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On the Multiplicity of the Second Eigenvalue of
Laplacian in R?
ZHANG LIQUN

We prove the multiplicity of the second eigenvalue is at most two
for a bounded smooth domain in R2, which sharped an earlier
result of Cheng, S.Y. and generalized a result of Lin, C.S.

1. Introduction.

We are concerned here with the eigenfunction of a domain Q which is
the solution of the following problems

{ Adp+rp=0 in Q

(L.1) Plag =0

where A = 5‘9527 + %2; is the Laplacian. ) is a bounded smooth domain in

R2?, and ) is the corresponding eigenvalue. Here (2 is smooth domain means
that 0Q can be parameterized as a smooth function. Let A2, ¢2 be the
second eigenvalue and eigenfunction. It is well known that ¢ changes sign
in . we know that the multiplicity of A\ is exactly two when the domain
2 is a disk and the corresponding eigenfunction can be written explicitly
by Bessel functions. In [3], Cheng’s arguments can be carried over to show
that the multiplicity of the second eigenvalue of (1.1) is at most three. Later
Lin in [5] sharpened his result by showing that the multiplicity is at most
two provided (2 is convex. We will prove that the multiplicity of the second
eigenvalue is at most two for any smooth domain.

Theorem 1.1. For a bounded smooth domain Q in R?, the multiplicity of
second eigenvalues of the problem (1.1) is at most two.

This problem is closely related to the nodal line conjecture. Let N (¢2) be
the closure of {(z,y) € Q|¢2(z,y) = 0} which is called the nodal line of ¢,.
It is easy to see that N(¢2) is a regular curve at the point where |7 ¢2| # 0.
In fact, the singular set S = {(z,y) € Q|p2(z,y) =0 and <y ¢2 = 0} is
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274 Zhang Liqun

composed of finite points in our case.(see Cheng [3]) Therefore N(¢2) is
regular except at finite points. The nodal line conjecture states that N(¢2)
can not be a closed curve. There are many works on this problem in the
former literatures. Recently, Melas [8] proved the conjecture provided (2 is a
convex domain. In the following, we will see that theorem 1.1 is a corollary
of the nodal line conjecture in some case.

In this paper, we use an idea of ”domain variation” which the author
believe to be new in this field. When {2 is convex in one direction, theorem
1.1 can be obtained easily, because we can regard domain translations as a
special variation in this case. In general, we consider a local variation of the
domain and compare the two second eigenfunctions. Finally we prove the
theorem by contradictions.

Remark 1.2. It remains to be an interesting open problem of the similar
results in high dimensions.

Acknowledgement. The author thanks Prof. Ding W. Y. for many valu-
able discussions on this problem. He also thanks ICTP for the hospitability
while he is visiting there and writing this paper.

2. Preliminary Lemmas.

In this section we present several basic lemmas. Although they have been
proved before, we include their proof here for convenience of the reader. If
1 is a solution of (1.1), by Taylor expansion at origin we know that

(2.1) ¢ = Co + C1rsin(0 + 6;) + O(r?).

where the first two leading terms are harmonic polynomials.

We call ¢ is first order vanishing at point p, if ¢(p) = 0 and second order
vanishing at p, if ¢(p) = 0, v¢(p) = 0. The following lemma is essentially
contained in [3].

Lemma 2.1. The multiplicity of Ao of problem (1.1) in a bounded smooth
domain is at most three.

Proof. Suppose that ¢2, ¢3, ¢4, ¢5 are orthogonal eigenfunctions correspond-
ing to A2. Let ¢ € Q be the origin of the coordinate. Choosing cs, 3, ¢4, cs,
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such that

5
(2.2) =) citi,

1=2
satisfies
(2.4) vé(q) =0.

We can always choose c;, i=2,3,4,5, because there are only three equations.
¢ is an eigenfunction corresponding to A2 with a second order vanishing
at point q. Then we have

(2.5) ¢(q) = cor’sin2(0 + 6) + O(r®),

near the point q. Then we can find a small circle centered at q on which ¢
changes sign at least four times. Thus at q, ¢ has at least two nodal lines
transversely intersect each other. Moreover, they divided €2 into at least
three parts. From Courant nodal domain theorem, we know that the nodal
line of ¢ divided £ into exactly two parts. Therefore ¢ can not have a second
order vanishing point in 2. Then we proved our lemma.

Remark 2.2. From the proof of lemma 2.1, we can see that the second
eigenfunction can not have a second vanishing point in Q2. Therefore the
nodal line N(¢3) is a regular curve in Q. But N(¢3) may have a singular
point on the boundary.

