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Local entropy rigidity for hyperbolic manifolds 

LIVIO FLAMINI01 

We study deformations of compact hyperbolic manifolds of a given 
total volume. We show that along any non-trivial deformation the 
topological entropy and the difference between topological entropy 
and Liouville entropy are locally strictly convex functions of the 
deformation parameter, thus providing a partial positive answer to 
a conjecture of A. Katok. 

§ 1. Introduction. 

1.1. Statement of the problem. 

1.1.1. Notation. Throughout this article, M denotes a compact smooth 
manifold of dimension n. Given a C 2 Riemannian metric g on M, the 
geodesic flow determined by g on the unit tangent bundle S9 M is denoted 
by T9 or TJ, or simply by gt when this abuse of notation will not be confusing. 

1.1.2. Geodesic flows on the unit tangent bundles S9M of compact Rie­
mannian manifolds (M, g) of negative curvature are the chief examples of 
transitive Anosov flows. 

We recall that a continuous flow T : (v, t) E N x JR. 1-t Ttv E N is 
transitive if it has a dense orbit. A flow T on a compact manifold N is 
an Anosov flow [Ano67] if it is C 1 and the tangent bundle TN of N splits 
continuously in T-invariant subbundles TN = E 0 $ Eu $ E 5 satisfying the 
conditions: 

1. E 0 is the tangent space to the orbits of flow. 

2. There exists positive constants ). and C such that JJdTtJE5 II < ce->.t 
and JJdT-tJEull < Ce>.t for all t > 0. 
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1.1.3. Anosov flows have many invariant measures. Given a T^-invariant 
probability measure m, we denote by h(T,m) or ^(T^ra) the measure the- 
oretic entropy of the time 1 transformation T1 with respect to the measure 
m [Pet83]. The supremum 

htop(T) = sup{/i(T, m) | T -invariant probability measure ra} 

of all measure theoretic entropies is attained, for Anosov flows, by a unique 
measure, the Margulis measure mo, also called the measure of maximal 
entropy [Mar70, Bow72a, Bow74, BR75]. 

In the case of a geodesic flow T^, we also have a smooth T^-invariant 
measure on SgM, the Liouville measure Liouv(g'), which arises from the 
contact structure on SgM. 

1.1.4. For locally symmetric manifolds of negative curvature, it is not 
difficult to see that the Liouville measure and the Margulis measure coincide. 
In other words, for geodesic flows on locally symmetric manifolds of negative ^ 
curvature, the measure theoretical entropy of Liouville measure coincides 
with the topological entropy. The converse of this statement is the content 
of the following conjecture of A. Katok. 

1.1.5. Conjecture [Kat82, BK85]. The topological entropy and the en- 
tropy of the Liouville measure for a geodesic flow on a negatively curved 
manifold coincide, (if and) only if the manifold is locally symmetric. 

A. Katok himself showed in [Kat82] that the conjecture is true if one 
considers metrics conformally equivalent to a locally symmetric metric. In 
particular, the conjecture is true for surfaces of genus greater than 1. 

The topological entropy has also another geometric interpretation 
[Man79]. Denote by M the universal cover of M. For a negatively curved 
metric g on M, let Bgir(p) be the ball of radius r centred at p G M for the 

lift to M of metric g. Then 

htoP{T9) = ton - logVolg(Bgjr(p)). 

In words, the topological entropy of the geodesic flow coincides with the 
volume growth of balls in the universal cover of M. 

A related conjecture of Gromov, formulated at about the same time as 
Katok's conjecture, states: 
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1.1.6. Conjecture ([Gro83]). Among all metrics of volume equal to the 
volume of a locally symmetric metric go on a manifold M, the volume growth 
of balls in the universal cover M of M is minimized at the metrics isometric 
to go- 

Besson, Courtois and Gallot ([BCG94a] and [BCG94b]) have recently 
announced a proof of Gromov's conjecture for rank-one neg. curved locally 
symmetric manifolds which builds up on their 1992 theorem: 

1.1.7. Theorem ([BCG]). Let go be a metric of constant negative curva- 
ture on a compact manifold M of dimension n. Then, in the space of Hs 

metrics with volume equal to the volume of go, there exists a neighbourhood 
U of go in the Hs topology (s > n/2 + 2), such that the minimum of the 
topological entropy in U is attained only by metrics isometric to go. 

1.1.8. In consideration of the fact that the method of Besson, Courtois 
and Gallot applies so far only to topological entropy, in order to shade some 
light on Katok's entropy conjecture 1.1.5, it is very interesting to study the 
functions 

Enttop : g € Mr{M) v+ htop(Tg) 

EntLiouv : g e Mr{M) H> /i(Tp,Liouv(5)) 

in a neighbourhood of the locally symmetric metric go. Here we have denoted 
by (M, go) a compact locally symmetric manifold of negative curvature and 
set 

Mr(M) = {Cr metrics g on M | Vol^(M) = Vol^M)}. 

1.1.9. We remark that the above functions Enttop and EntLiouv are known 
to be smooth by previous works respectively of Katok, Knieper, Pollicott 
and Weiss [KKPW89] (for the topological entropy) and of Contreras (for 
the Liouville entropy) [Con92], provided we restrict ourselves to negatively 
curved metrics. It is also known [KKW91] that a locally symmetric metric 
go is a critical point of Enttop and EntLiouv 

1.2. Statement of the theorems. 

In this paper we obtain estimates for the second derivative of the 
functions Enttop and EntLiouv at a metric of constant negative curvature 
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which allow us to establish that along a path through a metric of con- 
stant negative curvature 50? locally, the only metric for which one has 
EnttopCs) = EntLiouv(#) is go- More exactly: 

Theorem A. Let go be a metric of constant negative curvature on a com- 
pact manifold M of dimension n and let g£ be a C2 curve of C5 metrics 
of constant volume. Then, if g£ is not tangent to the orbit of go under the 
diffeomorphism group, the function 

e »-> Enttop(^) - EntLiouv(&) 

is strictly convex at e = 0.   In particular, it follows that along the path g£ 

and for small e's, the equality EnttopQfc) = EntLiouvQfe) occurs only at go- 

In [Pol94], Pollicott proved that at a locally symmetric metric the topo- 
logical entropy is convex for volume preserving conformal deformations. 
Along the way to the proof of Theorem A we find the following theorem. 

Theorem B.   Under the same hypothesis as Theorem A, the function 

£M-Enttop(ge), 

is locally strictly convex at go. 

For the measure theoretical entropy the volume normalization does not 
yield any useful convexity or concavity property. Surprisingly, we have: 

Theorem C. There exists an hyperbolic 3-manifold (M,go) for which the 
function EntLiouv • M5(M) —>• R+ has second derivative at go with mixed sig- 
nature. In particular the entropy EntLiouv of the Liouville measure does not 
have either a minimum nor a maximum at go, when restricted to jM5(M). 

1.3. Outline of the proofs. 

The scheme for the estimate can be divided into three parts. In the first 
part, since geodesic flows on a negatively curved manifold can be represented 
as a flow built under a function on a topologically mixing subshift of finite 
type, we investigate these flows. 

We recall some basic definitions about cocycles. Let T be a Borel M-flow 
on a Borel space X. An (R-valued) cocycle for the flow T is a Borel function 
c : X x R —> IR satisfying the relation 

c(a;, t + s) = c(x, t) + c(T*a;, s). 
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Cocycles for the flow T form a group under addition and a cocycle c for T 
is called a coboundary if c(x,t) = b^x) — b(x) for some Borel function b. 
Coboundaries form a subgroup and the elements of the quotient group are 
the Borel cohomology classes of the flow. If a cocycle c is "differentiable 
along the orbits", i.e. if c(xjt) = J0 A(Tsx)ds^ for some Borel function A 
on X, we say that A generates c. In a cohomology class we can always find 
a representative which is smooth along the orbits. If X has a Ca structure, 
we say that a cohomology class is Ca if it has a representative generated by 
a Ca function on X. 

If (X, T) is a symbolic flow, i.e. a flow built over a topologically mixing 
subshift of finite type with a Holder ceiling function A, then to each Ca 

cohomology class [c] is attached a T-invariant measure m[c] called the Gibbs 
state for [c]. If A is a Holder function generating a representative of [c], 
it is costumery to refer to A as the potential for the Gibbs state m[cy The 
function identically equal to 1, generates a cocycle, called the length cocycle 
and its corresponding Gibbs state is the measure of maximal entropy for T. 

We prove the following Proposition about derivatives of entropy of Gibbs 
states for symbolic flows in terms of the variation of the generating cocy- 
cles. The CoVu(v,w) below denotes the "covariance" of Holder continuous 
functions v, w for the flow T and with respect to the Gibbs state for the 
potential u (see [Rue78] and §2) and VarJ(i;) = CovJ^v). 

