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We prove the multiplicity of the second eigenvalue is at most two 
for a bounded smooth domain in R2, which sharped an earlier 
result of Cheng, S.Y. and generalized a result of Lin, CS. 

1. Introduction. 

We are concerned here with the eigenfunction of a domain fi which is 
the solution of the following problems 

(     v / A(/>4-A^ = 0   in    0, 
U-1J I ^lan = 0 

where A = ^ + J^ is the Laplacian. Q, is a bounded smooth domain in 

i?2, and A is the corresponding eigenvalue. Here ft is smooth domain means 
that dCl can be parameterized as a smooth function. Let A2, </>2 be the 
second eigenvalue and eigenfunction. It is well known that ^2 changes sign 
in Q. we know that the multiplicity of A2 is exactly two when the domain 
Q is a disk and the corresponding eigenfunction can be written explicitly 
by Bessel functions. In [3], Cheng's arguments can be carried over to show 
that the multiplicity of the second eigenvalue of (1.1) is at most three. Later 
Lin in [5] sharpened his result by showing that the multiplicity is at most 
two provided tt is convex. We will prove that the multiplicity of the second 
eigenvalue is at most two for any smooth domain. 

Theorem 1.1. For a bounded smooth domain ft in R2, the multiplicity of 
second eigenvalues of the problem (1.1) is at most two. 

This problem is closely related to the nodal line conjecture. Let iV(</>2) be 
the closure of {(x,y) G n\(f)2(x,y) = 0} which is called the nodal line of (fo- 
It is easy to see that Nfa) is a regular curve at the point where | V ^21 7^ 0. 
In fact, the singular set 5 = {(x,y) G ft|</>20r,y) = 0    and y 02 = 0} is 
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composed of finite points in our case.(see Cheng [3]) Therefore N((/)2) is 
regular except at finite points. The nodal line conjecture states that N^) 
can not be a closed curve. There are many works on this problem in the 
former literatures. Recently, Melas [8] proved the conjecture provided ft is a 
convex domain. In the following, we will see that theorem 1.1 is a corollary 
of the nodal line conjecture in some case. 

In this paper, we use an idea of "domain variation" which the author 
believe to be new in this field. When Q, is convex in one direction, theorem 
1.1 can be obtained easily, because we can regard domain translations as a 
special variation in this case. In general, we consider a local variation of the 
domain and compare the two second eigenfunctions. Finally we prove the 
theorem by contradictions. 

Remark 1.2. It remains to be an interesting open problem of the similar 
results in high dimensions. 

Acknowledgement. The author thanks Prof. Ding W. Y. for many valu- 
able discussions on this problem. He also thanks ICTP for the hospitability 
while he is visiting there and writing this paper. 

2. Preliminary Lemmas. 

In this section we present several basic lemmas. Although they have been 
proved before, we include their proof here for convenience of the reader. If 
tp is a solution of (1.1), by Taylor expansion at origin we know that 

(2.1) <f> = Co + dr sin(0 + Oi) + 0(r2). 

where the first two leading terms are harmonic polynomials. 
We call (/) is first order vanishing at point p, if 0(p) = 0 and second order 

vanishing at p, if ^(p) = 0, V0(P) — 0- The following lemma is essentially 
contained in [3]. 

Lemma 2.1. The multiplicity of A2 of problem (1.1) in a bounded smooth 
domain is at most three. 

Proof. Suppose that 02, ^3,04,05 are orthogonal eigenfunctions correspond- 
ing to A2. Let q £ Q be the origin of the coordinate. Choosing C2, C3, C4, C5, 
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such that 

5 

(2.2) 0 = EC^' 

satisfies 

(2.3) 4,(q) = 0, 

(2.4) V#f)=0. 

We can always choose c;, i=2,3,4,5, because there are only three equations. 
<f> is an eigenfunction corresponding to A2 with a second order vanishing 

at point q. Then we have 

(2.5) <f>(q) =C2r2sin2(0 + 02) + O(r3), 

near the point q. Then we can find a small circle centered at q on which (f> 
changes sign at least four times. Thus at q, (f) has at least two nodal lines 
transversely intersect each other. Moreover, they divided Q into at least 
three parts. From Courant nodal domain theorem, we know that the nodal 
line of (/> divided Q into exactly two parts. Therefore <^ can not have a second 
order vanishing point in fi. Then we proved our lemma. 

Remark 2.2. Prom the proof of lemma 2.1, we can see that the second 
eigenfunction can not have a second vanishing point in flL Therefore the 
nodal line iV(</>2) is a regular curve in Q. But N((f>2) may have a singular 
point on the boundary. 

