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Let (54,po) be 4-sphere with standard metric QQ. Let g = u2go 
with u > 0 be a conformal metric. We show that if the scalar 
curvature function of g is near constant in the L2 sence, then the 
set of conformal metrics isospectral to g, when suitably centered, 
is compact in the C00 topology. 

1. Introduction. 

This paper is the study of the compactness of conformal isospectral met- 
rics on the standard 4-sphere. 

Two Riemannian metrics g,g' on a compact manifold are said to be 
isospectral if the associated Laplace operators, on functions, have the same 
spectrum. If, in addition, g and g* are also pointwise conformal to each 
other, they will be said to be isospectral conformal metrics. 

It is a well known problem to study the extent to which the spectrum 
determine the metric. Compactness property is one of them we should 
study. Much evidence indicates that this is a complicated question except 
for a compact Riemann surface. When the underlying manifold is a compact 
Riemann surface without boundary, Osgood, Phillips and Sarnak ([OPS]) 
have been able to prove that the set of isospectral metrics on a compact 
Riemann surface is a compact set in the C00 topology. 

They used Wolpert's criterion ([W]) for compactness of the conformal 
structures in the Teichmuller space in terms of the determinant of the 
Laplace operator in the following way. It reduces the problem to study- 
ing the isospectral conformal metrics on a fixed Riemann surface. 

For manifolds of dimension greater than two, we do not have such a nice 
criterion available. But let us assume we already have one. We would like 
to see if the subset which consists of isospectral conformal metrics is C00 

compact which seems get us done on the ground level. 
Naturally we would like to know whether there are any such nontrivial 

pairs which make our question meaningful.  There exist many pairs, even 
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many continuous families of metrics, such that they are isospectral and 
conformal to each other but not isometric. See, e.g. ([BPY],[BG]). 

Along this line, when n = 3, the problem has been answered completely 
by Brooks-Perry-Yang ([BPY]) and Chang-Yang ([CY1, CY2]). We should 
mention that in dimension three if one assumes that the length of the short- 
est closed geodesic for each metric in the set of isospectral metrics hats a 
uniformly lower bound, then the set will be compact in (7°° topology. This 
has been proved by Anderson ([An]). 

We will consider dimension four. Since the conformal Laplace and Dirac 
operators have certain invariant property among conformal class, the log 
determinant of those operators is available on certain manifolds of dimension 
four. Thus we can employ the same argument as in Riemann surface case to 
get Hi compactness instead of (7°° compactness on those manifolds. This 
has been done by Branson, Chang and Yang ([BCY]). As long as consider Hi 
compactness, Gursky has done some Hi compactness for higher dimensional 
manifolds with an extra assumption that the LP norm of the full curvature 
tensor is bounded with jp > f ([Gu]). We also get some related results 
([XI, X2]). 

We are concerned about C00 compactness. In this note, we will mainly 
consider the standard 4-sphere. 

As far as the standard sphere is concerned, we have to do something 
with the conformal transformation group since it is noncompact. In order 
to deal with this noncompactness, we first give the following 

Definition. For a positive function u on S4 and tp a conformal transfor- 
mation, define 

Ucp = (u o ip^dip]1/2 

where \d(p\ is the linear stretching factor of dip measured with respect to the 
standard metric go- 

It is clear from the definition that u^go = (p*(u2go). For ease of presen- 
tation of our results, we denote all functions related in this way to a given 
function u by [ix], i.e., 

[u] = {uplip E Cr, the conformal group of S } . 

As can be easily seen , the noncompactness of conformal group of S'4 

implies that the class [u] is noncompact in H2 (S4), although the metrics 
{g = v2go\v E [u]} are all isometric. If u = 1, they all have constant scalar 
curvature. 



On Compactness of Isospectral Conformal Metrics of 4-Sphere       337 

Thus when we talk about compactness of metrics on the sphere, we have 
to modulo its conformal group. 

First of all, we observe that if one of metrics in a sequence {gi = ufgo} 
has constant scalar curvature, then the rest of them all have constant scalar 
curvature with same constant. This implies that, up to conformal group, the 
isospectral set of conformal metrics on S'4 is a point if one of those metrics 
has constant scalar curvature. Of course, it is compact in the C00 topology. 
Details about this observation will be given in next section. 

Whenever you have such an observation, it is natural to ask yourself 
that what will happen if the metric is near the constant scalar curvature in 
certain sense. This motivates us to reach the following 

Definition. A conformal metric g = u2go is said to be an /i— constant 
scalar curvature metric in the L2 sense with /i > 0 if 

/    1 s9 ~ \ /   ^^o I      /   SgU^dvo >  u^dvo = (JL
2
VOI (S4 

) 

Note that 0— constant scalar curvature metrics in the L2 sense are con- 
stant scalar metrics. Thus we expect that the set of conformal metrics 
isospectral to an /i— constant scalar curvature metrics should be compact 
in C00 topology if fi is small enough. That turns out to be the main result 
we are going to prove in this note. We also give a precise upper bound for 
/i. 

Theorem (Main Theorem). Let gi = u2go be an /JL— constant scalar 
curvature metric on (54,<7o)- H {9i — ul9o} is a sequence of conformal 
metrics isospectral to gi and fi < ^, there exist a subsequence gj and a 
conformal transformation (fj such that {tp*(gj)} converges in the C00 topol- 
ogy to a metric g which is also isospectral to gi. 

The first thought about this theorem is if the conformal metrics with the 
small /i— constant scalar curvature are near the standard metric go in the 
(7° sense up to some action by the conformal group. If this is the case, then 
our result will follow easily. But we will show that this is not the case. We 
can construct a large set of conformal metrics on 54 with small /i— constant 
scalar curvature which are not C0 close to the standard metric. We give the 
details in the appendix. 

The plan for the proof of our main result in this paper is the following: 
first we show that the conformal metrics which are isospectral to an /i— con- 
stant scalar curvature metric are all /JL— constant scalar curvature metrics. 
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In other words, this condition is a spectral invariant among conformal class. 
This can be done by using the third heat invariant and topological invariant. 
Details will be given in section two together with some preliminaries. 

In section 3, we combine the above with the fourth heat invariant and 
prove that the L4 norm of the curvature tensor is bounded. 

