [r*, r,] = [r^ri,ri, r,] = i =* [r£, r,-] = f 

Proof. We only prove (a); (b) is the same argument. Since Vj is a product 
of Fj and Fj/, we can apply Claim II.4 (b) to get [F^Fj] = 1. In particular, 

[Fj, (Tj)pJ1] = 1. We use invariance under pipj and Lemma 0.2 on it to get 
|TV, Tj] = 1. We use invariance under p^pj and Lemma 0.2 on [Ff, Fj] = 1 to 
get [Tj/jFj/] = 1. From [F^Fj/] = [F^Fj] = 1 we get, using Lemma IL4(b), 
that [Ft/jFj] = 1. From [F^Fj] = [TJ/JFJ] = 1 we get, using Lemma 11.4(b), 
that [Ti.Tjj = 1. " □ 

Proposition II.6.    The following relations hold in G : 

(1) (E^Ej) = 1 Vijj s.t ^(Ei) andip(Ej) have exactly one common index. 

(2) [E^Ej] = 1 Vi, j s.t. i){Ei) and ^{Ej) have no common index. 

(3) l = (E7E5E^E^E2EAE3E^Ej1E^)(p3p7)i(pmy    ViJeZ. 

(4J Jbyrb^rbyrj%^^3   -^3/ ^4   -^4/   — -^2- 

(5) E^  Ey Ej  E7t E^EJIEJE^'E^ = Ey. 

(6) 

^ = E^E^EpE^Ea        (a, (3) = (1,2) 

= (1,3) 

= (4,6) 

= (5,9). 

(7) 

Ea = EpEpEa! E^lE^       (a, /?) = (6,7) 

= (8,9) 

Definitions of ip(Ei) as in Corollary 11.3. 
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Proof. We divide the proof into the following 48 claims: 

Claim 0.    [Fj, Tj] = 1 for i, j s.t. Li DLj do not intersect, j ^ 9, i.e., for 
(t,i) = (1,4), (1,5), (1,6), (1,7), (1,8), (2.6), (3.6), (6.8). 

Claim 1.   (r^T,-) = 1 (i,j) = (1,2), (1,3), (4,6), (5,9), (6,7), (8,9) 

Claim 2.   (r^r^l. 

claim 3. r*, = T3T2lr^ = T;'T3T2,. 

Claim 4.   Tl^r^T^TyTsTv. 

ClaimS.   {T^Fs} = 1. 

claim 6. rj, = rgrrFrr^rg,1. 

Claim 7.   F^ = rgr^rg,1 = F^F8Fr. 

claim 8. F^, = r^rar^r^rg,1 

r8= r8 r7' r8r7'r7. 

claim 9. q = r2,r', = r8/,q = r4,q, =r4,,r', =r5',n = r5. 

Claim 10.   [% Fj] = 1       i = 5,7,8. 

Claim 11.   [r8',r<] = l       t = 3,4. 

Claim 12.   [18,^ = 1       1 = 3,4. 

Claim 13.    Ey = E^E^EpEjEa {a, 13) = (1,2) 

= (1,3) 
= (4,6) 

= (5,9) 

Ea = EpEpEa>E^lE^{a,l3) = (6,7) 

= (8,9) 
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Claim 14. [T',,r'r} = l. 

Claim 15. ^3,^7!^ ^ = 1. 

Claim 16. [rasiYryiy,1] = 1. 

claim 17. [r3,Trr7r-,1} = i. 

Claim 18. [ra,r7] = l. 

Claim 19. [rj,r?] = 1. 

Claim 20. (r|,q) = l. 

Claim 21. (r^T?) = 1. 

claim 22. r^r^1 = r^qr', (p3p7y(p4p5y. 

claim 23. [r^r^qr^q^r*,-1] = i. 

Claim 24. (r|,r|) = " 

Claim 25. (q,q) = 

Claim 26. (T3, T5) = 

Claim 27. ^7^4) = 

Claim 28. [r^Ts] = 

Claim 29. ^4^5] = 

Claim 30. [T4, T5} = 

Claim 31. [r4,r§] = 

Claim 32. ^2',^,] = ! 

Claim 33. [Fs.q] = 1. 
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Claim 34. [r'7,rlT3rf] = l. 

Claim 35. [F? ,rlr5rf) = 1. 

Claim 36.   ^3,14] = 1. 

claim 37. [r',,r|r*,rj2] = 1. 

claim 38. [r7/,r',] = i,     [r8,r*,] = i. 

Claim 39. [F^ r^rgl^2] = 1. 

Claim 40. [r5,r7'] = l. 

Claim 41. ^5^7} = !. 

Claim 42. (I^, Fg) = 1. 

Claim 43. ^2^3) = !. 
(r7,r8) = i. 

Claim 44.   (F5, Tg) - 1. 

Claim 45.   r8 = FrF^F^F^F^F^F-,1. 

claim 46. F? = r4'r4r3'r3r2.r2r^1rj1r^1r3-1rj1rj,1. 

Claim 47.   F8, = F^F^F^F^FSFVFTF^F^ 

Claim 48.   [1^, rg] = 1       i = 1,2,3,4,6,7. 

Proofs of the Claims. 
We use the braids in £(18) (see Theorem 1.1) to induce relations on G 

via the Van Kampen Theorem (Theorem 0.5). For every factor V" in e(18), 
we have to find Ay and By to get a relation. In Remark 0.4 one can find an 
algorithm how to determine Ay and By. In £(18) we have sometimes used 
a compact notation for a product of a few factors. Then we use Remark 1.1 
to determine the factors precisely. Sometimes, instead of using a factor b 
in £(18), we shall use its complex conjugation b. In that way, we get R(b) 
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and/or R(b) a relation on G induced by the Van Kampen Theorem. We also 
use Corollary 1.5 to get other relations using (i2)pmi,...,m4,m6,m9- 

Proof of Claim 0. Taking the factors C[ or the complex conjugate of C^ i = 
1... 4 and applying the Van Kampen method on it to produce relations on 
G, we get \rii',Tjjt] = 1 \/iJ s.t. Li D Lj = 0 j ^ 7,9. By Lemma 11.5 we 
get [Tj, Tj] = l\/ij s.t. Li PI Lj = 0 j ^ 7,9. Bbr j = 7 we consider C4. In 

(6.6')17 f ;, * Xi/  
(6,6') ^-^ 

Its complex conjugate is Z17 :    .      x^^- 
which implies on G the relation:        ' '^^-^_     ^^"s 6' ? f 

[r1,r6-1r6-1r7r6,r6] = i. 

Since we already know that [TijFg] = 1 we get [FijFy] = 1. Now, we are 
using the Invariance Theorem (Corollary 1.6) and we get [TijIV] = 1.       □ 

Proof of Claim 1.   From H1^ i / 4 and Corollary 1.5. □ 

Proof of Claim 2. By using Z^, of H^ we get (F^Fs) = (F^F^) = 

^'jTs/Fsr^,1). We apply on it the invariance automorphism (pspr)7713 for 
all possible values of ms to get (r2', F^) = 1.       . D 

Proof of Claim 3.   By definition of • (see Theorem LI). 

F*/ = Fa^r^Fj TyTzTy FJ FJ 

= r3/r3(r3-1r3/r3)-1r2,(r3-1r3/r3) • r3-1r^1 

by Claims 2 and 11.4(a) -n—1 
= i-sF^la 

by Claims 2 and 11.4(a) 
r2, FsF^ 

Proof of Claim 4-   By definition of • (see Theorem 1.1). 

r*, ^Fs/FsF^r^ r~, TSTS'TST^, r^" r^" 
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by Claims 2 and 11.4(a) ._   ]_      ! ._! 
= i3/i3(i3   13/ I 313'I 3)     ^ 

by Claims 2 and 11.4(a) __!       ! 
= 12, I3   I3/I3I2'. 

□ 

Proof of Claims 5,6,7.   Arguments symmetric to 2, 3, 4. □ 

Proof of Claim 8.  Easy to see from the geometric observation of the action 
of6V □ 

Proof of Claim 9.   bm does not affect those loops. □ 

Proof of Claim 10. By H'^ we have 2^. and Zf- for i = 8,8', 7,7', 5,5'. 
Thus, by the Van Kampen Theorem, [T^IV] = [I^IV] = 1 i = 5,7,8. 
By Claim 11.5, we have [r^I^] = ^rj = 1 t = 5,7,8. By Claim II.5, 
again [r^T^l. D 

Proof of Claim 11. By H'^ we have ^4, 8,. Using the Van Kampen method 
[14, r8/] = 1 and \rA,, r8/] = 1 By Lemma 11.5, [I^, r8/] = 1. We have in H'^ 
(^33',8')2#- By the Van Kampen method we have [1^,1^,] = [r^Tg,] = 1. 
By Claims 4, 3, and 9, T*,  - Y^Y^, Y3 = Y^Y^YvYsY*,    T*, = 
rv and thus p^YsYvtYv) = [r^^r^r^rv] = 1. [Y3f]rs>] = i. 
Since [r2',r8] = 1, (Claim 10) we get by Lemma 11.4(g), [r^IV] = 1 and 
rj^ra'Pa, r8/] = 1. By Lemma II.5, ^3, r8/] = 1. □ 

Proof of Claim 12.  By Claim 11, [r^IV] = 1. We apply on it Corollary 1.5 
with (Z88/Z22')m t0 get [r3,r8] = 1- Similarly, we get [T^Tg] = 1. □ 
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Proof of Claim 13.    We shall only prove (a,/3) = (1,2). In H[ we have 
Zwixy Bythe Van KamPen Theorem we get r2 = r~1r~1r^1r2/r2ri/ri. 
We apply on it Z|2, to get 

ivr^r^ — rj- r^ r2/ri/ri. 

Thus,   E'z   =   E^lEylE2'EvEi.  The other relations  are induced from 

Proof of Claim 14-  In F we have (Z3i7,)   . After complex conjugation this 

braid transforms to (Z3/7/)* . By Corollary 1.4, (Z^/jt)* implies, via the Van 
Kampen method, the following relation on G: [r*,,!1*,] = 1. □ 

Proof of Claim 15. 

1 Cla= 14 [r;„r;,] = [r2-1r3r2,,r8rrr7r7,1r8] 
Claims 10 and 11.4(g) r x     . 

= [la^lslr'lrlr/ isj 
Claims 12 and 11.4(g) [r3,rvr7iV]. 

□ 

Proof of Claim 16. 
By Claim 1: [T^Tz] = 1. Thus, [YvYuYrY^] = 1. 
By Claim 15: {Y^Y7IY7Y~}] = 1. 
Thus, [r^r-^rvr^rvrvr;;1] = i. 
But by Claim 13: Fy = r^1r-,1r3r1/ri. 
Thus, [Yy,YrT1Y-}} = \. D 

Proof o/ C/aim i7.     Claim 16, Claim 15 and Claim 11.4(b). D 

Proof of Claim 18. We apply {ZzzlZ7r)
m on \Yy,YrY7Y-^] = 1 and on 

[YziYrY-rY^,1] = 1 to get [I^IV] - [raFyr^IV] = 1. By Claim 11.4(b) 
r^Tr] = 1. We use Claim 17 and Claim 11.4(b) to get [Y^Yj] = 1. □ 
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Proof of Claim 19. [TV, r8] = [r^Fr] = [r^/] (Claim 10), thus [r^,!1',] = 
[Ty.r?] = 1 =► [r2/,r^ = I. Now, [%FT] = fT^rg] = 1 (Claim 11, Claim 
18).   Thus, [ra,!1;] = 1. From \CV,V^ = [F^FJ] = 1, we get \C%,T% = 
[r5„r?] = i.Thiis,[rs,r?] = i.       " n 

Proof of Claim 20.    In F we have ( Z^, 44, j   , which by the Van Kampen 

Theorem implies (II,q) = 1. We apply on it {Z^'Z7r)
m^{ZulZ^)m^ for 

all possible mA and mz to get (r|, FJ) = 1    ({(r^)/?771} = r|). D 

Proof of Claim 21.   Same proof as Claim 20. □ 

Proof of Claim 22.   In F we have a* where 0.2 is described in Fig.I.O(d). 
By the Van Kampen Theorem we get 

715/17 —14/1413/1413/      I4        I4/       . 

Since, (F^F*) = 1 we can apply Claim 11.4(a) to get 

r»   T-\«-p«-1-p»   TH«-p«~"1T-\#— 1 

4/I4I4 1   3/I  4I   4 1   4/ 

— r4'r3/r4/ . 

We apply Claim IL4(a) again to get 

— 13/   14/13/. 

<(440X 2 

n 

Proof of Claim 23.   Directly from    Z^,7      in F. D 

Proof of Claim 24. 
By Claim 20 (r^r*,"1^) = 1. 
Thus^r-r^r-,)-!. 
Since [T^r?] = 1, (TlTf"^^^^) = 1. 
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By Claim 22 (r^TJ) = 1. □ 

Proof of Claim 25.   Follows from Claim 21, as in Claim 24. D 

Proof of Claim 26.  Follows from Claim 24, using [IV,!1^] = 1. D 

Proof of Claim 27.  From Claim 25, using [Fg,^ = 1. □ 

Proof of Claim 28. 
By Claim 23 {V7, r^rj^q-1^"1] = 1. 
Thustqr'nr^qr^rf1]^. 
From Claim 27, Claim 20 and Claim 11.4(a)    [r?q/r?"1, F'^F^,] = 1. 
By Claim 22 [F^F^'^^F^1] = 1. 
Thus, [r;„rs] = i. 
Since FJ, = F^, F^ = Yh we get the Claim. □ 

Proof of Claim 29. 
By Claim 13 T& = r^ 1r^1r6r4/r4. 
Thus, r4r6'rj1 = T^TST*. 

By Claim 1 and Claim II, 4(a) 

r^, r4r6' = FeF^r^". 

Thus, 
r4 = re'Fer^r^ r^; . 

We substitute the last equation in Claim 29 to get 

[r6'r6r4/r^ r^; ,T^[ = i. 

By Claim 9 [Fs, Fe] = 1. Thus, 

[r4',r5] = i. 

D 
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Proof of Claim 30.   By Claim 28, Claim 29 and Claim 11.5(a). □ 

Proof of Claim 31. We apply Z44/Z55/ on [F^Fs] = 1 and on [F^Fs] — 1 
to get (T^^r^Fs/] = pTVjFs/] = 1. We then use Lemma 11.5(b) to get 
[Fj., Yy] = 1. Together with Claim 30, we get the Claim. □ 

Proof of Claim 32.   By Claim 7 and Claim 10. □ 

Proof of Claim 33. 

rr   r^i      rr   r r  r-ii By claims 12 and IL4(g) rr   r  1      By Claim 18 1 

□ 

Proof of Claim 34. 
rr»  r^T -0-21 Claims 10 and 32 r™  ri2T-lr' T   r-2l Claim 3 rr#  p2p« p-2i 
Li7'i5i3l5   J = ll7iL5l2'  i3l2'l5   J       —       L17Ji5i3/i5   J' 
Thus, [F^Fir^Fs-2] <* [Fs-iF^^sF^r^1] = 1. 
Now: 

[r5-1r?r5,r5r^r5-1] 
C1^m9[rr1r?rr1,rsr2,r5-1] 
Claims 21,  24, and 11.4(a)        ^.-i   p.-^.p* i _ 

Claim22[r.rlr.r./)r.rir.r./] = 1 

Claim 11.4(f) 
=        lr4>r5Jr3,« = 1 

Claim 9 rT-,    -^ -, 
=       li4^J•5J^3,• 

Claim 29 1 

D 

Proo/ of Claim 35.   Let / : £5 -> G be as follows: 
B5 = (*!,...,X4 | [Xi,X,] = 1 \i - j\ > 2, (Xi,Xi+1) = l,i = l,2,3}. 

fixj = r2,,f(x2) = r3,f(x3) = r5,f(x4) = r?. 
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By Claims 10, 32, 33, 2, 26, 21, / is well-defined. 
Let d be the braid that satisfies (Xi)^ = X^-i, i = 1,2,3. 
Then 

1 = \r7, rlTsTs2] = f[Xi, x!x2x^] 
^f[(x1)d,(x2)

2
d(x3ux2)f} 

= f([Xl,XiX3X^]d) 
= [f(X1)J(X2)

2f(X3)f(X2)-
2)f(d). 

Thus, [f(X1),f(X2)
2f(Xz)f(X^) = 1. 

Thus, [r2Sr2r5r3-2] = i. D 

Proof of Claim 36. 

[Ta.rj Cla=m9 [Ts.ra Cla^22 [ra^^r^rr1^,"1]. 
Thus, 

[r3,r4] = i 

*[r3,r$,r?rsrr1r$r1] = i 
Claims 18 and 19   rr,    ^^ ^.^.-i-, 

^ Ll35l3/i5i3/    J = i 

^ [r3,r2-1r3r2,r5r2-1r3-1r2,] = i 
<£>  [r^Far^ jFaF^Fsr^ FJ ] = 1 
CI^10 [r2,r3r2-1,r3r5r3-1] = i 
Claims 24„d 11.4(a)   ^^ p^p-lj = ! 

^ [r2(,rir5r3-2] = i 

which is true by Claim 35. 
We get [Fs, lY] by Corollary 1.5. D 

Proof of Claim 37.   Similar to Claim 34. □ 

Proof of Claim 38.  Claim 18, Claim 10, Claim 12, Claim 3. D 
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Proof of Claim 39.   Let / : £5 ->• G be as follows: 

/pro = r8,/(x2) = ry./pfa) = r*,/^) = r;,. 

By Claim 12, Claim 38, Claim 5, Claim 27, Claim 20, / is well defined. 
Let d be a braid such that {X^d — X±-i, i = 1,2,3,4. 

Now: 

1 = [rv,rin,r4-2] = [f{x2)j{x,ff{x,)f(x3)-
2] 

= /[^XgXtXf   ] 

= f{{xz)d,{X2?d{xMX2)-d
2} 

^[f(X3)J(X2)
2f(X1)f(X2)-

2]m 

= [r4,r7/r8r^ j^. 

Thus, [r4,r2,r8rf,2] = i. n 

Proo/ 0/ Claim 40.   Follows from Claim 30, like in Claim 36. □ 

Proof of Claim 41.   Apply (ZwZw)™* (Z7rZ3Z')
m3 on [r5,r7/] = 1 from 

Claim 40. □ 

Proof of Claim 42.   In H'^ there is Z^ 44/. We take its complex conjugate 

^2' 44' and aPPly Corollary 1.4 on Z^/4 to get (^'^4) = 1 and then apply 
Corollary 1.5 to get (I^, T4) = 1. D 

Proo/ 0/ CZazm ^3.  We apply Corollary 1.5 on Claims 2 and 5. □ 

Proof of Claim 44-   Similar to Claim 42. □ 

Proof of Claim 45.  By Claim 22, r^rgr?"1 = r^rjl^,. Since (r^T*) = 1 
we have 

Thus,r? = r5r5r1qr5,rr1. 
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We substitute the formulas for T^, and F* to get 

Since (Ty, T4) = 1 (Claim 42) 

Since [r5,r3'] = i 

Since [r2,,r8] = [r2Srr] = i 

TJ, FgFy/ = FsF^ r^ r2/r4r3r^ 

and 
Ts = Fy/Fsr^ r^ r2/r4r3r^ r^;. 

Proof of Claim 46.   By Z22' of H1^ we have: 

T2 = r4/r4r3/r3r2/r^ r^ r^ rj,. 

We apply on it Zgs'^' using Corollary 1.5 to get (recall that ^2) 
^22/^88'  = ^2' and ^2)^22'Zgs' = (F^)^' = ^^F^",  ) 

Yy — r4/r4r3/r3r2'r2r^ r^" r^, rj rj,. 

□ 

Proof of Claim J^l.  By Z^ of R^ we get, using the Van Kampen Theorem: 

IV = F^^-^Ff ^-^sFrFrFB/Fs. 

D 

Proof of Claim 48. 
In C5 we have Zf9 = H(zi9)

2 for i = 1,2,3,4,6, 7, where: 
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Zi9 =    z 
(8,8');9 

Case 1.    i ^ 7 

The complex conjugation of Zig is ZiQ = H(zig) and 

Zi9 = z^ which implies on G (as in Claim 0)     [r^r^r^Fgirvrg] = 1. 
By Claim 10, for i = 2,3,4 we have [r*, Fg] = 1. 
By Claim 0, for i = 1,6 we have [Tf, Fg] = 1. 
Thus, [F^Tg] = 1. We use Corollary 1.5 to get [r^Tg] = 1. 
Case 2.    i = 7 
In C5 we have Z7 g which implies [Fy, Fg] = 1 and thus, by Corollary 1.7, 

From Case 1 and Case 2 we get Claim 48. □ 

Thus we have proved all the Claims. 
We shall now prove the statements of the Proposition. We use the above 

claims, the definition of E^Eii and the facts {F^} = {£^} and Ei>Ei = 
TvTi Vt. 

1) From Claim 1, Claim 26, Claim 27, Claim 42, Claim 43, Claim 44. 

2) From Claim 0, Claim 10, Claim 12, Claim 18, Claim 31, Claim 36, 
Claim 41, Claim 48. 

3) From Claim 45, definifions of Ei and Corollary 1.5. 

4) From Claim 46, definitions of Ei and Corollary ILL 

5) From Claim 47, definition of Ei and the above fact. 

6) From Claim 13. 

7) From Claim 13. 

□ Proposition 11.6 

We need the following corollary in order to obtain in Chapter IV, §8 a 
smaller set of generators for G. 

