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1. Introduction. 

Let (M, g) be a complete noncompact connected Riemannian manifold 
with the associated Laplace-Beltrami operator!:::.. Then harmonic functions 
of M are the solutions to the equation !:::.f = 0. The first significant the­
orem about harmonic functions on complete manifolds was proved by Yau 
[Y] around 1974. He showed that any positive harmonic function defined on 
M must be identically constant if the Ricci curvature of M is nonnegative. 
In other words, the strong Liouville property is true on such a manifold. 
His argument relied on estimating the gradient of positive harmonic func­
tions, of which a local version was developed later in his joint work with 
Cheng in [C-Y] (see [L-Y] for the paraboliC version). Using this local ver­
sion of gradient estimate, one can actually show that there does not exist 
any nonconstant sublinear growth harmonic function on a complete mani­
fold with nonnegative Ricci curvature as observed by Cheng. Namely, if M 
is a complete Riemannian manifold with nonnegative Ricci curvature and f 
is a harmonic function on M which satisfies 

lfl(y) :::; o(r(y)) 

for some distant function r to a fixed point, then f must be identically 
constant. Note that the polynomial growth harmonic functions on Rn are 
spanned by the set of harmonic polynomials of integral degree. In particular, 
as far as sublinear growth harmonic functions are concerned, manifolds with 
nonnegative Ricci curvature are exactly the same as Rn. This led Yau to 
formulate the following conjecture. 

Conjecture (Yau). For each integer p, the space HP(M) of harmonic 
functions on manifold M with nonnegative Ricci curvature satisfying 

lfl(y) :::; O(rP(y)) 
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is finite dimensional. 

The purpose of this paper is to study linear growth harmonic functions 
on a complete manifold whose Ricci curvature is allowed to be negative some- 
where. Our motivation comes from the following naive approach to Yau's 
conjecture. Suppose that for each p we can introduce a new Riemannian 
metric h on M such that the space Hp(M,g) becomes part of Hl(M,h), 
then to prove Yau's conjecture, it suffices to show that the space Hl{M, h) 
is of finite dimension. However, since in general (M, h) has nonconstant 
sublinear growth harmonic functions, its Ricci curvature must be negative 
somewhere in view of Cheng's result. Thus, it becomes necessary to consider 
the linear growth harmonic functions on a complete manifold with some neg- 
ative curvature in order to take this approach. Here, we show that the space 
of linear growth harmonic functions on a manifold with nonnegative Ricci 
curvature outside a compact set has finite dimension provided that the first 
Betti number of the manifold is finite. Moreover, the dimension can be esti- 
mated in terms of the lower bound of the Ricci curvature and the diameter 
of the compact set. We hope that our result serves as an evidence to support 
Yau's conjecture. 

Theorem 1.1. Let Mn be an n-dimensional complete Riemannian mani- 
fold with nonnegative Ricci curvature outside ball Bp(a), where p E M is 
a fixed point. Assume that the first Betti number of M is finite. Then the 
space of all linear growth harmonic functions on M has finite dimension. 
Moreover, if RICM > —K on Bp(a) for some nonnegative number K, then 
there exists a constant C(K,a,n) depending only on K, a and n such that 
the dimension is less than or equal to C(K^a^n). 

Unlike the case that the Ricci curvature is nonnegative everywhere, in 
general there exist nonconstant sublinear growth harmonic functions on a 
manifold with some negative curvature as surface examples show. A priori, 
it is unclear whether that the dimension of the space HP(M) as a function of 
p can have only finite many jumps on the interval [0, 1]. Our result indicates 
that this is the case. 

When M is a complete surface, the approach described above essentially 
works as shown independently by Li and Tarn [L-T5] and Kasue [K3]. In 
particular, Yau's conjecture is true for complete surfaces. In fact, a more 
general class of surfaces, the surfaces with finite total curvature, was consid- 
ered. Such surfaces were first studied by Huber [H]. While Kasue gave an 
upper bound of dimiJ^M), Li and Tarn estimated dimHp(M) both from 
below and above. Kasue also announced that Yau's conjecture is valid on a 
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special class of manifolds. This class of manifolds is asymptotically locally 
Euclidean in the sense of [B]. We refer to [LI] for the precise statement. 

