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1. Introduction. 

Throughout this paper, K will be a knot in the 3-sphere S3 , which is 
not a torus knot, and whose exterior E(K) = S3 - Int nhd(K) contains no 
non-peripheral incompressible torus (equivalently, K is not a satellite knot). 
By [T], such a knot is hyperbolic in the sense that S3 - K has a complete 
hyperbolic structure, but we will make no use of this fact. 

Let 1 be a slope on 8E(K) (i.e., the isotopy class of an essential simple 
loop), and let K('Y) be the closed 3-manifold obtained by "(-Dehn surgery on 
K. Thus K('Y) = E(K) U V'Y, where V'Y is a solid torus, glued to E(K) along 
their boundaries in such a way that 1 bounds a disk in V'Y. The main aim of 
the paper is to examine the situation where K('Y) contains an incompressible 
torus. 

To state our results, let f-.L be the slope of a meridian of K, and let 
.6.(1, f-.L) be the minimal geometric intersection number of 1 and f-.L· (If 1 is 
parametrized as mjn E Q U {1/0} in the usual way [R], with n ~ 0, then 
.6.('Y,f-.L) = n.) 

Theorem 1.1. If K('y) contains an incompressible torus then .6.("(, f-.L) :s; 2. 

For strongly invertible knots K, this was first proved by Eudave-Mufioz 
[EM1]. 

There are many examples as in Theorem 1.1 with .6.(1, f-.L) = 1, the 
simplest being with K the figure eight knot and 1 = ±4. More generally, 
the situation for alternating knots K is completely described in [Pat]; here 
.6.(1, f-.L) is always 1. 

There are also examples with .6.(1, f-.L) = 2, the simplest being where K is 
the ( -2, 3, 7) pretzel knot and 1 = 37/2 [HO]. In fact infinitely many such 
examples have been given by Eudave-Mufioz [EM2]. 

1The authors would like to recognize the partial support of NSF grant DMS 
9303229 (first author), as well as the Presidential Young Investigator ·program, 
Sloan and O'Donnell foundations (second author). 

597 



598 C. McA. Gordon and J. Luecke 

In the case where A(7,/i) = 2 we can say more. Suppose that if (7) 
contains an incompressible torus T, and let K^ be the core of Ky C if (7). 
We assume that ify intersects T transversely, and that T is chosen (among all 
incompressible tori in if (7)) to minimize t = \f nif7|. Then T = fnE(K) 
is a properly embedded punctured torus in E(K) with \dT\ = t. Note that 
t > 1 by our hypothesis on if, and that t is even if A(7,/i) > 2. In this 
paper together with its sequel [GLul] we shall prove: 

Theorem 1.2. Suppose that if (7) contains an incompressible torus, where 
A(7,/i) = 2. TVaera £ = 2, and T separates E(K) into two genus 2 /mn- 
dlebodies. In particular, if is strongly invertible. Furthermore, the tunnel 
number of if is a£ most 2. 

Again, it was shown in [EMI] that assuming if to be strongly invertible, 
A(7, /i) = 2 implies £ = 2. 

We also consider the situation where if (7) contains an embedded Klein 
bottle. 

Theorem 1.3. if if (7) contains a Klein bottle then A(7,/i) = 1. 

There are many examples where this occurs, again the simplest being 
the figure eight knot with 7 = ±4. 

Corollary 1.4 (Boyer-Zhang [BZ1]). If if (7) is a Seifert fiber space over 
the 2-sphere with three exceptional fibers of orders 2,2, n, then A(7, /i) = 1. 

Examples where if (7) is such a Seifert fiber space are given in [BH] and 
[BZl]. 

We prove Theorem 1.1 by first showing (Theorem 4.1) that if A(7, ji) > 3 
then t = 2, and then showing (Theorem 8.1) that this implies that if is 
strongly invertible. Theorem 1.1 now follows from [EMI]. 

Turning to Theorem 1.2, in the present paper we prove the following 
weak version. 

Theorem 1.27. Suppose that if (7) contains an incompressible torus, where 
A(7,/i) = 2.  Then t = 2 or 4. 

The case t = 4 will be ruled out in [GLul]. As the argument in this case 
is quite special and rather lengthy, we felt that it would make for greater 
overall clarity if it were treated separately. Thus t must be 2 and the rest 
of Theorem 1.2 now follows from Theorem 8.1. 
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To put our results in a more general context, recall that Thurston has 
shown that if K is a hyperbolic knot then ^(7) is hyperbolic for all but 
finitely many slopes 7 [T]. On the other hand, if if (7) fails to be hyperbolic 
then it either (1) is reducible; or (2) is an atoroidal Seifert fiber space; 
or (3) contains an incompressible torus; or (4) is a counterexample to the 
Geometrization Conjecture [T]. 

It is expected that (1) never occurs; this would follow from the (still 
unsettled) Cabling Conjecture [GS]. 

Regarding (2), some results are known: for example if (7) is never S'3 (for 
j ^ /JL) [GLU2], or S'1 x S2 [Ga]. Infinitely many examples exist where if (7) 
is a lens space [Be], but here the Cyclic Surgery Theorem [CGLS] implies 
that if if (7) and if (7') are lens spaces (or, possibly more generally, have 
finite cyclic fundamental group), then A(7,JU) = A(7/,/i) = A(7,7/) = 1. 
Restrictions on when 7ri(if (7)) can be finite are obtained in [BZ1]. 

The results of the present paper give some information about case (3). 
In the special case where if (7) contains an incompressible torus and is also 
Seifert fibered [BZ2] shows that A(7,/i) < 1. In fact, [BZ2] shows that if 
if (A) is any cyclic surgery then A(7, A) < 1. 

The paper is organized as follows. In Section 2 we describe how the as- 
sumption that if (7) contains an incompressible torus leads to the existence 
of two labelled graphs GQ and GT in the 2-sphere and torus respectively. 
Then, assuming that A(7,/i) > 2, we show how the technology of [GLu4] 
leads to the existence of a particular kind of configuration in GQ that we 
call a great web. In Section 3 we show that on the other hand GQ cannot 
contain certain combinations of Scharlemann cycles [CGLS], nor a configu- 
ration that we call an extended Scharlemann cycle. In Section 4 we show 
how the existence of a great web in GQ together with the results of Section 3, 
quickly leads to the conclusion that if A(7, /i) > 3 then t = 2 (Theorem 4.1). 
Similarly, in Section 5 we prove Theorem 1.2', that if A(7, fi) = 2 then t = 2 
or 4. In Sections 6 and 7 we consider the situation where if (7) contains a 
Klein bottle, and prove Theorem 1.3, that we must have A(7,/i) = 1. Here, 
we choose a Klein bottle S in if (7) which intersects if7 transversely and 
minimizes |5'nif7|. The boundary of a regular neighborhood of S is a torus 
T, meeting if7 int = 2\S H if7| points. Again this gives rise to graphs GQ, 

GT as in Section 2, and in Section 6 we examine how the combinatorics 
of Section 2 and some of the results of Sections 3 and 4 carry over to this 
case, where T is not necessarily incompressible in if (7). We emphasize that, 
although it is more natural to first describe the case of an incompressible 
torus, and then discuss the modifications that are needed in the case of a 
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Klein bottle, the results of Sections 6 and 7 are logically independent of 
those of Section 3, and this allows us to use Theorem 1.3 in that section. In 
Section 6 we prove Theorem 1.3 when t > 4, and in Section 7 we deal with 
the case t = 2. Finally, in Section 8, we prove Theorem 8.1, and deduce 
Theorem 1.1 from Theorem 4.1, Theorem 8.1, and the main result of [EMI]. 

2. Webs. 

As in Section 1, let if be a non-torus knot whose exterior E — E(K) 
contains no non-peripheral incompressible torus, and let T be an incom- 
pressible torus in if (7) with t = \T fl if7| minimal. Then T = T D E is an 
incompressible punctured torus in E with \dT\ = t) each component of dT 
having slope 7 on dE. Assume that A = A(7,//) > 2. 

Let j?+,p_ be two points in Sz. We can write S'3 —{p+,p_} = Qx(—1,1), 
where Q is a 2-sphere. Lemma 4.4 of [Ga, p.491] says that we can find a 
Q = Q x {i} for some i such that: 

(1) Q intersects K transversely. Thus Q = Q fl E is a properly embedded 
planar surface in E such that each component of dQ is a copy of the 
meridian fi of K. 

(2) Q intersects T transversely and no arc component of Q fl T is parallel 
in Q to dQ or parallel in T to dT. 

Let GQ be the graph in Q obtained by taking as the (fat) vertices the 
disks Q — Int Q and as edges the arc components of Q D T in Q. Similarly, 
GT is the graph in T whose vertices are the disks T — Int T and whose edges 
are the arc components of Q fl T in T. We number the components of dQ 
1,2,... , q in the order in which they appear on dE. Similarly, we number 
1,2,... , t the components of dT. This gives a numbering of the vertices of 
GQ and GT- Furthermore, it induces a labelling of the endpoints of edges 
in GQ and GT- For example, an endpoint of an edge in GQ at vertex x will 
be labelled y if the endpoint represents the intersection of component x of 
dQ with component y of dT. On a vertex of GQ (GT) one sees the labels 1 
through t (1 through g, resp.) appearing in order around the vertex, each 
label appearing A times. See Figure 2.1. Two vertices on GQ are parallel 
if the ordering of the labels on each is clockwise or the ordering on each 
is anticlockwise, otherwise the vertices are called antiparallel. The same 
applies to vertices of GT- The graphs GQ and GT then satisfy the following 
parity rule [GLu2, p.386]: An edge connects parallel vertices on one graph 
if and only if it connects antiparallel vertices on the other. 
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Figure 2.1. 

In the remainder of the paper we will write G when we mean to indicate 
either GQ or GT- 

The length of a face of G is the number of edges in its boundary (counted 
with multiplicity). By the choice of Q we see that neither GQ or GT contains 
a face of length 1. 

Let a; be a label of G. An x-edge in G is an edge with label x at one 
endpoint. An x-cycle is a cycle £ of x-edges of G such that all the vertices 
of G in £ are parallel and which can be oriented so that the tail of each edge 
has label x. A Scharlemann cycle is an x-cycle that bounds a disk face of 
G. Each edge of a Scharlemann cycle has the same pair of (adjacent) labels 
x,y so we refer to such a Scharlemann cycle as an (rr;,y)-Scharlemann cycle 
(and will often shorten this to a;j/-Scharlemann cycle). The number of edges 
in a Scharlemann cycle, a, is called the length of a. 