Corollary II.7. Let E^Eii be as in the beginning of the chapter. 
LetAi = EifEr1. Then: 

(1) A5 = (A4)E-iE3E-i E& 
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2) A7 = {Az)E-iEiE-iE-i 

3) ^s = {M)EtEaE^iE-i 

4) A2 = E^A^(A)E-l(El)E-1 

5) Ae = E;2A^(Ai)E-i(El)E-i 

6) A3 = E^A^(A)E-1(Ef)E-l 

7) A^E^A^iAs)^^)^ 

8) (AA)E-^^ =EiA3EiA2(E^)E-1(A^)E-1(E^)B-1 

9) (^7)E-iE-i=E^Ae(ET2)E-i 

(10) (^9)^-^-1 = EiAsiE^2)^ 

Proof. We use proposition 11.6 (1),..., (7). The claims are grouped according 
to the similarity of their proofs and not according to the order that we use 
them in Proposition IV.8.1. 

Recall: 

(Ei)pi = Ei-i 

{Eif)pi = Ei/EiEi' 

Eit = AiEi 

Ei'Ei = AiEi. 

For (1), (2), (3) we use (5) of Proposition II.6. 
For Claims (4)-(7) we use (6) of Proposition IL6. The 4 claims are 

symmetric and we shall only prove the first one. 
For (8) we use (4) of Proposition II.6. 
For (9)-(10) we use (7) of Proposition II.6. The claims are symmetric 

and we shall only prove the first one. 

(1)   By (5) of Proposition II.6 

Es = (E4  E2E±)E3E-iE-i. 

By (1), (2) and Claim 11.4(a) 

E% = {E2EAE2
1

)E3E-IE-I. 
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Thus, 
E^EsEs = (E4)E-iE3E-i. 

By (1) and Claim 11.4(a) 

ESE5EQ   = {E4)E-iE3E-i. 

Thus, 
E5 = (E4)E-iE3E-iEs- 

We apply on it P4P5 to get 

E& = {E4')E-iEaE-iEs. 

We multiply the 2 results to get 

(2) By (5) of Proposition II.6 

rp—1 Tp    rp        TP   Tp—l Tp— 1 TP   TP    TP   Z?-! 

By (1) and Claim 11.4(a) 

Z7    IP    Tp— 1       J?   Z7~l IP   I?    T?~ 1 7?    Z71-1 
.CgjE^jCVg     — -C'4.C'4   Ili2-t!jZE"2,   -c'4-c'5    • 

Thus, 
-EV = (-E9)£;-i£;4E-i£;8- 

We apply on this P2P3 to get 

Er = (E3')E-iE_4E_5-iE8. 

We multiply the results to get 

(3) By (5) of Proposition II.6 

E8 = (E2)E4E3Es1E;1- 

We apply on it p2Ps to get 

Ev = (E^EiE^E'^E-1- 

We multiply the 2 results to get 

45 = {M)EAEiE7lE7- 
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(4) Prom (6) of Proposition II.6 

=> A2E2 = Ei2Aj1E2A1EJ 

^A^E^A^iA^MEl)^. 
■"i '-'2 

(8) Prom (4) of Proposition II.6 

T?          T?      771    771      T?    IP      JP— 1 Z?— 1 Tp— 1 I?-1 
JC/2 — Iii^rj^rj^i rj^rj2' rL^   &$ JOJ^   tt^ 

=>E2 = A4ElA3ElA2E2Ez2Az1E42All 

^ ^r1!^)^-! = EJAzEiAziE^A^E;2)^ 

By Lemma 11.4(h) 

(
A

^E-
1
E^ = ^(^Os-i- Thus, 

(Ai)E-lE-l=E2A3E
2A2(E^2)E-l(A^)E-1(Ef)E-l. 

(9) Prom (7) 

jp        TP     TP   JP     TP—1 TP—1 
JlfQ   — JCjJt XL/7 H/Qt £L/y     III j, 

^ E6 = ArElAeEaE^A?1 

^ AjlE - 6A7 = E^AeEeE?2 

By Lemma 11.4(h), Af ^^^-i = (^7)^-1^-1. Thus, 
6 6        7 

D 

III. Construction theory for J5n. 

Let JD be a disc, K C D,   #K = n. Let Bn = Bn[D,K] (see definition 
in Chapter 0). 
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■N- 
(I) 

^ 
:D 

Figure III.l.O. 

III.l. Definition of Bn. 

Definition.   Let D,K be as before. Let H(ai) and Hfa) be 2 half-twists 
in B = Sn[D, if]. We say that ff^i) and Hfa) are: 

(i) weakly disjoint  if ai fl a2 D K = 0. 

(ii) transversal   if cri and cr2 are weakly disjoint and intersect each other 
exactly once (and not in any point of if), i.e., ai fl 0*2 = one point, 
ai n cr2 n K = 0. 

(iii) disjoint  if <JI fl (72 = 0. 

(iv) adjacent   if ai fl (72 fl K = one point. 

(v) consecutive  if they are adjacent and 0*1 fl (72 do not intersect outside 
of if, i.e., ai fl (72 = point G if. 

(vi) cyclic     if (7i PI (72 = 2 points E if. 

Claim III.l.O. Let X,Y be 2 half-twists in Bn. Then: 
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WY U>* 

Figure III. 1.1. 

(i) IfX,Y are disjoint, then [X,Y] = 1, i.e., XY = YX. 

(ii) //X,y are consecutive, then {X,Y) = XYXy-1:^-^-1 = 1 and 
XYX = YXY or Xy-i = Ix- We say then that X and Y satisfy the 
triple relation. 

(iii) IfX = H(x) =0,Y = H(y), then Yx = X^YX = H({y)P). 

Proof, (i) (ii) Basic properties of a braid group. See, for example, Chapter 
3 of [MoTe4]. 

(iii) See Fig. III. 1.1 for a geometrical presentation of Yx- The common 
point of a; and y travels under f3 counterclockwise to the other end of z. Thus 
(y)l3 connects the 2 ends of x and y, which is not a common end of either 
of them. By IV.3.4 of [MoTel2], Yx = X^YX = (Y)Xy (see definition or 
/v in [MoTe4], Chapter 4) which is equal by Claim IV.3.0 of [MoTel2] to 
H((y)Pi). □ 

Definition.   Bn 

Let Bn be the quotient of 6n, the Braid group of order n, by the subgroup 
generated by the commutators [£r(cri),il(cr2)] where H(ai) and H(G2) are 
transversal half-twists. 

Notations. 
Let Y G Bn. We denote the image of Y in Sn'by Y. When possible, we 

shall abuse notation and denote Y by Y. If Y is a half-twist in Bn we call 
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Figure 111.1.2. 

Y a half-twist in Bn. We call two half-twists Y,X in Bn disjoint (or weakly 
disjoint, adjacent, consecutive, transversal) if Y,X are disjoint (or weakly 
disjoint, adjacent, consecutive, transversal). If {Xi} is a frame of i?n, then 
{Xi} is a frame in Bn. We also refer to {Xi} as a standard base of Bn. 

Definition.   Polarized half-twist, polarization 
We say that a half-twist X G Bn (or X in Bn) is polarized if we choose 

an order on the end points of X. The order is called the polarization of X 
orX. 

Definition.    Orderly adjacent 
Let X,Y be two adjacent polarized half-twists in Bn (resp. in Bn). We 

say that X, Y are orderly adjacent if their common point is the "end" of one 
of them and the "origin" of another. 

Definition.    Good quadrangle 
Let H(ai) i = 1,2,3,4 be 4 half-twists such that H(ai) and H(<Ji+i) 

are consecutive, H(G±) and H(ai) are consecutive, H{GI) and H(as) are 
4 

disjoint and H{cj2) and H(CF±) are disjoint, and in the interior of (J GI there 
t=i 

is no point of K. We say that {H{(Ji)} is a good quadrangle in I?n and 

{H{(j^)} is a good quadrangle in Bn. 

Remark III. 1.1.     (a) transversal, disjoint =^ weakly disjoint, consecutive 
=> adjacent. 

(b) Any two pairs of disjoint (or transversal, consecutive, cyclic) half- 
twists are conjugate to each other by an element b G B. 
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Figure III.1.3. 

(c) Any two half-twists in Bn (or Bn) are conjugate to each other by an 
element of Bn (or Bn). 

(d) Every 2 transversal or disjoint half-twists in Bn commute. Every 
2 consecutive half-twists in Bn or in Bn satisfy the triple relation 
(XYX = YXY). 

(e) Any two good quadrangles in Bn or in Bn are conjugate. 

(f) Every 2 pairs of orderly adjacent (non-orderly adjacent) consecutive 
half-twists are conjugate to each other by an element b G B preserving 
polarization. 

Proof. Geometric observation in Bn and Sn, and Claim III.1.0. □ 

Lemma III.1.2.   If {Yi}  i = 1,..., 4 is a good quadrangle in Bn, then (a) 
YiY3 = Y3Yu   (b) Y? fi = y2

2 y4
2. 

Proof. 

(a) Since they are disjoint. 

(b) Let Xi,X2,Xs be 3 half-twists such that Xi and X2 are consecu- 
tive, X2 and X3 are consecutive and Xi and X3 are disjoint. Denote 
Xi = H(xi), i = 1,..., 4. Clearly, Xu {Xs)x-i, X3, {Xi)x-i is a good 

quadrangle (see Fig. III. 1.3). 

In Bn : [Xi,X3] = 1 and (Xi,^) = (^3,^2) = 1. Thus, we can use 
Claim 11.4(a). 
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It is clear that (X2)xiXs is transversal to X2. Thus, in Bn : 

[l2,(x2)lil3]=i. 

Thus, 

1  :=[X2,X3  X1  X2X1X3] 

= X2X3  X-^  X2X1X3X2  X^  X^  X2  X1X3 

(By Claim IL4) = l2X3-1X1-1l2liX2-1X3-1X2l1"1l2"1liX3 

(By Claim IL4) = X^X^XiXiXs 

{[XiyXs] = 1) = X2X3  Xi  X2X1X2  Xi    X^ X2  X1X1X3 

X0  X-i   Xo 

2^3    ^i     ^-2 A3     A2    A1A3 

(By Claim 11.4) - J^XT1^ 

(Since [Xi.Xs] = 1) = M^X^X^Jtfxi 
=     {X3)y-1   {Xl)y-iXlX3. 

Thus, X?^ = (Xtf^ ■ (X3) J.! • 

By Remark III.l.l, {1^} is conjugate to {XL, (XS)^--!,^, (XI)^-I} and 

thus satisfies Y?Yg = ¥%¥%. D 

III.2. Bn-groups and prime elements. 

Definition.   Bn — group. 
A group G is called a JE^-group if there exists a homomorphism Bn —>> 

Aut(G). We denote (5)5 by 55. 

Definition.     Prime element, supporting half-twist (s.h.t.)   corresponding 
central element. 

Let G be a Sn-group. 
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An element g E G is called a prime element of G if there exists a half- 
twist X E Bn and r e Center(G) with r2 = 1 and u — r V b E Bn such 
that: 

(!) ffx-i = 9~
1
T- 

(2) For every half-twist Y adjacent to X we have: 

(a) QXY-IX-I = 9^. ffxy-i 

(b) gy-ix-i =g~l9Y-i- 

(3) For every half-twist Z disjoint from X, g^ = #• 

The half-twist X (or X) is called the supporting half-twist of 3, (X is 
the s.h.t. of g.) 

The element r is called the corresponding central element. 

Lemma III.2.1. Let G be a Bn-group. 

Let g be a prime element in G with supporting half-twist X and corre- 

sponding central element r. Then: 

(!) 9x = 9x-i = g'1^   gx2 = g. 

(2) gY-2 = gr    V  y consecutive half-twist to X. 

(3) [g,<7y-i] = T    V  y consecutive half-twist to X. 

Proof. 

(1) 0£_a = (0x-i)x-i = (5"
1T

)X-I = (5"1)x-i- = (ff-1^)"1^ = 9 ^ 
Axiom (1)       1 

9x = H-i       =      9 1r. 

(2) gx-^Y^X-1   —   (^x-Oy-ix-i   —   (ff" r)y-ix-1   —   (ffy-ix-i)"    * 
Axiom (2)    _i 

r      =      ^li • 3 * r. 

On the other hand: 

Axiom (2) 
9x 

_ _ ( \ >™°™ W  /   -1 X 
-iy--iX-i — 5y-ix-iy-i — VOY-^X-^IY-

1
       ~       \"    yy-ijy-i 

9yl'9Y-*- 

Thus, 5r-2 = 9T- 
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/0x Axiom (2)    _! by (1)    ^ ^ 2 

(3) QXY-IX-I      =      9x • 9XY-I    =   9x 9XY-I = 9 • g^i ' T • 

On the other hand: 

byji) , -i  v 
9XY-IX-I    -    \9    rJy-ix-i 

Axiom (2) f   _! ! _1 

Thus, g . gZ1^. = gT1^ . gTm 

Thus, gy-i • # • gy-x • g'1 = r-1 = r. 
Thus, [^-i,ff] =r. D 

Lemma III.2.2. Let G be a Bn-group. Let g be a prime element in G with 

s.h.t. X and corresponding central element r. Let b £ Bn. Then #& is a 
prime element with s.h.t. X^ and central element r. 

Proof. We use the fact that (a&)c = (ac)&c and (ab)c — acbc. We have to 
prove 3 properties: 

(i) 9x-i'= g'^ => (gx-i)b = (g'1^ => gx-ib = g^r =» ghh-ix-^ = 

o 

(2) Let y be a half-twist adjacent to X^. Then Y^-i is adjacent to X 
and satisfies axiom (2) of prime elements for g, X and Y^~l. Namely: 

9Y-
1

1X = 9~lgY-\ aild 9XY-\X-I = 9fgxY-\ • 

(a)     0y-l   *•  =3~15y-l    =► 

(flf-1, x)6 = (ff"1^-! )b => 

(9b)Yxb =9bl -{gbh-i- 

(b) ff^y-ix-i =^15xy-1
1 =>• 

(^^x.y-ix-1 = (^6"1)x6(^)x6y-i- 

(3) Let Z be a half-twist disjoint from X^. Then Z^-i is disjoint from X. 
Then g*      = ^. We conjugate ^-i = p by 6 by get: (^)^ = ^. 

We need the following lemma on Bn to prove later a criterion for prime 
element in a ^-group. 
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Claim III.2.3. Let (Xi,... ,Xn_i) be a frame in Bn = Bn[D,K]. Let 

C(X1) = {beBn\%Xl] = l} 

(centralizer of Xi), 

Cp(Xi) = {b G Bn | (Xi)^ = Xi, preserving polarization }. 

Let G = X2XIX2. Then C(Xi) is generated by {X1,cr, X3,... , Xn}; 'Cp(-X"i) 
25 generated by {X^, cr, X3,... , Xn}. 

Proo/ of the Claim. Let if = {ai,..., an}. Let xi,... , a;n_i be a system 
of consecutive simple paths in J9, s.t. Xi = -HX^) {H(xi) is the half-twist 
corresponding to a;;; a^ connects a^ with ai+i). Let Fi,... ,Tn be a free 
geometric base of n^D — if,*) consistent with (Xi,... ,Xn_i) (that is, 
(Fi+OXi = F;, (F^Xi = FiFi+irr1, (F^)^ = F; for j ? i, i + 1). We can 
assume that the xi does not intersect the "tails" of Fi,... , rn. 

Let Ki be a finite set of D obtained from K U {xi} by contracting xi 
to a point 0,2 G xi. Ki = {a25tt35 • • • 5an}. Let Sn_i = Bn-i[D,Ki]. Let 
125--- j^n-l be a frame of Bn-i where Yi can be identified with Xi for 
i >3. 

Let H = {b G 5n_i | (02)6 = a2}. From the short exact sequence 
1 -> Pn_i c-)- JB^-I -> Sn-i -> 1 (see [MoTe4]) we can conclude that 
H is generated by Y3,...,Yn_i and by the generators of P^-i- We re- 
move the generators of Pn_i that can be expressed in terms of Y3,..., Yn-i 
(see [A],[B], and [MoTe4], Section IV) and conclude that H is gener- 
ated by Y^Ys,... ,yn. The element Y2

2 corresponds to the motion M' of 
a2, ^3,..., an described as follows: a2, a4,..., an stays in place and as is 
moving around 0,2 in the positive direction (see Fig. III.2.(a)). 

We define a homomorphism $ : Cp(Xi) —> H as follows: 
Let U be a "narrow" neighborhood of xi such that A = dU is a simple 

loop. Take b G Cp(Xi). There exists a representing diffeomorphism (3 : D -» 
D (P(K) = K, p\dD = lddD) s.t. /% = IdF (U = U U A). 

The diffeomorphism /3 also defines an element of 2?n_i[jD,.Ki].. This ele- 
ment is in fact in H since a2 G #1 and thus (a2)/3 = a2- Denote this element 
by $(6). The map $ constructed in this way is obviously a homomorphism, 
$ : Cp^x) -+ H. Clearly, X3,...,Xri_1 G.Cp(Xi). Clearly, SpQ) = ^ 
for i > 3. Let M be the following motion in (D,K): ai,a2,a4,... ,an 

are stationary and as goes around ai,a2 in the positive direction (Fig. 
111.2(b)).   Let u be the braid in Cp(Xi) induced from the motion in M. 
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O") 
Figure IIL2. 

Clearly, <f>(u) = Y^. Thus, $ is onto and ^(u)^(Xs),... ,$(Xn_i) gener- 
ate h. One can check that u = Z^Z^. But Z31 = X2X1AJ"1 and Z32 = X2. 
Thus ?i = <T. Thus Cp(Xi) is generated by cr,X3,... ,Xn_i and a set of 
generators for ker $. 

Consider 7ri(D — KUxi, *). Let ^ be the path obtained from connecting 
A with * E 5i? by a simple path intersecting each of Fa,... , rn only at *. 
We get a (free) geometric base r2, Fs,... , rn of 7ri(D — (K U #1), *). It is 
obvious that f^ = F^. $(&) defines in a natural way an automorphism 
of 7r(.Dfc U {Xi}, *) s.t. <&(&) does not change the product f 2r3 ... rn, and 
(T2)^(b) is a conjugate of IV 

Consider now any Z E ker$. We have ^Z = f2 (f2 = rir2), 
(Tj)Z = Fj Vj = 3,... ,n. This implies that Z can be represented by a 
diffeomorphism which is the identity outside of [/, that is, Z = X{, / E Z. 
Since Z E Cp(Xi), we get / = 0 (mod 2). 

Thus, Cp(Xi) is generated by X^,a,X3,... ,Xn_i. Clearly, C(Xi) is 
generated by Cp(Xi) and Xi- □ the Claim 

Lemma III.2.4. Let {Xi,... ,Xn_i} 6e a frame in Bn, (Xi,... ,Xn_i) 

fAeir images in Bn. Let u E G (G is a Bn-group) be such that 

u-^-i = u^r with r2 = 1, r E Center(G), r^ = r V6 E J5n; 

(2a)   ^-1^-1 =ti-Wi; 

(2fe)   ^1jt2-1x1-1=^1^1x2- 

(3) u* = u Vj = 3,. ,n 
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Then u is a prime element in G, and Xi is a supporting half-twist for 
u. 

Proof. Let Z G Bn be any half-twist disjoint from X\^ Z be the image of Z in 
Bn. 3b e Bn such that (Xi)h = Xu (Xz)b = Z. By Claim III.2.3, 6 belongs 
to the subgroup of Bn generated by XL,X3, ... ,Xn-\ and a = X<21X\X<21. 
Let b and a be the images of b and cr in Bn. We have ^-i = ^-1^.-2^—1 = 

(^x-^-Oxr1^-1 = (^"^x-Ox-1^-1 = C™)*-1 ■ ^x-^r1^-1 = ^xj1 • 
^Xf1^-1^-1 = ™x2-1 • (rn"1)x2-1x1-

1 = T2Ux-™-y^T{ju) = u. Then 
Ua = ix. Now: izjjr. = ix for j > 3 (by assumption (3)) and 1x^2 = ix (by 
assumption (1)). Thus, if Xi appears in b an even number of times, then 
1x5 = ix. Otherwise we replace b by 6X1. The "new" b satisfies the same 
requirement for &, as above and u^ = ix. Thus, we can assume ix^ = ix. We 
have 

uz = ^6-1x36 = uXsb = H = U- 

Let Y be a half-twist in Bn adjacent to Xi. 3bi G Bn s.t. (Xi)^ = -X"i, 
(-X"2)&i = y. Let 61 and Y be the images of 61 and Y in Bn. As above, we 
can choose 61 so that ixg   = ix.   Applying 61 on the assumptions (20) and 

{2b) we get (since ix^ = ix, {Xi)^ - xu fa)^ = y): 

^y-ijff1 = ^"^y-i and ix^y-ixf1 = ^^y-i-    t11 

III.3. Polarized pairs and uniqueness of coherent pairs. 

Definition.   Polarized pair 
Let G be a i?n-group, h a prime element of G, X its supporting half- 

twist. If X is polarized, we say that (h,X) (or (h,X) is a polarized pair 
with central element r,    r = hh^-i. 

Definition.    Coherent pairs, Anti-coherent pairs 
We say that two polarized pairs (/ii,-X*i) and (/^-^z) are coherent (anti- 

coherent) if 36 G i?n such that (hi)^ = /i25 (-^1)6 = ^2, and 6 preserves 
(reverses) the polarization. 