The following lemma gives us some nodal line behaviors on the boundary. 
It is essentially proved by Lin [5]. 

Lemma 2.3. Assume the multiplicity of A2 is three, then for any two points 
p,q G d£l, there exists a second eigenfunction (f> such that N{(j)) intersects 
the boundary at these two points. Moreover, p and q are the second order 
vanishing points of (/). 

Proof. Suppose 02? ^3, ^4 be three orthogonal second eigenfunctions. Again 
we let 

(2.6) </> = C202 + C303 + C404, 
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such that 

(2.7) |W.o, 

(2.8) *(„.0, 

where n is the normal direction. Such 0 always exists, because there are 
two equations with three parameters. By Maximum principle we know that 
iV(^) intersects the boundary at p,q. Obviously p,q are the second order 
vanishing points of 0. 

Under the assumptions of lemma 2.3, we have the following remarks. 

Remark 2.4. If we choose p in lemma 2.3 be the origin of the coordinate 
and tangent direction be the x-direction. We have the following expansion 
near p 

(2.9) ^ = C2r2sin20 + O(r3), 

where C2 7^ 0 if p,q are different points and connected in 90. And similar 
results hold for point q. Moreover if q is in O, we can also find an eigen- 
function 0, such that N(^)) passing through point p and q. In fact in this 
case (2.8) is replaced by (/)(q) = 0. 

Remark 2.5. If we let 

<2-io> ^>=o- 

replace (2.8), where T is the tangent direction. Then p is a third order van- 
ishing point of (/). And N((f)) touches the boundary at p. In the coordinate 
as given in remark 2.4, we have the following local expansion 

(2.11) (/> = C3r3sin30 + O(r4), 

where C3 ^ 0. In fact, if C3 = 0 we can use a similar discussion as in the 
proof of lemma 2.1 to obtain a contradiction. That is the vanishing order is 
at most three. 

Remark 2.6. If fi is a simply connected domain, then there exists a second 
eigenfunction </>, such that iV(</>) is a closed curve. In fact, the function </> 
obtained in remark 2.5 is the desired eigenfunction. 
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Corollary 2.7. If ft is convex in one direction, then the multiplicity of A2 
is at most two. 

As we mentioned before, we have a shorter proof of theorem 1.1 in this 
case. And the idea of "domain variation" is developed from this proof. 

Proof. Suppose the multiplicity of A2 is three. And we may assume that Q, is 
convex in x-direction. Prom remark 2.6, we know that there exists a second 
eigenfunction (/> such that the nodal line of (/) is closed. 

Now, we consider (f>x which is the derivative of (f> in x-direction, it satisfies 

(2.12) A^. + A2&: = 0. 

Let p,q be the maximum and minimum points in y-direction on the bound- 
ary. Then </>x is nonpositive on one part of pq and nonnegative on the other 
of pq. And (j)x is not identically zero on the boundary. 

Let if) be the second eigenfunction whose nodal line intersects the bound- 
ary at p,q. In the case of simply connected domain N(ip) intersects the 
boundary at exactly two points p,q. Then by compare (2.12) with (1.1), we 
have 

Jan  Xdn 
(2.13) /    ^-^ = 0. 

Jan     on 

This is impossible, because ^ and -^ change sign simultaneously at points 

Finally we should mention that theorem 1.1 is a corollary of nodal line 
conjecture provided ft is simply connected domain. That is, if the nodal 
line conjecture is true, then our theorem is also true in a simply connected 
domain. This can be seen easily from remark 2.6. 

3. Domain Variations. 

In this section, we sometime denote ft by fio- Let Ctt be a variation of CIQ 

for some small t . That is, dftt as t varying, is a smooth curve continuously 
depends on t and \imt->od£tt = dilo- Throughout this section we always 
assume the multiplicity of A2(£io) is three. And sometimes A2(fio) is written 
as A2; A2(ft*) as A2(t). 

In this paper we are only interested in the domain variation where the 
second eigenvalue remains unchanged. This is possible because of the mono- 
tonicity and continuity of eigenvalues. 
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Now, we consider a special kind of domain variations. Suppose the origin 
of the coordinate is at p € dQ., x-direction is in the tangent direction and 
y-direction is in the interior normal direction. Let F be the part of boundary 
which can be written as 

(3.1) r = (ar,/(a;)) - b < x < b. 

And let T1 = (x,l(x)), -b<x<0,    T2 = (x,l(x)),0 <x<b. Let h(x) 6 
Cg^O, 1), h{x) > 0 and h(x) ^ 0 in (0,1). 

