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1. Introduction. 

Consider the heat equation for harmonic maps from a closed Riemannian 
surface (M,g) into a closed submanifold N in RK: 

(1.1) 
au at = Tg(u), 

where 
Tg(u) = b..9u + ga,/3 A(u)(u,a, u,.a), 

and A(u) is the 2nd fundamental form of N in RK. Let u: M x (0, oo)-+ N 
be a global weak solution to (1.1). (See [St].) Then u is smooth away 
from a finite number of singular points {(pi, Ti)} C M x (0, oo). Let (p, T) 
be a singular point. Then we may assume that for some to E (0, T) and 
a neighborhood U of p, u is smooth on U x [to, T) and u(t) = u(·, t) -+ 
u(T) = u(·, T) smoothly on U \ {p} as t tends toT from left. Moreover, by 
choosing a suitable sequence ti -+ T and by rescaling u(ti) properly near p, 

one can show that there exist finitely many "bubbles" ( i.e. harmonic maps 
cpj : 8 2 -+ N, 1 ~ j ~ m, ) associated with the sequence {u(ti)}. These 
bubbles are responsible for the loss of energy and we have 

m 

lim Eu(u(ti))- Eu(u(T)) 2 '""'E(cpj)· 
t·-'tT L....J 
' j=l 

It is generally believed that the above inequality should be an identity, which 
we will call the "energy identity". Since it can be easily shown that the limit 

lim Eu(u(t)) 
t-'tT-0 
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exists, we may write the energy identity as 

m 

(1.2) Jm   ^(ti(t)) ^Euium + Y.EifPi). 

(But note that we do not know if the set {apj} of "bubbles" is unique, i.e. 
there is some possibility that it may depend on the specific time sequence 
ti.) The identity (1.2) means that "blowing bubbles" is the only reason for 
the energy loss. J. Qing [Q] proved that (1.2) holds in the special case where 
N is the standard sphere Sn. In this note we will give a simple proof of (1.2) 
for the general targets N. 

If we consider the solution u(t) of (1.1) as maps which in some sense 
approximate harmonic maps, we must have certain control of the tension 
field T(u(t)). We will see that a good control is the boundedness of the L2 

norm, i.e. 

(1-3) \ \\T{v.m\\uHM)<C 

for some sequence U —> T. However, from Eq. (1.1) we can only get 

I 
Jtr 

Mu(t))\\l2{M)dt<co. 
to 

Since T < oo, there is no guarantee for the existence of ti -> T such that 
(1.3) holds. On the other hand, if T = oo then such a sequence is easy 
to get. Therefore, our analysis in the following easily leads to the energy 
identity for blow-ups at time-infinity. More precisely, we have 

Theorem 1. Let u be a global weak solution to (1.1) and U -> oo be a 
sequence such that u(ti) —> UQQ weakly in W1,2(M) R

K) and (1.3) holds. 
Suppose that the convergence u(ti) —> UOQ is not W1,2-strong. Then there 
exits a subsequence, still denoted by u(ti), and a finite set of harmonic maps 
(fj : S2 —> N (j = 1, • • • , m) such that 

m 

lim Eiuiti)) = Eiuoo) + VE(^). 

Note that the limit on the left does not depend on the specific sequence 
u(ti), but UQQ and the set {(fj} may depend on it. Theorem 1 follows easily 
from the following 
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Theorem 2. Let Ui be a squence of maps in VF2'2(I?,iV) with bounded en- 
ergy E(ui) < C, where D is the unit disk. Assume that (i) ui converge 
strongly to UQ in W^0'c (D \ {0},^), but the convergence is not Wl'2(D,N)- 
strong; and (ii) the L2-norms of the tension fields r(ui) are uniformly 
bounded. Then there exists a subsequence, still denoted by ui, and a finite 
set of harmonic maps cpj : S2 —> N (j = 1, • • • ,m) such that 

m 

(1.4) lim E(ui) = E(uo) + V E^j). 
3=1 

The derivation of (1.2) from Theorem 2 needs more work. By an argu- 
ment of Qing (see §2 in [Q] ), it can be shown that Theorem 2 implies that 
the energy identity (1.2) holds true, and hence we have 

Theorem 2. Let u be a global weak solution to (1.1) and T G (0, oo). .As- 
sume that u{t) —>- ^(T) weakly in Wl>2{M,RK), but the convergence is not 
W1,2-strong. Then there exists a finite set of harmonic maps (fj : S2 -^ N 
(j = 1, • • • , m ) such that 

m 

t_limo E{u{t)) = E(u(T)) + X>(^). 