Corollary III.3.1. Coherent and anti-coherent polarized pairs have the 
same central element. 
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Proof. The prime elements of coherent and anti-coherent pairs are conjugate 
to each other. Thus by Lemma IIL2.2 we get the corollary. □ 

We need the following Lemma to prove later the unique existence of a 
prime element with given s.h.t. conjugate to a given prime element. 

Lemma III.3.2. Let h E G, a prime element with s.h.t. X. Let b G Bn. 

Then: X~b = X => h~b = h. 

Proof. We can choose a set of standard generators for Bn[D,K], {Xi,... , 
Xn_i} with Xi = X. Let a = X2XIX2. Consider Cp(-X'i), the centralizer 
of Xi preserving polarization. By Lemma III.2.3, Cp(Xi) is the subgroup 
of Bn generated by Xf,cr, X3,... , Xn-i. Since X3,... , Xn-i are disjoint 
from Xi, they do not change h (by axiom(3) of prime elements). By Lemma 
IIL2.1, h^2 = h. Consider h^i = h^-1-^-2^-1. We have: 

by Axiom(2) of prime element /L_i , >. 
{h     hx-ilx-ix-i x2  ^x1 x2 

= (^v-i^x-^rOxr1 
X-1     ^2    Xl     /A2 

(rh • /i-1/^.-1)^.-1 = Thj^-2 

rhr = h. 

by Axiom(2) of prime element f ^ 

^2    /yY2 

by Lemma 111.2.1(2) 

Thus ho- = h. Thus, for every generator g o{Cp(X)1 hg = h. Since b G C(X), 
kg = n. a 

Proposition III.3.3. Let {/i, X} be a polarized pair, h G G, X G Bn. Let 

T be a polarized half-twist in Bn. Then there exists a unique prime element 
g G G such that {p,T} and {h,X} are coherent 

Proof. Let X,T £ Bn be polarized half-twists representing X and T. 36 G 
Bn such that T = X^ preserving polarization. Let b be the image of b in Bn. 
Taking g = hb we obtain a polarized pair {g, T} such that {g, T} and {/i, X} 
are coherent. To prove the uniqueness of g, assume that {pi,T} is another 
polarized pair coherent with {/i, X}. Then 3&i G Bn with g = h^ and 
T = X51, preserving polarization. We have T = X^ = X5 and X^-i = X. 
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Denote 62 = ^i^"1, so X&2 = X (preserving polarization). By the previous 
lemma, h^ = h. Thus, h^ = /i& or g = gi. □ 

Definition.    Lh ^ (T) 

Let (h,X) be a polarized pair. T G Bn. L^-^JT) is the unique prime 

element s.t. (I^^(T),T) is coherent with (h,X). 
Prom uniqueness we get a simultaneous conjugation: 

Lemma III.3.4. Assume (h,X) and(g,X) are polarized pairs. Letr be the 

central element of (g,X). If(h,X) is anti-coherent to {g,X) then h = #~
1
-T. 

Proof. By assumption, 36 £ Bn s.t. g = h^ and X = X^ reversing polariza- 
tion. Thus Xbx-i = X1 preserving polarization. Thus {h>ix-i, X) is coherent 
with (^j^xjXyr.i). Clearly, (h^X) is coherent with (/i^.^X^^i). Prom 
uniqueness, /i = /ijj^-i = Qx-i- Since r is the central element of (g,-X"), 
r = 5 • flf^!. Thus, gx-i = ^'V. So /i = g'V. D 

Corollary III.3.5. // (a^JC) is coherent with (gi,Y) i = 1,2, £/ien ^/iere 

ea:i5f 6 € J3 5.f. (a)^ = ^ i = 1,2. 

Proof. Let 6 be the element of jBn s.t. (ai)^ = 51, (-X^ = y. Now, 
((02)5, (-X')ft) is coherent with (a25X). Since (X)^ = y, ((02)6,?) is co- 
herent with (a2,-X'). The pair (32? y) is also coherent with (02, -X"). Prom 
uniqueness, (02)5 = 92- d 

III.4. Bn-action of nondisjoint half-twists. 

Proposition III.4.1. LetT^Y be 2 orderly adjacent polarized half-twists in 
Bn, {h^X} be a polarized pair, h 6 G, X E Bn. Denote by Y' the polarized 
half-twist obtained from Y by changing polarization (that is, T, Y' are not 
orderly adjacent). Denote by 

L(T) = L{h>x}(f), 

HY) = L{htJt}(Y), 

L(Y') = L{h!Ji}(Y'). 
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Then 

(1) LWf.! = HT)-^; 

(2) L(T)Y-I = L(T)L(Y); 

(3) L(r)(ff).1=£(y)-1L(T). 

Proof. 
(1) By Lemma 111.2.1(1). 
(2) Let b G Bn be s.t. ^(T) = hb, T = X^, preserving polarization. Let 

Yi = Yb-i. Then {X, Yi} is a pair of adjacent half-twists (X = T&-i, Y = 
Yi-i), and so hy-ix-i = h^hy-i. Applying 6 to that equation, we get 

(LCT))^^-! =L(r)-1L(r)^1,
1or 

Let 6i = bY^T'1. Then ^ = X6y-iT-i = Ty-iT-i = y (since 
Ty-i = YT by III.O). Using that T,y are orderly adjacent and Xi, = T, 
preserving polarization, one can easily check that actually X^ = Y, pre- 
serving polarization. Because of the uniqueness of L(Y) = Lrh^(Y)^ we 
get L(Y) = ^ = hiy-if-i = I'(T)y_ij,_i. Together with the previous 
equation we get: L(T)y_i = L(T)L(y), which is (2). 

(3) Using Yy-i = y' (preserving polarization) and uniqueness, we can 
write L(y/) = L(y)y-i. By (1), L(y)y-i = J^y)-1^ Thus, L(y/) = 
^(y)-^. FYom (2) we get: H?)^^ = L(T)L(Yf) = L(T)L(y)-1T = 
LQO-^T), which is (3). 

(We used [X(T),L(T)y_i] = r, from Lemma III.2.1, which implies r = 
[L(T),L(T)L(Y)} = [L(nL(Y)].) D 

Lemma III.4.2. Let h be a prime element in G, X E Bn a supporting 

half-twist of h, Z a half-twist in Bn transversal to X. Then hz = h. 

Proof. Let X, Z be transversal half-twists in Bn, representing X, Z. Let re, z 
be 2 transversally intersecting simple paths corresponding to X, Z (see Fig. 
III.4). 

There exists a simple path y such that the corresponding half-twist Y is 
adjacent to X and Z, and Zi = Zy-2 is disjoint from X. Let zi be the path 
corresponding to Zi (see Fig. III.4). Denote by y, Zi the images of Y", Zi in 
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Figure III.4. 

Bn. We have hg = ^y-2^1y2   y   ^^    ' '   (hr)^^ = (hr)^ = hr-r = h. 
a 

III.5. Commutativity properties. 

Proposition III.5.1. Let {^1,^1}, {p25 ^2} be 2 polarized pairs in G.  As- 
sume that they are coherent or anti-coherent.   Let r be the corresponding 
central element of (51, Yi)   (r = gi(gi)y-i)- 

Then 

(1) ifYi^Yz are adjacent, then [51,32] = T;" 

(2) «/Yi,Y2 are disjoint or transversal, then [31,52] = 1- 

Proof. 
(1) Assume first that {31, Yi}, {327^2} are coherent. Take b G Bn with 

32 = (31)65 Y2 = (Yi)b (preserving polarization). Let &i = Y^Y^1. 
Then (yi)61 = Y2. Assume that 61 preserves polarization of Yi,!^. 
We have {igijbi^} and {32,^2} coherent with {31,Yi}. By Proposi- 
tion IIL3.3 (the uniqueness part) we get {gi)bi = 32- Thus we have 

32 = (31)6!  = (PlJy-iy-i = SfHyOy-^ and \9u92] = fel^rH^Oy-1] = 
-1/     x -1/   -IN r       /     \        l      by Lemma 111.2.1(3) 

3l5i   (ffUy-iffi   (ffi   )y-ifll = Wl»(»l)y-iJpi = r^i = r- 
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If fei does not preserve the polarization of Yi,!^, consider 62 — ^1^2- 
Then Y2 = (Yi)62, preserving polarization. As above, we get 

92 = (^1)62 

= folhf1?^ = ^ih.Y-'Y-1 = (di^y-^Yf1 = r(9ll)Y-i9l, 

and then 

\9u92] = [gi,T(gi1)y-igi] 

r       ,   _ix        i       r       /     \        i-l by Lemma 111.2.1(3) 

= [0i,(0i  )y2-
1] = [0i.(0i)y2-

1W-i = r' 

If {31, Yi}, {32, Y2} are anti-coherent, denote Y^ the half-twist obtained 
from Y2 by changing polarization. One can then check that {gi,Yi}, 
{32.y-i, 1^} are coherent. We have from the above that r = [51, (52)^-1]- By 

Corollary IIL3.1 r is also the central element of (#2? Y^)- Thus r = ^2(^2)^-1 

which implies (52)^-1   =  5^1'7-- Thus r  =  [01,(02)^-1]   =  [01, ^V]   = 

bi,^1] = bi,^]^1- Thus, [01,02] = T"
1
 = r. 

(2) We can assume that {01, Yi}, {02, Y2} are coherent. (Otherwise, we 
replace % by % and 02 by (52)^-1 and use ^{g^Y^ = [9ii92]g2

1 (see 
above).) 

Consider first the case where Yi, Y2 are disjoint. We can choose a stan- 
dard base of 5n, say (X\,X2,... ,^n-i) such that Jti = Yi, X3 = Y^ and 
the given polarizations of Yi, Y^ coincide with "consecutive" polarizations of 
XuXs ("end" of Xi = "origin" of X2^"end" of X2 = "origin" of X3). Let 
bi = X^X^X^X^1- Then Y2 = (Yi)^^ preserving polarization. Prom 
Proposition III.3.3 (uniqueness) it follows that 

02 = (01)61 

= (d^x^x-1*-1^1 = (di^g^x-^x-'x-1 = (ai^x-^g^x-'x-'x-1 

By 111.2.1(3) [01, (0!)^-!] = r, which implies 

We can write 

[01,02] = [01, (gi^x-^gi)*-1*-1} 

= bi* G/f1)*-*] ' ^1' (Si)^-1^-1]^)*-! = r • r = r2 = 1. 
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Assume now that Yi,!^ are transversal. As in the proof of Lemma 
IIL4.2, we can find a half-twist T G Bn such that T is adjacent to Yi^Yi 
and Y2 = (Y2)f-2 is disjoint from Yi. Let b G Bn be such that ¥% = (Yi)^ 

92 = (sOb- Let b' =-6T"2, ^ = (fliV = (^2)7-2. Then {^2^2} is coherent, 

or anti-coherent, with {gi,Yi}. Since Y2,Yi are disjoint, we get from the 
above [51,52] = 1. By Lemma IIL2.1 gf

2 = (52)7-2 = 92T, or 52 =■ 52r- 
Therefore, [51,52] = Igufa] = [91,92] = 1- Q 

Recall that here exists a natural homomorphism il)n : Bn -) Sn. ipn(Xi) 
is the transposition (i i + 1) for Xi a half-twist connecting the points qi and 

Definition.   Pn 

Pn=ker^n. 
Recall from [MoTe4] that: Pn is generated by Z^ where: 
zij = {Xi)xi+1...Xj-i' 

Definition.   Pn 

Pn = kei(Bn -4 Sn) where ipn is induced naturally from il)n. 

Proposition III.5.2. Assume n > 4. Let -X"i,-X"2 be 2 adjacent half-twists 

in Bn. Let c = [X^Xl]- ^^n f/ie commutant P^ of Pn is generated by c 
where Q, = c V6 6 Pn, and c2 = 1. Moreover, if (Yi,i^) and (Zi,^) are 
too pairs 0/ adjacent half-twists, then [Z^Z^] = [Yi2,Y2

2] = [Z^Z^2] = 

Proof Let Bn = Bn(D,K)). Complete Xi and X2 to -X"i,... ,Xn_i, a 
standard base of Pn, Xj = {H(xi) and xi,... ^^-i are simple paths in 
P. Let c = [X2,-^2]. Let x = (xi)-^ ^ . We have a quadrangle formed by 
^1,^25^35^5 (see Fig. 111.5(a)). 

Denote by X £ Bn the half-twist defined by x. Evidently, Xi, X2, X3, X 
form a good quadrangle in Pn. Thus by Lemma III. 1.2 

(1.10) xfxi=xZx2. 

Denote yi = X2, 2/2 = ^f 5 2/3 — -^35 2/4 — ^2 5 (t*16 squares of the 
edges), di = XiXfXf1, ^2 = ^XfXT1, (the squares of the diagonals), 
y' == X2^i ^^"1 (the square of the outer diagonal) 
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1~% 

^) 

Figure IIL5. 
U) 

See Fig. III.5(b) where we denote the paths corresponding to the half-twists 
whose squares we considered here. 

Clearly: 

yiya = yayi 

(yak = (^-2 = (tfe^-i 

yiy2^i = y2yiy/ — A3 (a central element of P3). 
We rewrite (1.10) to get 

(i-ii) y4 = yiy3y^1 

Conjugating (1.11) by Xi, we get: 

(1.12) d2 = yiysy''1; 

conjugating (1.11) by X2 we get j/4 = di(d2)y-i ■ y^"1. Since di = yiy'yf1' 

y4 = yiy Vi y^y^ y2      =   yiy yi yaymy   y^ y^ • 

We compare the last expression with (1.11) to get: 

(1.13) y'yiy'-V = ys,    or   [y/,»i] = i. 

Since y',yz are squares of two adjacent half-twists in Bn, and any two 
pairs of adjacent half-twists are conjugate, we conclude from (1.13) that: 

(1.14) V pairs of adjacent half-twists, say Z\,Z2 in -Sn : ]Z\, Z^\ = 1, 

which also implies that [if, Zf ] = [Zf2, Z|] = [Z?, Z2"2] = [Zf2, Z2~2]. 
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Conjugating (1.11) by X^1 we get: 

di = yiy3(d2)y-i = ym • ysd^y^1 = vwl • d^y^1   =  yid^ys. 

We have by (1.14) that 1 = [y?,^] = [yi,l/2]j,-i * [2/1,2/2].   Denoting 

c = [1/1,2/2]) we can write: 

(1.15) cy-i = c-1,     or    c^ = c"1. 

Denote by Ps the subgroup of Bn generated by 2/1,2/25 di 5 and by a = A3 = 
2/12/2^1 = 2/22/12/' (a central element of P3), so that 

(1.16) y' = yr1y2"1«- 

o r i r n   ^y (^■■^^)   r —1    —1    i —1    —1 —1 
So, c^ = l2/i,y2Jx1 = [2/1.2/J      =      [2/1,2/1  2/2  a] = 2/1 • 2/i  2/2  a ' 2/i    ' 
^~12/2yi = % 1yr12/22/i = [% Sl/f1] = [2/2,2/i] = c""1. Thus we have c^ = 

By (1.15) Cx2 =Cy1=c K 

We compare the last two results to get c = c_1 or 

(1.17) c2 = 1    and    c^  = c. 

Using a conjugation which sends (Xi,^) to (X21X1), we obtain from 
(1.17) 

(1.18) c^ = c-1,    or    c^2 = c. 

(1.17) and (1.18) show that V z G £3 (the subgroup of Sn generated by 
Xi,X2) we have 

(1.19) cz = c. 

Consider now c^   =  [yi,y2]x3   =  [yi,«fe]    y=       b^yiysy'""1]   = 
/_i  —i / —1 —1 /     /—i —i /\ —i —1 fry (i-i^) _i _i 

2/12/12/32/   yi y2/3 2/1   =ym-{yiy   yi ym 2/1      =    j/iysq/a 2/1   = 

V1^1 = V3 = C2/3 = ^I'shortly %2 = c*3- This implies c^3 = c' 
Since c = [X^X|], we have MXj, j > 4, c^. = c. Thus V6 G Sn c^ = c 

and c2 = 1. 
Let (Yi, Y2) be a pair of adjacent half-twists. Since every 2 pairs of ad- 

jacent half-twists are conjugate in Bn,    3b E Bn s.t. [Y^, Y?] = [-X"i, Xllft = 
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c&. Since c& = c V6 G J5n, [Y^Y^] = c. Since c2 = 1, c G Center(5rl) we 
also have lY^Yf2] = [Yf2,^2] = c. In particular, if (Zi,^) is another 
pair of adjacent half-twists, [Z^Z^] = [^i2,^2] — c- Because any two dis- 
joint and transversal half-twists of Bn commute, and Pn is generated by 
Zfj = (Xf)x x _i, 1 < i < j < n (see [MoTe4]), we conclude that P^ is 
generated by c. □ 

III.6. Pn as a Bn-group. 

Recall:    Ab(Bn) c^ Z (Bn is generated by the half-twists and every 2 
half-twists are conjugate). 

Definition.   Pnjo 
PnQ = ker(Pn —y AbBn) ("degree zero" pure braids). 

Definition.   Pn^ 

Pn£ is the image of Pn)o in Pn- 

Lemma III.6.1. Let Xi,X2 be 2 consecutive half-twists in Bn. Let u = 

(X^-^-iX^2- Then u G Pn)o u is a prime element in Pn (considered as a 

Bn-group), and Xi is the supporting half-twist of u. 

Proof Clearly, u G Pnfi.   Since X&X^ X2XXX2,   (Xi)x-i = {X2)x1 

)2   1X2-2 = {X2)\^ and thus, u — {Xx^-xX^ 2 = i^)2- X2 2- We often use here the fact that 

(Xi)x-i = {X2)x1 as well as the fact that [X^2,X^2] = c, i.e., X2"2X| = 

cXfXf2 and (X$)x-i = {X%)x2c for c G Center(Pn), c2 = 1. Complete 

Xi,X2 to a frame of Bn : XL, ... ,Xn_i. ((Xi,Xi+i) = 1 and [X^X^] = 1 
\i — j I > 2.). We shall use Lemma III.2.4, that is, we must check conditions 
(1), (2a), (26), (3) of Lemma IIL2.4. 

(1) We have ti^-i = (X2)^^-! ■ (X^2)^ = X2 ■ (Xf2)^. Since c = 

[X^Xl] (see Proposition III.5.2), (Xf2)^2 = (Xf2)^-^. Thus:  u^-i = 

(2fl) Since [X2,!2] = c, 11^-1 = (X2)^ • X2-2 = cX*X;2 = X^2 ■ X2, 

and u^iiri = (X2-2)^ri • X2 = (Xf2)^ • X2 = c^2)^ • X2. 
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On the other hand, u-lu^-i = If • (Xf2)^-i • J^"2 • Xl = c(-Yf2)^-i • 

Xl. We get 

(25) Using (1) and {2tt), we can write 

w^ ^^ v-i = c/^ * ^-1 c = ^7.-1^ • c 

(we use [w, w^-i] = [(^1)^-1 • X^.X^Xf] = c • c • c = c). Thus, 

(3) Clearly, Vj > 4, ii^. = w. Consider u-^-i = (X2)^-!^-!^^"2)-^-!. 

Since w can also be written as u = (X2)^-i • X^2 = X^"2 • (X2)^-i • c = 

^2"2-(^i)x2'
wehave: 

tijf.1 = u * (Xfi^iz-i • (X^2)^-! = x2-2 • (X2)^ ^ X2 • {Xfa^i 

which is true, because {(Xi)^ ,X2, (X2)Jf-i, (Xi)jj-1^.-1} form a good 

quadrangle (see Fig. III.6). □ 

Construction of G(n). 

For n > 3 we define the group G(n) as follows: 

Generators: «si, ^i, ^2? • • • ? ^n-i- 
Relations: 

[si, m] = 1    Vi = 1,3,... n — 1; [ui,Uj] = 1 when [i — j\ > 2; 

[51, U2] = K, Wi+i] = fail 1*2] Vz = 2,3,... n - 2; 

fai,W2] = fai^2]5i = [uuU2]ui Vi = 1,2,... ,n~ 1; 

fai,^]2^!- 
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Wx;' 

Figure IIL6. 

Equivalent construction of G(n). 

Consider a free abelian group A(n) with generators Si, Vi,... , Vn-i and 
a skew-symmetric Z/2- valued bilinear form Q(x,y) on A{n) defined by: 
Q(S,i,Vr

i) = 0Vi = l,3,... ,n-l;g(Vi,^)=0when|t-<?'|>2,Q(S,i,y2) = 
Q(V^, Vt+i) = 1 Vi = 1,2,... , n—2. One can check that there exists a unique 
central extension G of A[n) by Z/2 with Ab(G) ~ A(n), G7 ~ Z/2 and such 
that Vrr, y G G[a;, y] = Q(^, y) where {x and y are the images of x, y in A(n)). 

Claim III.6.2.     (1)   The above central extension is isomorphic to G(n). 

(2) Ab(G(n)) is a free abelian group with n generators (i.e., A(n)) and 
Qrin)1 ~ Z/2 (generated by [wi,^])- 

(3) The following formulas  define  a Bn-action on G(n) for (Xi,..\ , 
Xn_i), a standard set of generators in Bn, and v — j/ui,^]- 

X\-action X2-action Xk-action^k > 3 

Sl ->5l Si -+ U2S1 si ->5l 

1*1 -> U^U Ui —> U2U1 Wjfc-l -► WjfctAjfc-l 

U2 -> UiU<2 U2 -> u2lv Wjb -> w^1^ 

Uj -> Uj Vjf >3 Us -> U2U3; uk+i -> ukuk+i 
uj ~* uj VJ — ^    uj ~~* uj ^j ^ k — l,k,k + 1 

(4) Let b G Bn, y = (Xi)&.  TAen ^/ie y2-action on G(n) coincides with the 
conjugation by (si)b- 
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(5) Let 
(1.20) 

(-0 
Claim 111.6.2(3) 

tf(«,j) = (l,2); 

UJ-1...U2S1 1  ifi = l,j>2; 

Sij — < 
(«i) 

{v - Uj-i.. .ui - Ui-i...U2S1     if i > 3, j > i 

v • Uj-i... U1S1 if i = 2, j > i. 