It is well-known that the first Betti number of an n-dimensional com- 
plete manifold M with nonnegative Ricci curvature is at most n. Therefore, 
dimiT^M) < C(n) for some constant C(n) which only depends on n. That 
was first proved by Li and Tarn in [L-T4]. In fact, they gave a sharp esti- 
mate on the dimension of the space of all linear growth harmonic functions in 
terms of the order of volume growth. Namely, if the volume of the geodesic 
balls of radius r centered at some point x G M satisfies V(Bx(r)) < 0(rk), 
then dimiJ^M) < k + 1. In particular, the Bishop comparison theorem 
implies that ^(^(r)) < 0(rn), hence dimif^M) is at most n + 1. 

A special class of manifolds with nonnegative Ricci curvature outside 
a compact set is the connected sums of finitely many complete manifolds, 
each with nonnegative Ricci curvature. On such manifolds, Tarn [T] has 
studied the linear growth harmonic functions and proved that the space 
of linear growth harmonic functions must be finite dimensional. In fact, 
he showed that if M is the connected sum of M^ i = !,...,&, and each 
Mi has nonnegative Ricci curvature, then dimii/'1(M)=^i=1dimii/'1(Mi) < 
oo. Since the first Betti number of the connected sum of finitely many 
complete manifolds, each with nonnegative Ricci curvature, is also finite, we 
can recover part of Tarn's result. On the other hand, if we assume M has 
nonnegative sectional curvature outside a compact set, then M is of finite 
topological type (see [L-T6] or [A]). Consequently, the first Betti number of 
M must be finite. However, it is still unclear whether the first Betti number 
of a complete manifold with nonnegative Ricci curvature outside a compact 
set is finite or not in general. 

Corollary 1.2. Let Mn be an n-dimensional complete Riemannian mani- 
fold with nonnegative sectional curvature outside a compact subset S. As- 
sume that the sectional curvature KM > — K on S for some nonnegative 
number K, then there exists a constant C(K, d, n) depending on K, d and 
n only such that the dimension of the space of all linear growth harmonic 
functions on M is less than or equal to C(K,d,n), where d is the diameter 
ofS. 

The study of harmonic functions on manifolds with some negative curva- 
ture has been initiated by Li and Tarn in [L-T6]. In that paper, they studied 
the bounded and positive harmonic functions on a manifold with nonneg- 
ative sectional curvature outside a compact subset. By first showing that 
such a manifold has finite topological type and thus finitely many ends, they 
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defined the notions of large and small ends in terms of the volume growth 
of the end. With these definitions, their theorem asserts that both the 
bounded harmonic function space Hb(M) and the space H+(M) spanned 
by positive harmonic functions are of one dimension if there is no large end. 
However, if there is at least one large end, then dimif^M) is equal to the 
number of large ends and dimiy+(M) equal to the number of ends which is 
finite. In particular, this implies that the Liouville property fails in general 
for a Riemannian manifold if its sectional curvature is negative somewhere. 
By constructing a metric at infinity (see [Kl]) for asymptotically nonnega- 
tively curved manifolds, Kasue later [K2] generalized Li and Tarn's result to 
that situation. M is asymptotically nonnegatively curved means that the 
sectional curvature K of M satisfies K > —k(r(x)) for some nonnegative 
monotone nonincreasing continuous function of the distance r to a fixed 
point with the property that J™ tk(t)dt < oo. Recently, Li and Tarn in- 
troduced the volume comparison (VC) property on general manifolds and 
studied positive Green's functions on a manifold M with (VC) and whose 
Ricci curvature satisfies RicM{x) > — 1, ^M ? where C > 0 is a constant and 
r(x) is the distance function to a fixed point. As corollaries, they showed 
that part of the above results is also true on such a manifold. In the special 
case when M has nonnegative Ricci curvature outside a compact set, then 
they proved that all conclusions mentioned above hold on M if the first Betti 
number of M is finite. We refer to their paper [L-T2] for more results and 
details. 

