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1. Introduction. 

Let M be a smooth compact embedded hypersurface in a riemannian 
manifold N. Then there is a T > 0 and a smooth map 

/: [0,T) xM->iV 

such that /(0, •) is the identity map, Mt = f(t,M) is smoothly embedded 
for each £, and 

(1) £f(t,x)=H(t,x) 

where H(t,x) is the mean curvature of Mt at f{t,x). Examples show that 
the Mt may become singular as t -> T, so that the equation (1) ceases 
to make sense classically. Nevertheless, there are various notions of weak 
solution that allow one to continue the flow {M^} beyond t = T. Of course 
for t < T, the surfaces Mt are all topologically equivalent (indeed isotopic). 
However, examples show that the topological type of Mt can change after 
singularities. This paper addresses the question: what topological changes 
are possible? 

Associated with any one parameter family of surfaces Mt (0 < t < T) in 
the ambient space N, we have a closed subset 

M = {(t,x) :xeMt} 

of spacetime R+ x iV. Conversely, any closed set M in spacetime can be 
regarded as a 1-parameter family Mt of sets moving in space: 

Mt = {x:(t,x) EM} 

In this paper, we say that the set M is a weak mean curvature flow (or 
weak flow, for short) if it does not violate the maximum principle. Here "M 
violates the maximum principle" means there exists a smooth classical flow 

M' = {(*,/(*, x)) : x E M',a <t<b} 
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(with / satisfying (1)) such that M and M' are disjoint initially (at t == a) 
but intersect later. Such weak solutions are also called subsolutions to mean 
curvature flow in [II, §10.1], [13]. Classical solutions to the mean curvature 
flow are weak flows in this sense, as is any Brakke flow of integral varifolds. 
That is, if the Mt are the supports of any family of integral varifolds flowing 
by mean curvature according to Brakke's definition (see [B] or [II, §6]), then 
the associated M is a weak solution (see [II, §10.8]). 

In general, there may be more than one weak solution generated by a 
given initial set MQ. However, there is one weak solution M generated by 
MQ that contains all other weak solutions generated by MQ. This weak 
solution is called the biggest flow or the level set flow generated by MQ. 

Our main results (theorems 5.2, 5.4, 6.1, 6.2) can be summarized as 
follows. 

Theorem 1. Let M be a closed subset of spacetime R* x N and let W 
be its complement. Let 

W[r] = {(t,x)eW:t = r} 

and 
W[0,T\ = {(*,*) G W : 0 < t < T} 

(i). If M is any level set How, then the inclusion LQ : W[0] —> W[0,T] 
induces an isomorphism on HQ: 

(LO)#:H0(W[0])5H0(W[0,T]) 

(ii). If M is any level set How, then every loop in W[0,T] is homotopic to 
a loop in W[0]. 

(iii). Suppose N is a complete (n+1)-dimensional riemannian manifold with 
ricci curvature bounded below. If M is any weak How generated by 
a set MQ at time 0, then the inclusion LT : W\T] ->► W[0,T] induces 
monomorphisms on iln-i and on H^: 

(ir)# : lln-i(W[T]) ~ Hn_i(W[0,T]) 

(LTh:Hn(W[T])~Hn(W[0,T}) 

Heuristically, (i) says that two distinct connected components of the 
complement of MQ can not become connected together later (though a con- 
nected component can become disconnected; see §2.4), and that connected 
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components cannot appear out of nowhere. Conclusion (ii) says that loops 
in the complement of Mt cannot appear out of nowhere. Conclusion (iii) 
implies (among other things) that an (n — l)-cycle in the complement of Mt 
cannot suddenly cease to bound an n-chain in the complement, and similarly 
for a n-cycle. 

The conclusions are perhaps easiest to understand for two-dimensional 
surfaces moving in a 3-manifold. For example, if we let M be the level set 
flow in R3 generated by some set MQ at time 0, then (ii) and (iii) imply that 
dimHi(W[t]) is a monotonically non-increasing function oft. Consequently 
if M^i) and Mt(2) are both smoothly embedded and if t(l) < t(2), then 
the genus of Mt/2) is less than or equal to the genus of Mtfiy (If MQ is 
mean-convex, then Mt is known to be smooth and embedded for almost all 
t [Wl].) 

One can also consider mean curvature evolution of surfaces with bound- 
ary. The boundary may either be held stationary or moved in a prescribed 
way. Conclusions (i) and (ii) remain true in this setting. 