Once we have the L4 bound on the full curvature tensor, specially, on 
scalar curvature, we are in position to get pointwise control on the confor- 
mal factors. Here, of course, we need the lower bound of the first nonzero 
eigenvalues of metrics as well as the full conformal group of S'4. This is the 
C0 version of the main theorem. It involves the main estimates we need to 
deal with and is also a place where we have to handle the conformal group. 
The details appear in section four. 

The leading coefficients of the higher order heat invariants can be applied 
to get the bounds 

2 

/. 
\VKR 

5-4  I 
dvg < C(k) 

for some constants C(k) which depend on k, the heat invariants a; and the 
geometric data of the standard metric go- The argument is similar to the 
one used in the three dimensional case, but we do need extra care. Once we 
have these bounds, it is not hard to get the bounds we want. We will caxry 
out the details in section five. 

2. Preliminaries. 

For the materials in the first part of this section, one can consult reference 
[BPP]. 

The basic information we can get from the spectrum data is the heat 
kernel Ht(x,y). The heat kernel is the fundamental solution of the heat 
equation 

It is well-known that Ht(x,y) has an eigenfunction expansion: 

Ht(x,y) = ]rVA<Vi(z)<ft(y)- 
i 

where the {(Pi(x)} are an orthonormal basis of the eigenfunctions of A with 
eigenvalues A^. 



On Compactness of Isospectral Conformal Metrics of 4-Sphere       339 

It then follows that the trace of Ht is given by 

tr(Ht) = / Ht(x,x)dvg = Yje-Xit. 
JM • 

As one might expect on physical grounds, the dominant factor in Ht(x,x) 
for small time t is the local geometry of M at x. Precisely we have 

Theorem 2.1([BGM]). As t -> 0+, tr(Ht) has the following asymptotic 
expansion: 

tr(Ht) - /2 {ao + ait + a2t2 + a3t
3 + •••}, 

where ao, ai, a2, • • • are integrals over M of local invariants of the geometry 
ofM. 

The point here is that tr(Ht) is visibly a spectral invariant of M. Hence 
so are the a^'s. 

For low values of i, one may compute the a^'s as follows: 

ao'=  /   dvg = ^o/(M); 
JM 

ai   =   -    /       SgdVg] 

02=3k/MN-2|Jiic|2+2|fl| 

1   f   f    142.„   .2     26l„„ 
;zc|2 

d^o; 

^|VE|2 + ^-^c|2 + ^|^ 

4_.     „.     „. 20^.     __.     _ 
- -RiCijRiCjkRiCki + —RiCijRiCkiRikji 

8 8 1 
~ ~^R'l'cij RiklnRjkln "T —RijklRijmnRmnkl f dVg 

where 5^, jRic, i? and dvp are the scalar curvature, Ricci curvature tensor, full 
Riemannian curvature tensor and the volume element associated to given 
metric g respectively. The formula for 0,3 was computed by Sakai ([S]) and 
Gilkey ([Gl]) verified it. The name, Sakai-Gilkey's formula, will be used in 
this paper. 
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Since we axe going to work with conformal classes, it is convenient for 
us to reduce the Riemann curvature tensor Rijki into its component parts, 

Rijkl = Wijki H -—{Bikgji - BuQjk + Bjigik 
lb JU 

S9 
- Bjkgii) +        _     (gik9jl - 9ii9jk)' 

where W^ki and By are the Weyl tensor and the traceless Ricci tensor 
respectively. 

As usual, 

Rij = 9   Riljk\ 

Bij = Rij — ~~9ij:> 

Sg = 9iJRij. 

In terms of W,B and s^, the low heat invariants have expansions: 

Theorem 2.2. If n = 4, then 

r .   9Q j] 
dVg\ «2 = T^/    Il^l2 + I5|2 + |-J 180 JM [' 

|2 ,_ 50. 1012 , 555 3 
9^'  +162^ 

+ 5^|Pr|2 + ^|B|2 + ^ 

38 
+ ^WijklWklrnnWmnij + V^BijWiklwWjklm 

+—BijBkiWikji 4- —WijkiWiukyWjuiv \ dvg. 

Proof. The formula for a2 is well-known. The expression for 03 seems also 
known to everyone in this community. But we cannot find a reference for it. 
The argument to get this is quite simple. We can start with Sakai-Gilkey's 
formula, using the computation done by Parker and Rosenberg [PR] for the 
relations between curvature tensors. We will easily reach our claim once we 
correct the minor misprints in their paper. Namely, on page 220 of [PR], 
the coefficient of B13 in the formula for A\s should read as t~o\l instead of 

\Tl—6) 
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^_2)l - Also on the bottom of page 219 of [PR], the expressions for CQ and 

Cy should read: 

CQ = —5—i?2 + B4 H -Bn H -JBIS - B14, 
4n2 n-1 n-2 

C7=-(".:1("-3)^+^(B3-B4) 4n2(n — 1) n-2 

— 7^5 — —Bu - -^is + 7^16 + Btf. 
4 2n 2 4 

We are interested in conformal geometry. When the underlying manifold 
is S4, the standard unit sphere in JR5, we know that the Weyl tensor vanishes 
identically. In this simple case, we then have 

Theorem 2.3. If g = u2go is a conformal metric on S4, then 

aQ = /   u4dvQ] 
Js4 

Q>i =  /   SnuGAdvo: 
Js* 

u^dvo] 

185 
9 + 54 5

P n efoo- 

Proof. When ^ = u2go, we have 

Wijib/^) = v^Wijkiigo) = 0; 

^•(9) = -2 
M 'ZJ 
^--2- 

^VTi 

U 

>lU,j 1 /Au 
4 V u -J?P)«) 

5^ = 7i~3(so^ — 6AIA); 

d^p = u dvQ. 

Here we have used A to indicate the Laplace operator associated to the 
standard metric on 54. These formulas can be found in Besse's book ([B]). 
Prom those relations, it is not hard to see that Theorem 2.3 is true. 

Theorem 2.3 has a useful application. 
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Corollary 2.4. On (S^^go), if gi = u2go,g2 = v2go and gi is isospectral 
to g2, then 

j   s2
giu

Advo = J   s2
g2v

4dvo. 