When M is only assumed to have nonnegative Ricci curvature outside 
a compact set, Donnelly [D] observed that the dimension of the space of all 
bounded harmonic functions on such a manifold is necessarily finite. Cheng 
[C] later proved that the space spanned by all positive harmonic functions 
on such a manifold is also finite, and estimated the dimension of the space 
of bounded harmonic functions on M in terms of the diameter and the 
lower bound of the Ricci curvature of the compact set. Both results were 
generalized by Li and Tarn in [L-Tl]. Among other things, they proved that 
dimiJ0(M) < C(n,K) for some constant C depending only on n and K if 
the Ricci curvature of M is nonnegative on M \ Bp(l) and bounded from 
below by —K on Bp(l) for some K > 0. Here, the space H0(M) is the linear 
space spanned by the set of harmonic functions on M which are bounded on 
one side at each end. Combining this result with the fact that the number 
of ends of any manifold N (without any curvature assumption) is always 
less than or equal to the dimension of the space H0(N) (see [L-Tl]), they 
were able to conclude that if M has nonnegative Ricci curvature outside a 
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compact set, then M has finite many ends. This was also proved by Cai 
[Cai] using a totally different approach. 

The author would like to thank P. Li and L. F. Tarn for their interest in 
this work and many helpful suggestions. 

2. Preliminaries. 

First we would like to recall some definitions and known facts which 
will be needed later on. Throughout, we let M be a complete connected 
noncompact Riemannian manifold. 

Definition 2.1. An end E of a manifold M is an unbounded component of 
the complement of some compact, smooth domain D of M. In this case, we 
say that E is an end corresponding to JD. 

For each such D, M \D has only finitely many components since M 
is a connected manifold. The boundary of each component is smooth. In 
particular, each end has smooth boundary. It is also clear that if Di C 2?2 
are compact, smooth domains of M, then the number of ends corresponding 
to Di is less than or equal to the number of ends corresponding to I>2. 
Hence, we say that M has finitely many ends if there exists 6 < oo such 
that the number of ends corresponding to D is less than or equal to b for 
any compact, smooth domain D C M. One also observes that in this case 
there exist an integer &o < oo and a compact, smooth domain Do C M such 
that the number of ends corresponding to D is &o for all compact, smooth 
domain D containing Do- We say that &o is the number of ends of M. If 
there is no such fro, then we say M has infinite many ends. 

The following result was proved in [L-Tl]. 

Theorem 2.2 (Li, Tarn). Let Mn be a complete noncompact manifold 
and p E M be a fixed point such that RicM{%) > —k(r(x)) where r(x) = 
r(pix). Suppose that k : [0, oo) -» [0, oo) is a nonincreasing continuous 
function such that f™rn~lk{r)dr < oo. Then the number of ends of M is 
less than or equal to C(n,k). 

Definition 2.3. A Riemannian manifold M with boundary dM (dM may 
be empty) is said to be parabolic if it does not admit any positive Green's 
function satisfying Neumann boundary condition on dM. Otherwise, it is 
said to be non-parabolic. In particular, an end E of M is parabolic if it 
does not admit any positive Green's function satisfying Neumann boundary 
condition on dE, and nonparabolic otherwise. 



688 Jiaping Wang 

It has been shown in [L-Tl] that an end E is nonparabolic if and only if 
there exists a harmonic function (f) defined on E such that 0<(/><l,</> = l 
on dE and inf^ 0 = 0. Moreover, the following result was proved recently 
by Li and Tarn in [L-T2]. 

Lemma 2.4. Let M be a complete noncompact manifold such that its Ricci 
curvature satisfies Ric(x) > — f1+Sx\\$ for some nonnegative constant C. 
Suppose M also satisfies condition (VC) defined in [L-T2]. Then on each 
nonparabolic end of M, there exists a unique harmonic function </> such that 
0 < 0 < 1, (/) = 1 on dE and lim^oo (/> = 0. 

We also need the following fact (see [L-T2]). 

Lemma 2.5. Let M be a complete manifold with k ends. Suppose that the 
first Betti number of M is finite. For R sufficiently large, and for r > 0, let 
Bp(R,R + r) denote the annulus Bp(R + r)\Bp(R), and M(R) be the union 
of all the unbounded components of M\ Bp(R). Then Bp(R, R + r)n M(R) 
has exactly k connected components. 

