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Let M be a compact manifold in which H is an embedded hyper- 
surface separating M into two parts, M+ and M_. If h is a metric 
on M and x is a defining function for H consider the family of 
metrics 

dx2 

^ = ^^ + ft 

where e > 0 is a parameter. The limiting metric, go, is an exact 
b-metric on the disjoint union M = M+ U M_, i.e. it gives M± 
asymptotically cylindrical ends with cross-section H. In an earlier 
paper, [20], the behaviour of the Dirac operator associated to a 
Clifford module for the metric was analyzed as e 4 0> and the 
limiting behaviour of the eta invariant, for M odd-dimensional, was 
deduced, under the assumption that the induced Dirac operator 
3ij on H is invertible. It was shown that, modulo a Z-valued term 
corresponding to the signature of small eigenvalues, the limit of 
r)((5e) exists and is given by the regularized, 'b-eta' invariant of 
S^. In this second paper we study the same problem when c5# 
has null space. The Dirac operator, or similarly the Laplacian, 
then has an infinite number of small eigenvalues, i.e. eigenvalues 
tending to zero with e. The central focus of this paper is the uniform 
analysis of the resolvent and heat kernel of generalized Laplacians 
as e I 0. As an application, we show that the limit of 77(Se) is, again 
modulo a finite signature of small eigenvalues, the sum of r]{pj^) 
and an extra term which is the eta invariant of a one-dimensional 
Dirac operator associated to the null space of 9#. This operator is 
determined by scattering data on M at zero energy, and controls 
both the leading behaviour of small eigenvalues as e I 0 and the 
long time asymptotics of the heat kernel. 
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Fellowship and a Sloan Foundation Fellowship (f) and and the Guggenheim Foun- 
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1. Introduction. 

1.1. Analytic surgery. 

In this paper, we continue the study of analytic surgery initiated in 
[20]. By 'analytic surgery' we mean a singular deformation of a Riemannian 
metric on a closed manifold M modeling 'surgery' in the sense of cutting M 
along a hypersurface H (possibly disconnected) and so forming a manifold 
with boundary M. For simplicity we assume that H separates M, so that 
M is the disjoint union of two manifolds with boundary M±. We consider 
a specific deformation which degenerates to a complete metric on M of the 
form dx2/x2 + h, where a; is a boundary defining function for H (that is, 
x > 0, H = {x = 0} and dx ^ 0 on H) and h is a smooth metric on M. This 
form of metric on a manifold with boundary, called an 'exact b-metric' and 
studied in some detail in [22], gives M asymptotically cylindrical ends; log \x\ 
is approximately the arc length parameter along each end. Specifically, we 
consider a metric family of the form 

dx2 

x* + e^ 

this is a smooth metric on M for every e > 0, and as e —>» 0 it develops an 
approximately cylindrical neck of length 2 log 1/6 + 0(1) —► oo. The singular 
limit at e = 0 is an exact b-metric on M. 

Similar deformations, usually described as a family of manifolds with a 
long cylindrical neck across H with length / —> oo, have been studied by 
several authors. There are two main reasons for these studies. One is to 
understand the behaviour of geometric or topological invariants such as the 
index of a Dirac operator, eta invariant or analytic torsion under surgery, 
as in [6], [7], [8], [11], [26] and [12]. The other, more general reason, is to 
analyze the behaviour of the spectra of operators (such as the Laplacian) 
under the transition from closed manifold to complete manifold. In the first 
paper [20] and the present paper, both questions are investigated. Of course 
these two problems are closely related. In this paper a gluing formula for the 
eta invariant is presented. It is obtained by studying the full resolvent family 
of generalized Laplacians for metrics degenerating by surgery, and includes 
the analysis of accumulation of eigenvalues at the bottom of the continuous 
spectrum of AQ. Prom an analytic perspective the main result of this paper 
is the precise description of the form of the 'degeneracy' of the resolvent 
family of the Laplacian (or Dirac operator) as the parameter e 4 0. This is 
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encoded in the description of the resolvent as an element of an algebra of 
pseudodifferential operators with properties tailored to the geometry of the 
degeneration. 

Closely related work includes that of McDonald [21] and Seeley and 
Singer [28], who studied metric degeneration to incomplete conic metrics, 
and of Ji [17] and Wolpert [30], who studied degeneration of Riemann sur- 
faces to surfaces with hyperbolic cusps. It should be remarked that the 
approach of McDonald inspired [20] and the present work. Gluing formulae 
for the eta invariant have been discussed by several authors, in particular 
Bunke [6], Wojciechowski [29] and Briining and Lesch [4]. We shall have 
more to say about these shortly. 

There are good motivations for the choice of 'cylindrical ends' for M as 
the limit of the degeneration. In particular the well-known global bound- 
ary condition and index theorem for the Dirac operator on a manifold with 
boundary of Atiyah, Patodi and Singer, in [1], was obtained by attaching a 
cylindrical end to the boundary. The analytic properties of the Dirac opera- 
tor and Laplacian in this case are well understood; a detailed analysis in the 
context of exact b-metrics can be found in [22]. There is a related construc- 
tion, by Cheeger, where the boundary is 'coned off' to an incomplete conic 
metric. This was employed in [3], cf. also [9] and [10]. It would certainly be 
interesting to study metric degeneration to other types of complete metrics, 
such as metrics with asymptotically hyperbolic or Euclidean ends. 

In a continuation of this paper, [14], the first-named author will present 
a surgery formula for analytic torsion with applications, including a combi- 
natorial formula for 'b-analytic torsion' and a Hodge theoretic version of the 
Mayer-Vietoris sequence. In another direction, we shall use the result here 
to establish a signature theorem for manifolds with corners of codimension 
two, endowed with complete 6-metrics [15]. 

1.2. Eta invariant. 

The eta invariant was introduced by Atiyah-Patodi-Singer in [1] as the 
boundary term in their index formula for the Dirac operator on a manifold 
with boundary, with metric of product type near the boundary. (For a 
discussion of Dirac operators see [22], [2] or [18].) It is determined by the 
spectrum of the Dirac operator induced on the boundary, and is given by 
the analytic continuation of the eta function to s = 0. Alternatively, and 
this is the formula we use below, it can be expressed in terms of the heat 
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kernel: 

(1.1) »rtS) = 4= r ** Tr&e-*2)^. 
\Ar Jo t 

To obtain an index formula more general than that of [1], it is useful to 
extend the definition of the eta invariant to operators on complete mani- 
folds. (There are other fruitful approaches, cf. [9], [10].) For manifolds with 
boundary with an exact b-metric, the Dirac operator has continuous spec- 
trum, and the heat kernel is not trace class. Nevertheless, in [22], the b-eta 
invariant was defined as in (1.1), but with Tr replaced by the 'b-Trace' (see 
section 2.3); this is a natural regularization of the integral defining the trace 
of the heat kernel. The relation between the standard eta invariant and this 
regularized one is one of the themes of this paper. This b-eta invariant has 
also been studied by Miiller [26] and Wojciechowski [29]; they establish a 
relation between it and the eta invariant for a manifold with a finite, but 
increasingly long, cylindrical end. Dai [11] also proves a result of this type, 
but only when the induced Dirac operator 3# on the boundary is invertible, 
using the methods of [20]. 

The b-eta invariant and this regularization also shed light on possible 
extensions of the index theorem for Dirac operators on manifolds with cor- 
ners endowed with complete b-metrics. One step in this direction is taken 
in [15]. 