1.3.1. Proposition (A). Let (S,a) be a topologically mixing subshift of fi- 
nite type and let X£ be a C2 curve positive Ca functions on S. Let (X^T*) 
be the special flow built over (S,(j) with ceiling function X£. Let Sle be a Ca 

function on X£ w {(p, t) \p G E,0 < t < Ae(p)} with the property that 

Sl£(p, t) dt = d/de X£(p). j Jo /o 

Then, denoting with primes differentiations with respect to e, we have : 

(Al) MopCFo) = ^-^op(Te)e=o = -/Uop(To)mo(<Mo) 

where mo is the measure of maximal entropy for the flow TQ. Ifh[op(To) = 0 
and S2l£ denotes a Ca function on X£ with the property that 

/        52l£{p,t)dt = d2/de2\£{p), 
Jo 

then 

(A2) h'lop(To) = -htop(To)M0(82lo) + htop(To)2 Var^(^o). 
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(B). Let u£ = uE(p,t), (p E S, t E IRt), be a C2 family of Holder continuous 
functions of pressure zero for the flow Te. Let mU£ denote the Gibbs state 
for the flow T£ and potential u£.  We have: 
m 

ti(To,mUQ) = —h(T£,mU£)£=o = COV^(UO,SUQ) - h(To,mUo)mUo(8lo), 

where 6u£ is the (generator of) first variation of the cocycle generated by u£ 

and is defined by J0 
£ Su£(p, t) dt = d/de JQ 

e u£(p, t) dt. Ifuo is cohomologous 
to a constant and mUo(Slo) = 0; then hf(T,mu) = 0 and 

hn(T^mUQ) = -VCITI
Q
0(5UO) -2h(T0,mUo) Cov^0(8l0,5uo) 

(B2) -h(To,mUo)mUo(S2lo). 

(C). Finally, if in addition to the hypothesis in (B); we have (a) mU£(8l£) = 0 
for all e and (b) mo = mUo, then 

(Cl) CpCZb) = Covg, (/itop(To) Mo , Suo + htop(To) <%) • 

(C2) ^'(To, muo) = - CovJJ, (SUQ , 8u0 + htop(To) Sl0) 

(C3) 

/4'op(To) - ^'(To^^) = Varg, {Suo + htop(To)5lo). 

The formula (Al) was essentially a step of [KKW91] and (A2) has also 
been proved independently by Pollicott [Pol94]. 

The above proposition yields formulas for the second derivative of Enttop 
and EntLiouv along paths g£ of metrics in M(M) once one knows how to 
determine the variations of the cocycles generating the Margulis and the 
Liouville measures—i.e. the length cocycle and the Liapunov cocycle—in 
terms of the variation S = ■^g£ of the Riemannian metric. In fact, since 
Gibbs states only depend on the cohomology class of the generating cocycles 
it is sufficient to determine the variation of the cohomology class of these 
cocycles. This is the second step of the proof. 

1.3.2. Notation. For a symmetric covariant tensor field S of rank 2 on a 
Riemannian manifold (M,^)? denote by Sv the quadratic form field Sv : 
v i-> S(v,v) defined on the sphere bundle Sg0M. 

Then for the length cocycle we have SIQ = ^Sv |e=0. For the Liapunov 
cocycle we have the following Proposition: 

1.3.3. Proposition. Let g£ be a Cl curve of C^ metrics on a manifold M, 

deye and assume that go has constant negative curvature. Let S = -jzg£ at e — 0. 
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Then the generator 8u of the first variation of the Liapunov cocycle at e = 0 
is cohomologous to 

where T is the symmetric tensor field defined by T = — ^S + ^V*V£' + 

In the Proposition above, V*V is the rough Laplacian for the metric 
^o, S* denotes the symmetrization of the covariant derivative for go and S 
denotes its formal adjoint, the divergence. 

The final step consists in estimating the covariance Covmo((Mo,<^o) — 
Covmo(iS,v

JT
v + ^S^) which appears in the formulas (Cl-3). We prove: 

1.3.4. Proposition. Let go be a metric on M of constant negative curva- 
ture — 1. Let S be a C3 a symmetric covariant tensor field of rank 2 on M 
and letT = -\S+ \V*VS + ^(Tr^ S)g - \5*5S.  Then, we have: 

Coviuv(ff0) (5
V,TV) > !i^Coviuv(flo) (5V,5V) 

Coviuv(so) (T\TV) >. (!^)2Coviuv(9o) (5V,5V) 

The above estimate is the heart of the proof. It follows from observing 
that since (M, go) is locally symmetric of constant negative curvature, the 
functions SrV,Tv on the unit tangent bundle S^M lift to the orthonormal 
frame bundle FM of M. The group G « 50o(l, n) acts transitively on FM, 

and the bilinear form Covj^ouv/ \ is diagonal with respect to this action of 

G , i.e. it respects the decomposition of L2(FM) into irreducible subspaces. 
But the linear map S' *-» T also respects this decomposition and, on each 
irreducible subspace, T is a multiple of S. In the end, the estimate reduces 
to an estimate of the smallest eigenvalue of the operator S h-* T on the space 
orthogonal to the orbit of go under Diff(M). This is achieved via a suitable 
Weitzenbock formula. 

1.3.5. Corollary. Under the hypothesis of Theorem A and setting S = -^ge 
at£ = 0, the second derivatives of the topological entropy and of the Liouville 
entropy satisfy: 

EnCp(5o)>^(n-1)coviuv(9o)(5
v,5v)) 

EnCp(5o) -E<iouv(5o) > ^^CovUouv(flo)(5V'5V)' 
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Proof of Theorems A and B. The equality Covj^, JS^S7) = 0, is 

equivalent to saying that Sy is cohomologous to a constant, in our case 
to zero. Applying a theorem of Guillemin and Kazhdan [GK79], we ob- 
tain that this implies that the curve ge is tangent to the orbit of the 
diffeomorphism group at go?  in contradiction to the hypothesis.    Thus 

CovLiouv(po)(S'V'S'V) > 0 and ^ Corollary i-3-5 we obtain EnCpfoo) > 0 

and EnCpfoo) - Ent^iouv(ffo) > 0. D 

Acknowledgments. The largest part of this work was done at MSRI dur- 
ing the special year on "Lie Groups and Ergodic Theory". It is for me a 
pleasure to thank MSRI and the organizers of the program. 

§2. Derivatives of entropy for symbolic flows. 

2.1. 

For generalities on topologically mixing subshifts of finite type, pressure 
and Gibbs states we refer to [Bow75] and [Rue78]. 

Let a : S —>- E be a topologically mixing subshift of finite type. For any 
Holder continuous potential 0 denote by /i^ the Gibbs state for <^, and by 
Pcr(^) or P(<7,0) the pressure of the potential (j). We recall that pressure 
P<7(0) and the entropy /i(cr,/i^) of a with respect to the Gibbs state /i^ are 
related by the variational principle: 

i*7^) = h{a, 1x4) + /v(<£) = sup(/i(a, /i) + /i(0)), 

where the supremum is taken as /i ranges on the set of probability cr-invariant 
measures on E. It is also known that, for 0 E Ca(E), the equality Pa{4>) — 
/i(cr,//</,) + M^C^) completely characterizes the Gibbs state /i^ among the 
cr-invariant measures /i on E (see [Bow75]). 

We define the covariance of Holder continuous functions ip and £ with 
respect to the Gibbs state /i^ by 

oo 

COV$MC)= J2 /^•c<>^-^W'W(c)). 
i=—oo 

We also set 
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and we call the above limit is called the variance of tp w.r.t. the Gibbs state 
/X0. We have COV^T/J, £) = 0 for all ip if and only if C is cohomologous to a 
constant, i.e. C — Xocr — X + Const for some Holder continuous function 
X : £ -> R 

The convergence of the above series follows from the exponential rate of 
mixing of Holder continuous functions. 

2.2. 

Prom [Con92] the map 

P* : </> E Ca(E) ^ P<7((/>) E R 

is real analytic. Setting 

Dnp&ifa, ...,4>n)=±... ^(fo + hfa + ■■■ + tM 

we have, (cf. [Con92] and [Rue78, Ch.5, Exerc. 5]) 

(2.1) 

D1^^!) = /**,(&)     and    EPP&faifa) = CovKtufo). 

Thus the maps 
(/) E Ca(E) ^ nj, E Ca(E)* 

and 
Cov^7 : (/) e CQ(E) H> Cov^ G L(Ca(E),CQ(S);R) 

are real analytic. 

2.2.1. Observation. If (f)£ is a C2 curve of potentials in Ca(E), writing 

fie = <t>o + scpi + %-02 + ^C^2)? we obtain 

£l— ^2 — •••—tn=0 

(2.2) 
e2 

P'tte) = PCT(0o) + e/Jfc^i) + T (Cov^C^i,^0 + /i^(^)) + 0(e2). 
2 

2.3. 

Let a : S —> S be a topologically mixing subshift of finite type and A be 
a positive Ca function on S. 
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We recall the definition of special flow T built under A. Let T be the 
flow on S x R defined by T*(p, s) = (p,s + t) and consider on E x M the 
equivalence relation ^ generated by (p,t) ^ (crp,t — A(p)). Then, setting 
X = S x E/ ~, the flow T descends to a flow T on X: the flow (X,T) 
is called £/ie special flow built under A. Sometimes we shall simply write 
(S, cr, A, T) or (S, a, A) to refer to (X, T). Clearly a fundamental domain for 
X is the set {(p, t) G S x R : 0 < t < A(p)} and X can be easily turned in a 
metric space (see [BW72]). 

2.3.1. Notation. Let A : X -> R be a Ca continuous potential on X and 
let PT{A) = P(T,A), ITIA and /i(T,m^) denote respectively the pressure of 
A for the flow T, the Gibbs state for the potential A and the entropy of the 
flow T with respect to the measure UIA- 

In analogy to the case of shifts, the pressure PT(A) and the entropy 
h(T,mA) of T with respect to the Gibbs state rriA are related by the varia- 
tional principle: 

PT(A) = h(T, rriA) + mA(A) = sup(/i(T, m) + m(A)), 
m 

where the supremum is taken as m ranges on the set of probability T- 
invariant measures on X. Also, rriA is the unique T-invariant measure on X 
for which the equality PT(A) = h(T, ITIA) + rnA(A) is achieved. 