The following lemma, which can be viewed as a generalization of a result 
in [L2], plays a crucial role in the proof of our main theorem. 

Lemma 2.6. For E a nonparabolic end of M corresponding to the geodesic 

ballBp{a), let E(R) be the unbounded component of E\Bp(R) and E(R,R+ 
r) = E(R)nBp(R, R+r), where Bp(R, R+r) denotes the annulus Bp(R+r)\ 
Bp(R). Suppose that the Ricci curvature of M satisfies Ric(x) > — /1+3X^2 
for some nonnegative constant C for all x E E. Suppose also that the double 
of E has finite first Betti number, and satisfies the condition (VC) in the 
sense of [L-T2J. Then for any bounded subharmonic function f on E, we 
have 

R-+oo VE{RI2R) JE(R,2R) x-+oo,xeE 

where VE{R,2R) is the volume of the set E(R,2R). 

Proof Since E is nonparabolic, applying lemma 2.4 to the double of J5, 
one concludes that there exists a harmonic function g defined on E such 
that g = 1 on dE and limx^00iXeE 9(x) = 0. Using g as a barrier func- 
tion, one easily constructs a harmonic function p on E such that p — f 
on dE and limx_>00)a;G£;p(a;) = 0. Now define a function w on E by 
w = p + c(oo)(l — #), where c(oo) = limsup^^QQ^^ /. Then, w = f on dE 
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and linLc-^oo^^ w(x) = limsupa;_^00)rcG£;/. Consider h = w — f. Clearly, 
h is superharmonic on JS, h = 0 on dE and liminfa^oo^^/^a;) — 0. If 
h is constant on £7, then / converges to c(oo) at the infinity of E and the 
lemma is trivially true. Thus, we may assume that h is not a constant 
function on E. In view of the assumption on E and lemma 2.5, there is 
a constant RQ > a such that for i? > i?o, E(R,R + r) is connected for 
any r > 0. If we let CQ = ^dE{RQ) hi then CQ > 0 by the strong mini- 
mum principle for superharmonic functions. Since liminf^^oo^e^; h(x) = 0, 
lim inf:E_>OOj:Ee^(^0) h(x) = 0. Thus, for any CQ > e > 0, there exists 
R(e) > RQ such that inf^^n^ {R{e)) h>(x) < e. We claim that for any 
R>R(e), 

inf  h(x) < e. 
dE(R) 

In fact, on the set S = E{Ro) \ E(R), mis h{x) < e as E{RQ) n dBp(R{e)) C 
S. On the other hand, S = E(RQ, R) U U^1^, where ti, z = 1,..., m, are the 
bounded components of E(Ro) \ BV(R). By the choice of i?o5 E(RQ,R) is 
connected. Also, each U is connected and has nonempty intersection with 
#(#0, R). Thus, S is a connected set and dS = dE(Ro) U dE(R). However, 
CQ = inf^j^^Q) h > e. Therefore, by the minimum principle 

inf  h(x) = mihix) = inf h(x) < e 
>E(R) dS S ~ dE{R) 

as h is superharmonic. 
Define u(x,t) = fEH(x,yjt)h(y)dy, where H(x,y,t) is the heat kernel 

of E satisfying Dirichlet boundary condition on dE. Arguing as in [L2] and 
noting that both H and h vanish on dE, we then conclude that 

—u{x, t) =  I H(x, y, t)Ah{y)dy < 0. 

Therefore, u(x,t) is a monotone decreasing function of t. It is easy to see 
that the Ricci curvature of the double of E satisfies Ric(x) > — (1 

c, ^ 
for some nonnegative constant c. Together with the fact that the double 
of E satisfies condition (VC) we assert (see Lemma 1.4 in [L-T2]) that the 
set E(R,2R) can be covered by N number of balls By^^) with centers 
yi G E(R,2R), where N is a constant independent of R. For R sufficiently 
large, the set E(R, 2R) is connected and Ric(x) > — -^ on E(R, 2R). Thus, 
applying the Harnack inequality in [L-Y] to u(x, t) on each ball Byi (^p) and 
by the connectedness of E(R,2R), we conclude that u(x,R2) < cu(y,2R2) 
for any x^ G E(R12R)) where c is a constant independent of R. Since 
iDfdE(R)h(x) ^ e and u(x,t) is a decreasing function of t, u(x,R2) < ce 
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on E(R,2R).   On the other hand, by [SC], H{yi,x,R2) > __ *      for any 

x E ^(np), where c is a constant independent of R.  Therefore, for each 
» = !,...,#, 

y>{yi,R2) > / H(yux)R
2)h(x)dx >        2ff    / /i(a?)cfa. 