1.3. Statement of Results. 

Let us first recall the main results from the first paper [20], henceforth 
referred to as Tart F. There the same situation, for the eta invariant, was 
studied, under the assumption that the induced Dirac operator on H is in- 
vertible. A 'surgery double space' and 'surgery heat space' were introduced 
as spaces to which the Schwartz kernels of (A — A2)~ and e~tAe lift to 
be regular (i.e. conormal) uniformly as e -> 0. These spaces are blown up 
versions of M2 x [0, eo]e and M2 x [0, oo]t x [0, eo]e which resolve the degen- 
eracies of the space of vector fields Vs associated with the family ge. The 
resolvent and heat kernel were shown to be poly homogeneous conormal on 
these spaces, i.e. to have complete expansions in powers at all boundaries, 
and their leading asymptotics (model operators) at e = 0 were explicitly 
identified. It was shown that the projector n6 onto eigenfunctions corre- 
sponding to eigenvalues tending to zero with e is a finite rank, smoothing 
operator. These results led to the following result for the Dirac operator as- 
sociated to an Hermitian Clifford module associated to the metric ^e, with 
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unitary Clifford connection: 

Theorem (Mazzeo-Melrose). If the induced Dirac operator on H is in- 
vertible, then the eta invariant of 9e satisfies 

77(3e) - rJKe) = %(SM+) + %(3M_) + cri(c) + eloger2(6), 

with ri G Coo([0, €o]e) aj2d where 77(e) is the signature of ne. 

Douglas and Wojciechowski [12] obtain similar results. 
The assumption of invertibility of the operator induced on H excludes 

many interesting cases. The main goal of this paper is to extend the machin- 
ery of Part I to include cases where the operator on H has null space. To do 
so the constructions in Part I must be modified. One reason for this is that 
when AH has null space the heat kernel no longer has uniform exponential 
decay, as it does (up to finite rank) in the circumstances of [20]. To calculate 
the integral (1.1) the leading behaviour of the heat kernel as t —> 00 must 
be understood. This amounts to understanding the leading behaviour of the 
resolvent as A —> 0. In contrast with Part I, the resolvent must therefore be 
analyzed near the bottom of the continuous spectrum of AQ, and in par- 
ticular, the leading behaviour of the small eigenvalues, those going to zero 
with e, must be discussed. To cope with this we perform further blowups on 
the spaces of Part I, to resolve singularities in the kernel which form upon 
approach to A = e = 0. We introduce the 'logarithmic double space' X^ 
and 'logarithmic heat space' -XLHS; the names come from the 'logarithmic 
blowup' (see section 2.5) applied to each face of the surgery double space. 
On this space there are analogues of the results above. Consider the func- 
tion iase = l/sinh_1(l/e) ('inverse arc-sinh'), which is the reciprocal of the 
growth rate of the volume of M. It tends to zero with e, but only logarith- 
mically. To understand the resolvent we rescale the spectral parameter A by 
setting A = (iase) z to capture the behaviour of the small eigenvalues. When 
c = 0, A = 0 for all z. 

Theorem 1.1. The resoivent (A€ — (iase)2z2)~ is meromorphic as a fam- 
ily of half-densities on X^ x C The poies z(e) have limits as e —> 0 equai 
to either 0, Zj or 00, where the numbers Zj are the eigenvalues of a one- 
dimensional Laplacian RN(A) on [—1,1] with boundary conditions deter- 
mined by scattering data on M. 

This is proved in section 6. Indeed we extend the result in section 7 to the 
full resolvent which includes the resolvent away from the spectrum at e = 0 
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as in Part 1. Prom this we calculate the heat kernel by a contour integral. 
With ne now denoting the (finite rank) projection onto eigenfunctions with 
'very small' eigenvalues A2(e) = o((iase)2), we have 

Theorem 1.2. On X^^ the projection of the heat kernel off the eigen- 

modes with very small eigenvalues, e~iAe (Id —ne) is the product of t~n/2 

with a smooth density for t near zero and is smooth up to t = oo; e~*Aen€ 

itself is smooth except possibly up to t = oo. 

In both cases we give the leading terms at each boundary face. In prin- 
ciple it is possible to calculate the Taylor series at every face at e = 0 to 
arbitrarily high order. Prom these results the behaviour of the eta invariant 
can be read off. 

Theorem 1.3. Let r/fd(c) be the signature ofUe. Then 

Vfie) - Wdfc) = %(3M+) + %(3M_) + J/(RN(3)) + (iase)r(iase), 

wiere r is smooth. 

Thus we get, in comparison with the case when 3# is invertible, an extra 
contribution 7/(RN(3)) coming from the very small eigenvalues. An explicit 
formula for this extra contribution in terms of the scattering matrix is given 
in proposition 5.2. 

This 'gluing formula' for the eta invariant may also be derived by com- 
bining the results of Bunke [6], [7] and Miiller [26], at least for metrics which 
develop long product cylinders around JT, for which the Dirac operators on 
M, M+ and M_ have no nullspace, and without the explicit estimate of the 
error term above. 

Let us now describe this connection more precisely. Bunke considers two 
odd dimensional manifolds M±, with boundaries isometric to H and —If, 
respectively. He forms the manifold M by taking the union of these pieces 
with a cylinder [—r, r] x if joining the two pieces. His formula relates the 
eta invariant for the Dirac operator on the compact manifold M with the 
eta invariants for the Dirac operators on the two manifolds with boundary 
M±. These latter two eta invariants are for the Dirac operators 9M± with 
certain self-adjoint boundary conditions on H. The usual Atiyah-Patodi- 
Singer boundary operator would be the projector H- onto spinors over H 
in the eigenspaces with negative eigenvalues for <3#; for the other boundary, 
—if, with Dirac operator — 3#, this should be replaced by the projector 
n+ = 7 — n_. When the nullspace Ker(3#) is nontrivial, we choose La- 
grangian subspaces A± C (3/f) for the natural symplectic structure on this 
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space. The boundary operators are then given by H^ +11^, where I1A± 

are the projections off A±. These give self-adjoint boundary conditions, and 
hence determine corresponding eta invariants 7J(SM±5 A±). 

There are additional correction terms in Bunke's formula. The most 
important of these is the eta invariant for the Dirac operator on H x [—r, r] 
with its product metric and with boundary conditions given by n_ +11^ 
at the two ends. This term is denoted m(A+,A_). Bunke's formula then 
takes the form 

r?(3M)=r/(SM+,A+)+r?(gM_,A_) + m(A+5A_)+/(P+,P_)+dimkergM 

— dimker(gM+j A+) — dimker^M-? A_) +dimA+ n A_. 

Here /(P+, P-) is the index of a Fredholm pair of subspaces which arise in 
his construction. 

To relate this formula to ours, we first use the result from [7]. This 
states that if the A± happen to correspond to the Lagrangians determined 
by the limiting values of solutions of 3M± (which we call A^ later), and 
it is assumed that A+ and A_ intersect only trivially and 9M , 9M± have 
only trivial nullspace, then for r is sufficiently large, the relative index term 
I(P_l_, P_) vanishes. Furthermore, by the result of Miiller [26], for these same 
special choices for A±, the eta invariants ri((5M±, A±) converge to the b-eta 
invariants ?7&(CJM±)- However, with these hypotheses, the finite dimensional 
term ^(e) in our formula is also trivial. Finally, the final term m(A+, A_) 
agrees with our term r/(RN(9)). Thus the formulas correspond in this special 
case. 

1.4. Outline of the proof. 

We may take as starting point for the considerations in this paper the 
fact that the eigenfunctions with eigenvalues tending to zero in the surgery 
limit are not always smooth on the 'single surgery space' 

Xs = [Mx[0,eoUHx{0}] 

of Part I; indeed they are not even continuous. One can easily see this 
in the case of surgery on an interval, or circle. Then the eigenfunctions 
of Ae are of the form e27rikT*'Le, where r = sinh_1(a;/e) is the arclength 
and 2Le is the length of the interval or circle with respect to ge. On X5, 
this eigenfunction is equal to 1 on one of the boundaries at e = 0 (the 
lift of H x {0}) and (—1)* on another adjacent boundary. The oscillations 
disappear into the intersection of these faces. To resolve these oscillations 
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we replace, in section 3, the single space Xs by a new space, XLS, on which 
the scaled distance r/Le is a smooth function. X^s is a blown up version of 
Xs involving the operation of logarithmic blowup described in section 2.5. 
We then modify, in a methodical way, all constructions in Part I to reflect 
this change. The Lie algebra V5 of Part I lifts to VLS on XLS- The properties 
of VLSJ including its normal operators, are discussed in section 3. 

