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One-harmonic maps on Riemann surfaces 
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In this paper we study the properties of an "antiholomorphic en­
ergy functional" on a compact Riemann surface R. An interest­
ing feature of this functional, not shared by the usual energy of 
harmonic maps, is its symmetry with respect to the inversion of 
the map. For surfaces of negative curvature we prove that, in 
any homotopy class containing an orientation-preserving diffeo­
morphisms, there exist a unique critical point. We also relate the 
functional to lagrangian area minimizing maps, as well as to Te­
ichmiiller theory and the abelian vortex equation. The functional is 
then seen to be related to the "distance" of an invariant Lorentzian 
metric. We will explicitly write the exponential coordinates of such 
metric. In these coordinates the Euler-Lagrange equation of the 
functional turns out to be linear, it also coincides with the equation 
of orthogonality to the orbits of the group D of diffeomorphism of 
the surface. The Lorentzian metric restricted to M_IfD is the 
Weil-Petersson metric, this allows us to express the equation of 
Weil-Petersson geodesics only in terms of the hyperbolic geometry 
of the surface. 

1. Introduction. 

Let R be a compact connected Riemann surface of genus bigger then one. 
Let ¢;be a smooth map of R into itself, let g, h be hermitian metrics on R, 
such that it is endowed with the conformal structures which they induce. 
Consider the functional 

(1.1) Ta(g, h, ¢) = L ll/3¢ildVol9• 

Where II II denotes the metric norm of 8¢;. One might consider as well the 
analogous functional with the [) and with the d operator. This is the L 1 

version of the usual energy functionals 
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646 S. Trapani and G. Valli 

E§(g,h,ct>)= ! \\d<t>\\2dVolg 
JR 

Ed(g,h,(t>)= f \\d<l>\\2dVolg. 
JR 

which for harmonic diffeomorphisms are related by the simple equations 

f = Ed + E8 

Ed-E§ = Volh(R). 

The above energy functional have been studied by many people see for exam- 
ple [3], [10]. In particular it has been proved that, if h has strictly negative 
Gauss curvature, then in any homotopy class of smooth maps from R to 
itself, there exist a unique critical point which is also smooth. Moreover 
if the homotopy class contains a diffeomorphism, then the critical point is 
itself a diffeomorphism, see [10]. Such critical points are known as har- 
monic maps. Critical points of the functional T^, T^, and T^, seem to 
have different behaviour. However they share a symmetry property which 
is not enjoyed by harmonic maps, namely if (/) is a diffeomorphism, then 
Td{g, h, (/)) = Td(/i, #, 0~1). The same holds for the functional,!^, and T^. In 
this paper we will study T^. We will show that, if the curvatures of g and 
h are both negative, then in any homotopy class, containing an "orienta- 
tion preserving" diffeomorphism, there exists a unique critical map of TQ. 

Such map preserves the curvature form. Let us denote with M the space 
of hermitian metrics on i?, with M~i the ones with constant curvature —1, 
with V the group of orientation preserving diffeomorphism and with VQ 

its identity component. In section 3 we introduce coordinates (P, Q) on 
M which linearize the Euler-Lagrange equation of TQ. We also show that, 
for metrics of negative curvature, the orientation preserving critical diffeo- 
morphisms of TQ have a graph which is a minimal lagrangian submanifold 
in R x R with a suitable Riemannian metric. Section 4 is devoted to the 
special case where both g and h belong to M~i. The non antiholomorphic 
critical points are then simplectic. In this case the existence and unique- 
ness Theorem for critical points of TQ follows from [10], and [12]. In light 
of this we can also relate the functional to the standard energy as a map 
from Teichmiiller space into the reals, mainly studied by Tromba and Wolf, 
see [13], [14]. In section 5 we deal with an invariant generalized Lorentzian 
metric whose exponential coordinates coincide with (P, Q). The Lorentzian 
"distance" on M can be expressed in terms of T^, and the Euler-Lagrange 
equation of TQ coincides with the equation of orthogonality to the VQ or- 
bits. We also show that the medium point m of the Lorentzian geodesies in 
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M/VQ between two points g and h in M-I/VQ, is such that the diagonal 
map from (i?, m) into (i?, g) x (i?, h) is harmonic and conformal, moreover 
(i?, m) satisfies the abelian vortex equation, see [6]. The Lorentzian metric 
restricted to .M_i is positive definite, and the induced metric on Teichmiiller 
space T = M-I/VQ coincides with the Weil-Petersson metric. This allows 
us to determine the equation of the Weil-Petersson geodesies only in terms 
of the hyperbolic geometry of the surface. In the last section we prove the 
existence and uniqueness Theorem for critical points of TQ homotopic to the 
identity. To obtain this result we use a Wente-type estimate, the Mumford, 
and Cheger-Gromov compactness Theorems, (see [2], [9], and [8]) and ap- 
ply the "continuity method". The authors would like to thank professor G. 
Anzellotti, L. Simon, R. Schoen and the referee for many discussions and 
helpful suggestions. This work was completed while the second author was 
visiting Brest and Stanford University, he would like to express his gratitude 
for a very warm hospitality. 

2. The functional. 

Let R be a compact connected Riemann surface of genus strictly bigger 
then 1. Let #, h be hermitian metrics on R, and 0 : R —> R be a smooth 
map of R into itself; let us consider the functional 

7Ms,M)= [ mwdvoig. 
JR 

In an analogous way one can define the functional TQ and T^. Let us give 
to R the Riemann surface structures given by g and h respectively, then in 
holomorphic local coordinate we can write 

g = p dzdz, h = a dwdw. 

Lemma 2.1. Let ij) be an orientation preserving diffeomorphism of R, and 
(j) a smooth map of R into itself, then we have: 

(i) If cj) is a diffeomorphism then Td{g,h,(j)) = Ta(/i,p,</>_1) 

(ii) Td(g,r(h),cl>)=Td(g,h,(f>o^) 

(in) Td(a2g,h,(/)) = aTd(g,h,(f)) for every positive constant a. 

(iv) If g = h then the identity map is a critical point ofT^. 

The same relations hold for TQ and for Td- 
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Proof. Let us prove (i) In holomorphic local coordinates we have 

iw-iijqgw-'M). 
a{w) 

Since, by Cramer role for linear systems we have 

dw Mr/I      |det(Jac(^))|' 

in the case of TQ, we conclude by change of variable via the diffeomorphism 
(/>. Here Jac is the jacobian matrix. The case of TQ is similar. 

In the case of T^ we have in real coordinates 

11^(0-1)11 = J ^l^traceiJac^-^Jac^-1)). 

Hence the claim follows from change of variable in the integral via the dif- 
feomorphism 0, together with the identity 

y(trace(Jac((l))Jac((l))T)~l\det(Jac((l)))\ = J {trace{Jac{(j))Jac{(j))T), 

which can be proved by using the eigenvalues of the positive definite sym- 
metric two by two real matrix Jac((j)) Jac(</>)T. 

The properties (ii) and (iii) are clear. 
For (iv) we may consider a variation </>£ of 0, differentiate the functional 

with respect to t, and compute at t=0. Since, denoting the identity map with 
I, we have ||9(/)|| = 0, ||9(J)|| = ||d(/)|| = 1, and the identity is harmonic, 
we conclude. □ 

In this paper we will only study the functional TQ. The Euler-Lagrange 
operator £(</>, g,h) for the functional TQ is given in local holomorphic coor- 
dinates by: 

£(<f>,g,h) = Pa{<t>) faiog(^) + (cUoga2M)(d<^ ^ 

-pa{<l>))({dw\ogo2){m)^ 

-PoW(d2(logP>))^. 
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Note that if (f) is an orientation preserving diffeomorphism, then 

|^|>^>)|2-|^>|2>0, 

hence £(</>,<;, h) is well defined and smooth on the whose surface. 
Let 0 be a smooth map from R into itself, let B = {x G R : d^(x) ^ 0}. 