T/ien: 

L^ij 5 ^A;ij — 
u,        if({i,j}n{k,l}) = l); 

1,        otherwise. 

(6) .Le£ -Fn_i &e ^e subgroup ofG(n) generated by (5n_i)n, sn_2,n5 • • • 5 5in)- 
.Bn-i ac^ on Fn-i as follows: 

(1.21) (sjn)Xk = Sjn        j^k,k + l]    k = l...n-l 

T/ii5  action is a Bn-i-action,   where the action of the generators 
Xn_2,... Xi of Bn-i correspond to standard Hurwitz moves on 

\sn—l,n5 sn—l,n5 • • • 5 5lnj* 

(^See ^e definition of Hurwitz moves in Chapter 0.) 

(7) There is a natural chain of embeddings (7(3) C (2(4) C • • • C G(n — 

1) C G(n) corresponding to the chain: (51,^1,^2) C (51,^1,^2,^3) C 
... C (suuu...un-i). 

Proof 
(1), (2), and (3) are easy to verify. 
(4) Consider first the case b = Id. Prom (3) we get for the X^-action: 

Si —> 51, Ui —» Ui, U2 -> ^2^5 Uj -> %* Vj > 3. 

At the same time by the first construction: 

(Sl)ai = 5i,   {Ui)si = UU   (1/2)51 = SilU2S1 = U2^   {Uj)Sl = Wj- Vj > 3. 
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Thus X^-action and 51-conjugation coincide. Consider now any b £ Bn and 
any g G G(n). Let h = gb-i. We have: 

(5), (6), (7) are easy to verify. D 

Lemma III.6.3. Let n > 3. 
Let {Xi,..., Xn-i} be a frame of Bn. 
Let rxl if(i,j) = (l,2); 

Z^ = < {Xi)x2...Xj-i */* = l, i>3; 

SXl)x2-Xj-iXi...Xi-i ifi>2, j>i. 

Let Z^ be the image of Z^ in Bn. 
Consider G_{n) as a Bn-group as in Claim III.6.2. 
Then there exists a unique Bn-surjection An : Pn -^ G(n) with An(Xf) = 

5i and An(Z?) = Sij for 1 < i < j < n. 

Proof. Use induction on n. 
For n = 3, A3P3 -> G(3) must be defined by X^Zfj) = Sij, 1 < i < j < 3. 

One can check directly that A3 is well defined, and that it is a i?3-surjection. 
Uniqueness of such A3 is evident. 

Assume now that n > 4 and that the desired A^-i : Pn-i —> G(n — 1) 
exists. 

Considering (Xi,^) C (XUX2,X3) C ... C (Xu... ,-Yn_i), we get 
a chain of embeddings B3 C B4 C ... C Bn and the corresponding chain 
Ps C P4 C ... C Pn. To the latter corresponds a chain of homomorphisms: 

JP3-^>JP4-^ ... -> Pn-i^—>Pn, where JP3 is obtained (by definition) from P3 
by adding the relations: [Z^, Z2

2
3] = [Z?2, Z?3] = [Z2

2
3, Z&] and [Z?2, Z%3]2 = 

1. 
It is known that the set {Zfj,l < i < j < n} generates Pn, and Pn ~ 

Pn-i K Pn_i, where Pn_i is the subgroup of Pn generated by {Zfj, 1 < i < 
j <n — 1}, Pn_i is a free subgroup of Pn generated by {Zfn, 1 < i < n — 1}, 
and the semi-direct product Pn^i ix Pn_i is defined according to the Pn-i- 
action on Pn-i which comes from the I?n_i-action by conjugation (using 
Bn-i C Bn D Pn). The latter coincides with the standard Pn_i-action on 
Fn-i (the generators Xn_2,... ,Xi of Bn-i correspond to standard Hurwitz 
moves on (Z^^ Z2_2)n,... , Zfn) (see [MoTe4], Chapter 4). 
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Using canonical Pn_i -> Pn-i, we obtain from An_i a i?n_i-surjection 
An_i : Pn-i -> G(n). For the free subgroup Fn-i of Pn generated by 
{zini n-l<i<l} define fin-i : i^n-i^ G(n) by /in_i(Zfn) = sin. 
Considering Pr! as Pn-i ^< -Fk-i? we define An : Pn -> G(n) which on Pn-i 
coincides with An_i : Pn_i -)► G(n - 1) C G(n) (see Claim 111.6.2(7)) and 
on Fn-i coincides with /in_i : Pn_i -> G(n). To show that such An exists 
one has to check the following: 

1) The conjugation of /in_i(PTl_i) by elements of An_i(Pn_i)(c G(ri)) 
coincides with the Pn__i-action defined by Pn_i C Bn-i d Bn -^ Bn and 
the given Bn-action on G(n). That is, V/ G /in-i(Pn-i) and V/i of the form 
An-i(y) (y G Pn_i) we must have h-lfh = fy. 

2) The Pn_i-action on /zn_i(Pn_i) (defined by Pn_i C 5^-1 C 
Bn —> Bn and the given ^-action on G(n)) comes from B^-i-action on 
/in_i(Fn_i) in which -X'7l_2,... Xi correspond to the standard Hurwitz moves 
On (sn_ijn, Sn_2,n5 • • • Sin)- 

Proof of 1). Since V6 G Bn-i, An_i((Xf)5) = (51)5 we see from Claim 

III.6.2 that V/ G /in_i(Pn_i), fji^^x^b) = (/si)& = A^i2)b' Since jPn-1 is 

generated by {Z?-, 1 < i < j < n - 1}, i.e., by {{X*)&, 6 G Pn} we get 1). □ 

Proof of 2).   It follows immediately from Claim 111.6.2(6). □ 

Thus, 1) and 2) are true and we can extend An_i, /in_i to a homomor- 
phism An : Pn(= Pn-i * Pn-i) —>■ G(n) such that for 1 < i < j < n — 1 
An(Zg) = An_i(Z§) = Sy, and for 1 < i < n-1 An{Z?n) = Hn-i(Zfn) = s^, 

in short An(Z^) = 8ij for 1 < i < j < n. 

Using induction, one can check directly that An is a Pn-homomorphism 
(recall that by Claim III.6.2 we have explicit formulas for s^s). 

Because sin = un-i • U2S1 (by 1.20), that is, i£n_i = sin(un-2 • • • ^s)-1, 
we see that G(n) is generated by G(n— 1) = An(PTl_i) (— Ari_i(Pn_i)) and 
sin = An(Z^n). Therefore An is a J3n-surjection. 

Let N = ker(Bn -> Bn) (= ker(Pn ^ Pn)).   Let T = X^X^X^2Z^. 
Clearly, N is generated by {Tb, 6 G Pn}. We have An(T) = A^T) = si • 534 • 

_1   _i Claim III.6.2 _1   _i   _i .       -1   _i   _i 
523 514 = 51 ' ^3^2^1 * ^2^1 • 51   U1   ^2   77 • 51   1A2   ^3     = Sir]U^U2 ' 

s^u^u^1 = Id. Since An is a Pri-homomorphism, we get An(Tfc) = Id 
V6 G Bn, and thus Ari(JV) = Id. Hence An defines canonically a jBn-surjection 
An : Pn -» G(n) with An(li2) = 51. 
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Uniqueness of such A^ follows from the fact that Pn is generated by the 
J3n-orbit of Xf. □ 

Theorem III.6.4.  There exists a unique Bn-isomorphism An : Pn -> G(n) 

with An(Xi) = si. In particular: 

(1) AbPn is a free abelian group with n generators, P^ ^ Z/2 (generated 
byc = [XlX$]); 

(2) Pnfi is Bn-isomorphic to the subgroup Go(n) of G{n), generated by 
i/i,... ,izn_i; AbPn)o is a free abelian group with n — 1 generators 
{&,... ,^n-i}, P'n$ ^ Z/2, generated by c = [^1,6]; (^ € Go(n) 
corresponding to c £ Pn,o)- 

(3) Pn5o «5 a primitive Bn-group generated by the Bn-orbit of a prime 
element u = X2?'-2; i6//iere X,F are adjacent half-twists in Bn, T — 
XYX~1 is a supporting half-twist for u. 

Proof. Clearly, Pn$ is generated by {X2Z^2,/ < i < j < n}. Because 

X2 • Zr.2 = XlZi? - Zl • Z^2 and both X2^"2, Z2. • Z^2 are conjugates of 

i/, we see that P^o is generated by the Bn- orbit of w, and since u is a prime 
element of Pn,07 this means that Pn)o is a primitive Pn-group. By Lemma 
III.6.1, the s.h.t. ofu is Y^XY. Thus, we proved (3). 

Polarize each Xi (and Xi) according to the sequence (Xi,... Xn_i) (the 
"end" of Xi = the "origin" of Xi+i). By Proposition III.3.3 Vt == 1,... , n - 
1 3 unique prime element & = Lr  ^.(X^) G Pn,o such that {^,Xi} is 

coherent with {u,Xi}. Clearly ^1 = u. 
By Proposition IIL4.1 we have Vz = l,...,n — 1: 

(1.22) (&x-i = ^riC; (tfari = Ci^-i! = (eOx"1, = ^+i- 

It is clear also that Vj 7^ i, i — 1, i + 1 

(1-23) (&)*, = 6- 

We see from (1.22), (1.23) that the subgroup of Pn)o generated by 
(£1? • • • j^n-i) is closed under the P^-action. Since Pn)o is generated by 
the Pn-orbit of u = £1, we conclude that Pn)o is generated by (£1,... , £n-i)- 
This implies that Pn is generated by (X2, £1,^25 • • • j^n-i)- 
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We have & = L^j^) = (fi)*-^ = (^i2)x2 ' ^h which implies 
that 

(1.24) [Xi2,6] = c. 

By Lemma IIL5.1 we have 

[1        rf|t-j|>2. 

Observe also that 

(1-26) (i?)jf8=&-^?. 

Formulas (1.22)-(1.26) show that we can define a J5n-homomorphism 
Mn : G(n) -± Pn with Mn(si) = X$, Mn(ui) = &, i = 1,... ,n - 1. (See 
Claim IIL6.2.) 

Since Pn is generated by the Bn-orbit of Xf and G(n) is generated by 
the jBn-orbit of si, we conclude that An and Mn are inverses of each other. 
□ 

III.7. Criterion for prime element. 

Proposition III.7.1. Assume n > 5. Let G be a Bn-group, 

(Xi,X2,... ,-X"n_i) 

6e a standard base of Bn.   Let S be an element of G with the following 
properties: 

(0) G is generated by {S&,& E Bn}; 

{la) Sjt-ix-i =S-lSjt-i; 

O-b) ^x^-ix-i =3^3x^-1] 

(2) For r = 5^-1, T = S^-i we have: 

(2a) ryj = r; 

(26)   TT^rTl; 
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(3) St. =SVj> 3; 

(4) Sc = S, where c = [X^X^]. 

Then S is a prime element of G, Xi is a supporting half-twist of S and r 
is the corresponding central element In particular, r2 = 1; r G Center(G); 

Tb = TVbeBn. 

Proof. The proof includes several lemmas. Prom Theorem III.5.2, c G 
Center(J5n), c2 = 1. Prom Theorem III.6.4 it follows that P^ is gener- 

ated by c. P^ is a normal subgroup of Bn. Denote by Bn = Bn/P^ 

Pn = Pn/Pn = AbPn. Pn is a commutative group. We have ^n : Bn -*> 5n. 

By abuse of notaion we use ipn for /0n. Let Y G Sn. By abuse of notation we 

denote the image of Y in i^, or in Bn or in Pn by the same symbol Y. It 

is clear that Bn acts on P^ (through conjugations) as the symmetric group 

Since Sc = S and c G Center jBn, we have V6 G J5n (S'ft)c = Stc = 
(Sc)b — Sb- Since G is generated by {Sb, b G 5n} we have Vg E G gc = g. 

In particular, we conclude that Bn acts on G as its quotient Bn, in other 

words, G is a l?n-group. 
Let (D, if) be a model for Bn, K = {ai,... , an}, Sn = Sn[i), K]. Take 

any a^, a^ G if. Let 71,72 be two different simple paths in D—(K—a^ —ai2) 
connecting a^ with ai2, let #(71),#(72) be the half-twists corresponding 

to 71,72, and let ^(71), ^(72) be the images of if (71), #(72) in Pn.        □ 

Lemma 1. Ze£ 71,72 &e 2 simple paths in D — {K — a^ — a^2} connecting 

a^ with ai2. Then: H(ji)2 = H^)2- 

Proof of Lemma 1. Choose a frame of Bn (Yi,... , l^-i) s.t. Yi = ^(71). 
Let b G Bn s.t. 72 = (71)6, that is Hi^ijb = if(72). Let Yi be the image of 

Yi in Bn. 
Let ai be the image of b in Sn.   Since (a;)& = a^, (aj)6 = %, o"i G 

Stab(i) D Stab^') in Sn.   The subgroup of Bn generated by Y3,... ,Yn-i 

is mapped by ipn '• Bn —>■ S'n onto Stab(z) fl Stab^'). Choose 61 in this 
subgroup with its image in 5n equal to oi. Clearly, (Yi)j   = Yi. Since the 

image of b^b in Sn is equal to crjf loi = Id, we have &j~ 6 G Pn. Since Pn 
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is commutative when considering Yj2 as an element of Pn, (Y1
2)6-i^ = Yf. 

Thus, we have 

H(72)
2 = H(m)l = (^ij-ij = (Yi\^b = Y? = H(71)2    D Lemma 1 

Definition,   /y 

Vz, j E (1, • • • ,n), i / j, we define /^ E Pn as follows: Take any simple 
path 7 in D — (K — ai — dj) connecting ai with CLJ. Let fy = H^)2. Lemma 
1 shows that this definition does not depend on the choice of 7. We choose 
for i < j : 

Jij — 
(Xf)xi+1 Xj-i       2<j-i 

X? i + l=j. 

It is clear that for CJI the image in Sn of b E JB™ we have: 

It is clear from our choice of 7 for /^ = H(^)2 that: 

V>„(tf(7)) = (t,j). 

It will be convenient to use the following notation for g € G and b E Bn : 

Notation.        [g, b] : For g E G, b E Bn and the action of J5n on G, we 
denote [3, b] = g • g^li ■ 

One can check that: 

06 = 9 "»• M = 1 

M* =9z(9z)~ji 

[g-\b} = [g,b];1 

\9i92,b] = \g2,b]g-i ■ \gub] 

[9,bib2] = [9,bi}-[g,b2]bTi. 

Notation.   derlineQb,i,m 

\/b£Bn,    VI, m £ (1,... , n), / ^ m, we denote Q6>j>m = [Sfe, fj^]. 
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Lemma 2.      (i) Let b G Bn be such that ({l,2})V>n(&) n {/,m} = 0.  Then 
Qb,l,m = 1- 

(ii) Let Q = QIdjlj3 - [5,/fg1]. 77*67* Q^-i - Q. 

Proof of Lemma 2. 
(i)het{luml} = {{l,m})^n{b)-1. So (flm)h-i - flimi. We have {l,2}n 

{/i,mi} = 0, that is, 3 < Zi,3 < mi. By our choice, fim is a product o Xj 
for j > 3. Thus, using property (3) of S we get Sfi rn   = S. In other words, 

(Qb,l,m)b-i = [^ftj/^fe-i = [5, C/frn1)*-!] = [^/^mj = ^ 

and so Q6,/5m = 1. □ Lemma 2(i) 

(ii) From 5^—1^-1 = S~1Sj^-i (assumption (10) of the Proposition) it 

follows that S-g-i = SSjjr-ijjr-i. Applying Xf1, we get 

(1.27) ^x-1^-1 = SSx -1 v--1 v-l 
^2    ^3 ^2    ^1    ^3 

-1 which, after applying X2   , gives: 

O V- — 1 v- — 1 v" — 1   — O v- —1 «J-v- —1 V- —1-v- —1 V- —1 . 
A2    A3    A2 A2 A2    Al    A3    A2 

Since Sv-i-o—iv-i   =  AS^-I^-I^-I   =  5^-1 v-i, we obtain 5^-1^-1   = 
A2    A3    A2 A3    A2    A3 A2    A3 A2    A3 

iSv-iiSv-i v-i v-i Y—i? or v2 ^v2     ^vl     ^3     yv2 

(1.28) S'jf-i — Sj>-ij>-iS ^-1^-1 ^-1^-1 A2 A2    A3 X2    Xl    Xz    X2 

Let 61 = Xf 1Xf 1Xf 1Xf1. Observing that (/is)^--1 = fui we get from 

(1.28): Qf-x = fe-i.C/fa1)^-!] = [^-^-156-
1,/1-2

1]. Thus: 

(1.29) Qjf-i = [-S^1, /1^
1]5-i_i __1 • [%-ijfri,/w1]. 

y~xY~i ^      ^ 

Since ^(^i) = (2 3) (1 2) (3 4) (2 3) (products of transpositions), 
({l,2})V>n(M = {3,4}. Since {3,4} n {1,2} = 0, we get from (i) that 
Q6lili2 = 1. Thus, [56-

1,/1-2
1] = [ShJ^ = (Q^K- (1-29) now 

gives: 

(1-30) Q*^=[S*;W,fM]- 
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Figure IIL7.1. 

Consider a quadrangle formed by {ai,a2,a3,a5}, as in Fig. III.7.1. By 

Lemma IIL1.2, we can write in Pn:  /35/12 = /25/13, or fn = f^hsfu, 

fl2   ~ /l3 /25 /35- 
From (1.30) we get: 

(1-31) 
Qxz1 = [SXr1X71^n1f251f35} = [Sjc^X-^fu] ' [^Xr1^1' /251/35]/13 

Consider  [^-i^-^^sVas]   =   [SJC^X^JK] ' [Sx^x^'Mte   = 

Qx^Xt^[S^1^lJ^5
1f25   = Q^-1^3-1A5,^1X3-1,3,5)/3-51/2B- ^^ 

ipiX^Xz1) = (2 3)(3 4), the images of {1,2} under it are {1,4}. But 
{1,4} n {2,5} = 0 and {1,4} n {3,5} = 0. Thus, we get by (i) that 

Qx;lx;\2,5 = Qx-'x-1^ = !' and so [^x-1^-1'^1^] = 1. (1.31) 
now implies Q^-i = [^-i^-i,^1]. By (1.27) Sy-i^-i = S■ %-i^-i^-i 
which gives 

= (Q^-1^-2^-1,1,3)5-! • Q- 

The value of ^(X^Xf1^1)   (=   (2    3)(1    2)(3    4))  on {1,2}  is 
{2,4}.   Since {2,4} n {1,3} = 0 we get from part (i) of the Lemma that 

Qx^x^x^w = *' therefore> 

Qj^-i = QH Lemma 2(ii) 

Lemma 3. r = Q"1. 

Proof. By the assumption on r, S^-i = 5~
1
T. By definition of T, T^-2 — 

Sx-ix-2. We apply assumption (la) twice to get, using S-^-i = 5_1
T, that 
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Thus 

or 

(1.32) r-1 =Tj>-2T-L. 

Applying Xf on (1.32) and using r^2 = r (assumption (2a)), we get 

r"1 = T • TTi = [T, If2] = [S^-i, Z^1] = [5, (/fa1)A]jf-i = [5, /fa1]^-! 

^^ by Lemma 2 ^ 

that is, 

(1.33)D Lemma 3 r"1 = Q,    or   r = Q-1. 

Lemma 4. Vj > 3; r^. = r. 

Proo/ 0/ Lemma 4-    From r = SSg-i and 5^. = 5 Vj > 3 it follows that 
T^.  = r Vj > 3. D Lemma 4 

Lemma 5. r^  = r. 

Proo/ 0/ Lemma 5.   Let us use now r ~1 = r^ ((2^) of the Proposition). 
Ai 

By Lemmas 2 and 3 r^  = r. 

Thus, TT = r^., = ^Lr^-, = (S-'rS)^ = (r^-i. 

So 7£-i = r^ = rf1 = (rf ^^-i, or 

(1.34) TS = T£1.2. 

Since r^3 = r and 5^3 = S, we get (i~s)x3 = Ts and 

Applying Xf1 on (1.35), we get T^-I^^-I = T^-I. Since Ty3 = T and 

Thus: 
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Combining formulas (1.35)-(1.36) we get r^-i = T-^-I^.   Applying it to 

Xi we get r = r^-i^^ = r^^^-i = r^-i.   Thus r = r^^-i, or 
r^-  = r^-  = r. □ Lemma 5 

Lemma 6. r^. = r Vj = 1,2,... , n — 1. 

Proo/ o/ Lemma 6.   By Lemmas 2, 3, 4, 5. ■ □ 

Lemma 7. rs = r-1. 

Proo/ o/ Lemma 7.   Prom r^-  = T^2 = r and (1.34). D 

Lemma 8. r^ = r. 

Proof of Lemma 8.   Consider assumption (1&) of the Proposition: 

XiX^ X^ X\   X1X2 

Using Sjf-i = S'~1r and r^ = r, we get 5 = S^1?", or 5^1 = SV-1, 

5^  = rS~1. Assumption (1^) now gives (using r^. = r Vi = 1,... , n — 1): 

r^L = ST-
1
 ■ rS^ = SSf., = ST"1. 

