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Local entropy rigidity for hyperbolic manifolds

Livio FLaminio!

We study deformations of compact hyperbolic manifolds of a given
total volume. We show that along any non-trivial deformation the
topological entropy and the difference between topological entropy
and Liouville entropy are locally strictly convex functions of the
deformation parameter, thus providing a partial positive answer to
a conjecture of A. Katok.

§ 1. Introduction.

1.1. Statement of the problem.

1.1.1. Notation. Throughout this article, M denotes a compact smooth
manifold of dimension n. Given a C? Riemannian metric g on M, the
geodesic flow determined by g on the unit tangent bundle SyM is denoted
by Ty or Tj, or simply by g* when this abuse of notation will not be confusing.

1.1.2. Geodesic flows on the unit tangent bundles S;M of compact Rie-
mannian manifolds (M, g) of negative curvature are the chief examples of
transitive Anosov flows.

We recall that a continuous flow T : (v,t) € N xR +— Tty € N is
transitive if it has a dense orbit. A flow T on a compact manifold N is
an Anosov flow [Ano67] if it is C' and the tangent bundle TN of N splits
continuously in T-invariant subbundles TN = E° @ E* @ E*° satisfying the
conditions:

1. EY is the tangent space to the orbits of flow.

2. There exists positive constants A and C such that ||dT*|E*|| < Ce=*
and ||dT~*|E*|| < Ce for all t > 0.
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1.1.3. Anosov flows have many invariant measures. Given a T*-invariant
probability measure m, we denote by h(T,m) or h(T%, m) the measure the-
oretic entropy of the time 1 transformation T with respect to the measure
m [Pet83]. The supremum

htop(T) = sup{h(T,m) | T'-invariant probability measure m}

of all measure theoretic entropies is attained, for Anosov flows, by a unique
measure, the Margulis measure mg, also called the measure of maximal
entropy [Mar70, Bow72a, Bow74, BR75).

In the case of a geodesic flow Tgt, we also have a smooth Tg-invariant
measure on SyM, the Liouville measure Liouv(g), which arises from the
contact structure on Sy M.

1.1.4.  For locally symmetric manifolds of negative curvature, it is not
difficult to see that the Liouville measure and the Margulis measure coincide.
In other words, for geodesic flows on locally symmetric manifolds of negative ©
curvature, the measure theoretical entropy of Liouville measure coincides
with the topological entropy. The converse of this statement is the content
of the following conjecture of A. Katok.

1.1.5. Conjecture [Kat82, BK85]. The topological entropy and the en-
tropy of the Liouville measure for a geodesic flow on a negatively curved
manifold coincide, (if and) only if the manifold is locally symmetric.

A. Katok himself showed in [Kat82] that the conjecture is true if one
considers metrics conformally equivalent to a locally symmetric metric. In
particular, the conjecture is true for surfaces of genus greater than 1.

The topological entropy has also another geometric interpretation
[Man79]. Denote by M the universal cover of M. For a negatively curved
metric g on M, let By (p) be the ball of radius r centred at p € M for the

lift to M of metric g. Then

1
rop(Ty) = lim —log Voly By (p)).

In words, the topological entropy of the geodesic flow coincides with the
volume growth of balls in the universal cover of M.

A related conjecture of Gromov, formulated at about the same time as
Katok’s conjecture, states:
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1.1.6. Conjecture ([Gro83]). Among all metrics of volume equal to the
volume of a locally symmetric metric go on a manifold M, the volume growth
of balls in the universal cover M of M is minimized at the metrics isometric

to go-

Besson, Courtois and Gallot ([BCG94a] and [BCG94b]) have recently
announced a proof of Gromov’s conjecture for rank-one neg. curved locally
symmetric manifolds which builds up on their 1992 theorem:

1.1.7. Theorem ([BCG]). Let go be a metric of constant negative curva-
ture on a compact manifold M of dimension n. Then, in the space of H®
metrics with volume equal to the volume of gg, there exists a neighbourhood
U of go in the H® topology (s > n/2 + 2), such that the minimum of the
topological entropy in U is attained only by metrics isometric to gp.

1.1.8. In consideration of the fact that the method of Besson, Courtois
and Gallot applies so far only to topological entropy, in order to shade some
light on Katok’s entropy conjecture 1.1.5, it is very interesting to study the
functions

Entyop : g € MT(M) = hiop(Ty)
Entriou : ¢ € M"(M) = h(Ty, Liouv(g))

in a neighbourhood of the locally symmetric metric ggo. Here we have denoted
by (M, go) a compact locally symmetric manifold of negative curvature and
set

M" (M) = {C" metrics g on M | Voly(M) = Volg,(M)}.

1.1.9. We remark that the above functions Enti,, and Enty;oyy are known
to be smooth by previous works respectively of Katok, Knieper, Pollicott
and Weiss [KKPW89] (for the topological entropy) and of Contreras (for
the Liouville entropy) [Con92], provided we restrict ourselves to negatively
curved metrics. It is also known [KKW91] that a locally symmetric metric
go is a critical point of Ent;op and Entriouv-

1.2. Statement of the theorems.

In this paper we obtain estimates for the second derivative of the
functions Enty,, and Entpioyy at a metric of constant negative curvature
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which allow us to establish that along a path through a metric of con-
stant negative curvature gg, locally, the only metric for which one has
Entiop(g9) = Entriouv(g) is go. More exactly:

Theorem A. Let gy be a metric of constant negative curvature on a com-
pact manifold M of dimension n and let g. be a C? curve of C° metrics
of constant volume. Then, if g. is not tangent to the orbit of go under the
diffeomorphism group, the function

€ > Entiop(g:) — EntrLiouy(ge)

18 strictly convex at € = 0. In particular, it follows that along the path g,
and for small €’s, the equality Entiop(g:) = Entriouv(g9e) occurs only at go.

In [Pol94], Pollicott proved that at a locally symmetric metric the topo-
logical entropy is convex for volume preserving conformal deformations.
Along the way to the proof of Theorem A we find the following theorem.

Theorem B. Under the same hypothesis as Theorem A, the function
E > El’lttop(ge),

is locally strictly convex at go.

For the measure theoretical entropy the volume normalization does not
yield any useful convexity or concavity property. Surprisingly, we have:

Theorem C. There exists an hyperbolic 8-manifold (M, go) for which the
function Entriouy : M3(M) = R has second derivative at go with mized sig-
nature. In particular the entropy Entyiouy of the Liouville measure does not
have either a minimum nor a mazimum at gy, when restricted to M5(M).

1.3. Outline of the proofs.

The scheme for the estimate can be divided into three parts. In the first
part, since geodesic flows on a negatively curved manifold can be represented
as a flow built under a function on a topologically mixing subshift of finite
type, we investigate these flows.

We recall some basic definitions about cocycles. Let T be a Borel R-flow
on a Borel space X. An (R-valued) cocycle for the flow T is a Borel function
¢: X x R — R satisfying the relation

c(z,t + 5) = c(z,t) + c(T'z, s).
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Cocycles for the flow T form a group under addition and a cocycle ¢ for T
is called a coboundary if c(z,t) = b(T%z) — b(z) for some Borel function b.
Coboundaries form a subgroup and the elements of the quotient group are
the Borel cohomology classes of the flow. If a cocycle ¢ is “differentiable
along the orbits”, i.e. if ¢(z,t) = f(f A(T*z)ds, for some Borel function A
on X, we say that A generates c. In a cohomology class we can always find
a representative which is smooth along the orbits. If X has a C'® structure,
we say that a cohomology class is C* if it has a representative generated by
a C° function on X.

If (X,T) is a symbolic flow, i.e. a flow built over a topologically mixing
subshift of finite type with a Holder ceiling function A, then to each C¢
cohomology class [c] is attached a T-invariant measure mq called the Gibbs
state for [¢]. If A is a Holder function generating a representative of [c],
it is costumery to refer to A as the potential for the Gibbs state m(g. The
function identically equal to 1, generates a cocycle, called the length cocycle
and its corresponding Gibbs state is the measure of maximal entropy for T'.

We prove the following Proposition about derivatives of entropy of Gibbs
states for symbolic flows in terms of the variation of the generating cocy-
cles. The Covl (v, w) below denotes the “covariance” of Holder continuous
functions v, w for the flow T and with respect to the Gibbs state for the
potential u (see [Rue78] and §2) and Var®(v) = CovZ (v,v).

1.3.1. Proposition (A). Let (X,0) be a topologically mizing subshift of fi-
nite type and let Ae be a C? curve positive C® functions on . Let (X, T?)
be the special flow built over (X, 0) with ceiling function \e. Let 6l be a C*
function on X, = {(p,t)|p € £,0 <t < A\(p)} with the property that

A5(1’)
/ 51, (p, ) dt = d/de Ao (p).
0

Then, denoting with primes differentiations with respect to €, we have :

d
(A1) h’{:op(TO) = d_ehtop(Te)ezo = 'htop(TO)mO(élO)

where my is the measure of mazimal entropy for the flow Ty. If hi,,(To) = 0
and 621, denotes a C® function on X, with the property that

A (P)
/ 621 (p,t) dt = d?/de® ). (p),
0
then
(A2) hipo(To) = —heop(To) Mo (6%lo) + hsop(To)* Varg? (8lo).
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(B). Let ue = uc(p,t), (p € X, t € R), be a C? family of Holder continuous
Junctions of pressure zero for the flow T.. Let m,_ denote the Gibbs state

for the flow T, and potential u.. We have:
(B1)

d
B (To, muy) = %h(Ts,mue)ezo = Covz:g (w0, 6uo) — h(To, Mug) My (6lo),

where due is the (generator of ) first variation of the cocycle generated by u,
and is defined by fo’\‘ due(p,t) dt = d/de [;° ue(p, t) dt. If ug is cohomologous
to a constant and my,(dly) = 0, then h'(T,m,) =0 and

W' (Ty, muy) = — Varid(ug) — 2h(To, muy) Covid (8lo, Suo)
(B2) — h(T(), muo) My, (52l0).