We say that 0 is a critical point of TQ if £((/>, 5, h)(x) = 0 for every x in B. 

Lemma 2.2. // (/> is a smooth critical point of TQ then it preserves the 
curvature forms in every point of B, i.e. we have: 

KgdVolg{x) = (f)*{KhdVolh)(x) 

for every x G B. Where Kg and K^ are the Gauss curvatures of g, h respec- 
tively. 

Proof. Consider the operator 

pcr(<t))d<f) 

Since <f) is critical, then the real part of d£' vanishes identically, we will 
denote with Re the real and with Im the imaginary part of a complex 
number. We have: 

Red£'{cj>,h,g) = ^^(logp2)(0)(|^|2 - \dcf>\2) 
+<9d(loga

2). 

But dd (logp2) = -Kg£ and dd (loga2) = -Kh^-. The result follows. 
□ 

Remark 1. If g and h have negative curvature everywhere, then every 
smooth non antiholomorphic critical point of T^, must be an orientation 
preserving diffeomorphism. In fact, by the above Lemma, since </> is smooth, 
then the jacobian determinant of ^> is positive on the closure of B, hence B is 
open and closed, so if it is non empty it must coincide with R. In particular 
if Kg = Kh = — 1 then every non antiholomorphic critical point of TQ is 
a simplectic diffeomorphism. Similarly, if g has negative curvature every- 
where and there exists a smooth critical point of TQ which is an orientation 
preserving diffeomorphism, then h has also negative curvature everywhere. 
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Lemma 2.3. Let g and h be metrics on R with negative curvature, let (/) : 
(Rig) —)» (i?,h) be an orientation preserving critical diffeomorphism OJTQ. 

We have that the second variation of TQ at (f> is positive definite. 

Proof. Recall that 

m    ' 
Hence if cf) is critical, then 

dt \t=o ~ \d(t)\ 

If u is a non zero vector field on R and L the linearized of the operator £' 
we have 

+dw
2{\oga2){d<j>)u - di{\ogo2){dm) 

+dwdw(loga2)(ud(f) — udcj)) + ^(logcr2)^ — ^(logcr2)^. 

In other words 

L{u) = d ((^ + ^(logo2)ti) - (|| + ^(log^Jfi)) 

+2dwdw(\.ogG2)(ud(j) — udcj)). 

If we set 

and 

u 

T = Pamd<t>\ 

the above equation becomes 

L{u) = d(dv + v (8^(loga2)dcl> + a(logd<f>))) 

-d (Bv + v (dw(loga2)d4> + dQogdj))) 

+2dwdw(loga2) (v\d<f>\2 - vdWft). 

Set 

1 8$ 



One-harmonic maps on Riemann surfaces 651 

and LJ = jdz + ^ydz, we may think of L as a function of CJ, and using the 
Euler-Lagrange equation we find 

(2.1) 

LM = d(j (dj - dy)\ + 2dwdw(loga2)^ (ydj - jBcf) . 

The second variation of T^ is given by 

2 f Re (HU
)
U

    tl^f) dVol9 = 2 / Re (L(^)7) (i/2)dz A dz 

Hence by adding formula (2.1) with its conjugate, and integrating by part 
we find 

+2Re ( j ~Kh°_ ^d<j> (jd4> - jd$) j(i/2)dz A dZ 

We have 
2Re (d(f> (jd4> - yd4>) 7) 

since </> is an orientation preserving diffeomorphism. □ 

Let us consider the function S = — (j)*(KhdVolh) jdVolg + Kg. By looking 
at the one-form 2Re£'dz — E'dz + £'dz: we find as in Lemma 2.2 that 
d*(2Re£f) = 5, where d* = *c?* and * is the Hodge * operator with respect 
to g. Consider the operator M = 2Re£'dz + dS then we have the following 

Lemma 2.4. If g and h have negative curvature, and (j) is an orientation 
preserving diffeomorphism, then the operator M is elliptic and £'(</>) = 0 if 
and only if M{4>) = 0. 

Proof. We know from Lemma 2.2 that if £' = 0 then M(</>) = 0, viceversa if 
M(</>) = 0 then (/ + dd*)(2Re{£'(0)<fe)) = 0 which implies that £'(0) = 0 
since I+dd* is a positive operator. Now for a fixed non zero complex number 
£, set a = ^, p = ~2iy^, and 7 = ~2K}fd^, then the top order symbol 
of M is represented by the matrix 

/ (a - {$)? + 7KI2      -(a + m? +1? \ 
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So 

det(A) = -mHReW - ^)) = Sm\^ (l - Re (jf^)) 

which is negative since (/) is an orientation preserving diffeomorphism. Note 
that |cta£(.A)| > -—pfU^p        • Hence when </> is TQ critical, Lemma 2.2, 

gives \detA\ > "^jf1. □ 

3. The coordinates P,Q. 

Let us now fix a square root A;1/2 of the canonical bundle of R, let r be 
an integer, let S^r) be the smooth sections of A;7*/2 x k~r'^. For example the 
sections of S(—2) are known as Beltrami differentials. Let M be the space 
of hermitian metrics on R. Let us fix an element g G JM, and conformal 
coordinates on R where g is given as g — p2dzdz. We have a natural map 
from 5(0) x S(-2) into M given by a(B, A) = Ap2dzdz + (2B + l)p2dzdz + 
Ap2dzdz. Then a(B, A) is a metric if and only if £+1/2 and (B+l/2)2-\A\2 

are positive. Consider the open set f2 C 5(0) x 5(—2) given by 

n = {(P, Q) : P + 1 > 0 and (P + I)2 - \Q\2 > 0}. 

We have the following 

Proposition 3.1.  The map ^ from Q, into M given by 

*(P, Q) = ((P + 1)Q + ((P + I)2 + |Q|2) + (P + 1)Q)) g 

is an open embedding. 

Proof. In coordinate (P, ^4) the map reads 

Kfiffl-X^'^-V + DO), 
whereas we have 

I l2B + l + y/{2B + l¥-A\AF    1 

^B+l+y^B+l)2^!^!2 
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and these are both smooth maps. Note that, after having identified the 
tangent space to M at g with S'(O) x S(—2) via the map a, we find that 
*(0,0) - g and d*(0,0) = /. □ 

Denote by P^, Q^, the coordinates of the metric h given by the above 
Proposition. Set for convenience F^ — Ph + 1. Let (/): R —> R be a smooth 
map, and h a smooth metric, set a = -^ and (3=^1 ^(h) — F and 

Qr(h) = Qd2/dz. Then F = ^ and Q - ^. So 

a(logF2) = a(loga) + 0(loga) + ^(loga2)a + a^^oga2)^ - a(logp2). 

Hence the Euler-Lagrange equation £' = 0 is equivalent to 

(3.1) dQogF) = a(Ioga) + ^(loga2)^. 

Observe that da = 9^. Define M = a2a{3 = p2FQ. We have 

3(log(M)) = ^(loga2) + S(loga) + j-. 

However § = x so 

d(log(M)) = d(\oga2) + d(loga) + d(loga)Sr. 

And by plugging (3.1) and its conjugate into the above equation we find 

dlogM = dloga2 + dlogF - ^loga2^ - ^dwloga2p+ ^BlogF 

i.e. 

OlogF + dlogQ + dlogp2 = dlogM = dlogF + Fdl?gF 

that is 
dQ     „.      2    BF 
—=- + o log p — = 0 
Q Q 

or 
p-3d(p2Q)=p-1dF. 