We microlocalize the Lie algebra VLS according to the general principles 
set forth in [25]. This means we construct the following objects. First, we 
need a double space X^ to carry Schwartz kernels of 'logarithmic surgery 
pseudodiflerential operators', or Ls-^dos. The diagonal submanifold ALS of 
X^g is such that kernels of VLs-differential operators are identified precisely 
with all distributions on Xls supported on ALS and smooth along it. The 
Fourier transform in directions transverse to ALS of these distributions are 
therefore polynomials. By replacing polynomial symbols with arbitrary clas- 
sical symbols, we obtain the 'small calculus'. The double space has natural 
maps down to the single space XLS which are b-fibrations (see section 2); this 
means that the kernels induce operators on appropriate space of conormal 
distributions on X^. Thirdly, there is a triple space Xj^ with b-fibrations to 
X^gj this is used to analyze to composition properties of Ls-ipdos. Finally, 
the normal operators on VLS extend to 'model operator maps' on Ls-^dos 
given by restriction of the kernel to faces at e = 0. Operators, such as the 
resolvent family, are constructed by taking as parametrices elements of the 
operator calculus with appropriate model operators and then using iteration 
in the calculus to remove the errors. Geometric lemmas to help construct 
the spaces are given in the second half of section 2 and the surgery pseu- 
dodiflerential calculus is set up in section 4. 

In view of the Pushforward theorem of [24], discussed here in section 2.3, 
the fact that there are b-fibrations Xls —> X^ —> XLS means that we can 
work within the class of polyhomogeneous conormal functions throughout. 
This has the virtue of almost eliminating estimates from the analysis, as it is 
easy to read off the decay rate of a function from the index set specifying its 
(poly)homogeneities. This comes at the cost of fairly complicated spaces and 
geometric machinery but we are able to obtain detailed information about 
the resolvent, heat kernel and small eigenvalues with this method. Because 
of the logarithmic blowups we are able to work with 'integral' index sets 
(see section 2.3) and show that our final objects, the resolvent, heat kernel 
and eta invariant, are smooth in the blown-up coordinates. 

In section 5 we analyze the model problem coming from the reduced 
normal operator introduced in section 3. This is a new model operator, 
not appearing in Part I, and Proposition 3.8 indicates that the eigenvalues 
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of this model control the leading behaviour of small eigenvalues of A€. We 
show that the resolvent of this model problem is well-behaved on the double 
space; this indicates that X^ is the 'correct' space to use; the resolvent 
of the model is used heavily in section 6 in the construction of the actual 
resolvent. 

In sections 6 and 7 the problem of analyzing (Ae — A2) ~ as A approaches 
the spectrum is attacked. We construct the resolvent near the bottom of 
the continuous spectrum, 0. To do so submanifolds at A = 0 are blown up, 
introducing the rescaled parameter z = Asinh~1(l/e) which captures the 
scaling of the small eigenvalues. To construct a parametrix we need to solve 
not only for the symbol at the diagonal singularity but also solve a number 
of model problems at each boundary face. Compatibility conditions at the 
intersections of faces give boundary conditions for these model operators, 
which enable them to be solved uniquely; the interaction between the models 
on different faces and of different orders is fairly complicated. 

Once the resolvent is shown to be an element of the appropriate calculus 
the Schwartz kernel of a function of the Laplacian can be analyzed using the 
functional calculus. We construct the heat kernel in this way in section 8. 
More precisely, we obtain it by performing the contour integral 

(1.2) e-^ = ^^e-^2(Ae-A2) l2\d\. 

Then we obtain the eta invariant by performing the integral (1.1). This inte- 
gral is more correctly to be thought of as a pushforward, since the integrand 
is defined on a blown-up version of its space of parameters. We construct 
spaces so that the integral becomes a pushforward under a b-fibration. This 
allows us to conclude that the result is polyhomogeneous, and a simple extra 
argument shows that it is actually smooth. We compute the leading terms 
of the heat kernel at t = oo. Finally, in section 9 we apply this machinery 
to the eta invariant, obtaining Theorem 1.3. 

2. Manifolds with corners, blowups and b-fibrations. 

In this section we present material on the geometry of manifolds with 
corners that is needed in this paper. We will assume some familiarity with 
[24], but also recall some of this material in the first three subsections, 
sometimes with slightly different presentation. We then go on to describe 
two 'new' blowup operations, of logarithmic blowup and total boundary 
blowup, which are used heavily in the sequel. 
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2.1. Manifolds with corners. 

We refer to [24] for a discussion of manifolds with corners, the b-tangent 
space, b-maps, and b-fibrations. The set of boundary hypersurfaces of a 
manifold with corners X is denoted Mi(X), the set of all boundary faces is 
denoted M(X) and the set of proper faces, that is excluding only X itself, is 
denoted Mf(X). A boundary defining function p for a boundary hypersurface 
H of a manifold with corners Y is a smooth nonnegative function on Y such 
that H = {p = 0} and dp ^ 0 on H. A smooth map between manifolds with 
corners / : X —> Y is an (interior) b-map if for every boundary defining 
function pn for an element M £ Mi(Y), 

(2.1) rpH = a-    U     pe^H\ 0<aeC~(X) 

where the (uniquely determined) collection of natural numbers ef(G,H), 
are the 'boundary exponents' of /. A total boundary defining function for 
X is the product of boundary defining functions for all the boundary hyper- 
surfaces 

PY = n pH' 
HeMiiY) 

We will be particuarly interested in the special b-maps called b- 
fibrations. The map / above is a b-fibration if /*, acting on the b-tangent 
bundle, is surjective on each fibre, and the image of each boundary hypersur- 
face in X is either Y or one boundary hypersurface H C Y. (This definition 
is different from, but equivalent to, the definition given in [24].) Such b- 
fibrations have good mapping properties on M(X); the image of any face 
F e M(X) is a face in M(Y), and / \ F is a b-fibration onto its image. 

Most of the b-fibrations, / : X —> Y, we consider below have an addi- 
tional property, namely 

(2.2) /*& = a.pxi        0 < a e C00^). 

In terms of the boundary exponents this amounts to requiring that e/(G?, H) 
= 0 or 1 for each G E M^X) and H E Mi(Y) and that for each G E Mi(X) 
there exists precisely one H E Mi(Y) with e/(G,iy) = 1. The assumption 
that / is a b-fibration means that there can be at most one such H for each 
G. 

Definition 1. We say that a b-fibration is simple if it satisfies (2.2). 
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p-submanifolds There are various possible definitions of a submanifold 
in a manifold with corners; we will use a very strong definition. 

A subset S C Y is a p-submanifold if locally, in some coordinate system 
a?!,..., x'kf, yi,...,y^/.fc/, with x^ > 0, and y'j e (-<$, 6), S is given by the 
vanishing of some subset of them: 

S={x'il=...x'i[l=y'jl = ..- = y'jm,=0}. 