Level set flow in euclidean space was introduced for numerical analysis 
by Osher and Sethian [OS]. The mathematical theory was developed by 
Chen, Giga, and Goto [CGG] and by Evans and Spruck [ES]. Later it was 
developed from a different point of view by Soner [S] and extended to general 
ambient manifolds by Ilmanen [12] (See also [II, §10] and [13].) Since those 
papers do not consider surfaces with boundary, we give a brief self-contained 
development of the theory of weak and level set flows that includes moving 
surfaces with boundaries. 

The results of this paper also hold for some other geometrical evolution 
equations; see §8. There are also some analogous results for minimal surfaces 
[W2]. 

2. Examples. 

In this section we present some examples of topological changes. A 
smooth compact hypersurface bounding a region in R/1"*"1 is called mean- 
convex if at each point its mean-curvature vector is a non-negative multiple 
of the inward-pointing unit normal. If the initial surface MQ of a level set 
flow is mean-convex, then for each 0 < r < i, Mt is contained in the region 
bounded by MT. In this case the various definitions of mean curvature 
flow essentially coincide, except that in a Brakke flow or in a weak flow 
(subsolution), connected components are allowed to vanish suddenly at any 
time. 
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Example 1: shrinking sphere. 

An initial round sphere shrinks (under the level set flow) through con- 
centric spheres to a point in a finite time, and then disappears. The set M 
in spacetime is an upside down paraboloid. This is of course consistent with 
theorem 1. 

Note however that we can let the sphere vanish at some time r <T and 
still have a Brakke flow (and therefore a weak flow): 

M' = {{t,x)eM:t<T} 

In this example, two disconnected components of the complement of MQ join 
up later on. Thus for general Brakke flows the map (^o)# on HQ in theorem 
1 need not be injective. 

Example 2: fattening. 

Let MQ be a smooth figure 8 curve in the plane, and let M be the level 
set flow it generates. It is well-known that M has a nonempty interior. Now 
the topological boundary M' of M is also a weak solution generated by MQ. 

Points in the interior of M lie in the complement of Mf, but cannot be 
connected (in the complement of M!) to points at time 0. Thus for general 
weak solutions (and similarly for Brakke flows) the homomorphism of Ho in 
theorem 1 (i) need not be surjective. 

Example 3: loops appearing. 

Let T be the torus in R3 formed by revolving around the y-axis a disk 
in the xy plane of radius e centered at (1,0). Let D be a disk of radius e 
with boundary in T. Let MQ be the union of T and D. Let Mt flow in the 
natural way as a varifold for a short time r. Let the disk vanish at time r, 
and then continue the flow in the natural way. For t slightly greater titan 
r, the complement of Mt will contain a loop that does not arise from s^ny 
loop in the complement of MQ. This shows that conclusion (ii) of theorem 
1 does not hold for Brakke flows (or for weak flows). 

Example 4: dumbell. 

Let n > 2, and consider the surface MQ formed by joining two n-spheres 
in R71^1 by a thin rotationally symmetric tube. It is easy to make MQ mean 
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convex. If the tube is thin enough, then under the level set flow it will pinch 
off in a finite time, separating the surface into two or more components, 
each of which is topologically a sphere. Note the behavior is consistent with 
theorem 1. (See [AAG] for a detailed analysis of this example.) 

Example 5: generalized dumbell. 

Let J be union of a pair of unit disks on the x-axis and a long thin 
rectangle joining their centers: 

J = B2((a, 0), 1) U B2((-a, 0), 1) U ([-a, a] x [-e, e]) 

Here a should be large. 
Fix integers p > 1 and q > 2. Let us represent points in Rp+9 = Rp x R9 

as (a;, y) where x = (xi,..., Xp) and y = (yi,..., yq). Let J be the result 
of rotating J (thought of as lying in the xiyi plane) about the x = 0 and 
y = 0 planes. Symbolically: 

J={(x,y)eBP+*:(\x\,\y\)eJ} 

Let MQ be the least area hypersurface containing J. Then MQ will be a mean 
convex C1,1 surface. If a is large, then MQ will coincide with the boundary 
of J in a large ball around the origin. 