The following lemma gives us some nodal line behaviors on the boundary.
It is essentially proved by Lin [5].

Lemma 2.3. Assume the multiplicity of Ay is three, then for any two points
p,q € 00, there exists a second eigenfunction ¢ such that N(¢p) intersects
the boundary at these two points. Moreover, p and q are the second order
vanishing points of ¢.

Proof. Suppose ¢2, ¢3, ¢4 be three orthogonal second eigenfunctions. Again
we let

(2.6) ¢ = ca2 + a3 + caa,
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such that
op, .
(2.7) a_n(p) =0,
dp, .

where n is the normal direction. Such ¢ always exists, because there are
two equations with three parameters. By Maximum principle we know that
N(¢) intersects the boundary at p,q. Obviously p,q are the second order
vanishing points of ¢.

Under the assumptions of lemma 2.3, we have the following remarks.

Remark 2.4. If we choose p in lemma 2.3 be the origin of the coordinate
and tangent direction be the x-direction. We have the following expansion
near p

(2.9) ¢ = cor?sin26 + O (r3) ,

where ¢; # 0 if p,q are different points and connected in 9€2. And similar
results hold for point q. Moreover if q is in {2, we can also find an eigen-
function ¢, such that N(¢) passing through point p and q. In fact in this
case (2.8) is replaced by ¢(q) = 0.

Remark 2.5. If we let
0%
onoT

replace (2.8), where T is the tangent direction. Then p is a third order van-
ishing point of ¢. And N(¢) touches the boundary at p. In the coordinate
as given in remark 2.4, we have the following local expansion

(2.10) (n) =0,

(2.11) ¢ =c3r’sin30 + O (r*),

where c3 # 0. In fact, if c3 = 0 we can use a similar discussion as in the
proof of lemma 2.1 to obtain a contradiction. That is the vanishing order is

at most three.

Remark 2.6. If Q is a simply connected domain, then there exists a second
eigenfunction ¢, such that N(¢) is a closed curve. In fact, the function ¢
obtained in remark 2.5 is the desired eigenfunction.
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Corollary 2.7. IfQ is convex in one direction, then the multiplicity of Ag
is at most two.

As we mentioned before, we have a shorter proof of theorem 1.1 in this
case. And the idea of "domain variation” is developed from this proof.

Proof. Suppose the multiplicity of A, is three. And we may assume that 2 is
convex in x-direction. From remark 2.6, we know that there exists a second
eigenfunction ¢ such that the nodal line of ¢ is closed.

Now, we consider ¢, which is the derivative of ¢ in x-direction, it satisfies

(2.12) Ay + Moy = 0.

Let p,q be the maximum and minimum points in y-direction on the bound-
ary. Then ¢, is nonpositive on one part of pq and nonnegative on the other
of pg. And ¢, is not identically zero on the boundary.

Let 1 be the second eigenfunction whose nodal line intersects the bound-
ary at p,q. In the case of simply connected domain N(v) intersects the
boundary at exactly two points p,q. Then by compare (2.12) with (1.1), we
have

o

(2.13) | Geg =0

This is impossible, because ¢, and %—'g change sign simultaneously at points
P.q-

Finally we should mention that theorem 1.1 is a corollary of nodal line
conjecture provided Q is simply connected domain. That is, if the nodal
line conjecture is true, then our theorem is also true in a simply connected
domain. This can be seen easily from remark 2.6.

3. Domain Variations.

In this section, we sometime denote §2 by Q. Let ©; be a variation of Qg
for some small t . That is, 0€2; as t varying, is a smooth curve continuously
depends on t and lim;—,0 9Q; = 9. Throughout this section we always
assume the multiplicity of A2(€p) is three. And sometimes A3(€2) is written
as Ag; )\Q(Qt) as Ag(t).

In this paper we are only interested in the domain variation where the
second eigenvalue remains unchanged. This is possible because of the mono-
tonicity and continuity of eigenvalues.
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Now, we consider a special kind of domain variations. Suppose the origin
of the coordinate is at p € 02, x-direction is in the tangent direction and
y-direction is in the interior normal direction. Let I be the part of boundary
which can be written as

(3.1) I''=(z,l(z)) —-b<z<b.

And let T = (z,l()),-b <z <0, I?= (z,l(z)),0 <z <b. Let h(z) €
C§°(0,1), h(z) > 0 and h(z) # 0 in (0,1).

Put
(3.2) I!= {(m,l(m) +B)h (—%)) , —bt<z< 0} ,
(3.3) 2= {(:L‘,l(m) — a(t)h (?’t-)) , 0<z< bt} ,

where 3(t) > 0, a(t) > 0 are to be determined for 0 < ¢t < 4.