A web. A, in GQ is a connected subgraph of GQ whose vertices are all 
parallel and such that there are at most t points where the fat vertices of 
A are incident to edges of GQ that are not edges of A. We refer to such an 
edge as a ghost edge of A and an incidence of a ghost edge with a vertex of 
A as a ghost label of A. If U is a component of Q — nhd(A) we will refer to 
D = Q — U as a disk bounded by A. 

A great web in GQ is a web with the property that there is a disk bounded 
by A, DA, such that A contains all the edges of GQ that lie in DA. 

We assume familiarity with the terminology of [GLu2, Chapter 2]. Be- 
cause A = 1 in [GLu2], for this paper one must take the appropriate gen- 
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eralizations to the case A > 2 (this is done in [GLu4] from which in fact 
many arguments will be taken). To alleviate the ambiguities in this process 
we make the following comments. 

1. The labels of GQ are 1,2,... , t and the labels of GT are 1,2,... , q. If 
L is a subset of the set of labels of G then each L-interval appears A times. 
Thus an L-type is an |L|-type and in a star T representing the L-type r, 
the dual orientation dictated by r and V(T) is assigned to each L-interval 
around V(T). 

2. If T is a star representing some L-type then C(T) and A(T) denote 
the appropriate subsets of the labels (i.e., each element of C(T) or A(T) 
appears A times around V(T)). 

Let q be the set of labels {1,2,... , q} of GT- 

Theorem 2.1. GT does not represent all q-types. 

Proof. Q divides S3 into black and white sides. In particular Q divides a 
regular neighborhood of K into 1-handles Hi running from component i to 
i + 1 of dQ. The Hi are then either black handles or white handles. The q- 
intervals correspond to these Hi and are also divided into black q- intervals, 
B, and the white q-intervals, W. A B-type (W-type) is a |B|-type [GLu2, 
p.387] where each coordinate is formally associated with a different black 
(white) q-interval. In the same way that B U W = {q-intervals}, a B-type 
and a W-type together form a q-type. The faces of GT are divided into black 
and white faces according to whether the corners of these faces are black or 
white q-intervals. It is not hard to see then that if there is a collection of 
faces of GT representing all types then there is either a collection of black 
faces representing all B-types or a collection of white faces representing all 
W-types (see Lemma 3.1 of [GLu2] with iVo = 0). 

We assume there is a collection V of black faces of GT representing all 
B-types. After possibly surgering and replacing V with a subcollection we 
may assume that no face of V intersects Q in its interior (see the proof of 
part A of Proposition 3.2 of [GLu2]). Let B be the 3-ball on the white side 
of Q and let H be the collection of black one-handles Hi. Let TV be a regular 
neighborhood of B U K U V. Then Hi(N) is presented by Zq with relations 
given by the elements of V. 

We now recall 

Theorem 2.2. If A C Zq represents all q-types then there is a subset AQ of 
A such that 7jq modulo the subgroup generated by AQ has non-trivial torsion. 
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Proof.   This is the main result of [Par]. □ 

The above theorem says that there is a submanifold N' of N such that 
H^N') has non-trivial torsion. But N' is a submanifold of S3 and a Mayer- 
Vietoris calculation shows that this is impossible. □ (Theorem 2.1) 

Theorem 2.3. Let L be a subset of q. Let r be a non-trivial L-type. Let 
T be a star with L(T) = L and [7~] = r. Suppose further that 

(1) the elements of C(T) correspond to parallel vertices of GQ; 

(2) the elements of A(T) correspond to parallel vertices of GQ; 

(3) GT(L) does not represent r. 

Then there is a web A in GQ such that the set of vertices of A is a subset of 
either C(T) or A{T). 

Proof Note: We will blur the distinction here between C(T) and A(T) as 
labels on GT and as vertices in GQ. 

We assume GT does not represent r. Let s be the number of edges 
of r(T) whose endpoints are both in C(T) or both in A(T); we refer to 
these as switch edges. Let S be the number of switches around T, that 
is S = A(|C(T)| + \A(T)\) = 2A|C(T)|. Note that C(T) and A{T) are 
non-empty since r is non-trivial. 

Let i = S/2 — 1. The proof of Lemma 2.3.2 of [GLu2] shows that 5 > it. 
Thus there are at least it/2 edges of GT whose labels are in, say, C(T). Set 
A to be the subgraph of GQ consisting of these edges (thought of now as 
edges in GQ) and the vertices of C(T). There are |C(T)|A£ points where 
edges of GQ are incident to the vertices of A. But at least 2it/2 = it = 
(S,/2 — l)t = |C(T)| At — t of these points come from edges of A. Thus there 
are at most t points where an edge of GQ not in A is incident to a vertex of 
A. After replacing A by one of its connected components, A is the desired 
web. □ 

The proof of Theorem 2.5 will use the following lemma. 

Lemma 2.4. Let 1Z be a star and LQ C L(7l) be a set of labels such that 

(1)  all the elements of A(TZ) — LQ have the same parity, and 
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(2) the exceptional labels of G(Lo) have the same parity and are contained 
in C(K). 

Then there is an L^-type TQ such that any face of G(LQ) representing TQ 

contains a face of G(L(K)) representing [R]. 

Proof This is proved on pages 407-408 of [GLu2] beginning just after 
the proof of Claim 1 on page 407 and ending with the second sentence on 
page 408. □ 

Theorem 2.5. Assume A > 2. Let D be a disk in Q that is either the 
complement of a small open disk disjoint from GQ or a disk bounded by a 
web, A. Let L be the set of vertices ofGq—A in D. Then either GQ contains 
a great web or GT(L) represents all L-types. 

Proof   The proof is by induction on |L|. 
Let A be the web in the hypothesis of Theorem 2.5 — in the first case 

of this hypothesis take A = 0. Let r be an L-type. We want to show there 
is a face of GT{L) representing r. There are two cases. 

(1) r is trivial 

(2) r is non-trivial 

Case (1). r is trivial. 

A disk face of GT(L) represents the trivial type if and only if all the 
vertices of GT to which it is incident are parallel. Let J C L be the set of 
vertices of opposite sign to those of A (if A = 0 let J be the set of all vertices 
of GQ of some sign). If J = 0 then a component of A is a great web and we 
are done. So we assume | J\ > 1. Let A be a component of the subgraph of 
GQ consisting of vertices J and all the edges of GQ with endpoints on these 
vertices. We distinguish two subcases, (a) and (b). 

(a) Suppose A is a web. Let D be the disk bounded by A that is contained 
in D. Then by induction either GQ contains a great web or GT represents all 
if-types where if C L is the set of vertices of GQ — AmD. We may assume 
the latter and conclude there is a face of GT{H) representing the trivial 
77-type. But now filling in this face of GT(H) with the edges of GT(L) we 
will see a face of GT(L) representing the trivial L-type. 
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(b) Suppose A is not a web. Then there are more than t edges of GQ 

connecting a vertex in A with an antiparallel vertex in D. Let S be the 
subgraph of GT consisting of the vertices of GT along with these edges 
(thought of now as edges in GT)- An Euler characteristic argument says 
that E must have a disk face. As the edges of E connect only parallel 
vertices, this face of E (when we add the edges of GT(L)) will contain a face 
of GT{L) representing the trivial X-type. 

Cases (a) and (b) exhaust the possibilities when r is trivial. 

Case (2). r is non-trivial. 

Follow the proof on page 406 of [GLu2], case (2), to construct a sequence 
of stars 71,. •. , 7^, n > 1, such that 

(1) [71] = r, [Ti] is non-trivial, 1 < i < n 

(2) Ti = diTi-i where di = d^, 2 < i < n 

(3) all elements of C(Tn) have the same parity 

(4) all elements of A(Tn) have the same parity 

Set Li = L(7i). Assume / is a face of GT{Ln) representing %. Then 
(n — 1) applications of Corollary 2.4.2 of [GLu2] show that within / we will 
find a face f of GT(LI) = GT{L) representing r (that /' is contained in 
/ is stated in Lemma 2.4.1 of [GLu2]). Thus if we have a face of GriLn) 
representing [Tn] then we are done. So we assume there are no faces of 
GT{Ln) representing [7JJ. 

By Theorem 2.3, GQ contains a web, £2, whose vertices are contained in 
C(Tn) or A(Tn)' We may assume the vertices of fi are contained in C(Tn) 
by replacing (if necessary) Tn by Tn- If n > 1, this is done by replacing dn 

(=rf*)bycr. 
Now fi is in D and disjoint from A. Let DQ be the disk in D bounded by 

fi. Let LQ be the set of vertices of GQ — Q, in DQ. We may assume LQ ^ 0, 
otherwise fi is a great web. 

Let T^i,... ,7£n be the sequence of stars corresponding to 7i5... ,7^ 
obtained by taking derivatives relative to LQ. That is 7?4 = 71, 7£j = 
(rfz)^o^-i' 2 < i < n. Applying Lemma 2.4 to LQ and 7£n (to see that con- 
ditions (1) and (2) of Lemma 2.4 are satisfied appeal to Proposition 2.1.2 of 
[GLu2]), we find an Lo-type TQ such that any disk face of GT(LO) represent- 
ing TQ contains within it a disk face of GT{L(TZn)) representing [7£n]. Since 
|Lo| < |LI, we may now apply the inductive hypothesis to LQ, TQ to conclude 
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that either GQ contains a great web or GT(LO) represents TQ. We assume 
the latter. By the choice of TQ, this means there is a face of GT(L(TZn)) 
representing [lZn]. We will be done once we prove: 

Lemma 2.6. A face of GT(L(TZn)) representing [JZn] contains within it a 
face of GT(L) representing r. 

Proof.   We have 

{exceptional labels of Gr(^o)} C C(Tn) C (7(71) C (7(7^) 

(Proposition 2.1.2 of [GLu2]). Thus Lemma 2.2.2 of [GLu2] implies that 
r(Tli) = T((di)LQTli-i) = 5GT(Lo)r(^-i) for 2 < i < n. Repeated applica- 
tions of Lemma 2.4.1 of [GLu2] show that each face E of Gr(2i(7iri)) which 
represents [1Zn] contains within it a face of GT{L) = GTCR-I) representing 
[IZi] = r (E corresponds to a sink or source of r(7£n)*). □ 

This completes the proof of Theorem 2.5. 