Put 

(3.2) ri = {(:M0r)+/3(i)/i(-|)),     -bt < x < o} , 

(3.3) r* = {(x,l(x)-a(t)h(?)),    0<x<bt}, 

where /3(t) > 0, a(t) > 0 are to be determined for 0 < t < S. 
We consider the domain variation where T is replaced by Tj and F^. And 

at present, we assume a(i),/3(i) are chosen so that \2{t) = A2. Moreover 
a(t) -► 0,    as t -> 0; (3{t) -> 0,    as t -> 0. 

Suppose Xi(t) < A2(t) < Xsit) < X^t) be the first four eigenvalues of tit- 
Let (f)i (£), ^2(^)7 03 W? 04 {t) be the corresponding orthogonal eigenfunctions. 
That is 

(3.4) /  (f)i{t)<j)j{t)dxdy = dij,        1<M<4, 

where (f)i(t) is a function of (x^) and t is the parameter. Since we assumed 
that the multiplicity of OQ is three, then 

(3.5) X3{t)—*A2,    as   t->0. 

(3.6) A4(t) —> A2,    as    t -> 0. 

We may assume for convenience that as t -> 0 

(3.7) 02(t) —> 02, 

(3.8) 03(*) —► 03, 

(3.9) 04(t) —► 04, 

otherwise we choose a sequence oft, since our proof is still true for a sequence 
of {tn} with tn -* 0. 
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Lemma 3.1. The nodal line N((f)2{t)) intersects the boundary at Ft exactly 
twice with the second order intersection or once with the third order inter- 
section for small t. 

Here the second order intersection means that the intersection point is 
a second order vanishing point. 

Proof. We prove the lemma by contradictions. 
First suppose the nodal line N^it)) does not intersect Ft at all. Let q 

be a point on the boundary which is not in Tt and connected in dQ,t with the 
origin p. Now, consider domain £2o> through points p,q by lemma 2.3, we 
know that there exists a second eigenfunction (j) such that iV(</>) intersects 
dft at points p,q. Moreover, by Courant nodal domain theorem, we know 
that g^ is positive on one of pq and negative on the other pq. In particular, 

f£ has different signs on T1 and T2. And JJ on T2 and 0 on T] have the 
same sign as t sufficiently small. 

Since <f) satisfies (1.1) and fait) satisfies 

,«inx / A02(t) + A202(*) = O       in    nt 
(3-10) lfc(t)|an,=0. 

We can deduce from (1.1) and (3.10) 

,,n) /     (m-m** 
That is 

fl(ntnn) \    dn dn 

Mt)       f   . UM L^-L Mt)£-o. 

But (f>2(t) on T2 on and -^p- on T} have different sign here. Then as t small 
(3.12) is impossible. 

Now, suppose N((l)2{t)) intersects Ft only once with a second order in- 
tersection. We may assume this intersection point is pt- If pt is in F2, we 
assume as t sufficiently small, N^it)) intersects T at p^ and exactly once 
with the second order intersection. Otherwise 02 the limitation of foit) 
would have at least fourth order vanishing at p which is impossible. 

Again we consider the domain QQ- By lemma 2.3 and remark 2.4, we 
know that there exists an eigenfunction 0, such that N((f>) intersects the 
boundary of Q at points p, pt or p, p£ in the second case. Since ^ has 
different signs on F1 and F2, then N(<f>) does not intersect F^ as t sufficiently 
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small. Compare (1.1) with (3.10) we can also obtain (3.12). In this case, we 
can deduce also, by our choice of 0 that cftd^w on pi ancj ^(^^ on p2 
have different signs. We again reach a contradiction. 

Corollary 3.2. The multiplicity of\2(t) on the domain tit is one. 

Proof. Suppose the multiplicity of A2(t) on fit is not one. Let 02(*)5 feit) be 
orthogonal eigenfunctions corresponding to A2(t). Let q be the point as in 
the proof of lemma 3.1. We can find a linear combination of fait) and ^3(^)5 
such that the nodal line of it intersects the boundary at point q. Then by 
remark 2.2, we know that its nodal line intersects Tt at most once and with 
a second order intersection. This contradicts lemma 3.1. 

Corollary 3.3. The nodai iine Nfait)) can not intersect dftt at point p. 

The proof is similar to that of lemma 3.1. 

Remark 3.4. The second eigenfunction </>2 which is the limitation of fait) 
has a third order vanishing at point p. And the fa is actually unique. This 
can be seen easily from remark 2.5. 

Now we turn to study the properties of fa and fa. 

Lemma 3.5. The nodal line N(fa) intersects the boundary at point p. 
Moreover it is a second order intersection. 