We consider the domain variation where I" is replaced by I'f and I'?. And
at present, we assume a(t), ﬂ( ) are chosen so that Ay(t) = Ag. Moreover
a(t) =0, ast—0; B(t) » ast— 0.

Suppose A1 (t) < Ao(t) < )\3( ) < A4(t) be the first four eigenvalues of ;.
Let ¢1(t), 2(t), p3(t), p4(t) be the corresponding orthogonal eigenfunctions.
That is

(3.4) | soeoasay=dy,  1<i5<4

where ¢;(t) is a function of (z,y) and t is the parameter. Since we assumed
that the multiplicity of € is three, then

(3.5) A3(t) — A, as t—0.

(3.6) A(t) — A2, as t—0.

We may assume for convenience that as £ — 0

(3.7) $2(t) — ¢2,
(3.8) $3(t) — ¢,
(3.9) ¢4 (t) — b4,

otherwise we choose a sequence of t, since our proof is still true for a sequence
of {tn} with ¢, — 0.
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Lemma 3.1. The nodal line N(¢2(t)) intersects the boundary at T'; ezactly
twice with the second order intersection or once with the third order inter-
section for small t.

Here the second order intersection means that the intersection point is
a second order vanishing point.

Proof. We prove the lemma by contradictions.

First suppose the nodal line N(¢@2(t)) does not intersect I'; at all. Let q
be a point on the boundary which is not in I'; and connected in 092; with the
origin p. Now, consider domain 2y, through points p,q by lemma 2.3, we
know that there exists a second eigenfunction ¢ such that N(¢) intersects
09 at points p,q. Moreover, by Courant nodal domain theorem, we know
that %% is positive on one of 5& and negative on the other 1/)2] In particular,
%% has different signs on I'! and I'2. And g—;’% on I'? and ¢ on I'} have the
same sign as t sufficiently small.

Since ¢ satisfies (1.1) and ¢o(t) satisfies

wo (e o
We can deduce from (1.1) and (3.10)

$2(t) _ Qg) _
(3.11) /a o) (¢ S~ a(t) 5 | =0.
That is
(3.12) 5 cb%% - /. @(t)%% =0.

But ¢2(t) on I'? on and %ﬁ on I'} have different sign here. Then as t small
(3.12) is impossible.

Now, suppose N(¢2(t)) intersects I'; only once with a second order in-
tersection. We may assume this intersection point is p;. If p; is in I'?, we
assume as t sufficiently small, N(¢p2(t)) intersects I' at p; and exactly once
with the second order intersection. Otherwise ¢, the limitation of ¢o(t)
would have at least fourth order vanishing at p which is impossible.

Again we consider the domain 5. By lemma 2.3 and remark 2.4, we
know that there exists an eigenfunction ¢, such that N(¢) intersects the
boundary of Q2 at points p, p; or p, pf in the second case. Since %% has
different signs on I'! and I'?, then N(¢) does not intersect I'} as t sufficiently
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small. Compare (1.1) with (3.10) we can also obtain (3.12). In this case, we
can deduce also, by our choice of ¢ that QSM;HQ on I'} and qu(t)% on I'?
have different signs. We again reach a contradiction.

Corollary 3.2. The multiplicity of Ay(t) on the domain Q; is one.

Proof. Suppose the multiplicity of A2(t) on €2; is not one. Let ¢o(t), ¢3(t) be
orthogonal eigenfunctions corresponding to A2(t). Let q be the point as in
the proof of lemma 3.1. We can find a linear combination of ¢2(t) and ¢3(¢),
such that the nodal line of it intersects the boundary at point q. Then by
remark 2.2, we know that its nodal line intersects I'; at most once and with
a second order intersection. This contradicts lemma 3.1.

Corollary 3.3. The nodal line N(¢2(t)) can not intersect S at point p.

The proof is similar to that of lemma 3.1.

Remark 3.4. The second eigenfunction ¢ which is the limitation of ¢;(%)
has a third order vanishing at point p. And the ¢9 is actually unique. This
can be seen easily from remark 2.5.

Now we turn to study the properties of ¢3 and ¢4.

Lemma 3.5. The nodal line N(¢3) intersects the boundary at point p.
Moreover it is a second order intersection.

Proof. Suppose that N(¢3) does not intersect the boundary at point p. For
t sufficiently small neither does N(¢#3(t)). And we may assume ¢3(t) near
point p in §; is positive, %%(t, p) <0.