Corollary 2.7. GQ contains a great web, A. 

Proof.   This follows from Theorems 2.1 and 2.5. □ 

Note that, since A > 2 and GQ contains no face of length 1, a great web 
in GQ must have more than one vertex. 

3. Scharlemann cycles and extended Scharlemann cycles. 

Let a be a Scharlemann cycle in GQ. Suppose that a is immediately 
surrounded by a cycle n in GQ, that is, each edge of /s is immediately parallel 
to an edge of a (see Figure 3.1). Then n will be referred to as an extended 
Scharlemann cycle. This is a slight generalization of the same notion defined 
in [Wu]. Note that if we orient tt, then for some labels x and y, each edge 
of K has label x at its tail and label y at its head. 

In subsequent sections, the existence of a great web A in GQ will lead 
either to the existence of several Scharlemann cycles on distinct pairs of 
labels or to an extended Scharlemann cycle. These, in turn, will lead to the 
desired conclusions (usually a contradiction). In this section we explore the 
consequences of having Scharlemann cycles or extended Scharlemann cycles 
in Go- 



Dehn Surgeries on Knots 607 

Since A > 2, T separates ^(7) into two components X, X'. By the 
minimality of T, we may further assume that every disk face of GQ intersects 
T in its boundary (i.e., contains no simple closed curves of intersection). 
Thus every disk face of GQ lies in either X or X'. 

For the remainder of this section, let iJ^+i be that part of Vy between 
consecutive components i and i + 1 of dT. 

In the next lemma, and in similar contexts throughout the paper, when 
we talk about a set of edges of GQ as they lie on T, it is to be understood 
that we also include the fat vertices of GT that occur as the endpoints of 
the edges. 

Lemma 3.1.  The edges of a Scharlemann cycle in GQ cannot lie in a disk 

inf. 

Proof. Without loss of generality assume that a is a Scharlemann cycle in 
GQ with labels {1,2}. Let / be the face of GQ bounded by a. Assume for 
contradiction that the edges of a lie in a disk D in T. Then nhd(JDUJ9ri2U/) 
is a lens space minus an open 3-ball. See Figure 3.2. 

The incompressibility of T means that ^(7) must be reducible. But this 
contradicts [GLu3] since A(7,/i) > 2. □ 

Theorem 3.2. Ift > 4 then GQ does not contain an extended Scharlemann 
cycle. 
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1 2 

Figure 3.2. 

Figure 3.3. 

Proof. Assume for contradiction that K is an extended Scharlemann cycle 
in GQ. Let a be the Scharlemann cycle interior to K. We may assume that 
the labels of the edges of a are {1,2} and, consequently, the labels of the 
edges of K are {£, 3}. See Figure 3.3. 

Without loss of generality, we assume that #23, #a are in X' and H12 
is in X. Let ej., e^,... , e£ be the edges of a and e^., e^,... , e£ be the corre- 
sponding, parallel edges of K. Let fi, i = 1,... , k, be the bigon faces of GQ 

representing the parallelism of e^. with e^. Let / be the face bounded by a. 
See Figure 3.3. 

Claim 3.3. e^ U ei lies in a disk in T if and only if el
K U e£ lies in a disk 

inf. 
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Proof. Assume e^. U e£ lies in a disk in T and ej. U e£ does not, i.e., e^ U e£ 
forms an essential curve on T. Let A be the annulus obtained by taking 
#23 U Hti U fiU fj and shrinking H23 and iiTti radially to their cores. The 
boundary of A consists of two curves on T: that formed by el

a U e^ and 
that formed by e^ U e£. By hypothesis the first component of dA may be 
capped off with a disk, giving a compressing disk for T in if (7). But T 
is incompressible. This contradiction proves one direction of the claim, the 
other direction follows from the same argument. □ 

Claim 3.3 and Lemma 3.1 imply that the edges of a lie in an annulus Ai 
in T and the edges of K lie in an annulus A2 in T, such that Ai fl A2 = 0. 
Let Mi = nhd(Ai U Hn U /). 

Claim 3.4. Mi is a solid torus. 

Proof. Assume for contradiction that Mi is not a solid torus, if (7) is 
irreducible by [GLu4], thus dMi is an incompressible torus in if (7) (the 
incompressibility of T guarantees that any compressing disk for dMi in 
if (7) must lie in Mi). Thus \dM1 n if7| = 2\Ai n if7| - 2 > t. Thus 
\Ai fl if7| > § + 1. Thus \A2 fl if7| < §. Let F be the disk in Q bounded by 
K (containing a). Let Hts = Htl U Hn U #23 and N = nM(A2 U Hts U F). 
Then Claim 3.3 and the irreducibility of if (7) guarantee that N is isotopic 
to Mi (e^. and e£ parallel on Ai implies that ej. and e^ are parallel on A2 
— so fi and fj are parallel in X'). In particular, dN is an essential torus in 
if (7). But \dN H if7| = 2|A2 H if7| - 2 < t - 2 < t. This contradicts the 
minimality of \T fl if7|. D 

Now 9Mi = Ai U JB where S is an annulus properly embedded in X. 
Then T2 — B U (T — Ai) is a torus which if7 intersects fewer than t times. 
Thus T2 bounds a solid torus M2 (again using the irreducibility of if (7)) and 
X = Mi UB M2. Since T is incompressible in if (7), B must be homotopic 
to at least twice around the cores of both Mi and M2. This means that X is 
a Seifert fiber space over a disk with two exceptional fibers, and the Seifert 
fiber is given by the core of B. 

Let e^. and eJ
a be edges of a which form an essential simple closed curve 

on T and have the property that they are outermost on Ai among all such 
edges, i.e., on one side of e^ U e^ in Ai there are no further edges of a. We 
may assume (by possibly taking a smaller Ai), that there are no vertices of 
GT on this side of e^ U ei in Ai. See Figure 3.4. 
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Figure 3.4. 

Let A be the annulus obtained by taking H23UHtiUfiUfj and shrinking 
H23 and Hn radially to their cores. The boundary of A consists of two curves 
e^. U el- and e^Ue^. By Claim 3.3 both of these curves are essential on T. 
They therefore divide T into two annuli, Ci and C2. Since if (7) does not 
contain a Klein bottle, by Theorem 1.3, AUCi and AUC2 are tori, T3 and 
T4, say. 

Each of T3 and T4 intersects K7 fewer times than T (after pushing K7 

off of A in the right direction); consequently, by the minimality of T and 
the irreducibility of if (7), ^3,24 bound solid tori, M3,M4. Thus Xf = 
M3 LU M4. The incompressibility of T implies that A must be homotopic 
to at least twice around the core in each of M3 and M4; therefore, Xf is a 
Seifert fiber space over the disk with two exceptional fibers and the Seifert 
fiber is represented by the core of A. 

After enlarging by an isotopy in X', we may assume that, say, Ci contains 
Ai (note that A can still be taken disjoint from if7). Let Y = M3 UAI MI. 

The core of Ai is isotopic to the core of A and to the core of B. Thus the 
core of Ai is homotopic to at least twice around the core in each of M3 
and Mi. Thus Y is a Seifert fiber space over the disk with two exceptional 
fibers. Let Y' = if (7) — IntY = M2 Uca M4. Since C2 is homotopic to at 
least twice around the cores of M2 and M4, Yf is also a Seifert fiber space 
over the disk with two exceptional fibers.  Therefore dY is incompressible 
in if (7). But \dY n if7| = Hd - AO n if7| + \B n if7| < |Ci n if7| < t, 
contradicting the minimality of T. D (Theorem 3.2) 

Theorem 3.5.  There can be at most two Scharlemann cycles of GQ on 

distinct label-pairs whose faces lie on the same side of T.   FurthermorCj if 
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there are two then this side ofT is a Seifert fiber space over the disk with two 
exceptional fibers whose orders are equal to the lengths of these Scharlemann 
cycles. 

Proof. Assume there are two Scharlemann cycles CJI, (72 and possibly a third 
(73 on distinct label-pairs that lie in, say, X. Let /i,/2,/3 be the faces of 
GQ bounded by ai, (72, (73 (resp.). Then the boundaries of these faces lie on 
disjoint annuli Ai,i4.2, A3 in T. Let {ki,ki + 1} be the labels of cr^. Define 
Mi = nhdiAiU Hkiiki+1U fi). 

Claim 3.6. If Mi is a solid torus then the core of Ai must be homotopic to 
rii times a generator of 7ri(Mi), where rii is the length of fi. 

Proof Attach a 2-handle to Mi along the core of A^. Prom the handle 
decomposition one sees that the resulting manifold has first homology of 
order rii. d 

For i = 1,2, let Z. = X - Mi. Then \dZi n K7\ < t. Thus dZi must 
compress in JK" (7). Hence it must compress in Zj, by the incompressibility 
of T. This fact along with the irreducibility of if (7) implies that Zi is a 
solid torus. 

Let Z12 = Zi H Z2. Writing dM2 = A2 U B2, we have Zi = Zn UB2 M2. 
This means that Z12 and M2 are both solid tori and that the core of B2 
is isotopic to the core of one of these solid tori. By Claim 3.6, it must be 
isotopic to the core of Zu- This implies the theorem. First, there cannot 
be a third Scharlemann cycle (73. For then M3 C Z12, but this contradicts 
Claim 3.6. Second, it expresses X as a Seifert fiber space over a disk with 
two exceptional fibers, where Claim 3.6 says that the orders of these fibers 
are the lengths of ai, (72. □ (Theorem 3.5) 

Lemma 3.7. Let a be a Scharlemann cycle in GQ of length n, where n is 

either 2 or 3. Then the edges of a lie in an essential annulus, A, in T. 
Let {k,k + 1} be the labels of a and let f be the face of GQ bounded by a. 
Then M = nhd(A U Hk,k+i U /) is a solid torus such that the core of A is 
homotopic in M to n times around the core of M. 

Proof The only way that the edges can fail to lie on an essential annulus 
in T is if a has length 3. By Lemma 3.1, the edges on GT and GQ would be 



612 C. McA. Gordon and J. Luecke 

Figure 3.5. 

as in Figure 3.5. But because T is separating, the clockwise orientation of 
labels x,y,z on vertex k would force an anticlockwise orientation of x^y^z 
on vertex k + 1, contradicting Figure 3.5. 