On the other hand, by (la) and (2), S^-1^-1 = S^T. Thus 

We compare the last 2 expressions to get TT^S = ST-1, or 

(1.37) T = ST-
1
S-

1
T,    or   TJ_

1
1=TT-

1
. 

By Lemmas 3 and 6 

Q = Qjfj-ijf-ijf-i = [^-i^-i^-i, (fu^x^x^x-^- 

Thus: 

(1.38) Q = [^1-^2-ix,-i,/2"41] 
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Figure III.7.2. 

(weuse({l,3})V(Xr1l2-1X3-1) = ({l,3})(l    2)(2    3)(3   4) = {4,2}). 
Considering a quadrangle formed by 0,2)0,3,0,4,0,5 (see Fig. IIL7.2) 

we can write in Pn (Lemma IIL2.2) 735/24 = /25/34, or /24 = f^f2bh^ 

fu  = fuftofa- F™111 C1-38) we get' denoting by b = X^X^X^1, 

(1.39) 

= Q6,3,4' (Q6,2,5)/34 ' [-Sen/as J/-1^^ = (36'3'4 ' (QM,5)/34 " (QM.S)^' 
-1 

Now, ({1,2})^(6) = {1,2}(1 2)(2 3)(3 4) - {4,1}. Since {4,1} n 
{2,5} = 0 and {4, l}n{3,5} = 0, we get by Lemma 2 that Qb^5 = Qb&b = 1, 
and by (1.39) 

Q = Qb^A- 

We can write: 

Al    A2    A3 ^r1 = (S lT)xr1xr1 = ^v-iv-ir = rv-iT 
^"^a x- 

(using ry. = r Vi). So 

Q - Q6,3,4 = [Sxrixrix-i*^ ^ 
!   by /34=X| 

1    ^2    yv3 
[T^r,X^] x. 

^3 ^3 ^"3 6 

Since Qx   = Q, we get 

(1.40) Q = [T-1,l3-2]. 
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This implies 

n        - (r-W    \ assumption 3        i     ( . 
xl 

= [T-\X;X-,[T,X^] 
by L^ma4 [T-Sjq-V-*by (=40) Qr-i. 

Using Q = r-1 we get r^ii = r'^. Thus, r^-i = r and r^ = r. 
□ Lemma 8 

We can now finish the proof of Proposition IIL7.1. 

By Lemma IIL2.4, we only have to prove that r2 = 1, T& = r V6 G Bn 

and r E Center(G). 
By the previous Lemma, TS = r, and by Lemma 7, r^ = r"1. Thus, 

r = r-1 and r2 = 1. 
By Lemma 6, r^. = r Vi G (1,... , n — 1). Thus r^ = r V6 G J5ri. 

By Lemma 8 rs = r, i.e. [r, 5] = 1. Let b E Bn : [r, Si] = [Tb-i,S]b = 
[T,S\h = l. 

Thus r commutes with Sb V6 G Bn. Since ker(5n —>- Bn) acts trivially 

on G, Bn acts on G via i?n, and thus r commutes with S& V6 G J5n. 
By assumption (0) of the proposition, G is generated by {Sb}bG§ . Thus 

r G Center(G). □ Proposition III.7.1 

IV. New Set of Generators for G. 

Recall from Chapter II that G = G(ei&) = 7ri(QP2 — 53, *) is generated 
by £?j, El and satisfies the relations listed in Theorem II.6. 

In this chapter we shall introduce new generators for G, using the braid 
group Bg and the quotient Bg from Chapter III. 

IV. 1. New presentation of B9. 

Definition.   T.    1 = 1,...,9   i^4 
Consider a geometric model (JD, k) for #K — 9 as in Fig. IV. 1.1. 
Let {ti}i=1 ^4 be paths connecting different parts of K as in Fig. IV.1.2. 
Let Ti be the half-twist corresponding to U    i = 1,..., 9 i ^ 4. (Ti = 

H(ti)) 
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Figure IV. 1.1 Fig. IV.1.2. 

Figure IV.1.3. 

Lemma IV.1.0. T; andTj are adjacent for (i,j) as follows: 
*,iG {1,2,3} 
i = 5 j = 3,8,9 
i = 6,7,8       j = i + l. 

Ti andTj are disjoint for (i,j) as follows: 
iE {1,2,3}    j 6 {6,7,8,9} 
« = 5 j = 1,2,6,7 
i = 6 j = 8,9 
i = 7 j = 9. 

Proof.   From Fig. IV.1.2. □ 

Remark. The choice of the model comes from the configuration of planes in 
the degeneration of V3 to the union of planes as in Fig.II.l. (We constructed 
this degeneration in BGT III [MoTe7].) In each of the triangles we choose 
a point (Fig. IV.1.3). 

We choose a path connecting 2 points in neighboring triangles as in Fig. 
IV.1.4. 

We then get a configuration which is basically equal to the one in Fig. 
IV.1.2. 
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Figure IV. 1.4. 

iOr, 

Figure IV. 1.5. 

Since we do not need all possible connections to get a set of generators 
for JBQ, we skip the connection between the points in P3 and P5. 

Lemma IV. 1.1.  There exists a presentation of the braid group B§, as fol- 
lows: 

B9 = (ri.|i = l,...,9,   »^4) 

and the following is a complete set of relations: 

(Ti,Tj) = 1 ifTi andTj are consecutive 

[Ti,Tj] = 1 ifTi andTj are disjoint 

[T1,T^1nT2] = l 

[T5,Ti1T9Ts} = l. 

Proof. Consider the geometric model {D^K), j^K = 9 as in Fig. IV. 1.1. We 
choose a frame in B§[D,K} where each half-twist in the frame corresponds 
to a path, as in Fig. IV.1.5. 

In terms of T^, this frame is 

By E. Artin's presentation of the braid group (see Chapter 0), we know 
that Bg is generated by the above frame and the only relations are triple 
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Figure IV.1.6. 

relations for non-neighboring elements and commutation relations for neigh- 
boring elements. Thus, a full set of relations is: 

(Ti.Ta) = {T2^
lTzT2) = (T^lT3T2,T5) = (T5,T9) 

= (T^rgTgTg-1) = {T9T8Tg\T7) = (T7,T6) = 1 

and all possible commutation relations between other elements of the frame. 
Since T3 = T2 {T^T^) T^1 and T9 = Tg"1 (TgTgTg-1) Tg, then 

Ti, T2, T3, T5 Tg, T8, Tr, Te generates Bg. Translating the above rela- 
tions to these generators and using simple facts about commutators, we 
obtain the Lemma. □ 

Definition.   T4. 
T4 = Tf1 T3 Tf1 Tg T5 Tg"1 T7 T3"1 T2. It is possible to notice that T4 

is the half-twist that corresponds to the path £4 as in Fig. IV.1.6, and thus 
T4 is adjacent to T2 and Te, transversal to T7 and T3 and disjoint from the 
others. 

IV.2. Presentation of B9. 

Let B9 be as in Chapter III, B9 = Bg/T, where T = ([X, y]>, and X, Y 
are transversal. 

Let Ti be as in §1. Let Tj be the images of Ti in Bg. 

Lemma IV.2.1. Bg is generated by (Ti | i = 1... 9) and the only relations 
are: 

(1) (Ti,fj) = 1 Ti,Tj are consecutive i,j^4 

(2) [fi,fj] = 1 Ti,Tj are disjoint ij ^ 4 

(3) [fl^
lf3f2} = l 



74 Boris Moishezon and Mina Teicher 

(4) [f5,f8-
1T9f8] = l 

(5) f4 = f^nf^fsfsf^frf^fi. 

Proof. By the previous Lemma, Bg is generated by Tj, 1^4 with a full set 
of relations (1)... (4). We add one generator and express it in terms of the 
other relations to get T4 and relation (5). □ 

Lemma IV.2.2.     (1)   (f^Tb) = 1. 

(2) (T4,f6> = l. 

(3) <t7,f6) = l. 

(4) [fA,fi\ = 1       * = 1, 3, 5, 9, 8. 

Proof.  We use Theorem III.3.1 from BGT I. 
Since T4 is consecutive to Tj,    i = 2,6 and Te is consecutive to T7 then 

(T4,T2) = (T4,T6) = (T6,T7) = 1. Thus, (f^) = (T^T6) = (f6,f7) = 1. 
T4 and T^ for i = 1,9 are disjoint, therefore, [T4,Tt] = 1 for z = 1,9. 

Thus, [f^fi] = 1 for t = 1,9. The half-twists r4 and T; t = 3,5,8 are 
transversal and, thus, [T^Tj] = 1 for i = 3,5,8 (Remark III.l.l). D 

We need the following relations of T^ in order to get a smaller set of 
generators for G. 

Lemma IV.2.3. 

(Tl^j.-ij, j.-ij, = T5 preserving polarization 

{T2)f f f-if-i = Tg preserving polarization 

{Ts)f-if f-if = TV    preserving polarization 

Proof. It is actually true for Ti instead of Tj. It can be verified geometrically 
using Fig. III.l.l for a geometric presentation of a half-twist conjugated by 
another half-twist. D 

Lemma IV.2.4.   Another presentation of Bg. 

Let fv = f2
+2 fi f2~2    fl

i=fi   i^l. Then B9 is generated by f/ and 
the following is a complete set of relations: 
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(1) (fi,Tj)-l   iffi,fj   are adjacent    t,i^4. 

(2) [f!,f^] = l   iffufj   are disjoint     i,j^4. 

(3) [f>,f!,fif>-i] = l 

(4) K,f'8-1^f8] = l 

(5) fi = f^f&^f&f^fftt1^. 

Proof.   Clearly, Ti=T'ii^\  Ti = f^-2f{fp. We substitute these expres- 
sions in the relations of Lemma IV.2.1 to prove the Lemma. D 

IV.3. a : Bg ->• G. 

We want to prove that there exists a : Bg —)■ G s.t. a(Ti) = Ei, for Ei 
that were introduced in Chapter II. For that we prove certain relations that 
Ei satisfy, based on Proposition II.6. 

Lemma IV.3.1.     (1)   (Ei,Ej) — l   ifTi,Tj   are adjacent    ij^i. 

(2) [Ei,Ej] — l   ifTi,Tj   are disjoint      i,j^4. 

(3) [E1,E2E3E^} = 1 

(4) [E9,E^EsE5} = l 

(5) £'4 = E2  E^Ej  EgE^Eg  EjE^  E2- 

Proof.   We use Proposition 11.6, which states a list of relations satisfied by 
the Ei. 

(1), (2) By Fig. IV.1.3, T^Tj (i,j ^ 4) are adjacent, <3> Li and Lj are edges 
of some triangle, <=> (by Corollary 11.3) ^{Ei) and ip(Ej) have one 
common index. Moreover, Ti and Tj are disjoint <£> i/j{Ei) and ip(Ej) 
are disjoint. By (1) and (2) of Proposition II.6 we get (1) and (2) of 
this Proposition. 

(3) By Proposition II.6 (3), Es ■= E7E5E^1E^1E2E4E3E^lEj1. By 
Proposition IL6 (2), [£3^4] = 1. Thus, Es = E7E5E^lE^1E2E3EA 

E^lEjl.  By Proposition II.6  (1),   K^^^s   =   EiEzE^1. Thus, 
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tt'JrJ 

Figure IV.3.1. 

E2 E3 KT1   = E4 E51 Ej1 Es E7 E5 E^1. By Proposition II.6 (2) 
Ei, for i = 4,5,7,8, commutes with Ei. Thus, [Ei,E2 E3 E^1] = 1. 

(4) By (3), E8 = E7E5E^1E^1E2E1E3E^1E^. By (2), [E5,E7] = 1. 
newline Thus, E^E^Er, = E7E^1E^lE2E4E3Ej1. 

For i = 7,3,4,2, Ei commutes with Eg. Thus, [E^E^E^] = 1. 

(5) By Proposition 11.6 (3), E^EtEt = EzE^E^E^E-jE^1. By 
Proposition II.6 (2)(1), S^1^^ = E2E4E21 and [E5,E7] = 1. 
By Proposition II.6 (1) E^EkEs = EgE^1. Thus, E2 E^1 = 
rp   IT'-1 171—-1 JP   TP   JP   TP~ 1     IT1        Z7,— 1 IT1   IT1-! 77"   77"   ZT"-! IT1   rr1-"! rr' 
£}j^lLij   Jl/5   Jl/^Jl/^Jl/'j£Lf^    . xl/4 — XL/2    ^S-^T   -^8-^5-C/g    -^T^S   -^2- 

D 

We first prove that there exist af : Bg -> G such that a/(T/) = ^. 

Lemma IV.3.2.  There exists a homomorphism af,   af : Bg -+ G such that 

Proof. By Lemma IV.2.4, Bg is generated by T/. Thus, we define ^'(T/) = 
jE?i. To prove that a' induces a homomorphism, we have to show that Ei 
satisfies any relation that T/ satisfies. In IV.2.4 we presented a full list of 
relations for T-. In Lemma IV.3.1 we proved that these relations are satisfied 
when T/ is replaced by Ei. □ 

Lemma IV.3.3. 
[£?!, E2    E3 E2] = 1. 

Proof.   T^ is transversal to T^ T{ T^1. (See Fig. IV.3.1) 
Thus, [f^T^1,^]^!. 
Thiis,a'[f^f2-

1,ffl==l. 
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Thus, [E2EiE21,E3] = l. 
Thus, [Eu E^1 ESE2} = 1. □ 

Lemma IV.3.4.  There exists a : Bg —>> G such that a(Ti) = Ei. 

Proof. We use the presentation of Bg from Lemma IV.2.1 where Bg is 
generated by T^. We define a(Ti) = Ei. The relations listed in IV.2.1 are 
satisfied when TJ is replaced by ^ by Lemma IV.3.1 and Lemma IV.3.3. 
Thus we can extend the definition of a to the whole of Bg in a natural way. 
□ 

IV.4. Prime elements in B9. 

We now recall a few results from Chapters II and III concerning the 
braid group Bn and the quotient group J5n. We refer the reader to Chapter 
III for the definition of prime element with s.h.t. (supporting half-twist) T, 
and central element c. 

We quote here a few results from [MoTe4], Chapter II and Chapter III. 

Lemma IV.4.0.   If X and Y are 2 consecutive half-twists in Bn, then 

(a) XYX = YXY. 

(b) XYX-1 = Y-lXY. 

(c) (y)x-i = (X)Y. 

(d) (Y)x-i is consecutive to X and to Y. It is the half-twist corresponding 
to a path connecting those ends of X and Y which are not a common 
index of X and Y. 

(e) u = X^jY-2 = Y? • Y-2, is an element of Pn\ u is a prime element 

with s.h.t.   X and central element c = [Y2,X2]    (i.e., c2 = 1,  c E 
Center(Pn);. 

(f) [X72, Y'2] = [X'2, Y-2] = [X'-2,Y'-2] = c VX'X a pair of consecu- 
tive half-twists where c2 = 1, c G Center(G). 

(g) Y~~2(Y2)j£_i = c (inverse of a prime element of Pn with s.h.t. X). 
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s **> *»■*» , 

X * 
v   *• 

Figure IV.4.1. 

(h) If Z is transversal to X, g a prime element with s.h.t. X, then (g)z = 

9- 

Proof. 
(a) Prom Lemma IIL3.1 [MoTe4]. 
(b) From Lemma II.4 and (a). 
(c) From (b). 
(d) Let Y = II(y), y connects a and b and X = II(x) x connects b and 

c. Assume X corresponds to a diffeomorphism /3 : D —> D s.t. 13(b) = c. 
Then (Y)x-i = H^a)^1). Clearly, (cr)/?-1 is a path connecting a and c. 
(See Claim III.l.O and Fig. III.l.l.) 

(e) Lemma IIL6.1. 
(f) Proposition IIL5.2. 
(g) We shall prove that c(Y~2{Y2)x-i)~l is a prime element: 

cfy-2^2)*-!)-1 = C{Y-
2
)X-,Y

2
 = y2(y-2)^i   (by (b)). 

Let T =  (y)x-i- By (e) and (c),  (T)2
X - T'2 is a prime element.    But 

(T)x = {{Y)x-i)x = y Thus y^y)"2.! is a prime element. 
(h) Lemma IIL4.3. □ 

^-situation:. 

Consider BQ^PQ as Bg-groups by conjugation. 
Let fi,...,f9 be as in §1. 
We choose a polarization on TJ from smaller end index to bigger end 

index as shown in Fig. IV.4.1. 
Let^ = (f2)

2
ti(f2)-2. 
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By Lemma IV.4.0 (e), £1 is a prime element in Pg with s.h.t. fi and 
central element [T^ ,Tf]. 

Let c be the corresponding central element. Thus, c E Center(P9), c2 — 
l,c=[T2

2,T1
2]. 

Let & be the unique prime element in P9 s.t. (^,1;) is coherent with 
(6L,TI) t = 2,... ,9. (See Proposition III.3.3). 

Claim IV.4.1.     (1) c is the corresponding central element of (£2,!;)  Vi = 
1...9, c2 = l. 

(2) c G Center(B9). 

(3) & — (y)^,y_2 for some Y half-twist adjacent to T^. 

(4) c= [f^f2]   Vfc,£ s.t Tk andTi are consecutive. 

(5) ^i is a prime element of Bg. 

(6) Let X,Y, be 2 half-twists, X = H(x), Y = H(y), Ti = H{ti) 
s.t. x,y,ti make a triangle. Assume that x and y meet in v, and a 
counter clockwise rotation around v inside the triangle meets x before 
it meets y (Fig. IV.4.2(a) and (b)). Then Ti, the s.h.t. of & satisfies 
Ti = XYX"1. And: (i) If the polarization of Ti goes from x to y, 
then & = X2 Y~2. (ii) If the polarization ofTi goes from y to x, then 

Proof. 

(1) The pair (£i,Tj) is coherent with ({i,Ti). Thus, ^ is conjugate to T\ 
and Ti is conjugate to fi by some Bi. Then by Lemma IIL3.1, their 
corresponding central element is equal. 

(2) A priori, c G Cente^Pg). We have to prove that c E Cente^jBg). 
Consider Pg as jBg-group. & is a prime element in Pg as a a Pg-group 
where c is the central element of (^Tj). Thus, we have (c)6 = c V& G 
Pg. ((    )b = action of Pg on Pg), but (c)6 = q, by definition. Thus, 
ch = c V6 G Pg => c G Center(P9). 

(3) The pair (£i,Tj) is coherent with the pair (£i,Ti). Thus, 362- G P s.t. 
& = (fi)fc and Tj = (Ti)^. Denote (I^Jft. = Y and apply conjugation 
by bi on ^ = (f2

2)TlT2-
2. 
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y 1. 

\     / 
V       /n \ A x\    / 

CbV f«.)V 

Figure IV. ,4.2. 

(4) By Proposition IIL5.2. 

(5) By construction, ^ is a prime element of Pg with central element c. In 
(2) we proved that c G Center{Bg). Thus, & is also a prime element of 
B9. 

(6) Consider the two triangles (Fig. IV.4.2(a) and (b)): 

If the polarization of T; goes from X to Y as in Fig. (a) (from Y to X 
as in Fig. (b)) then we take b E Bn s.t. (Ti)fe = T* (T2)6 = y preserv- 
ing polarization of Ti (reversing polarization), respectively. Clearly, 
((T2)T1)& = X. Consider the polarized pair (£i,Ti) = ((^J^^jfi). 
We apply b on it to get a coherent (anti-coherent) polarized pair 
(X2y-2,f-). Recall that (&,f2) is coherent with (£i,Ti). Thus by 
Proposition III.3.3 (or by Lemma IIL4.1) X2Y-2 = & (or X2Y-2 = 
^~1c), respectively. To get & = X~2y2 from X2Y~2 = ^1c we use 
(4) above. 

□ 

The next Corollary is technical in nature, to be used later in order to 
obtain a smaller set of generators for G. 

Corollary IV.4.2.     (1) & = (f2)|_1f2-
2. 

(2)& = f1-
2(fi)^1    Z2 = T2(T,)-2

1    Z2=fs-
2(fs)

2
f_l 

12 12 ±2 

(3) & = n (ri)^x 

(4)   ^4 = (f^l-xf.-2 

(5) e5 = t8-
2(r8

2)t-1 

(6) 6 = mr2 (fik-!, sr1=c^czvri 
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(7) 6 = f^ifs)^ 

(8) & = f9-
2(f9)2 

(9) & =2^5)^ 

(10) (^4)f2-
1f3ff1f8 

= & 

(11) (k^faf^f1 = ^ 

(12) (^Jf-^fr1^ = ^ 

Figure IV.4.3. 

YHTOt4 

CC) 

Proo/. In the entire proof we use Lemma IV.4.0(f) to interchange squares of 
consecutive half-twists, and multiplying the product by c. We also use the 
facts that c2 = 1, c G Center(G). The main tool is Lemma IV.4.1(6). We 
also use Lemma IV.4.0(d) to present an edge of a triangle as a conjugation 
of the other 2 edges. 

(1) By definition. 
(2) Consider the triangle from Fig. IV.4.3(a): 

Since the polarization of T2 goes from Y to X, we apply Lemma IV.4.1(6) 
to get: 

■e2 = x"2y2 = f1-
2(fi)^_1. 

Consider the triangle from Fig. IV.4.3(b). 
Since the polarization of T2 goes from X to Y, we apply Lemma IV.4.1(6) 
to get 

6=^2^"2-r4
2(f4)T21. 