We should mention that when Ui is a sequence of harmonic maps (i.e. 
r(ui) = 0), Theorem 2 was first proved by J. Jost in [J] ( Lemma 4.3.1, 
p. 127). More recently, T. Parker proved in [P] that if the Ui is a sequence 
of harmonic maps, the limit uo Uf {(pj} maps to a connected set. 

Part of this work was done when the second author was at Peking Uni-. 
versity in the summer of 1994. After we finished the writing of this paper, 
we learned from F. H. Lin that L. B. Mou and C. Y. Wang also obtained 
results similar to ours, and their methods are different from ours. 

2. Proof of Theorem 2. 

Let ui G W2>2(D, N) be a sequence of maps which satisfies the conditions 
of Theorem 2. Before proving the energy identity (1.4) we need some pre- 
liminaries. The following estimate is similar to the main estimate in [S-U] 
and will be important for our analysis. 

Lemma 2.1. Let u E W2*(D,N), 1 < p < 2. There exists eo > 0 such 
that if E(u) < eo then 

(2.1) \\u - u\\W2,P{Dl/2) < C[\\Vu\\LP{D) + \\T(U)\\LP{D)], 
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where u is the mean value of u over the unit disk D. 

Proof. It will be convenient to assume that u = 0. Then we have the 
inequality 

Nlo* < CpllVtiHo,. 
Here and in the following, we use || • H^ to denote the Wk>p(D)-noTm. 
Consider u as a solution to the equation 

Au + A(u)(du, du) = a, 

where a = T(U) G LP
(D). Assume first that 1 < p < 2. Let <p be a cut-off 

function which equals 1 on 1)3/4, 0 on dD, and 0 < <j) < 1 otherwise. From 
the equation we get that 

\A{(f)u)\ < C{\V{(f>u)\\Vu\ + \Vu\ + \u\ + \a\). 

By the standard Lp-estimate we have 

||<Hl2,P < C(|||V(^u)||V«|||olP + ||V«||o,P + HaHcp). 

But 
|||V(^)||Vn|||o,P < ||V(</)n)||o,g||Vn||o>2, 

where q = 2p/(2 —p). Since we have the Sobolev's imbedding W2>p C Wliq, 
so 

WMkp < CiEiu^WMkp + HVtilloj, + Halloa- 
Thus, i£E(u,D) is small, (2.1) follows. 

Next, if p = 2, one can first derive the above estimate with p = 4/3. 
Such an estimate gives a L4(^3/4)-bound for \Vu\. Then one can apply the 
interior L2-estimate to the equation for u and get (2.1) with p = 2. 

Remark. We will only need the case p = 2 in Lemma 2.1. But note 
that even for 1 < p < 2, the lemma provides the necessary compactness in 
the blow-up analysis of Sacks-Uhlenbeck, since the imbedding W2'p C W1'2 

is compact. For instance, if Ui : D —> N is a sequence of W2>p maps with 
E(ui) < 60 and T(I^) -> 0 in LP(D), then we see that Ui subconverges 
strongly in Wli2(Di/2) to some harmonic map. 

Now we want to prove for certain subsequence of Ui, still denoted by Ui, 
the energy identity 

m 

(2.2) lim E{ui) = E{uo) + V Eifc) 
J=l 
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where ipj : S2 —v N are harmonic spheres obtained by suitable rescaling 
of the sequence ui and taking the limits. Since ui converge strongly in 
W

1
'
2
(JD \ D5,N) for any 8 G (0,1), we see that (2.2) is equivalent to 

m 

(2.3) lim lim E{uu D5) = V S(^7). 

For simplicity we assume that the first bubble is obtained by the scaling 
as follows. For some 0 < A^ -» 0 and Xi -> 0, let 

Ui(x) = Ui(Xi + Xi(x - Xi)). 