(C). Finally, if in addition to the hypothesis in (B), we have (a) my_(dl;) =0
for all € and (b) mg = my,, then

(C1) hiop(To) = Covid (hiop(To) 8lo , dug + hiop(To) 8lo)-
(02) h”(To, muo) = — COV’;’,.L})0 (5’110 , 0ug + htop (To) 5l0)
(C3)

hiop(To) — B (Th, muy) = Vark (dug + heop(Th)dlo)-

The formula (A1) was essentially a step of [KKW91] and (A2) has also
been proved independently by Pollicott [Pol94].

The above proposition yields formulas for the second derivative of Ent;qp
and Enty;oyy along paths g. of metrics in M(M) once one knows how to
determine the variations of the cocycles generating the Margulis and the
Liouville measures—i.e. the length cocycle and the Liapunov cocycle—in
terms of the variation S = d%gs of the Riemannian metric. In fact, since
Gibbs states only depend on the cohomology class of the generating cocycles
it is sufficient to determine the variation of the cohomology class of these
cocycles. This is the second step of the proof.

1.3.2. Notation. For a symmetric covariant tensor field S of rank 2 on a
Riemannian manifold (M, gy), denote by SV the quadratic form field SV :
v — S(v,v) defined on the sphere bundle Sy M.

Then for the length cocycle we have élp = %SV’|E=0. For the Liapunov
cocycle we have the following Proposition:

1.3.3. Proposition. Let g. be a C' curve of C* metrics on a manifold M,
and assume that go has constant negative curvature. Let S = %ge at e = 0.
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Then the generator du of the first variation of the Liapunov cocycle at € = 0

s cohomologous to

1—n_y

— S

where T s the symmetric tensor field defined by T = —%S + %V*VS +

L(Try S)g — 16%68.

ou~TV +

In the Proposition above, V*V is the rough Laplacian for the metric
go, 0* denotes the symmetrization of the covariant derivative for gy and §
denotes its formal adjoint, the divergence.

The final step consists in estimating the covariance Cov,,(dlp,dug) =
Covimy (35, TV + 1525V) which appears in the formulas (C1-3). We prove:

1.3.4. Proposition. Let gy be a metric on M of constant negative curva-
ture —1. Let S be a C3 a symmetric covariant tensor field of rank 2 on M
and let T = —1S + $V*VS + 1(Try S)g — 56*6S. Then, we have:

n—2 ¢
Cov?

¢
90
Cov 4 Liouv(go)

Liouv(go) (SV’TV) 2 (SV, SV)

2

96 vV v n—2 96 vV Qv
COVL?ouv(go) (T T )2 < 4 ) CovLtl?ouv(go) (S S )

The above estimate is the heart of the proof. It follows from observing
that since (M, go) is locally symmetric of constant negative curvature, the
functions SV, TV on the unit tangent bundle Sy, M lift to the orthonormal
frame bundle FM of M. The group G = S0Oq(1,n) acts transitively on F'M,

96
Liouv(go)
G , i.e. it respects the decomposition of L2(F M) into irreducible subspaces.
But the linear map S — T also respects this decomposition and, on each
irreducible subspace, T is a multiple of S. In the end, the estimate reduces
to an estimate of the smallest eigenvalue of the operator S +— T on the space
orthogonal to the orbit of go under Diff(M). This is achieved via a suitable
Weitzenbock formula.

and the bilinear form Cov is diagonal with respect to this action of

1.3.5. Corollary. Under the hypothesis of Theorem A and setting S = %ge
ate = 0, the second derivatives of the topological entropy and of the Liouville
entropy satisfy:

1/n-1 ¢
Enty (90) > Z( X ) Covi‘i’ouv(go)(sv,sv),

E tII _ E n > (n - 2)2 C g(t) SV SV
Nlop (90) ntLiouv(go) = 4 OVLiouv(go)( ) )7
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Proof of Theorems A and B. The equality Covi‘ti’ouv(go)(SV,SV) =0, is
equivalent to saying that SV is cohomologous to a constant, in our case
to zero. Applying a theorem of Guillemin and Kazhdan [GK79], we ob-
tain that this implies that the curve g. is tangent to the orbit of the
diffeomorphism group at g, in contradiction to the hypothesis. Thus

Covi‘t;ouv( 40)(8¥,8¥) > 0 and by Corollary 1.3.5 we obtain Entg;(go) > 0

and Entg'op (90) — Ent{;ouy (90) > 0. O

Acknowledgments. The largest part of this work was done at MSRI dur-
ing the special year on “Lie Groups and Ergodic Theory”. It is for me a
pleasure to thank MSRI and the organizers of the program.

§2. Derivatives of entropy for symbolic flows.

2.1.

For generalities on topologically mixing subshifts of finite type, pressure
and Gibbs states we refer to [Bow75] and [Rue78].

Let 0 : ¥ — X be a topologically mixing subshift of finite type. For any
Holder continuous potential ¢ denote by ug the Gibbs state for ¢, and by
P?(¢) or P(o,¢) the pressure of the potential . We recall that pressure
P?(¢) and the entropy h(o,pg) of o with respect to the Gibbs state ;14 are
related by the variational principle:

P?(¢) = h(o, ug) + ne(¢) = Sgp(h(a, p) + 1(9)),

where the supremum is taken as p ranges on the set of probability o-invariant
measures on X. It is also known that, for ¢ € C*(X), the equality P?(¢) =
h(o,pg) + pe(4) completely characterizes the Gibbs state p4 among the
o-invariant measures y on X (see [Bow75]).

We define the covariance of Holder continuous functions 1 and ¢ with
respect to the Gibbs state u4 by

oo

Covg(®,Q) = Y 1o (%-Co0® — up(¥)ns(())-

1=—00

We also set

Varg (1) = Covg (1, %)
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and we call the above limit is called the variance of 1 w.r.t. the Gibbs state
pey- We have Covg(Q/J, ¢) = 0 for all 9 if and only if { is cohomologous to a
constant, i.e. { = x oo — x + Const for some Holder continuous function
x: o= R

The convergence of the above series follows from the exponential rate of
mixing of Holder continuous functions.

2.2.

From [Con92] the map
P?:¢peC*Z)— P(¢) €R

is real analytic. Setting

n po d d o
DP¢0(¢1)1¢7L)=Ed_t1'P (¢0+t1¢1++tn¢n)

ti=tp=+-=1, =0

we have, (cf. [Con92] and [Rue78, Ch.5, Exerc. 5])

(2.1)
Dngo(fﬁl) = pigo(¢1) and D?PF (¢1,2) = Covy (¢1,2)-

Thus the maps
¢ € C*(X) — pgy € C*D)*

and
Cov? : p € C*(Z) — Covg € L(CY(X),C*(2);R)

are real analytic.

2.2.1. Observation. If ¢, is a C? curve of potentials in C%(X), writing
$e = o + €1 + %452 + o(€2), we obtain

(2.2)
2
P(#2) = P7(¢0) + epigo($1) + 5 (Covgy(d1,61) + o (62)) + 0(?).

2.3.

Let 0 : ¥ — X be a topologically mixing subshift of finite type and A be
a positive C® function on .
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We recall the definition of special flow T built under A. Let 7' be the
flow on ¥ x R defined by T%(p,s) = (p,s + t) and consider on & X R the
equivalence relation ~ generated by (p,t) ~ (op,t — A(p)). Then, setting
X = © x R/ ~, the flow T descends to a flow T on X: the flow (X,T)
is called the special flow built under A\. Sometimes we shall simply write
(3,0,\,T) or (2,0,]) to refer to (X, T). Clearly a fundamental domain for
X is the set {(p,t) e ExR:0<t< A(p)} and X can be easily turned in a
metric space (see [BW72]).

2.3.1. Notation. Let A: X — R be a C® continuous potential on X and
let PT(A) = P(T, A), ma and h(T,m4) denote respectively the pressure of
A for the flow T', the Gibbs state for the potential A and the entropy of the
flow T with respect to the measure m4.

In analogy to the case of shifts, the pressure PT(A) and the entropy
h(T,m4) of T with respect to the Gibbs state m 4 are related by the varia-
tional principle:

PT(A) = h(Ta mA) + mA(A) = Sup(h(Ta m) + m(A))7

m

where the supremum is taken as m ranges on the set of probability T-
invariant measures on X. Also, m 4 is the unique T-invariant measure on X
for which the equality PT(A) = h(T,m4) +ma(A) is achieved.