M is a genus two handlebody, A U Hj^k+ii with a 2-handle, /, attached. 
Let mi be a cocore of Hk^+i that intersects df algebraically and geomet- 
rically n times. Let m2 be a meridianal disk of nhd(^4) that intersects df 
once (Lemma 3.1). Then mi,m2 form a set of meridianal disks for the 
handlebody. Since df intersects ra2 once, df is primitive and M is a solid 
torus. Since the core of A intersects ra2 once and misses mi, the core of A 
is homotopic to n times the core of M. □ 

Theorem 3.8. Let a, n, A, f be as in Lemma 3.7. The side ofT containing 
f is a Seifert fiber space over the disk with two exceptional fibers one of which 
has order n. Furthermore7 the core of A is a Seifert fiber. 

Proof. Let M be as in Lemma 3.7 and assume without loss of generality 
that f is in X. We can write dM = A U B where B is an annulus properly 
embedded in X. Let f' = (f - A) U B. f' intersects #(7) fewerJimes 
than T, hence must compress in ^(7). By the incompressibility of T, this 
compressing disk must lie in X. Thus T' bounds a solid torus M' and 
X — MUBM''. By Lemma 3.7, M is a solid torus. Since T is incompressible, 
X is a Seifert fiber space over the disk with two exceptional fibers given by 
the cores of M and M'. Furthermore, the core of B is a Seifert fiber, hence 
so is the core of A. By Lemma 3.7 the core of M represents an exceptional 
fiber of order n. □ 

Theorem 3.9. Let ai and 02 be Scharlemann cycles in GQ of order 2 or 
3 and let fi and f2 be the faces of GQ that they bound. If f\ and f2 lie on 
opposite sides of T; then ai and 02 must have a common label. 
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Proof. Assume for contradiction that ai and 02 do not have a common label. 
Then the edges of ai and 02 lie on disjoint annuli in T, Ai and A2 (resp.). 
Assume fi lies in X and /2 lies in Xf. Let Mi = nhd(Ai U Hkuki+i U fi) for 
i = 1,2 where fci, fc^ + l are the labels of ai. Let S; = dMi—A^ i = 1,2. Then 
Bi is a properly embedded annulus in X and B2 is a properly embedded 
annulus in X'. The argument of Theorem 3.8 shows that M[ = X — Mi is a 
solid torus for which the core of Bi is homotopic to more than once around 
the core of M[. Similarly the core of B2 is homotopic to more than once 
around the core of M£ = Xf - M2. Let ?' = (?- (Ai UA2)) UBi U^2. Note 
that T' intersects ^ fewer times than T. One side of fl is TVi = Mi LUi Mg 
and the other side is JV2 = M2 U^ M[. Ni is a Seifert fiber space over 
the disk with two exceptional fibers since the core of Ai is homotopic to a 
proper multiple of the cores of both Mi and M2 (the core of Ai is isotopic to 
the core of A2, hence also to the core of #2). Similarly, N2 is a Seifert fiber 
space over the disk with two exceptional fibers. Thus T' is incompressible 
in ^(7). But this contradicts the minimality of T. □ 

Note. By Theorem 3.8, both X and X' are Seifert fibered over the disk 
with two exceptional fibers; furthermore, the Seifert fibers are isotopic on T. 
Thus if (7) is Seifert fibered over the 2-sphere with four exceptional fibers. 
In the above argument, T, which separates the exceptional fibers into pairs, 
is exchanged for T' which separates the fibers into different pairs. 

Lemma 3.10. Let ai and 02 be Scharlemann cycles of length 2 in GQ on 

distinct label-pairs. Then the loops on T formed by the edges of 01 and 02 
respectively are not isotopic on T. 

Proof. Let {ki,ki + 1} be the labels of 0^, and let fi be the face of GQ 

bounded by cr*, i = l,2. Then shrinking Hkiiki+i to its core in Hkuki+1 U fi 
gives a Mobius band Bi such that dBi is the loop on T formed by the edges 
of ai. If dBi were isotopic to dB2 on T then taking the union of Bi and B2 
would give a Klein bottle in if (7), contradicting Theorem 1.3. □ 

Theorem 3.11. At most three labels can be labels of Scharlemann cycles of 
length 2 in GQ. 



614 C. McA. Gordon and J. Luecke 

Proof. If there are four such labels, then there are two Scharlemann cycles 
of length 2, ai^and (72, say, whose label-pairs are disjoint. By Lemma 3.1, 
the loops on T formed by the edges of ai and 02 are isotopic. But this 
contradicts Lemma 3.10. □ 

4. The case A > 3, t > 4. 

In this section we prove the following weak version of Theorem 1.1. As 
mentioned at the end of Section 1, Theorem 4.1, Theorem 8.1 and the main 
result of [EMI] imply Theorem 1.1. 

Theorem 4.1. Suppose that ^(7) contains an incompressible torus, where 
A(7,/i) >3. Thent = 2. 

Let A be a great web in GQ guaranteed by Corollary 2.7. Let DA be the 
disk bounded by A. 

For every label x of GQ let A^ be the graph in DA consisting of the 
vertices of A along with all £-edges of A. Note that, by the parity rule, an 
edge of A has at most one end with label x. 

Let V be the number of vertices of A. Recall that V > 1. 

Lemma 4.2. Let x be a label of GQ. If Ax has at least 3V — 4 edges, then 
Kx contains a bigon. 

Proof. Assume that Ax contains at least 3V — 4 edges. We may assume 
that Aa; is connected. We will view Ax as a graph in the 2-sphere, where 
at most one face / of A^ contains vertices of GQ that are not in Ax. We 
assume for contradiction that the only bigon of A^ is possibly /. Let V, E, F 
be the number of vertices, edges, and faces of A^ considered as a graph in 
the 2-sphere. Then by counting edges we have 2 + 3(F — 1) < 2E which 
implies that F < (2E + l)/3. We also have E > 3V - 4. Combining this 
with the Euler characteristic equation V — E + F = 2 we obtain 

(E/3 + 4/3) - E + (2E + l)/3 > 2 

But this is a contradiction. □ 

Let C be the set of all labels of GQ that are labels of Scharlemann cycles 
of length 2 in GQ. 
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Theorem 4.3. // A > 3 then \C \ > At/5. 

Proof. Let x be a label such that the number of edges of A^ is at least 
3V — 4. Applying Lemma 4.2, Ax must contain a bigon. But such a bigon 
is either the face of GQ bounded by a Scharlemann cycle of length 2, or 
contains an extended Scharlemann cycle of length 2. (Note that the x-labels 
of the two edges cannot appear on the same corner of the bigon, else there 
would be t edges of A within this bigon and, consequently, since no edge 
of A has the same label at both ends, there would be another edge of A^ 
within the bigon.) Hence, by Theorem 3.2, x G C. 

Thus if x £ C then there can be at most 3V — 5 edges in A^. Since 
A > 3, the label x appears at least three times at each vertex of GQ. Thus 
if x £ C there must be at least five occurrences of label x where edges of GQ 

that are not in A are incident to A (i.e., ghost rr-labels). By the definition of 
a web, A has at most t ghost labels in all. Therefore, there can be at most 
t/5 labels of GQ not in C. Since GQ has t labels, this proves the theorem. 
□ 

Proof of Theorem 4.1.     Suppose t > 4.   Then Theorem 4.3 implies that 
\C | > 4. But \C | < 3 by Theorem 3.11. □ 

5. The case A = 2, t > 6. 

In this section we prove Theorem 1.2', which we restate here for the 
reader's convenience. 

Theorem 1.2'. Suppose that K(j) contains an incompressible torus, where 
A(7,/i) = 2. Then t = 2 or 4. 

Recall that A is a great web guaranteed by Corollary 2.7. In what follows 
we assume for contradiction that t > 6 and derive a sequence of lemmas 
describing A. These lemmas come together in a proof of Theorem 1.2' at 
the end of the section. 

As in Section 4, for each label x of GQ let A^ be the subgraph of A 
consisting of all the vertices of A together with all x-edges in A. We as- 
sume without loss of generality that the labels appear in anticlockwise order 
around the vertices of A. 
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Lemma 5.1. A face of Ax of length at most 3 is either a face bounded by 
a Scharlemann cycle or one of the faces illustrated in Figure 5.1 (a)-(f). 

Proof It is clear that the boundary of a face of A^ of length 2 is either 
a Scharlemann cycle or an extended Scharlemann cycle. But the latter is 
impossible by Theorem 3.2. 

So let h be a face of A^ of length 3. The argument now breaks up into 
two cases, according to whether or not the edges of h form an z-cycle. 

Case I. The edges of h form an rr-cycle. 
It is easy to see that h contains within it a Scharlemann cycle of length 

2 or 3. If this Scharlemann cycle is of length 3 then h is either a Scharle- 
mann cycle or an extended Scharlemann cycle, and hence must be a Scharle- 
mann cycle. We may assume, then, that h contains within it an (r, r + 1)- 
Scharlemann cycle of length 2. Since GQ contains no extended Scharlemann 
cycles of length 2, within h we see the configuration of either Figure 5.2(i) or 
Figure 5.2(ii). We consider Figure 5.2(i); the case of Figure 5.2(ii) is similar. 

Let / and J be the label-intervals indicated at vertex c. Since |/| is 
equal to the number of labels between r + 2 and x (at vertex a), we see that 
r + 2 G J U J. 

If r + 2 G /, then among the edges joining a and c we have either an 
extended Scharlemann cycle or an (r+2, r+3)-Scharlemann cycle of length 2, 
contradicting Theorem 3.2 or Theorem 3.11 respectively. Hence r + 2 G J. 

Similarly, if w < r, then (by the parity rule) w < r — 2, and hence 
r — 1 G J, giving either an extended Scharlemann cycle or an (r — 2, r — 1)- 
Scharlemann cycle of length 2 among the edges joining b and c. Thus w = r 
or r + 2, and we have either Figure 5.1(a) or Figure 5.1(b). 

A similar argument shows that Figure 5.2(ii) gives rise to either Figure 
5.1(c) or Figure 5.1(d). 

Case II. The edges of h do not form an x-cycle. 
Let the vertices of h be a, 6, c, where a is the vertex at which both edges 

of h incident to a have label x. Let e(a, 6) and e(a, c) be the number of edges 
within h joining a to 6 and c respectively. Since e(a,6) + e(a,c) = t + 1, 
we have (say) e(a, b) > t/2. We therefore get a length 2 Scharlemann cycle 
among these edges. By Theorems 3.2 and 3.11, we must have e(a, b) = 
t/2 + 1, and also an (r, r + 1)-Scharlemann cycle must occur at the end of 
the group of parallel edges. Thus the situation is as illustrated in Figure 
5.3, with u = x — 1.   Also, e(a,c) = £/2.   Since by Theorem 3.11 there 
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Figure 5.1. 
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(i) 

Figure 5.2. 