Then if S is connected it has a tubular neighbourhood which is a bundle over 
S, the fibre being a neighbourhood of 0 E Rj "'' x W1' -*'-™1. We say S is an 
interior p-submanifold if I' = 0 in this definition. If / is a b-fibration and S is 
an interior p-submanifold then /~1S' is a p-submanifold. If S is not interior, 
then in general f~lS is a union of p-submanifolds of X. This can be seen in 
local coordinates as follows. If coordinates in Y are chosen so that S has the 
form above it is then possible to choose coordinates.xi,... Xk, yi,.. - yn-fc? 
in X with Xi > 0, yj e (—5, S) so that locally / has the form 

f{xi1...xk,yu...,yn^k) = ( JJ xr,  •• JJ a:r5yi,--.yn'-fc')- 

Then f~1S is locally a union of the p-submanifolds {xri = • • • = a;rfc/ = 

yji = "- = yjm' = 0}>with n ^ 7i- 
Degrees and density bundles It is convenient to introduce the notion 

of the 'degree' of a boundary hypersurface H of a manifold with corners X. 
This is simply an assignment of an integer, d(H), to H. Such an assignment 
to each boundary hyersurface of a manifold with corners, d : Mi(X) —> Z, 
is intended to indicate the 'basic' order of growth of densities allowed at the 
boundary hypersurfaces H. The degree density bundle is defined by 

aD(x)=   H   P-H
d(H)nb(x) =   H   PHd{H)~ln(x)- 

HeMi(X) HeMi(X) 

In general d is fixed once and for all for a given manifold with corners. 
Observe that b-densities, corresponding to all degrees being zero, have the 
pleasant property that dpu/pH is a canonical factor at ff, so dividing by 
\dpH/PH\ gives a canonical identification of the restriction of Q.b{X) to H 
and Qb{H). With general D-densities, restriction defined by division by 

\dpH/PH I depends on the choice of boundary defining function. How- 
ever, in this paper we will have a canonical total boundary defining function 
R for many of our spaces. When this is so, if the degrees of boundary hyper- 
surfaces HHK {K e MipO) of H are defined by d{HnK) = d(K)-d{H), 
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then division by \R~d^dpH/'PH\ gives a canonical restriction 

C0O(X',nD(X))-+C0O(H;nD(H)). 

2.2. Blowups. 

If S C Y is a p-submanifold, the blowup of Y at S, denoted [Y; 5], is a 
manifold with corners, given as a point set by (Y \ S) U (SN+ S), the union 
of the complement of S in Y with the (inward-pointing) unit sphere bundle 
over 5, and with the unique minimal C00 structure such that the lifts of 
C00 functions on Y and polar coordinates at S are smooth. There is a 
unique smooth map [Y; S] -> Y extending the identity on Y \ S^ called the 
blowdown map. The lift of a p-submanifold T C Y to [Y; S] is defined if (i) 
T C 5, in which case the lift is defined to be the inverse image of T under 
the blowdown map or (ii) T \ S is dense in T, in which case the lift is defined 
as the closure of T \ S in [Y; S]. In either of these cases we can define an 
iterated blow-up [Y;5;T] = [[Y;5];T] where, by an abuse of notation, the 
T on the right is actually the lift of T to [YjiS], and is by implication a 
p-submanifold. 

We will often perform sequences of blowups to create new spaces in this 
paper, and it is important to know when one can exchange the order of 
blowup. We use the following elementary result. 

Lemma 2.1. If 5, T are p-submanifolds  of Y and either (i) S and T are 
transverse or (ii) T C S then [Y; 5; T] = [Y; T; S\. 

Proof. The proof of (i) is immediate because then NS and NT are indepen- 
dent and so the blowups occur in two disjoint sets of variables. 

To prove (ii), it is sufficient to consider the case T = {0}, S = R^ x Em, 

Y = M*  x IRn, k > /, n > m. Define B^ = ^=1 a:? + Y!j=iVj and R2
S = 

Zi=i+ix2i + E^m+iVj- In both [y;<S';?1 and [Y;T;S] the lift of T and 
S have boundary defining functions (the lifts of) RT and Rs respectively, 
and a superset of coordinates on the lift of T is given by Xi/(xi + RT), 

Vj/iVj + RT) for hj > 1 and on the lift of S by Xi/(xi + Rs), yj/(yj + Rs) 
for i > I + Ijj > m + 1 on both spaces. This means that the identity map 
on Y \ S extends to a smooth map [Y; S; T] <-> [Y; T; S] in both directions. 
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Each extension is therefore a canonical diffeomorphism. □ 

2.3. Operations on conormal functions. 

The principal function spaces used in this paper are spaces of polyhomo- 
geneous conormal functions, conormal either at a boundary hypersurface or 
an interior p-submanifold (e.g., the diagonal). We refer the reader to [24] 
for the definitions of and notation for multiweights, index sets and families 
and of various spaces of conormal distributions. 

In this paper we will mostly work with special types of polyhomogeneous 
distributions which are close to being smooth: 

Definition 2. An index set E is natural (respectively integral) if all its 
powers are natural numbers (resp. integers), that is, (z,k) E E => z E N 
(resp Z). An index family is natural (resp.integral) if all its index sets are 
natural (resp. integral). 

We will use the abbreviation T for the integral index set {(n, 0); n > I}. 
The Fullback and Pushforward Theorems, proved in [24] guarantee that 

polyhomogeneity is preserved under pullbacks and pushforwards by b-fibra- 
tions. We now recast these results in the language of D-densities and also 
discuss the interior p-submanifold case. Let / : X ->• Y be a b-fibration 
between manifolds with corners with degrees and define the 'excess' of any 
boundary hypersurface (with respect to /) by ex(G) = d(G) — d(H) for 
G E Mi(X) if /(G) = H e Mi(Y), ex(G) = d(G) if f(G) = Y. The defines 
an integral index family ex on X. 

Theorem 2.2 (Fullback theorem). Any b-fibration, /, induces a pull- 
back map on functions 

where f*(J)(G) = 0 if/(G) = Y, orf*(J)(G) = {(e(G,H)z+q,k); (z,k) € 
J(H),q e N} if/(G) = H e Mi(Y). 

Theorem 2.3 (Pushforward theorem). If Re/C(G) > d(G) for all G 
such that /(G) = Y, then the pushforward by a b-fibration /, that is, inte- 
gration over the fibres off, of smooth compactly supported densities extends 
to a map 

(2.3) /* : A^g (X; nD(X)) -»■ ^*f ^ (Y; QD{Y)) 
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where, for any index family £, /# (£) (H) = {(z, p); 3 Gi... Gk mapping to H 
andpi ...pk such that (z/e(Gi, H ),pi) E £{Gi) andp = piH [-pk+ik-l)}. 

Note that if / is a simple b-fibration, then the operators /* and /# 
preserve naturality and integrality. 

The assumption on the index sets, that Re/C(G) > d(G) for bound- 
ary hypersurfaces mapped onto Y, ensures the integrability of u G 
^phg (X\£ID(X)) 

over fibres f~1(p) for p in the interior of Y, and hence 
that the pushforward is defined. In fact this condition can be dropped at 
the expense of considering a Hadamard-regularized pushforward. To define 
this regularization, we first define a regularized integral, which we call the 'b- 
integraP. Consider a manifold with corners with hypersurfaces Hi,...,Hk 
and boundary defining functions pi,... ,pfc; then the integral 

(2.4) /(d,..., e*) = /"      tx, u e A%hg (x- nb(x)) 
J Pi>ei 

b 
is poly homogeneous in ei,..., e^. The b-integral of u, denoted J u, is by 
definition the coefficient of the constant term ej... e^ in the asymptotic 
expansion of /(ci,..., 6k). In general it depends on the choice of boundary 
defining functions but in case u is integrable it reduces to the ordinary 
integral. The b-pushforward (under any (7°° map) can then be defined by 
duality: 

(2.5) 6/.u(0 = bJ(uf*<f>) V cf> G C^iY). 