Let Mt be the result of letting MQ flow for time t under the level set 
flow. If a is sufficiently large, it is not hard to show that at a certain 
finite time T, MT will no longer touch the x = 0 plane, but will not yet 
have vanished. (One uses Huisken's monotonicity formula [H] or Brakke's 
clearing out lemma [B, 6.3] to show that it does not touch the x = 0 plane, 
and spherical barriers to show that it has not yet disappeared.) Indeed, we 
can arrange for the region enclosed by MT to contain the (p — l)-sphere 

S = dBp{0,a) x[0]q 

This sphere does not bound any p chain in the interior of MT (since any 
such p chain must cross the x — 0 plane). On the other hand, S (which 
belongs to the interior of all the preceding M^'s) does bound a chain in the 
interior of MQ. This shows that conclusion (iii) of theorem 1 does not hold 
for any homology groups H^ with k < n — 1. 

Similarly, let S' be the union of [0]p x B9(0,a + 2) with a ^-dimensional 
hemisphere having the same boundary. Then S' is a g-cycle in the comple- 
ment of My, and S' is not the descendent of any g-cycle in the complement of 
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MQ. This shows that conclusion (ii) of theorem 1 does not hold for k-cycles 
with k > 1. 

3. Classical Flows. 

Definition. Let M be a compact n-manifold with or without boundary 
and let int(M) = M \ dM be its interior. Let AT be a riemannian (n + 1)- 
manifold, and let 

/: [a,6] xM^N 

be a continuous one-one map that is smooth on (a, b] x intM such that 
/(£, •) smoothly embeds int(M) for each t G (a, 6]. Suppose that for each 
(t,x) £ (a, 6] x int(M), 

(£f(t,x))± = H(t,x) 

where J- denotes the component normal to f(t,M) and H(t,x) denotes the 
mean curvature of /(£, M) at (t, x). Then for any c G (a, 6), we say that the 
set 

M := {(t, /(t, a;)) : t € [a, 6], re G M} 

is a classical mean curvature flow (or classical flow, for short). 
The /iea£ boundary dM ofM is the image under (t,x) \-¥ (t,f(t,x)) of 

{[a] xM)U([a,6] x 9M) 

Let M be a classical flow and let X = (r,p) be in A'f \ 9JM. Let Mt be 
{x : (t, a;) G M}. Choose a coordinate system for N in which p is at the 
origin and in which the tangent plane to MT at p is not vertical (i.e., does 
not contain the standard basis vector (0,0,..., 0,1).) Then there will be a 
cylinder Bn(0,r) x (—h,h) such that for t = r, the intersection of Mt with 
the cylinder is the graph of a smooth function ut : Brl(0, r) —>• R. It follows 
that this also holds for all t sufficiently near r. Of course (£, x) —> ut(x) is 
a solution of the non-parametric mean curvature flow equation (which is a 
quasilinear parabolic equation). 

Lemma 3.1 (Maximum Principle Lemma). Let Mi (i = 1,2) be two 
classical Hows. If they intersect, then they intersect at a point that belongs 
to one of the two heat boundaries. 

Indeed, ifX G MinM2, then there is a connected subset K of MiC\M2 
such that K contains X and some point in dMi U dM2- 
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Proof. Let S be the intersection of the parabolic interiors of the Mi. We 
claim that if X = (r,a;) G <S, then there exist points X' E S arbitrarily close 
to X and strictly preceding X. For suppose not. Then we can choose e > 0 
and a neighborhood U C N of x such that the set 

(*) (*-c,*) x [/ 

contains no parabolic boundary points of the Mi and no points of S. Hence 
Mi and M2 do not intersect in the set (*). But now the classical strong 
maximum principle (applied to the functions ut corresponding to Mi and 
M2) implies that they do not intersect at X either, a contradiction. This 
proves the claim. Now the result is a consequence of the following simple 
point-set topology lemma. (Let B be MinM2 and let A be the intersection 
of B with dMi U dM2.) □ 

Lemma 3.2. Let A and B be compact subsets of R x N such that A C B. 
Suppose for every X G B \ A, there exists points Y G B that are arbitrarily 
close to X and prior to it. Then for every X G B, there exists a closed 
connected subset K C B such that K contains X and a point Z G A. 

Proof. For e > 0, let ^ be the family of subsets S C B such that 

(i). X G 5, and 

(ii). If S = S'\JS" with S' and S" nonempty, then there exist points Y' G S' 
and Y" G S" with dis^Y', Y") < e. 