Figure 5.3. 

is no Scharlemann cycle among the edges joining a and c, we must have 
T; = a; + l,z = r + l, and w = r + 2. Finally we note that the label x appears 
on vertex b before vertex c in Figure 5.3, giving us Figure 5.1(f). Similarly, 
if e(a, c) > t/2 we get Figure 5.1(e). □ 

Lemma 5.1 shows that if A^ contains a face of length at most 3 whose 
boundary is not a Scharlemann cycle then GQ contains one of the configu- 
rations (^(r) illustrated in Figure 5.4. 

Lemma 5.2. Suppose that GQ contains one of the configurations C±(r). 
Then 

(1) the edges in C±(r) lie on T as shown in Figure 5.5. 

Furthermore, if A is an annulus in T containing these edges then 

(2) |A filial > V2 + 2; and 
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C+(r) C_(r) 

Figure 5.4. 

(3) JV = nhd(A U Hr-i^ U ifr+i)r+2 U /i U /2) is a Seifert fiber space over 
the disk with two exceptional fibers of orders 2 and 3. 

Proof. Assume GQ contains C(r) = C+(r); the case of C_(r) is completely 
analogous. 

Since the two (r, r + 1) edges in C(r) form a Scharlemann cycle, they 
form an essential loop on T by Lemma 3.1. 

Assume that the two (r — 1, r + 2) edges in C(r) do not form an essential 
loop on T. Let A be an annulus in T containing the union E(r) of the 
edges of C(r). Let /i, /2 be the faces of GQ indicated in Figure 5.4, and let 
N = nhd{A U ifr_i}r U #r-f l,r+2 U fi U /2). Then 

7ri(iV) = (a;,j/,* | xy = 1 , y2^ = 1) 

where rr,?/, and z are represented by the cores of i?r_ijr, ^+1^4.2, and A 
respectively. Thus 7ri(N) = Z, generated by 2:, and in fact it is easy to see 
that N is a solid torus. Let dN = A U A'. Then f' = (f - A) U A'js a torus 
isotopic to T with \Tf fl iir7| = t — 4, contradicting our choice of T. 

Hence E(r) lies on T as shown in Figure 5.5. Note that we may assume 
that the (r, r + 1) edges and the (r + 1, r + 2) edge appear as in the Figure. 
If a, 6, c are the vertices of Configuration C+(r) then the orientation of these 
labels at vertex r + 1 forces the labeling at vertex r + 2. 

Define A and JV as above. Now 

7ri(JV)    ={x,y,z\xyz     = 1 , y2^ = 1) 
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Figure 5.5. 

<*(x,y\x2y3 = l) 

Hence N is not a solid torus. In fact it is easy to see that N is a Seifert 
fiber space over the disk with two exceptional fibers of orders 2 and 3, in 
other words, the exterior of the trefoil knot. Therefore dN is a torus which 
is incompressible in iV, and in K(j) — IntN (since T C if (7) — IntiV and 
THdN = A), and hence in if (7). If \A n if7| < t/2 + 1, then \dN n 
if71 ^ 2(t/2 + 1) — 4 = t — 2, contradicting the minimality of t. Hence 
|Anif7| >t/2 + 2. D 

Lemma 5.3. Let h be a face of Ax as in Figure 5.1(a)-(f). 

(1) If x G {r — 2, r + 3} then the two (r — 2, r + 3) edges within h form an 
essential loop on T. 

(2) a;e{r-2,r-l,r+-2,r + 3} 

Proof   If x £ {r — 2, r + 3} then within /i we see Figure 5.6 (i) or (ii): 
Let B be the annulus formed from gi U #2 -U JTr_2,r-i U ^+2^+3 by 

shrinking the iTs to their cores. By Lemma 5.2, the component of dB 
formed by the (r — l,r + 2) edges of gi and #2 is essential on T. Since T 
is incompressible, the other component of dB is also essential. This proves 
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Figure 5.6. 

Figure 5.7. 

To prove (2), observe that if x ^ {r — 2, r — 1, r + 2, r + 3} then within 
h we see one of the configurations of Figure 5.7 

Let ci be the loop on T formed by the (r - 2, r + 3) edges of hi and h^ 
and let C2 be the loop formed by the (r — 3, r + 4) edges of hi and /i2- Let 
B be the annulus obtained from hi U /i2 U Hr-s,r-2 U ^+3^+4 by shrinking 
the iiTs to their cores. 

By the argument given for (1) above, ci is essential on T. Hence C2 is 
also essential. Let Ai and .A2 be the two annuli into which ci and C2 divide 
T. Let Tj = Aj U J3, i = 1,2. Then, since ^(7) contains no Klein bottle by 
Theorem 1.3, Ti and T2 are tori. Note also that (after a slight perturbation) 
ifiHKryl    <t,    1   =    1,2. 
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Now T separates if (7) into X and X'; without loss of generality the faces 
hi)h2jfi, f2 lie in X. Then B separates X into Yi and Y2, say, where Ti = 
dYi, i = 1,2. Without loss of generality the manifold TV of Lemma 5.2(3) is 
contained in Yi. It follows that Ti is incompressible in K(7), contradicting 
the minimality of t. □ 

Lemma 5.4. Ift>6 then GQ can contain a configuration C±(r) for at 
most one value of r. 

Proof. Suppose GQ contains configurations C(r) = C±(r), C(s) = C±(s), 
for r ^ s. Then C(r) (resp. C(s)) contains an (r,r + 1) (resp. (5,5 + 1))- 
Scharlemann cycle p (resp. a) of length 2. Hence by Theorem 3.11, we may 
assume that 5 = r + 1. Applying Lemma 5.2 to C(r) and C(r + 1) gives 
pairs of (r, r +1) edges, (r -1, r + 2) edges, (r + 1, r + 2) edges, and (r, r + 3) 
edges, each of which forms an essential loop on T. Since £>6, r — 1, r, r + 1, 
r + 2, and r + 3 are all distinct, and it is easy to see that these loops must 
therefore be isotopic on T. In particular, the loops formed by the edges of 
p and a are isotopic on T. But this contradicts Lemma 3.10. □ 

For each label x of GQ, let ax be the number of ghost ^-labels in A. 

Theorem 5.5. If ax < 4 then Ax contains a face of length 2 or 3. 

Proof Let F be an innermost connected component of A^ with the least 
number of ghost rs-labels. Let a be the number of ghost z-labels in F; so 
cc < Cix < 4. Regard F as a graph in the disk DA? 

and let ^,e,/ be the 
number of vertices, edges, and faces of F, respectively. Since A = 2 (and, 
by the parity rule, each edge of A^ has only one label x), we have 

e = 2v — a 

Let rij be the number of faces of F of length j, and let u be the number of 
edges of F (counted with multiplicity) in the outside region of F, i.e., that 
containing dD^. Then 

2e =y   jrtj + UJ 

> 4/ — ns — 2n2 + CJ 
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Figure 5.8. Figure 5.9. 

Also, 1 = v — e + f. Hence 

4 = Av - 4e + 4/ < 4v - 4e + 2e + ns + 2n2 — u 

= Av — 2(2v — a) + ns + 2n2 — CJ 

= ns + 2n2 - a; + 2a , 

giving 

(*) ns + 2n2 > 4 + u — 2a . 

First observe that if u = 0, then F has a single vertex and is as shown 
in Figure 5.8. 

Since the numbers of ghost labels of A is at most £, there must be edges 
of A, and hence vertices of A, in both regions D' and D". Hence there are 
components F', F" of A^ in Z/, D" respectively. Since ax < 4, at least one 
of F', T" has at most one ghost x-label, contradicting the minimality of F. 

We may therefore assume that w > 0. Then (*) gives us the desired 
result unless a = 3, cv < 2 or a = 4, u) < 4. 

Let VQ be the number of vertices of F in the outside region of F. 

Case 1. a = 3, u < 2. 
Since each vertex has at most two ghost z-labels, ^o > 2. Therefore 

w = 2, and hence VQ = 2. The situation is therefore as shown in Figure 5.9. 
But then, as in the argument above that u > 0, there is a component F' 

of Ax in Df with at most one ghost x-label, contradicting the minimality of 
F. 
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Figure 5.10. Figure 5.11. 

Case 2. a — 4, CJ < 4. 
First suppose there is a vertex of F with two ghost x-labels, as in Figure 

5.10. Then, as before, there must be vertices of A in both regions D* and 
JD

77
, and hence, by the minimality of F, A and F each have three vertices 

and F is as shown in Figure 5.10. 
If no vertex of F has two ghost z-labels then v§ > 4. But u > VQ, hence 

vo = u = 4. Hence the outside region of F is as shown in Figure 5.11. By 
the minimality of F there are no vertices of A in this outside region. 

Now in both Figures 5.10 and 5.11, there can be at most t/2 + l edges of 
A parallel to each e^, otherwise we would have either Scharlemann cycles of 
length 2 on disjoint label pairs, contradicting Theorem 3.11, or an extended 
Scharlemann cycle, contradicting Theorem 3.2. 

Hence in Figure 5.10, each extremal vertex has at least 2t — (t/2 + 1) = 
3i/2 — 1 > t ghost labels. Since the total number of ghost labels in A is at 
most t, this is a contradiction. 

Similarly, at each vertex in Figure 5.11 we see at least t/2 ghost labels 
of A, giving a total of at least 2t ghost labels, again a contradiction. □ 

Theorem 5.6. For each label x of GQ, A has at most t/2 ghost x-labels. 

Proof. Since T is separating any edge of GQ separates a black face of GQ 

from a white face. Thus as you move around the boundary of the outside 
region of A (thought of as a graph in the disk I?A), the colors of the faces 
alternate as you cross the ghost labels. Since the vertices of A are parallel 
this means that two consecutive ghost labels must correspond to vertices of 
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GT which are not parallel. Since A has at most t ghost labels, we are done. 
□ 

Let 

C = {x : h.x contains a face of length 2 or 3 }, and 

S = {x : x is a label of a Scharlemann cycle in GQ of length 2 or 3 } . 

Let Co = £ — S. 

Theorem 5.7. |5| < 4. 