The proof of the pushfoward theorem given in [24] extends easily to show 
that this b-pushforward still satisfies (2.3). 

b 
It is useful to have an explicit expression for / u, when u is not absolutely 

integrable. We do so only for u a polyhomogeneous distribution on IR+ since 
the result extends easily to the general case.  It is also sufficient to define 
the 6-integral for just a single term of the expansion of u multiplied by a 
cut-off function </>(#), where (/)(x) = 1 near zero and has compact support. 

b 
The general term to be defined is J xz(logx)k(f)(x)dx/x. We shall only need 
the case k = 0. Consider the integral from e to infinity, and integrate by 
parts to get 
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Since <// is supported away from zero, the integral on the right in either case 
is convergent for any z. The other term on the right is polyhomogeneous in e 
with no constant term, so does not contribute to the answer. The b-integral 
is therefore given by 

(2.6)       /V^(*)£=-r^(*)* '^o; 
l/^)f = -/o00(log^WWf. 

There are similar expressions when k ^ 0. 
The two Theorems above give the exponents in the asymptotic expan- 

sion of a pullback or pushforward. Next we discuss the coefficients. The 
coefficient functions in the expansion of the pullback f*h at a boundary 
hypersurface G in the first theorem are given by the pullbacks of the coef- 
ficients for the expansion of h at H = /(G), provided /*(/>#) = PG- For a 
pushforward, the relationship between the coefficients in the expansions for 
u and f*u can be rather complicated. We shall compute the coefficients in 
the expansions of a pushforward /*w, at a hypersurface H under the assump- 
tion that u is a polyhomogeneous D-density on X with C00 index family 
and / : X —> Y is a b-fibration under which either one or two boundary 
hypersurfaces of X map to H. 

We start with the 'trivial' case. Thus suppose first that H E Mi(Y) 
and there is a unique G G Mi(X)> with f(G) = H. Furthermore, suppose 
that e/(G, H) = 1. Let r be a boundary defining function for i?, so x = f*r 
is a boundary defining function for G. Take a product decomposition of 
Y near H. Then there is a unique product decomposition of X near G in 
terms of which / becomes a fixed b-fibration, /G, from one factor of this 
decomposition on X to one factor of the decomposition on Y. Consider 
u £ A^hg (X;06(X)) where the index family £ = I = {(i,0);i > /}, at G 
and suppose initially that ex(G) = d(H) = 0. The expansion of u at G takes 
the form 

u ~ 
i>l 

^xlai 
dx 
x 

\K{G) <HZ*3£}{X&b{X)) 

where /C(G) is the induced index family on G. By assumption in Theorem 2.3 
the elements a; are integrable on the fibres of /G- Then the expansion of u 
at if, in terms of the chosen product decomposition is 

(2.7) /*«~5ycfc)*(a*)- 
i>l 
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In this case the coefficients of f*u are obtained by pushforward of the coeffi- 
cients of u. In the interior of H the pushforward under fc is just an integral 
over a compact manifold with corners. 

Next consider the less trivial case in which / : X —> Y is a b-fibration, 
HeM^Y) and 

(2.8) 
f-1H = G1UG2, ef(GuH)=ef(G2,H) = l, G1 n G2 = K e M2{X). 

Let r be a boundary defining function for if, and, for i = 1,2, let Xi be 
boundary defining functions for Gi with f*r = X1X2. There are product 
neighbourhoods in X near G, of the form [0, S)Xl x [0,6)X2 x K and in Y of 
H, of the form [0,6') x H with 5,8' > 0, such that / is locally the product 
map 

(2.9) f(xi,X2,q) = (xiX2jK(q)h 

where fjc'-K—tHisa, fibration. Now consider an index family for X 
with 1C(GJ) for j = 1,2 the integral index sets {(&, 0);A; > lj}. As before, 
without loss of generality, we can assume that ex(Gi) = d(Gi) = 0. If u G 
*Aph (X;Ofc(X)) then the expansions for u at Gi and ^2 in terms of this 
product decomposition may be written 

(2.10) 

3>h 

dx\ 

x\ 

dx2 

at Gi, where CLJ ~ ^ x. k-j 
cjk 

k>l2 

dx2 

u ~ ^2(xix2)kh     at G2, where bk ~ ^ x{    Cjk 
k>h ' X2 ' j>/i 

^2 

dx\ 

xi 

at G2; 

at Gi. 

Here the Cjjfe G A^i (K; ft^K)) with /C^ the induced index family for K. 

Lemma 2.4. Under the assumptions of the preceding paragraph, if 
u G ^4phg (X^Vt^X)) where K, satisfies the integrability conditions of The- 
orem 2.3 and has support in the product neighbourhood of K = Gi fl G2, 
then the expansion of f*u at H is 

(2.11) /*u~]ry *(/Gl)^ 
j>h 

dr 
r 

+ £rfc6(/G2U>fe 
k>l2 

dr 
r 

-      J2     r^v&r^MtCjj 
j>maxh,l2 

dr 
r 
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where /d, /G2 and fx are, respectiveiy, the b-Sbrations with range H 
obtained by restricting f to Gi, G2 and K. 

Proof. Theorem 2.3 shows that there is an expansion of the form (2.11). It 
suffices therefore to compute the coefficients up to a given order, i.e. the 
coefficients of rp logr and rp for p < N. Multiplying u by r~N = (xiX2)~N 

we may assume N = 0, at the expense of changing Zi and fa. Since li and fa 
are arbitrary it is enough to compute the coefficients of rp and rp log r for 
p<0. 

Suppose first that li is large, say li > fa]. Then all terms are integrable at 
Gi. It follows by continuity from (2.7) that f*u is given by Ylk=i2 b(fG2)^k + 
o(l), which verifies (2.11) in this case. Thus it is enough to consider an 
individual term in the expansion at Gi in (2.10) 

(2.12)    u = (x^yajtixx) 
dxi 
xi 

where A^l> (Gi; Qb) 3 aj - ]P x* jcjk 

k>l2 

dx2 

X2 
at Go 

and 0(xi) has compact support and is identically equal to 1 near xi = 0. 
The same continuity argument applies to the terms in the expansion for aj 
in (2.12) beyond the point of integrability at G2. Thus in fact it is enough 
to consider a single term of the form 

(2.13)    u = x\xK2 cjk ftxMto) 
dxidx2 

X1X2 

where cjk e A^ (Gi) 

and by assumption the induced index family ICK is such that Cjk is integrable 
on K = Gi D G2. 

By symmetry it can be assumed that j > k in (2.13). Then the integral 
for r > 0 is 

(2-14) rk j'^Xl)^l.)4-^ • (b(fK).cjk). 

If j > k then integration by parts changes the xi integral in (2.14) to 

-rk /^'(o^-)^:—-r* [Hxi)*!^-)^—- J xi j - k xi J xi j -k xi 
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For r small, (j){r/xi) = 1 on the support of xi^'(xi) and similarly ^{xi) = 1 
on the support of dXl(f)(r/xi). Changing the variable of integration in the 
second integral to X2 gives 

J-k<i~. r J-i dx2 'fx.^x^^^r^jx.^x^ 
3   X2 

If j = k then the same integration by parts can be used, starting from 
1 = xid/dxi loga;i, can be used to reduce (2.14) to 

if                     v              dx~\        if                (           T*    \            dxi 
-rk / xi(l>'{xi)<l>(—)logxi rk / 4>{xi)xi   dXl(/){—)   logXi  

J Xi Xi J \ Xi   J Xi 

= rk(-logr-2        xrt'ixjlogx!—). v Jo xi / 

In either case, comparing with (2.6), we get the appropriate coefficients in 
(2.11). This completes the proof of the lemma. □ 