By the Hausdorff maximum principle, there exists a maximal set Se in the 
family .Tv Since Se G ^ the set Se must be closed and therefore compact. 
Thus the time function must attain a minimum at some point Z in the set 
Se. This point Z must be in A, since otherwise we could enlarge Se by 
adding to it a point in A close to Z and preceding it. 

Now let if be a subsequential limit (in Hausdorff convergence of sets) as 
e -> 0 of the Se. □ 

In addition to this maximum principle, we use two other facts about 
classical flows: 

(i). If M is a compact C1,1 embedded hypsersurface at time t (i.e., M C 
[t] x N) then M is the heat boundary of a classical flow M. 
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(ii). If U is an open subset of spacetime and U' is the union of all classical 
flows with heat boundaries is [/, then U' is also open. 

(When the ambient space is euclidean, (ii) is trivial because a translate in 
spacetime of a classical flow is also a classical flow.) 

4. Weak Flows. 

Definition. Let F be a closed subset of spacetime R+ x N. (Throughout 
this paper, R"1" = [0, +oo).) A closed set M C R+ x iV is said to be a weak 
flow generated by F provided 

(i). M and F coincide at time 0. 

(ii). If Mf is a classical flow with dMf disjoint from M and with Mf 

disjoint from F, then Mf is disjoint from M.. 

Let A4 be a classical flow and F be its heat boundary. Then by the 
maximum principle lemma 3.1, M is a weak flow generated by F. 

One can make a slightly different definition of weak flow by requiring 
that the Mhs in (ii) be classical flows of closed hypersurfaces. It is not hard 
to show that the resulting definition is equivalent to the one we have given, 
so the reader can use whichever he or she prefers. 

Let r : R"1" x N ->• R+ x N be a translation forward in time: r(t,aj) = 
(t + T, x) Note that M is a weak flow generated by F if and only if T(M) is 
a weak flow generated by r(r). 

Weak flows have a restarting property. Suppose M is a weak flow gen- 
erated by F. Fix a T > 0 and let 

F' = {(t,x) e F : t > T} U {(t,x) eM:t = T} 
M, = {{t,x)eM:t>T} 

Then M* is a weak flow generated by F'. 
Also, weak flows can "pop" at any time. Let M be a weak flow generated 

by F. Fix a T > 0, and let 

M' = ru{(t,x) £M:t<T} 

Then M' is another weak flow generated by F. 

Theorem 4.1 (Avoidance Theorem). For i = 1,2, suppose Mi is a 
weak Sow generated by F;. Suppose each initial portion {(t,x) e Mi : t < 
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T} of MI is compact. Suppose also that at some time T, 

distT(Mi,M2) < mindist;r(.Mj,ro) 

Then distt(Mi, M2) is a non-increasing function oft on some interval [T, T+ 

Proof for euclidean space. (Ilmanen [II, §10] or [13, §4].) Let M be a 
compact C1'1 surface contained in {(T, x) £ R+ x iV} such that M separates 
Mi from M2 at time T and such that 

distrCA^i, M2) = distT(.Mi,M) + distr(M, M2) 

(Existence of such an M is proved in [13, §4F].) Let M' be a classical flow 
generated by M. Then for a short time interval T < t < T + e, 

distt(M,Mi) < distT(M,Mi) 

(Otherwise, by translating M spatially we would get a classical flow M* 
that was disjoint from Mi at time T and then intersecting it at a slightly 
later time, contrary to the definition of weak flow.) Thus 

disttCMi,M2) > distt{Mi,M)+distt(M,M2) 

> distriMuM) + distH-M, M2) 

>distT(MuM2) 

□ 

See §7 for a proof of the avoidance theorem for arbitrary ambient mani- 
folds. 

Ilmanen [12] gives various interesting examples of compact surfaces that 
become non-compact in finite time under the mean curvature flow. Fortu- 
nately he also gives a natural condition that precludes this: 

Theorem 4.2. Suppose N is complete with ricci curvature bounded below. 
Let M be a weak flow generated by T C R* x N. IfTn {(£, x) : t < r} is 
compact, then so is M D {(£, x) : t < r}. 
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5. Level Set Flow. 

Definition. Let T be a closed subset of spacetime R+ x N. We define a 
family of subsets of Wk = Wk(T) of spacetime inductively as follows. 

^o = {(0,x):(0,a;)^r} 

Given W*, we let W^+i be the union of all classical flows Mf such that M' 
is disjoint from T and such that the heat boundary of Mf is contained, in 

Wife. 
Finally we let W = Uf=QWk and 

M(T)=R+ xN\W 

This set M.(T) is called the level set flow or biggest flow generated by F. 