There are natural global differential operators on (R,g), 

Lr : S(r) -»• S(r - 1) 
Kr : 5(r) -4 5(r + 1) 
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(essentially the covariant complex derivatives) defined as follows: 

Kr{a)=pr-1d(p-ra) 
Lr(a)=p-r-1d(P

ra) 

The main properties of the operators Lr, Kr are the following 

i\f — Jb—r 

Ar = 4:Lr+iKr + r(r + 1)1 = where Ar is the d laplacian on Sr. 
Lr+1Kr= Kr-iLr + (r/2)Kg 
JRKra(b)dVolg = — JRa(Lr+ib)dVolg 
Ar+iKr = KrAr and 
ArLr+i = Lr+iAr+i 
whenever g has constant curvature —1. 

See e.g. [16], [17]. Recall that a Beltrami differential /i is harmonic if 
and only if we can write /i = dyol , where q is a holomorphic quadratic 

differential, and this is the case if and only if K-2 (/i) = 0. 
We say that a metric h E M is critical with respect to the fixed metric 

g if the identity map is critical for TQ between (i?, g) and (i?, h). 
By the above computation we conclude 

Theorem 3.2.  The metric h is critical with respect to g if and only if 

K.2(Qh) = Lo(Ph). 

Let us denote with Cg the space of metrics which are critical with respect 
tog. 

Remark 2. If </> is an orientation preserving diffeomorphism of R, then 

Td(cf>,g,h) = Td(I,g,<l>m(h)) = f (Pr{h) + l)dVolg. 
JR 

When the metrics have negative curvature, we can interpret the critical 
point of TQ as area minimizing maps in suitable Riemannian 4-manifolds. 
Let g and h be two metrics on i?, both with strictly negative curvature, 
consider the product R x R with the metric 

<"^m^+mm- 
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The above Riemannian manifold will henceforth be denoted by R * R. We 
have the following 

Lemma 3.3. Let g and h be two metrics with strictly negative curvature, 

let </) : R —> R be a non antiholomorphic smooth map, and cj) : R —> R * R 
be the graph map given by <j)(x) = (x,(f)(x)). Then (f> is critical with respect 
to Td(g,h), if and only if (f) is minimal and with lagrangian image with 
respect to the simplectic form KgdVolg—KhdVol^. In this case Vol(<j)(R)) = 

2T(0,M). 

Proof. Setp = 4>*(8), a = /^ b - V1^. We havep = jfag+mpfa). 

If we write g = p^dzdz, h = a^dwdw, p = 82d(>dC> and 

4*(h) = p2 {(P + l)Qdz2 + ((P + I)2 + \Q\2)dzdz + (P + l)Qdz2) , 

then 

dVolp 2 = (/ 
^dVolJ       \\ 

a     + M((p + 1)2 + IQ^V _ 4|M(p + 1)Q|2 
6(0)       a J a 

= (^y + ^((P + I)2 + \Q\2)2 + 2((P + I)2 + |Q|2)) 

_4|M(p + 1)Q|2 

= (^ + ^-((P + I)2 " IQI2) + 4(P + I)2 - 2((P + I)2 - |Q|2)) 

Set g(0) = ( ^y a     dVoi^ ) ' Note that the map (j) preserves curvature 

if and only if (f) has lagrangian image if and only if q((f)) = 0. Let ^ be a 
variation of </> which for small t may be assumed to be given by the graphs 
of a variation fa of </>. Then 

d(Area(MR))       _   [ ^P + ^%t=o + M*^^^ 
=0      JR dt \t=o     JR ^4(P + l)2 + q{^2 """9' 

Now the lemma follows from Lemma 2.2 and Remark 2. □ 
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Remark 3. Let ^ be a critical and ^ = (^1,^2) be its graph map, then 
we define 

$i(tt) = -Kg^1)p
2dz^1dz<S1 

$2(tt) = -Kh(V2)a
2dy2dw$2 

Aim = iog(ttei) 

/*(*) =-JfcM2^. 
Let us collect some formulas for future reference. Since $ is harmonic, 
conformal, and with lagrangian image, it satisfies the following equations 
(in the £ coordinates.) 

(3.2) 
dd^i + d2(logp2)55id$i = 1/2 (0*i0f JII + d^id^Ai) 
88^2 + 5,„(l0ga2)9*2^2 = 1/2 (9*2^42 + 5*2^^2) . { 

Moreover from above we derive the Bochner type formula 

2a»i(iog(^)(|9*ii2-|5$1p) 

ri/^Al^il2-|^il2)^i 

(see Appendix) 

Remark 4. If both metric g and h have constant negative curvature, it is 
observed in [12] that every minimal immersion has lagrangian image. 

4. The constant curvature case. 

Throughout this section we will assume that both g and h have constant 
Gauss curvature — 1. 
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Lemma 4.1. There is a unique critical point of TQ in the homotopy class 
of an orientation preserving diffeomorphism. 

Proof Let (/>o an orientation preserving diffeomorphism, let </>o be its graph 
map; It follows from Schoen-Yau [11], that there exists a metric m(g,/i, 0o) 
of constant curvature —1 on i?, and a map \I/ = ($1, ^2) - (-R, ^(s? h, 0o)) —> 
R*R which is harmonic, conformal, and homotopic to <^o- Since Kg = Kh = 
—1, then J?* R = (R,g) x (R^h) and both $1, ^2 are harmonic. Then, by 
[10], they are orientation preserving diffeomorphism, and by Remark 4, the 
map 4r20^i~1 is a critical point for TQ. It follows from Schoen [12], that there 
exists only one such critical point. Therefore also the metric ra(g, /i, </>o) is 
uniquely determined by g h and 00. □ 

Remark 5. Note that, in the case of constant curvature, the lagrangian 
condition implies that the maps ^1 and ^2 have the same energy density, 
so they have the same energy. Moreover we have 

2Td = Vol(4>) = E(Vi) + E{^2) = 2E(*i) = 2E{^2)- 

Theorem 4.2. Let g and h be hermitian metrics on i?, both with constant 
curvature — 1, then 

(i) Suppose an homotopy class of maps of R into itself contains an anti- 
holomorphic non constant map, then there is only one such map and 
it is the unique critical point of TQ in the class. 

(ii) Suppose an homotopy class contains the constants, then these are the 
only critical points of TQ in the class. 

(iii) Suppose an homotopy class contains an orientation preserving diffeo- 
morphism, then there exists a unique critical point of TQ in the class. 
Such point is a simplectic diffeomorphism. 

(iv) In any other homotopy class there is no critical points ofT^. 

Proof. Two non constant homotopic antiholomorphic maps coincide, an an- 
tiholomorphic map homotopic to a constant is itself constant. The Theorem 
then follows from Remark 1 and Lemma 4.1 □ 
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If the starting diffeomorphism ^o is chosen to be the identity, and if for 
fixed g we set mg(h) to be the Teichmiiller class of m(g,h,I), then mg(h) 
defines a smooth map from T into T. Where T = M-I/VQ is Teichmiiller 
space. 

Given two metrics g and h with constant curvature —1, let $(g,h) be 
the (2,0) part of h with respect to g, and let E(g, h) be the energy of the 
harmonic map from (i?, g) to (i?, h) homotopic to the identity. 

Then the map rrig described above is defined by the following equation 

(4.1) 9(mg(h),g)) + *K(fc), h) = 0. 

Also, if (f) denotes the corresponding critical point of T^, then, by Remark 5 
we have 

(4.2) Td((f>,g,h) = E(mg(h),g) = E(mg(h),h). 

Equation (4.1), implies that the Teichmiiller class of g is the only fixed 
point of rrig. Moreover, since, according to Wolf, [14], the holomorphic 
quadratic differentials give coordinates in Teichmiiller space, it follows that 
rrig is bijective, and by the implicit function Theorem, rrig is a diffeomor- 
phism of Teichmiiller space. Again from equation (4.1) we derive that 
mg(h) = mh(g). 

Lemma 4.3.  We have that the differential of rrig at g equals 1/2 Identity. 