Proof.   This is an immediate consequence of Theorems 3.5 and 3.9. □ 

Theorem 5.8. \Co\ < 4. 

Proof.   This follows from Lemma 5.1, Lemma 5.3(2) and Lemma 5.4.       □ 

Theorem 5.9. \C\ > 4t/5. 

Proof.    If x £ £ then by Theorem 5.5 A must contain at least five ghost 
^-labels. Since A has at most t ghost labels in total, the result follows.    □ 

Proof of Theorem 1.2'.    Assume for contradiction that t > 6.   Combining 
Theorems 5.7, 5.8 and 5.9 we get 

4*/5<|iC| = |£o| + |5|<8. 

Therefore t < 10. 

Case 1. t = 10 or 8. 
If t = 10 then \£ \ > ^ = 8 by Theorem 5.9. 
If t = 8 then by Theorem 5.6 we have ax < 4 for all labels x. Therefore 

\£ | = 8 by Theorem 5.5. 
In both cases, then, we must have |£o| = \S\ = 4. 
In particular, GQ contains an (r, r + 1)-Scharlemann cycle p of length 2, 

and £o = {r-2,r- l,r + 2,r + 3} by Lemma 5.3(2). 
Since \S\ > 2, GQ contains an (5, s + 1)-Scharlemann cycle a of length 2 

or 3 with s ^ r, and with 5,5 + 1 ^ £Q (by definition of £0). Therefore 
5, s + 1 ^ {r — 2, r — 1, r, r + 1, r + 2, r + 3}. By Lemma 3.1, a contains a 
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pair of (5, s + 1) edges that form an essential loop on T. Also, since r — 2 
(or r + 3) G £05 Lemma 5.3(1) implies that there is a pair of (r — 2,r + 3) 
edges that also form an essential loop on T. It follows that we may choose 
an annulus A in T containing the edges of the configuration C±(r), as in 
Lemma 5.2, so that the vertices 5, s +1, r — 2, r + 3 lie outside A. But then 
\A fl ir7| < t - 4 < t/2 + 1, contradicting Lemma 5.2(2). 

Case 2. t = 6. 
By Theorem 5.6, o^ < 3 for all labels x, and hence \C\ = 6 by Theo- 

rem 5.5. Therefore (taking r = 1 without loss of generality) GQ contains a 
12-Scharlemann cycle of length 2, and £Q C {5,6,3,4}. 

If 4 or 5 G £0? then by Lemma 5.3(1) there is an essential loop of 
(4,5) edges on T. We may therefore choose the annulus A of Lemma 5.2 
so that vertices 4 or 5 lie outside A. Hence \A fl if7| = 4, contradicting 
Lemma 5.2(2). 

On the other hand, since \S\ < 4, we must have \£Q\ > 2. There- 
fore Co = {6,3} and S = {1,2,4,5}. But then GQ contains 12- and 45- 
Scharlemann cycles of length 2 or 3, contradicting Theorem 3.9. □ 

6. Klein bottle; the case t > 4. 

In this section and the next we will assume that ^(7) contains an em- 
bedded Klein bottle S. Note that S is incompressible. For let c be a simple 
closed curve in S bounding a disk in if (7). Then c is orientation-preserving 
in if (7). If c does not bound a disk on S then the surgery of S along c 
would produce in if (7) either a non-separating 2-sphere or two disjoint pro- 
jective planes, according as c is non-separating or separating on S. But this 
contradicts the fact that #1(^(7)) is finite cyclic (since A > 1). 

We suppose that S is chosen to intersect if7 transversely and to mini- 
mize \S fl if7|. Then S = S fl E(K) is incompressible in E = E(K). The 
incompressibility of S then implies the boundary incompressibility of S (not- 
ing that a boundary compressing disk in the case \S fl if7| = 1 allows us 
to isotop if7 onto S — contradicting the fact that K is neither a satellite 
nor a torus knot). Let T be the torus that is the boundary of a regular 
neighborhood of S, and let S, T be the intersection of 5, T respectively with 
E. Let t = \dT\ = 2\dS\. Theorem 6.1 of this section and Theorem 7.1 of 
Section 7 imply Theorem 1.3. 

In this section we prove 



Dehn Surgeries on Knots 627 

Theorem 6.1. Suppose that K(j) contains a Klein bottle, with t > 4. Then 
A(7,/i) = l. 

Before proving Theorem 6.1, we give a general discussion of the context 
in which we will be working in this section and the next. 

We begin with the following lemma. 

Lemma 6.2. If K^) contains a Klein bottle then A(7, fi) is odd. 

Proof. Let F be a closed non-orientable surface embedded in a closed ori- 
entable 3-manifold M. The homology exact sequence of the pair (M, M — F) 
gives an exact sequence 

iJi(M) -> Hi(M,M- F) -± Ho(M - F) . 

Now HQ(M — F) is free abelian, while, by Alexander duality, 
H^M.M - F) ^ H2(F) ^ Z2. Hence fli(M;Z2) ^ 0. But if 7 
is parametrized as m/n in the usual way, then ^1(^(7)) = Z|m| and 
A(7,/i) = n. Since (m,n) = 1, the result follows. □ 

Thus we assume in the next two sections that A (7, /J,) > 3 and arrive at 
a contradiction, when t > 4 in this section and when t = 2 in Section 7. 

Let p+,p- be two points in 53 and write 53 — {p+,p_} = Q x (—1,1) 
where Q is a 2-sphere. Let S be as above. Then 5 is a properly embed- 
ded, incompressible, boundary incompressible surface in E: whose boundary 
components are copies of the curve 7. Lemma 4.4 of [Ga, p.491] says that, 
after an isotopy of K, we can find a Q = Q x {i}, for some i, such that: 

(1) Q intersects K transversely. Thus Q = Q fl E is a properly embedded 
planar surface in E such that each component of dQ is a copy of the 
meridian fi of K. 

(2) Q intersects S transversely and no arc component of Q fl S is parallel 
in Q to dQ or parallel in 5 to OS. 

By taking a small enough neighborhood, X, of 5, we may assume that 
Qn(X-nhd(Kj)) = (QnS)x [-£,e] (note that these /-bundles over QnS 
are not twisted since they lie in Q). That is, Q fl T in Q is the "double" 
of Q fl 5 in Q, and each component of Q fl 5 is double covered by two 
components of Q fl T, as T double covers 5. Thus we may also conclude 
that 
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(3) Q intersects T transversely and no arc component of Q n T is parallel 
in Q to dQ or parallel in T to dT. 

We are now in the context of the first part of Section 2. As is done there, 
define the labelled graphs of intersection, GQ in Q and GT in T. Also, define 
the labelled graphs GQ in Q and Gs in S coming from the arc components 
of Q n S. 

Let c be a simple closed curve component of Q D S. By the incompress- 
ibility of 5, c must bound a disk on S. Thus we may get rid of c by surgery. 
That is, we may assume that no simple closed curve of Q fl S bounds a disk 
in Q. But this implies that no simple closed curve of Q D T bounds a disk 
in Q. Thus, as in Section 3 we will assume that no disk face of Gg, GQ 

contains a simple closed curve component of Q fl 5, Q fl T (resp.). 
Just as T divides if (7) into a black side, X, and a white side, X', the 

faces of GQ are divided into black and white faces. Furthermore, each black 
face of GQ is a bigon and corresponds to an edge of GQ. 

The proofs in Section 2 go through for the pair GQ and GT- In particular, 
Corollary 2.7 becomes 

Theorem 6.3. GQ contains a great web. 

However, the proofs in Section 3 usually rely on the incompressibility of 
T and the fact that |rniif7| is minimal. We no longer have the incompress- 
ibility of T and the minimality is with respect to |5niiCy|. We need to prove 
the analogs of some of these results under this assumption. 

Theorem 6.4. If t > 4 then no Scharlemann cycle in GQ bounds a white 
face. 

Proof. Let a be a Scharlemann cycle in GQ bounding a white face, /, of GQ. 

Then this corresponds to a Scharlemann cycle, a', in GQ bounding a white 
face /'. Let x,y be the labels of a' (since t > 4, x and y will be distinct) 
and let H be the annulus on dE between the components x and y of S. 
Then tubing S along H and compressing along /' gives a new Klein bottle 
in if (7) that intersects Kj fewer times than 5, contradicting the minimality 

of S. □ 

Theorem 6.5. //oi, 02; and as are Scharlemann cycles in GQ, then two 
of them must have the same pair of labels. 
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Figure 6.1. 

Proof. Let /i,/2,/3 be the faces of GQ bounded by C7i,cr2,cr3 (resp.). By 
Theorem 6.4, these must all be black faces of GQ and hence bigons. Assume 
for contradiction that the pairs of labels of the Scharlemann cycles are dif- 
ferent. Since /i5/2,/a are all black, these label pairs must be disjoint. Let 
{hi, hi + 1} be the labels of a^ Let Hi be that part of Ky running from com- 
ponent ki to component ki + 1 of 9T. Let Fi be the Mobius band obtained 
by taking Hi U fi and radially shrinking Hi to its core. Then F^ i = 1,2,3, 
are disjoint Mobius bands properly embedded in X. But this is impossible. 
D 

Theorem 6.6. Ift>6 then GQ does not contain an extended Scharlemann 
cycle. 

Proof. Assume for contradiction that K is an extended Scharlemann cycle in 
GQ. Let a be the Scharlemann cycle interior to K. Without loss of generality 
we may assume that the labels of the edges of a are {1,2} and, consequently, 
the labels of the edges of K are {£, 3}. Let / be the face of GQ bounded by 
a. By Theorem 6.4, / must be a black face and hence a bigon. Let ej-,e^ 
be the edges of a and ej., e^ be the parallel edges of K. For i = 1,2, let gi be 
the bigon (white) face of GQ representing the parallelism of ej, and e^. Let 
/i? /2 be the black faces contiguous to elK,e

2
K. See Figure 6.1. 

In G|, /,/i,/2 go to edges /3,ai,a2 and 31,52 go to faces $i,$2- Note 
that the endpoints of the edge fi in GQ have the same label, say &, and the 
edges ax and 0^2 have the same pair of distinct labels, say {a, c}. See Figure 
6.1. 