2.3.2. Definition. Let c be the cocycle for the special flow (X,T) = 
(E, a, A) generated by A : X —>> R Then the induced cocycle on E is the 
cocycle for cr generated by I [A] : E -> R where I [A] is defined by 

rA(p) 

II :[A](p)= /    A(r*p)dt. 
JO 

2.3.3.   Notation. Given a function A : X -> R let $[A| : E -> R be the 
function defined by 

$[A] =l[A}- PT(A)X = l[A- PT(A)} 

If A : X -4 R is a Holder continuous on X, then I [A] and $[A] are also 
Holder continuous on E. 

We can reduce the study of flows to the case of shifts by the follow- 
ing theorem that clarifies the relation between Gibbs states for (E, cr) and 
(X,T). 
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2.3.4. Theorem (Bowen, Franco-Sanchez). The Gibbs measure mA for 
the flow T and the potential A is given by 

_      /ig[A] ® dt      _ n<f>[A] ® dt 

(l**[A]®dt)(X)       ^[A]W 

where /i^ui denotes the Gibbs state of the potential $[A] on E. Furthermore 
the pressure P<7(^[A]) of Q>[A] is zero. 

2.3.5. Remark. From the above Theorem, Contreras' result mentioned in 
2.2, the formula 2.1 for the first derivative for PT(A) and the implicit func- 
tion theorem, it follows that for A E C^(E) and a < /?, the map 

PT : A e Ca{X) i-> PT{A) e K 

is real analytic. The maps m : A e CQ(X) H-> m^ G Ca(X)* and A G 
Ca(X) h4 h(T,mA) G R are real analytic as well. 

2.3.6. Remark. The variational characterization of Gibbs states implies 
that the measure of maximal entropy for the flow T is the Gibbs state for 
the potential zero (or, more generally, for a potential cohomologous to a 
constant). 

2.3.7. Remark. Again by the variational principle, the potential A has 
pressure zero if and only if 

h{T,mA) =-mA{A) 

2.4. 

We recall now the definition of covariance for special flows. Since an 
exponential mixing rate for Holder functions is not guaranteed, the definition 
is not as immediate as in the case of shifts. 

2.4.1.   Notation. Retaining the previous notations let B : X —> E be 
another Holder continuous function on X. Define *A[^] 

: S -» M by setting 

*A[B] = I[B] - mA{B) \ = l[B- mA{B)]. 

The definition of covariance was given by Marina Ratner who proved in 
[Rat73a] the following theorem: 
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2.4.2. Theorem (Ratner). For a Holder continuous function B : X -> E 
and any Gibbs measure TTIA on X the limit 

V<M
T

A(B)= lim ~ / ( /  (Bor*-mA(B))dtJ   dmA 
T^oo T Jx \Jo J 

exists, equals -—W^y Var^r^J^^^]) and it is called the variance of B with 

respect to the Gibbs state m^. 

By polarization, given any three Holder continuous functions A,B,C : 
X -+ R, the limit 

CovT
A(B, C) = rlim 1 jf  (J\B O T* - mA{B)) dtj • 

• (f (Col* -mA(C))dA dmA 

exists and we have 

rT (2.4) Cov^B, C) = ^—— Covl^^IS], ^[C]). 

We call Cov^(£?,<?) the covariance of i? and C with respect to the Gibbs 
state mA. We have Cov5(i?, C) = 0 for all B if and only if C is cohomologous 
to a constant, i.e.  if there exists a Holder function D differentiable along 

dD oT1 

the flow T* such that C = ;       + Const (see [Rat73a]). 
dt     t=Q 

2.4.3. Remark. Notice that if the integral /^ \mA(B • C o T*) - 
m^(B)m>i(C)| d^ exists, then 

/oo 
(mA(5 • C o T*) - mA(5)m^(C)) dt. 

-OO 

2.5. 

Let Ae be a Cr curve of positive Ca functions on E and let (X£1T£) be 
the family of special flows built under A^. 

Let u£ be the a Cr family of Ca potentials on X£, i.e. a curve admitting 
a Cr lift to Ca(E x M). 
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2.5.1. Definition. For A^ and ue as above we define the i-th variation of 
the cocycle (generated by) u£ as (the cocycle generated by) any Ca function 
5lue be a on X£ with the property that 

(2.5) I€[Slu£](p)=J Pue(p,t)dt=—ij        u£(p:t)dt. 

(for simplicity, S1 = S and 60u£ = u£). In other words the i-th variation Slu£ 

induces on £ the i-th derivative of the induced cocycle I^^]. Notice that 
the i-th. variation Slu£ of the cocycle u£ is only defined up to a coboundary 
for the flow T£. 

We denote by 5ll£, the i-th variation of the length cocycle: 

(2.6) le[6%](p) = ^ 6%(p,t)dt = rgXefr). 

Having stated the set up the proof of Proposition 1.3.1 is rather ele- 
mentary. To simplify notation, we denote with primes differentiation with 
respect to e and suppress the dependence on e, e.g. JP^T, u) = d/dsP(T£,u£) 
and P'(To,uo) = d/deP(T£,u£)\£ = 0. 

2.5.2. Proposition (Derivatives of the Pressure and Entropy). Let 
X£ be a C2 curve of positive Ca functions on S and let (X£,T£) be the family 
of special flows built under X£. Let u£ be the a C2 family ofCa potentials on 
X£. Then, retaining the previous notation for the first and second variation 
for length cocycle and the cocycle generated by u£ and setting 

v£ = 8u£ — P(Te, i^) 8l£        and       w£ = 52u£ — P(T£, u£) S
2l£ 

we have: 
Pf{T,u) = mu(v) 

P"(T, u) = Var^(^) + mu (w) - 2mu (v) mu (61) 

and 

ti(T, my) = - Covu (v, u) + h(T,mu) mu(6l) 

h"(T,mu) = -DspT(u:v,v) - 2h(T,mu) Covl{6l,v) 

+ 2( Covl (v, u) + h{T,mu) mu(5l)) mu{Sl) 

— Cov^(w, w) + 2mu(v) Cov^(u, SI) 

- h(T,mu)mu(S2l) - Coy^(v,v). 
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2.6. 

We shall not give the proof of the proposition above. However, for com- 
pleteness, we shall give independent proofs of the following corollaries which 
we use in this paper. 

2.6.1. Corollary. Let X£ be a C2 curve of positive Ca functions on E and 
let (X£,Te) be the family of special flows built under \£. We retain here 
the previous notation and denote by htop(T£) the topological entropy of the 
flow T£ and by M£ the measure of maximal entropy for the flow T£. Also 
denote by Varjp the variance of the flow T£ with respect to the measure of 
maximal entropy m£.  Then, suppressing the dependence on e, we have 

(2.7) h[op{T) = -h,ov{T)M{8l). 

If h[op(To) = 0 we have 

(2.8) Cp(To) = -/Hop(To) Mo(S2lo) + htop(To)2 Var^Zo). 

Proof Observe that since e *-» X£ G Ca(E) is C2, the first and second vari- 
ation 5l£ and 52l£ of the length cocycle exist (as Holder functions). By the 
Remark 2.3.6 the topological entropy equals the pressure for the potential 
0 and from Theorem 2.3.4 and 2.3 we obtain that 

mF — 

where (j)(e) = — /itop(2e)A£. Again by Theorem 2.3.4, we have that 
P0"^^)) = 0 for all e. By Remark 2.3.5, the curve (j){e) is a C2 curve 
of C01- potentials on E. Thus from (2.2) we obtain that 

(2.9) M^)=0    and    VarJ^) + /v(</>") = 0. 

Since ^ = -h[ov{T)\ - htop(T)\' from the first of (2.9) we conclude that 

_          htop(T) ^(Xf) _    htop(T)^®dm _ 
Vp(T) * MAT" " MA) " -Vp(r)mo(«) 

proving (2.7). 
The hypothesis /4op(2o) = 0 implies that ^'(0) = -h[op(To)Xo and 

^/'(O) = -/i[/
op(To)Ao - htop(To)\Q. Thus, using the second of the formu- 

las (2.9), we obtain 

Var;(0)(-/itop(To)A,
0) +^(o)(-Cp(To)Ao - hto?(To)\'{) = 0. 
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We conclude that 

= -/itop(To)Mo((5/o) + /Hop(To) 

= ( 
(2.4) we conclude 

2Va4(I[ao]) 
^(o)(^o) 

Prom Mop(ro) = 0 we have Mo(^o) = 0 and therefore I [£Ao] = *o['o]- Using 

^0(0) (Aoj 

proving (2.8) and Part A of Proposition 1.3.1. □ 

2.6.2. Corollary. Let X£ be a C2 curve of positive Ca functions on S and 
let (X£,T£) be the family of special flows built under X£. Let u£ be the a C2 

family of Ca potentials on X£. In the hypothesis that P(T^u£) = 0 for all 
e we have: 

(2.10) ti{T,mu) = -Covl{u,du) - h(T,mu)mu(5l). 

If UQ is cohomologous to a constant and raUo(<%o) = 0, then hf(T^nnu) = 0 
and 

(2.11) tif(T0,muo) = - Var^(^o) - 2/i(To,mflo) Cov^(%,^o) 

-/i(To,mno)mUo(52/o), 

Proof. Since by hypothesis P(T^u£) = 0 for all e, we have that $[%](p) = 

/Q'
C
 ue(Tlp) dt. For simplicity set /ip6 = $[ue]. The Gibbs state mU£ is thus 

given by 
V-iPe ® dt 

rriu. = 

where /J,^ denotes as before the Gibbs measure for the shift a and the 
potential ip£. From equation 2.2 and the fact that P(<7, ^e) = 0 for all e (see 
2.2), we obtain 

(2.12) ^{ip,) = 0. 