Proof. Consider the energy of harmonic maps as a function E : T x T —> R. 
Recall that — $(/i, g) is the Weil Peterson gradient of the energy with respect 
to the first variable, see [13], hence equation (4.1) says 

— (mg(h),g) = -—(mg(h),h) 

Differentiating with respect to h and evaluating in g we find 

g^E dmj, d2E   , 

Since E takes its minimum on the diagonal of T x T, by differentiating 
the equality  §§:(h^h)   =  0, and evaluating at #, we find  Q^.QX. {g^g) + 
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d2E dxdv (ff'ff) = ®m Since the Hessian of E( • ,5) at 5 is invertible, the Lemma 
follows. □ 

We will describe later a metric on the space M of metrics on R, such 
that mg(h) is the Teichmiiller class of the medium point of a geodesic join- 
ing suitable representatives of g and h. Let us define Td[g] : T -> R by 
Td[g](h) = Td(<f),g,h) where (j) is the unique critical point of TQ homotopic 
to the identity. 

Theorem 4.4. The function Td[g] is smooth and proper, its absolute mini- 
mum is taken at g, which is also its only critical point. Moreover the hessian 
ofTd[g] at g is two times the the Weil-Petersson metric. 

Proof. The Theorem follows from the analogous results for the energy func- 
tion, see [13], together with formula (4.2) and Lemma 4.3. □ 

Remark 6. It is easy to see from the above, that in the case of the sphere 
with constant curvature +1, the only critical points of TQ are the antiholo- 
morphic maps and the isometrics. In the case of the flat torus T the situation 
is more complicated, in fact, for example, the map z —> z + z, from the com- 
plex plane into itself, induces a critical point (j) of T3, such that 90 is nowhere 
zero, however (j) is not an isomorphism. 

5. The generalized Lorentzian metric. 

Let g E .M, given by g = p2dzdz. Let A; be a tangent vectors to M. at 
g, so A: is a bilinear symmetric form. Let k be the contraction of k with the 
metric g. Define the quadratic form on Tg(M) given by 

||ft|g = -l/4 f det(k)dVolg 
JR 

If ki = A'ipPdzdz + 2Bfip2dzdz + +Afip2dzdz and £2 = A,2P2dzdz + 
2B,2p2dzdz 4- +A,2P2dzdz then the Lorentzian metric resulting from po- 
larization is 

« fci, fe »g= f (A'xA'2/2 + X'2-A'i/2 - B'iB'2) dVolg. 
JR 

The above metric is "generalized Lorentzian" since the spaces {P1 = 0} 
and {Q1 — 0} decompose the tangent space to M. at g in orthogonal direct 
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sum; moreover the metric is positive definite on the space {Pf = 0} locally 
parameterized by a pair of real functions, whereas it is negative definite 
onlQ' = 0}, which is locally parameterized by a single real function. Note 
that the group V of orientation preserving diffeomorphisms of R acts by 
pull-back on M. Then we have the following 

Lemma 5.1. The above scalar product is V invariant 

Proof. It is a straightforward calculation from the definitions. □ 

Proposition 5.2.  The orthogonal space with respect to «» to the VQ 

orbit is the tangent space to Cg. 

Proof. Let ^ • (—£,£) —)- X^, be a one parameter group of diffeomorphisms 
with 0o — I and $) = u' Then the Lie derivative Cu(g) is given by 

Cu(g) = §-t(c/>*t(9))t=o = P2(du)dz2 + {d(p2u) + d(p2u)) dzdz + p2{du)dz2. 

If we set 6 = (p2dzdz)l/2u, then 6 is in ^(-l) and 

Cu{g) = (L_i(0) + 2Re{K.l{e)) + Z~^f) g. 

(5 In other words a vector I   nl   j is tangent to the g orbit, if and only if there 

exists an element 6 e S(-l) such that P' = ReK-^O), Q' = L_i((9). If we 
write the metric v in the form v = (Q' + 2P7 + Q') g then we obtain 

« v,Cu(g) »= Re [ (L-i(0)Q' - K^l(0)P')dVolg 
JR 

= -Re I (6(K-2{Q') - L0(P'))dVolg. 
JR 

Since 9 is arbitrary, the Lemma follows from Theorem 3.2. □ 

Lemma 5.3. If g is a metric with negative curvature everywhere, then the 
Lorentzian metric is positive definite on the DQ orbit of g. 
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Proof. Let Cug be a vector in TgiV^g), we have 

||£u5||2 = /B(|L-iW|2 - {Re{K^{6))2)dVol9 

= J^L.m? - \K-m\2 + {ImK-MftdVol, 
= !R{\L-m\2 + {LQK-l{0)d + {ImK_l{e))2)dVolg 

= /^(IL-IWI
2
 + K-2L-i(e)0dVolg 

+ JR(-^\e\2 + (ImK^(e))2)dVol9 

= JR((ImK^(e))2 - %\0\2)dVolg. 

Proposition 5.4. If g is a metric of constant curvature —1, i/ien we have 
the equality: 

(*)     ((TgiVog^ftTgiM-!)) 

0 
^j,   J   TO^/i Qf harmonic Beltrami differential > . 

It follows that the restriction to M-I/VQ of the Lorentzian metric induced on 
M/VQ coincides with the Weil-Petersson metric. Moreover the Lorentzian 
metric is positive definite on M-i. 

Proof. By the proof of Lemma 4.1 we see that the projection map 
from Cgf]A4-i into M-I/VQ is an isomorphism. In particular we have 
Tg(M-i) = Tg(Vog) © Tg(Cg), which, by Proposition 5.2, coincides with 

Tg(V0g) © ((TgiVog)^ nTg(M-i)) . Hence the space 

((TgiVog^nTgiM-j) 

has complex dimension 3genus(R) — 3. However, by Theorem 3.2 and by 

Theorem 2.4.1 of [13], it contains all the vectors of the form (   n,   I with 

Qr harmonic, and equality (*) follows. The Lorentzian metric is positive 
definite on Tg(M-i) because of (*) together with Lemma 5.3. □ 

Theorem 5.5. // we identify the tangent space to M at g with S'(O) x 
S{—2) via the map da, then the map ^ given in Proposition 3.1 becomes the 
exponential map of the Lorentzian metric. 
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Proof. We already observed that #(0,0) = g and GM?(0,0) = /. Let h be a 
metric with coordinates P^, Qh with respect to g, then the square norm of 
a tangent vector to h is given by 

mi*, QOII2=jm - ^ - V4jT ®%Q%^g. 
The energy of a path 7(t) is 

E{l)= C f(\Q'(t)\2-P'2(t))dVolgdt 
Jo   JR 

(Q'(t)Q'(t)-Q(t)Qr(t))2 i/4/7 JO   JR R      (P(t) + l)2-|Q(t)|2 
dVolndt. 

Take a variation 7(^,5) with 7(0,5) = 7(0) and 7(1,3) = 7(1). Let us in- 
dicate with ' the differentiation with respect to t and with * the one with 
respect to s. Differentiating the energy with respect to s and evaluating at 
(0,0) we obtain 

dE(t,s) 
ds 

= 11 {Q'Q' + Q'Q- - WP') dVoigdt. 
Jo JR 

(Recall that Q(t,0) = tQf). Integrating by parts and observing that 

P"(t, 0) = Q"(t, 0) = 0, we find that ^^Q = 0. D 

Remark 7. It follows from the above Proposition that the geodesies are the 
paths of the form P(t) = tP1, Q(t) = tQ'. In particular every two points in 
M can be joined by a unique geodesic. We deduce from the formula for the 
square norm of a vector tangent to M, and from Remark 2 that the energy of 
the geodesic joining g and h is given by #(7) = 2T{I,g,h) — Vol(g) — Vol{h). 