2.3.2. Definition. Let ¢ be the cocycle for the special flow (X,T) =
(2,0,A) generated by A : X — R. Then the induced cocycle on ¥ is the
cocycle for o generated by I[A] : ¥ — R where I[4] is defined by

A(p)
I[4](p) = /0 " A(T'p) ds.

2.3.3. Notation. Given a function A : X — R let ®[A] : ¥ — R be the
function defined by

®[A] =1[A] — PT(A)) =1[A — PT(4)]

If A: X — R is a Holder continuous on X, then I[A] and ®[A] are also
Holder continuous on X.

We can reduce the study of flows to the case of shifts by the follow-
ing theorem that clarifies the relation between Gibbs states for (2,0) and
(X,T).
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2.3.4. Theorem (Bowen, Franco-Sanchez). The Gibbs measure m4 for
the flow T and the potential A is given by

po[a) © di _ Haja)® dt
(hopa) ® dt)(X)  popa)(A)

where pg(a) denotes the Gibbs state of the potential ®[A] on ¥. Furthermore
the pressure P7(®[A]) of ®[A] is zero.

(2.3) my =

2.3.5. Remark. From the above Theorem, Contreras’ result mentioned in
2.2, the formula 2.1 for the first derivative for PT(A) and the implicit func-
tion theorem, it follows that for A € C#(Z) and a < B, the map

PT:AeC*X)— PT(4) eR

is real analytic. The maps m : A € C*X) = my € C*(X)* and A €
C%(X) = h(T,m4) € R are real analytic as well.

2.3.6. Remark. The variational characterization of Gibbs states implies
that the measure of maximal entropy for the flow T is the Gibbs state for
the potential zero (or, more generally, for a potential cohomologous to a
constant).

2.3.7. Remark. Again by the variational principle, the potential A has
pressure zero if and only if

h(T,yma) = —ma(A)

2.4.

We recall now the definition of covariance for special flows. Since an
exponential mixing rate for Holder functions is not guaranteed, the definition
is not as immediate as in the case of shifts.

2.4.1. Notation. Retaining the previous notations let B : X — R be
another Holder continuous function on X. Define ¥ 4[B] : £ — R by setting

W a[B] =1[B] — ma(B) A =1[B — ma(B)].

The definition of covariance was given by Marina Ratner who proved in
[Rat73a] the following theorem:
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2.4.2. Theorem (Ratner). For a Holder continuous function B: X — R
and any Gibbs measure my4 on X the limit

T 2
Vark(B) = lim 1 (/ (BoT! —mA(B))dt) dm
T Jx \Jo

ezists, equals - ( 5y Varg 4)(¥4[B]) and it is called the variance of B with
respect to the szbs state my4.

By polarization, given any three Holder continuous functions A, B,C :
X — R, the limit

Covi(B, C) _1;520%/)( (/OT(BoTt—mA(B))dt).
. (/OT(COTt, —ma(C)) dt’) dmy

exists and we have

(2.4) Covi(B,C) = Covg( (L a[B], T4[C)).

1
taa)(N)

We call Cov)(B,C) the covariance of B and C with respect to the Gibbs
state m4. We have Cov’(B,C) = 0 for all B if and only if C is cohomologous
to a constant, i.e. if there exists a Holder function D differentiable along

t
the flow T such that C = dDdZT ot Const (see [Rat73a]).
t=

2.4.3. Remark. Notice that if the integral [* |ma(B - C o T%) —
ma(B)m4(C)|dt exists, then

oo

CovE(B,C) = / (ma(B-CoT") —ma(B)ma(C)) dt

—00

2.5.

Let Ac be a C" curve of positive C* functions on ¥ and let (X¢,T¢) be
the family of special flows built under A..

Let u. be the a C" family of C* potentials on X, i.e. a curve admitting
a C" lift to C*(X x R).
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2.5.1. Definition. For )\, and u. as above we define the i-th variation of
the cocycle (generated by) u. as (the cocycle generated by) any C* function
8tu. be a on X, with the property that

. Ae(p) | i
25)  IL[su](p) = / Siue(p,t) dt = - / we(p, 1) dt.
0 de* Jo

(for simplicity, 6* = § and 6%, = u.). In other words the i-th variation d*u,
induces on X the i-th derivative of the induced cocycle I.[u.]. Notice that
the i-th variation &*u, of the cocycle u. is only defined up to a coboundary
for the flow T;.

We denote by 6¢l,, the i-th variation of the length cocycle:

) Ae(p) i
(26) LE) = [ St = Tox)

Having stated the set up the proof of Proposition 1.3.1 is rather ele-
mentary. To simplify notation, we denote with primes differentiation with
respect to € and suppress the dependence on ¢, e.g. P'(T,u) = d/deP(T¢, uc)
and P’(T(),U()) = d/dsP(Tg,uE)L; =0.

2.5.2. Proposition (Derivatives of the Pressure and Entropy). Let
Ae be a C? curve of positive C® functions on ¥ and let (X.,T;) be the family
of special flows built under ;. Let u, be the a C? family of C* potentials on
X.. Then, retaining the previous notation for the first and second variation
for length cocycle and the cocycle generated by u. and setting

ve = dug — P(T,ue) 6l and w, = 62u, — P(T:,u.) 621,

we have:
PI(T? u) = mu('v)

P"(T,u) = VarZ (v) 4+ mqy, (w) — 2my, (v) my (81)

—~~

and

B (T, my) = — Covy (v,u) + h(T, my) my (1)
R'(T,my) = —D*PL (u,v,v) — 2h(T, my,) CovZ (6l,v)
+2( Covl (v,u) + A(T, my) my(81)) my(67)
— Cov (u, w) 4 2my (v) Covi (u,dl)
— h(T, my) my(6%1) — CovE(v,v).
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2.6.

We shall not give the proof of the proposition above. However, for com-
pleteness, we shall give independent proofs of the following corollaries which
we use in this paper.

2.6.1. Corollary. Let \. be a C? curve of positive C* functions on ¥ and
let (X, Te) be the family of special flows built under .. We retain here
the previous notation and denote by hyop(T:) the topological entropy of the
flow T, and by M, the measure of mazimal entropy for the flow T,. Also
denote by Varg‘ the variance of the flow T, with respect to the measure of
mazimal entropy me. Then, suppressing the dependence on €, we have

(27) :;op (T) = —htop (T) M(él)
If hiop(To) = 0 we have
(2-8) top(T0) = —hiop(Tb) Mo(62l) + hiop(Tp)? Vara® (dlp).

Proof. Observe that since € = . € C%(Z) is C?, the first and second vari-
ation 6l; and 02l of the length cocycle exist (as Hélder functions). By the
Remark 2.3.6 the topological entropy equals the pressure for the potential
0 and from Theorem 2.3.4 and 2.3 we obtain that
_ M) ® dt
T e (Ae)’
where ¢(¢) = —hiop(Te)Ae. Again by Theorem 2.3.4, we have that

P7(¢(e)) = 0 for all e. By Remark 2.3.5, the curve ¢(¢) is a C? curve
of C* potentials on ¥. Thus from (2.2) we obtain that

(2.9) pe(¢') =0 and Varg(¢') + pg(4") =0.
Since ¢' = —hiop(T)X — hiop(T) X' from the first of (2.9) we conclude that

_Puop(T) #g(N) | Puop(T) pp @O _ s

Prop(T) = =——00 ~ RS

proving (2.7).

The hypothesis hi,,(To) = 0 implies that ¢'(0) = —hio,(To)do and
¢"(0) = —hiop(To) Mo — htop(To)Ag- Thus, using the second of the formu-
las (2.9), we obtain

Varg(o) (_htop (To ) )\6) -+ ;L¢(0) (—h;’op (To ) )\0 — htop (To ) Ag) =0.
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We conclude that

Hg(0) (Xg) , Varg (Ap)
R (To) = —hiop(To) === + hiop(To)* —2—=
top(T0) top O)uqs(o)()\o) rop(T0) 1(0)(Mo)
Varg (I [5/\0])
= —Ruon (To) Mo (8l0) + hgp (Th)? —20 22
t p( 0) 0( 0) tp( 0) M¢(0)()\0)

From hy,(To) = 0 we have My(6lp) = 0 and therefore I[dAo] = To[ly]. Using
(2.4) we conclude

Varg (I[6\
a'r¢o( [ 0]) =Var%t0(6l0)
L) (Mo)
proving (2.8) and Part A of Proposition 1.3.1. O

2.6.2. Corollary. Let )\, be a C? curve of positive C functions on ¥ and
let (X,,T;) be the family of special flows built under A.. Let u. be the a C?
family of C® potentials on X,. In the hypothesis that P(Tt,uc) = 0 for all
€ we have: :

(2.10) K (T, my) = — Covl (u, 6u) — h(T, my) may(61).

If up is cohomologous to a constant and myy(dlp) = 0, then h'(T,m,) =0
and

(2.11)  A"(To, muye) = — VarZd (Sug) — 2h(To, mu,) Covid(dlo, fug)
- h(TOa muo) My (6210)a

Proof. Since by hypothesis P(T¢,uc) = 0 for all €, we have that ®[u](p) =
fO)‘E ) ue(Ttp) dt. For simplicity set ¢, = ®[uc]. The Gibbs state m,, is thus

given by
_ By ®di

My, = )
“ lu"l/f's(Ae)
where iy, denotes as before the Gibbs measure for the shift o and the

potential ¢.. From equation 2.2 and the fact that P(c,1.) = 0 for all € (see
2.2), we obtain

(2.12) () = 0.