We choose a constant k& = k(t) > 0, such that

(3.13) 2 (a(t)  k(2)s(6))lp = 0.

Now if %(g{)‘;(t) — k(t)¢3(t)) > 0 near p for a sequence of t’s going to zero,
then for the limit ¢4 — k¢3 we would have %(qh — k¢3) > 0 near p and is 0
at p. So ¢4 — k¢s would have a third order vanishing at p, contradicting the
fact that ¢, is the only second eigenfunction with this property. Similarly
one shows that ga;l(q,')‘;(t) — k(t)¢3(t)) can not have more than one zeros near
p- So (3.13) means that the nodal line N(¢4(t) — k(t)$3(t)) intersects the
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boundary 99 at p. Moreover, N(¢4(t) — k(t)¢3(t)) intersects I'; only at
point p for t sufficiently small. We can deduce

(3.14) { A(gpa(t) — k(t)ps(t)) + Aa(Ba(t) — k(t)ps(t)) = w(t)  in €
' (64() — k(t)$3(t))log, = O,

where w(t) = (Mg — M\a(2))Pa(t) — (A2 — A3(t)k(t)ds(t). Ast — 0, let

w(t)

(3.15) [w(t)| Lo ()

= w = Popy — Br1¢3,

where (1, B2 are constants. Since \4(t) > A3(t) > Ao, then 81,52 <0 and at
least one of them is not zero. In particular £, # 0.

We can check easily that ¢2, B2¢4 — B1¢3 and [1¢4 + P23 are orthogonal
eigenfunctions corresponding to Ay in 2. Moreover

(3.16) 2 (Bats + Brdlp > O,

from our assumption.

We claim that the nodal line N(¢2 + B2¢3 + B1¢4) does not intersect 9N
near point p. In fact, ¢ has a third vanishing order at point p. From the
expansion (2.11), we can assume %% > 0 on the boundary near p. Then

$2 + P23 + P14 have our desired property.
Notice that ¢o + B2¢ps + B1¢4 and w are orthogonal, then we can choose
¢(t) such that

w(t)

- = 0,
[w(t)] Lo (020)

(3.17) /an (2 + Badp3 + Brds + c(t)(Baps — L1¢3)]

and c(t) - 0, as t — 0. In fact, as t = 0

_ w(t) 9
(3.18) /ﬂ o= B /Q o > 0.

w(t)

—_— — 0.
Ill‘U(t)|L°° (Qg)

(3.19) /Q (G ata+ i)

Set

(3.20) & = ¢2 + Loz + Li1oa + c(t)(B2ps — L1 h3).



282 Zhang Liqun

We know ¢ is also an eigenfunction corresponding to Ay and N(¢) does
not intersect 2 near point p as t small. Now we compare ¢ with ¢4(t) —
k(t)¢s3(t), as in the proof of lemma 3.1, we have

3¢

20 [ a5 - kOh®) - [ 300~ k) =

which leads to a contradiction as t sufficiently small.

Remark 3.6. The ¢3 which is the limitation of ¢3(t) is unique. Since it
has a second vanishing order at p and are orthogonal with ¢, which has a
third vanishing order at p. So ¢3 must be unique. And therefore ¢4 which
is the limitation of ¢4(¢) is also unique. The vanishing order of ¢4 at p is
one.

Since ¢2, ¢3, ¢4 are unique, then

lim;_,0 ¢2(t) = ¢o,
limg_,0 ¢3(t) = ¢3,
lim; 0 $4(t) = P4

We actually do not need to take a sequence in the above proof.
In the following, we let ¢(¢,p) be the value of ¢(t) at point p.

Lemma 3.6. Assume a(t) = O(t°) and B(t) = O(t°) as t = 0 in the
domain variation, then ast — 0

2
(3.22) gyg; (t,p) = O(2).
(3.23) %‘Z—Q(t, p) = O(t%).

Proof. By lemma 3.1, we know that there exist p;,p2 € I'; and p1,p2 €
N(¢2(t)). Then

%(t,pl) 6;)2 (t,p2) = 0.

(3.24) pa

Moreover g—ng’?( ,p1) and a—m%(t p2) have different sign, if p; and py are dif-

ferent, where n is the exterior normal direction and T is the tangent direction
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at the corresponding points. Then there always exists p3 on ;N p1pa, such

that

¢y

(3.25) 5 (t,p3) = 0.

Note that on T'? in the local chart
1
(3.26) T = )
V1+ () + %On(c/t))2

/ a(t) 77
Ve) + (o )t) )=(Tz,Ty)
V1+ @) + Bhia/h)?

'(z) + X! (z
a7 ne ( Vo) + Pl
V1+ (@) + Dh(a/t)?