Finally let us write out the result of Lemma 2.4 when d(H) = d and 
ex(Gi) = ei and ex(G2) = 62 are arbitrary integers. In this case, u has an 
expansion of the form 

dxi 

Xi(xiX2)d+ei 
at Gi, 

where aj ~ Ek-j 
X2      Cjk 

k>l2 

dX2 
4+62-61 at G2; 

k>h 

dX2 

X2{xiX2)d+e2 
atG2, 

where bk ~ ^3 x 1 ^^ 
3>h 

and then the result of pushing forward by / is 

(2.15) 

dxi 
1+61-62 

j>li-ei 
ei 

dr 
»l+d + E rkb(fG2)*bk+ 

k>l2—e2 

62 

at Gi. 

dr 
r-l+rf 

53 rJ l0Sr b(fK)*Cj+euj+e2 
j >max h —ei ,£2—62 

dr 
r 
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Although the b-integral depends, mildly, on the choice of boundary defin- 
ing functions used in its definition we will work below with explicit boundary 
defining functions so this dependence will not be indicated in the notation. 
If the b-integral formally computes the trace of a smoothing operator A, 
then the regularized integral is denoted b-Tr(A). The b-eta invariant is de- 
fined in terms of the b-Trace of the operator 3e~*9 (see (9.2)). For this 
operator, we will show in section 9 that the Schwartz kernel of the pointwise 
trace of this operator vanishes on the boundary, so the integral actually con- 
verges. Hence, the b-eta invariant is well defined, independent of any choice 
of boundary defining function. 

The pushforward theorem from [24], discussed above, can be extended 
to densities on X which have interior conormal singularities along a p- 
submanifold S transverse to all boundary hypersurfaces of X and to /. 
We denote the space of such densities with conormal order m at S by 
ImAph (X]Q,D(X)',S) . To see why this modification is permissible, first 
note that by a standard result about wavefront sets (see [16] for exam- 
ple) f*u is smooth in the interior of Y. To understand the situation at the 
boundary, consider the proof of the pushforward theorem in [24]. The idea 
there is to remove terms in the asymptotic expansion of u at each bound- 
ary hypersurface G of X up to any given finite order using test differential 
operators JB(/C,5) which are appropriate combinations of compositions of 
any given nonvanishing b-vector field re normal to G. Since both / and any 
G € Mi(X) are transverse to S, if G intersects S nontrivially and f(G) = H, 
any normal vector field r# is /-related to a normal vector field re on X tan- 
gent to S. Using this re in 13(tC,s) shows that this test differential operator 
removes the leading terms in the asymptotic expansion of u at G while pre- 
serving the order of conormality at S. This shows the image space is the 
same as in Theorem 2.3. 

2.4. Two Blowup Lemmas. 

The important properties of b-fibrations have been discussed in sec- 
tion 1.4. In modifying the spaces of Part I we often face the situation 
where we have a b-fibration / : X -> Y and we perform blowups on X 
or y, obtaining new spaces X, Y. We would like / to lift to a b-fibration 
/ : X -» Y. The first and second lemmas below give conditions under which 
one can regain a b-fibration after such a blowup in X and Y respectively. 

Lemma 2.5. Let f : X —> Y be a b-fibration between compact manifolds 
with corners and suppose that T C Y is a closed p-submanifold such that for 
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each boundary hypersurface H C Y intersecting T, and each G G Mi(X), 
either ef(G, H) = 0 or e/(G, H) = 1. Then, with S the minimal collection of 
psubmanifolds ofX into which the lift of T under f decomposes, f extends 
from the complement of f~1(T) to a b-Bbration 

(2.16) fT:[X,S\->\Y,T\ 

for any order of blow up of the elements of S. 

Proof. The result is local in nature, so we may restrict attention to neigh- 
bourhoods of q G T and p 6 X such that f(p) = q. Choose coordinates 
X'I, ...,x'k,, y[,..., y^/_fc/ near q, such that q = (0,..., 0), the x^ are non- 
negative, the y'j take values in (—e, e) and in terms of which T = {xi = 
... = x^ = yi = • • • = Hm = 0}. Because of the assumption on the boundary 
exponents of /, it is possible to choose coordinates xi,..., #£, yi,..., Vn-k 
near p G X so that 

(2.17) 

Fx'i =Y[xr, 1 < i < I and py] = y^ l<j<nf-kf 

with the It C {1... k] nonempty and disjoint. 

Since / is a b-fibration, necessarily k' > k and n' — k' <n — k. 
In these coordinates 

nv) = { TT xr = 0, 1 < i < I and yj = 0,1 < j < m 

Thus an element of <S, the collection of p-submanifolds into which /~1(T) 
decomposes, is determined by the choice of a single index from each of the 
li. Choice of an ordering SI,...,SN oi the elements of S gives 

Sk = {xkl = • • • = xkl = yi = • • • = ym = 0} 

with ki G !{. Thus N is the product over i of the number of elements in li 
and for each k with 1 < k < JV, ki is the unique element of li such that x^ 
vanishes on Sk- 

Consider the action of blowing up Si. This replaces Si by its inward 
pointing spherical normal bundle. The function Ri = x^ H h x^ + (y^ + 
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• — + Vm)1 defines the new boundary hypersurface so introduced. Now 
consider the functions 

1 xi otherwise 

y(.i) = /f ifl<<<m 
3        1 j/j otherwise. 

Observe that x{£ + • • ■ + x^ + ((y^)2 + {yti)2)1'2 = 1 and that dx$ ? 0 

unless x[/ = 1 and similarly, dyj ^ ^ 0 unless yj ~ ±1 if 1 < j < m. Away 
from the front face of [X; Si] nothing has changed and near each point of 

this new boundary hypersurface Ri and some n — 1 of the n functions x\ ', 

y^ ^ form a coordinate system, the one function excluded being non-zero. 
The lifts to [-X^Si] of the submanifolds 5^, k > 2 are therefore given by 

the vanishing of the functions x^,..., x^ , y^ ,..., y™ , which, since they 
vanish there, must be amongst the coordinates at each point of the lifted 
submanifold. 

Thus, after the first blowup the combinatorial arrangement is as before, 
with one less submanifold Sk- We can therefore proceed to blow up S2, 
£35..., SN and define successive functions 

+ (^-1))2) 

otherwise. 

Then the Rk for k = 1,..., JV are defining functions for the blown up sur- 
faces. 

Consider the map 

(2.18) fr:[x,S\->Y, fr = fo0x 

where fix ' [X, S] —> X is the total blowdown map. The coordinates pull 
back to be of the form 

(/f)Vi=n&*=n w^ n ^]=^i---^n4Ar) 

rEli reli ks.t.ki=r reli 

{f!ryy'j = RlR2---RNyf). 
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Thus, B! = x'x + --- + x'l + {y'l + ■■■ + y'l,)1'2 lifts to 

(I m 1 /0x 

E(n^»)+(Efef>)2) 
The right factor does not vanish. Indeed, it would vanish only at a point 
where some x^   , r; E /^ for each i, and each y:   ^ vanished. But the choice 

{ri} corresponds to some submanifold Sk and after Sk is blown up, Ylxri + 

(E(yf)2)1/2 = i-Thus 

(f!ryR' = a-Rl...RN, 

(/Tr^^-H^and 

(f'Y^- -a'..<t,{N) 
UT)   RI - aj   Vj 

where a, a^ and a' are smooth positive functions. This shows that the map 
(2.18) lifts to a map (2.16) which is a b-fibration. □ 

Following the proof of Lemma 2.5 we have also shown: 

Corollary 2.6. Under the conditions of Lemma 2.5, if f is simple then so 
is fr in (2.16). 