Note that each Wk (with k > 0) is open, and that WQ CWi CW2 C .... 

Proposition 5.1. Let M be the level set Bow generated by F. Tlien Al is 
a weaic flow, and if M is any other weak flow generated by T, then M c M. 

Proof. Note by induction that every Wk is contained in the complement of 
M. Thus W C Mc, so M C M. This proves the second assertion. 

Now suppose Mf is a classical flow with Mf disjoint from F and dM' 
contained W (the complement of M.) Then by compactness, dM* is con- 
tained in one of the Wk. Thus by definition of Wk+u M* is contained in 
Wk+i and therefore in W. This proves that Ai is a weak solution generated 
byT. D 

Theorem 5.2. Let M be the level set flow generated by F. Then 

(i). For each X E Mc = W, there is a time-like path in W joining X to a 
point Y = (0, y) at time 0. 

(ii). If X and Y are in different connected components ofWo, then they 
are in different connected components ofW. 

Proof. To prove (i), let X E W. Then X E Wk for some k. Let us prove the 
result by induction on k. If k = 0, we are done. If k > 0, then by definition 
there is a classical flow M' with X E M.' and dM1 E Wk-i- Trivially X is 
connected (back through M') to a point Y in the initial part of M'. Since 
M' C Wk-i, by induction we can connect Y back to a point in WQ. 
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To prove (ii), suppose that two points X, Y G WQ cannot be connected 
by a path in WQ. Then WQ can be written as the union of two disjoint 
open sets W* and W^f containing X and y, respectively. Let W* be the 
union of all classical flows M' that are disjoint from F and that have heat 
boundary in Wj*_v and similarly for W^_v 

If there were a point Z in both W* and Wjjf, then Z would belong to 
a classical flow Mf disjoint from T and with heat boundary in W^ and 
to a classical flow M." disjoint from T and with heat boundary in W^_v 

By the maximum principle lemma 3.1, it follows that either W^1 intersects 
Wjjf or W* intersects W^_v Repeating the process, we eventually find that 
W* intersects W^ or that W* intersects W^, both of which are clearly 
impossible. This shows that W* is dijoint from Wjjf. Thus UkWj* is disjoint 
from UkWjjf. But the union of these two open sets is all of W, so X and Y 
belong to different components of W. This proves (ii). □ 

For the next theorem we need the following lemma about the sets Wk 
used in the definition of the level set flow generated by F: 

Lemma 5.3. Let Mf be a classical How that is disjoint from F and whose 
heat boundary is contained in Wk- Then each connected component of 
M! PI Wk contains points in dM'. 

Proof. Let V be a connected component of M' fl Wk- Let j be the smallest 
number such that V intersects Wj, and let X be a point in V D Wj. Of 
course j < k. If j = 0, we are done. If not, then by definition of Wj, 
there is a classical flow M* such that X G M*, M* is disjoint from F, and 
dM* C Wj-i. By the maximum principle lemma 3.1, there is a connected 
subset K of M' H.M* such that K contains both X and a point Y in 
dM' U dM*. Since M* C Wj C Wk, K c V. Since dM* C Wj-u 
Y $ dM* (by the choice of j), so Y G dM'.) □ 

Theorem 5.4. Let M be a level set flow, and let W[0,T] denote the por- 
tion from t = 0tot = Tof the complement of M: 

W%T) = {(t,a?) ^ M : 0 < t < T} 

Then every closed loop in W[0, T] is homo topic fin this set) to a closed loop 
in W[0]. 
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Proof. Let Wk be as in the definition of the level set flow M generated by F. 
Let Wjfe[0,T] be the portion of Wk from time t = 0 to t = T. By the basic 
theory of covering spaces, there is a covering space 

n:T^[0,T]->-W[0,T] 

such that a loop 7 in H^[0, T] lifts to W^[0, T] if and only if it is homotopic 
to a loop in W[0]. This immediately implies that there is a lift 

ZQ'.W[Q]-*W%T\ 

of the inclusion map io : W[0] ->• W$tT\. (Recall that / is a lift of f if 
/ = no/.) 

We now construct inductively for each k a lift 

Zk:Wk%T}->W[Q,T} 

of the inclusion map ^ • W^[0,T] —> W]{),T} such that tk agrees with i^-x 
onWJb-iM. 