By the variational characterization of Gibbs states and P((j,ip£) — 0 we 
have /i(cr,/i</,) = -/it/,(

/0) and, using (2.12), we obtain 

(2.13) 
h!{o,^) = -CovJ^V/) -^(^) = -Cov^^,^)- 
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Differentiating w.r.t. e Abramov's formula 

W°iWe) ^ Vipers) h{Te,mUe), 

and using (2.13), we have 

-Cov^,^) = h(T,mu) (Cov^A,^) +/V,(A')) +^£(A)/i'(T,mu) 

or 

(2.14) 

h(a,mu) = T— h(T,mu) T^T- 

Observe that we have *WM = ^ - Tnu{u) A = if? + /J(T, mu) A and ^[tfii] = 
^ — mu(Su) X = i/jf — ^(ij)1) A = /0/- Thus, using (2.4) we have Cov^ip + 
h(T,mu) A, ^O = Cov^(^, 6u) /i^e(A), which proves (2.10). 

Assume now that the ^o is cohomologous to a constant. Then P(T, u) = 
0 implies that the function ^o + /i(To,raWo) is cohomologous to zero and 
therefore also if)Q + h(muo) AQ is cohomologous to a zero. The further as- 
sumption mUo(Slo) = 0 entails /^0(Ao) = 0 and therefore ^'(Tcm^) = 0. 
In this case one further differentiation of (2.14) yields 

u'lf        \          Cov5o(^o + H^uo)^^) 
">  {muo) =  

^o(^o) 

-h(mU0) 
\Cov%M,\'0) + ^(Ag) 

Ptpofto) /%)(Ao) 
COV^^O^Q)     u      J.Cov^^^Ag)   | ^(Ag) 

-h(mU0) 
^o(^o) ^o(^o) 

and (2.11) is proved. Part B of Proposition 1.3.1 is now proved 
□ 

2.6.3. Corollary. Let X£ be a C2 curve of positive Ca functions on E and 
let (X£,T£) be the family of special flows built under \£. Let u£ be the a C2 

family of Ca potentials on X£. Assume that 

1. P(T*,ue) =0 for all e; 

2. mU£(Sl£) = 0 for all e; 

3. UQ is cohomologous to a constant 
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Then mo = mUo, then we obtain rao(£2Zo) = — COV^^OJ^O)- Therefore 
we obtain h[Q {TQ) = hf(TQ,mUo) = 0 and 

^topC^o) = Covmo(/itop(To) Slo,uf
0 + htop(To) 61Q). 

hf,(To,mUo) = - CovmoiuQ ,u'Q + htop(To) SIQ) 

Cp(To) - hf,{T0,mUo) = CovmoK + /itop(To)MoVo + ^op(To)^o) 

Proof. The claim mo = mUo is equivalent to UQ being cohomologous to a 
constant. Retain the notation of the proof of the previous Corollary. Since 
mueiMe) — 0 implies /^(A^.) = 0 for all e, differentiating we obtain 

From mU£(Xf) = 0 we obtain ^^[tfi] = A' and since \I>ttc[<Sii] = ^^ using 2.4, 
we obtain that 

mu{d2\) = -Cowl{dl,6u). 

The rest is now mere rephrasing. This also concludes the proof of Proposi- 
tion 1.3.1. □ 

§3. The first variation of the length and Liapunov cocycles. 

In this section we collect some well known facts that we allow us to 
connect the results of §2 to the study of our original problem. Some of the 
theorems stated are valid in a more general setting of Anosov or Axiom-A 
flows. We state them for the case of geodesic flows for metrics of negative 
curvature. 

3.1. Symbolic Coding. 

The geodesic flow Tg of a metric of negative curvature g on the unit 
tangent bundle SgM of a manifold M is isomorphic to a symbolic flow 
[Rat69], [Rat73b], [Bow72b]. More exactly, there is symbolic flow (X,T) 
built over a topologically mixing subshift of finite type (S, a) with a positive 
Holder continuous ceiling function A and a finite-to-one Holder continuous 
surjection TT : X -> SgM such that TT intertwines the flow T on X with the 
flow Tg on SgM. Furthermore, denoting by mu and nWo7r respectively the 
Gibbs state for u E Ca(SgM) with respect to the flow Tg and Gibbs state 
for u o TT G C^(X) with respect to the flow T, we have that the surjection 
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TT is a measure theoretical isomorphism of (X,T,nU07r) onto (Sg:Tg,mu). 
In particular u E Ca(SgM) is cohomologous to zero if and only if u o TT is 
cohomologous to zero. 

The Margulis measure and the Liouville measure on SgM are the Gibbs 
states respectively for the length cocycle and for the Liapunov cocycle. We 
recall the definition of Liapunov cocycle. 

3.1.1. The Liapunov cocycle. For v E SgM let Wss(v) denote the 
strong stable manifold passing through v, i.e. the set of points w E SgM 
with d^v, ftw) -> 0 as t —> +oo. The Liapunov cocycle is given by the 
growth of the volume of strong stable manifold: more exactly, if /x55 is the 
volume form induced on strong stable manifolds by some Riemannian metric 

on SgM, the Liapunov cocycle is defined by £(?;, t) = dL^ (v). Changing 
the Riemannian metric on SgM does not affect the cohomology class of the 
Liapunov cocycle. 

The Liapunov cocycle has an interpretation in terms of Jacobi fields. The 
natural projection p : SgM —> M maps bijectively the strong stable manifold 
WgS(v) onto the stable horosphere Hg(v) of v. The second fundamental form 
Ug(v) of the stable horosphere H(v) at p(v) considered as a tensor of type 
(J) satisfies 2 along the orbit Tfjv the Riccati equation 

dt 
(3.1) ^Ug(liv) + DjCZji;) = i?(p*T>, ■ )p,Tt

gv. 

The Liapunov cocycle can be expressed as 

(3.2) CgM=  ( TrUg{T^v)dT. 
Jo 

It is not difficult to see that Tr Ug is a Holder continuous function on SgM. 

3.1.2. The construction yielding (S,cr, A) and the semi-conjugacy TT, pro- 
ceeds by choosing in SgM finitely many disjoint smooth disks Di transversal 
to the flow Tg. Inside each Di, we choose closed connected sets Ri so that 
each Ri equals the closure of its interior i?° and the union R of all iVs 
forms a cross-section to the flow Tg. Let P be the Poincare map of R. 
Then S is obtained as the collection of sequences u = (tJijisz such that 

2Technically the map v \-> Ug(v) is a section of the pull-back to SgM of the 
bundle T^'^M ->• M via the natural projection p : SM -> M. The Riccati 
equation can then be interpreted in these terms, V being the pull-back to SgM of 
the Levi-Civita connection on M. 
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niezP~lRui ¥" 0- By the expansiveness of the flow Tg if u G S then the 
set C\i£zP~lRui contains exactly one point x = X(UJ) of ii, thus defining a 
surjection TTS : a; i-> x(u)). For each p G R the first return time X(p) to P 
under the Poincare map of P is well defined and positive. Let A = A o TTS 

and let a be the shift on S and define (X, T) as the symbolic flow (X, T) 
built over (S, cr) with ceiling function A. It is plain that ps extents to a a 
surjection TT : X -> SgM intertwining the flow T on X with the flow Tg on 
SgM. 

3.2. Structural Stability. 

With M a compact manifold, denote by SM the bundle of oriented 
directions on M, i.e. S'M = {v G TM 11; ^ 0}/ ^, where v ~ v' and if and 
only if 3c > 0,v = cv'. For each Riemannian metric g there is a natural 
identification between the bundle S'M and the unit tangent bundle SgM. 
By means of this identification, we regard the geodesic flow Tg for the metric 
g as a flow on 5M, which we also denote by Tg with abuse of notation. 

Denote by U the space of C2-metrics of negative curvature on M, and 
more generally by Us the space of Cs-metrics of negative curvature on M. 

It is well known, (cf. [Mor24], [Ano67] and [Gro]), that the various flows 
Tg for g G U are all orbit-equivalent. This means that if go and g G W, there 
is a homeomorphism Hg : SM -* SM sending the orbits of the flow Tg0 to 
the orbits of the flow Tg. In fact the homeomorphism Hg is homotopic to 
the identity and can always be chosen smooth along the orbits of Tg0 and 
Holder continuous on SM. We call such an homeomorphism a (go, g)-Morse 
correspondence. The Morse correspondence is not unique: if Hi and H2 are 
two ((705<7)-Morse correspondences then there exists a real valued function 

t(v) on SM such that W G SM, iff1 o fyty) = Tglv)(v). Thus we have a 
sort of transversal uniqueness: 

3.2.1. Definition. For g in a neighbourhood V C ZY, we will call the family 
of Morse correspondences normal at go, the family g i->» Hg of (go,g)-Morse 
correspondences Hg which is uniquely defined by the property 

"for each v G SM the footpoint of Hg(v) belongs to the hypersurface 
obtained by exponentiating in the metric go a small ball in the subspace 
go-perpendicular to vn 

We have described some of the generalities of the construction of the 
symbolic flow in order to understand what happens if we perturb the flow 



574 Livio Flaminio 

Tg0 by perturbing a metric go G U. Let 7rg0 be a semi-conjugacy between a 
symbolic flow (S,c7, XgQ) and (SM,Tg0) mentioned in Section 3.1. 