Proof. Suppose that N(fa) does not intersect the boundary at point p. For 
t sufficiently small neither does N(fa(t)). And we may assume fa(t) near 
point p in tit is positive, -^-(t^p) < 0. 

We choose a constant k = k(t) > 0, such that 

(3.13) -^(Mt)-k(t)Ut))\p^0. 

Now if jffi(fa{t) — k(t)fa(t)) > 0 near p for a sequence of t's going to zero, 
then for the limit fa — kfa we would have -^(fa — kfa) > 0 near p and is 0 
at p. So fa — kfa would have a third order vanishing at p, contradicting the 
fact that fa is the only second eigenfunction with this property. Similarly 
one shows that -^(fait) — k(t)fa(t)) can not have more than one zeros near 
p.  So (3.13) means that the nodal line N(fa(t) — k(t)fa(t)) intersects the 
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boundary dilt at p.   Moreover, N((j)^(t) — k(t)(l)s{t)) intersects Ft only at 
point p for t sufficiently small. We can deduce 

f A(Mt) - k(t)Mt)) + HMt) - *(«)&(*)) = ti;(*)       in   nu 

where w(t) = (A2 - A4(t))04(*) - (A2 - ^3{t)k{t)(/)3(t). As t -> 0, let 

(3.15) p^J^ ► 11; = /3204 - A^3, 

where /?i,/?2 are constants. Since A4(t) > Xs(t) > A2, then A,/fe < 0 and at 
least one of them is not zero. In particular /?2 7^ 0. 

We can check easily that 025 fafa — Pife aild Pifa + fafo are orthogonal 
eigenfunctions corresponding to A2 in ft. Moreover 

(3.16) ^(/%^3 + A^4)|p>0, 

from our assumption. 
We claim that the nodal line iV(02 + fafo + PiM does not intersect dQ, 

near point p. In fact, 02 has a third vanishing order at point p. Prom the 
expansion (2.11), we can assume -^ > 0 on the boundary near p. Then 
02 + /?203 + A 04 have our desired property. 

Notice that 02 + /?203 + A 04 and w are orthogonal, then we can choose 
c(t) such that 

w(t) 
(3.17) /        [02 + /?203 + /?104 + c(*)(/?204 " Plh)h    m| 

and c(t) —> 0, as t -> 0. In fact, as t —>• 0 

(3.18) /     (ft^ - A^)r^n > f™2>0. 

(3.19) /     (^+^3 + ^^)^^ ,0. 

Set 

(3.20) 0 = 4>2 + /3203 + Pifa + c(t)()%04 - /3i03)- 

= 0, 
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We know (/> is also an eigenfunction corresponding to A2 and iV(^) does 
not intersect dtt near point p as t small. Now we compare (/) with ^4 (t) — 
k(t)(f)s(t), as in the proof of lemma 3.1, we have 

(3.21)     J ij^iMt) - Ht)Mt)) - fr2 j£(Mt) - Ht)Mt)) = o, 

which leads to a contradiction as t sufficiently small. 

Remark 3.6. The ^3 which is the limitation of feit) is unique. Since it 
has a second vanishing order at p and are orthogonal with $2 which has a 
third vanishing order at p. So ^3 must be unique. And therefore ^4 which 
is the limitation of ^(t) is also unique. The vanishing order of ^4 at p is 
one. 

Since 02? 03? 04 are unique, then 

lim^o 02 W = 02, 
limt-xj&W =03, 
limt_>o04(*) = 04- 

We actually do not need to take a sequence in the above proof. 
In the following, we let 0(£,p) be the value of 0(£) at point p. 

Lemma 3.6. Assume a(t) = 0(t5) and /3(t) = 0(t5) as t -» 0 in the 
domain variation, then as t -» 0 

(3.23) ^(f,p) = 0((2). 

Proof. By lemma 3.1, we know that there exist pi,P2 G Ft and pi,P2 6 
N{<j>2(t)). Then 

'3-M» t<'-)^(^) = °- 
Moreover J^#f (£,Pi) and §^{t^P2) have different sign, ifpi andp2 are dif- 
ferent, where n is the exterior normal direction and T is the tangent direction 
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at the corresponding points. Then there always exists ps on I\n piP2i such 
that 

(3.25) ||((.«) = 0- 

Note that on F^ in the local chart 

(3.26) T = 
Jl + U'W + sSjluix/t))* 

l'(x) + ^fh'ix/t) 

(3.27)   n = 

^l + (l'(x) + ^h'(x/t))2
i 

l'(x) + ^ti(x/t) 

— \Tx,Ty) 

yfl + (l>(x) + «&h'(x/t)/ 

1 \ 
=  [Tlx, Tly) 

yjl + {V{x) + 2®h'{x/t))* 

Then 
dfcjt) _ d<h(t)      , dfajt) 

o        —      o       fix ~r      o      ^y on ox oy 

drdn       dx \   dx     x        dy 

dy \   dx      x        dy 
+ — \ —^—nx H —riy   Ty. 