Thus suppose we are given a lift ik-i of ik-i, and let M! be a classical 
flow disjoint from F with heat boundary in Wfc-i- Then there is a unique 
lift 

(j):M! -±W[Q,T} 

such that 

(*) (f>{X) = lk-1{X)    ionXedM' 

(The lift is constructed as follows. Choose some parametrization F : [a, b] x 
M -»• Mf as in the definition of classical flows (§3). For each p G M, lift the 
path t *-» F(t,p) to W^OjT], starting at t = a at Lk^i(F(a1p).) 

Claim 1. (t){X) = ik-i(X) for every X G M' n W^-i^T]. 

Proo/ 0/ c/azm 1. Let V be a connected component of Mf fl Wib-i- Then 
(/) and ^_i give two lifts of V into U. By lemma 5.3, V must contain some 
point Y of dM1. By (*), these two lifts agree at Y. Thus they must agjee 
throughout V. This proves claim 1. □ 

Claim 2. Let .Mi and M2 be two classical flows disjoint from F and with 
heat boundaries in Wk-i, and let </>i and ^2 be the corresponding lifts. If 
XeMiH M2, then ^(X) = </>2p0- 
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Proof of claim 2. By the maximum principle lemma 3.1, there is a connected 
subset K of Mi fl M2 containing X and some point Y E dMi U 9A^2- By 
claim 1, ^1(1^) = lk-i{X) = ^(^O- Since ^1 and 02 give two lifts of if that 
agree at y, they must also agree at X. This proves claim 2. □ 

Now we extend fc-i : Wk-i[0,T\ -> W[0,T\ to Lk : Wk[0,T\ -> W[0,T\ 
as follows. Given X G W^, there exists a classical flow Mf with X € .M' 
and dM' C Wjb-i. Let </>: M! -> C/ be the Uft described above. Then we let 
lk(X) — <$>{X\, note by claim 2 this does not depend on the choice of M!. 

Putting the Z^'s together, we get a lift 

This means that W^[0,T] = W[0,T], which implies the theorem. D 

6. More on Weak Flows. 

Throughout this section we assume that the ambient space N is a com- 
plete (n + l)-dimensional manifold with ricci curvature bounded below. 

Theorem 6.1. Let M. be a weak flow generated by a set MQ at time 0. 
Let W be the complement of M, and let 

W[T] = {(t,x)£W:t = T} 

W[0,T] = {(t,x) eW:0<t<T} 

If C is a polyhedral (n — 1) cycie in W[T] that is homologically trivial in 
W[0,T\, then it is homologically trivial in W[T\. 

In other words, the inclusion of W[T] into W[0,T] induces a monomor- 
phism on Hn-i- 

Proof Let F be the support of an polyhedral n-chain P in W[0,T] with 
dP = C. Note we may choose F so that its t = 0 slice is empty. Let M* be 
the level set flow generated by F. By theorem 4.2, the portion of M' up to 
any time t is compact. 

Let e = mino<t<rdistt(r, M). Note that e > 0. By the avoidance 
theorem 4.1, 

dist4(jM',jM) >e       (0 < t < T) 
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Now fatten M'[T] a little to get a set K in [T] x N that is disjoint from 
M[T] and that has smooth boundary. 

Let 

TT: [0,T] xN ^ [T] xN 

7r(tJx) = (T,x) 

Let P' = 7r#P. Then dP' = dir^P = n^dP = C. 
Suppose 7 is a loop in ([T] x N) \ K. Then 7 is in the complement of 

M.', so it is homotopic in this complement to a loop at time t = 0. Note 
this implies that the algebraic intersection number of 7 with P' is 0. 

Now assign multiplicities to each region in the complement (in [T] x iV) 
of if UP' in such that the multiplicity changes by a whenever we cross a face 
of P' with multiplicity a. Note this is possible to do consistently because 
any loop in the complement of K has (algebraic) intersection number 0 w ith 
P'. The result is an (n + l)-chain Q whose boundary is the portion P' \ K 
of P' outside of K together with a chain Q in K. 

Thus if we modify P' by replacing P' \K with Q, we get an n-chain 
in K (and therefore disjoint from M) whose boundary is the same as the 
boundary of P', namely C. □ 

Theorem 6.2. Let M be a weak How generated by a set Mo at time 0. 
Then fin the notation of theorem 6.1), if a polyhedral n-cycle C in W[T] 
bounds a (n + l)'Chain in W[0, T], then it bounds an (n + IJ-chain in W[T]. 