For g in some subset of £/, denoting by Hg the family of Morse corre- 
spondences normal at go, from the fact that Hg sends the orbits of the flow 
Tgo to the orbits of the flow T^, we obtain that the set Hgong0{E) provides a 
global cross-section for the flow Tg with a Holder continuous return function 
Xg : E -> R 

We obtain a finite-to-one Holder continuous surjection TTg : Xg —> ASM 

intertwining the symbolic flow on X^ = S x M/ [(p, A^ (p) +1) ~ (crp, <)] and 
the flows Tg on S'M. [Equivalently we can look at the composition Hg o TT 

as giving an orbit equivalence between (E,cr, A^0) and (SM,Tg).] Thus we 
have the following diagram 

with dashed arrows representing orbit equivalences. Observe that, identify- 
ing the space Xg supporting the flow (E, <J, A^) with Xg = {(p, t) G E x R|0 < 
t < Xg} and E with E x {0}, the orbit equivalences Hg are the identity on 
E. 

3.3. Variation of cocycles. 

Now we are in the situation in which we can apply the results of §2. 
To this purpose we need to pull-back the length and the Liapunov cocycles 
to the flow (E,<7, A^) or (E,cr, A^0), and determine in geometric terms their 
first variations SI, Su which entered in Proposition 1.3.1. Finally we need to 
resolve the smoothness issues related to this construction. 

Assume that for each g G U we are given a cocycle Cg for the flow Tg and 
orbit equivalences Hg : 5M -> JSM sending the orbits of the flow Tg0 to the 
orbits of the flow Tg. 

3.3.1. Definition. The pull-back of the family of cocycles Cg along the orbit 
equivalences Hg is the family of cocycles HgCg for the flow Tg0 given by 

H*gcg(v,t)=cg(Hgv,t'), 

where t' is defined by T*HgV = HgT^v. 
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3.3.2. Example. The length cocycles £g(v,t) = t for the flow Tg is gener- 
ated by Ag = 1. If the orbit equivalences are differentiable along the flow 
T^0, then, denoting by Yg the generator of the flow T^, we have 

(3.3) (Hg)*X90 := jHg o Tfl'0 = lHgYg 

or equivalently 

tl91g0
v - 19 UgV- 

Therefore the pull-back of the length cocycle £g along H^, is given by 

H*gi9(v,t)= fh^T^ds 
Jo 

and it has as generator the function lHg defined in 3.3. Denoting by p the 
natural projection ASM —> M, and by || • ||^ the norm induced by g on TM, 
from ||p*^||^ = 1 we have 

(3-4) ln9(v) = \\p.(Hg)mXgo{v)\\g. 

The following Proposition is elementary. 

3.3.3. Proposition. // the cocycles Cg have generators Ag, then their pull- 
back along a family Hg of Tg0-differentiable orbit equivalences is differen- 
tiable along the flow Tg0 and it is generated by (Ag o Hg)lHg. 

3.3.4. Definition. For a curve of metrics g£ we define the the i-th variation 
of the cocycle Cge as the cocycle for the flow TgQ defined by d1 /de2,H*£Cg£ at 
6 = 0. 

3.3.5. Remark. Let Ug be the generator of a cocycle Cg for the flow 
(S,cr, Xg). Let Hg be orbit equivalences sending the orbits of the flow 
(2,0-, Xg0) to the orbits of the flow (E,a, A^). Assume further that Hg is 
the identity on E (identifying the space Xg supporting the flow (E, a, A^) 
with Xg = {(p,t) € E x R|0 < t < Xg} and E with S x {0}). Then the 
pull-back of the length cocycle for (E, <T, A^) along the orbit equivalences Hg 

has a generator lg satisfying 

rx9o 

Jo 
lg(p,t)dt = \g(p) 
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and the pull-back HgCg is the the cocycle generated by a function 60Ug such 
that 

f go   0 f g 
/      5 Ug(p, t) dt =  /     %Gp, ^) rft. 

7o Jo 
We conclude that the two definitions 2.5.1 and 3.3.4 of the z-th variation of 
a cocycle agree. 

Now we are ready to tackle the question of the smoothness of the depen- 
dence on g. 

Improving on previous results of [dlLMM86], Katok et al. proved: 

3.3.6. Theorem ([KKPW89]). 3 For sufficiently small {3 > 0, in a neigh- 
bourhood Vs of go in Us the family of Morse correspondences normal at go, 
g i-» Hg, exists and has the following properties: 

1. The homeomorphisms Hg are Tg0-differentiable, that is they are dif- 
ferentiable along the orbits of the flow Tg0. 

2. The map g —> Hg is of class Cs~2 as a map from the Banach manifold 
Vs to the Banach manifold of Tg0-differentiable C^-maps of SM into 
itself. 4 

3. The map g i-^ Ijjg is of class Cs~2 as a map with values in 
C/3(SM,R+). 

4. The topological entropy g 1-4 Enttop(g) is of class C5-1. 

Furthermore Contreras showed: 

3.3.7. Theorem ([Con92]). Under the same hypotheses, denoting by Eg 
the stable bundle for the flow Tg and by Ug the generator of the Liapunov 
cocycle for Tg we have: 

5. the maps g £ Vs -> ug o Hg and g G Vs -> E* o Hgis of class Cs~3 

as a map with values respectively in C^(SM) and in the space of C^ 
distributions on SM. 

3 The theorem proved in [KKPW89] was stated for Anosov flows and it is valid 
more generally for hyperbolic attractors: see also [Con92]. We quote its application 
to geodesic flows. The loss of one further derivative is due to the fact that the vector 
field defining the geodesic flow depends on the first derivatives of the metric. 

4More exactly the target space is the space C^0(SM,SM) of C^ continuous 
maps / : SM ->• SM whose derivatives Xg0f along the orbits of the flow T5o are 
CP continuous maps SM ->> T(SM) endowed with the norm \\f\\p 4- HX^/H/?. 
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6.   The entropy of Liouville measure g i-> EntLiouv(g)  as a function of 
g E V5 is of class Cs~3. 

3.3.8. In particular, from (2) above, if 5 > 3 the derivative of the (go^g)- 
Morse correspondence Hg normal at go 5 is a linear map from the C3 sections 
S of the symmetric tensor bundle S2M to Holder continuous vector fields 
Eg(S) along Hg. 

3.3.9. Definition. We call the vector field H50(5) the infinitesimal Morse 
correspondence at go in the direction of S 

3.3.10. The the infinitesimal Morse correspondence Eg0 (S) is differentiable 
along the go-geodesics and it satisfies a differential equation given in [FF93]. 
Furthermore, by the definition of normal Morse correspondence, the vector 
field EgoiS) is everywhere perpendicular to Xg0 in the natural metric on 
Sg0M, i.e. the projection of Eg0(S) at v E SgQM on M is go-perpendicular 
to v: 

(3.5) gQ(v,p,Ego(S)(v))=0. 

3.3.11. Lemma. Let g£ is a Cl-curve of C5 Riemannian negatively curved 
metrics on a compact manifold M, and let S£ = ^ffel _o- 

Then the generator of the first variation of the length cocycle at g£ at 
e = 0 is is cohomologous to the function: 

veSM^ 8lo(v) = ^(v) = ^So(v,v), 

and the generator of the first variation of the Liapunov cocycle u£ at e — 0 
is cohomologous to the Holder function: 

veSM^ Suo(v) = —u£ o Hg£{v)\£=0 + -So(v,v) uo(v). 

Proof By Proposition 3.3.3, the pull-back of the T^-cocycle generated by 
u£ has generator u£(Hge)l£ and by (l)-(6) above the derivatives du£oHgJde 
and dl£/de both exist as limits in C^(SM). Thus for each go-geodesic closed 
orbit 70, denoting by 7e the geodesic pe-geodesic closed orbit homotopic to 
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70 we have 

= i£lMH9£T°0v)lHgs(T°0v)ds 

At £ = 0, we have ^Hg£{Tg0v) = 1 and, using 3.4 and 3.5, we see from the 
equation of the geodesies (cf. [FF93] that 

Since, by a well known theorem of Livsic [Liv71], the collection of integrals 
along periodic orbits determine the cohomology class of Holder cocycles, our 
claim is proved. □ 

§ 4. Relation of the Liapunov cocycle to the variation of 
metric. 

In this section we find a formula for the first variation of the Liapunov 
cocycle in terms of the first order variation of the Riemannian metric. 

4.1. 

Throughout this section, M denotes a compact connected manifold with 
no boundary. We denote by SM the bundle of oriented directions on M. 
As usual given a Riemannian metric g of class Cs on M we identify SM 
with the unit tangent bundle SgM = {v G TM\g(vjv) = 1}, via the ob- 
vious Crs-diffeomorphism. The symbol g1 denotes both the geodesic flow 
on ^M determined by g can and the flow induced on S'M, via the above 
identification. 

We shall consider a C1 path e € {—£o^o) *-* 9e 0f C^-metrics, with 
s > 4 and set S£ = ^. We denote by He : SM -> SM the (£o,#s)-Morse 
correspondence normal at go and denote by 'E,g0(Sg0) the infinitesimal Morse 
cor r esp ondence. 
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4.2. 

As usual let p : SM -> M be the canonical projection. Let jo(t) be 
a unit-speed geodesic of initial velocity 7o(0) = v € SM. Clearly we have 
7o(*) =p{gtov)- Define 

7 : D = R x (-eo,eo) *-*■ yfoe) =p(he(glv)) G Af. 