Proof. Since gi is isospectral to #25 we have 02(^1) = 02(32)- Prom Theorem 
2.3, namely, we have 

/>»&+N"i<te°=/S.[ ii**e,+i«2» v4dvo- 

But the Gauss-Bonnet formula ([B],[PR]) for four dimensional closed mani- 
folds tells us: 

Js4 Ki - 12i^ei] «4*» = !s4 K - 12i^8.] ^- 
Combining these two identities, it is not hard to see that our claim holds. 

A easy consequence of this corollary is this: if one of the metrics lias 
constant scalar curvature and the metrics are conformal and isospectral to 
each other, then the other has constant scalar curvature too. By well-known 
theorem of Obata, up to conformal transformation on 54, those two metrics 
are isometric. It says that the set of conformal metrics isospectral to a 
constant scalar curvature metric on S4, modulo the action of the conformal 
group, is one point. This is also one motivation for our main theorem. 

Another direct consequence of Theorem 2.3 and Corollary 2.4 is the 
following: 

Theorem 2.5. On S4, if we define 

a2(s) = /   s2
gu

AdvQ - I /   u*dvo )        /   SgU^dvo 

then a'2 is a spectral invariant. 

Before we end this section, we would like to recall the Best Sobolev 
inequality on 54 which will be used repeatly in what follows. 

Theorem 2.6 ([Au],[Bec]). On (S4,go), for any function f E If? (S4), 
we have 

voV* (S4) (J  |/|4<foo)      < \f  |V/|2d«o + J^ f2dvo. 
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3. L4 bounds of curvature tensor. 

The main aim of this section is to get the L4 norm bound of the curvature 
tensor. It will be done in several Lemmas. Let us start with 

Lemma 3.1. 

vol1'2 (S4) (J sydv^j     <l-Jsi \Vsg\ydvQ + ^Jsi sydvo 

Proof. Applying Theorem 2.6 to the function / = SgU, we have 
1 /9 

vol1?2 (SA) (^J (sgu^dvo^j      <\jsi \V{sgu)\2godvQ + Jjs^dvo 

= 2 J 4 lVsslsou2d^,0 + J 4 
S9uV9os9 ■ VgoUdvo 

+12js/^<dvo+ls/ydvo 

Since 5o = 12 for our case, we can simplify above inequality to get the 
desired conclusion. 

Lemma 3.2. 

voV2 (s4) (^ \B\ydvoy
2 

<l-jsi \vB\ydv, + ^Js4 sg\B\ydv0. 

Proof. As before, the Best Sobolev inequality (Theorem 2.6) can be applied 
to function \B\ u to get 

vol1'2 (S-4) (^ IBlJii4^)      < \fsi IV (\B\gu) \dvQ + J  \B\ydvQ 

= \/54ivijBisi2tt2duo-\J iB6Au2dUo 
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wd^n 

U dvo 

< i ^ | VBgu4^ + 1 ^ IBg^X^o- 

.Va 

|Bgfi2d^ 

Lemma 3.3. |/54 sp|B|^4^o|  <  ^vol1/2 (S4) (/54 |5|^4^o)      + Ci 

for some positive constant Ci which depends only on the heat invariants 

Proof. The following estimates give the proof of our statement: 

/   sQ\B^nu
AdvQ\ <    I    \sQu

2 — ( /   vfidvQ )      /   SoU4dvou2 

Us* g I      1^ [ V^ /     Js* 

Ou4dvQ)     \      sgu
4dvo\ /   \B\20u

4dvo 
54 /     \Js* Ms4      y 

(4(ff))1/2 (^4 (|Bgu2)2**)      +a0-1|ail«2 

with Ci = ao|ai|a2-   Here we have used the assumption that a^g) is less 
than(ii)2w/(54). 

+ 

< 

Lemma 3.4.  With Ci as in Lemma 3.3, we have 

\JA s^dvol < ^vol1/2 (54) (7  ay dvo}      + Ci 

Proof. As in the proof of lemma 3.3, we have 

-i 

/ 
Us4 

s^4dt;o   < /      sQu
2 — ( /   uAdvo )      /   SnU^dvou2 

Js* [ KJs* )     Js* 

< ^o/1/2 (54) (J  ay dvo} ^ + Ci. 

SgU2dvo + Ci 
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Lemma 3.5. 

| J \vB\ydvo + ^fjs41v«,ix** 

< f |54 sg\B\ydv0+^ |s4 sydv0 + loai. 

Proof. This is the formula a^ with the obvious estimate —as < |a3|. 

Lemma 3.6. There exists a positive constant C2 such that 

(J4\B\ydvo\   + (J^sydvo)   <C2. 

Proof. Applying Lemmas 3.1 to 3.5, we have 

V'2     152 
vol1'2 (54) 

sl/2 

+ 

< 

+ 

^(5*) [/^.XH"+(1 + ^)^ + 51-1 

9    26 

337 

1/2 

Tl/2 
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\l/2 
= ^1/2 (^4) ^ \B\ydvo^ 

il/2^(Is^0)"+(?+^)clnla31- 
337 x 11     ......ft \ V* 

+ 108 x 26Va 

Namely shifting the integral terms of the right to the left, we obtain 

(!-f)aj^)1/2+(f-ra)a^)V2 

Now it is clear that 
4     11      1     n 

3-Y = 9>0' 
and 

152     337 x 11 _   43717        1 
9       108 x 26 _ 108 x 26 > 9 >   * 

Therefore, we have 

Remark.      By tracing through the above proofs,one can verify that the 
_6_ 
is- result remains valid for a^ (g) < S2vol (S4) with S < 6 

4. Proof of the C0 version of main theorem. 

From now on, we will reserve the letters ao, ai, a2, a^, 03 for the spectral 
invariants. We would like to have estimates on the conformal factors in terms 
of these invariants and the first nonzero eigenvalues of the metrics g = u2gQ. 
Of course we will be free to use data about metric go? the background metric. 
The main aim of this section is to show the following theorem which is the 
C0 version of the main theorem stated in introduction: 

Theorem 4.1.  On (S^^go), if g = u2go is a conformal metric, then there 
exist a v G [u] and a constant C3 > 0, depending only on ao(g), ai(g), 
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(12(g), a^ig), ^i(g) and the data of the metric go such that the metric g is 
quasi-isometric to go in the sense that 

0 < ^-ffo < g < C3gQ. 