By the variational characterization of Gibbs states and P(o, ) = 0 we
have h(o, ty) = —py () and, using (2.12), we obtain

(2.13)

h,(O', “1/)) == COV%('(/% 'lpl) - /1‘1#(1/)’) =- COVZ(%W)
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Differentiating w.r.t. ¢ Abramov’s formula
h(O’, /-‘1‘1/15) = Ky (AE) h(TEa mue)’
and using (2.13), we have
— Covy (4, ) = (T, mu) (Covy () + g, (V) + iy (N) (T, m)

or

(2.14)
. Cov(p+hA(T,m) A ) g, (V)

H(e ) ey M) )
Observe that we have ¥y[u] = ¥ — my(u) A = ¥ + h(T,my) A and Ty [du] =
P —my(du) A =" — py(¢) A = ¢'. Thus, using (2.4) we have Covy, (¢ +
B(T,my) A, 9') = Covi(u,du) py, (X), which proves (2.10).

Assume now that the ug is cohomologous to a constant. Then P(T,u) =
0 implies that the function ug + h(Tp,my,) is cohomologous to zero and
therefore also 1y + h(my,) Ao is cohomologous to a zero. The further as-
sumption my,(dlg) = 0 entails py,(Ay) = 0 and therefore h'(Tp, my,) = 0.
In this case one further differentiation of (2.14) yields

Covy, (g + h(maug) Ao, %)

) = = oo (R0) -
_ COV;ZO ("M)a 6) Hapg ()‘6’) ]
hlrmuo) [ B3 00) | Hge (%)
__ Covg, ($4,%0) [ Covy, (19, X0) ﬁ‘t/}o(’\g)]
Hapo (Mo) hlmao) |2 Hiapo (o) " tpo(Ro) |~

and (2.11) is proved. Part B of Proposition 1.3.1 is now proved.
a

2.6.3. Corollary. Let )\, be a C? curve of positive C® functions on ¥ and
let (X,,T:) be the family of special flows built under .. Let uc be the a C?
family of C* potentials on X.. Assume that

1. P(Tt,u:) =0 for all ¢;
2. my, (0l;) =0 for all €;

3. ug is cohomologous to a constant.
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Then mg = my,, then we obtain my(6%ly) = —Cov;"nbo(élo,éuo). Therefore
we obtain i, (To) = h'(To, my,) =0 and

gop (T()) = COVm0 (htop(TO) ol ,'U.6 + htop(TO) (510)
fclop (TO) —h" (TO, mUO) = Covmo (u6 + htop (To)élg, ’U.6 + htop (TO)(SZO)

Proof. The claim mg = m,, is equivalent to up being cohomologous to a
constant. Retain the notation of the proof of the previous Corollary. Since
My, (0le) = 0 implies py_ (A7) = 0 for all ¢, differentiating we obtain

Covy, (Xe, %) + py (X) = 0.

From m,,_()\") = 0 we obtain ¥, _[él] = X’ and since ¥, [du] = ¢', using 2.4,
we obtain that
my(62)) = — CovZ (61, 5u).

The rest is now mere rephrasing. This also concludes the proof of Proposi-
tion 1.3.1. a

§3. The first variation of the length and Liapunov cocycles.

In this section we collect some well known facts that we allow us to
connect the results of §2 to the study of our original problem. Some of the
theorems stated are valid in a more general setting of Anosov or Axiom-A
flows. We state them for the case of geodesic flows for metrics of negative
curvature.

3.1. Symbolic Coding.

The geodesic flow T, of a metric of negative curvature g on the unit
tangent bundle SgM of a manifold M is isomorphic to a symbolic flow
[Rat69], [Rat73b], [Bow72b]. More exactly, there is symbolic flow (X, T)
built over a topologically mixing subshift of finite type (2, o) with a positive
Holder continuous ceiling function A and a finite-to-one Holder continuous
surjection m : X — SgM such that 7 intertwines the flow T' on X with the
flow Ty on SgM. Furthermore, denoting by m, and ny., respectively the
Gibbs state for v € C*(SyM) with respect to the flow T, and Gibbs state
for u o m € CP(X) with respect to the flow T, we have that the surjection
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7 is a measure theoretical isomorphism of (X, T,nyor) onto (Sg, Ty, my).
In particular u € C*(S,M) is cohomologous to zero if and only if u o 7 is
cohomologous to zero.

The Margulis measure and the Liouville measure on S, M are the Gibbs
states respectively for the length cocycle and for the Liapunov cocycle. We
recall the definition of Liapunov cocycle.

3.1.1. The Liapunov cocycle. For v € S;M let W**(v) denote the
strong stable manifold passing through v, i.e. the set of points w € SyM
with d(¢v, #*w) — 0 as t — +oo. The Liapunov cocycle is given by the
growth of the volume of strong stable manifold: more exactly, if 4*° is the
volume form induced on strong stable manifolds by some Riemannian metric

on SyM, the Liapunov cocycle is defined by L(v,t) = ﬂ-"%ﬁ—s—s—(z}). Changing
the Riemannian metric on S;M does not affect the cohomology class of the
Liapunov cocycle.

The Liapunov cocycle has an interpretation in terms of Jacobi fields. The
natural projection p : S M — M maps bijectively the strong stable manifold
W4*(v) onto the stable horosphere #Hy(v) of v. The second fundamental form
Uy(v) of the stable horosphere H(v) at p(v) considered as a tensor of type

G) satisfies 2 along the orbit Tgt'u the Riccati equation

\Y%
(3.1) = Us(Tgv) + Uy (Tgv) = R(p.Tyv, - )p.Tyv.
The Liapunov cocycle can be expressed as
¢
(3.2) Ly(v,8) = / T U, (T7v) dr.
0
It is not difficult to see that Tr U, is a Holder continuous function on Sy M.

3.1.2. The construction yielding (¥, 0, ) and the semi-conjugacy , pro-
ceeds by choosing in S M finitely many disjoint smooth disks D; transversal
to the flow Ty. Inside each D;, we choose closed connected sets R; so that
each R; equals the closure of its interior R{ and the union R of all R;’s
forms a cross-section to the flow T,. Let P be the Poincaré map of R.
Then ¥ is obtained as the collection of sequences w = (wj)icz such that

2Technically the map v — U,(v) is a section of the pull-back to S;M of the
bundle TV M — M via the natural projection p : SM — M. The Riccati
equation can then be interpreted in these terms, V being the pull-back to S;M of
the Levi-Civita connection on M.
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NiczP™'R,, # 2. By the expansiveness of the flow Ty if w € X then the
set NiczP "R, contains exactly one point z = z(w) of R, thus defining a
surjection 7y, : w + z(w). For each p € R the first return time A(p) to P
under the Poincaré map of P is well defined and positive. Let A = Ao 7y
and let o be the shift on ¥ and define (X,T') as the symbolic flow (X,T)
built over (X, o) with ceiling function A. It is plain that py extents to a a
surjection 7 : X — SgM intertwining the flow T' on X with the flow T on
SqM.

3.2. Structural Stability.

With M a compact manifold, denote by SM the bundle of oriented
directions on M, i.e. SM = {v € TM |v # 0}/ ~, where v ~ v’ and if and
only if 3¢ > 0,v = cv’. For each Riemannian metric g there is a natural
identification between the bundle SM and the unit tangent bundle Sy M.
By means of this identification, we regard the geodesic flow T for the metric
g as a flow on SM, which we also denote by Ty with abuse of notation.

Denote by U the space of C?-metrics of negative curvature on M, and
more generally by U° the space of C*-metrics of negative curvature on M.

It is well known, (cf. [Mor24], [Ano67] and [Gro]), that the various flows
T, for g € U are all orbit-equivalent. This means that if go and g € U, there
is a homeomorphism Hy : SM — SM sending the orbits of the flow T}, to
the orbits of the flow Tj,. In fact the homeomorphism H, is homotopic to
the identity and can always be chosen smooth along the orbits of Ty, and
Hoélder continuous on SM. We call such an homeomorphism a (go, g)-Morse
correspondence. The Morse correspondence is not unique: if H; and Hy are
two (go, g)-Morse correspondences then there exists a real valued function
t(v) on SM such that Vv € SM, H;" o Hy(v) = T;(Ev) (v). Thus we have a
sort of transversal uniqueness:

3.2.1. Definition. For g in a neighbourhood V C U, we will call the family
of Morse correspondences normal at go, the family g — Hy of (go, g)-Morse
correspondences H, which is uniquely defined by the property

“for each v € SM the footpoint of Hy(v) belongs to the hypersurface
obtained by exponentiating in the metric gg a small ball in the subspace
go-perpendicular to v”

We have described some of the generalities of the construction of the
symbolic flow in order to understand what happens if we perturb the flow
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Ty, by perturbing a metric go € U. Let 7y, be a semi-conjugacy between a
symbolic flow (%, 0, Ay,) and (SM, Ty,) mentioned in Section 3.1.