■*-{%)■ Remark 8. Let us consider the geodesies 7(2), t > 0 with 71 

If MaxR(\Q'(0)\ - P'(0)) < 0, then 7 is defined in [0,+oo[. Otherwise its 
maximum interval of definition is [0, max (\Qf}o)\-pr(o))[' 

Theorem 5.6. Let q : M —> M/VQ, be the projection map, let 7(2) = 

f tP' \ I     n/   ] , t G [0,1] be a Lorentzian geodesic in M with 7(0) = g and 7^0) = 

Then the following facts are equivalent (?) 
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(i) 7'(to) is orthogonal to the VQ orbit 0/7(^0) for some to G [0,1] 

(ii) 7/(£) is orthogonal to the VQ orbit of ^(t) for every t G [0,1] 

(iii) 7(^0) is critical with respect to g for some to G]0,1] 

(iv) j(t) is critical with respect to g for every t G [0,1]. 

If the above conditions are satisfied, then #(7) is a geodesic in M/Vo with 
the induced Lorentzian metric. 

Proof. From Proposition 5.2 and Theorem 3.2 it follows that 7/(0) is orthog- 
onal to the VQ orbit of g, if and only if (iii) is satisfied, if and only if (iv) 
is satisfied. Assume that to G [0,1] and 7'(to) is orthogonal to the VQ orbit 
of 7(^0). Let us consider the complex structure on R that makes ho =7(^0) 
conformal. We find as above that for every t G [0,1] the metric ^(t) is 
critical with respect to 7(^0), hence 7(£o) is critical with respect to 7(t). It 
follows that 7/(£) is orthogonal to the VQ orbit of ^(t). If 7' is orthogonal to 
the VQ orbit at every point of 7, then (7(7) is a geodesic in M/VQ. □ 

Let us now consider two metrics g and /i, both with constant curvature 
—1. Let 7(t) be the Lorentzian geodesic joining g and h, assume that h is 
critical with respect to g. Let m be the metric corresponding to the medium 
point of the geodesic. Let us consider on R the complex structure that 
makes m conformal, set m = p2dzdz. Denote the corresponding exponential 
coordinates with P, Q. We must have Pg = — P^, Qg = —Qh- We have 

dVol9 = ((Pg + I)2 - \Q9\2)dVolm 

dVolh = ((Ph + l)2-\Qh\2)dVolm 

Moreover by Proposition 2.2 we have dVolg = dVolh, hence Pg = Ph = 0. 
Since K-2(Qg) = £0(^)5 it follows that Qg is harmonic, so $g = Qgp2dzdz 
and $/! = —$p are holomorphic quadratic differentials. Note that ||^^|| = 
11$/! 11 < 1. Since orientation preserving diffeomorphisms with holomorphic 
Hopf differential are harmonic, we conclude that the diagonal map from 
(i2, m) —> (P, g) x (P, h) is both harmonic and conformal. In other words 
if TT : M -4 M-i denotes the maps that associates to every metric the 
unique metric, conformal to it, of constant curvature —1, then we have 
mg(h) — q(7r(m)). Moreover 

KmdVolm = -(1 - \Q\2)dVolm = -(1 - m\2)dVolm 
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i.e. 

So we have the following 

Proposition 5.7.  There is a one-to-one correspondence 

(g,h) -»(m,$) 

from the set 

X = {(g,h) :     g and h both have constant curvature — 1, 
and they are critical with respect to each other} 

and the set 

Y = {(m, $), where m is a metric 
and $ is a holomorphic quadratic differential with respect to ra, 
such that ||$|| < 1, and Km = -(1 - p||2)} 

Here m is the medium point of the Lorentzian geodesic between g and h, 
whereas $ is the (2,0) part of g with respect to ra, Moreover mg(h) = 
q(n(m)). 

Proof. We already described the map from X to Y, let us describe its inverse. 
Set g = $ + # + (1 + p||2)ra, and h = -$-$ + (1 + ||$||2)m, then g 
and h are critical with respect to ra, hence by Proposition 2.2 they have 
constant curvature —1, moreover the diagonal map from (i?, ra) into (i?, g) x 
(i?,/i) is harmonic and conformal, in particular g and /i are critical with 
respect to each other. Let ra' be the medium point of the geodesies between 
g and h. Prom above we see that the diagonal map between (i?, ra') and 
(i?, g) x (i?, h) is also harmonic and conformal. It follows that ra and ra' are 
conformal. Moreover the P coordinates of g with respect to ra and ra' are 
both identically zero, so ra = ra'. Moreover, by construction, the quadratic 
differential $ is the (2,0) part of g with respect to ra = ra'. The rest of the 
Proposition has already been proved. □ 

Remark 9. It can by proved as above that given (ra, $) E Y and 9 e [0,27r] 
the metric gg = ez<9$ + e~z(9$ + (1 + |$|2)ra, has constant curvature —1 and 
it is critical with respect to ra 
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The set Y was already considered by Hitchin [6], (in fact, among other 
things, he proved the above Remark). The system of equations 

/ jrm = -(i-||*||2) 
\ d$ = 0 

is the abelian vortex equation. 

The orthogonal space to M-\. 

Let g be a metric with constant curvature —1. It follows from Proposi- 
( P' \ 

tion 5.2, Theorem 3.2 and Corollary 5.4 that a vector I   nl   I G Tg[M) is 

in Tg{M-i)1' if and only if Q' is L2 orthogonal to the space of harmonic 
Beltrami differentials and K-2{Qf) = L>o{Pf). 

Set D = (—1/2(A — 2/))~1, where A is the Laplace-Beltrami operator 
on R with negative spectrum. The operator D is known to be compact, L2 

self adjoint and positive, see for example [15]. As in [15] we can prove the 
following 

f P' \ Proposition 5.8. A vector f   nf   I G Tg(M) is orthogonal to M-i if and 

only if 
Q' = -2I_1LoI'(P'). 

Proof. Assume that Q' = —2L_iLo-D(P')> an(l ^ A4 t>e an harmonic Beltrami 
differential, then fRQ'p,dVolg = 2 JRLo{D(P')K-2(v)dVolg = 0. On the 
other hand we have 

4L_1iir_2(-2L_1Lo(£'(P'))   = (A^^JX^L-iLotW)) 
= -2A_2L_1LoJD(iD') + IL-xLoDiP') 

= -2(L_1A_1Lo£'(P')+4L-iio£)(JP') 

- -2L_iLoA(JD(P'))+4i-i-LoI>(P') 

= 4L_iLo(P') 

i.e.    4:L-iK-2{Qf) — ^L-ILQ^'). However, since R does not have non 
trivial holomorphic vector fields, it follows that L_i has trivial kernel. 

f P' \ Viceversa, if (   nl   I is orthogonal to M-i, then the differentials Q' and 
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—2L-iLo(D(Pf)) have the same K-2 image and they are both L2 orthogo- 
nal to the harmonic differentials, hence they coincide. □ 

Set H = -2L_iLo£>. 

Proposition 5.9.   We have 

Tg(M) = T9(M-i) 0 TgiM-i^. 

Moreover the Lorentzian metric is positive definite on Tg(M-i) and negative 
definite on its orthogonal space. 