Adding those iV inequalities together, we obtain 

AT 

7Vce> X:«(M,tf)>     N   ' h(X)da 
i=l Z^i=i vyi\ 5 / ^^i^ytv-s-; 

Now pick up a point XQ G dE(^) C E(R,2R), then clearly SXo(^) C 
£J(i?, 2i?). By the Bishop volume comparison theorem and the connectedness 
of the set E(R^2R)) there is a constant c independent of R such that (see 
[L-T2]) 

Vyi(
2-^)<cVX0(

2-^) 

for each i = 1,..., N. In conclusion, there exists some constant c independent 
of R such that 

ce > R    / /i(a;)<fc >       , ,  / /i(a?)cfa. 
Vxo (^) JE(R?R) V

E [R, IR) JE(R,2R) 

Since e is arbitrary, 

^m       /T^ nT->\  / h(x)dx = 0. 
fl->oo 1^(^,2^) JE(R,2R) 

Prom the above and by the choice of the function w, we obtain 

lim 1 / f   =     lim 1 / 
R^O VE{R, 2R) JE{R,2R) R-^ VE{R, 2R) JE(R,2R) 

W 

=        lim     w(x) 
x—)-oo,xEE 

=     lim sup f(x) 
X-+OQ,X£E 

Thus, the lemma follows. 
We recall a localized version of Yau's gradient estimate for harmonic 

functions which was proved by Cheng and Yau [C-Y] (see also [L-Y]). 
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Lemma 2.7. Let M be an n-dimensional complete Riemannian manifold 
which may have boundary. Suppose BX(2R) is a geodesic ball centered at 
x € M with radius 2R. Let us assume that BX(2R) 0 dM = 0. If f is 
a harmonic function defined on BX(2R), and if the Ricci curvature of M 
satisfies RICM > — k on BX(2R) for some constant k > 0, then there exists 
a constant C > 0 depending only on n such that 

forallyeBx(R). 

\Vf\2(y)<C(R-2 + k)m^f 

3. Proof of theorem 1.1. 

Now we are ready to prove theorem 1.1. But first we prove a slightly 
more general result. In the following, we shall let C(k,n) denote a constant 
depending on k and n, which may change from line to line. 

Theorem 3.1. Let Mn be a complete noncompact manifold and p G M be 
a fixed point such that RicM{x) > —k(r(x)) where r(x) = r(x,p). Suppose 
that k : [0, oo) -> [0, oo) is a nonincreasing continuous function such that 
JQ

00
 rn~1k(r)dr < oo. Suppose also that the double of each nonparabolic end 

of M satisfies condition (VC) and has finite first Betti number. Then the 
space of all linear growth harmonic functions has dimension less than or 
equal to some constant C(n, k) depending on n and function k only. 

Proof. If n = 2, the theorem follows from [L-T5]. Hence we assume that 
n > 3. From the assumption on the Ricci curvature and theorem 2.2, we 
know that M has finite many ends. Therefore, there exists some number 
a > 0 such that the number of ends corresponding to the geodesic ball Bp(a) 
is that of M. Let ei,...,e5 denote all the parabolic ends and Ei,...,Ei all 
the nonparabolic ends of M corresponding to Bv(a). Also by theorem 2.2, 
we have I + s < C(fc, n). Let / be a linear growth harmonic function on M. 
Since from the assumption it is easy to see that the Ricci curvature satisfies 
Ric(y) > —-^rh) on Bx(^p-) for some nonnegative constant C, applying 

lemma 2.7 to / on Bx(^r-), we conclude that |V/| is a bounded function 
on M. On the other hand, the Bochner formula together with the Ricci 
curvature assumption implies that 