For g in some subset of U, denoting by H, the family of Morse corre-
spondences normal at go, from the fact that Hy sends the orbits of the flow
Ty, to the orbits of the flow Ty, we obtain that the set Hgomg,(X) provides a
global cross-section for the flow Ty, with a Holder continuous return function
Ag: X R

We obtain a finite-to-one Holder continuous surjection 7y : Xy — SM
intertwining the symbolic flow on Xy = X xR/ [(p, Ay (p) +t) ~ (op,t)] and
the flows T, on SM. [Equivalently we can look at the composition Hy o 7
as giving an orbit equivalence between (X, 0, Ag,) and (SM,Ty).] Thus we
have the following diagram

(E’ g, ’\yo) _1‘-9? (SM, Tyo)
A A
VH, ‘H,

with dashed arrows representing orbit equivalences. Observe that, identify-
ing the space X, supporting the flow (2, 0, Ag) with X, = {(p,?) € ZxR|0 <
t < A\g} and ¥ with ¥ x {0}, the orbit equivalences H, are the identity on
3.

3.3. Variation of cocycles.

Now we are in the situation in which we can apply the results of §2.
To this purpose we need to pull-back the length and the Liapunov cocycles
to the flow (X3, 0,g) or (3,0,Ay,), and determine in geometric terms their
first variations 61, du which entered in Proposition 1.3.1. Finally we need to
resolve the smoothness issues related to this construction.

Assume that for each g € U we are given a cocycle ¢, for the flow Ty and
orbit equivalences Hy : SM — SM sending the orbits of the flow T}, to the
orbits of the flow Tj,.

3.3.1. Definition. The pull-back of the family of cocycles ¢, along the orbit
equivalences H is the family of cocycles Hyc, for the flow Ty, given by

Hycg(v,t) = cg(Hgv, t'),

where t' is defined by T Hyv = H, T v.
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3.3.2. Example. The length cocycles £4(v,t) = t for the flow Tj is gener-
ated by Ay = 1. If the orbit equivalences are differentiable along the flow
Tg,, then, denoting by Y, the generator of the flow Ty, we have

d
(3-3) (Hg)xXgo := dtH oTt =g Y,
or equivalently
¢ s
H,Tt o = T o0 Py,

Therefore the pull-back of the length cocycle £, along Hy is given by

Hity(0,1) = / U, (T5,0) ds

and it has as generator the function ly, defined in 3.3. Denoting by p the
natural projection SM — M, and by || |l|g the norm induced by g on T M,
from |[p.Yyllg = 1 we have

(3.4) ln, (v) = ”P* (Hg)«Xgo (U)”g-

The following Proposition is elementary.

3.3.3. Proposition. If the cocycles ¢y have generators Ay, then their pull-
back along a family Hy of Ty -differentiable orbit equivalences is differen-
tiable along the flow Ty, and it is generated by (Ag o Hg)ly,.

3.3.4. Definition. For a curve of metrics g. we define the thg i-th variation
of the cocycle cg, as the cocycle for the flow T, defined by d'/de’H; cy, at
e=0.

3.3.5. Remark. Let u, be the generator of a cocycle ¢, for the flow
(8,0,)). Let H, be orbit equivalences sending the orbits of the flow
(2,0,Ag,) to the orbits of the flow (%,0,),). Assume further that H, is
the identity on ¥ (identifying the space X, supporting the flow (X,0,\y)
with X; = {(p,t) € Ex R0 <t < )y} and ¥ with ¥ x {0}). Then the
pull-back of the length cocycle for (£,0, \g) along the orbit equivalences H,
has a generator I, satisfying

)‘90
| .04t = 20)
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and the pull-back F;cg is the the cocycle generated by a function 0%uy such
that

)‘90 0 Ag
/ a%mnﬁ=/ uy(p,1) dt.
0 0

We conclude that the two definitions 2.5.1 and 3.3.4 of the ¢-th variation of
a cocycle agree.

Now we are ready to tackle the question of the smoothness of the depen-

dence on g.
Improving on previous results of [dILMM86], Katok et al. proved:

3.3.6. Theorem ([KKPW89]). 3 For sufficiently small 8 > 0, in a neigh-
bourhood V* of go in U* the family of Morse correspondences normal at g,
g — Hg, exists and has the following properties:

1. The homeomorphisms Hy are Ty, -differentiable, that is they are dif-
ferentiable along the orbits of the flow Ty, .

2. The map g — Hy is of class C*72 as a map from the Banach manifold
V? to the Banach manifold of Tg,-differentiable CP-maps of SM into
itself. 4

3. The map g + lg, is of class C52 as a map with values in
CA(SM,RT).

4. The topological entropy g — Enty,p,(g) is of class C5~1.

Furthermore Contreras showed:

3.3.7. Theorem ([Con92]). Under the same hypotheses, denoting by E;
the stable bundle for the flow T, and by uy the generator of the Liapunov
cocycle for Ty, we have:

5. the maps g € V¥ — ugo0 Hy and g € V* — EJ o Hyis of class Ccs3
as a map with values respectively in CP(SM) and in the space of CP
distributions on SM.

3The theorem proved in [KKPW89] was stated for Anosov flows and it is valid
more generally for hyperbolic attractors: see also [Con92]. We quote its application
to geodesic flows. The loss of one further derivative is due to the fact that the vector
field defining the geodesic flow depends on the first derivatives of the metric.

4More exactly the target space is the space Cfo (SM,SM) of CP continuous
maps f: SM — SM whose derivatives X,, f along the orbits of the flow Ty, are
C# continuous maps SM — T(SM) endowed with the norm || f|lg + || Xy, fll5-
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6. The entropy of Liouville measure g — Entriou(g) as a function of
g € V* is of class C573,

3.3.8. In particular, from (2) above, if s > 3 the derivative of the (go, g)-
Morse correspondence Hy normal at gy, is a linear map from the C3 sections
S of the symmetric tensor bundle S2M to Holder continuous vector fields
E4(S) along H,.

3.3.9. Definition. We call the vector field Z¢,(S) the infinitesimal Morse
correspondence at go in the direction of S

3.3.10. The the infinitesimal Morse correspondence Z,(S) is differentiable
along the go-geodesics and it satisfies a differential equation given in [FF93).
Furthermore, by the definition of normal Morse correspondence, the vector
field Ey,(S) is everywhere perpendicular to Xy, in the natural metric on
SgoM, i.e. the projection of Eg4y(S) at v € Sy;M on M is go-perpendicular
to v:

(3.5) 90 (v, P+Egy (S)(v)) =0

3.3.11. Lemma. Let g. is a C'-curve of C® Riemannian negatively curved
metrics on a compact manifold M, and let S; = «Z—:g€|e 0

Then the generator of the first variation of the length cocycle at g at
€ = 0 is is cohomologous to the function:

v € SM — dly(v) = %Sa’('v) = %So(v,'v),

and the generator of the first variation of the Liapunov cocycle u. at € =0
is cohomologous to the Hoélder function:

d 1
v € SM — dup(v) = Z2Ue © th_(v)|£=0 + §So(v,v) ug(v).-

Proof. By Proposition 3.3.3, the pull-back of the Tj_-cocycle generated by
ue has generator u.(Hy, )l and by (1)-(6) above the derivatives du. o Hy, /de
and dl. /de both exist as limits in C#(SM). Thus for each go-geodesic closed
orbit 7, denoting by 7. the geodesic g.-geodesic closed orbit homotopic to
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Yo we have

d
= [ye ue (T v) ds
d

= d—/ uE(ngTgsov)ngs (T;Ov) ds
€ Y0
= d H, TS l T8 H, T¢ dl T d
= [ [ (w0500 )t (T30) + w0, Tip0) i, (T3] s
Y0

At £ = 0, we have g, (Tgsov) = 1 and, using 3.4 and 3.5, we see from the
equation of the geodesics (cf. [FF93] that

d 1

=, ()], = 55(w,w)

Since, by a well known theorem of Livsic [Liv71], the collection of integrals
along periodic orbits determine the cohomology class of Holder cocycles, our
claim is proved. O

§4. Relation of the Liapunov cocycle to the variation of
metric.

In this section we find a formula for the first variation of the Liapunov
cocycle in terms of the first order variation of the Riemannian metric.

4.1.

Throughout this section, M denotes a compact connected manifold with
no boundary. We denote by SM the bundle of oriented directions on M.
As usual given a Riemannian metric g of class C° on M we identify SM
with the unit tangent bundle S;M = {v € TM | g(v,v) = 1}, via the ob-
vious C°-diffeomorphism. The symbol g' denotes both the geodesic flow
on SgM determined by g can and the flow induced on SM, via the above
identification.

We shall consider a C! path € € (—&g,€9) ~ ge of C*-metrics, with
s >4 and set S; = %‘75. We denote by H, : SM — SM the (go, g¢)-Morse
correspondence normal at go and denote by Z4,(Sy,) the infinitesimal Morse
correspondence.
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4.2.

As usual let p : SM — M be the canonical projection. Let () be
a unit-speed geodesic of initial velocity 75(0) = v € SM. Clearly we have

70(t) = p(gév). Define
¥ : D =R x (—¢0,0) = 7(t,€) = p(he(g5v)) € M.