For the next lemma, consider the relative b-tangent space of a p-submani- 
fold. For a p-submanifold 5, of a manifold with corners, X, the (relative) 
b-tangent space bTp (S, X) C bTpX at p G S is the linear space of values 
at p of those elements of Vb{X) which are tangent to S. Its dimension is 
dim 5 + k where k is the codimension of the smallest boundary face, Fa(5'), 
containing S (so k = 0 if S is an interior p-submanifold). These spaces form 
a bundle bT (5, X) over S and the quotient by 6iVFa(5), the b-normal space 
to Fa(5), is canonically isomorphic to the (intrinsic) b-tangent bundle to S : 

(2.19) bT (S, X) /bNs Fa(S) ^ bTS. 

Lemma 2.7. Let f : X —> Y be a b-fibration of compact manifolds with 
corners and suppose that S C X is a closed p-submanifold to which f is 
b-transversal, in the sense that 

(2.20) Ker(6/*Ux) + % (S, X) = bTpX V p e S, 
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and such that f(S) is not contained in any boundary face ofY of codimension 
2. Then the composition of the blowdown map ft : [X, S] —> X with f is a 
b-Bbration 

(2.21) f':[X,S\—>Y. 

Proof. The b-tangent map of the blowdown map (3 maps onto bT^p) (5, X) 
for each point p G P~1S. The b-transversality condition implies that compo- 
sition with 6/* maps onto bTf^p^X^ so /' is a b-submersion. The condition 
on f(S) means that f(S) is a boundary face of codimension 1 or 0, so that 
/' is actually a b-fibration. □ 

In view of (2.19) the condition of b-transversality in (2.20) is equivalent 
to the b-transversality of /iFa('S')? as a b-fibration onto /(Fa(5)), to S as 
a submanifold of Fa(5). This can also be restated as the condition that / 
restricts to S to a b-fibration onto /(5), which is often simple to check. 

2.5. Logarithmic blow up. 

To handle the logarithmic behaviour of the surgery problem, when the 
boundary operator is not invertible, we introduce the notion of logarithmic 
blow up. If X is a compact manifold with corners and p# E C00(X) defines 
H G Mi(X), then consider 

(2.22) 

C-a^ffhog) = {g(agPHJu.-.,fp);g 6 C700(HP+1)J/i G C00^)} 

where ilgp# = -———- 
log(l/pir) 

This is a new C00 structure on X, albeit diffeomorphic to the original one. 
In fact this C00 structure is independent of the choice of defining function 
PHi and so defines [X, H]\og. Since pn is a C00 function of ilgptf, namely 

(2.23) PH = exp 
ilgPtf 

the identity map on X is smooth as a map /3i0g : [X, H]iog —> X. Clearly the 
operations of logarithmic blow up of two or more hypersurfaces commute. 
This allows us to define unambiguously the 'total logarithmic blow-up' Xiog 
of X by blowing up each of the boundary hypersurfaces. 
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Perhaps surprisingly, an appropriate combination of the non-algebraic 
notion of logarithmic blowup with certain (ordinary) blow ups behaves well 
with respect to certain b-fibrations. To illustrate this we give a simple 
example. 

Example 1. Consider the b-fibration g : X —> Y where X = [0, oo)2, Y = 
[0, oo) and g{xi1X2) = X1X2. In terms of the boundary defining functions 
r = ilgx, pi = ilgxi and p2 = ilg#25 we have, in the interior of X 

^*„ 
9 r ~ * i- - 1 ~" i™   1    " i™ i   • i™, i 

1 P1P2 
losh     log-^-      log- + log^     P1+P2 

' X 0 X1X2 0 Xi 0 X2 

Thus g does not lift to a smooth map from Xiog to Y\0g. If we further blow 
up X by defining X = [Xi0g; (0,0)] then boundary defining functions for 

X are pi = -^^,P2 = ^+pi"? 
and Ps = Pi + P2 for the new face. Thus 

g*r = pifeps, so it follows that g lifts to a b-fibration g : X —> Y\og. 

We generalize this result in the next lemma. Before it is stated we need 
to introduce the notion of 'total boundary blow up'. 

2.6. Total boundary blow up. 

The total boundary blow up, Xtb, of a compact manifold with corners, 
X, is defined by blowing up (in the radial sense) all the boundary faces, 
in order of increasing dimension. Blowing up all faces of dimension < k 
separates the lifts of the faces of dimension A:, so there are no ambiguities of 
order in this definition. The boundary hypersurfaces of X^ are parametrized 
by Mf(X), the set of proper boundary faces of X. In the next lemma we 
consider the effect of the combined operations of logarithmic blowup and 
total boundary blowup on simple b-fibrations. Since this combination occurs 
quite frequently in the sequel we introduce the following notation for the 
'logarithmic total boundary blowup' of a compact manifold with corners X 

(2-24) Xlt = (Xlog)tb 

Lemma 2.8. Let f : X —> Y be a simple b-fibration of compact manifolds 
with corners. Then f lifts from the interior to a simple b-fibration fit : 

XH —► lit. 

This result is applied in subsequent subsections to the surgery spaces of Part 
I to obtain new 'logarithmic surgery spaces'. 
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Proof. Again this is a local result. Using Section 2 of [24], we can assume 
that / takes the following form in local coordinates 

(a;i,...Xfc,!/i,...T/n_jfe) —> ( JJxi,..., JJa;i,yi,...yn/_fc/). 

The condition (2.2) implies that the Jz form a partition of {!,...,&}. If 
g : Xf —> Yf is a fibration of manifolds without boundary then the result 
holds foifxg if it holds for /. Thus the factors of W1"* in the domain and 
W1 ~k in the range can be dropped and it suffices to prove the result for 
maps of the form 

(2.25) {xu-.-Xk) —► ( 11 ^i'-*-' 11 Xik)- 

The composite of two simple b-fibrations is again a simple b-fibration 
and, the same operations being applied in domain and range, the result holds 
for the composite if it holds for the factors. The map (2.25) decomposes into 
the composite of simple b-fibrations of the form 

f : R*    > R*-1 

(2.26) \^( \ 

with appropriate permutation of the coordinates, so we only need to 
prove the lemma for maps, /, of the form (2.26). 

With X = R\ and Y = R^"1 let / be as in (2.26). Using the Lemma 2.4, 
or the example preceeding that result, we see that / lifts to a b-fibration 
/ : [-^log; K] —> YJog where K is the lift to the logarithmic space of {xk-i = 
Xk = 0}. Denote by K the new boundary hypersurface produced by the 
blowup of K. To lift to Xitj we use Lemma 2.5. Thus Y\t is produced from 
^log by blowing up all codimension I hypersurfaces for / = (k — 1),..., 1 
successively. Denote the lift to X\t of the hypersurface xi = 0 by ifj, and 
denote by Hi the sequence of blowups H^i followed by 7^2 followed by Ti^s 
where 

Hi^i = all Z-fold intersections of Hi... Hk-2 

%,2 — all l-fold intersections of Hi... Hk-2 and K involving K 

Hi^ — all Z-fold intersections of Hi... H^ involving 

exactly one of {H^-i^H^). 

Then by Lemma 2.5, / lifts to a map 

-X" = PGog; K\ W-k-h • • • i ^2] —> Y\t. 
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To show that X = Xw, we proceed inductively to show that 

X =[Xi0g; all faces of codimension > / + 1; 

For I = k this space is X, for / = 2 it is X\t. So we assume that the 
statement is true for some /, 2 < / < k. To show that it is true for / — 1 we 
will use Lemma 2.1 and the following separation result: 

Lemma 2.9. If all boundary faces Hj, I C {1,... ,n}, of X = M+ of codi- 
mension > m have been blown up (in increasing order of dimension) then 
the lifts of ir<7(i) H ■ ■ ■ fl H^^ and H^ n • • • D H^^^ where a is a 
permutation and s > r are disjoint provided p + s > m. 