For all q G I\ we have 

drdn dxdy 

In particular at pa, 

(3-30) ^(t|p3) = o(t). 
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Prom the regularity of elliptic equations, we know that fa & C3. Then 

<3-31> He-") - 0<f>- 
In fact, (3.31) is true for all points of iy 

For the proof of (3.23), we observe that 

(3.32) V^2(*,Pi) = V^2(*,P2)=0> 

together with (3.31) for some q on Ft we obtain the proof. 

4. Proof of the Theorem. 

In this section, we use the same notations as in section 3. We first specify 
the function a(£), (3(t) which given in (3.2) and (3.3). 

Let Po(t) = tm and ao(t,m) be chosen so that \2{t) = A2. This is 
possible as we mentioned before. Notice that for each 1 > t > 0, ao(£,ra) is 
a monotone decreasing function of m, and 

(4.1) lim ao(£,ra) = 0. 
m-»oo 

Choose m = m(t) be a smooth function for small t, and 

1°    p(t) = tm® = 0(t5)       as   t     -> 0, 
2°    a(t) = ao{t,m(t)) < t5        for   t    small. 

It is easy to check that domain fit is uniformly <74. And then as t -> 0 

Mtf—tfo     in c3{ntnn). 

Now we give the following lemmas. 

Lemma 4.1. Under the above notations and assumptions, the limit points 

of jQ are 1, ko and ^ for some constant 1 > HQ > 0 as t —» 0, therefore 

a(t) and j3(t) have the same order as t —> 0. 

Proof Compare fait) with fa, i = 2,3,4 as in the proof of lemma 3.1, we 
have 
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where i = 2,3,4. 
Now we calculate the value of the two terms in (4.2). 

Since 

(4.4) 

d<h m 
^ v ^ w^inV1+ (''(*)+ t 

dfa 

h'(-x/t))2dx. 

M*, i(x)+mn-x/t)) = ^(x, nxw-x/mt)+o(t5), 
then 
(4.5) 

f- 
■t dn 
o   d<h 

bt dn 
(t,x,l(x)+P(t)h(--) ^i{x,l(x))h(-^)m + 0(t5) L(x)dx, 

where L(x) = y/1 + {lf(x) + I3(t)/th'(—j))2. For convenience we assume b = 
1 in the following. 

By Taylor expansion at the origin in I\, we have 

02(0 = ao(t)y + ai(t)xy + a2(t)(a;2 - y2) + as(t)yx2 + 

04 (t)a;3 + 05(t)y3 + a6(t)y
2x + 0(t4), 

where we used the fact that for t > 0, the vanishing order of 02(*) is finite 
at p. (see Melas [8]). And the first two terms are harmonic polynomials. All 
ai(t) are continuous functions. If fait) has a third order vanishing at p, by 
remark 2.5 we know a^t) is not zero. 

Recall (3.27), we can deduce 

(4.7)    ^(t)|r,= 

= [ao(t) + ai(t)x - 2a2{t)y + asW^2] % + [ai(t)y + 2a2(t)x] nx + 0(t3), 

where y = l(x) + P(t)h(-x/t), nx = 0(t) and riy = 1 + 0(t2) in r^. 
Put x = ts, then 

d<t>2, (4.8) 
9n 

(t)|ri = ao(t) + ai(t)ts + a3(t)iV + o(r). 

Similarly we can deduce for 0 < x < t 

(4.9)    ^(xA*)) fljr(p)+&^(p)te+ 

+ lfl,*W + ?*(p)|-(0, 
Idx^dy dy2 fa* + 0(<d). 
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Substitute (4.8),(4.9) into (4.5) we obtain 

(4.10) 

/i frT^ = (1 + O^WW J  M*) + ai(*)fc + o,3{t)t2s2 + o(i2)] 

9y dxdy 

0(t3)] ft(-5)dfl 
2dx2dyy 

Since 02 has a third vanishing order at p and ^3 has a second order vanishing 
at p, we have for i = 2,3,4, 

(4.11) 

/1 ^(*)^2 = ^ f [aoit) + ai{t)tS + a3it)t2s2 + 0(*2)] 

^(P^ + W /i(-s)ds [1 + 0{t2)] . 