In other words, the inclusion of W[T] into W[0,T] induces a monomor- 
phism on Hn. 

Proof. Let F be the support of an polyhedral (n + l)-chain P in W[0, T] with 
dP = C. Note we may choose F so that its t = 0 slice is empty. Let M.f be 
the level set flow generated by F. By theorem 4.2, the portion of M' up to 
time t is compact. 

Let e = mino<Krdistt(r, M). Note that e > 0. By the avoidance 
theorem 4.1, 

diatt(M',M) >e       (0<t<T) 

Let TT be as in the proof of theorem 6.1, and let P' = TT^P. Then 
dP' = dn#P = 7r#aP = C. 

We claim that the support of P' is contained in Mf, and is therefore 
disjoint from M. For let X = (T, x) be in the support of P' but not in the 
support of C.  Then the path t •-> (£, x) (0 < t < T) intersects P a nonzero 
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number a of times (counting multiplicities). Thus any path joining X to 
a point (0, x') intersects P a times. Hence X cannot be connected to any 
point with t = 0 by a path disjoint from F. Thus by theorem 5.2(i), X E Mf. 
□ 

7. Riemannian Manifolds. 

All the theorems in the preceding sections have been stated for general 
ambient riemannian manifolds. However, the proof of the avoidance theorem 
was valid only in euclidean spaces (and flat tori). In this section we give a 
proof for other ambient manifolds. 

Theorem 7.1 (Avoidance Theorem). Suppose N is complete with 
Ricci curvature bounded below. For i = 1,2, suppose Mi are weak flows 
generated by IV Suppose: 

(i). the initial portion {(£,#) 6 Mi '.t<T} of Mi is compact, 

(ii). Mi and M2 are disjoint at time t = 0, 

(iii). min^j disttiMu Tj) > e> 0 for 0 <t < T. 

Then Mi and M2 are disjoint up to time T. 

Proof. Suppose not. Then there is a first time of contact, which without loss 
of generality we may suppose to be T. Note the contact set is a compact set 
K. Let K' be a compact set whose interior contains K. If we replace M2 
by M2 H (R+ x K') and T by 

(r n (R+ x K')) u (M2 n (R+ X dK')) 

then the hypotheses are still satisfied (perhaps with a smaller e), except that 
now the portion of M2 up to and including time t = T is compact. 

Fix a T' < T. Let 

T'. = {X = (t,x) : t = T',dist*(X,ri) < e/3}u{X = (t,x) : t = T',X E Mi} 

Let M'i be the biggest flow generated by Fj. Note that if we choose T' 
sufficiently close to T, then F^ will be in the interior of M^ for all times 
te [T',T]. 
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It follows immediately that Mi C M^ in the time interval t G [T',T]. 
But during this time interval the M'i are flowing according to the level set 
flow without boundary as considered in [12]. Thus according to the results of 
that paper (in particular theorems 6.3 and 6.4), the A^ are disjoint. Hence 
the Mi are disjoint (up to time T), a contradiction. D 

Remark. It would be nice to prove 7.1 in a direct geometrical way, without 
using viscosity solutions. 

8. Other Curvature Flows. 

The results of this paper hold for some flows other than the mean curva- 
ture flow. Suppose we have an evolution equation for hypersurfaces in R'a+1 

such that: 

(i). the equation is translation invariant, 

(ii). the equation does not depend on orientation of the surface, 

(iii). classical solutions satisfy the strong maximum principle, 

(iv). for any compact (71,1 embedded hypersurface in Rn+1, there is a clas- 
sical solution for some (possibly short) time interval. 

Then we can define corresponding generalized solutions (weak flows and level 
set flows), and all the results of this paper continue to hold (with exactly 
the same proofs). 

Examples of such evolution equations can be obtained by letting a sur- 
face flow by the first variation vectorfield corresponding to any constant- 
coefficient even elliptic integrand. 

The results would also hold for an evolution equation in a compact am- 
bient manifold N satisfying (ii),(iii), and (iv), provided one could prove the 
strong avoidance property 7.1. 

For non-compact ambient manifolds, one would need to prove the avoid- 
ance property and one would also need to replace the assumption about ricci 
curvature by some condition (perhaps something like Morrey's homogeneous 
regularity) that would let one prove the analogue of 4.2. The other proofs 
would then work exactly as before. 
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