Proof. We already know that the Lorentzian metric is positive definite on 
.M_i, in particular M-i has trivial intersection with its orthogonal.   Let 

(   n'   )  ^ Tg(M), and consider the decomposition (   nf   )  =  ( ) + 

w j , where ( y J G Tg(Vog) and ( w J G {Tg{VQg))^. Decompose 

farther (   TT^   ) as (   TJ^   J — \   n    J + lr)    )' w^1616 Q2 is harmonic and 

Qi is L2 orthogonal to the harmonic differentials. So I   ^     ^    ) is tangent 
V Y + V2 / 

to M-i and I   ^     1 is orthogonal to it. By Proposition 5.8, together with 
\Qi J 

the properties of the complex covariant differentials Kr, Lr it follows, as in 

[15] pag. 135, that if ( ^,  J G (TgiM-i))^ then 

/    \Qf\2dV0lg   =     [    \P'\2dV0lg   -     f   D{P')P'dV0lg 
JR JR JR 

hence « \   ni  ) A   ni  ) >>= " SRD{p')pldVol9' Since D is a positive 

operator and Q' — H(P'), we conclude that <<>> is negative definite on 
TgiM-r)-1. D 

From the above Proposition we see that the orthogonal projection from 
Tg(M) to Tg(M-i) is well defined and it is easy to show that the Levi- 
Civita connection on M-i coincides with the orthogonal projection of the 
connection on M. 
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The Weil-Petersson geodesies. 

Let g 6 M-i and j(t)    for t E [0,1]    a Weil-Petersson geodesies in Te- 

ichmiiller space T = M—I/VQ, with 7(0) = q(g). Let 7 = I   n\ I   j G M-i 

be the lift of 7 starting at g which is, at every point, Lorentz orthogonal to 
the X>o orbit. So 7 is a Lorentzian geodesies. Note that, since the Lorentzian 
metric and the usual L2 metric on M-i, (see e.g. [13]) have the same or- 
thogonal space to the VQ orbits, then 7 can also be regarded as the L2 lift 
of 7. 

Lemma 5.10.   We have dVol 7^ = dVolg    for every t E [0,1]. 

Proof. Given £0 £ [0,1] let h^ = 7(^0) and let P^0, Qh0 be the exponential 
coordinates with respect to HQ. For positive t close to 0 we have 

dVolw+to) = (((P(t +10) + I)2 - \Q(t + to)\2) dVolg 

= {{Pho{t) + l)2-\QhM
2\)<Wolho. 

Since the tangent vector to the curve at ho is tangent to M-i and orthogonal 
to the VQ orbit, it follows from Proposition 5.4 that 

d{{Ph0{t) + \f-\QhM
2\)     =2dPho     s0_ 

dt \t=o dt  \t=o 

So 
a((p + i)(*)2-|Q(*)l2l)     s0 

dt \t=to 

Hence 

(5-1) (P + 1)'-|Q|' = 1 

D 

Lemma 5.11.   We have the equation |^(0) = jff(|^(0)|2). 

Proof. Since I   n   j gives the exponential coordinates for the Lorentzian 

/ P"(0) \ 
metric and 7 is a geodesic in M-i, then the vector I   n/i(n\   I is orthogonal 
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to M-i. Moreover by differentiating twice equation (5.1) and evaluating at 
0 we find P'^O) = IQ^O)!2. Hence the Lemma follows from Proposition 5.8 
□ 

Let g be a metric let z be local holomorphic coordinates such that g = 
p2dzdz. Let h^ be another metric with coordinates Pho,Qho with respect 
to g. Let us consider on R holomorphic local coordinates such that ho = 
<72dwdw. Let / = w^z. So we have f*(a2dwdw) is conformal to /IQ, hence 

p2fUU^ = r{p+1)Q 

for some positive smooth function r. It follows that 

(5-2) ^=^ 

where 

/!=       Qh0 

Since ho is a metric, then |/i| < 1 and the Beltrami equation (5.2) admits 
a global solution /^ which is a diffeomorphism of R. Since any pair of local 
solution of (5.2) differ by a holomorphic map, see [1], it follows that /^ : 
(i?, g) -> (i?, h) is holomorphic, by changing the holomorphic coordinates, 
if needed, we might assume that w = /^(z), hence that the function r is 
identically 1, i. e. 

(5.3) pf ^rzdz=(p+i)Q 
a2dz 

dz 
a* 

We are going to compute the geodesies equation by pulling back equation 
in Lemma 5.11 on a given point to of 7, via a global solution /^ of the 
Beltrami equation. So let us fix to G [0,1] and t positive close to 0. Let 
z be holomorphic local coordinates for the complex structure induced by g 
and w holomorphic local coordinates for the one induced by ho, with these 
notations we have 

(5.4) (P(t + to) + l)Q(t 4- to)p2dz dz 
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+ ((P(* + to) + I)2 + \Q(t + to)\2) p2dzdz 

+{P{t + to) + l)Q(t + to)p2dzdz 

= /»* ((Ph0(t) + l)Q^Mcr2dwdw) 

+r (((Pho(t) + I)2 + \Qh0\(t)Wdwdw) 

+r{{Pho{t) + l)Qho{t)o2dwdw). 

If B = B(w)^ is a Beltrami differential, then f,1*{B) is given, in holomor- 
phic local coordinates z, by the equation 

r(B) = B(n^z. 
dz 

and for every smooth test function 6 on R, we have, by definition (Here Hh0 

is the operator H computed with respect to the metric ho.) 

(r(Hh0))(e(n) = F*(Hh0(e)). 

Moreover observe that ///^'(O) = Qhjfo). From general Teichmiiller theory 
(see for example [16]), we know that 

(5.5) F*(Qho'm = ^(i - H2)-1- 

If we keep in mind the equations (5.2), (5.3) and equation (5.1) relative to the 
exponential coordinates based on /io, then by differentiating equation (5.4) 
twice, evaluating at 0 taking the (0,2) and (1,1) part divided by p2dzdz, we 
find the equations 

(5.6) d2^1^^ = /'i*(H,o)(|Qho'(0)|2(r))(P + I)2 

+4|Q,0'(0)|2(r)(P + l)Q + (f»*{Hh0){\Qh0'{mnQ) Q- 

and 

(5-7) 

g2((F+^2 + l9|2)
Mo 

= 2(/Htf/j)(i<V(o)i2(r))(j>+i)Q 

+2((f^(Hho)(\Qh0'(0)\Hn)(P + l)Q 
+4|g,0'(0)|2(/^)((P + l)2 + |Q|2). 
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By equation (5.1) we find Q = (l-IH2)"1^ andP = (1-|M|
2
)
_1/2

-1. 

So we can write equations (5.6) and (5.7) in terms of /x. Set 

6M = F*(Qho'(0)) = ^(i-\tf)-1 

and 
HM = r(Hho). 

(5-8)2 

g2(^t1)2 = (P + i)2 ((2i?e(F(M)(|<5(M)|2)/2) + 4\6(»)\2) - 2\d^)\2. 

Moreover since /^ preserves the volume form, from [18] Lemma 4.1, we find 

(5.9) r*(Kr) = (1 - IMI
2
)"

1
/

2
 (Kr - JlLr) 

+r/2(l - l/il2)"1/2 (Ko - JiLo)Oog(l - M2)) I 

+r(l - l/i^-^Cp2^^)"1^ (^ /. 

Since Lr = if-r, and A = ALIKQ, it follows that the operator H(fi) depends 
only on /i and its derivatives on the surface R] it does not explicitly depend 
on the chosen solution to the Beltrami equation. 

Here Hdi) is the operator i?/^, with ho the metric with the same volume 
form as </, and with Beltrami differential /i. 

So, by using equations (5.7) and (5.8) we prove the following 

Theorem 5.12.  Consider the equation 

(s.io) W = {1~ M2)^)^)!2) 

91og(l-|/i|2)^ 
m       dt 

+2ifi2(i-H2rv 
with the initial conditions /i(0) = 0 and -^(0) a fixed harmonic Beltrami 
differential in (R,g)- Then if fj,(t) is the solution of the above equation, and 
R(t) is the Riemann surface structure on R such that f^ : (R,g) -> R{{t) 
is holomorphic, then the curve given by t —> Teichmuller classes of R(t), is 
the Weil-Petersson geodesies starting at the class of g with initial tangent 
vector -^(0). 
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{ 

Note that equation (5.10) is equivalent to the system of first order equa- 
tions: 

f = *(i - IMI
2
) 

with /i(0) = 0 and 5(0) = -^(0). Moreover, since /^ preserves the volume 
form, then equation (5.5) implies that JR \5(iJ,t)\2dVolg is independent on t, 
and it is the energy density of 7. 