(4.12) 

/1 ^(i)^3 = ^^^ /0 [ao(<) + ai(f)<S + a3(<)i2s2 + 0(<2)] 

dxdy 
(p)s + 0(t) h{-s)ds [1 + 0(f2)] . 

(4.13) 

h(-s)ds [1 + 0(t2)] . 
dy (P) + 0(t) 

where ao(i) = 0(t2), ai(t) = 0(t) and 03(t) -> 5^^(p) 7^ 0, because of 
lemma 3.8. 

Again on F2 we can deduce 

(4.14) 

/  ^Mt) = a(t)t f   [ao(t) + ai(t)ts + az{t)t2s2 + o(t2)] 
JT

2
 

()n Jo 

(p) + 0(t)  h(s)ds [1 + 0(t2)] . 
dy 
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(4.15) 

/  ^Mt) = «(<)<2 f  h(i) + ai(t)t8 + a3(t)t2s2 + o(t2)} 

'a203 
dxdy 

(p)s + 0(t) h(s)ds [1 + 0{t2)] 

(4.16) 

/  ^M*) = a(*)*3 /   [ao(*) + ai(t)t8 + az{t)t2s2 + o{t2)] 

Pfo ,_, 2 (?)*' + 0(t) _dx2dy 

For some sequence {£;}, U —> 0, suppose 

(4.17) ^ _ 

h(-s)ds [1 + 0(t2)] . 

X. 

(4.18) 
ai(ti) 

(4.19) 

Then we have 

03 (*t) 

lim ^^ -    ti-3 + ys2 + zs3)h(s^ds 

(4.20) 

U->oa(ti)      J\(xs + ys2 + zs3)h(-s)ds 

_    fo(x + ys + zs2)h{s)ds 

J-i(x + V8 + ^s2)/i(—s)ds 

_    /o (a;s2 + ys3 + zs/i)h{s)ds 

J_1(a;s2 + ys3 + zs*)h(—s)ds 

= k>0. 

r1 Jt Set 64 = /0 slh{s)ds, i = 0,1,2,3,4. We can deduce from (4.20) 

' (k - l)box -(k + l)6iy + (k - Ifaz = 0 
(4.21) I   (k + l)bix - {k - l)b2y + {k + l)hz = 0 

w (k - l)b2X -(k + l)b3y + (k - l)bAz = 0. 
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Since x, y, z axe not all zero, then the determinant of the coefficient is zero. 
We have 

(4.22) D = 
(k-l)bo -(* + l)&i (fc-l)&2 
(k + l)bi -(k-l)b2 {k + l)b3 

(k-l)b2   -(k + l)h   (k-l)h 
= 0. 

A simple calculation shows that 

(4.23) 

D = 
k-1 

[(k - ifihbAihh - hh) - bKhh - hbs)) 
h 

(k + ifibUhh - boh) - bMhh - b2h))]. 
Put 

A = hhihh — hh) — b^ihbt — hh), 
B = 63(6162 — 6063) — 6163(6164 — 6263). 

Prom Holder inequality we can check 6162 < 6063 and 6263 < 6164. That is 
A < 0 and B < 0. 

Then we know either k = 1 or 

(4.24) k2 - 24^4*: + 1 = 0. 
A- B 

We can show that A < B.  (see appendix) That is (4.24) always has two 
positive solutions. Then we finished the proof of lemma. 

Lemma 4.2.  Under the assumptions of lemma 4.1, we have 

*->o p(t) 

Proof. Suppose limt-^o jrfi = ko, ko is a, solution of (4.24). We will use the 
fact that A2 < ^sit) < ^4(t) to rule out this possibility. 

Now compare ^(t) with ^4, we have 

(4.25)        (A4(t) - A2) /     MM* = I ^rM*) - I ^04. 
Jnmt JT* on Jrit    dn 

We can calculate the right hand sides of (4.25) as in lemma 4.1, we deduce 

(A2 - M*)) /      Mt)4>4 = 
JnnQt 

= t(a(t) - 0{t))y±(p)?j£{t,p) j^ h(S)dS + 0(a(t)t2). 
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Since ^(<,p) -> ^(p) and XA(t) > A2, we deduce 

(4.26) «(«)</?(*), 

for t > 0 and sufficiently small. 
Now compare ^(t) with 03 we have 

(4.27) 

(A2 - Ht)) f   urns = ^(*,P)^(P) /«M*)*(«(*)+m)t2 

here we used the fact that ^(p) = 0. 
First from (4.27) we know that 

(4.28) A2 - A3(t) = o{a{t)t2). 

Compare ^{t) with (^4 we have 

(4.29) 

(A2-A8(*)) /   h{t)4n = ~(t,P)^ip) [ h(s)ds(a(t) - am 
JnnQt dy      dy    J 

+ ^(*.P)^(P) / sh(s)ds(a(t) + m)t 

+ o(a(t)t2). 