^7 ^7 We set, for all t, £ = g*    = 0, F = ^    = 0. Of course Y(t) = gfr and 

m=P*(Z90(S9o)(9t
0v)).£ 

The map 7 satisfies the following conditions: 

1. The map 7 is differentiable, by Theorem 3.3.6 and our smoothness 
hypotheses. 

2. The curves j£ : t H* 7(t, e) are geodesies for the metric g£ on M, by 
definition of Morse correspondence. 

3. We have goi^Y) = 0, since we are considering the Morse correspon- 
dence normal at go- 

4. We have also go(Y,Y) = 1, since 70(t) is a unit-speed geodesic. 

Let E be the pullback to D of the tangent bundle of M via the map 
7 : D —> M. Then the bundle E is endowed with Riemannian metrics ge 

on JB, Levi-Civita connections VE for the metrics ge, and we let R£ denote 
curvature of Ve. 

Let J7 be the section of E* ® £?, i.e. the (J)-tensor field on M along 
7, defined as U(t,e) = Ug£(h£(gQv)), where, as usual [^(v) is the second 
fundamental form of the stable horosphere of the metric g at p(v) considered 
as tensor of type (*). By Theorem 3.3.7, the section U is C1. 

Finally to lighten the notation we write #, </*, 5, 7, V, i?, etc. for go, <7Q, 

5o, 70, V0, R0, etc. 

4.2.1. Lemma. Denoting by u£ the generator of the Liapunov cocycle for 
that flow gt

£, along the geodesic 7(t) = 70 {t), we have 

£ue o Hg£ tfv) |e=0 = Lz Tr ^(7(4)) = Tr V^(7(t)) 

Proo/. The first equality follows from (3.2) and the definition of £. The 
second follows from the fact that taking traces of endomorphisms commutes 
with covariant differentiation. 

□ 
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4.2.2.   Notation. Set for simplicity 

B(v) = ^-eUeoH9e(gtv)\e=0. 

Recall that the first variation of the Liapunov cocycle along the path g£ at 
e = 0 is given by 

Su(v) = B(v) + ls(v,v)TrU. 

4.2.3. Lemma. Along   the  geodesic  j(t)f   the  field  of  endomorphisms 
V^f7(7(t)) satisfies the following differential equation: 

Vy (Vf tf) + U o V^U + V(U oU = 

•-S(Y, Y)VYU - \r(Y), U) - [Rfo y), U] - S(Y, Y)U2 + 

dR^) 
de 

(y, •) Y + V^(y, • )Y + R(VY£, ' )Y + R(Y, •) Vr6 
e=0 

where [•,•] denotes the ordinary commutator of endomorphisms and T de- 
notes the Q) -tensor field along 7 given by T = ^g-|e=o- ^or simplicity we 

dm 
have written T(Y) for the contraction —^ 

6=0 

Proof. The field of endomorphisms U satisfies, along each geodesic 7^, the 
Riccati equation 3.1 suitably corrected to take into account the fact that 
t H* j£(t) is not a g^-unit speed geodesic. Thus: 

(4.1) 
dj 

dt dt 
u + dj 

dt 
U2 = R£ 

lit'' )~dt 

where Re denotes the Riemann curvature tensor of the metric g£. 
Observe that we have: 

(4.2) LA. 
de 

dj 

dt 
e/ le=0 

de Vff7(*'£) Kdiffa)' dtfteh 
S(Y,Y) + 2g(V^Y,Y) = 

S(Y,Y) + 2g(X7Yt,Y) = S(Y,Y). 

e=0 
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where in the last equality we have used the fact that Vy£ and Y are g- 
perpendicular. 

Similarly one has 

(4.3) 

since ||F||o = 1. 
Furthermore: 

de 

dj 
dt e=0 

^S(Y,Y) 

(4.4) 

Va(V%U^t>e)) 
de        at     'v ' ' e=0 

nY)U^m-Umtjo)T(Y)+Ve(VBU^t)e)) 
de dt 6=0 

r{Y)u^m - u^tfi)r(Y)+Vy (v^m)+w, Y)uim - u^mm, Y) 

where, in the last equality, we have used the fact that for commuting vector 
fields X, Z and (\) tensor fields W one has: 

[Vx, Vz] W = R(X, Z)oW-Wo R(X, Z). 

Finally observe that 

(4.5) ** !<••>£ e=0 
dRkm 

de 
e=0 

P''-'y+vtlJ«i--'i £=0 

dRkm 
de 

(y, .)Y + vffl(Y, -)y + fl(vfy, • )Y + R(Y, •)v^y = 
£=0 

dRim 
de 

(y, •) y + v^(y, ■ )Y + R{VY^ ■ )y + i?(y, •)Vy£- 
e=Q 

Taking the covariant derivative of equation (4.1) along £ and using the above 
observations (4.2)-(4.5) we obtain that Vf t/ satisfies the given differential 
equation along the geodesic 7. □ 

4.3. 

Assume that (M,g) is a rank-1 locally symmetric space of dimension 
n. Then, we can find parallel orthonormal vector fields Yi = y, Y2J • ■ ■ j^n 
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along the geodesic 7 satisfying R(Y,Yi)Y = A?!^, with Ai = 0, Xj = 2 for 
1 < j < r, and Xj = 1 for r < j < n. Here r = 1,2,4 or 8 depending on the 
type of symmetric space. 

Furthermore, from the definition of U, along the geodesic 7, we have 
[/(•) = -y/!{(¥,')¥, i.e. UYj = -XjYj. 

4.3.1. Lemma. Retaining the above notation, define Bj = ((y^U)Yj^Yj), 
j = l,...,n, lyftere (•,•) denotes the g-inner-product Then, along the 
geodesic 7, we have that the Bj satisfy the differential equation 

LYBJ - 2XJBJ = -S(Y, Y)X2
j + (— ^JY, Y^Y, Yj) 

Proof. Since U is symmetric, we have: 

(4.6) ((U o V^U + V^U o IT^Yj, Yj) = 

Also: 

(4.7) <[r(y),^,i5> = 
(r(y)tn^,i9-> - <c/r(y)^, Y;-> = ^(y)^-,^) - (r(Y)Yj,uYj) = 0. 

Similarly, 

(4.8) {m,Y),U]Yj,Yj) = 0. 

From (Vy^, F) = 0, and since we can also assume R(Yj, Y)Yj = AY, we 
have: 

(4.9) (RiVy&YjKYj) = 

(ij(y,i5)(Vy0.ij-) = (Vy^iz^-.y)^) = A(v^,y) - 0. 

Similarly 

(4.10) {R(Y,Yi)VYt,Yj) = 0. 

Evaluating on Yj the right hand-side of the equation of Lemma 4.2.3 and 
taking the inner product of with Yj, after using 4.6-4.10 and noticing that 

VyC/ = 0,        VR = 0,     and     (U2Yj, Yj) = A?, 

we obtain the given equation for Bj. □ 
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4.3.2. Corollary. If (M,g) has constant negative curvature —1 and dimen- 
sion n, V^ Tr U, along 7 , satisfies the following equation: 

dRic£ 

LY(V^TrU)-2(V^TrU) = (l-n)S(Y,Y) - ^j^- 
e=0 

Proof. 
Clearly ^.Bj = E^V^Y,-,!}) = V^Trf/. Prom 

Ric{X, Z) - Tr(W H-> R(X, W)Z), 

we have E^Uo (y'yi)y'yJ) = ^Lo" Summing over j the equa- 
tion of Lemma 4.3.1, since Aj = 1 we obtain our claim. □ 

4.4. 

Let V* V denote the rough Laplacian for the metric g = go on M. Recall 
that the Lichnerowicz Laplacian for a metric g is defined as [Bes87, 1.180b]: 

(4.11) AL5 = V*VS + Ric oS + S o Ric -2R0{S), 

where o denotes the contraction symmetric tensors of rank 2 identified with 
(J) tensor via g and R0(S) is defined by 5 

(4.12) R°(S)(Y,Z)=TrgS(R(-,X)Y, ■). 

Then [Bes87, 1.174]: 

(4.13) ^^ 
de 

= lALS-6*5S-Vd(TrS) 
e=0        2 

where 6* is the symmetrization of covariant derivative and 6 is its formal 
adjoint, the divergence. 

Proof of Proposition 1.3.3.   Form Corollary 4.3.2 we obtain that along the 
geodesic 7 we have 

Btfv)Vt = TrU(1(t)) « IL*s(y(t),y(4)) + I 9Ric£ 

2     de 
(Y(t),Y(t)), 

e=0 

5 Our definition agrees with [Bes87, 1.131], in spite of the opposite convention 
on the sign of the Riemann curvature R. 
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with w meaning that the difference is a coboundary. In fact, the difference 

at 7(i) =p(<A) is ^Ly(VcTlrtf)(7(t)) = hm^'v) 
We claim that since g has constant curvature —1 we have: 

ALS(Y, Y) = V*V5(y) Y) - 2nS(Y, Y) + 2 Tr9 5. 

In fact, Ric = — (n — l)^, and therefore 

Ric oS + S o Ric = -2(n - 1)5. 

Furthermore, since R(Y, X)Z = -(X, Z)Y + (Y, Z)X, 

(4.14)   R0(S)(Y,Y) = Y/S(R(YhY)Y,Yi) = 
i 

= Y,S(-Yi + [Y^Y.Yi) = -Tr9(S) + S(Y,Y). 
i 

proving our claim. We obtain that 

vf Tr u « ^^^(y, y) + \ v* V5(y, y) - £s(y, y) + 

+ l-<ftgS-
l-5*8S{Y,Y) - ivd(iv5)(y,y) 

* -^(y,F) + iv*VS(Y,Y) + ^1VS5- 

-^*(55(y,y)-^vd(Tr5)(y,y). 

and setting 

T = -\s+ \V*V5 + icitp 5)1/ - ^^5 

and noticing that the term Vd(TrS)(y,y) = y2(Tr5) is cohomologous to 
zero, we have concluded that 

S(p*t;) = Ve
,ftDr(7(*))«Tv(5*t;) 

or B w Tv. Thus the first variation of the Liapunov cocycle along the path 
g£ at e = 0 is 

fa = B + isv ivc/« rv - r^sy. 
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§5. Proof of Proposition 1.3.4 and Theorem C. 