By choosing A; properly we may assume that Hi converges strongly in 
W1,2 (£)#), for every R > 1, to a harmonic map -01 : R2 —► N with fi- 
nite energy. Then cpi = TT*^ is the first harmoic sphere with the same 
energy as ^i, where n : S2\ {N} -> R2 is the stereoprojection. If for given 
6 > 0 small and i? > 0 large, we set 

A&R^i) = {xe R2 : A^E < |:c-2;i| < 5}, 

then it is easy to see that (2.3) is equivalent to 

m 

(2.4) lim lim lim Efa, A(6, R, i)) = V Efa) 

It will be convenient to make a conformal change of the domain. Let 
(r;, di) be the polar coordinates centered at x^ Let f ; R1 x S1 -^ R2 be the 
mapping given by r^ = e-*, 9i — 0 for (£, 0) € RlxS1. Let i?1 x S'1 be given 
the product metric g = dt2 + d02. Then g is conformal to the Euclidean 
metric ds2. In fact, we have 

' i 

Fix a large number R > 0 and a small number S > 0, we will be concerned 
with the energy of Ui on ^4(£, R,i). Let ^ = Z*^. Then 

E{uuA{5,R,i))=E{vuBi), 

where 
Bi = [|log*|,|log(Aii?)|]x51. 

We list some important properties of Vi inherited from Ui. 
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(1) We will consider Vi : (|log£|,oo) x S'1 -► N as a solution to the 
equation 

(2.5) Avi + A(vi)(dvi,dvi) = a^ 

where cti = r(vi). Note that 

Mvi)\\l>= [        rf\T(ui)\2dx<2S2a 
JDs{xi) 

Thus, ai has very small L2-norm if only 5 is very small. On the other hand, 
since the L1-norm of the tension field is conformally invariant, the L1-norm 
of ai is also very small. 

(2) For any mapping u G W2'2(J9,iV), we may define a "quadratic dif- 
ferential" ®{u) = (f)(u)dz2 by 

Hu) = \ux\2 - {uyl2 - 2y/-[  ux • Uy. 

It is well known that if u is harmonic then $(u) is holomorphic, i.e. d(f>(u) = 
0. In fact, if u E W2>p this can be checked directly by differentiation. One 
finds that 

d(j)(u) = (ux - y/-i uy) • T{U). 

So for our maps Ui we have 

|^(^)| < |Vtii||r(ui)|. 

It follows that 

(2.6) II^Mb < Eiui^WriuJWv < C. 

Writing (j)(ui) = fa, we have 

JdDp 0-Z JDp   £ - Z 

where p can be any number in (0,1]. We choose p = 3/4. Note that by 
assumption, Ui -» UQ strongly in W1*2. Hence the energy of Ui is locally 
small in a neighborhood U ofdDp, and we may apply Lemma 2.1 to conclude 
that Ui have uniformly bounded W2,2-noTms on U. Thus, by the imbedding 
theorem for trace spaces we see that |0j| are uniformly bounded in ^(dDp). 
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It is then easy to see that the first integral in the above identity is small in 
Ll(Ds) if 8 is small. For the Ll(Ds) norm of the 2nd integral we derive that 

JDxD5\t-z\ JD JDSK-
Z

\ 

<CS [ {dfaldt < C8, 
JD 

by (2.6). This shows that the L1(I>(j)-norm of |0(^)| is small if 5 is small. 
Since the Z^-norm of the quadrtic differential is confomally invariant, we 
conclude that 

4>{vi) = \(vi)t\z - {(viW - 2V-l(vi)t ■ (vi)g 

has small L1-norm provided 6 is small. 
For simplicity, we will first prove the energy identity in the case of m — 1, 

i.e. ipi is the only bubble. The general case can be treated similarly, as v/ill 
be explained at the end of this section. Since m = 1, we need only to prove 
that E(vi) Bi) can be arbitrarily small if 8 is sufficiently small and R and i is 
large enough. Given any small e > 0, we may assume by the above results, 
8 is so small that 

(2.7) HT/OHLI,   llrMli*   and   ||^)||Li < e. 

Let To = |log5|.   Then since Vi -> ^o = /*^o W1'2-strongly on PM — 
[To,To + M] x S1 as i -> oo for any fixed M > 0, we have 

' E(VUPM) -^ E(uo,Ds\D5e-M),   i -> oo. 