We set, for all ¢, £ = %?L =0,Y = g—? = 0. Of course Y (t) = g§v and

£(t) = P+(Ego(Sg0) (96v))-
The map 7 satisfies the following conditions:

1. The map ¥ is differentiable, by Theorem 3.3.6 and our smoothness
hypotheses.

2. The curves v, : t — F(t,&) are geodesics for the metric g. on M, by
definition of Morse correspondence.

3. We have go(£,Y) = 0, since we are considering the Morse correspon-
dence normal at gq.

4. We have also go(Y,Y) = 1, since () is a unit-speed geodesic.

Let E be the pullback to D of the tangent bundle of M via the map
¥ : D — M. Then the bundle E is endowed with Riemannian metrics ¢g°
on FE, Levi-Civita connections V¢ for the metrics g°, and we let R® denote
curvature of V°.

Let U be the section of E* ® E, i.e. the (1)-tensor field on M along
7, defined as U(t,e) = Uy, (he(gév)), where, as usual Uy(v) is the second -
fundamental form of the stable horosphere of the metric g at p(v) considered
as tensor of type (}). By Theorem 3.3.7, the section U is C*.

Finally to lighten the notation we write g, g%, S, 7, V, R, etc. for gy, g§,
So, Yo, VO, RO, etc.

4.2.1. Lemma. Denoting by u. the generator of the Liapunov cocycle for
that flow gt, along the geodesic y(t) = vo(t), we have

iz Hy, (0)] g = Le DU () = TV (r(2)

Proof. The first equality follows from (3.2) and the definition of £&. The
second follows from the fact that taking traces of endomorphisms commutes
with covariant differentiation.

O
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4.2.2. Notation. Set for simplicity

d
B(v) = 8u5 o Hy. (g ”)Ie=0'

Recall that the first variation of the Liapunov cocycle along the path g. at
€ = 0 is given by

du(v) = B(v) + %S(v,v) T U.
4.2.3. Lemma. Along the geodesic ~y(t), the field of endomorphisms
VeU(v(t)) satisfies the following differential equation:
VY(VEU)+U0V§U+V§U0U=
1
——S(Y, Y)VyU - [['(Y),U] - [R(&,Y), U] - S(Y,Y)U? +

BRs(t)
—L| (¥, )Y + VeR(Y, )Y + R(Vy€, )Y + R(Y,)Vye.
e=0

where [-,-] denotes the ordinary commutator of endomorphisms and I' de-

notes the (;) -tensor field along v given by I' = ddze . For simplicity we

e=0
have written T'(Y) for the contraction d—ze‘i

e=0 )

Proof. The field of endomorphisms U satisfies, along each geodesic ~., the
Riccati equation 3.1 suitably corrected to take into account the fact that
t — 7.(t) is not a g.-unit speed geodesic. Thus:

Vo vz = g (2 O
vkl -7 (5 ) &

%l
w |z

where R¢ denotes the Riemann curvature tensor of the metric g°.
Observe that we have:

a8t (ll o ) o

oo,
de \I7t9) \ Bt 5(0) Bt 7te)) ) |

S(Y,Y) +2g(VeY,Y) =
S(Y,Y)+29(Vy&,Y) = S(Y)Y).
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where in the last equality we have used the fact that Vy¢ and Y are g-
perpendicular.
Similarly one has

(4.3) La (”Qj ) S(Y,Y)
e at € e=0
since ||Y|jo = 1.
Furthermore:
(4.4)

V2 (Ve Usa)| _, = TU50~Usao)T (V) +V 2. (V2 Usiee)| _, =
L(Y)Ust,0) — Ust,0) T (Y) + Vy (VeUs,0)) + R(E, Y ) Usr,0) — Use,0)R(E, Y)

where, in the last equality, we have used the fact that for commuting vector
fields X, Z and G) tensor fields W one has:

[Vx,VzW = R(X,Z) o W — W o R(X, Z).

Finally observe that

oy |0y
(4.5) Va (Re( aZ’ )51) =
ORE
7¥(t,0) . =
E=
ORE
g(t O (¥, )Y + VeR(Y, )Y + R(VeY, )Y +R(Y, - )VY =
& e=0
ORE
_876(%01 (Y, )Y + VeR(Y, - )Y + R(Vy¢,- )Y + R(Y,- ) Vyé.
e=0

Taking the covariant derivative of equation (4.1) along £ and using the above
observations (4.2)—(4.5) we obtain that V.U satisfies the given differential
equation along the geodesic 7. O

4.3.

Assume that (M,g) is a rank-1 locally symmetric space of dimension
n. Then, we can find parallel orthonormal vector fields Y1 =Y, Ys, ... .Y,
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along the geodesic v satisfying R(Y,Y;)Y = A\2Y;, with A; = 0, \; = 2 for
1<j<r,and A\j =1for r < j <n. Here r =1,2,4 or 8 depending on the
type of symmetric space.

Furthermore, from the definition of U, along the geodesic vy, we have
U(-) = —vR(Y,")Y, ie. UY; = -\;Y;.

4.3.1. Lemma. Retaining the above notation, define B; = ((V¢U)Y;,Y;),
j = 1,...,n, where (-,-) denotes the g-inner-product. Then, along the
geodesic vy, we have that the B; satisfy the differential equation

. JORE
LyB; —23,B; = -S¥, YN + (5| _ (1 %)%.Y)

Proof. Since U is symmetric, we have:

(4.6) (UoVeU 4+ VU U)Y;,Y;) =
(VeU)Y;,UY;) + ((VeU)UY;,Y;) = —2);B;.
Also:
(4.7) (L(Y),U]Y;,Y;) = |
(T(YV)UY;, Y;) — (UL(Y)Y;, Y)) = (T(Y)UY;, Y;) — (D(Y)Y;,UYj) = 0.
Similarly,
(4.8) ([R(,Y),U)Y;, ;) = 0.

From (Vy&,Y) = 0, and since we can also assume R(Y;,Y)Y; =AY, we
have:

(4.9) (R(Vy¢, Y)Y, Y) =
(R(Y, Yry)(vYé‘)aY}) = <VY£a R(Y},Y)}f]) = )‘(nga Y) =0.

Similarly
(4.10) (R(Y,Y;)Vy&,Y;) = 0.

Evaluating on Yj the right hand-side of the equation of Lemma 4.2.3 and
taking the inner product of with Y}, after using 4.6-4.10 and noticing that

VyU=0, VR=0, and (U%,Y;)=X},

we obtain the given equation for B;. O
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4.3.2. Corollary. If (M,g) has constant negative curvature —1 and dimen-
sion n, V¢ TrU, along v , satisfies the following equation:

Ly (VeTrU) —2(Ve TeU) = (1 —n)S(Y,Y) — dRic

Y,Y).
e=0

Proof.
Clearly Zj B; = Zj((VgU)Yj,Yj) =V¢TrU. From

Ric(X, Z) = Te(W — R(X,W)Z),

we have Zj(% o LYY, Y5) = 9Ric” c—o- Summing over j the equa-

tion of Lemma 4.3.1, since A\; = 1 we obtain our claim. O

4.4.

Let V*V denote the rough Laplacian for the metric g = go on M. Recall
that the Lichnerowicz Laplacian for a metric g is defined as [Bes87, 1.180b]:

(4.11) ApS =V*VS + RicoS + S o Ric —2R°(S5),

where o denotes the contraction symmetric tensors of rank 2 identified with
(i) tensor via g and R°(S) is defined by °

(4.12) R*(S)(Y, Z) = Trg S(R(-, X)Y, -).
Then [Bes87, 1.174]:

$RE
(4.13) ORIC) LA, 59— 55— vd(ms)
Ot |.—p 2

where 6* is the symmetrization of covariant derivative and ¢ is its formal
adjoint, the divergence.

Proof of Proposition 1.3.3. Form Corollary 4.3.2 we obtain that along the
geodesic y we have

1 ORic®
2 0t |

Blg')Ve = TeU(y(1)) ~ 52 S(Y (1), Y (9) + (Y (1), Y (),

5Qur definition agrees with [Bes87, 1.131], in spite of the opposite convention
on the sign of the Riemann curvature R.
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with =~ meaning that the difference is a coboundary. In fact, the difference

at y(t) = p(g'v) is 3Ly (Ve TrU)(v(2)) = $ 5 B(g'v)
We claim that since g has constant curvature —1 we have:

ALS(Y,Y) = V*VS(Y,Y) — 20S(Y,Y) + 2T, S.
In fact, Ric = —(n — 1)g, and therefore
RicoS + SoRic=—-2(n—1)S.
Furthermore, since R(Y, X)Z = —(X, Z)Y + (Y, Z) X,
(414) R(S)(V,Y) =) S(RY,Y)VY) =
i
=Y 8(-Y; + (V, Y)Y, Vi) = — Try(S) + S(V,Y).

proving our claim. We obtain that

VeTrU = 9—;—15(1/, Y) + %V*VS(Y, Y) - gS(Y, Y)+

+ %'ﬁg S - %5*55(1/, Y) - %Vd(’I‘r S)(Y,Y)

~—3S(1Y)+ iv*vsa/, Y)+ %Trg S
- %5*55(1/, ) - %w(ﬁ S)(Y,Y).