Proof. The proof will consist of several steps. 
Step 1. Applying Lemma 1 of [CY2], we have a v G [u] such that 

1A 
efoo = 0 

for j = 1,2, • • • ,5 where Xj are the ambient coordinates of 54. The key 
point is that u2gQ is isometric to v2go . Thus they have same geometry, for 
example, the same volume and the same first eigenvalues. Thus if we denote 
v2go by g again, we have 

(4.1) 
J^ vWjdvo < [\i(g)]-1 J\ \Vxj\ydvo 

= [Aite)]"1 / v^Hdvo. 
Js4 

Remember x2 + x2 H h x2 = 1 and |Vxi |2 H h | V^l2 = 4. By summing 
inequality (4.1) from j = 1 to j = 5, we obtain 

ao=       uAdvo = /   vAdvo < (Ai(^))"1 /   Av2dvQ. 
Js4 Js4 Js4 

That is, 

(4.2) f v2dvo > 4-1aoAi(ff) = C4 > 0. 
Js4 

Let r] = [CA/(2vol (S4))]1/2 and fi = {x € S^x) > r)}.  Then we have 
77 > 0 and the estimate 

0 < C4 <   /   v2dvQ =  / v2dvo + /       v2dvo 
Js4 Jn Js4\n 

<([ vAdvo}      {vol{n))1/2 + rfvol (54\n) 

< a^vom1'2 + ^. 
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Therefore 

(4.3) Voim> ^)>0. 

Step 2.   Prom the information in Section two, we know that the scalar 
curvatures of the metrics g and go satisfy the relation: 

(4.4) 6Av + SgV3 = SQV 

Suppose S > 0, the precise value will be chosen later.   Multiply equation 
(4.4) by v'1"26 and integrate by parts to get 

Now let Xi(go) = Ai denote the first eigenvalue of A acting on functions, 
i.e., Ai = 4, then by the Rayleigh-Ritz characterization for Ai, we get 

(4-5) 

/ v-2Sdvo < {vol (S4))'1 (f v-'dvo}   + (1/Ai) /  \Vv-s\2dv0 

*      r   „2-2<s 
6Xi(l + 2S) 

Prom Equation (4.3), we have 

Ls9v2 °dvo. 

-5dv0 /   v sdvo = I v sdvo + I       v 
Js* Jo. JsA\9. 

< rr8v6U$l) + ( f     v-26dvQ j      (vol (54\fi))1/2 . 

In above equation, square, divide by the volume and apply Holder's inequal- 
ity to obtain 

(4.6)   vol(S*)~1(f irW) 

< (1 + 1/7) [v-2Svol(nf] + (1 + 7)^^ J^ v-2Sdvo. 
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for all positive 7. Now as vol(Q) > jj- > O.vol (Sr4\fi) = (1 - 29)vol (S4) 
for some 0 = 9^01(0,)) > 0. Therefore we can take 7 small enough such 
that (1 + 7)(1 - 29) < (1 - 9). Now combining Equations (4.5) and (4.6), 
we obtain 

/ v-2Sdvo<C-0 + (l-9) I v-25dvQ+        f2*" / v-2Sdvo 
Js4 JS* (6Ai(l + 2d)) JS4 

52 

L^-2S dvo 
(4.7) 6^(1 + 24) 

^ ' '       ■2-2i<i»„ [/,^2 
6Ai(l + 2J) 

where C5 = (1 + ^)7]~2Svol2 (AS
4
) > 0 and we have also used the facts that 

SQ = 12, and Ai = 4. Rewrite this inequality as 

Now we can estimate the second term on the right hand side of (4.8) by 
Holder's inequality and Lemma 3.6 as follows: 

\L ,.2-28^ SnV       dvo 
54 

a\ (l-M)/4 
<C2

1/4'    '    -.^-V ^/r^>l(2+2<5)/4 

if we choose S smaller than one-half. 
Now if we further choose S such that 

62 

1 + 26 
then we easily verify that 

< min{0,1/2}, 

/. 
V      dvo < —pr + TT 

54 0 6 6X1(1+26) 

<2C1 

- e 
= c7. 

(4-9) 2C5      1 
--r + i2C6 
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Step 3. Let G(p,q) denote the Green's function for A with singularity at p. 
We may add a constant and assume G(p, q) is positive. Then we have 

v~a{p)=^m I v~advo - LG{p' ^Av~ttdv^ 
=^wj L v~advo ~ £ LG(p'q) [as9v2~a ~ soav~a 

(4.10) +6a(l + a)v-a-2\Vv\2] dvo(q) 

-? /   G(p,q)sgV2-advo 

(r-l)/r  r 

Us4 
q)dvo 

l/r 

Now by Holder's inequality, we have 
(4.11) 

/  v-aG{P,q)dvo< \f v-ar^r-l)dvQ 
Js4 Us4 

If we choose 1 < r < 2 and a < ^ '^~ where 5 > 0 has been defined 
above, then equation (4.11) says that the second term on the right hand 
side of equation (4.10) is bounded. Also, using Holder's inequality, we get 

(4.12) 

1/ 
=1/ \Js4 

G(p,q)sgV2 advo 

G(p,q)sgvvl  advo 

l/r 

S4 

Now we choose r such that 

\J4G
r(p,q)dvo\   " \JJsg\4v4dvo 

L 
(4r(2-a)-4) 

v    (3r-4)    dvo 

2>r>-. 

Then choose a sufficiently small for a fixed r so that 

[2S(3r - 4) + 4r]   [25{r - 1)] 
0 < a < min jsw,- } (413>     — r-     (4.) 

Finally by Holder's inequality, the first and third terms on the right hand 
side of equation (4.10) are bounded in terms of something which does not 
depend on the point p. Thus there is a constant C$ > 0 such that v > Cg. 
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Step 4.   Let w = v1+e with e to be determined later.   From the Sobolev 
inequality for w (theorem 2.6), we have 

(4.14) vol1/2(S4) ( f w*dvo\      < ^ I  |V^|2^o+ /  w2dvz. 

On the other hand, multiplying (4.4) by ?;1+2e, we obtain 

(4.15) 6Aw1+2e + sgv
We = sov2+2e. 