We may assume that E^UQ^D^) < e/2 for small 8.  It follows that for any 
M > 0 there is i(M) such that 

(2.8) E{vi,PM) < e/2  if i > t(M). 

Next, let Ti = | log(XiR)\ and QM,2 = [Ti - M,Ti] x S1. Similar arguments 
show that we may take R and i(M) large so that 

(2.9) E(vi,QM9i)<e/2  if t > i(M). 

Now we claim that there exits I > 0 such that if i > I then 

(2.10) / iVvi]2 < e  for  t E [TQ,^ - 1]. 
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Suppose that the claim is false, then we may assume that as i —> oo, there 
exist ti such that 

/ |V^|2 > e. 
JlUJi+llxS1 

In view of (2.8)-(2.9), we must have U — TQ -> oo and Ti — ti -^ oo. Thus, 
by translation t -> t — ti we may consider Vi as a map on [—Mi, Mi] x S1 

with Mi —> oo and 

(2.11) /       iv^i2 > 
JlO^xS1 

We may assume that Vi -t VQQ weakly in W^(Rl x 51,iV). Moreover, by 
the definition of vi and the assumption that r(ui) has bounded L2-norm, it 
is easy to see that 

(2.12) ITMI-X) in Llci&xS1). 

Now, if the convergence vi —> v^ is W1'2-strong on [0,1] x S4, then (2.11) 
and (2.12) imply that ^oo is a nonconstant harmonic map with finite energy. 
Since R1 x Sl is conformal to S'2 \ {TV, 5}, ^oo gives rise to a nonconstant 
harmonic sphere fa '• S2 -t N, a, contradiction to the assumption that 
m = 1. Next, if the convergence is not strong, then by Lemma 2.1 there 
exists some p G [0,1] x S'1 and energy concentration near the point p, namely 
along some subsequence we have 

]xmE(vi,Dr(p)) >eo > 0, 
i—>oo 

for any r > 0. In such a case we can still obtain a second harmonic sphere 
(p2 by the rescaling argument. (Note that such an argument can go through 
because we have Lemma 2.1.) This shows that the claimed (2.10) must be 
true. 

Now we remark that (2.7), (2.10) and the estimate (2.1) in Lemma 2.1, 
together with the imbedding W2'2 C C7 (7 G (0,1)) implies that 

(2.13) \\vi - t;ilt||c7([tJt+i]x5i>j\r) < C^/2^ 

for each t E [To,Ti — 1], at least for i large enough. Here v^t is the mean 
value of Vi over [t, t + 1] x S1, and C may depend on 7. 

To estimate the energy of Vi on [TcTj x S1 we employ the technique 
used by Sacks and Uhlenbeck in their proof of removable singularity theorem. 
Let n be an integer such that d = (Ti — To)/n < 1, and let tk = To + kd 
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for k = 0,1,... ,n. We will simply write v = v*, P — [To,Ti] x S1, Pk = 
[ifc, tfc+i] x S1, and 5^ = {t^} x S'1. Let /i(t) be an Rk valued piecewise linear 
function h(t) such that h(ti) equals the mean value of u over Si. Consider 
h as a map from R into RK. Then we have 

A(v - /i) + A = a, 

where A = A(/y)(di;,d7;). Taking the inner product of this equation with 
v — h and integrating over R^ we get 

/   |V(t; - h)\2 = [ (v-h).(A-a)+ f      - [ (v - h) ■ {vt - hfidO. 
JPk JPk Jsk+1    Jsk 

Note that the boundary integrals of (v — h)-ht vanish, also that \v — h\ < Cy/e 
by (2.13). So we have 

/   \V(v-h)\2<Ce1'2 [   \Vv\2 

JPh JPk 

+ Ce1/2 f   \a\+ f     - f {v-h)-vtd0. 
JPk JSk+i    Jsk 

Summing the inequality over i we get 

[ Wv - h)\2 KCe1^ [ \Vv\2 + [ \a\] 
J P J P J P 

+ /   (v-h)'Vt-       (v-h)'Vt 
J SQ J Sn 

Here we have used (2.7) and the fact that the integrals of |^| over SQ and Sn 

are dominated by the W2>2-noTm of v on a neiborghhood of the two circles, 
and the later is small by Lemma 2.1 (noting that v has small local energy). 
Since h is independent of 0, the above estimate implies that 

[ M2 < Ce1/2^) + Ce. 