[—y

and setting
T= 1S+ lV*VS+ l('I‘r S)g — 15*65
- T27 7y g\ 99 Ty

and noticing that the term Vd(Tr S)(Y,Y) = Y?(Tr S) is cohomologous to

zero, we have concluded that
B(g'v) = Ve Tt U (7(t)) = TV (g"v)

or B = TV. Thus the first variation of the Liapunov cocycle along the path

geate=01is
1

6u=B+%SV TrUzTV—n%SV.
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§5. Proof of Proposition 1.3.4 and Theorem C.

5.1.

Let g. € U be a curve of metrics of constant volume on M. Then if we
set S; = 3 %J= and denoting by s, the volume of the n-sphere, we have,

—1-/ SY (v) d Liouv(ge)(v) =
2 Jsg.m
Sp—1 0 Volg, (M)

O¢ =0

= In= 1/ Tr,, S dVolg, = —

Since %SV is the first variation 6l. of the length cocycle ., and Liouv(g,)
the Gibbs state for the Liapunov cocycle u. of the flow Tj,, we obtain that
my, (0l:) = 0 for all . If gg is locally symmetric, the measure of maximal
entropy My and the Liouville measure Liouv(gp) coincide and thus all the
conditions of Proposition 1.3.1 (C) are verified. Denoting for simplicity go
by g, the maximal measure entropy My by m and the covariance of the flow
Ty with respect to the measure of m by Cov, we can summarize the results
so far achieved (cf. Propositions 1.3.1, 1.3.3) in the following Proposition:

5.1.1. Proposition. Let g. be a C?-curve of C5-metrics on a manifold M
of constant volume, and assume that that g = go has constant negative
curvature —1. Denoting with 6l and du the first variation of the length
cocycle and of Liapunov cocycle at € = 0 we have:

Ent{,,(g) = Cov ((n — 1)l + éu, (n — 1))
and
EntLlouv(g) = — Cov ((n —1)dl + du, 5’!1,)
Setting T = T(S) := —1S + $V*VS + £(Try S)g — 36*85S, since 8l ~ 1SV
and du =~ TV — 2z 1SV we have
Entf (g) = Cov (1%, 1Y),

n—lSv)

Ent"Llouv (g) = — Cov (Tva Tv - 2

and
Ent::,()p( ) EntLlouv( ) = Cov (Tv, Tv)-
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5.2.

If g has constant sectional curvature, then the group G of isometries
of M, the universal cover of M, is isomorphic to SOqy(1,n), where n =
dim(M). We have an identification of M with the space I'\G/K, where
I' = m1(M) is a discrete group of isometries acting without fixed points on
M , and K = SO(n) is the stabilizer of a point py € M. Furthermore, the
unit tangent unit bundle S;M and the orthonormal frame bundle FM of
M are identified with I'\G/K; and T'\G, where K; ~ SO(n — 1) is the
stabilizer of a vector vy € TPOM . The parallel transport of an orthonormal
frame (v, vs,...,v,) € FM along the geodesic determined by v, is identified
with the action on I'\G given by multiplication on the right by the split-
Cartan A; = R commuting with K;. It is plain that this parallel transport
projects via the natural projection (v1,vs,...,v,) € FM — v, € S;M to
the geodesic flow on SgM.

5.2.1. Notation. Denote by C"(S?M) the space of C"-sections of the bun-
dle S2M of symmetric covariant tensors of rank 2. Similarly £2(S2M) de-
notes the L? sections of this bundle. Clearly the map ¥ : S — SV defined,
for v € SyM, by SV(v) = S(v,v) maps C"(S2M) to C™(Sy,M) and L2(S2M)
to L?(S,M).

Observe also that we have an injection L?(SygM) — L?(FM), regard-
ing L?(S,M) as the subset of L2(FM) of K;j-invariant vectors. Similarly,
C"(SgM) — C™(FM). In the sequel these identifications will be implicit.

5.2.2. Left invariant differential operators on G commuting with K; act on
C*(S,M). This is in particular true of the the Casimir operator Casgo(1,n)
of G, which we normalize so that on C®(M) it coincides with the rough
Laplacian V*V.

Observe that the differential operators V*V, 4, §* etc. acting on symmet-
ric tensor field can be viewed by means of the above maps as left invariant
differential operators on C®°(FM) commuting with K;. In fact, denote by
P; the parallel transport of an orthonormal frame (vy,vs,...,v,) € FM
along the geodesic determined by v; and let Y; be vector field generating
the flow P;. For i < j, set R;j = [Y;,Y;]. Then it is plain that the vec-
tor fields Y;, Rij, (¢ < j), form a basis for the Lie algebra g ~ so(1,n)
of G and that R;; exponentiate to the flow exp(6R;;) which rotates an
orthonormal frame (vi,...,vi,...,0j,...,0) € FM to (vy,...,cos(8)v; —
sin(0)vj,...,sin(f)v; + cos(f)v;, ..., vy). In particular given S € C€(SEM),
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setting, for (v1,...,vn) € FM,
Sij(vl, cen ,'Un) = S(vi,vj)

and identifying Sy; with the lift to FM of SV we have

1
S = —-§LRHSV.

Thus, if (v1,...,0...,0j,...,0) € FM and S € C%(S2M), we have:

(65)¥ (v1) = (65)(v1) Zvv,s(vz,m)— Z 55 P}vi, Plv1)
t=0

= —-Z S14( Pivla-"aPi'Un)|t=0 = _ZLYiSIi Viye-esUn)
i
= —ZLyLRh (v1,..-,vn)

Similarly, we have

V*V = — Z L2 ( Z L%/ +Z Z RzZJ = CaS’SO(I,n) - CasSO(n)a
1

1<j i<J

where Casg denotes the Casimir operator of the group G. Since, for
S € C€(S€M), we have Casgp(n)S¥ = 2TrS — 2nSY, we can express
the operator 7(S) defined in 5.1.1 as

(5.1)
1., 1_, 1 1,
T(S) = —§s+ V'VS +5(Try 5) © g — 50765
1 1 1
“‘ES + - (CaSSO(1 n) — 03.530(”))5 + = (rI‘I' S) ®g— 55*55'
n-—- *
= 2 S + Z CaSS()(l’n) S — 5(5 6S.

5.3.

By a well known theorem on the unitary representation of SOy (1,n), the
Hilbert space L?(FM) ~ T'\G splits as a direct sum L2(FM) = Y H; of
topologically irreducible components H; of the right action of G.
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5.3.1. Lemma. FEach irreducible representation space H; splits as a direct
sum of irreducible representation H;, ~ 7 for the action of the mazimal
compact subgroup K =~ SO(n) of G. Let T be an irreducible representation
of SO(n). Then the multiplicity of T in H; is at most one.

Proof. The first statement is trivial. Denote by P = M AN a minimal
parabolic of G = S0y(1,n). By a Theorem of Harish-Chandra [War72,
5.5.1.7], there is a irreducible representation o of M =~ SO(n — 1), such that
the multiplicity of 7 in H; is at most the multiplicity of ¢ in the restriction
of 7 to M. This concludes the proof, since the multiplicity of any irreducible
representations of SO(n — 1) in a given irreducible representation of SO(n)
is at most one (cf. [Zel73, §129] and [GC50]).

O

5.3.2. Notation. For each equivalence class of irreducible representations
T of K, let H; be the subspace of H of K-type T i.e. the set of vectors
transforming under K according to the irreducible representation 7 of K.

The following lemma is an easy consequence of the ellipticity of the
rough Laplacian V*V acting on symmetric tensors. For S € C*(SPM), we
set SV(v) = S(v,v,...,v).

5.3.3. Lemma. Let S € C®(SPM) be a symmetric tensor field of rank
p and K-type 7. Let SV = Y. s;, s; € L2(FM), be its decomposition in
irreducible components. Then we have

1. For each s; there ezists a symmetric tensor field S; € C*°(SPM) of
rank p and K-type T with s; = 5.

2. Each S; is an eigenfunction of the rough Laplacian V*V and, in par-
ticular, S; is C*.

3. The series S =Y. S;, or equivalently S¥ = 3" s;, converges in the C™
topology.

We will only be interested with symmetric tensor field of rank 2 and
therefore with only two K-types: the trivial K-type and the K-type of
traceless symmetric tensor of rank 2.

5.3.4. Notation. Set
Conf"(g) ={S:S=f®g,f € C" (M)}
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and
Teich" (g) := {S € C"(S*M) : 6S =0, Tr, S = 0}.

Then Conf"(g) is the space tangent to C"-conformal deformation of g and it
is the space of vectors of the trivial K-type in C"(FM). The space Teich"(g)
is the formal L2-orthogonal space in C"(S2M) to the conformal fibers and
to the local orbit of g under the diffeomorphism group. Furthermore, each
S € Teich"(g) has the K-type of traceless symmetric tensor of rank 2.

5.3.5. Notation. Let S € L?(S2M). Let H(S) be the cyclic subspace of
L?(FM) generated by G acting on SV.

5.3.6. Corollary. Let R € Conf™(g) and write RV = Y, r;, with r; € H;.
Then, for all i, we have r; = R with R; € Conf™(g).

Similarly, let S € Teich™(g) and write S¥ =Y, si, with s; € H;. Then,
for all i, we have s; = SY with S; € Teich™(g).