And now integrate (4.15) and use integration by parts to get 

M + 2e) 
(4.16) 

(l + <0! 
/    |Vtt;|2(i?;o = /   SgV2w2dvo — SQ       w2dvo. 

Js4 Js4 Js4 

Notice that for e < 1, JS4 w2dvo is bounded by some constant depending on 
ao and the volume of 54. Prom (4.14), we conclude that 

(4.17)   voll/2(S4) (f w4dvo 
1/2 

< (l + ef /   sQv2w2 

Js4 w dvo + Cg(e). 
(12(1 + 26)) 

For any r) > 0, let E = {x 6 M||s<,| > (C277_1)1/2}. Then, apply Lemma 3.6 
to obtain 

C2> f  \sg\4vUvo 
Js4 

> /    \Sg\4VAdVQ 
JE 

> C27?-1 J 82
gV

4dVQ. 

Therefore we have 

(4.18) 

and 

(4.19) 

This implies that 

/ s2
gv

Advo < r/, 

Isgl^C^r)-1/2    on    M\E. 

1/ \Js4 SgV2w2dvo 

(4.20) <  /    \sg\w v dvo /l 

CjV1'2 /  vWdvo + ^lf  w4dv0 Js* Us4 

1/2 
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To estimate   Jsi v
2w2dvQ, we apply the Rayleigh-Ritz characterization of 

Xi(A9)=A 

Ai(A,) < 
Ss< \Vilf\ydvo 

or equivalently, 

(4.21)     f il>2v4dvo < {vol (S4))'1 ( f ^VUVQ)   + A"1 f t;2|V^|2d«o 

to ij) = ve to obtain 
(4.22) 

[ v2w2< If v4dvo\     \ f v4+edv0}   +A-1 f v2\Vve\ 
Js* Us4        J     Us4 J Js* 

2dvo 

—SQ       w2dvQ 

w dvo 

where we have used Equation (4.16) to obtain the second equality. 
To estimate fMv4+€dvo, first of all, from Step 3 we have C$ > 0 with 

v - Cg > 0. Therefore 

/  v*+edvo = f   {v4- Ci) v€dvo + Cl [ v€dvo 
JS

A JsA JSA 

< \ /   (v* - Cl) A J      \j^ [v* - Cl) dvo       + Cl y 4 v'dvo, 

where the inequality comes from Cauchy-Schwartz and the positivity of v4 — 
Cl. Thus we have 

(4.23) 
7  v4+e 

JsA 

i2 

dvo 

where 7 will be chosen later. But 

< (1 + 7) f / (vA - Ci)v2£dvo] \f(v4- Cfrdvo 
Us4 J Us4 

7) <*[/,•'* ' 

/   (v* — Cl) dvo = a      v4dvo 
Js* Js* 
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where a = 1 —    r8  Ji^     *s a positive constant less than 1 and we conclude 

that 

(4.24) /  ^4dJ      [/  u4+e<foo 

£(1+T,a[/s4K-C,V^] + (1 + i)a|^! 
= (l+7)a / v4+2eduo 

Since we assume e < 1 and ao = ^4 v^dv^ > 0, we get the conclusion that 
the second term on the right hand side of Inequality (4.24) is bounded by 
some constant. Choose 7 so that (1 + 7)a = (1 — /?) < 1. Prom (4.22) we 
then have 

/   v2w2dvo <{1-I3) I   v2w2dvo + C10 + faK/*   0 .v  /   s9v
2w2dvo. 

Js* Js* [vH1 + 2e)) Js* 

It is equivalent to 

(4.25) /   v2w2dvo < -zfRK,*0 ^  /   sgv2w2dvo + -5C10. 
Js* P (6A(1 + 2c)) y54 0 

Combine (4.25) and (4.20) to obtain 

/   sQv2w2dvo 

^CoV2   /   v2w2dvQ +T]\       w4di 
Js* Us4 

^  {Ci'V1'2*?)    f 2    2,^ (g^^"172^) ^      \ [       4.    " 
1/2 

Therefore 

1 "   WAP+fc))     i SS,'^U'2<','0 S " Us. "'4*",J      + C'11 
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where Cu =  C^^^),   If We set 0 = ^i/a (5*) (g^ff, from 

Equation (4.17), we obtain 

^1/2^(12(1 + 26)) 
VOL 

(4.26) 

<»/ / 
Js4 

(1+e)2 

1/2 

(1-*) / w dvo 

(6/?A(l+2e)) 

-,1/2 

iu d^o + (1-,)C9(£)Hli±|£)+C1, 
(1 + £)» 

Now choose rj = 2. Then choose e = eo > 0 small enough such that 

Finally we have reached the following 

(12(1+ 2e)) 
(1 + 6)2 
(12(l+2e))l 

(i-e)-2 

-2 
(l + e)2    2 

[(2-63) + 4e] 

(1 + e)2       >0 

because 0 < e < 1. Hence from equation (4.26), 

11/2 

[/, w dvo 

^2[((l-g)C9(6) + C11)((2-62)+46)]     .^/a^v 
S (1 + 6)2 ^        ^^ 

= (C12)i 

5^ep 5. Apply Green's function to equation (4.4). Then 

v(p) -voliM)'1 /   vdvo =  /   (-Av)(q)G(p,q)dvo(q) 

=   -    /      (SgVS  - SQV)GdVQ. 
6 754 

(4.27) 

Since vol (S4)     JS4 vdvo and JS4 vGdvo are a priori bounded, to bound v(p), 
it suffices to bound A^ SgV^GdvQ. 
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It is well known that \G(p,q)\ < rf2^ , for some constant JK^AU, p.108]. 

Recall the following estimate [Au, p. 37]: for h(y) — JR4   -^ n*dx, we have 
\\x   2/11 

(4.28) r<C(r')||/||r 

where i = i + i-l = l--i with r > 1. r        I       r r        I 
We will iterate this estimate with a sequence of suitable choice of Tj 

and v'y Start with rg = gq^ro = 4 + 4e for 4e < 4eo where CQ has been 
determined in Step 4. We then have 

(4.29) 
/ '|^t;3r&cfoo< [/   MVdvol 4  f /  v^rfvo 

«/54 US'4 J       L^54 

3^0. 
4 

Apply (4.28) to get 

f^dv0
T1 <C(r'0)( /   |^3ro^0l

r° +C13 

where C13 is a constant and -7- = 4- — i, i.e., rb        2' 

ri 
(2^)  =    4ro 

2 - rj      8 - ro 
^0 

1 
> ro. 