Let Ha^c be the part of V1 running between components a and c of dS. 
Let A be the Mobius band obtained by taking Ha^ U $1 U $2 and shrinking 
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Ha^ radially to its core. Let d, /3 be the simple closed curves in S obtained 
from ai U a2, /? by shrinking the vertices of Gs to points. Then A intersects 
S in dA = a and in its centerline /?. The face / of GQ gives rise to a twisted 
/-bundle over $ that is normal to 5, thus /3 must be orientation-reversing 
in S (since -^(7) is orientable). On the other hand, the faces /1 and /2 
together give rise to a trivial /-bundle over a that is normal to 5, thus a 
is orientation-preserving in S. Note that a cannot bound a disk in S since 
this disk along with A would be a projective plane in if (7) contradicting 
[GLu3] (in fact one could avoid this reference to [GLu3] and the need that 
A(7,/i) > 1, by following the argument here and taking S to be the surface 
intersecting K7 minimally among all projective planes and Klein bottles). 
Since d, $ are disjoint, embedded loops in 5, a = dA must bound a Mobius 
band F in S ^disjoint from /3. Let P be the Klein bottle A\JF. We may 
now perturb P to be transverse to K^ and have fewer intersections with /C7, 
thereby contradicting the minimality of S. □ 

We now observe that the conclusion of Theorem 4.3 holds in our present 
setting. Let C be the set of labels of GQ that are labels of Scharlemann 
cycles of length 2 in GQ. 

Theorem 6.7. //1 > 6 then \£ | > 4t/5. 

Proof. The proof is exactly the same as that of Theorem 4.3, using Theo- 
rem 6.3 instead of Corollary 2.7, and Theorem 6.6 instead of Theorem 3.2. 
□ 

We can now prove Theorem 6.1 when t > 6. 

Proof of Theorem 6.1 when t > 6. By Theorem 6.7 there must be at least 
five labels that appear as labels of Scharlemann cycles of length 2 in GQ. 

But this contradicts Theorem 6.5. □ 

The rest of this section will be devoted to proving Theorem 6.1 in the 
case t = 4. 

So suppose t = 4, and consider a black face of GQ whose vertices are 
parallel. Such a face is a bigon, and is either a face bounded by a 12- 
Scharlemann cycle, or a 34-Scharlemann cycle, or has label pair {1,2} at 
one vertex and {3,4} at the other. We will call these a 12-bigon, 34-bigon, 
and mixed bigon, respectively. 
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Figure 6.2. 

Lemma 6.8. Suppose t = 4. Then any disk bounded by a cycle of mixed 
bigons in GQ must contain vertices in its interior. 

Proof. Consider an innermost cycle that contains no vertices in its interior. 
If the disk it bounds contains no black faces in its interior then it forms a 
Scharlemann cycle bounding a white face of GQ, contradicting Theorem 6.4. 
Thus it must contain black bigons in its interior. But an outermost black 
bigon would have to be a mixed bigon (see Figure 6.2), contradicting our 
assumption that the cycle is innermost. □ 

Let A be the great web guaranteed by Theorem 6.3. Every black face 
of GQ is a bigon and we may assume an edge of GQ is in A if and only if 
the corresponding black bigon is in A. Thus the definition of a great web 
says that all but at most two of the black bigons incident to vertices of A 
are in A. From this one calculates that A contains at least 3V — 1 black 
bigons, where V is the number of vertices of A. Because the vertices of A 
are parallel, any black bigon in A is either a 12-bigon, a 34-bigon, or a mixed 
bigon. 

Lemma 6.9. Suppose t = 4.  Then GQ contains a 12-bigon and a 34-bigon. 

Proof. Suppose for contradiction that GQ contains no 12-bigon, say. Then 
every bigon in A with label-pair {1,2} at one end is a mixed bigon. Hence 
the number of mixed bigons is at least 3V — 2 > V. But this would give a 
cycle of mixed bigons of the kind prohibited by Lemma 6.8. □ 

Let a be a 12-bigon and r a 34-bigon.   By the proof of Lemma 3.1 
(using the Klein bottle and its irreducible neighborhood in place of the 
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incompressible torus) the edges of a and the edges of r form disjoint essential 
simple closed curves on T. From this one sees that if p is any other 12-bigon 
in A, then one edge of p will be parallel on GT to one edge of a and the 
other edge of p parallel to the other edge of a. Similarly, the edges of any 
34-bigon will be parallel in GT to the edges of r. 

Lemma 6.10. Suppose t = 4. Then there must be vertices of GQ on either 
side of a cycle of 12-bigons (or 34-bigons). 

Proof Suppose GQ contains a cycle of, say, 12-bigons one side of which 
contains no vertices of GQ. Picking one edge from each of these bigons 
(see the comment preceding this lemma) we obtain a collection of edges 
{ei, 62? • • • ? em} which in GQ bound a disk D with no vertices in its interior 
and which in GT are parallel edges connecting vertices 1 and 2. The argu- 
ment from [GLi, p. 130, Case (2)] shows that nhd(<9i£U.DU|J{bigon faces of 
GT between the edges e;}) forms a cable space. (Note that if two edges e^, ej 
had the same label (1 or 2) at the same vertex of the cycle, then there would 
be more than q parallel edges of GT and we could apply the full argument 
of [GLi, Section 5] to obtain a different cabling.) But our hypothesis on K 
implies that E does not contain a cable space. □ 

Proof of Theorem 6.1 when t = 4. Let A be the great web described above. 
Since A contains at least 3V — 1 black bigons, there must be at least V black 
bigons in A all of which are either 12-bigons, or 34-bigons, or mixed bigons. 
But this would give a cycle of such bigons bounding a disk with no vertices 
in its interior, contradicting Lemmas 6.8 and 6.10. □ 

7. Klein bottle; the case t = 2. 

In the context of the first part of Section 6 we prove 

Theorem 7.1. Suppose that A"(7) contains a Klein bottle, with t = 2. Then 
A(7,/i) = l. 

So let S be an embedded Klein bottle in if (7) that intersects K7 once, 
and let T, GT, GQ, GQ be as in the first part of Section 6 through The- 
orem 6.3.   We assume for contradiction that A(7,/i) > 1.   By Lemma 6.2 
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Figure 7.1. 

A(7,/i) must be odd. We assume that A(7,/i) = 3, however the same 
argument works for A(7,/i) > 5. 

Theorem 6.3 now guarantees the existence of a great web, A, in GQ. 

Thus A contains at most two ghost edges. If A contains any ghost edges 
we may assume there are exactly two ghost edges which cobound a black 
bigon. A black bigon of GQ connecting parallel vertices corresponds to an 
orientation-reversing curve on S (the bigon is a Scharlemann cycle that gives 
rise to a Mobius band normal to S of which this curve is a core). Since any 
two such curves intersect in a single point on 5, there are at most two isotopy 
classes of such curves. Thus there are at most two isotopy classes of such 
edges in Gs- One such edge class in Gs gives rise to two edge classes in 
GT, 1 and /?, which are the isotopy classes of edges of the corresponding 
black bigon in GT- The other edge class in Gs yields edge classes a and a/3 
on GT- After a homeomorphism of T we assume these edge classes of GT 

appear as in Figure 7.1. For now consider A as a graph in the 2-sphere, 
by adding an outside face to A. If A has ghost edges then they are incident 
to a single vertex of A which we call the exceptional vertex of A. The black 
faces of A are bigons with edges in classes 1 and f3 and in classes a and a(3. 

Let F be an oriented dual graph defined as follows: the vertices of T are 
the white faces of A, the faces of F are the vertices of A, and an edge e of F 
is an edge dual to a black face / of A oriented so that the edge of / in class 
1 or ce is at the tail of e and the edge of / in class (3 or a/3 is at the head of 
e. See Figure 7.2. 

Claim 7.2. F contains a sink or source which is not dual to the outside 
face. 
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Figure 7.2. 

A vertex of A which is not the exceptional vertex cannot correspond to 
an oriented cycle in F: otherwise that vertex, V, would have two edges in 
the same edge class (e.g., /?) incident to it on the same label. See Figure 7.3. 
The argument of [GLi, Section 5] shows that E(K) would then contain a 
cable space contradicting our assumption on K. 

Thus if there is an oriented cycle face in F, it is dual to the exceptional 
vertex of A. In this case, the outside face of A is not dual to a sink or source 
of F. Since F contains at least two elements in {sinks, sources, cycle faces}, 
the claim now follows. □ 

Claim 7.3. GQ contains a white face all of whose edges are in classes 1 
and a. 

Proof A source of F corresponds to a white face of A whose edges are 
in classes 1 and a — a sink to a white face with edges in classes /3 or a/3. 
Applying Claim 7.2 and possibly relabelling the edges of GT gives a white 
face of GQ with edges labelled 1 and a. □ 

Lemma 7.4.  There   is   a  Klein   bottle   in  if (7)   containing  Kj   as   an 
orientation-reversing curve. 
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Figure 7.3. 

Proof. By Claim 7.3, GQ contains a white face / bounded by edges in 
classes 1 and a. Consider the extended Scharlemann cycle g obtained by 
adding contiguous black bigons to /. By the proof of Lemma 3.1, modified 
as noted in the proof of Lemma 6.9, / must contain edges in both classes 
1 and a; hence, g must contain edges in both classes /? and a(3. Label the 
vertices of g xi,... ,xn and note that the Xi must be distinct since two of 
the white faces incident to the Xi contain a/3 or /? edges. On each Xi let A^ 
be the interval on g fl Xi between the two edges whose endpoints are labelled 
1 at Xi. See Figure 7.4. 

Look at these Xi in K(7), in particular in T U dE. Each Xi has one 
endpoint, 91Ai, in an edge of class 1 or a and an endpoint, d2Ai, in an 
edge of class (3 or a/3. On vertex 1 of GT there are disjoint intervals, Ii 
and I2, such that {c^Aj}^!,...^ C /1, {<92Ai}i=iv..jn C h- Choose Ji,/2 to 
be the shortest such, then dlk C {dkXi}i=ii^^n. Label #1,... ,£n so that 
dli = {d1Xi,d1Xn}. In particular, take 91Ai to be incident to an edge in 
class 1 and d1 An to be incident to an edge of class a. See Figure 7.5. 