But it is clear that \vt\2 < \^>(v)\ + |^|2, so we get 

/ \vt\2 <  f \<Kv)\ + Cell2E{v) + Ce< +Cell2E{v) + Ce. 

Combining the above two inequalities we finally obtain 

E{v) < (1 - 2Ce1/2)-1Ce < Ce. 
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This proves the energy identity for the case of m = 1. 
For the general case that m > 1, the essential part of the proof is com- 

pletely same as the above proof for m = 1. One just has to distinguishes 
more "bubble domains" and "neck domains", and show that the energy on 
the neck domains is arbitrarily small. The proof can be completed by in- 
duction in ra, the number of bubbles. For simplicity, we just indicate how 
to reduce the proof of m = 2 to that of m = 1. 

If m — 2, the inequality (2.10) no longer holds, and after translations 
we must have (2.11). Then we have two possibilities: (i) the convergence 
Vi ~> ^oo is VF1'2-strong and ^ gives rise to a nonconstant harmonic map 
ip2 : S2 -» iV; (ii) energy of vi concentrates near some point p e [0,1] x 51, 
and after suitable rescalings we get the second bubble (p2. Letting U — To = 
Ai and T; — ti = JB;, we need to show that the energy of Vi on the cylinder 

[-Ai.BijxS1 

can be very close to E((f)2) in either case. Note that we have Ai and Bi —> oo 
as i —> oo. 

In case (i), we see that since m = 2 there is no local energy concentration, 
hence vi —> VOQ in W^ (R1 x 51, JV). In other words, we have 

lim   lim E{vu [-M, M] x S1) = Efa). 
M—tooi-^oo 

On the other hand, on the two cylinders [—Ai,M] x S1 and [M,Bi] x S'1, 
one can show using the same method as in the proof for m = 1 that the 
energy of Vi is small provided we choose 5 small and i, i?, and M large. This 
shows the energy identity holds. 

In case (ii), we may assume that p = (0,1). Then since m = 2, there 
is only one bubble in (—1,1) x S1 for the sequence vi. It follows from the 
result for m = 1 that 

\imE(vi,(-l,l)xS1)=E(ip2), 
i-»oo 

while the energy of Vi on the two cylinders (—A^ —1) x S1 and (1, Bi) x S1 

can be estimated as before. Thus, we obtain the energy identity in this case 
too. This completes our proof of Theorem 2. 

3. Two Remarks. 

It is likely that our proof of Theorem 2 can be generalized to certain 
singular targets, such as Alexandrov spaces with curvature bounded from 
above and algebraic varieties. We hope to treat this problem in the future. 



Energy Identity for a Class of Approximate Harmonic Maps 553 

In the case T(I^) = 0, i.e. ui is harmonic, by an asymptotic analysis 
(cf. [S], [CT]), we can show that the neck connecting the bubbles and ^o in 
Theorem 2 converges exponentially to a geodesic in N. The key idea of the 
proof is as follows: On the neck cylinder [—A, B] x S'1, the gradient of Ui 
is pointwisely small. Therefore, one can rewrite the harmonicity equation 
as a perturbation of the Laplacian equation on [—A, B] x S1. The unper- 
turbed linear system has two special kinds of solutions, namely constant and 
linear functions, both independent of the variable 9 G S1. These constant 
and linear solutions are respectively the infinitesimal form of constant maps 
and maps with geodesic image. Any solution perpendicular to those spe- 
cial ones either decays or grows exponentially. It is natural to expect that 
such behaviours are preserved for solutions of the perturbed equation. By 
an argument in [CT], one can then prove that connecting neck converges 
exponentially to a geodesic. 

One can also apply the same arguments to harmonic maps from Riemann 
surfaces with varing conformal structure. Though energy may lose from 
necks connecting bubbles and the limiting map, one can show that those 
connecting necks converge exponentially to geodesies. Simple examples show 
that this is the best one can get in the general case of harmonic maps. 

We expect that similar result holds true for solutions of the heat equation 
(1.1). Namely, if u(ti) are given as in Theorem 1, then the connecting neck 
converges to a geodesic in N. 
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