5.1. 

Let g£ 6 U be a curve of metrics of constant volume on M. Then if we 
set S£ = -gk- and denoting by sn the volume of the n-sphere, we have, 

2 75 
S,v(t;)rfLiouv(i7e)(t>) = 

SgeM 

2n   JM    ^^ n de IM 

Since \Sy is the first variation 81£ of the length cocycle /e, and Liouv(g£) 
the Gibbs state for the Liapunov cocycle u£ of the flow Tg£, we obtain that 
mueidle) — 0 for all e. If go is locally symmetric, the measure of maximal 
entropy MQ and the Liouville measure Liouv(<7o) coincide and thus all the 
conditions of Proposition 1.3.1 (C) are verified. Denoting for simplicity #0 
by #, the maximal measure entropy MQ by m and the covariance of the flow 
Tg with respect to the measure of m by Cov, we can summarize the results 
so far achieved (cf. Propositions 1.3.1, 1.3.3) in the following Proposition: 

5.1.1. Proposition. Let g£ be a C2-curve of C5-metrics on a manifold M 
of constant volume, and assume that that g = go has constant negative 
curvature —1. Denoting with 61 and Su the first variation of the length 
cocycle and of Liapunov cocycle at e = 0 we have: 

EnCp(g) = Cov ((n - 1)81 + Su, (n - 1)5/) 

and 
Ent£iouv(£) = - Cov ((n - 1)61 + 8u, Su). 

Setting T = T{S) := -\S + iV*V5 + i(Tr5 S)g - \5*6S, since 81 w \Sy 

and 8u w Tv - ^Sy, we have 

EnCp(g) = Cov(Tv,^5v), 

and 

EntLUv(5) = -Cov(Tv,Tv-^5v) 

Ent't'op(5) - E<iouv(<,) - Cov (TV,TV). 
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5.2. 

If g has constant sectional curvature, then the group G of isometrics 
of M, the universal cover of M, is isomorphic to SO^l^ri), where n — 
dim(M). We have an identification of M with the space T\G/K, where 
F « TTI (M) is a discrete group of isometrics acting without fixed points on 
M, and K & SO(n) is the stabilizer of a point po G M. Furthermore, the 
unit tangent unit bundle SgM and the orthonormal frame bundle FM of 
M are identified with Y\G/Ki^ and r\G, where Ki « SO(n - 1) is the 
stabilizer of a vector VQ G TVQM. The parallel transport of an orthonormal 
frame (vi, ^2,..., vn) G FM along the geodesic determined by vi is identified 
with the action on r\G given by multiplication on the right by the split- 
Cartan Ai « R commuting with Ki. It is plain that this parallel transport 
projects via the natural projection (^1,^2,••• ^n) £ FM 1-4 vi G SgM to 
the geodesic flow on SgM. 

5.2.1. Notation. Denote by Cr(S2M) the space of Cr-sections of the bun- 
dle S2M of symmetric covariant tensors of rank 2. Similarly £2(S2M) de- 
notes the L2 sections of this bundle. Clearly the map v : S —> Sv defined, 
for v G SgM, by Sv{v) = 5(t;,t;) maps Cr{S2M) to Cr(SgM) and C2(S2M) 
to L2(SgM). 

Observe also that we have an injection L2(SgM) M- L2(FM), regard- 
ing L2(SgM) as the subset of L2(FM) of ifi-invariant vectors. Similarly, 
Cr(SgM) ^-> Cr(FM). In the sequel these identifications will be implicit. 

5.2.2. Left invariant differential operators on G commuting with Ki act on 
C00(SgM). This is in particular true of the the Casimir operator Casso(1)n) 
of G, which we normalize so that on C00(M) it coincides with the rough 
Laplacian V*V. 

Observe that the differential operators V* V, (5, 5* etc. acting on symmet- 
ric tensor field can be viewed by means of the above maps as left invariant 
differential operators on C00(FM) commuting with Ki. In fact, denote by 
Pi the parallel transport of an orthonormal frame (^1,^2,... ,Vn) G FM 
along the geodesic determined by Vi and let Yi be vector field generating 
the flow Pi. For i < j, set Rij = [li,lj]. Then it is plain that the vec- 
tor fields Yi, Rij, (i <j), form a basis for the Lie algebra g « so(l,n) 
of G and that Rij exponentiate to the flow exp(6Rij) which rotates an 
orthonormal frame (vi,..., Vi,..., Vj,..., vn) G FM to (vi,..., cos(6)vi — 
s'm(Q)vj,..., sin(0)^ -I- COS(8)VJ1 ..., vn). In particular given S G C^(S^A4): 
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setting, for (vu • • • * Vn) 6 FM, 

Sij{vi7...,vn) = Sfavj) 

and identifying Sn with the lift to FM of Sv we have 

Su = --LRliS
y. 

Thus, if (vi,..., Vi,..., VJ, ..., vn) e FM and S G C2(S2M), we have: 

t=0 dt 

= - S S^PiV^ ■ ■ ■ ' PiVn)\t=0 = -J2LYiSu(Vl> • • • 'U") 
i i 

= 2 5^ ^-^flii^^li • •• ' vn) 
i 

Similarly, we have 

V*V = -Y^Ll = (-E^+E4)-E4- = Cas50(1,n) -Casso(n), 
1 i i<j i<j 

where CasG denotes the Casimir operator of the group G. Since, for 
S E C£(SeM), we have CsLSSo(n)Sy = 2TrS - 2nSfV, we can express 
the operator T{S) defined in 5.1.1 as 

(5.1) 

US) = -\s+ ^V*V5 + \(TrgS)®9- ^SS 

= ~2S+ 4(Cass°(i,n) - Casso(n))S + g Cbg S) ® 9 - ^*SS 

5.3. 

By a well known theorem on the unitary representation of SOo(l, n), the 
Hilbert space L2(FM) « r\G splits as a direct sum L2(FM) = £#; of 
topologically irreducible components Hi of the right action of G. 
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5.3.1. Lemma. Each irreducible representation space Hi splits as a direct 
sum of irreducible representation Hj^ « r for the action of the maximal 
compact subgroup K « SO(n) of G. Let r be an irreducible representation 
of SO(n).  Then the multiplicity of r in Hi is at most one. 

Proof. The first statement is trivial. Denote by P = MAN a minimal 
parabolic of G = SOo(l,n). By a Theorem of Harish-Chandra [War72, 
5.5.1.7], there is a irreducible representation a of M « SO(n — 1), such that 
the multiplicity of r in Hi is at most the multiplicity of a in the restriction 
of r to M. This concludes the proof, since the multiplicity of any irreducible 
representations of SO (n — 1) in a given irreducible representation of SO(n) 
is at most one (cf. [Zel73, §129] and [GC50]). 

□ 
5.3.2. Notation. For each equivalence class of irreducible representations 
r of K, let HT be the subspace of H of K-type r i.e. the set of vectors 
transforming under K according to the irreducible representation r of K. 

The following lemma is an easy consequence of the ellipticity of the 
rough Laplacian V*V acting on symmetric tensors. For S G C00(SPM)J we 
set Sv(v) =S(v,v,...,v). 

5.3.3. Lemma. Let S £ C(X){SPM) be a symmetric tensor field of rank 
p and K-type r. Let Sv = X)5^ si ^ L2(FM), be its decomposition in 
irreducible components.  Then we have 

1. For each Si there exists a symmetric tensor field Si E C00(SPM) of 
rank p and K-type r with Si = S^. 

2. Each Si is an eigenfunction of the rough Laplacian V* V and, in par- 
ticular, Si is C00. 

3. The series S = Y^Si> or equivalently Sv = X)5^ converges in the C00 

topology. 

We will only be interested with symmetric tensor field of rank 2 and 
therefore with only two jfiT-types: the trivial K-type and the if-type of 
traceless symmetric tensor of rank 2. 

5.3.4. Notation. Set 

Confr(<7) = {S:S = /®0,/e Cr(M)} 
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and 
Teiclir(5) := {S G Cr(S2M) :5S = 0,TrgS = 0}. 

Then Confr(g) is the space tangent to Cr-conformal deformation of g and it 
is the space of vectors of the trivial if-type in Cr(FM). The space Teichr(^) 
is the formal L2-orthogonal space in Cr(S'2M) to the conformal fibers and 
to the local orbit of g under the diffeomorphism group. Furthermore, each 
S G Teichr(g) has the if-type of traceless symmetric tensor of rank 2. 

5.3.5. Notation. Let S G L2(S2M). Let H(S) be the cyclic subspace of 
L2(FM) generated by G acting on S'v. 

5.3.6. Corollary. Let R G Conf00^) and write Rv = X)ir«; with n G Hi. 
Then, for all i, we have r^ = R^ with Ri G Coni00{g). 

Similarly, let S G Teich00^) and write Sw = Yli si> w^ Si € Hi. Then, 
for all i, we have Si = S^ with Si G Teich00(g). 