Note that if we can choose e such that 1—e < 0, then 4+4e > 6+2 = 8. Thus 
7*0 > 2 and we are done by virtue of Estimate (4.29) and Holder's inequality. 
If 1 — e = 0, then we can replace e by e' < e. So we have 1 — e' = (e — e') > 0. 
Thus we can assume that 1 — e > 0. 

Continue this process with 

r2 = 
ro 

ri = 
4ri 

8 + ri' 

rk = 
K-i 

2-^_i 

nt-i 
1-6' 

rk-l = 8 + ^-1 
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Notice that 
e 

rk+i - r* = Yirrk > 0• 

Thus there will be a ko with r^ > 6 + 2 = 8 and ro < n < • • • < rk0-i < 
8 < rk0 with 

rt  =-±SL_>2. feo      8 + rko 

So at the end of the iteration, we can find a bound for HsyU3)!^ ,2 < r'ko < 
2 + So- This, together with Holder's inequality, implies that v € L00, 

IHIoo<IHIi + IM3l|r' UGH, ■•3|'r 'to- 

<Cu 

for some constant C14. Here ^r- + X = 1 with qf < 2. 
k0 

Step 6.   Now we can choose C3 = maxIC^"2,^} to finish the proof of 
Theorem 3.1 easily. 

5. Proof of Main Theorem. 

In this section we will prove the theorems stated in §1. The main tool 
one can use is the heat invariants, i.e., the coefficients a^ in the asymptotic 
expansion of the trace of the heat kernel 

as t -> 0. What we can get from this information is the following: 

Theorem 5.1. Suppose (M, 30) is a compact 4—dimensional Riemannian 
manifold without boundary. If JM \R\4dvg < C21 and 

|afc| < &*,     fc = 3,4,--- 

and there is a constant A > 0 such that 0 < A"1^ < 9 ^ ^3o- Then 

\VkR\2dv < C(k) j 
JM 'M 

for some constant C(k) depending on k, 6^, ^21, A and the geometry of QQ. 
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Proof, The higher coefficients ai(g) become rapid increasingly complex and 
difficult to compute. However, the exact forms of the ai are not so important 
for our purpose. What is important is that they have the general leading 
coefficients [G2] 

(5.1) ak{g) = (-l)k [   (ck Vk-2R * + dk V*-% 2\ dvg + / Qkdvg 
JM \ / JM 

where ck and dk are positive constants and Qk is a lower order term involving 
covariant derivatives of R and its contractions of order at most k — 3. More 
precisely, Qk is a polynomial of weight 2k in contractions of Rijkij with 
| J| < k — 3, with coefficients depending only on the metric g. Each monomial 
in Qk is a product of contractions of Rijkij of weight 2fc, where the weight 
of RijMj is defined to be |/| + 2 and the weight of the monomial is the sum 
of the weights of the factors. 

First of all, since the coefficients ck,dk in (5.1) are positive, the bound 
on as gives a bound 

(5.2) /  |VR\2dv < hS3 + h23 I  \R?dv. 
JM JM 

By Holder's inequality, one sees that /M \R\zdvg < (JM \R\Advg)4vol(M)4, 
i.e., 

/  \VR\2dvg < C(3) 
JM 

where C(3) = /133 + ^23 [C2i) ™>Z(M)i 

Next, the bound on 04 gives a bound 

(5.3) /  \V2R\2dvg<h24 I \R\Advg + hu [ \VR\2\R\dvg + hu. 
JM JM JM 

By assumption, the first term on the right hand side of (5.3) is bounded. 
To bound the second term, choose 77 = 2(C2i)^CshM > 0 where Cs is 
the Sobolev constant with respect to the metric g which can be chosen to 
depend only on the metric go and A since g is equivalent to go.   Now let 
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Q = {x £ M, \R\(x) > TJ} and /3S a constant. Then we have 

/l34 /   \VR\2\R\dvg = /»34 / IVill2!^!^ +/134 /       \VR\2\R\dvg 
JM Jn JM\a 

< hu (J \R\2dv^\2 (I IVi?)4^^ 2 

+ hun I  \VR\2dvg 
JM 

< h34 (J \R\2dvg) 2 

x \Cs I \V2R\2dvg+(3s I \VR\2dv9 
JM JM 

I  |Vfl|2c 
JM 

h3iT] /   \VRrdv, u9 

|V2i?|2^ 

+ hMps ( [ iRfdvg) 2 ( [ \VR\2dv9 
\JM J    \JM 

+ huv /   IVRfdvg 
JM 

i 

huCsClj   \v2R\2d h 

V       JM
]
        ' 

which implies, together with (5.3), that 

(5.4) / |V2E|2^<C(4). 
JM 

Now apply (5.4) to get 

Oi 

^ \R\8dvgY <CS f \VR2\2dvg+l3s f \R\4dvg 
M J JM JM 

f \R\2\VR\2dvg+(3s [ \R\4dvg 
JM JM 

ACs ( I m^dv^)2 ( / |Vi?|4dvff)2 +& / {Rfdvg 
\JM J    JM JM 

<4C, 
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<4Ct \Rfdvt 

(cs f \V2R\2dv9 + (3s f IVR]2] +(3S [ \R\*dv9 
\    JM JM )        JM 

= C22- 

Next we bound JM | V3i?| dvg and JM \VR\sdvg in essentially the same way. 
Namely, as above, the bound on as gives a bound 

/  \V3R\2dv9<hl5 

(5.5) + /125 /  | V2#|2 \R\dvg + /135 /  | V2E| |VR\2 dvg 

+ /145 / \VR\2\R\2dvg + h55 [ \R\bdvg. 
JM JM 

The last three terms on the right side of (5.5) are bounded by the above 
estimate, Holder's inequality and the Sobolev inequality. The second term 
can be bounded as above. Repeating the above argument, we have 

(5.6) 

and 

(5.7) 

/  |V2i?|4^fl<C23 
JM 

f \VR\8dvg<C24. 
JM 

The proof is now completed by induction in a similar fashion. Thus suppose 
we have bounded 

f Iv'J 
JM ' 

(5.8) /   IV-R 

with k > 4. We claim that 

(5.9) 

'dvg < C{1 + 2)   l<k-l 

/ 
JM 

Vfci? dvg <C(k + 2). 