A|V/|2 > -it|V/|2 on M. 
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Now we claim that there exists a constant C(fc, n) > 0 such that on each 
parabolic end e;, 

(1) sup|V/|2>C(M)sup|V/|2. 
dei e; 

In fact, let M be the Ricci model of dimension n (see [G-W]) which has 
Ricci curvature in the radial direction given by — k(r(p,x)): where p is the 
pole of M and f is the distance function of M. Let us denote A(r) to be 
the area of dBp(r). Following [L-Tl], we define function g(x) = (f)(r(x)) on 
M, where function (f) is given by 

^{r) = r j— (r A{t)k{t)dt] ds. 

Then it was shown in [L-Tl] that g is a well defined nonnegative function 
on M \ {p} and satisfies 

Ag > k  and    lim g(x) = 0. 

Let CQ be such that (j)(a) < CQ. Note that CQ depends only on k and n. Also 
we may choose a sufficiently large such that CQ < 1. Since for / a harmonic 
function of linear growth, it has bounded gradient as shown above. Thus, 
for any fixed parabolic end e, without loss of generality, we may assume that 
supe |V/| = 1. Then on e, we have by using the Bochner formula, 

A(!V/|2 + 0)>-fc|V/|2 + fc>O. 

If supe(|V/|2 +g) is only attained at infinity, then there is a positive super- 
harmonic function defined on e which attains its infimum at infinity. That 
would imply e is nonparabolic (see [L-Tl]), which violates our assumption. 
In particular, by the maximum principle 

sup(|V/|2 + ff)   <   sup(|V/|2 + ff) 
e de 

<   sup|V/|2 + co 
de 

=   sup|V/|2 + cosup|V/|2. 
de e 

Therefore, noting that CQ < 1 and g is nonnegative, we conclude 

sup|V/|<C(/c,n)sup|V/|. 
e de 



Linear growth harmonic functions on complete manifolds 693 

which is what we have claimed. 
On each nonparabolic end JB, the function |V/|2 + gsupM |V/|2 is also 

bounded and subharmonic. Thus we can apply lemma 2.6 to it. Since 
limx^00g(x) — 0, we have 

(2) ^ v il 9m I       |v/|2 = limsup |v/|2- 
Let us now define an inner product on the space of all linear growth harmonic 
functions which vanish at point p by 

«V/,V/i»=—\— f        <Vf,Vh> + 
Vp{2a) JBp(2a) 

By (2) and the polarization 

2 < V/, V/i >= |V(/ + h)\2 - |V/|2 - \Vh\2, 

we conclude that all the limits exist. Also, it is easy to see that 

«V/,V/»<(Z + l)||V/||^. 

On the other hand, the Bochner formula implies that 

A|V/|2>-C(/:)|V/|2onS;)(2a), 

where C(k) is a positive constant depending on function k. Therefore, 

(A-|)(e-
c(fc)i|V/|2)>0on5p(2a). 

Using the mean-value inequality in [L-T3], we have 

(3) sup|V/|2<C(M)-l^:/        I V/|2. 
Bp(a) Vp{*a) JBp(2a) 

Notice that |V/|2 + ^supM |V/|2 is subharmonic on M \ Bp(a). By the 
maximum principle, the maximum of |V/|2+psupM |V/|2 is either achieved 
on Bp(a) or at the infinity of M. In particular, we have 

sup|V/|2    <    sup|V/|2+    sup   (|V/|2 + ffsup|V/|2) 
M Bp(a) M\Bp(a) M 

<   2 sup |V/|2 +co sup |V/|2 +limsup|V/|2. 
Bp(a) M x-too 
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Therefore, 

sup|V/|2<C(M) sup |V/|2 + C(/c,n)limsup|V/|2. 
M Bp(a) x-±oo 

In view of (1), (2) and (3), we conclude that 

(4) «V/)V/»>C(fc,n)||V/|| 2 
oo* 

Thus, <^ V/, V/i ^> is indeed an inner product. Let /i,..., /d be orthonor- 
mal with respect to this inner product. Following [L-T4], we consider the 
function 

2=1 

which is invariant under orthogonal change of basis. Let H be the space 
spanned by /i,..., fd. For any point yo £ M, we consider the subspace 

Ho = {feH\f(y0)=0}. 