Proof. The first claim is a mere restatement of Lemma 5.3.3. If § €
Teich®(g) and SV = Y, s;, by Lemma 5.3.3 we have s; = S with S; smooth
traceless symmetric tensor field of rank 2. The discussion in 5.2.2 implies
that the divergence operator on smooth traceless symmetric tensor field of
rank 2 coincides with an element of the enveloping algebra of g = so(1,n).
Thus we have ds; € H; for all i. We conclude that §S = 0 implies §5; =0
for all i, showing that S; € Teich®(g) for all i.

O

5.3.7. Lemma. Let R € Conf™(g) and S € Teich®(g) then H(R) L H(S).

Proof. By Corollary 5.3.6, is sufficient to consider the case in which R and S
belong to the same irreducible subspace H;. Arguing by contradiction, we
may assume that H; = H(R) = H(S). Then R =r ® g with r € C®°(M).
By the ergodicity of the geodesic flow, we have that §*6*r = Vdr is not zero.
In fact, for v € SyM we have (6*6*r)Y(v) = V2,r = d*/dt’r(g'v)|i=o, thus
0*6*r = 0 would imply that r is constant, in which case there is nothing to
prove.

It is not difficult to see from the compactness of M that the traceless
part (Vdr)o := Vdr — %—T ® g of Vdr is not zero. Since S is traceless, the K
orbits of (Vdr)y and SV generate K-representations both isomorphic to the
representation of SO(n) on the space of harmonic homogeneous polynomial
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of degree two on R". By Lemma 5.3.1 the multiplicity of this representation
in H; is 1, and therefore (Vdr)y and SV have the same K-orbit. However,
since (Vdr)y and SV are both K;-invariant we obtain that, for some constant
C # 0, we have S¥Y = C(Vdr)y and equivalently S = C(Vdr)s. From
(S, (Vdr)o) = (S, (6*6*r)o) = (S, 6*6*r), we obtain (S, §*6*r) # 0. This is
impossible because we have (S,d*0*r) = (45,0*r), and the latter term is

zero since S € Teich(g) and therefore S is divergence free.
O

5.3.8. Remark. A simple modification of the proof above shows that if
S € Teich®™(g), then H(S) is orthogonal to all one forms. This means that
if S € Teich®(g), then the minimal K-type occurring in H(S) is the K-type
of S.

5.3.9. Lemma. Let S1, So € C*°(SPM) and assume that H(S1) and H(S>2)
are orthogonal. Then

Cov (8Y,8Y) = Cov (T(81)Y,8y) = Cov (T(S81)Y,T(51)¥) = 0.

Proof. By formula 5.1 the operator 7 belongs to the enveloping algebra of
G and therefore 7(S;) € H(S;).

Since the flow g* (lifted to F M) is given by right translation of by some
split-Cartan in G, by the exponential decay of matrix coefficients, we have

(e o]
Cov(F,QG) = / (F,G o g")dt
—0o0
for any pair of smooth functions F and G on F M, provided that either F’
or (G integrates to zero on FM. Thus if F and G belong to orthogonal
G-invariant subspaces we have that at least one of them has average zero

on FM and Cov(F,G) = 0. The lemma follows.
O

Proof of Proposition 1.3.4. Recall that for simplicity we write g instead
of go. It is sufficient to prove the claim for a dense set of S € C3(S?M),
e.g. for § € C*®(S2M), since the bilinear form Cov is continuous in the C*
topology. For S in C*®(S2M) we can write

S =S+ S¢ + So,
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with S € Teich®™(g), S¢ € Conf *°(g) and with Sy belonging to the image
under §* of the space A'(M) of C*™ one-forms. This decomposition of S is
unique, since the sum

C®(S2M) = Teich™(g) + Conf ®(g) + 6* (A (M))

is direct (Cf. [Bes87, Lemma 4.57]). By the linearity of the operator T,
we can decompose T as T = T (St) + T(Sc) + T(So). Now, we observe
that, in computing Cov (T, SV) and Cov (TV,T"), the terms Sy and 7 (So)
are irrelevant: in fact the terms Sy and 7(Sp)Y are cohomologous to zero,
since we have Sy = Lxg for some C*® vector field X on M. Thus the
proof of Proposition 1.3.4 will be complete if we prove it simply for S €
Teich®(g) + Conf *°(g).
By Lemma 5.3.9, we have

Cov (T(Sc)Y, St) = Cov (T(ST)Y, S&) = Cov (T(Sc)Y, T(Sr)¥) =0

and thus it suffices to prove the claim of Proposition 1.3.4 separately for
S € Teich®(g) and for S € Conf*(g).

Let S € Teich™(g). From T(S) = —3S + ;V*VS + 1(Tr, S)g — $6*6S
and the definition of Teich®(g) we obtain

(5.2) T(S) = -%s + iv*vs,
Regard S as a one-form with values in T*M. Let dV be the differential
induced on A"(M) ® T*(M) by the Levi-Civita connection and let dV~ be
its formal adjoint. We have the following Weitzenbock formula (cf. [Bes87,
p-335])

@V d¥ +dVdV")S = V*VS — R°(S) + S o Ric.

where R°(S) was defined in (4.12). Using the formula (4.14) and the fact
that Ric = —(n — 1)g, we obtain

@V'dV +dVdV)S = V*VS - § — (n—1)S = V*VS — nS.

Since the left hand side above is positive, we conclude that the spectrum
of the restriction of the V*V to Teich®(g) lies in [n,00) and (5.2) implies
that the spectrum of the restriction of 7(S) to Teich®(g) lies in the interval
[(n —2)/4, 00).

By Lemma 5.3.3, we can decompose S as a C* convergent series
S =3 S; with S} belonging to the irreducible component H; and S; eigen-
function of V*V of eigenvalue A; > (n — 2)/4. Then for 7 # j the spaces
H(S;) and H(S;) are orthogonal.
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Lemma 5.3.9 implies that

Cov (57,8]) = Cov (T(5)",8}) = Cov (T(S:)¥,T(5;)") = 0.

We conclude that

(5.3)
Cov (T(5)Y, Z Cov (T(S:)Y,S)) = Z Ai Cov (57, SY)
> Z 2 Cov (8Y,8Y) = "2 Cov (5, 5)
and, similarly,
(5.4)
Cov (T(8)Y,T(S)") = Cov (T(S:)" Z A2 Cov (S, 5Y)

—_— 2 —
> (n 1 2) Cov (S;’,Sly) = <n4 2) Cov (5, 8Y),

proving the desired estimate for the case S € Teich™(g).

Consider now the case S € Conf®(g). We have Try S = nS and therefore
T(S) = 215+ $V*VS - 16*6S. Writing S = F®g, with F € C®°(M), we
see that the term 0*0S appearing in 7(S) can be rewritten as 6dF and it
gives rise in 7(S)V to the term (6*0S)V = (6dF)V, which is cohomologous
to zero. Thus, in computing Cov (77(S)Y,SV) and Cov (7(S)V,TV) we can
replace 7(S) by

VS.

To(S) :=

The positivity of the rough Laplacian V*V implies that the elliptic operator
7o has spectrum in [(n — 1)/2,00). Reasoning as before we obtain , for
S € Conf*(g), estimates similar to (5.3) and (5.4), but with the constant
(n —1)/2 replacing the smaller constant (n — 2)/4. Thus the estimates (5.3)
and (5.4) are also valid for S € Conf®(g). This concludes our proof O

Proof of Theorem C. Let n = dim M = 3. By Proposition 5.1.1 and formulas
(5.1) and (5.2), we see that, for S € Teich®(g),

Enti,,iouv(g) = — Cov (TV,TV - Sv) =

1 1
= —Cov (SV + 1 CaSSO(l,g) Sv, 1 CaSSo(l,g) SV)
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’lI‘hus assuming that Casgp(1,3) S¥ = ASV', we o.bta,in Ent{;o. (9) = —3A(1+
72) Cov(SY,S8Y). Thus Entf;,,,(9) < 0 is equivalent to A > 0 or A < —4.
The latter eventuality is impossible, since we have shown that, in dimension
3, the spectrum of the Laplacian on Teich(g) is contained in the interval
[3,00) and Casgp(1,3) = V*V + Casgp(s) = V*V —6. In any case, since the
spectrum of V*V is discrete, we find that on a infinite dimensional subspace
of Teich(g) the derivative Ent{;,,(g) in a curve of metrics in a direction in
this subspace is negative.

However if the operator Casgp;,3) on Teich®™(g) has an eigenvector S
of eigenvalue A < 0, it follows that the Liouville entropy has positive second
derivative in the direction of S. Now recall that such an S would generate
an irreducible representation of SO(1,3) with minimal K-type given by the
K-orbit of S, i.e. with minimal K-type 7o (here we have denoted by 7o the
representation of K ~ SO(3) on the space of traceless symmetric tensors of
rank 2). The unitary irreducible representations of SO(1,3) with minimal
K-type 72 belong to the unitary principal series of SO(1,3) and determined
up to unitary equivalence by the value of the Casimir operator on them.
From [Tay86] we obtain that the values of the eigenvalues of the Casimir
operator, with our normalization, are given by u? — 3, u € R. Thus, since
the Plancherel measure has support on all the interval [—3, c0), by Theorem
5.4 of [DWT79], we find a cocompact lattice I' in S0(1,3), with spectrum of
the Casimir on Teich®™(g) in (—3,0). Then I'\SO(1,3)/SO(3) provides us

with the desired counterexample. O
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