! ) = (nxany)
\/1+ Uz W (z/t))?

Then
Oba(t) _ 0¢alt) ., 9alt)
an oz T oy v
B2ha(t) _ 0 (0ga(t) . () )
0 (04a(t) 0o (t)
" 5y ( oz =T gy M)y

For all ¢ € T'y we have

BPha(t) _ 0’a(t)
(3.29) Bron — 0.0y + O(2).
In particular at ps,

9%¢o

(3.30) ,p3) = O(t).

86(
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From the regularity of elliptic equations, we know that ¢o € C3. Then

8¢y
0.0y

(3-31) (t,p) = O().

In fact, (3.31) is true for all points of T;.
For the proof of (3.23), we observe that

(332) V¢2(t,P1) = V¢2(t7P2) =0,

together with (3.31) for some q on I'; we obtain the proof.
4. Proof of the Theorem.

In this section, we use the same notations as in section 3. We first specify
the function «a(t), B(t) which given in (3.2) and (3.3).

Let Bp(t) = t™ and ag(t,m) be chosen so that Aa(t) = Aa. This is
possible as we mentioned before. Notice that for each 1 > ¢ > 0, ap(t,m) is
a monotone decreasing function of m, and

(4.1) l}_r}noo ap(t,m) = 0.

m

Choose m = m(t) be a smooth function for small t, and

19 B@)=¢t™ =0@%) as t —0,
20 o(t) = ap(t,m(t)) <t for t small.

It is easy to check that domain € is uniformly C*. And then as ¢t — 0
¢2(t) — ¢2 in 03(Qt N Q)
Now we give the following lemmas.

Lemma 4.1. Under the above notations and assumptions, the limit points
of ZJ(% are 1, ky and Ela for some constant 1 > ko > 0 as t — 0, therefore
a(t) and B(t) have the same order as t — 0.

Proof. Compare ¢2(t) with ¢;, i = 2,3,4 as in the proof of lemma 3.1, we
have

0¢;

2 on

(42) 92 (1), =

I} on

¢2 (t)a



On the Multiplicity of the Second Eigenvalue 285

where i = 2,3, 4.
Now we calculate the value of the two terms in (4.2).

4.3) /P 3 a“5‘*(1:)@_ / Zt (3"’2(1: )|F \/1+(zf(x)+@h'(—x/t))2dm.

Since
(44)  ¢i(z,i(z) + B(t)h(—z/t)) = q;l( ,1(@))h(—z/t)B(t) + O(),

then
45
frl ‘(7)?;72
% T2 1,2,1(2) + BE)A(-2)

|22 @ 1t@)h-2)600) + O | Lo,

where L(z) = /1 + (I'(z) + B(t)/th'(—%))?. For convenience we assume b =
1 in the following.
By Taylor expansion at the origin in I';, we have

$a(t) = ao(t)y + a1(t)zy + a2(t)(z® — y?) + as(t)yz® +
as(t)z® + as(t)y® + ag(t)y2z + O(tY),

where we used the fact that for ¢ > 0, the vanishing order of ¢5(t) is finite
at p.(see Melas [8]). And the first two terms are harmonic polynomials. All
a;i(t) are continuous functions. If ¢3(¢) has a third order vanishing at p, by
remark 2.5 we know a3(t) is not zero.

Recall (3.27), we can deduce

(4.6)

(@7 (o)l =
= [ao(t) + a1(t)z — 2a2(t)y + a3(t):1;2] ny + [a1(t)y + 2a2(t)z] ng + O(3),
where y = I(z) + B(t)h(—z/t), ng = O(t) and n, = 1 + O(t?) in I%.

Put z = ts, then

3¢2

(4.8) 5, Bl = ao(t) + a1 (t)ts + a3(t)t?s% + o(t?).

Similarly we can deduce for0<z <t

. . 2 4.
49 Pial) = S0)+ ot Ots +

1 8%¢; O%bi,
+ [53(112(];1/( ) + % (o) (0)] 252 + O(£%).
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Substitute (4.8),(4.9) into (4.5) we obtain

(4.10)
%02 s = 0+ 0B | onf®) + @)t + as)25 +0%)
rl on -1
2
(%) + 28 s+ (Z2 000 + 3 ) 57+
O(t%)] h(—s)ds.