Remark 10. In other words, if /^ is the solution of equation (5.10), then 
the (Lorentzian or L2) lifting of the Weil-Petersson geodesies starting at g 
with initial tangent vector 

|(0,9 + |(0)9, 

is given by 
M* /1 + H2\ fit 

1 - N2 

6. The general existence Theorem. 

In this last section we are going to show that, whenever g and h have 
strictly negative curvature, there exists a unique critical point of TQ in any 
homotopy class containing an orientation preserving diffeomorphism. By 
using Lemma (2.1) ii) we may reduce to the case of maps homotopic to 
the identity. Let r be the harmonic map from (i?, h) —> (ii, g) homotopic 
to the identity, so the identity is harmonic from (JR, h) to (R,T*(g)). Let 
P, Q the Lorentzian exponential coordinates of T*(g) with respect to h. 
Set 5 = l/21og(P + 1), then the identity is harmonic from (R,e25h) to 
(i?, T*(<7)). Since the P coordinate of T*(^) with respect to e25h is identically 
zero, it follows from Theorem 3.2 and from Lemma 2.1, that r is a critical 
point of Td(e28h,g) and 0o = T

-1
 is critical with respect to Td(g,e25h). 

Consider the product VQ X R, and the subset M C VQ X R, given by 
M = {(fat) such that £(g,e2^-t^h,(j)) = 0}. Note that, by Lemma 2.2, 
if (0, £) is in M, then e2^1"*^^ has negative curvature. Let TT : M —> R 
be the restriction of the natural projection. It follows from Lemma 2.3 
and Lemma 2.4, together with the implicit function Theorem, that M is 
a smooth submanifold of VQ X R, and TT is a local diffeomorphism. The 
connected component containing (^0)0) of the preimage through TT of the 
interval [0,1], is a parameterized path 7 in M. We must show that 7 is 
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defined in the whole interval [0,1]. If this were not the case, then 7 would 
be defined in an interval of the form [0,io[5 it is then sufficient to show the 
existence of a sequence tn converging to to, such that <ptn converges to a 
critical diffeomorphism (f)t0. Set ht = e2^l~t>j5h and h't = ^*(^t). 

Lemma 6.1.   We have Td(g,hti(f)t),t € [0,to[ is uniformly bounded. 

Proof. Since each ^ is critical, it follows that 

^i^M<MaXR\S\Td(gMM 

SO 

Td(g,hu</)t) <Td(g,hj(t)o)eMax«M. 

D 

We have that the metrics g and h't are critical with respect to each 
other, let rrtt the medium point of the Lorentzian geodesies joining g and 
h't- In the Lorentzian exponential coordinates centered at m^, the geodesies 

is given by Ps = sP, Qs = sQ, where g has coordinates I      "     I and h't 
\ Q-i ) 

has coordinates (   ^   } . (here (   n   j depends on i but, for simplicity, we 

will drop the suffix). Prom above we find 

(6.1) l-P>|Q| 

1 + -P>|Q|, so 

-1< P < 1, and 0 < |Q| < 1. 

(6.2) Kmt = ^((1 - P)2 - |Q|2) = Kh,t{{\ + P)2 - |g|2) 

which gives 

(6.3) £KQ < Kmt < 0. 

On the other hand, by using exponential coordinates P*, Q* centered in g, 
it can be easily seen that 

(6.4) dVol{mt) = l/A{dVol{g) + dVol{h't) + 2(P* + l)dVolg 

Let now tn be a sequence in [0,io[ converging to io- Set <pn = 0tn, hn = /itn, 
h'n = titn, and mn = mtn. 
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Lemma 6.2.   The energy of the map <fin : (R,mn) —> (R x R,g x hn) is 
uniformly bounded. 

Proof. Let us denote with Diag the diagonal map; we have 

(6.5) E(mn, g x hn, (frn) = E{mn, g x hn', Diag) 

= /((! + P)2 + (1 ^ F)2 + 2|Q|2)d7oimn 
JR 

which, because of estimates (6.1) is bounded by lQVolmtn. This in turns is 
uniformly bounded because of formula (6.4), Remark 2 and Lemma 6.1.   □ 

Prom this we immediately find 

Lemma 6.3.   The sequence of the Teichmuller classes of mn has a conver- 
gent subsequence. 

Proof By using the above Lemma we can argue as in [11]. □ 

If we act on the metrics ran, and in the same time on the map <f)n with the 
group DQ? 

we still find a sequence of minimal immersions with lagrangiam 
image, let us denote such immersions with \I/n = ('^(l)n^(2)n). Note that 
\]/(l)n and ^(2)n are TQ critical with respect to the pairs of metrics ran, g 
and and ran, hn respectively. 

Remark 11. From formula (6.1) we can derive an L00 bound of the differ- 
entials of \P(l)n and ^{2)n in terms of L00 bounds of mn. 

We need to show that a subsequence of mn converges up to elements in 
VQ. TO do this we will use an easy version of Cheeger-Gromov compactness 
Theorem, see [9]. So it is necessary to have a bound on the curvatures, 
on the total volumes (which are immediate from equations (6.3), (6.4) and 
Lemma 6.1), and on the diameters. Let m'n be the metric conformal to ran 

with constant curvature —1. We can assume that m^ converges in C00 norm, 
therefore to bound the diameter of mn it is sufficient to bound the volume 
forms of mn. 

Let us write in conformal coordinates 

mn = Vn2{£>n)dt>ndt>n 
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and 

Lemma 6.4. There exists a uniform L1 bound on k^^-). Where L1 is 

defined with respect to the measure of m'n. (Hence with respect to any fixed 
metric on R). 

Proof. We have | log(^4)| < ^4 + ^4. Formula (6.4) gives an Ll bound on 
2 

77^. By Lemma 2.2 we have the equations 
H'TL 

(6.6) 
dndn\ogvn

2 = -(l/2)Kg(^(l)n)det(Jac(^{l)n))(i/2)dCn Ad(n. 

dndn log Hn2d£n A d£n = (-|-)(i/2)d£n Ad^n. 

2 
For any positive constant C, we define the set Sc = {z E R : log(£21T) < 
—C}. Since the curvature of g is uniformly bounded, by using formulas 
(6.1), and (6.6), we see that, for large enough C (independent on n) the 

2 
function An(log(^ZL5-)) is negative on Sc, on the other hand, whenever Sc 

is nonempty, the minimum of log(i^j) on Sc is in Sc, this yields a contra- 

diction. Note that, we not only found an L1 bound on | k^1^-)!, but also 
2   

an L00 lower bound on log(^-). □ 

2 
To obtain an L00 upper bound on |log(^-)| we will use a so-called 

Wente estimate, see [2], applied to a relatively compact neighborhood Q, of 
a fundamental domain of R in its universal covering space D. For simplicity 
any function on R and its lift to D will be denoted with the same symbol. 

Lemma 6.5.  There is an L00 uniform bound on |log(^-)|. 