Claim 7.5. d2Xi is contained in an edge of class a/3, and d2Xn is contained 
in an edge of class /3. 
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Figure 7.4. 

d Xn 

Figure 7.5. 
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Proof. Assume for contradiction that d \i is in an edge of class /?. Then 
there is a A^ such that dl\k is in an edge of class 1 and d2\k is in an edge 
of class af3 (because there is corner of / that runs from label 1 on an edge 
in class 1 to label 2 on an edge in class a). Let /{ be the subinterval of ii 
between dlXi and c^Afc. Then AiU/{UAfc is isotopic in dE (rel its endpoints) 
to an arc /^ in vertex 1 that will contain ![ in its interior. See Figure 7.6. 
But this is impossible as the number of labels in /( would have to be the 
same as the number in 7^ (these labels are paired by arcs in dQ). 

This proves that d2\i is in an edge of class a/3. Similarly d2\n is in an 
edge of class /?. □ 

Claim 7.5 shows that the arc Ai Uli U An is isotopic on dE (rel endpoints) 
to I2. In particular Ai U Ji U An U I2 bounds an embedded disk D in dE. 

Let p : T -> S be the 2-fold covering projection defined by the twisted I- 
bundle structure of the regular neighborhood of S with boundary T. Then 
/{ = p(/i), I2 = p(h) are disjoint arcs in the single component of 95, 
and the disk D determines an embedded disk D' in dE which meets dS 
in I[ U I2 (see Figure 7.7). Let /' be the face of GQ corresponding to the 
face / of GQ. Note that the corners of /' lie in D1. Thickening D' gives a 
1-handle H C if (7) whose attaching region is a pair of disjoint disks in S 
containing ![ and i^- Surgering S along H gives a non-orientable surface 
F = (SUdH) - (SHdH). We may isotop /' off Int#, so that df becomes 
a non-separating, orientation preserving curve on F. 
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Figure 7.7. 

Surger F along /', giving a new Klein bottle S. Note that S intersects 
K7 in a single point, but as in Figure 7.8 K7 can now be isotoped to lie on S 
(as the union of two arcs — one on dH and the other in the disk S — Int S). 
Finally, note that Kj is 1-sided in S. □ (Lemma 7.4) 

Proof of Theorem 7.1. By Lemma 7.4, K^ is contained as an orientation- 
reversing curve in an embedded Klein bottle S in ^(7). Then S — Int Vy is 
a Mobius band properly embedded in E. This means that K is a (2,n)-cable 
knot, contradicting our assumption that K is not a satellite or torus knot. 
□ 

8. Strong invertibility. 

Recall that a knot K in S3 is strongly invertible if there exists an 
orientation-preserving involution h : S3 -> iS3, with fixed-point set an un- 
knotted circle KQ, such that h(K) = K and h \ K is orientation-reversing. 
Note that KQ meets K in two points. 

In this section we shall prove the following theorem. 

Theorem 8.1. Suppose that if (7)  contains an incompressible torus T, 

where A(7,/i) > 2 and t = {K^ fl T| = 2.  Then T = f fl E(K) separates 
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Figure 7.8. 

E(K) into two genus 2 handlebodies. In particular, K is strongly invertible. 
Furthermore, the tunnel number of K is at most 2. 

Let T and T be as hypothesized in Theorem 8.1. Let Q be a planar 
surface as described in Section 2 and GQ, GT be the resulting graphs of 
intersection. T separates E into black and white sides W and W7, say, and 
a face of GQ is black or white according as it lies in W or W. 

Lemma 8.2. GQ contains a Scharlemann cycle of length 2 or 3. Also, GQ 

contains a black Scharlemann cycle and a white Scharlemann cycle. 

Proof. Let A be the great web in GQ guaranteed by Corollary 2.7. Let D 
be the disk bounded by A. Note that A has at most two ghost labels. We 
consider A as a graph in the disk D (the outside region containing dD will 
not be a face of this graph). Because the vertices of A are parallel, any face 
of A is a Scharlemann cycle of GQ. We first show that A contains a face of 
length at most three, thereby proving the first part of Lemma 8.2 We then 
show A must contain both a black and white face, proving the second part. 
So assume for contradiction that each face of A has length at least four. If 
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Figure 8.1. 

V, E, F are the vertices, edges, and faces (resp.) of A, then 4F < 2E. On 
the other hand, every vertex of A without a ghost label has valence at least 
four. Since there are at most two ghost labels, E > ^^ = 27-1. Thus 
1 = V -E + F < £±! - E + f = i, a contradiction. 

Now assume that A does not have a, say, white face. Then we may 
connect each white corner of a vertex of A to dD by an embedded arc, 
where these arcs are disjoint from the edges of A and from each other. Let 
ai and 012 be an outermost pair of these arcs, and let v be the vertex at 
which they are incident. Then the two labels at v between ai and a? in 
this outermost sector must be ghost labels for A. Since there are at least 
two such outermost sectors, A must then have more than two ghost labels, 
a contradiction. □ 

Lemma 8.3. W and W' are handlebodies of genus 2. 

Proof. Note that dW and dW are surfaces of genus 2. The faces bounded 
by the black and white Scharlemann cycles of Lemma 8.2 give compressions 
of dW and dW in W and W respectively. Since E contains no essential 
torus, and since T is incompressible in E, W and W' contain no incompress- 
ible tori. Hence W and W are genus 2 handlebodies. □ 

Lemma 8.4. K has tunnel number at most 2. 

Proof. Let / be the face in GQ bounded by a Scharlemann cycle of length 
at most 3 (guaranteed by Lemma 8.2) and assume / is in W. Let a be a 
curve on T which intersects df transversely once. See Figure 8.1. 
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Figure 8.2. 

Let /3i, (32 be arcs in T connecting different components of dT such that 
T — nhdT(/?i U /?2) is an annulus, A, whose core is a. Since a has geometric 
intersection number one with the boundary of a disk in VF, it is easy to see 
that E(K) - nhdE(K)((3i U #2) = W UA W is a handlebody. Thus K has 
tunnel number at most 2. □ 

Lemma 8.5. One side of the incompressible torus in if (7) is a Seifert fiber 
space over a disk with two exceptional fibers. Furthermore, at least one of 
the exceptional fibers has order 2 or 3. 

Proof.   This follows from Lemma 8.2 and Theorem 3.8. □ 

Proof of Theorem 8.1. We have shown that E(K) is the union of two 
genus 2 handlebodies along T. We need to show that this means K is 
strongly invertible. Let T,T' be the copies of T in dW, dW respectively, 
and let A, Af be the annuli such that dW = T U A, dW = T' U A1. Thus 
E = W\JW', glued by some homeomorphism y : T -> T', and dE = A\J A1. 

Let WQ be a "model" handlebody of genus 2, standardly embedded in 
i?3. Let ZQ 

: Wo —> Wo be the involution defined by rotating WQ through TT 

about the axis indicated in Figure 8.2. 
Let h : W —> WQ, hi : W —)> Wo be homeomorphisms, and define 

involutions i^i' of W,W' respectively by i = h~liQh, i1 = h'~liQh!'. Let ^4o 
be the annulus in dWo shown in Figure 8.2. Note that io(Ao) = AQ, and 
that with respect to a suitable parametrization of AQ as S1 x [—1,1], io | -^o 
is given by (0,r) i-> (—0, —r). 

Let / : <9Wo -> OWQ be an orientation-preserving homeomorphism such 
that f(h(A)) = AQ. Then, as in [V], / is isotopic to g such that i^g = gi^. 
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Composing h with a homeomorphism of WQ whose restriction to dW^ is 
g~1f (and still calling the result /i), we may suppose that gh(A) = AQ. 

Similarly, we have a homeomorphism g' : dWo -* dWo such that iogr = 
g'io and g'h'{A') = ^o- 

We wish to define an involution j : E -> E by setting j | W = i, 
j | Wf = i7. The condition that j be well-defined is that y?z = i'tp : T -> T7. 
Since io(g/i) = (g/i)i : T -> To, and similar io(g'ti) = {g'h')^ : T" ^ To, 
this compatibility condition is equivalent to <po^o ::= ^o^o : ^b -* ^b? where 
^0 = (g'tiMgh)-1 : To -> TQ. But it follows from [Bi, Theorem 3] that 
cpo is isotopic to -00 : TQ —> TQ such that ^o^o = ^o^o- Then tp is isotopic to 
xj) = (g'ti'^i/iQ^h) : T -> T' such that ipi = i'tp. Thus we may define the 
involution j : E —> E as desired. 

Note that, parametrizing dE = A U Af as S1 x S1 in the obvious way, 
j | ^ is given by (0,<p) H» (-(9,-^). Now S3 ^ E U S1 x Z?2, where 
S1xD2 = N(K), and where we may assume that the gluing homeomorphism 
<9I£ —> 9(S,1 x D2) is given by an element of GZ^C^)- Hence j extends to an 
involution of S3 by setting j(0, (r, cp)) = {-6, (r, -p)), ((9, (r, 99)) G 51 x i)2. 
This involution is the desired strong inversion of K. □ 

Proof of Theorem 1.1. Suppose that ^(7) contains an incompressible torus 
T, chosen to minimize t = \T fl .Kyi, and suppose that A(7, fi) > 3. By 
Theorem 4.1, we then have t = 2. Hence, by Theorem 8.1, K is strongly 
invertible. But by [EMI], this implies that A(7,/i) < 2, a contradiction.  □ 

In [EM2], Eudave-Muiioz constructs an infinite family of strongly invert- 
ible, hyperbolic knots in the 3-sphere, k(^ m, n,p), such that k(£, m, n,p)(j) 
contains an essential torus for some 7 with A(7,/i) = 2. In fact, Eudave- 
Munoz shows that each side of the essential torus in A;(£,m, n,p)(7) is a 
Seifert fiber space over a disk with two exceptional fibers. 

Let K be a hyperbolic knot in S3 such that if (7) contains an essential 
torus where A(7, //) = 2. Theorem 1.1 says that such a knot is extremal 
among those hyperbolic knots admitting Dehn surgeries containing essential 
tori. Theorem 1.2 says that K is special. We end with a few questions asking 
exactly how special K is. 

Question 1.   Does K = k{t, m, n,p) for some values of £, m, n, and pi 

Question 2. Is each side of the incompressible torus in if (7) Seifert 
fibered over the disk with two exceptional fibers? 
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Towards Question 2, recall Lemma 8.5 and the fact that the answer is 
yes for the knots k^^m^n^p). 

Question 3.        Is K a tunnel number one knot?    In particular, does 
k(£i m, n,p) have tunnel number one? 
Added un proof,   Eudave-Mufioz (private communication) has shown that 
&(Z,ra,n,p) has tunnel number one. 

Recall that Lemma 8.4 says that K has tunnel number at most two. 
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