Prom (4.29), (4.28) we have 

(4.30) -^fcp) = -^^(t.pj-p^-^-^- + o(<), 

where g^(i,p) -^ gfe(p). 
Substitute (4.30) into (4.27) and notice A2 < Xzit) we have 

(4.31) 

0> d2^(t,p)d2^^(iMs)dsna(t)+m)7 

+ 

dydxv ,y' dydxyy'    J h{s)ds(a{t) - p(t)) 
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Recall (4.26) and the notation of bi, A and B, we have 

(4.32) 

Recall (4.24) then we have 

&0&2B > Ab\. 

0<-(i + A;o)2^ + (l-fco)262. 

That is 

bob2[bi{blb2 - bah) - M3(M4 - Ma)] > bUb^ - b^hbi) 

(4.34) (6063 - M2)2 < 0. 

This is a contradiction, since 60 &3 > &1&2- Then we proved the lemma. 
Now suppose the limitation of ^j is one as t —> 0, we distinct the 

following two cases 
m 

(0   !im^o^5%y = c^O, 
(«)   Iim^oQ(g%) =0» 

where c could be infinity. 
We first prove that case (i) cannot occur. 

Lemma 4.3.  Under the assumptions of lemma 4.1, we have 

a(t)t 
(4.35) lim t->o <*(*)-m 0. 

Proof. Suppose case (i) occur.   Notice (4.25), we have as in the proof of 
lemma 4.2, 

(4.36) 

(A2 - \4(t)) J^ Mt)<f>4 = t(a(t) - m) (^(P)^(*'PJ) / h^ds 

+ (a(t)+(3(t))t2 

La^(t'p)-air(p)+ 

/   h{s)sds + o{cL{t)t2). 
Jo 



On the Multiplicity of the Second Eigenvalue 291 

where ^(p) # 0, and ^(t,p) -+ «£(p),  *$±(t,p) -> ^(p) and 

Similarly, compare ^(t) with </>3, we have 

(4.37)    (A2 - A4(*)) /      Mt)<h = 
Jctnnt 

= (a(t) + /3(f))i2^f(i^)^(P) / h(s)sds + o(a(t)t2). 

Here we again used the fact that -§jf-(p) = 0. 
Then from (4.36) and (4.37) we obtain 

(4.38)    ^(i,p)|-|i(p) f h{s)sds = lim f      foimz 

a*tvi&»j*o»+k{!£) h* 
where 

1- «(*)* -z n c = hm    . ,    '   . . 7^ 0. 
t^o a(t) - I3{t) ^ 

Notice that ^(p) ^ 0 and 0|(p) ^ 0, but lim^o /nnnt ^4(*)^3 = 0 since 
4>i{t) —> (f>4. Then we reach a contradiction. This is the proof of the lemma. 

Lemma 4.4.  Under the assumptions of lemma 4.1, as t -^ 0 we have 

(4.39) fo (t) = 02(^)^2 + C3(<)03 + c4(t)(t>4 + o(t4)    in   nnQt 

(4.40) 03(<) = d2(<)^2 + d3(*)<£3 + d4(i)^4 + o(t4)     Ml     fi D Ot 

(4.41) 04 (t) = e2(«)02 + esW^a + e4(i)04 + o(i4)    in    nnnt, 

where Ci(t) = JQnat <fo{t)<f>i, di{t) = Jnnat (pz(t)<f>i and ei{t) = /nnnt fatyfc, 
i = 2,3,4. 

Proof. We only need to show (4.39), the remains can be proved similarly. 
Put 

(4.42) W(t) = fait) - C2(t)<h - C3(<)03 - ctWfa. 
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Then we know that w(t) are orthogonal to faifai fa in the domain Cl fl $V 
Consider ^r? it satisfies the equation of problem (1.1) in fiflO*. If there 

exists a sequence {U} and ti -> 0, such that 

(4.43) \w{ti) 

n L00 

then l^r^k00 is archived in the interior of O fl fi^, assume at p^ We can 

suppose pi -> q G fi, because on the boundary #($"2 D fi*), ^^- —> 0. 

Consider I^L^IL
00

? we know that w also satisfies (1.1) and w ^ 0. Mere- 
st 

over, w is orthogonal to </>2> </>3, ^4, which contradicts the fact that the 
multiplicity of A2 is at most three. Therefore we proved (4.39). 