Since ¢ has a third vanishing order at p and ¢3 has a second order vanishing
at p, we have for i = 2, 3,4,

(4.11)
%(t)qsz B(t)t3 /_ 01 [ao(t) + a1(t)ts + a3(t)t®s® + o(t?)]
3
[1/2 6%";2 (p)s + O(t)] h(=s)ds [1 + O()] .
(4.12)
[, ont0s = B0 [ o0+ ax(ys + ax(96%5 + o]
[gm—gZ@)s + O(t)] h(=s)ds [1 + O(£)] .
(4.13)
0
/ %(t)@ = B(t)t / [ao(t) + a1(t)ts + a3(t)t2s® + o(t?))
ry on -1
[%ﬁ“ (v) + Ot )] h(=s)ds [1+O(#)].
where ag(t) = O(?), a1(t) = O(t) and as(t 2%2%(]) # 0, because of
lemma 3.8.
Again on I'? we can deduce
(4.14)

/ %@ = a(t)t /01 [ao(t) + a1 (t)ts + a3(t)t%s? + o(tZ)]

[%";‘ () + O(t)] h(s)ds [1+ O] .
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(4.15)
%@ (t) = a(t)t? / 1 [ao(t) + a1(t)ts + as(t)t*s* + o(t?)]
rz on \ 0
[gx‘g; (p)s + O(t)] h(s)ds [1 + O(t?)] .
(4.16)

O

T2 é)n

$2(t) = a(t)t? /0 1 [ao(t) + a1(t)ts + a3(t)t2s® + o(t?)]

3
[3‘?172%23; (p)s® + O(t)] h(—s)ds [1 + O(t2)] .

For some sequence {t;}, t; — 0, suppose

(4.17) “Ot(;i)
(4.18) al;—_ti) — Y.
(4.19) as(ts) —> 2.

Then we have

Bti) _ o (@5 +ys? + 26®)h(s)ds

lim 0
t:—0 a(t;) f_l(ms + ys? + zs3)h(—s)ds
B fol (z + ys + zs?)h(s)ds
(4.20) f_Ol(m +ys + zs2)h(—s)ds

B I (@s® + ys® + zs*)h(s)ds
- f_ol(:z:s2 + ys3 + zs*)h(—s)ds
=k2>0.

Set b; = [ s'h(s)ds, i = 0,1,2,3,4. We can deduce from (4.20)

(4.21) (k+1)biz — (k — 1)boy + (k + 1)bgz =0

{ (k—1)boz — (K + 1)1y + (kK —1)bez =0
(k— Dbyz — (k+1)bgy + (k — 1)bgz = 0.
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Since z,y, z are not all zero, then the determinant of the coefficient is zero.
We have

(k=1)bp —(k+1)by (k—1)bo
(4.22) D=|(k+1)by —(k—1)by (k+1)b3 |[=0.

(k - 1)b2 —(k + 1)b3 (k - 1)b4

A simple calculation shows that
(4.23)
k—1
D= T[(k — 1)?(boby(b1by — bobs) — b3(bybg — bybs)) —

(k + 1)?(b3(b1ba — bobs) — bybs(b1bg — babs))].
Put
B = b2(b1by — bobs) — byb3(b1bs — bobs).
From Holder inequality we can check b;bs < bpbs and beobs < bibs. That is

A<O0and B<0.
Then we know either £k =1 or

A+B

A-B

We can show that A < B. (see appendix) That is (4.24) always has two
positive solutions. Then we finished the proof of lemma.

(4.24) k2 —2 k+1=0.

Lemma 4.2. Under the assumptions of lemma 4.1, we have

oll) _y

150 B(2)

Proof. Suppose lim;_, ‘57(% = ko, ko is a solution of (4.24). We will use the
fact that A2 < A3(t) < A4(t) to rule out this possibility.
Now compare ¢4(t) with ¢4, we have

04 O4(t)
. - = [ 2hult) - | 2oy
(4.25) (Aa(t) — A2) an, P4(t)pa 2 Bn $4(t) /r , on b4
We can calculate the right hand sides of (4.25) as in lemma 4.1, we deduce

Oa = 2a) [ $1()a =

QN

1
= t(a(t) - ﬂ(t))%(p)%’;‘*(t,p) | #s)ds + 0ttty
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Since %%(t, p) — %%(p) and A4(t) > Ao, we deduce

(4.26) a(t) < B(t),

for £ > 0 and sufficiently small.
Now compare ¢3(t) with ¢3 we have

(4.27)
(A2 — A3(t)) / #3(t) 3

+ gygi (t,p) gxgz (P) /szh(s)ds(a(t) — ﬂ(t))t3 + o(a(t)t3),

= S n 300 [ shohistal) + AO)E

here we used the fact that %‘%(p) =0
First from (4.27) we know that

(4.28) A2 — As(t) = o(a(t)t?).