To see this first note, by Sobolev's embedding, that (5.8) implies the bounds: 

(5.10) /  lvfc" 
JM I 

'R dVg   <   C25, 
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(5.11) 

and 

(5.12) 

|Vmi?|co < C26   for   m < k - 4, 

/ 
JM 

\Vk-2R dvg < (727- 

Since the heat invariant ak+2 is bounded, the bounds in (5.10) follow from 
Equation (5.1) and a bound on the terms containing Qk+2 in terms of (5.11), 
(5.12), (5.10) and (5.8). Now recall that Qk+2 is a polynomial of weight 
2k + 4, each monomial being a product of terms which are contractions of 
Rijkij with \I\ < k — 1, the weight of Rijkij being |7| + 2. Thus, modulo 
terms of the form Rijkij with |/| < k — 4 which are bounded by (5.11), Qfc+2 
at most contains terms of the form: 

w rfc-l R \R\ 

(ii) yk-l R 7k-2 |Vfl| 

(m) ik-l R 7k-3 R \R? 

(iv) Vk-2R 7k-3 R (\VR\ \R\ + \V3R\) or Vk-2R \R\< 

(v) 

(vi) 

7k-3 R if k = 4 

7fc-3 R 
p 

'.   ■ (some terms with derivatives of order   < k — 4) with p < 3. 

Then terms (iii) - (vi) may be bounded in terms of (5.8), (5.10), (5.11) and 
(5.12). For (ii), we have 

IV^i? V*-^    IVi^Vg / 
JM 

< f  Iv^i?2^^ /  |v*-2i2|4+ /  \VR\Uvg 
JM • JM ' '      JM 

which is bounded by (5.8), (5.10) and (5.12). Now for term (i), it follows 
from (5.8), (5.10) and (5.11) since |jR|co < CW 

Now we are in position to show our main theorem. 
After combining Theorem 4.1 and 5.1 with M = 54, we have a v G [u] 

such that the metric g = v2go satisfies 
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i) A 1po ^ 9 ^ ^ffo for a constant A > 0; 

ii) JSA \V
kRg\2 dvg < C{k) for all k > 0. 

Then we want to use the mathematical induction to show that 

(5.13) /   \vkv dvo <D(k) 

for some constants D(k) depending only on k,C(k),C(k - I),--- ,C(0),A 
and the geometry of (jo- To this end, it is clear that (5.13) is true for k < 2. 
Now since v satisfies the equation 

we have 

/ 
Js4 

\Vk(Av)\ dvo 

< 

< 

I  \vkv?dv, + ±-(  \vk{sgv*) 
JS4 ' ' io JS4 ' 

/   \vkv\2dv0 + ±-E(C(k),C(k-l),--- ,C(0),\) f   \vkv 
JS4 ' ' lo JS4 ' 

/   |vfcu| dvo 
Js4'       ' 

IfoT 
18 

18 

'hi2      1 

dvo 

- [^ + T8Eic{k)'c{k "1)'' *'' C'(0)'A) 

<-D(A;) te£.+ *-E(C{k),C(k-l),~',C(0U) 

where E is a constant depending on C(fc), C(fc — 1), ■ ■ • , (7(0), A. 
However, the method of the integration by parts can be applied to get 

/ 
Js4 

\vk+2v dvo < f  \vk(Av) 
Js4' 

dvo + F(k,D{k),--- ,D{0),\,go) 

< D(k) |M + ±E(C(k),C(k-1),---,(7(0), A) 

+ F(k,D(k),..-,D(0),X,g0) 

= D(k + 2) 

where F is another constant depending on the constants as indicated. 
Thus (5.13) is true for all A; > 0. Clearly (5.13) implies our main theorem. 
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Remark. In fact, (5.13) says that the set of the conformal factors {UJ} 

when suitably centered form a compact set in the (7°° topology which clearly 
is stronger than what we have stated in main theorem. In the preprint ver- 
sion, similar to 3-dimensional case, we have used Cheeger-Gromov's com- 
pactness theorem to get the result without going to prove (5.13). It is 
referee who suggested to prove the stronger statement as above. I woidd 
like to thank referee for this improvement. 

Appendix. 

The main aim of this appendix is to construct a family of conformal 
metrics g\ on S* such that Js4 [R\ — (Js4 dvgx)~

l fs4 R\dvgx] dvgx is as 
small as we want but g\ is unbounded in the C0 topology even though the 
possibility of the non-compactness from the conformal group of S4 already 
has been ruled out. 

Let P be the south pole and we stereo-graphically project to the equato- 
rial plane of S4. Let x = (zi,^," * * J^S) € S4 and let y = (2/1,2/2,2/352/4) G 
D^t4 denote the stereographic projection coordinates of #. It is standard that 

xi = ^    j   j"772       * :=    '    '    '    ' 

X5 = 

Its inverse can be written as 

M2 -1 
1 + I2/I2' 

yi = T^-    2 = 1,2,3,4. 

It follows that in the stereographic projection coordinates, the standard 
metric on 54 can be written as 

ds2o = Y,dx2i=   ^q^p     X>: 
2    4 

2 

Recall that on a Riemannian manifold (M,g),dimM = n, the operator 

Lgl/)   =   Aglfj   -   C^Rgl/j 

is called the conformal Laplacian, where c(n) = v^l^v and Rg is the scalar 
curvature of g. It is well-known that under conformal change of metrics, the 
conformal Laplacian obeys the following rule: 



On Compactness of Isospectral Conformal Metrics of 4-Sphere       363 

For g = wn-2g,w > 0, we have 

(Al) Lg'ip = w'^Lgiipw)    for all ^ € C^M). 

Now suppose v is a positive C2 solution of the equation 

(A.2) 

on S4 with RQ = 12. Then if we set 

Agov + ^Rv3 = ^-v 

It follows from Equation (A.l), with w = 1+? ^^ = v,g' = go and g = 

Euclidean metric on SH4, that w satisfies 

(A3) Au + ^M
3
 = 0,    y e m4 

where A is the usual Laplace operator on !EK4. We also have 

(A4) /   v*dvg0 = /   M4dy; 

r4 
(A.5) 

(A.6) 

/   R{y)vAdvgQ = /   R(y)uAdy; 

f R2{y)v±dvgQ = f R2(y)u4dy. 