Consider the "triangle" from Fig. IV.4.3(c) 
Since the polarization of T2 goes from Y to X, then: 

6 = T3-2(f3)2_1. 



82 Boris Moishezon and Mina Teicher 

"-CT.H 

x^C^X 

Figure IV.4.5. 

(3) Consider the triangle from Fig. IV.4.4: 
Since the polarization of T3 goes from Y to X, then: 

6 = X-2Y2 = {T{)£Tl 

We apply T3 2 on the above equation to get: 

(&)ra-a = m)^1(f1)|_2. 

By Lemma III.2.1, (^3)j.-2 = ^3. 

By Lemma IV.4.1(4), (T1
2)f-2 = cTp. 

Thus, 

6 = cm)-^!? 
^T^Ti)-^    (Lemma IV.4.0(5)). 

(4) Consider the triangle from Fig. IV.4.5: 
Since the polarization of T4 goes from X to Y 

& = cf4-if6-
2. 

(5) Consider the triangle from Fig. IV.4.6: 
Since the polarization of T5 goes from X to Y 

& = (f8)|5f8-
2. 
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Figure IV.4.6. 

TS-r-i y= CW- 

>C*T. 

Figure IV.4.7. 

(6) Consider the triangle from Fig. IV.4.7(a): 
Since the polarization of Te goes from Y to X 

^e = T4 (r4):r-i. 
6 

Consider the "triangle" from Fig. IV.4.7(b). 
Since the polarization of TQ goes from Y to X 

(7) Consider the "triangle" from Fig. IV.4.8: 
Since the polarization of T7 goes from Y to X 

e7 = T8-
2(T8

2)T-1. 

(8) Similar to (7). 
(9) Similar to (3). 

Figure IV.4.8. 



84 Boris Moishezon and Mina Teicher 

For (10)-(12) we shall only prove the first assertion. The others are sim- 
ilar. By Lemma 111.2.2, ((^f^f-if'-i, C^fff-if-i) is a polarized pair 

coherent with (£25T^)- By Lemma IV.2.3 (T2)f4f3f-if-i = Ts? preserving 

polarization. Thus ((£2)7- f f-if-i^Ts) is coherent with (£2,^2). But also 

(^Ts) is coherent with (^2,^2)- From uniqueness, i&f^f f-if-i = fs-   D 

IV.5. 77-situation. 

In §3 we constructed a homomorphism of groups a : Bg —>» G s.t. a(Ti) = 

We introduce G as a Sg-group by (g)Y = 9arY)(= ^(Y^g a(y)). 

The homomorphism a here then becomes a homomorphism of JSg-groups. 

Claim IV.5.1. Let fi = a(c),     c = [T%,T?], then: 

(a) /x = [El.EJ] Vfe,£ 5.t. Tfc andTi are adjacent. 

(b) ie^p 6e any automorphism of the type Pmi,m2,m3,m4,m6,m9 s.£. 3jo w^ 
mj0 7^ 0 and all other rrti = 0. TAen (/x)/9 = /i. 

(c) /i 6 Center(G). 

(d) /i = [(jB|)p^.(^)2p^] VM 5.i. T^ ancf T^ are adjacent, and (M) 7^ 
(3,7), (2,8), (4,5). 

(e) ^ = 1. 

(f) // X and Y are 2 consecutive half-twists, then a(X)2a(Y)2 = 
tia{Y)2a(X)2. 

Proof. 

(a) c = [r|,T/] VA;,£ s.t. f^ and fi are adjacent (Claim IV.4.1 (4)). 
Then p = a(c) = a[f|,f^] = [JSg, JEf] Vfc,£ such that ffc and ft are 
adjacent. 

(b) p = pT1(P2P8)m2(P3P2)mHpm)m4 PT6P?9, and (^)p = Ei if pi 
appears in p to the power 0. If jo ^ 1,2, then (-Bi)p = £Ji 
and {E^p = E2. We take /x = [Ef,^] an(i aPPly P on i* to get 

(p)p = [^,^]p = [(^)p,(^)p] = \EhVl\ = M- K J'o = 1 or 2, we 
apply p on /J, = {E$, E2] and continue similarly to get the result. 
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(c) Since c G Center(.£?9), then fj, G Center(a(i?9)). Since a(fi) — E^ 
we get {iJi,Ei] = 1 Vi. We want to prove [/i,^/] = 1 Vi and then 
we get fj, e Center(Gf). (G is generated by {Ej,Ejt}®=1.) Take p = 
pr (P2P8)m2 {psPr)™3 (pm)m4pT6PT9 such that p2- appears in p to the 
power 1 and all other mi = 0, Thus, (^)p = JSj/ and there is exactly 
one mj0 ^ 0. Thus, by (6) (/i)p = /i. Thus, 

i = (ijp = [EuAp = [(^OP, (P)P] = [^^]- 

(d) Since (fc,-^) ^ (2,8), (3,7), (4,5), then Lk and L^ are not on the same 
line. Let p' = pT1(p2Ps)m2(p3P7)rn2{p4P5)m5pT6pT6 where pk appears 
to the power m and all other rrti = 0. In particular, p^ appears to the 
power 0. ((fe,^) ^ (2,8), (3,7), (4,5)). Then (Ek)p= {Ek)fl£,(Ei)p = 
E£. Let p7 be as above s.t. pi appears there to the power n and all 
other rm = 0. Then, (Et)pf = (Efip?, (Ek)pf = Ek. Thus, p = (^)ppf = 
[(Ek)p™,mp?}. 

(e) p2 = a(c)2 = a(c2) = a(l) = 1. 

(f) From Lemma IV.4.1 (4). 

D 

Corollary IV.5.2. 771 = a(£i) is a prime element in G with s.h.t. Ti and 
central element p. 

Proof. ^1 is a prime element of JB9 with s.h.t. Ti (see Claim IV.4.1). Thus, 
771 = Qf(^i) is a prime element of a(Bg) with s.h.t. Ti and central element 
p = Q;(C), from the previous lemma, p E Center(G). Thus, rji is a prime 
element of G. D 

r/-situation. 

Consider G as a Tfg-group. 
Let r/i = a(£i) be a prime element of G with s.h.t.   Ti and central 

element p = a(c). 
Let rji = L    f (Ti) be the unique prime element of G such that (r/^Tj) 

is coherent with (ryi,Ti). 

Claim IV.5.3.  Consider the rj-situation.  Then: 
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(a) (77, Ti) is a polarized pair ofG with s.h.t. Ti and corresponding element 
/x. In particular, rn is a prime element with s.h.t. Tj. 

(b) r/i = a(6). 

(c) Every rji is of the form a(X2Y~2) where X, Y are adjacent half-twists 
and the s.h.t. Ti is XYX'1 (= Y^XY). 

(d) 7?! = (E2)l_1E^. 

rl2 = E^{E1)l_1. 

m^EUEi)-2^. 

m = (E4)
2 ^Es2. 

V5 = (E8)
2

E5E^. 

778 = E^(E9)
2   ,. 

779 = EKE,)-2^. 

^7 = (%)f-if4f5-
1f8- 

%  =  (%)f4f3f5-
1f7-

1- 

Proof. 

(a) By the construction of 77;, the pairs (77^ Ti) are coherent polarized pairs. 
(^ij^i) has /i as central element and coherent pairs have the same 
central element (Corollary IIL3.1). 

(b) £1 is a prime element with s.h.t. Ti s.t. (^T;) coherent with (£i,Ti). 
Thus, a(£i) is a prime element with s.h.t. Ti s.t. (a(^),Ti) is coherent 
with (a(£i),Ti) = (771,Ti). Prom uniqueness a(6) = Vi- 
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(c) Prom Lemma IV.4.1.(6). 

(d) Apply a on the formulas of Corollary IV.4.2. 

IV.6. N-situation. 

N-situation. 
Let Q be a .Bg-group. 
Assume there exists a Bg-homomorphism A : Bg —» G s.t. 

(9)b = gx(b)    VbeB9,\/ge G. 
Let / be a prime element in Q with s.h.t. Ti and central element v. 
Let fi = Lrrrj, \ATi)} be the unique prime element s.t. {fi,Ti) is coher- 

ent with (/i,fi) i = 1,...,9. 
By Corollary III.3.1, v is the central element of fi Vz. 
Let 771 = A(£i), rji is a prime element with s.h.t. Ti and central element 

/1 = A(c). 
Letrii = L{riuti}(fi). 

It is easy to see that, similar to the situation in Claim IV.5.3, rji = A(£;). 
Let fi = A(c) be the central element of 77;, Vi. 
Let iVi = {rji I (rji^Ti) be a polarized pair coherent with (771,Ti), i = 

1...9}. 
Let N2 = {/i I (fi,Ti) be a polarized pair coherent with (/,Ti), i = 

1...9}. 

Definitions. 
Let a, b £ N1UN2. We say that a and 6 are weakly disjoint (transversal, 

disjoint, adjacent, consecutive or cyclic) if their s.h.t. are weakly disjoint 
(transversal, disjoint, adjacent, consecutive or cyclic respectively). (See def- 
initions in the beginning of Chapter III.) 

Let a € iVi U N2 with s.h.t. X. Let Z £ B9. We say that a and Z 
are weakly disjoint (transversal, disjoint, adjacent, consecutive, cyclic) if X 
and Z are weakly disjoint (transversal, disjoint, adjacent, consecutive, cyclic 
respectively). 

Lemma IV.6.1.   a G Ni U N2, Z G B9 fj, = A(c), then: 
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(ij a, Z are adjacent ^ a^ = < 
\au        a E N2- 

(ii) a, Z are weakly disjoint or commonly supported => a^ = Q>- 
In other words, 

{ti a e JVi, a, Z adjacent 

v aeN2, a,Z adjacent 

1      a, Z weakly disjoint or cyclic. 

Proof.  Let X be the s.h.t. of a. 
(i) There exists v E Pg s.t.   Y = -u-1^ is consecutive to X. By the 

definition of prime element: 

{a/i       a E Ni 

av        a G N2. 

On the other hand, Y"2 = v^Z^vZ^Z^2 = [t;-1,^-2] Z"2. Since v G Pg 

and Z2 G Pg, then hJ"1,^"2 E Pg. But Pg is generated by c (Lemma 

III.5.2), c2  =  1, so Y"2  = c£Z-2 e = 0,1. Thus, a^  = aA(y_2)  = 
aA(ce)A(Z-2) = a/ieA(Z-2) = aA(Z-2) =: aZ-2' ^0' aZ-2 " ay-2- Thus, 

Since z/, // E Center(G) 

(ii) If a and Z are weakly disjoint (cyclic), then: There exists v E Pg 
s.t. Y = i;-1 Z v and X are disjoint (commonly supported). As above, 
ay2 = a^2. By the definition of prime element a^ = 1. Thus, a^2 = 1.     □ 

Proposition IV.6.2. (i) //a,6 E JVi U.ZV2 are adjacent, then 

r   Lin     /^      a.beNi 
I z/        otherwise. 

(ii) // a, 6 E iVi U iVz are commonly supported or weakly disjoint, then 

a^_2 = 
lo/i 

1 ai^ 

aeiVi 

a22 = • 
(a/x aeNi 

aeN2- 
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y-Tj 

Figure IV.6. 

Proof. For a, b G Ni and a, 6 G iV2, the proof follows from Lemma III.4.2. 
Consider the case a G iVi, b G N2. Assume a = r/i with s.h.t. T^, and b £ N2 
with s.h.t. Tj. By Claim IV.4.1(6), a is of the form X(X2Y-2) where X and 
Y are consecutive ha 

Now, [M*1] = 
f-twists s.t. X, y, T^ create a triangle as in Fig. IV.4.2. 

A(l2 y-1),^1 [A(y-2),r^ mx2)M1}. 

HY2-%b±i 
A(X2

2) 

A(X-2) 

( by Claim II.4). By the previous Lemmas and the fact that is G Center(G), 
we get: 

v    Y and Tj are adjacent 

1    y and Tj are weakly disjoint or 

commonly supported. 

X and Tj are adjacent 

X and Tj are weakly disjoint or 

commonly supported. 
These are the only possible values since Y (or X) are never cyclic with Tj. 
Since u2 — 1, in order to get [a, b±l} ^ 1, we need one factor to be u and 
the other one to be 1.  Thus we need Tj adjacent to y, and Tj is weakly 
disjoint or commonly supported to X, (or vice-versa). This can happen in 
four different cases (Fig. IV.6). But in all of the four cases Tj is adjacent to 
Ti (see Fig. IV.6). □ 

[A(X2-2),^] = 
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Lemma IV.6.3.  Consider the N-situation.  Then: 

(fi)n = * 

/r1- k = i 

fi Ti,Tk weakly disjoint 

fkh Ti,Tk orderly adjacent 

Mk1 Ti,Tk are not orderly adjacent. 

f/r1- k = i 

\fi Ti,Tk weakly disjoint 

\fifk TuTk orderly adjacent 

{fk'fi TuTk are not orderly adjacent 

(/Of-i = 

Proof. Recall that fi is a prime element with s.h.t. T^. Moreover, u G 

Center(G),i/ =   /z^1^^1   for ^IJ^J" adjacent half-twists (previous Lemma). 
One can see from Fig. IV. 1.6 that if T; and T^ are weakly disjoint then 

they are disjoint unless k = 4 and i = 3,7, in which case they are transversal. 
We shall treat separately the case where Ti and Tk are disjoint and the case 
where Ti and Tk are transversal. 

For k = i and for Tk and Ti disjoint we get from the definition of prime 
element that: 

(/Of"1 = 4"V    i = k 

(fi)f-1 = fi for Tk and Ti disjoint. 

We conjugate the above formulas by T*. to get the correct formula for (fi)f 
where k = i or when Ti and Tk are weakly disjoint. 

For Ti and Tk orderly adjacent we use Proposition IIL4.1 to get: 

(/Of-1  = fi fk- 
Thus, {fi)f-2 = (fi)f-i(fk)f-i = /iA/fc-1 v = fcv. 

Since z/2 = 1, i/ G Center(G), we get:   fi = u~1(fi)f-2 = {fi)f-2iy. 

Thus, (/OT^ - (f^T-iv = /< /fc^ = fifk[fklJi] = fifkfklfrlfkfi = 
k 

JkJi' 
For T^ and Tfc be non-orderly adjacent, we use III.4.1 again to get: 

\ti)f~l = fk     fi' 
Thus, (fk)f-2 = (/^(/iU-i = v-lhf;lh = vfi => 

{fi)Tk = V {fi)T-i = " fk    fi = [fi->fk   ]fk    fi — fifk    fi    fkfk    fi — fifk    ' 
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For Ti and T^ transversal we get from Lemma III.4.2 that 

(/Of-1 = fil 

We conjugate the above formula by T^ to get the correct formula for (fi)f 
for Ti and T^ transversal. D 

IV.7. New set of generators for G :   {Aj,Ej}. 

Recall 

'r\  ^2,7 

{ 1 Ti   1 = 2,7 

E'i = &)& 

A^E'jEj1. 

Claim IV.7.1.    {i4j,£y}|=1 generates G. 

Proof.    By Lemma 11.2,  {l^ify}:-^ generates G. Since E^v   =  Aj-Ey, 
{Aj,EjYj=l generates G. D 

Definition.   Hi = i?n-orbit of Ai. 

Proposition IV.7.2. A = Ai is a prime element of Hi with s.h.t. Ti. 

Proof.    Consider the following frame of Bg: Xi = Ti,  X2 = T3,  X3 = 
(T^)T9^ X4 = Tg. X5 = Tg, Xe = T7, X7 = Te, Xg = (T2)T-iT-iT-iT-ir-i 

3        5        8        7        6 

(see Fig. IV.7.1). 
In order to prove that Hi is a prime element of Ai, we shall prove 

that all the necessary conditions of Proposition III.7.1 are fulfilled using the 
above frame of Bg. Let u = A • Af-i. It is easy to see that v = Ej, E^2. 

(u = A • Af-i = A • A^-i = EyE^EiEyE^Ei1 = E^Sf2. 

(0) By definition of ffi, ifi is the full orbit of Ai = A. 
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x»      X4.      **     X» 

Figure IV. 7.1. 

COT* 

Figure IV.7.2. 

(1) We have to prove Ay-iy-i = A   Ay ^2-i- 

(la) Since AEi = E[, we can use Proposition II.6 and Corollary II.3 to get 
(AEuEs) = (Ei,Ez) = 1. Thus, by Lemma 11.4(h) we get AE-iE-i = 

A'1 ■ AE-i. Since A^ = Aa,^ and a(Xi) = a{fi) = Ei, a(X2) = 

a(f3) = Ez, we get (la). 

(lb) Aki = Afi = Aa{ii) = AEl. Thus, A^Ei = ABlEi = E-1AExEl = 

E^El^EiEi = E^E^Ei = (Sijp]"1- By Proposition II.6 and 
Corollary II.3 we get {Aj^ EijE^) = (Ei,E3) = 1. By Lemma 

II.4.(h) we get A^iE-i E-i = A~^A^E-\. Since a{X\) = E\ and 

a{X2) = a(f3) = E3, we get (lb). 

(2a) We need to prove v^2 — v. Since a{X\) = a(Ti) = £?i, then 1/^2 = ^2. 

To prove z/E2 = v, it is enough to prove [Ef^Ef] = 1. 

Consider the following 4 half-twists in S9: Ti, T3,r2"
1T3T2, T2TiT2~1. 

Obviously, the above half-twist consists of a "good triangle" in Bg (see 
Fig. IV.7.2). 

By Lemma III. 1.2, 

fi • f^lf3f2 = f^fsfa • fi 
n2      rp—XrpI 2^-1 and   Tt ■ Tf^/Ta = T/ • ^TfTj 
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By Lemma IV.3.4, there exist a : B§ -> G s.t. a(Tj) = Ei. Thus, 

[£?!, JS?^"  ^3^2] = 1 

dtid   Ei - E2  E3E2 := E3E2 ' E1E2   • 

Thus, E% = El ■ E2ElE^1 ■ E^lE^2E2. 

We shall find the commutator of Ef, with each of the 3 factors a = E3, 
P = E2E%E;\ J = E^E^E2. 

To find [^,7] we apply on [^i,^1^^] = 1 the Invariance The- 
orem (Corollary 1.5) with pi (mi = 1 and all other rrii = 0) to 
get [E'1,E21E3E2] = 1 and thus, we get [Sj,, ^.EfEfe] = 1. i.e., 

[El:a} = [Ef^Ei] = [(EDpuEi] = ([^,^])pi = (/i) Pi = 
fi  (ByIV.5.1). 

[El,p} = [El,E2ElE2l] = [Ef^E^EiEi] = (Claim II.4) 
  [172     jp       Tp—2Tr2Tp2Tp—2     Tp2 rp— ll 

= [Ef^Ei ■ fi ■ ElE^1) = (pe Center(GO) 

^[El^EiElE^} 

. = [(El) fi1,^! 

= ((/x) pf1)^-!     (Lemma IV.5.1) 

= /i^-i =  (p € Center(G)) 

To find [.E#,a/37] we use Claim 11.4(d), 

[E^Ef] = [E?„a)97] = [£i',a] [^,/3]a-i ■ [^,7]/?-i7-i 
= /x • (/i)^ • (l)z = (since /i € Center(G)) 

= (j, - /j, -1 = (since JU
2
 = 1) 

= 1. 
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(2b) Let B = (A)jjr-i = {A)f-i = {A)E-i. To prove (2b) we have to show 

"B = VEI- NOW: 

"B = ^)    ! 

     I?     I?      I?—1  Z?-1 Z?2     771 — 2 771     77»       rp— 1 771—1     

(By Claim 11.4(a)) 
     77'     771     77l2      771— 1    771—1 77' —2 771 771       771—1 El—1     
— X73JLL/X^3   -^i/   -^3    -^i    ^3   i^l'-LVj    -C/3     — 

(By Claim 11.4(a)) 

     77i2 771    771    El—1   XT'    TT" — 2 771—1      XT'       IT'—1 T?-1 
— JLJlIIy^JOylJl/y     Jl/\J1/^     JCy-^ Jl/\i £1/^     jC/g 

     77i2 77T     T?2   771— 1 77>—1  771 El-2   771—1 771       771 XT' —2 Tp— 1 
— JZflJlf^Ilfl   JOJI      Jl/y     Jill     ^3        il/]^       H/ltHfl     lb 1      Xl/3 

= E?^^2 (£;1)pr1 • EfiE^1 Ey2E^ = 
 v ' 

By Claim 11.4(a) 
and Prop. II.6 (1) 

= E1E3El   E3{E1)pl E3    E1  E3 

     Tp2        171     rp2 TP— 1       Tp2/ Tp2\ _ — 1 El—2       TTI     El—2 77'— 1     

^  / > • 

/ By Claim 11.4(a) and \ 
^Lemmas IV.3.4, IVAlJ 

= J5? • ^r1^! fi ■ (Eftpi1 ■ E^E^Et = 
(H 6 Center(G)) 

= pEf ■ E^EJEi ■ E^E'^Ei ■ E^E^Ei 

= p,EiE3Ey E3 Ei 

= tiEuxE-,2 ■ Ei = 

(Since p2,p e Center(G)) 
   jp  Tp—2 ip 
= rj\&y &l 

Thus, UB = EiE~?Ei. 

On the other hand, v'] = E^1 {ElE^)'1 Ei = EiE^Ex. 