Compare ¢3(t) with ¢4 we have

(4.29)

(2 = As(8)) /Q s = 26D T ) [ hs)dstatt) — B
+ %g%(t,p)%%@) [ shi)istate) + se)e
+ o(a(t)t?).

From (4.29), (4.28) we have

O3 0?3 [ sh(s)ds(a(t) + B(t))t

(4.30) By P =55, (:p) [ h(s)ds(a(t) — B(2))

+ o(t),

2 2
where g—yg(t,p) — gy—é%(p).
Substitute (4.30) into (4.27) and notice Ay < A3(t) we have

(4.31)

_ s, 8¢5 ([ sh(s)ds)®(e(t) + B(1))?
0> Byaa:(t )ayaa, (p) J h(s)ds(a(t) — B(t))

2
s, ) 2% () [ #hie)dstatt) - 60) + ofate).

+ Bya.'z;( Oyozx
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Recall (4.26) and the notation of b;, A and B, we have

2

(4.32) 0< —(1+ ko)2:—1 +
0

(1 — ko)2bs.
Recall (4.24) then we have

boby B > Ab2.
That is

boba[b%(b1ba — bobs) — b1bs(bybs — babz)] > b2 (b3b3 — bobabsbs)

(4.34) (bobz — b1bo)? < 0.

This is a contradiction, since bpbz > b;b2. Then we proved the lemma.
Now suppose the limitation of % is one as t = 0, we distinct the
following two cases
(5)  Limy 0375y = € 7,
.. 1 a(t)t -0
(i) Ay 0 5m—60) — O

where ¢ could be infinity.
We first prove that case (i) cannot occur.

Lemma 4.3. Under the assumptions of lemma 4.1, we have

4. I
( 35) M0 p

Proof. Suppose case (i) occur. Notice (4.25), we have as in the proof of
lemma 4.2,

(4.36)
) 860, Oy 1
Ca =) [ dut)o = tlatt) = 60) <5;(P)a—y(t,17)) IR
2
+(a() + BN | 254 00 S )+

30¢4(t )gm(g;(p]/ h(s)sds + o(c(t)t?).
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2
where %(’;—4(])) # 0, and %(t,p) - 8¢4 (_P), a:cay( ) — gx‘g;(p) and
fnnnt P4(t)ps — L ast — 0.
Similarly, compare ¢4(t) with ¢3, we have

(4.37) (A2 — Aa(t)) Pa(t)ds =

QN

= (alt) + B ¢4(t e

2 (7 / 5)sds + o(a(t)£?).

Here we again used the fact that %%(p) =0
Then from (4.36) and (4.37) we obtain

(4.38) 6¢4( 6 ¢3 (p) / h(s)sds = llm d4(t) b3
QnQe
3¢4 04
|: 6:1:8 )/ s)ds + — (5’!7) /h(s)ds] ,
where (o)t
°= %ﬁm—*ﬁ i

Notice that l@) #0and 2 ayaz 293 (1) £ 0, but limg_y0 fnnat ¢4(t)¢ps = 0 since
$a(t) = ¢4. Then we reach a contradiction. This is the proof of the lemma.

Lemma 4.4. Under the assumptions of lemma 4.1, as t — 0 we have

(4-39) $2(t) = ca(t)da + cs(t)gs + ca(t)a +0o(t") in QNQ

(4.40) ¢3(t) = da(t)da + d3(t)bs + da(t)ps + o(t!) in QN Q

(4.41) ¢4(t) = ea(t)d + e3(t)ds + ea(t)ps + o(t!) in QNQy,

where c;(t) = fgngt $2(t) s, d; anQt $3(t)p: and e;(t fgngt G4(t) s,
i=2,3,4.

Proof. We only need to show (4.39), the remains can be proved similarly.
Put

(4.42) w(t) = ¢a(t) — c2(t)d2 — c3(t)p3 — ca(t) 4.
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Then we know that w(t) are orthogonal to ¢2,¢3, ¢4 in the domain Q N ;.
Consider ﬂt}z, it satisfies the equation of problem (1.1) in 2N$;. If there
exists a sequence {¢;} and ¢; — 0, such that

w(t)

4.4
(443 ;

—c#0,
LOO

then |%(§-'l| Loo is archived in the interior of Q2 N §2;, assume at p;. We can
suppose p; — q € 2, because on the boundary 9(2 N ), ﬂ%ﬁ — 0.

Consider lﬂ(;tﬁ| Lo, we know that w also satisfies (1.1) and w # 0. More-

over, w is orthogonal to ¢2, @3, P4, which contradicts the fact that the
multiplicity of Ag is at most three. Therefore we proved (4.39).