Remark 4.5. Since 02 vanishes at p with a third order, fa vanishes with 
a second order. Prom lemma 4.4 and the regularity argument of elliptic 
equations we know that 

(4.44) ^(«,p) = c.(«)^(P) + 0(*«). 

where cs(t)^ c^t) are given in (4.39) and c^(t) = 0(t2), cs(t) = 0(t). 

In the following, we will rule out case (ii). 

Lemma 4.6.  Under the assumptions of lemma 4.1, if case (ii) occurs we 
have 

(4.46) e2(t) = 0(t2). 

(4-47) e3(t) = a(t)-m e3+0 {^FW)) ' 
ty/iere 63 7^ 0. 

Proo/. First we compare fa(t) with fa, as before we have 

(4.48)    (A2-A4(t)) /      fa(t)fa 
JnnQt 

= ii3Mi) - (3(t))^(t,p)^(p) jT1 s2h(S)ds + 0(a(t)t% 
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Then from (4.36) and (4.48) we obtain (4.46) easily. 
Compare <f>4(t) with ^3, we have 

(4.49) 

(A2 - X4(t)) [      Mt)h = *2(a(*) + m)^{t,P)^nr(p) C sh(s)ds 
Jnnnt dy      dxdy   Jo 

+ 0(a(t)t3). 

Then from (4.36) and (4.49) we can obtain (4.47) with 

(4.50) ea = 
*■£> 
«•£«' 

Lemma 4.7.  Under the assumptions of lemma 4.1, if case (ii) occurs, we 
have 

(4.51) 

where hi = J0 s1'h(s)ds. 

bo bi 62 

62 63 h 
h    0    63 

= 0, 

Proof Prom the proof of lemma 4.1, we have 

(4.52) 

(a(t)-p(t)) I (ao(t) + a3(t)*V)/i(s)+ («(<)+/?(<)) / a^tshis) = 
Jo Jo 

= 0(a(t)t3). 

(4.53) 

(a(t)-P(t)) I {ao{t)s2 + a^t)t2si)h{s) + {a{t) + P{t)) I ai(i)te3M«) = 
Jo Jo 

= 0{a(t)t3). 

(4.54) 

(a{t)+0{t)) I (ao(t)s + a3(t)t
2s3)h(s) + (a(t)-l3(t)) f ai(<)<s2/i(s) = 

Jo Jo 
= 0(a(t)t3). 



294 Zhang Liqun 

where ao(t) = c^(t) + 0(t3), ai(t) = cs(t) + 0{t2). 

Recall (4.7), where a2(t) = -^4(t,p), now by lemma 4.4 we can deduce 

that a2{t) = 0(i), then in (4.8) the term o(t2) can be replaced by 0(t3). 
Therefore the right hand side of(4.52)-(4.54) become 0(a(t)ts). 

Again we assume 
ao(t) 

t2 

ftaW —> z 

(a(t)+/3(t))ai(t) 

x, 

y, 

where y is finite. In fact from the domain variation and 

/ Mt)Mt) = o, 
Jnt 

we know 

(4.55) /      <h(t)Mt) = o(t5)- 

Similarly for i, j = 2,3,4, 

(4.56) /      <f>i(l)j = 5ij + o(t5). 

Therefore 

(4.57) C2(*)C2(*) + C3(t)e3(t) + C4(t)e4(*) = o{t5). 

Then from remark 4.5, lemma 3.8 and lemma 4.6, we deduce 

ca(t)c3(*) = 0(*2), 

(4.58) MD-o-'W"-^** 
a(t) 

Then we have 

box + biy + b2Z = 0 
(4.59) {   b2X + hy + hz = 0 

bix + bsz = 0. 
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Since z ^ 0, we know the determinant of the coefficient is zero.  Then we 
proved the lemma. 

Proof of Theorem 1.1.   Suppose the multiplicity of the second eigenvalue is 
three, then from the above lemmas, we know (4.51) is true. That is 

(4.60) 61(6263 - 6164) - &3(6o63 - 6162) = 0. 

But by Holder inequality, we already know this is impossible because of 
6263 < 6164 and 6162 < 6063. Then we proved the theorem 1.1. 

Appendix. 

We give an elementary proof of an inequality which we mentioned in 
section 4. We feel indebted to Prof. Liu Jiaqian for providing me the result. 

Proposition A. Let h(s) > 0 in [0,1] and h(s) ^ 0, set bi = /0 h(s)s'lds 
then we have 

bl + bjbo + b\bA < 2616263 + 606264. 

Proof. Consider 

III h(s)h{r)h{t){s-t)2{s-r)2{t-r)2dsdrdt>0. 
Jo Jo Jo 

We can obtain the proof of the proposition by expansion of the above in- 
equality. 
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