Braid Group Technique in Complex Geometry V 95 

(3) We have to prove A^. = A   Vj > 3. We recall:  A = EyE^1 and 

Axj = Aaix.y Since X3 = (T5)T9, ^4 = T95 X5 = T8, X6 = r7 

and X? = Te, we get a(Xj) for j > 3 is a product of Ei for 
i = 5,9,8,7,6. [Ei,Ei] = [^r,^] = 1 for i = 5,9,8,7,6 (Propo- 
sition 11.6),  we get Ag.   =   -Aa(x.)   =   -A Vj   =   3,4,5,6,7.  Now: 

^8 = (f2)f-if-if-if-if-1. Thus, a(X8) = {E2)E-iE-iE-iE-iEf6-i- 
Thus, A^  = A'Y N = A^0N 

We first prove that (A)^2)       = A- 
E3 1 

Since (T2)T-i and Ti are disjoint [Ti, (T2)r-i] = 1. Thus 

a([fi,(f2)f8.i])=l. 

Thus, [Ei, (£^2)^-1] = 1. We apply on this relation the invariance The- 

orem (Corollary 1.5) to get [Ey, (E2)E-i] = 1. Since A = EyE^1 

we get  [A,(E2)E-i]   =   1.  Thus,   A{E2) _i    =   A.  Thus,   A^   = 

A^-i^-i^-ic;-!.  Since E for i   =   5,8,7,6 commutes with Ei1E
f

1 
5        8        7        6 

(Proposition II.6), we get A^   = A. 

(4) Let c = [X^, X|]. We have to show that Ac = A. Since c=[X$, X$] = 
[fi2, fa2], a(c) = [Ef, E|] = /i, where /i G Center(G). Thus, AC = A^ = 
A. 

Thus all the conditions of Proposition III.7.1 are fulfilled and A is a prime 
element of Hi. □ 

Proposition IV.7.3.   A is a prime element of G with s.h.t. Ti. 

Proof. By the previous propositions, A is a prime element of ifi with s.h.t. 
Ti and central element v = A • A^-i, z/ E Center (.Hi). By the definition 
of a prime element, in order to prove that A is also a prime element of 
G, it is enough to show that u = A Af-i G Center(G). Since A is a prime 

element of Hi with central element z^, we get (u)^ = v V6 G J5g. In particular, 
(v)f = v \/i = 1... 9. Thus, iyEi = u \/i = 1. ..9. For i ^ 1, we apply p 
on 1/^ = is, to get, using the Invariance Theorem, the relation uE{ = v (for 
i zfz 1 (y) pi = u). For i = 1 we use [1/, J5?i] = 1 (from above), and [^,-A] = 1 
(since A G H1 and z^ G Center(jffi)) to get [Ey^u] = [-AEi,!/] = 1. Thus 
[JBi, 1/] = [^, 1/] = 1 V t = 1... 9 => v G Center(G). D 
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IV.8. New set of generators for G {Ej5hj,77j}? i- 

We introduce here a new set of generators for G. In §3 we introduced 
a homomorphism a : B§ -> G s.t. a(Ti) = Ei and introduced G as a Bg- 
group using a. In §5 we proved that a(fi) = r/i = {E^Ei * -S^"2 is a prime 
element of G with )3.h.t. Ti and central element fi = [E^El]. We proved 
in §7 that A = EyEi is a prime element of G with s.h.t. Ti and central 
element v = AE-i = EyE^2. In §6 we introduced the TV-situation. Here we 

consider the iV-situation for a : Bg —> G, and hi = A E G. 
Consider the N-situation with r}i,hi,Ni,N2 as follows: 
hi is the unique prime element with s.h.t. Ti s.t. (hi,Ti) is coherent with 

(AjTi). The central element of hi is v. 
7]i is the unique prime element with s.h.t. Ti s.t. (^,Ti) is coherent with 

(Vi'Ti). The corresponding central element is /i. 
JVi = {W    t = 1...0}. 
N2 = {hi    i = 1...0}. 

Lemma IV.8.0. (i) Let f be a prime element in G with s.h.t. Ti. Then f 
commutes with Ef. 

(ii) IfTj is transversal to Ti then f commutes with Ej. 

(iii) IfTj is consecutive to Ti then \(Ei)E±i,Ef\ = /i. 

Proof. 
(i) By Lemma III.2.1, (f)f2 = /• By definition of G as a Bg-gvonp: 

i 

(/)f.2 = foL(f?,y Since a(^) = Ei (Lemma IV.3.4) we get (f)E2 = f. Thus, 

/ commutes with Ef. 
(ii) By Lemma IIL4.2 (f)f. = f. But fa(f.\ = fsj- Thus it commutes 

with Ej. 
(iii) Lemma IV.5.1. D 

Lemma IV.8.1. Let Ai — E^E^1. Let hi^m^u be as above. Then, 

(1) A1=A = h1. 

(2) A2 = h^lr]2. 

(3) Az = hs^fiu. 

(4) A4 = hfal2^. 
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(5) A5 = /ijjrfeV- 

(6) Ae = 4 hl^u. 

(7) A7 = hrn^nu. 

(8) ^8 = h^Tfi. 

(9) A9 = hlnfv. 

Proof. We use the definition of prime element and Lemmas II.7, IV.5.3, 
IV.6.1 IV.6.2, IV.6.3, and IV.8.0. Recall that v2 = /i2 = 1, i/,/i G Center(G). 
We use here often the following two facts: If / is a prime element in G with 
s.h.t.   Tj, then / commutes with Ef (Lemma IV.8.0(i)); (Ef)E±i and Ef 

3 

commute up to /i for Ti and Tj consecutive half-twists (Lemma IV.8.0(iii)). 

(1) By definition of hi. 

(2) By Corollary 11.7,  A2   =  E~2A~l{Ai)E-i{El)E-i. Since Ai is a 

prime element with s.h.t. Ti (Proposition IV.7.3), Ai commutes 
with E2. Thus, A2 = A^E^iE^E-itA^E-i A^1 = h'1 from (1). 

E^2{El)E-i = r/2 by Lemma IV.5.3.   (Ai)E-i = (hi)f-i = h^hi 

since Ti and T2 are not orderly adjacent (by Lemma IV.6.3). 

Thus, A2 = h^^h^hi. By Lemma IV.6.2, 772 commutes with /i^"1 

and 772^1 = hir]2U (u G Center(G)). Thus, ^.2 = vh^h^hi^. By the 
same Lemma, /i]~ /i^" /ii = vh^ • Thus, A2 = v2^ rj2 = /i^ r/2. 

(3) By Corollary II.7, A3 = Ef^^(AiJ^-i^J^-i. Like in (2) we can 

write, A3 ^A^E^iE2)^^)^.   ' 

Aj;1 .= /if1 from (1). E^2{El)E-i = r/f1 /i. (Lemmas IV.5.3 and 

IV.5.1(d)). (Ai)E-i =. (/ii)f-i = /ii/ia- (Lemma IV.6.3). Thus, 

A3   =   /if //r/f /ii/is-  Since   [^f1?^1]   =   z/, and /i   G   Center(G), 

Since /i,z/ G Center(G), A3 = /iz/r/f1/^1 Since r/3 commutes with /13, 
^3 = hzrj^lfjLU. 

(4) By Corollary 11.7, 

(^4)    ,   -1 = E2A,E2A2{Ef)E-M-l)E-,{Ef)E-,. 



98 Boris Moishezon and Mina Teicher 

Figure IV.8. 

Since Az is a product of prime elements with s.h.t. T3, A3 commutes 
with El (= a{f$)) (Lemma IV.8.0). Thus, 

(^-1^-1 = ElElAzA2{E^)E-Mzl)E-^Ef)E-,. 

Now, E^ = a(T4), T4 is a half-twist which is transversal to T3. Thus, 
by Corollary IV.8.0(ii), E^2 commutes with A^1. Thus, (^4)^-1 E-i = 

E^EiA3A2(E^)E-i(Ef)E-i(A^)E-i. Zx = ^3)^-1 and Z2 = 
(T4)r-i are 2 half-twists which are adjacent to T3 and to T2 (Fig. 

IV.8). Thus, by Lemma IV.6.1, [a(Z?),/] = v where / is a prime 
element with s.h.t. T3 or T2 and central element v and [a(Z?),7/] = \L 

where 77 is a prime element with s.h.t. T3 or T2 and central element // 
(t = l,2). 

.A3A2 is a product of 4 prime elements with s.h.t. T2 or T3. Two 
of them have a central element \i, and 2 of them have a central 
element v. Thus, A^A^OiiZ^a^2) = (u^)2a(Z{2)a(Z22)AsA2. 
Since a(Zi)  = (£^3)^-1, ^(^2) =  (£4)^-1 and /j,2 = v2 = 1, we 

have A3A2(£3-2)£;2-i(4"2)£;2-i   =   (^3"2)£;^(^4"2)£;-^ ' ^b-  Thus, 

From Corollary IV.4.2, T^Tl)^^   = f^2(f^)f-i. We use Lemma 
^2 2 

IV.4.1(4) and c2 = 1 to exchange factors and rewrite this equa- 
tion as f^r32(f3"2)y-i(r4"

2)y.i   =   1.  We apply a to it to get: 

EMi^^iEf)^ = 1. Thus, (^4)^-^-1 - ^2(^3"%-- 
By (2) (3), 

— hsVs  ^2  r]2V3rl2h2  h^ . (By Lemma IV.6.3) 

Since [h^1,^1] = ^ and [772,773"1] = H (Lemma IV.6.2), we get 
(
J
^4:)E~

1
E~

1
  ~ livhzh^rfeh^1h^1. Since /i2 commutes with 772 and 



Braid Group Technique in Complex Geometry V 99 

[/13,/iJ1] = [fia.Tfc] = v, we get {A^E-iE-x = i^iir^h^2 = vvtrfitq2. 

Thus, 

Since 

M£2 =r}2
1 n 

{h2)E2 = h^v 

{hi)E2 = ^4^2 

{m)E2 =»74»fe1, 

So, 

i44 = I//Lt (r/2 V^2»74 1)   o (/i2
11/^2/14 ^ 

(5) By Corollay II.7. 

A = {M)E^EiE^E& =      (fr0m (4)) 

By Lemma IV.2.3 , (/i4,T4) is coherent with [{hi)E-iE E'^E J^S) • 

But, (h5,f5) is coherent with (/ii,fi). Thus, [(h±)E-iEzE-iE%,fsJ is 

coherent with (/ii,Ti). Prom uniqueness (^4)£;-1£;3£;-1£;8 = ^5- Simi- 

larly, or from Claim IV.5.3, {V^E^EZE^EZ 
= %• Thus> 

M = vfi-ni2^2. 

(6) By Corollary II. 7, 

A6 = ^4-
2
A4-

1
(A4)E-1(JE;|)£-1. 

By (4) above, A^ is a product of prime elements, with s.h.t. T4. Thus, 
A4 commutes with E\. Thus: 

A& = A-i
lEl2{El)EI,{AA)E-^ 
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By Lemma IV.5.3, E^2(El)E-i = %. Thus, 

A* = up Kl2r]X2r)&vn{r]l2)E-i {hj2)E- 

Since Ti and Te are not orderly adjacent, 

i. 
6 

o 6 

(^4)^-1 = h^h^. 

Thus, 

Since T4 and Tg-1 are adjacent, [/i4,%] = [h±, h§\ = v (Lemma IV.6.2), 
and thus, h^h^ = h^ h/±v and 776^4 = h^rjQV. Moreover, /i4 and 774 
commute. Thus, 

Since [7/6^4] = M, ^/e^1 = V^VeV, and thus, ^6 = u^^rilh^2 = 

(7) and (8): Similar to the proof of (5). 

(9) By Corollary IL7, 

Since A§ is a product of prime elements in G with s.h.t. T5, it com- 
mutes with El. Thus, 

A9 = ^5-X
2(^5)£;-1(^)S9-1 

By Lemma IV.5.3, E^2(E^2)E-i = /xr/^"1. Thus, 

Since T5 and Tg are orderly adjacent, 

(h5)E-i = hshg. 

1 
9 
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Thus, 

Since [7/5,7/9] = //, then Vg1^1 = rj^1^1^. Since [h^hg] = [h5,7]9] = 
v, then hyhs = h^h^v and rj^hs = h^rj^u. Thus we can collect all 
/is and 7/5 at the left to get 

A ,_2   2   -2L2   -1   -272       4     3 

Thus, A9 = r]g3hlu. 

Lemma IV.8.2. (a) h% = 7/?  Vt = 1... 9. 
(b) I//J = 1. 

Proo/.   For rz- and Tj orderly adjacent 

J       I I 

= uh^hjhi   (By Lemma IV.6.3) 

= uh^uhihj (By Lemma IV.6.2) 

= hj (Since u2 = l,u e Center(G)). 

(ViJE^Er1 = Vj 

Similarly, 

Thus 

{hj)EiEj = hi 

D 

(a) By Corollary 11.7, 

Since T9 is a half-twist adjacent to T$ and h$,r]$ are prime elements 
with s.h.t. Tg, we get by Lemma IV.6.1 that Eg hgl = uhg1 Eg and 
jEf 7/8 = /iT/g J5|. Thus, 

(40 W = ^ ^8(^9-2)£;-l =1/11 ^s"1 7/8 E9
2(£;9-2)jE?-l. 
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By Lemmas IV.5.3 and IV.8.0 E$(Eg2)E-i = /ir/^"1. Thus, 

o 

Thus, (^49)^-1^-1 = uhg and Ag = v(hg )E9E8 — "hg • We compare 

this with the previous Lemma to get r]gShgU = h^lv. Thus, rfo"3/^ = 1. 
Since (779^9) is coherent with (rji^Ti) and (hg^T^) is coherent with 
(hi,Ti), we can use Corollary IIL3.5 to conclude that Vi 3Bi E Bg s.t. 
Vi = (^9)^ and hi = (hg)^.. Thus, rj^h? = 1  Vi. 

(b) By Corollary IL7, (Ag)E-iE-i = E2gA^Ef)E-.. 

Thus, 

A8 = £;9-2(A9)£,-i£;9-i(£;9
2)E8-1 = (See IV.8.1) 

= E92(h92Vg 3^E-1E-1(E92)E-1 = (See above) 

= ^-^i^^^2)^-! - (See IV.6.1) 

= E^(E2g)Eihlr,^u3^ = (See IV.5.3) 

= Vshlvs3^^ = (See IV.6.2) 

= % 2^i^- 
We compare with the previous result to get u/j, = 1. 

□ 
Proposition IV.8.3. Let Ai = Ei/E^1. Let hi,r]iiJ,,i> be as before.  Then: 

(1) A1=h1. 

(2) A2 = /^ V 

(3) A3 = h3V31- 

(4) ,44 = /i^V- 

(5) A = h^rfo. 

(6) ^e = /«6. 

(7) A7 = h7^\ 

(8) As = /£ V 
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T*      T,       T*      T, 

T3 

Figure V.l. 

(9) A) - h^lu. 

Proof. Immediately from the previous 2 lemmas. □ 

Lemma IV.8.4. {Ej^r]j^hj}^=1 generates G. 

Proof. By Lemma IV.7.1, {Aj,Ej} generates G. By the previous lemma, Aj 
is a product of i/, hj^j. However, v is the central element of (/ii,Ti). Thus, 
i/=(/ii)(/ii)!fi. □ 

V. Construction of G9,     a : G9 -^> G. 

Construction of Go (9). 

Let Go (9) be the group generated by gii = 1.. .§i ^ A with the following 
list of relations: 

bi,<?2]2 = i. 
[<7i, 22] € Center (Go (9).) 

,32]        Ti,Tj are adjacent fbi,« 
I1 

Ti,Tj are disjomt. 

where Tj are described as follows: 

Denote u = [31,52]- 
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Let us reformulate the relations of Go (9) as follows: 

Go(9) = (01,... ,&,...,09 I [gi.gj] 

T       Ti,Tj are adjacent,   9 x 

1       Ti,Tj are disjoint. y ' 

Remark.   Go (9) or Go(n) in general can be described in a different way: 
Take An_i, a free abelian group on n — 1 generators An-\ = (K;I, ..., Wn-i). 
Define a skew-symmetric form on An-i as follows: 

t^i • Wj = 
1    i*-ii = i 
0    i*-.?!^!. 

Let Go(n) be the unique central extension that satisfies 

1 -► Z/2 A Go(n) A A^i -^ 1 

where  Go(^)   is generated  by  u\...un-\,  a(ui)   =   ^   and  [^,^] 

\r        |t-j| = l 
and 6(1) = r. We have: Ab(Go(n)) = An_i,    Go(n)' = {r, 1} ~ Z/2. 

Go(9) as a Bg-group. 

(9i) Tk 

gi 
1
T i = k 

gi Ti and T/- are disjoint 

g^Qi Ti and Tk are orderly adjacent 

I 9i9kl Ti and Tk are not orderly adjacent. 

Remark V.O. Let Go(9) and gi be as above. Then gi is a prime element 

of Go (9) with s.h.t. Ti and central element r. 

Proof. By the actions of Bg on gi and the axioms of prime element. □ 

Consider the semidirect product: Bg x Go(9). 
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x 
Construction of a : Bg x Go(9) -> G. 

XI   | 

a(fi) = Ei 

«te) = «te) = Vi (Lemma IV.5.3) 

a(c) = a(c) = n 

a |Go(9) defined by a(^) = hi. 

a(r) = a[gi,g2] = [^i,M = ^ 
Since z/ is the central element of hi it belong to Center(G) and is of order 

2. Thus, by Proposition IV.4.2 all relations that gi satisfy are also satisfied 

by hi, and thus a \G ^ is well-defined. 

By Lemma IV.4.3, a \G (9) is compatible with the action of Bg on Go(9) 

and thus we have a : Bg x Go (9) -> G. 

Construction of Gg. 

Let ^ be the generators of Go (9) as above. 

Let T = [01,02]. 
Let & be the prime elements in Bg defined in Chapter IV.4 (^-situation). 
Let c be the central element of &. c = [Tj2, T^]. 
Let Ng C Ba>\Go(9) be the normal subgroup generated by re and (g^i)3: 
JV9 = ((rc-1

l     (^ri)3^i...9i/4). 
G9 = S9XGo(9)/iV9. 

Construction of 5, a : Gg ~> G. 

By Lemma IV.4.5,   z//i = 1, (%^r1)3 = 1, so a(Ng) = 1. Thus a induces 
a map on Gg denoted by a.   a : Gg —> G. 

Construction of /3 : G —> Gg. 

We start by using a set of generators for G, {r;,IV}?=1. 
We  then  choose  as  a  set  of generators   {Ei,Eit}9=1   where  Ei   = 

lTi      | # ^ and ifc = (ifcte. 
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The third set of generators was {Ei,Ai}?=1 where Ai — Ei/E'1. 
Finally, we taJce the following set of generators for G : Ei,hi,r]i. 
We define $ : G —>• Gg on the third set of generators as follows: 
$(&)=%    t = 1...9. 
P(Ai)=9i. 
P(A2)=g;%. 
fcA3)=g3£

1. 

P(A5)=g;%. 
$(Ae)=96. 
$(A7)=g7&

1. 

P(A9) = rsg-1. 

Remark. By definition of a and by the formula for expressing Ai in terms 
of hi and rji (Lemma IV.8.3), if J3 is well-defined, then d/3 = Id. 

Theorem V.l. /3 is well-defined. 

Proof. We recall that G = Fis/G(e(18)) where Fi& is the free group gener- 
ated on {F;, r^}?_1 and G(e{l8)) is the subgroup generated by the relations 
induced from the factors in the braid monodromy factorization 6(18) (see 
Theorem 1.1) by the Van Kampen method. To prove that /3 is well-defined, 
we have to prove that all relations induced by the Van Kampen Theorem 
are valid when each generator in a relation is replaced by its image under /3. 
In what follows we shall take every braid in the braid monodromy factor- 
ization £(18) and use the Van Kampen method to deduce from it a relation 
on TTI (CP2 — S) in terms of Ti and IY. Then we shall present the relation 
in terms of Ei and A^ The next step is to substitute Ti instead of Ei and 
P(Ai) instead of Ai and confirm that the relation holds. 

Denote: 
U = p{Ei) = Ti. 
ti,=p(El). 
k" — P{EiEiiEi   ). 
^ = PiAi) = PiEvEr1) = tfftr1. 
We have expressions for a^ in terms of (ft, &, r. 

ai =91- 
a2 = ^16- 
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tt4 = 9A £4- 
as = 95%- 
ae = ge. 
a7 = grZj  • 

as = 9s%' 
ag = T991' 
Then: 

H — -Li' 

tii ^ CLiti. 

tin = (aiti)^ = (a»)^ • U = ti(ai)t2 = Udi (Lemma 11.3). 

6(18) implies relations of type (61,62) — 1 relations of type [61,62] = 1 
and relations of type 61 = 62. We shall treat all relations of type (61,62) 
together. To do this we prove the following two lemmas: 

1    <   \       1   \ \Tai 2 = 1,6,9 Lemma 1. (a;)^ = (aiL-i = <   J, . 2 \a- otherwise. 

Proof of Lemma 1. The elements gi and ^ are prime elements with s.h.t. 
ti. By Lemma II.5, for a prime element g with s.h.t. t, we have: 

(9)t = (flOt-i =r^-1. 
For such g we then also have: 
(9-l)t = (9-1)t-i=T-1g. 
Since r 1 = r we have for every / a prime element with s.h.t. t or an 

inverse of a prime element with s.h.t. t : 
(f)t = (f)t-l=Tf. 
For i = 1,6,9, one can see from the above list that a^ is a prime element, 

or r multiplied by an inverse of a prime element, and since r G Center(G), 
we get the Lemma for i = 1,6,9. 