Remark 4.5. Since ¢ vanishes at p with a third order, ¢3 vanishes with
a second order. From lemma 4.4 and the regularity argument of elliptic
equations we know that

(.49) 22 t,0) = cal)) e ) + O
2 2
(4.45) o2 (t,5) = ea(t) 552 () + O(E),

where c3(t), c4(t) are given in (4.39) and c4(t) = O(t2), c3(t) = O(2).
In the following, we will rule out case (ii).

Lemma 4.6. Under the assumptions of lemma 4.1, if case (i) occurs we
have

(4.46) ez(t) = O(t?).

(a(t) + B(2)t a(t)t?
(4.47) es(t) = S —ae @O (M) ’
where ez # 0.

Proof. First we compare ¢4(t) with ¢2, as before we have

(448) (a2 — M(2)) /Q (o
B

3
(e, T2 () / (s)ds + O(alt)t?).

L.
= 5t°(a(t) - B(t)) 7 920y
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Then from (4.36) and (4.48) we obtain (4.46) easily.
Compare ¢4(t) with ¢3, we have

(4.49)
Oa=u00) [ a0 = Plat) + 800 22 .1 2200 [ shisias
+ O(a(t)3).
Then from (4.36) and (4.49) we can obtain (4.47) with
32¢3
3a:<9y (p)
(4.50) es 964
boa—y(l’)

Lemma 4.7. Under the assumptions of lemma 4.1, if case (ii) occurs, we
have

bp by by
b, bs by
by 0 b3

(4.51) =0,

where b; = fol s'h(s)ds.

Proof. From the proof of lemma 4.1, we have

(4.52) 1 1
(a(t) — B(2)) /0 (ao(t) + a3(t)t?s%)h(s) + (a(t) + B(2)) /0 a1 (t)tsh(s) =
= O(a(t)t?).

(4.53) 1 1
(alt) — B() /0 (ao(t)s? +as(£)£24)h(s) + (ax(t) + B()) /0 ar(D)ts°h(s) =
= O(a(t)t).

(4.54) 1 1
(a(t) +B(2)) /0 (ao(t)s + a3(t)t*s*)h(s) + (a(t) — B(t)) /0 ay(t)ts*h(s) =
= O(a(t)td).
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where ag(t) = ca(t) + O(t%), a1(t) = c3(t) + O(t?).

Recall (4.7), where as(t) = %:—,?(t, p), now by lemma 4.4 we can deduce
that a2(t) = O(t), then in (4.8) the term o(¢?) can be replaced by O(t%).
Therefore the right hand side of(4.52)-(4.54) become O(c(t)t3).

Again we assume

aot
;) o

as(t) — z,
(o(t) + B(t)as (1)
@ -pENE 7V

where y is finite. In fact from the domain variation and

/¢mwmhw,
Q¢

we know
(4.55) $2(t)¢a(t) = o(t°).
QNN
Similarly for i,j = 2, 3,4,
(4.56) bicj = 8ij + o(t°).
QNQ;
Therefore
(4.57) co(t)ea(t) + cs(t)es(t) + ca(t)es(t) = O(ts).

Then from remark 4.5, lemma 3.8 and lemma 4.6, we deduce

c3(t)es(t) = O(t?),

(4.58) ai(t) =0 ((—O‘@a—"(t)ﬁ—(-t-))—t) .

Then we have

(4.59) box + b3y + b4z =0

boz + b1y + b2z =0
biz + b3z =0.
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Since z # 0, we know the determinant of the coefficient is zero. Then we
proved the lemma.

Proof of Theorem 1.1. Suppose the multiplicity of the second eigenvalue is
three, then from the above lemmas, we know (4.51) is true. That is

(4.60) b1(b2bs — b1bs) — b3(bobs — biba) = 0.

But by Holder inequality, we already know this is impossible because of
bobs < b1bsg and b1by < bybsz. Then we proved the theorem 1.1.

Appendix.

We give an elementary proof of an inequality which we mentioned in
section 4. We feel indebted to Prof. Liu Jiagian for providing me the result.

Proposition A. Let h(s) > 0 in [0,1] and h(s) # 0, set b; = [ h(s)s'ds
then we have
b3 + b2by + b2by < 2b1babs + bobaby.

Proof. Consider

1 1 1
_ )2 s—7 204 r 2 r ‘
/0 /0 /0 h(s)h(r)h(t)(s — t)*(s — r)*(t — r)*dsdrdt > 0

We can obtain the proof of the proposition by expansion of the above in-
equality.
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