Proof. Since fin converges and (by the proof of Lemma 6.4) the function 
log(^ZL) has an L00 lower bound, we only need to bound log(z/n

2). Let us 
write log(z/n) = rn + r)n, where rn is harmonic on ft and coincides with un 

on 90, whereas 

(6.7) S.Alog^2 = -l/21^(*(l)n)Jac(*(l)n). 
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Since the right hand side of (6.7) has a determinant form and the conformal 
structure of mn converges, we can apply Theorem 1.2 in [2], to obtain the 
estimate 

ton|L~ < C|^|Loo|^(l)n|L2(n) 

where C is a positive constant independent on n, and the L2 norm is com- 
puted with respect to the volume form oimn'. Lemma 6.2 will give a uniform 
L00 bound on r)n. Since rn is harmonic, then we can estimate its L00 norm 
in terms of its Ll norm on a domain O' slightly smaller then fi. Now the 
Lemma follows from Lemma 6.4. □ 

Similar Lemmas can be proved for the sequence ^(2)^. By Remark (11) 
and Lemma 6.5 we derive an L00 uniform bound on d^n. (All the bounds 
have to be considered with respect to the convergent sequence of hyperbolic 
metric, or, which is the same, with respect to a fixed metric). By using 
equation (6.6) we find an L00 bound on the second derivative of dVolrnn. 
By Sobolev inequality in dimension 2, we obtain that (a subsequence of) 
mn converges to a metric m in C1,a (whereas m'n —> m! in norm C00) and 
\I/n —>• \I> in C0'a. Let us show that # is an immersion. To do this we will 
compare the metric mn with the metric pn which is the pull-back via $n of 
the metric on (R * i?)n, we have 

Pn = 
Kmn 

m^{wT^hQ?{iP+1)Q+i{p+1)2+]Qf))} 
. Kmnvn

2d€nd£n 1 

Km^n d£nd£., 

By a tedious but elementary computation using (6.1) we find 

Kmn^ndjnd^n  f -1 _        =1 

pn = l^§^{(Kh(l + P)-Kg(l-P))Q} 

+ ^^m+p)2Kg + lQl2Kh) 
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Therefore we get 

^o/Pn=2((l-P2) + |Q|2)^oZmn. 

Since the curvature of hn is bounded away from zero, from the above for- 
mulas we derive the following 

Lemma 6.6.  The metrics mn and pn are uniformly comparable i.e.  there 
exist positive constants Ci and C2, such that 

Cimn <Pn< C2mn. 

It follows that \I/ is an immersion. 
Since \I/ is an immersion then (by using notations of Remark 3) Hi^n) 

and £i(\I/n) as well as ^(^n) and £2(*n) do not have common zeros. More- 
over since the maps \I/n have lagrangian image, we have Hi^n) = £1(^71) 
and 7/2(^71) = £2(^71)- Let us now prove that \I/n converges to \I/ in C00 

norm. The maps tyn : (R^Pn) -* (R * R)n are minimal immersions with la- 
grangian image, then they satisfy equation (3.2), which, because of Lemma 
6.6, is a uniformly elliptic equation in divergence form. By standard esti- 
mates, see for example [4], and by formulas (6.1), we find a uniform Cl,a 

estimate on \I/n. Now by bootstrapping the equations (3.2) and (6.6) we 
conclude that \I/n converges C00 to \I/. So ^ is a minimal immersion with 
lagrangian image To conclude we need to show that the components \I/(1) 
and \I/(2) of ^ are diffeomorphisms. Since they are limits of orientation 
preserving diffeomorphisms, then they have non negative jacobian determi- 
nants, moreover, Hi = H2 and £1 = £25 and since \I/ is an immersion Hi 
and £1 as well as H2 and £2 do not have common zeros. If p is a zero 
of the jacobian of, say ^(1), then Hi and £1 do not vanish at p. If we let 
I = log(^1) and J* =Hi—Ci we have that, near the point p, J* = fl where 
/ is a smooth function. Moreover, we already observed that J* > 0, that is 
Z>0. 

|A(0|<C(|J| + |d(OI)nearp 

where C is a positive constant. Prom above, by using a standard Harnack 
inequality see [5], we would conclude that / vanishes in a neighborhood of 
p. Since \I/(1) and ^(2) are non constant, it follows that they are orienta- 
tion preserving diffeomorphism.  Since the jacobians of \I/(1) and \I/(2) are 
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bounded away from 0, it follows that 0n = \I>(2)n o \I>(l)n
_1 converges (7°° 

to (pt0 = ^(2) o ^(l)- . Hence </> is a TQ critical map with respect to the 
metrics g and ht0. We are left to prove uniqueness. Let A and /i be smooth 
functions such that exg and e^h have constant curvature —1. For a small 
positive e and for t G (—£, 1 + e) we have that e^g and e^h have negative 
curvature. Consider the set 

S = {(t, (f>) :    (f) is critical with respect to TQ(etxg^ etfih)}. 

It can be proved as above that the projection map S -> (—6,1 + e) is a 
covering. Since the fiber over t — 1 is a single point, we conclude. We have 
then proved that Theorem 4.2 is valid for metrics with negative variable 
curvature as well, that is 

Theorem 6.7. Let g and h be hermitian metrics on R7 both with strictly 
negative curvature, then 

(i) Suppose an homotopy class of maps of R into itself contains an anti- 
holomorphic non constant map, then there is only one such map and 
it is the unique critical point of TQ in the class. 

(ii) Suppose an homotopy class contains the constants, then these are the 
only critical points of TQ in the class. 

(iii) Suppose an homotopy class contains an orientation preserving diffeo- 
morphism, then there exists a unique critical point of TQ in the class. 
Such point is a diffeomorphism preserving the curvature forms. 

(iv) In any other homotopy class there is no critical points ofT^. 

If we denote by M- the subset of M given by metrics of negative cur- 
vature, we can state the above Theorem in the following geometric form 

Theorem 6.8. Any two points in Ai-fVo can be joined by a unique 
Lorentzian geodesies. 

7. Appendix. 

In this appendix we want to derive formula (3.2) and the Bochner formula 
(3.3). Set a — yJ—Kg and b = ^—Kh, then the Dirichlet energy of the map 
\I/ is given 

E(*) =  I ^p2|d*i|2 +V|d*2|
2) (i/2)d(Ad<;. 
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Let ^t be a variation of \I/, then the first derivative evaluated at t = 0 is 
given by twice the real part of 

J (^Idttxl2 (az(log(a)) + az(log(p2))) *!') (i/2)dC A rfC 

- jf Qa2|^2|
2 (az(log(a))) */) (i/2)dC A dC 

(7.1) + /" V (a^i'Mi + a^i'Mi) (i/2)dC A dC 

plus the analogue term in vl^'- 
By integration by parts, formula (7.1) equals to 

J (^|rf*i|2 (a2(log(a)) + 9z(log(p2))) *!') (i/2)dC A ^ 

- jf Qa2|d*2|
2 (az(log(a))) *!') (t/2)dC A ^ 

(7.2) - jf (ac (^a*i) + 9C (^5»i)) (</2)dC A dC 

Performing the differentiation in the above formula and collecting the term 
-i f p2 we find the first equation of the Euler-Lagrange system, i.e. 

(7.3) 
J dd^i + ^(logp^dtfidtfi - 1/2 (d^id^At + d^id^) 
{ = 1/2 (5,(log(a)) (la^xl2 - §^|^2|

2)) . 

The same equation holds for $2- Notice that if \I/ is minimal with lagrangian 
image, then the right hand side of the above equation vanishes, and we find 
equation (3.2). 

In this case we derive a Bochner formula. 

0cac(iog(^|3tti|2)) = dcac(iog(p2)) + ac9c iog(a*i) + acac iog(Mi)) = 

ac (dz(iog(p2))d^ + az(iog(p2))a*1) +dc (^) +dc f^i 

By using (3.2) we find 
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acac(iog(^|^i|2)) = ac {dz(\og(P
2)d*i) - ac(^(iDg(^)a*i))) 

By standard computations we finally get 

0cdc(iog(^|0¥i|2)) = dzdziog(p2) {{d^l2 - i^xp) 

Similarly 

afac(iog(^|5*i|2)) = -dzdziog(p2) (|a*i|2 - i^ii2) 

+1/2^ (a + UN Al +1/2^ (a + lltB<) Al- 
By subtraction we obtain formula (3.3). 
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