In this appendix, we will show the following 

Proposition. There exists a famiiy of conformal metrics g\ = -y^o on 54 

such that 

a- {9\} is not C0 bounded; 

b. JS4 xdvgx = 0 for all X; 

c. 

MSA) = J 4 I ^A - (J 4 dv^ J     y 4 iJArfv, 
l2 

^A dv( 9\ 

can be as small as we like when A is smaii or iarge enough; 
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d. /54 dvgx is uniformly bounded; 

e. R\ is also uniformly bounded; 

f. fs4(Ag0(v\))2dvg0 -+ oo as A -> 0   or as   A -> oo. 

Proof. As noted previously, stereographic projection allows us to work in 
!SH4. Let us start with the scalar curvature functions R\. We choose R\ to 
be the function 

t{\
2 + T2)* + (l + \2r2)* 

Rx = 48^ 
(l + A2)3(l+r2)3 

where r2 = yl + y| + y| + y|. 
It is easy computation and also well known that 

(AT) 

and 

(A8) 

Therefore if we set 

AVl + A2r2J        8Vl + A2r2J   ; 

A (A^T^J 
= "8 (FT^J • 

u\ = + X 
1 + A2r2     A2 + r2' 

then we obtain, from (A.7) and (A.8), 

A 

(A.9) \i + x2ry "HA^+TV = -8 

= -8 
(A2 + r2)3 + (l + AV) 

(l + A2)d(l+r2) 3—uy 

That is, 

A(nA) + ^n3=0. 
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Now elementary integrations show that 
(A10) 

/'4 /»00 

/   uldy = vol (S3) /    ulr3dr 
Jx Jo 

,  ., f 1     2A2 (A4 - 3A2 + 1)     2A4 (4A2 - 3 - 3A4) In A2 

= VOI (S3) < - +  i -5 '- +  i -5—i  V    ;\6 (1-A4)2 (1-A4)3 

(All) 

/^H 
R\uxdy 

POO 

= vol{S3) /    RxulrUr 
Jo 

= vo1 {s3) I   [(A^) + (irW) J (A4^ + irW) 
,/o,N fl A2 A6 In A4 A6      I 

r3dr 

= 48vol (s'){l+g(X)} 

(A12) 
r4 

A% 

/•c 

= 'yoi(53) / 
JO 

^nlr3d7- 

= (48)2VO/(53) / 
Jo 

TO7)   + (l+X^j 

(A4P 
+
 T+X^) 

2 

1     2A2 (4A4 + 5A2 + 2)     A4 (4A2 + 3 + 3A4) 
= (48)2 vol (S3) { ^ - , V    '        V    y\6 3 (1-A2)2 

= (48)2W/(53)|^ + /i(A)|. 

(1 - A4r 

InA2! 
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Prom the definitions of h (A), / (A) ,g (A), we can clearly see that as A --» 0 
or as A -» oo, h (A), / (A), g (A) -» 0. Thus we have 

-1    M 

/     i?A-     /   uidy)      /   E^y «Ady 

4 -.-l 
4, = [£ ^j* /   R\u\dy 

(A13) 
5 + /(A) 

+ /»(A) 

482vo/ (.S3) 

1 

6+'<A> Hi i+9(A))2} 

S + /(A) 482i;oi (S3) 

x{l(fW + h(\)-2g(\)) + h(\)f(\)-g(\)2} 

-> 0   as   A —► 0   or as A -> oo. 

Now for i?4, we set irx = i1^-^^. Prom Equation (A.l), we get 

(AM) 6Agovx + Rxvl = 12vx- 

Our desired conformal metrics on 54 will be the metrics g\ = v^go. NOW we 
only need to check Parts a, b, c, d and e of the proposition. 

To see part a, from the definition of the function v\, we have 

vx = 
1 + r2 A + 

2     V(A2 + r-2)     (l + AV), 

Thus when we value them at r = 0 or r = oo, we have 

vx (0) = vx (oo) = ^ (A + j) 

—> oo    as   A —>■ 0    or as    A —> oo. 

To see part b, we observe that, for i — 1,2,3 and 4, 

2yi 
Xi   — 

i + ls/l 2" 
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Hence 

LXidv^ = LTTi |y|2 
+ 

1 + A2r2     A2 + r2 dy. 

Then, using spherical coordinates, we can easily see that this integral is zero. 
For 0:5, we have 

\y\2 -1 
X5 = 

|y|2 + i' 
Therefore, 

x^dvl 
\yf 

'9\ 
r\i 

U 1 + |2/|2 [l + AV  '  A2 + r2 + 

A + 

dy 

A 
1 + A2r2     A2+r2 

A A 

r6dr 

14 

+ 
1 + A2r2      A2 + r2 

4 1 

r3dr 

A 
1 + A2r2        A2+r2 r6dr 

By using a variable change in one of these integrals, we can see that they 
cancel each other. 

To see part c, we have shown the relations (A.4), (A.5), (A.6) and (A. 13). 
Part c follows easily from these relations. 

Part d follows from (A.4) and (A. 10). 
To see part e, we note that Equation (A. 14) shows that the functions R\ 

which have been given at the beginning of the proof of the proposition are 
exactly the scalar curvature functions of the conformal metrics g\. Thus, 
from that expression, we can conclude that R\ is uniformly bounded. That 
means that there are upper and lower bounds on R\ which do not depend 
on the parameter A. 

To see part f, we note from Equation (A. 14) and part e that 

/ 

is equivalent to /54 (v\)6 dvg0 while the latter can be estimated as follows: 

H /1  ,  „.2\6        /     0     x4 

/..^^-jU^Mrk)* 
~<r>rm( A + A 

A2 + r2      1 + A2r2 r6dr 



368 Xingwang Xu 

,21 2 

-=^w 16A6 20A8    J 
_ t;o/(53)3 + 4A2 + 3A4 

480 A2 

—» oo as A —> 0   or as   A —>- oo. 

We can even get a larger set of conformal metrics which satisfy the propo- 
sition by considering the different points on the Sphere as south pole. 
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