Proof. The first claim is a mere restatement of Lemma 5.3.3. If S G 
Teich00(g) and S^ = Y^i sii by Lemma 5.3.3 we have s^ = S^ with Si smooth 
traceless symmetric tensor field of rank 2. The discussion in 5.2.2 implies 
that the divergence operator on smooth traceless symmetric tensor field of 
rank 2 coincides with an element of the enveloping algebra of g « so(l,n). 
Thus we have 5si G Hi for all i. We conclude that 5S = 0 implies 5Si = 0 
for all z, showing that Si G Teich00(g) for all i. 

□ 

5.3.7. Lemma. Zefi? G Conf00^) and S G Teich00^) thenH(R) ± H{S). 

Proof By Corollary 5.3.6, is sufficient to consider the case in which R and S' 
belong to the same irreducible subspace Hi. Arguing by contradiction, we 
may assume that Hi = H(R) = H(S). Then R = r®g with r G C00(M). 
By the ergodicity of the geodesic flow, we have that 8*5*r = Vdr is not zero. 
In fact, for v G SgM we have (5*5*r)v(^) = V^r = d2/dt(2r{gtv)\t=zo, thus 
S*5*r = 0 would imply that r is constant, in which case there is nothing to 
prove. 

It is not difficult to see from the compactness of M that the traceless 
part (Vdr)o := Vdr — —^ ® g of Vdr is not zero. Since S is traceless, the if 
orbits of (Vdr)o and AS'

V
 generate if-representations both isomorphic to the 

representation of SO(n) on the space of harmonic homogeneous polynomial 
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of degree two on W1. By Lemma 5.3.1 the multiplicity of this representation 
in Hi is 1, and therefore (Vdr)o and Sw have the same if-orbit. However, 
since (Vdr)o and Sv are both Ki-invariant we obtain that, for some constant 
C ^ 0, we have Sv = C(Vdr)^ and equivalently S = C(Vdr)o. From 
(S,(Wr)o) = (5, (6*5*r)o) = (S,8*8*r), we obtain (S,6*5*r) ^ 0. This is 
impossible because we have (5,5*5*r) = (SS,5*r), and the latter term is 
zero since S G Teich(g) and therefore S is divergence free. 

□ 

5.3.8. Remark. A simple modification of the proof above shows that if 
S E Teich00(g), then H(S) is orthogonal to all one forms. This means that 
if S G Teich00(^), then the minimal if-type occurring in H(S) is the if-type 
of S. 

5.3.9. Lemma. Let Si, S2 G C^iSPM) and assume that H(Si) andH(S2) 
are orthogonal.  Then 

Cov (S^) = Cov {nS<y,%) = Cov (r(5i)v,r(5i)v) = 0. 

Proof. By formula 5.1 the operator T belongs to the enveloping algebra of 
G and therefore T(Si) G H(Si). 

Since the flow g1 (lifted to FM) is given by right translation of by some 
split-Cartan in G, by the exponential decay of matrix coefficients, we have 

/oo 
(F, G o gt) dt 

-00 

for any pair of smooth functions F and G on FM, provided that either F 
or G integrates to zero on FM. Thus if F and G belong to orthogonal 
G-invariant subspaces we have that at least one of them has average zero 
on FM and Cov(F, G) = 0. The lemma follows. 

□ 

Proof of Proposition 1.3.4. Recall that for simplicity we write g instead 
of go. It is sufficient to prove the claim for a,dense set of S G C3(S2M), 
e.g. for S G C00(S2M), since the bilinear form Cov is continuous in the CQ 

topology. For S in C00(S2M) we can write 

S = ST 4- Sc 4- So, 
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with ST € Teich00^), Sc 6 Conf ^(g) and with So belonging to the image 
under 8* of the space A1(M) of C00 one-forms. This decomposition of S is 
unique, since the sum 

C00{S2M) = Teich00^) + Conf ^(g) + 5* {Al(M)) 

is direct (Cf. [Bes875 Lemma 4.57]). By the linearity of the operator T, 
we can decompose T as T = T(ST) + T{Sc) + T{SQ). NOW, we observe 
that, in computing Cov (Tv, 5V

) and Cov (TV,TV), the terms So and T(So) 
are irrelevant: in fact the terms SQ and T(So)v are cohomologous to zero, 
since we have SQ = Lxg for some C00 vector field X on M. Thus the 
proof of Proposition 1.3.4 will be complete if we prove it simply for S G 
Teich^ + Conf00^). 

By Lemma 5.3.9, we have 

Cov (T(SC)V,^) = Cov (T(Sr)v,S£) - Cov (T(SC)
V

,T(ST)
V
) = 0 

and thus it suffices to prove the claim of Proposition 1.3.4 separately for 
S G Teich00^) and for 5 € Conf00^). 

Let S G Teich00^). Prom T(S) = -±S + ±V*VS + i(Trfl S)g - ±5*SS 
and the definition of Teich00(g) we obtain 

(5.2) r(5) = _l5+Iv*V5, 

Regard 5 as a one-form with values in T*M. Let ofv be the differential 
induced on Ar(M) ® T*(M) by the Levi-Civita connection and let dv be 
its formal adjoint. We have the following Weitzenbock formula (cf. [Bes87, 
p.335]) 

(dv*dv + dvdv*)5 = V*V5 - R0{S) + S o Ric. 

where R0(S) was defined in (4.12). Using the formula (4.14) and the fact 
that Ric = — (n — 1)<7, we obtain 

(dv*dv + dvdv*)S = V*V5 - S - (n - 1)S = V*VS - nS. 

Since the left hand side above is positive, we conclude that the spectrum 
of the restriction of the V*V to Teich00(g) lies in [n, oo) and (5.2) implies 
that the spectrum of the restriction oiT(S) to Teich00(g) lies in the interval 
[(n-2)/4,oo). 

By Lemma 5.3.3, we can decompose S as a C00 convergent series 
S = ^2 Si with 5/ belonging to the irreducible component Hi and Si eigen- 
function of V*V of eigenvalue A; > (n — 2)/4. Then for i ^ j the spaces 
H(Si) and H(Sj) are orthogonal. 
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Lemma 5.3.9 implies that 

cov (s^sj) = cov (r(5i)
v,5/) = cov (r^^nsj-n = o. 

We conclude that 

(5.3) 

Cov (r(5)v, 5V) = £ Cov (TiSty, S?) =Y,XiCov (^' Si) 

* E V Cov (5"' ^) - V Cov (5V'5V) 
and, similarly, 

(5.4) 

cov (T(sy,T(sy) = J2 cov (r(5i)
v, r(si)v) = £ A? COV (5/, sv) 

^E(!LI2)2C^(^^) = (!L
^)

2
COV(5

V
,5

V
), 

proving the desired estimate for the case S G Teich00(g). 
Consider now the case S G Conf00(^). We have Tr^ 5 = nS and therefore 

^5) = z^S+\V*VS-±6*6S. Writing S = F®g, with F G ^^(Af), we 
see that the term 5*88 appearing in T(5) can be rewritten as 8dF and it 
gives rise in T(S)y to the term (5*dS)v = (SdF)w, which is cohomologous 
to zero. Thus, in computing Cov (T(5,)v,5,v) and Cov (r(S')v,Tv) we can 
replace T(S) by 

ro(5):=^5+iv*V5. 

The positivity of the rough Laplacian V*V implies that the elliptic operator 
To has spectrum in [(n — l)/2,oo). Reasoning as before we obtain , for 
S G Conf00(p), estimates similar to (5.3) and (5.4), but with the constant 
(n — l)/2 replacing the smaller constant (n — 2)/4. Thus the estimates (5.3) 
and (5.4) are also valid for S G Conf00^). This concludes our proof        □ 

Proof of Theorem C. Let n = dimM = 3. By Proposition 5.1.1 and formulas 
(5.1) and (5.2), we see that, for S G Teich00^), 

EntLuv(^)--Cov(Tv,Tv-5v) 

~4 - Cov (Sw +| Cas50(i,3) SV, j Cas5o(i53) ^V)- 
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Thus assuming that Casso(i,3) Sv = XSW, we obtain EntLiouv(g) = — \\{1 + 

l\)Cov(Sw,Sv). Thus Ent^iouv(3) < 0 is equivalent to A > 0 or A < -4. 
The latter eventuality is impossible, since we have shown that, in dimension 
3, the spectrum of the Laplacian on Teich(g) is contained in the interval 

[3, oo) and CSLSSO(I^) = V* V + Cassois) — V* V — 6. In any case, since the 
spectrum of V* V is discrete, we find that on a infinite dimensional subspace 
of Teich(^) the derivative EntLi0UV(s) in a curve of metrics in a direction in 
this subspace is negative. 

However if the operator Cas^o^^) on Teich00^) has an eigenvector S 
of eigenvalue A < 0, it follows that the Liouville entropy has positive second 
derivative in the direction of S. Now recall that such an S would generate 
an irreducible representation of 50(1,3) with minimal if-type given by the 
if-orbit of 5, i.e. with minimal if-type T2 (here we have denoted by T2 the 
representation of K & 50(3) on the space of traceless symmetric tensors of 
rank 2). The unitary irreducible representations of 50(1,3) with minimal 
if-type T2 belong to the unitary principal series of 50(1,3) and determined 
up to unitary equivalence by the value of the Casimir operator on them. 
From [Tay86] we obtain that the values of the eigenvalues of the Casimir 
operator, with our normalization, are given by /i2 — 3, /i G M. Thus, since 
the Plancherel measure has support on all the interval [—3, oo), by Theorem 
5.4 of [DW79], we find a cocompact lattice T in 50(1,3), with spectrum of 
the Casimir on Teich00^) in (-3,0). Then r\50(l,3)/50(3) provides us 
with the desired counterexample. □ 
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