HQ must be of at most codimension 1 in H since it is the kernel of the linear 
functional L which is given by L(f) = /(yo)- Hence, by an orthogonal 
change of basis for if, we can write 

d 

F(y) = J2^y^ 

where ^(yo) = 0 for alH ^ 1. This implies that 

|VF|(yo)<2|Ml/o)|VMw>)- 

However, <$: V</>i, V(/>i »= 1 as ^'s are orthonomal. Therefore, by (4), we 
conclude that 

(5) \Myo)\ < C(MMyo)   and  |VF|(yo) < C(fc,n)r(yo), 

where r is the Riemannian distance from p. For any compact domain D c M 
with Lipschitz continuous boundary, we have 

d 

■■iMmn - iAw\ 
l d f^.2 „sl^ a=l 

5 iXfr')1 



Linear growth harmonic functions on complete manifolds 695 

If we let D be Bp(2a) and use (5), then we obtain 

(6) f        ( V |V/d2 ) < C(k, n)A(dBp(2a)), 
JBp(2a)  y^ J 

where A(dBp(2a)) is the area of the boundary of the geodesic ball Bp(2a). 
For each nonparabolic end E, by setting D to be E(R, 2R) in the above, we 
also have 

(7) / (y\Vfi\2) <C(k,n)(RA(dE(R))+RA(E(R)ndBp(2R))), 
JE(R,2R) \frl ) 

where A{dE{Ii)) and A(E(R) n dBp(2R)) denote the area of the boundary 
of the sets E(R) and E(R)nBp(2R) respectively. But 1^(^,2^) > Vx(§) 
for x G dE{2g), and by [L-T2], 

VE(™) < C(k,n)Vx(f), 

where VE(r) denotes the volume of the set E 0 Bp(r). Hence, 

OjD 

(8) VE{R,2R) > C(k,n)VE(—) > C(k,n)VE(R). 

Consider r(x) = r(a;,p), then by [Y], Ar < —^ in the distribution sense 
for r sufficiently large. In particular, if we integrate this inequality over the 
set E n Bp(r) and use integration by parts, we obtain 

(9) rA(E H dBp(r))) < rA(dE) + C(n)^(r). 

Similarly, 

(10) RA{E(R) n dBp(2R)) < RA{dE(R)) + C(n)VE(R, 2R). 

But E is a nonparabolic end, VE(r) > Cr2 (see [C-Y]). Thus, (9) can be 
written into 

(11) rA(E H dBpir))) < C(k, n)VE(r). 

From (7), noting (8), (10) and (11), we have 

/   (t JE(R,2R) VlS 
(12) / ElVM2    < C(k,n)VE(R,2R). 
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Since (12) is true for each nonparabolic end E and all large i?, together with 
(6), we arrived at 

d 

d = Y, « V/i, Vfi »< C(k,n). 

The theorem is proved. 

Proof of theorem 1.1. It has been shown in [L-T2] that the condition (VC) 
is always satisfied on each end of a complete manifold with nonnegative 
Ricci curvature outside a compact set provided the first Betti number of the 
manifold is also finite. Now theorem 1.1 follows from theorem 3.1. 

We mention one more corollary to theorem 3.1, which in particular con- 
tains corollary 1.2. Notice that the manifold M below is in particular asymp- 
totically nonnegatively curved in the sense of [Kl]. Hence by [Kl] M is of 
finite topological type and by [L-T2] each end of M satisfies condition (VC). 

Corollary 3.2. Let Mn be a complete noncompact Riemannian manifold 
and p G M be a fixed point. Suppose that the sectional curvature KM{X) > 
—k(r(x)), where r(x) = r(x,p) and k : [0, oo) —> [0, oo) is a nonincreasing 
continuous function such that f™rn~lk{r)dr < oo. Then the space of all 
linear growth harmonic functions has dimension less than or equal to some 
constant C(n, k) depending on n and function k only. 
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