For i 7^ 1,6,9, a^ is a product of a prime element with an inverse of a 
prime element. Write a^ = fi • //, thus, (ai)^ = (ai)t-i will be the product 

i 

of the inverse of the 2 factors times r2 (r £ Center(G?)). By Lemma IV.6.2 
such two factors commute. Thus, 

(ai)ti = (fi)ti(fi)ti 

=rf-Hfi)-1=rVrvr1 - /rvr1=rvr1=^ 
The same is true for (a^.-i. D Lemma 1 
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Lemma 2. IfTi and Tj are adjacent and di = ai or (a^)^ then (dA-i -i 
3      i 

di 
l{di)t-\ for tj = tj or tj/ or tjtt. 

Proof of Lemma 2.   By the above list: 
ai = gi or gr1^ or g^r1 or rg^1. 

By the above Lemma: 
{(H)u = rgl1 or ^r1^ or f^r1 or ^. 
Thus, di = gi or rfti or (gi^1)^ (g^1^1. D 

If df is of the form #; or rg^1 it satisfies the Lemma by the definition 
of prime element (axiom 2). For symmetry reasons we shall only treat the 
case di = g^fr. 

Case 1.    tj = tj 

{di)t-it-i = (g- ^ij^i^i = (9i)t-
lit-i ' (tftThr1 

By axiom 2 of the prime element /_i v_i    ^—i     />.\ 
.   ^trv       s,       vstytj 

= (^r1)^! ^ er1 (fc)^ 
By Proposition IV.6.2 v._i      /   _i v /- \ 

= (9r16)"1(»r10t7t = drI(*)t7i- 

Case S.   ij = ty 

(dik-i = K)(t a )-i = {{aj,di}di)t-i = [aj-di]t-i • (di)t7i. 

By Proposition IV.6.2, Claim 11.4 and by the formulas for a*, [aj,rfi] is 
a product of r. Since r is of order 2, [cy, di] = T

£
    e■ = 0,1. Thus, (dz)t-i = 

T£(di)f-i. So we get the claim from case 1 when multiplying each side of the 
j 

equation there by r6 to get the equation for tjt. 
□ Case 3 

As in Case 2 we get (di)t/f = (d^tjT6 and we use Case 1 to get Case 3. 
□ Lemma 2 
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Since Ti and Tj are adjacent, (t^tj) = 1. We use the above Lemma to 
deduce from Lemma IV.3.1 that (diti,tj) = 1 j = j^j'-^j". Since di = ai 
or (a^)^ we get (t^tj) = 1. This covers all the triple relations which are 
induced from £(18). 

Lemma 3. For i,j s.t. Ti and Tj are disjoint or transversal, we have 
[aj, tj] = 1 and [ti, tj] = 1    where i = iorif,   j = j or f. 

Proof of Lemma 3. It is enough to prove [a^tj] = [<i,<j] = \pi'^j] — 
[ti/,tj/] = 1. 

If ^ and Tj are disjoint, then [T^Tj] = 1. If Tj and Tj are transversal, 
then [TjjTj] = 1. In any case, [T^Tj] = 1 and thus, \bi,tj] — 1. 

Now, di is a prime element with s.h.t. U or a product of 2 prime elements. 
litj is disjoint from ^ we know that each of the prime factors in a^ commutes 
with tj by the definition of prime element. If tj is transversal to U then each 
of the prime factors in a; commutes with tj by Lemma IIL3.5. In any case, 
[ai,tj] = 1. Now, t^ = CLiti, [ti',tj] = [aiti,tj]. Since ti commutes with tj 
anda^, then [U^tj] = [fli,^], which equal 1. Now, [ti^tjt] = [diU^djtj]. Since 
tj commutes with diU and dj commutes with U to prove that t^ commutes 
with tj/ it is enough to prove [a^a^] = 1. This follows from Proposition 
IV.6.2. D 

We use the following Lemma to show that all commutation relations in 
£(18) are satisfied when ti is replacing Ei and di is replacing Ai. 

Lemma 4. Let Z^ be a braid in Bis s't Zij connects qi or q^ with qj or 
qjt where outside of 2 small discs centered at qi^qv and qj^qj' respectively, 
the path goes below the real line, except when it goes above some of the pairs 
Qki Qk' (for i < k < j k E K). Assume Ti and Tj are disjoint or transversal. 
Then the relation induced by Zf- via the Van Kampen-Zariski method is 
mapped to 1 under (3. 

Proof. We cut Zij into 2 pieces, one connects u with the disc around qi and 
q^ from below and the other one connects u with the disc around qj and qj/ 
above the pairs qkqk' k E K. Thus the relation induced from Zf, is 

= 1 
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where 1^ = (F^p^1 for some m. Since (Ti)pi = FV, (Tit)pi = rVFilV, we 
know that F^ E ((I1*, IV). 

It is enough to consider F^ = Fj or F^ and Tj = Tj or F^/, since by 
proving that F; and F^/ commutes with XTjX'1, we can conclude that 
XTjX"1 commutes with every element g from (F^Fj/); in particular, F^ 
commutes with XTjX'1. Similarly, F^ commutes with XTjfX~1. Thus, 
[X-^X.Tj] = [X^TiXtTf] = 1. So, [X-^X.Tj] = 1. 

Now, ^(Fj) = U or t^, /3(rj) = tj or t^, /3(r^rfc) - ifc, • ^ - afci|. So 

/»f f 11 r.-1^1) r* f 11 r^)) = f fl ** v) ^ f 11 ^) . 
VVfcex /       \keK //       \A;Gi<: / Vfceii:       / 

which is a product of squares of half-twists and prime elements. Thus, we 
can use Propositions IV.6.1 and IV.6.2 to rearrange the factors in the above 
product while multiplying the product with the appropriate u£ which is a 
central element to get 

Now, 

k£K J    keK 

ak  {ak)t-i 
(ajt)t7it-i       tj.tk adjacent (Lemma 2) 

"j     "k 

tj,tk disjoint or transversal (Lemma 3). 

Since a^ is a product of prime elements with r by Lemma III.2.2, (ak)t-it-i 
J      h 

on tj. 
is also such a product. Thus, ak l(ak)t-i is 1 or a prime element supported 

lj. 

By Lemma IV.4.0 when t^ and tj are adjacent, {tk )(tk)t-\ is a product 
3 

of c with an inverse of a prime element supported on tj. By Remark III. 1.1, 
if tfc and tj are disjoint or transveral then ^2(^|)t-i = 1- 

Thus, 

4fnr^'i)rifnr^"i)N 
\\k£K J \keK J 

e G t /j-r /prime elements supported\ \ 
3     \       \    on tj or their inverse    / / 

t et      -l\8 (YX {1PIime elements supported\\ 
? J       yli y    on ^ or their inverse    J J     3' 
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We have to check if this product commutes with P(Ti). Since 1^ belongs to 
the subgroup generated by Ti and IV which is the same as the subgroup 
generated by Ei and Ev, /3(IV) is a product of l3(Ei) (= U) and of /?(£V) (= 
ij). Thus it is enough to check that the above product commutes with U and 
tit. 

Now, ti = Ti and tj = Tj are transversal or disjoint, thus by Remark 
III. 1.1(d) ti,ti' commutes with tj,tjt. By the definition of prime element 
(Axiom 3) and Lemma III.4.2, a prime element supported on tj commutes 
with ti and tj. Finally, c, r E Center(G9), and thus all the factors in the above 
product commute with ti and fy and, therefore, the product commutes. 
□ Lemma 4 

Lemma 4 covers all degree 2 elements that appear in £(18). 
We still have to check the degree 1 elements that appear in £(18). 

f T1 o   / 9  7 
We recall from Lemma 11.2 that for Ei = < '       and   Ai = 

2,7 
-EVJE^ 

1 we have 

(1) IVF* = EvEi = AEf. 

(2) Ti = 

(3) IV = 

E^EvEi^E^AiE?   i = 2J. 

JEi = AiEi i^2J 

[Ei i = 2,7 

We have to consider each of the degree 1 elements in £(18) and to apply 
/? on both sides of the induced relation in order to prove that we get the 
same element of Gg. 

We want to rewrite each side of the induced relation as a product of the 
following form: T

£
 • prime elements • half-twists, and then use formulas for 

the action of Bg on Gg and Lemma 1. 
We shall only consider here one braid which is a degree 1 element. We 

shall consider -Z^m- 

*22'(1) =(w^/i    3 
Z22'(i) implies by the RMS method the relation 
IV = IViT", I^IYFi. 
From (2) above, this relation is actually: 
E2 = E^2A-{lE^lA2ElAlEl. 
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Recall that U = P(Ei).  m = Pi(Ai). Thus, 

/3(rs) = t^2a^1t21a2t2aitl = 

= (ai)^12(a2)i2t+2(ai)t-2t2f+2 • t^tj =  (using Lemma 1) 

= ^r1 * (a21)t'l(ai)t2t2
1
ti2t2 *i = 

(using Lemma 111.2.1(2) applied on 0,2 and on (ai)t2) 

= 9i1(921br1(gi)t2-ti2t2t
2

1 = 

= 9i1^21929ig21 ' ^^^i =   (using [9^,92] = r and f^"1,^1] - r) 

= T
2
 • ^2929i19i921 • *r2*2*i 

== ^2"  ^  *2*l*2"    ' ^2 

= ^2"1-tr2(ti)*-1 ■*2 

= ^1 •     6 • ^2 = ^2   (Lemma IV.4.2) 

D Theorem V.l 

Lemma V.2. a/3 = /^ ^Sa = /^ 

Proof. By definition of a and by the formula for expressing Ai in terms of 
hi and rji (Lemma IV.8.3), a/3 = Id. 

For /3d recall that Gg is generated by Tj and ^, i.e., by ij and ^, i.e., by 
Ti,aiand ^. 

i8a(t0 = jSaffO = /3(^) = T\ = U. 
By Proposition IV.8.3 and by d(^) = r/j,    6 (pi) = /ij, we get afa) = A^. 

Thus, /3d(a;) = 3^) by=ef' ^ 
In Lemma IV.5.3 we have expressions for 7^, in terms of Ei. If we apply 

,8 on these expressions, we get the same expressions where Ei is replaced by 
Ti. These expressions are exactly the expressions for & as products of T^'s 
from Lemma IV.4.2. Thus, J3(rii) = &. 

For 774 we could also use the expression 774 =  (775)^-1^^-1^. Apply 

on it the Bg homomorphism /3 to get ^8(7/4)  =  {Piv^f-1..^        ~ 
/J. \ Lemma IV.4.2 ^ 
vssjf'g-1...^        =        ^4- 

So /3d(&) = ^J = ^   by IV.4.2 and IV.5.3. 
Thus, /3d = Id. D 
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Corollary V.3. G ~ ——— =.Gg 
Ng 

Proof. J3 : G -> Gg is an isomorphism. □ 

VI. Main Results and Formulations of Additional Results. 

In this chapter we shall state the main results concerning the fundamen- 
tal group of the complement of a branch curve of a Veronese surface of order 
3 proven in the previous chapters. The theorem is formulated in Theorem 
VI. 1. We shall also formulate additional results on fundamental groups that 
were proven in earlier works as well as future results. 

VI. 1. Main results and "forthcoming" results. 

In order to phrase the main results we recall a few definitions. 

Definition.    Braid group Bn = Bn[D,K] 
Let D be a closed disc in E2, K C D, K finite. Let B be the group of all 

diffeomorphisms fiofD such that 0(K) = K, /3\dD = Id^D . For /3i, ^ € B , 
we say that J8i is equivalent to /% if A and fo induce the same automorphism 
of TTI (D — K,u). The quotient of B by this equivalence relation is called 
the braid group Bn[D, K] (n = #K). We sometimes denote by (3 the braid 
represented by /?. The elements of -Bn[JD, K] are called braids. 

Definition.   H [a), half-twist defined by a 
Let JD, K be as above. Let a, b G K, Ka^ = K — a — b and a be a simple 

path in D — dD connecting a with b s.t. o fl K = {a, 6}. Choose a small 
regular neighborhood 17 of a and an orientation preserving diffeomorphism 
/ : M2 -+ C1 (C1 is taken with usual "complex" orientation) such that 
/(a) = [-1,1], f(U) = {z.e C1 |N < 2}. Let a(r),r > 0, be a real 
smooth monotone function such that a(r) = 1 for r G [0, |] and a(r) = 0 
for r > 2. 

Define a diffeomorphism /i : C1 '-> C1 as follows. For-s G C1 , z = re%<p 

let /i(*) = re^+a(T')) . It is clear that on {z G C1 | |z| < §} ,/i(^) is the 
positive rotation on 180° and that h(z) = Identity on {z G C1 112:| > 2}, 
in particular on C1 — f{U). Considering (/ o h o Z-1)^ (we always take 
composition from left to right) we get a diffeomorphism of D which switches 
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a and b and is the identity onD — U. Thus it defines an element of i?n|X), if], 
called the half-twist defined by a and denoted H(a). 

Definition.   Frame of Bn[D,K] 
Let D be a disc in M2. Let K = {ai,... ,an} K C D. Let ai,... ,crn_i 

be a system of simple paths in D — dD such that each ai connects ai with 
a^+i and for 

•   •     r, ,1     •      • f0 if N-il >2 M G {1,... ,n-l} , Kj    ,    (7.0(7^ = ^ . 
[fli+l if .7=2 + 1. 

Let ifi = H((Ti). We call the ordered system of (positive) half-twists 
(ill, • • ■ 5 Hn-i) a frame of Bn[D, K] defined by (ai,... , crn-i), or a frame 
oiBn[D,K) for short. 

Definition.    Transversal half-twists 
The half-twists H(ai) and Hfa) will be called transversal if Ci and C2 

intersect transversally in one point which is not an end point of either of the 
<7i'S. 

Definition.   Bn 

Let Tn be the subgroup of Bn normally generated by [X, Y] for X, Y 
transversal half-twists. i?n is the quotient of Bn modulo Tn. We choose a 
frame Xi of En. We denote their images in Bn by Xi. 

Proposition-Definition.   Go(n), r, ui 
Let An-i be the free abelian group on wi,..., wn-id. Let us define a Z/2 

skew-symmetric form on An-i as follows: 

10        otherwise. 

There exists a unique central extension Go(n), o/Z/2 6j/ -An-i? ™^ gener- 
ators ui... wn_i tAaf satisfies 

1 -> Z/2 A Go(n) A i4n_i -> 1 

a(wi) = «;» 

r i     ^ ^      /r        N-J^1 

0        otherwise. 
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We always consider Go(n) with the standard Bn-action as follows: 

fa)*. >Xk 

ui   r        k = i 

UhUi \i — k\ = 1 

Ui \i — k\ > 2 

Claim. Ab(Go(n)) — An-i (free abelian group on n — 1 generators), 
Go(n)' = {r,l}(~Z/2). 

Proof. Claim III.6.4. D 

ll) 
Let %l)n be the standard homomorphisms Bn -4 Sn{= symmetric group). 

Ab 
Let Ab be the standard homomorphism Bn -+ Z. 
Since il)n([X,Y)) — 1, and Ab([X,y]) = 1, ^n and Ab induce homomor- 

phisms on Bn. 

Definition.   ^n, Pn, jPnjo, c 
ipn : Bn —> Sn, the induced homomorphism from ?/;n. 

Ab : Sn -» Z, the induced homomorphism from i?n —)► Z. 
Pn = ker ^n. _ 
jPn>o = ker ^ fl ker Ab = ker Pn -> Ab(JBn) = Z. 
c = [X^jXl]    for 2 consecutive half-twists. 
Consider Bg tx Go (9) with respect to the standard Bg action on Go (9). 

Definition,    vi, ATg, Gg,^ : Gg —¥ Sg 
vi = (foXiXz1)2^2 for a frame Xi,..., Xg of Sg. 
iVg = normal subgroup generated by cr-1, (uiv^1)3. 
G9 = B9x Go{9)/N9. 
ijj9:G9-+ S9    ^9{a,P) = ^9{a). 

Definition.    Abg, £fg, JTg^ 

Abg : Gg -> Z    Abg(a,/3) = Ab(a). 
iJg ^ker^g.. 
£rg?o = ker i/Sg n ker Abg . 

Theorem VI. 1. Let V3 be the Veronese surface of order 3. Let S3 be the 
branch curve of a generic projection V3 —>• QP2. Let C2 6e an "affine piece" 
of OP2. LetS = S3n<C?. LetG = 7ri{C2-S). Then G ^ Gg 5.t ^ : G-^ S9 

is compatible with i/jg : Gg —>» 5g. 
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Proof. Corollary V.3. □ 

Proposition VI.2. Let V^ be the Veronese surface of order 3. Let S3 be 
the branch curve of a generic projection V3 —> QP2. Let G = 7ri(QP2 — 53^. 
Consider vi as an element of Gg. Then there exist WQ E Hg^ s.t. G ~ Gg 
where Gg = Gg/(vl8wo). 

Proof To appear in [MoTe9]. D 

Proposition VI.3. Let Xi be a frame in Bn. Let c = [X^X^]. Then 

c=[^xi}=[x?,n+i)=---=in-2,n-i]. 
Moreover, (P^) = (P^o)' - {1, c} ~ Z2. 
Ab(jPn) = free abelian group on n generators. 
Bn acts on Pn)o by conjugation. 
Pn,o with this action is isomorphic to Go(n) with the standard Bn-action 

as defined previously. 
There exists a series: 1 C (JP^o)' Q Pn.o Q Pn C Sn s.t Bn/Pn = 5n, 

Pn/Pnj0 ~ Z,     Pnfl/{PnfiY - An-1 = Ab(Go(n)),     (PnfiY ^ ^ 
Ab(Pri) = Z. 

Proof. See in [MoTe4], Chapters 4, 5, definitions of Pn and Pnjo and Theorem 
IIL6.4. ' □ 

Proposition VI.4.  There exists a series 1 C Hg0 C Hg^ C Hg C Gg, 
where Gg/Hg ~ S9, Hg/Hg^ ^ Z, Hg^/H'^ ~ (Z + Z/3)8, 
^>0 = ^ = {l,c}SZ/2. 

Proof. To appear in [MoTe9]. □ 

Proposition VI.5. Let Hg and Hg^ be the images of Hg^ and Hq in Gg. 

Then Hg^ = Hq and 

1 Q Hg,o — ^9,0 CI Hg C Gg 

where G9/H9 ~ S9,   H9/H9,0 ^ Zg,    ^9,0/^9,0 - (Z + Z/3)8,   ^)0 S 
Z/2. 
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Proof. To appear in [MoTe9]. □ 

VI.2. The Galois cover of Vn. 

We shall quote here other results on fundamental groups related to 
Veronese surfaces proven in earlier works. 

Theorem. Let Vn be a Veronese surface of order n. Let (T^Gai be its 
Galois cover with respect to /, a generic projection. Then ^((^n)^) the 
fundamental group of the part of (V^Gal ^at lies over a generic affine part 
of QP2 is a direct sum of n2 — 1 cyclic groups of order n. 

Proof. See [MoTe3]. □ 

Theorem. Let Vn be a Veronese surface of order n. Let (V^Gal be its 
Galois cover with respect to /, a generic projection to QP2. Then 7ri(V^)Gai 
is a direct sum of n2 — 2 cyclic groups of order n. 

Proof See [MoTe3]. □ 

The above results concern the computation of ker if) for 

for 5, the branch curve of a generic projection to QP2 of V^, and {Fj} a 
g-base for 7ri(C — 5, *). To carry out the computation we used the relations 
induced from the Van Kampen method (Chapter II), F2 = Y2-, — 1 and the 
RMS method without using the computations of Chapter IV. These results 
are easier since we assume there that all generators of fundamental groups 
are of order 2. 

VI.3. The Galois cover of Xab. 

We shall also quote here a few results concerning the fundamental group 
of the Galois cover of X^. 

Definition.   X^ 
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Let X = QP1 x OP1. Let lx be the first OP1 and £2 the second one. Let 
a, 6 G iV+. Look at E — al\ + 6^2. Embed X in some P^ with respect to the 
linear system \E\. Denote the image of the embedding by X^. 

Theorem. The fundamental group ni((Xab)Q^) is a finite commutative 
group on n — 1 generators (n = 2a6), each of order C (c = g.c.d.(a, b)) and 
there are no further relations. 

Proof Theorem 10.1 from [MoTe5]. □ 

Theorem. The fundamental group ^((Xa^Gai) is a finite abelian group 
with n — 2 generators, each of order c (c = g.c.d.(a,b)) and there are no 
further relations. 

Proof. Theorem 10.2 from [MoTe5]. □ 

Corollary. If a,b are relatively prime, then (X^jcai is simply connected. 

These results give us very interesting examples of surfaces of general type. 
The Galois covers are minimal surfaces of general type. Their index is zero 
for a = 6 = 5 or for a = 4, and 6 = 7 and positive for a > 5, b > 6. By the 
above Corollary, they are simply connected for a, 6 relatively prime. Thus we 
get a series of simply connected surfaces of general type with positive index 
unlike the Bogomolov-watershed Conjecture (see [FH]). Moreover, X55 is an 
example of a surface of general type with zero index and even type with finite 
commutative fundamental group whose universal cover is homomorphic to 
a connected sum of S2 x S2. X55 gives also an exotic differential structure 
on a connected sum of several copies of S2 x S2. There are only a few other 
such examples (one of them is X^j). The other 3 examples will appear in 
[MoTelO]. 

In this work we have computed fundamental groups of complements of 
branch curves as part of our research on algebraic surfaces. This work also 
has implications to the topology of complements of curves in general. For 
general singular curves see, for example, [LI] and [L2]. 
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