Proof. The indicated surfaces are separated when -ff^i) n • • • fl H^^ is 
blown up. □ 

We now commute the K blowup past the Hi-i = {/Hi-i,i,'Hi-i,2, %-i,3} 
blowups. Applying this lemma to [X\og] G1+1] where G1+1 is the set of all faces 
of codimension at least / + 1, K is disjoint from all faces in 7^z_i,i so the K 
blowup commutes with the Hi-i^i blowups. Again by Lemma 2.9, any two 
faces in Hi-ip are disjoint, and they are all contained in if, so by Lemma 2.1 
we may do the Hi-ip blowups first. They are then, by Lemma 2.9, disjoint 
from the Hi-i^i faces, so can be commuted past these too. When we do this, 
they yield with the H^i and Hi^ blowups all the codimension / faces, so we 
get 

X = [X\og] all faces of codimension >/; Hi-i9i] K\ Hi-ifr %_2...%]- 

Again by applying Lemma 2.9, K is disjoint from all Hi-i^ faces so 
we obtain (2.27) for / — 1. This completes the induction, so we have shown 
that / lifts to /it : X\t —> Yit. Finally, both the result of the example and 
Lemma 2.5 preserve (2.2) so /it is simple. □ 

Let us define degrees (see section 2.1) for spaces of the form Z\t for a 
manifold with corners Z. We fix a degree function by letting the degree 
d{H) of a hypersurface H of Z\t be the codimension of the face of Z of 
which it is the blowup. We also define the cusp density bundle Q,c{X) for 
any manifold with corners X to be WHeMiix) P~H^b{X)'i in other words, the 
degree density bundle where all degrees are equal to 1. Then the following 
results hold: 
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Lemma 2.10. For any manifold with corners X 

(2.28) A*og^P0 = fictXiog) 
(2.29) fthnc(xlog) = nD{xlt). 

Proof. Since dp/p = d(ilgp)/(ilgp)2, (2.28) follows. To prove (2.29), first 
observe that for any H G Mi(-X'iog), with boundary defining function pu, 

PtbPH = 11 rF' 
FCH 

where, if F is a face of codimension k in Xi0g then rp denotes the boundary 
defining function for the boundary hypersurface of Xit corresponding to F. 

Under blowup of a boundary face, the b-density bundle lifts to the b- 
density bundle. Hence, 

Kb n pHinb(xlog)= n nrFin*(*it) 
HeMi(X) HeM1{X)FcH 

= n ^codimF^(xit). ■ 

D 

If S C M is a p-submanifold, let [Z\t x M; Mi (Z\t) x S] be the manifold 
with corners obtained from Z^ x M by blowing up the submanifolds H x 5, 
for all iJ E Mi (Z\t), in order of decreasing degree; i.e. the codimension of 
the face F G M^Z) from which H arises. There are no ordering ambiguities 
because all hypersurfaces of Z\t of a given degree are disjoint. 

Lemma 2.11. Let f : X —> Y be a simple b-fibration and S C M a p- 
submanifold. Then the map /it x Id : X\t x M —> Yit x M iifts to a simple 
b-fibration 

[Xlt x M; Mi (Xlt) x S] —* pit x M; Mi (ylt) x 5]. 

Proo/. We can argue as in the proof of Lemma 2.8 to reduce the proof to 
the case where / is of the form (2.26). Now applying Lemma 2.5 to the 
Mi(Y) x S blowups allows the b-fibration to be lifted and so gives the 
result. 
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Consider the inverse images of all the submanifolds H x S for all hy- 
persurfaces H of Y of fixed degree d. Each such submanifold has as inverse 
image a union of submanifolds G x 5, which are disjoint if they correspond 
to different H. Since /it is a b-fibration and dim Xw, = dim Yn + 1, we 
have d(G) = d{H) or d(.fl') + 1. Hence in Xit x M we can choose the or- 
der of blowup so that the G x S are also blown up in order of decreasing 
d{G). Condition (2.2) for /it means that as H runs through all hypersur- 
faces of yjtj G runs through all hypersurfaces of X\^ so we obtain precisely 
[Xit x M; Mi (X) x S] as the new domain. □ 

3. The Single Space. 

In section 1.4 we noted that the surgery spaces of Part I will not suffice 
to construct the resolvent of A when the boundary Dirac operator is not 
invertible. Instead, consideration of the eigenfunctions on an interval under 
surgery suggests that the resolvent will be a smooth (conormal) function of 
y, y' and the 'rescaled distance' 

arclength   _  arcsinh^       ilge       e 
**■ * as        T u. 

total length      2arcsinh^      ilg f       x 

3.1. Definition. 

This suggests working on a space on which these functions are smooth. 
We therefore make the following definition in terms of the blow up notation 
introduced in the previous section. 

Definition 3. The logarithmic single surgery space is: 

(3.1) XLs = (X5)lt=((Xs)l0g)tb. 

Here the single surgery space defined in [21] and Part I is obtained by blow 
up of H at e = 0 : 

(3.2) Xs = [Mx[0,eo];irx{0}]. 

By Lemma 2.8, the b-fibration Xs —> [0, eo] lifts to a b-fibration 
XLS —> [0,ilg6o]iig€. Therefore ilge is a smooth function on XLS, vanishing 
to first order on all boundary faces (at e = 0).   We will understand X£s, 
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'zero space', to mean [0, ilgeo]iig€ below. The space X^ has four types of 
boundary hypersurfaces, cf. Figure 1. The lift of the boundary e = 0 will be 
denoted Bo(-^Ls); it is the surgery boundary. The lift of the surgery front 
face will be denoted B^X^) and again called the surgery front face. The 
new hypersurfaces constructed in the last, total boundary, blow up in (3.1) 
will be called the logarithmic surgery faces and denoted ^(-^Ls)- Defining 
functions for these space will sometimes be denoted po,Pi, and p2, respec- 
tively. There is also a 'trivial' boundary hypersurface at e = eo- Under 
the general assumption that H separates, both BQ(XIJS) and ^(XLS) have 
two components; these will be denoted B±o(X^s)) B±2{XiJs) with the sign 
corresponding to the local orientation of H. 

The diffeomorphism types of these boundary hypersurfaces are easily 
identified. Clearly 

(3.3) Bo(XLs) S Mlog 

is just the manifold with boundary, M, obtained by cutting M along H with 
its boundary blown up logarithmically. The front face of Xs is the radial 
compactification of the normal bundle to H in M; this compactification is 
denoted H. Lifted to (^s)iog this becomes H\og. The final blow up does not 
change the structure of this face so 

(3.4) Bx^Ls^ffiog. 

The essentially new faces introduced by the passage from Xs to XLS are 
the boundaries of the radial compactifications of the normal bundles to the 
corners of (^5)1 • These are interval bundles over H. The two functions 
ilgx and ilg(e/x) can be taken as defining functions for the corner, in the 
closure of the region e < ^x < j. Thus the limiting value 

(3.5) 
ilg# __        ilge 

_ f limng^iig^o iigs + ag^/s)     -    il^J        a:>0 

*      I   ,. - ilg(-a:) _ ilge 
1 iimiig-s,iig(-e/sH0  iig(_a;) + iig(_e/a;)    ---Agi-e/x) X<U 

is a global variable along the fibres. If x is replaced by another defining 
function for if, x, = a(x,y)x with a > 0, then 

(3-6) 

i\gxf = ilgx- , ilg(e/x') = ilg(e/a;)-   . 6 &   1-ilgx-loga     &w    /       &w   /l + ilg(e/a;) -loga 
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> ilgx 

Figure 1. 

Thus the limiting value of s in (3.5) is unchanged. It follows that ^(XLS) is 
a canonically trivial bundle over H. Occasionally we will use the notation H 
for dM = HUH, the disjoint union of two copies of H, and write H x [0, l]s 

foiH x([-l,0]sU[0,l]5). 

3.2. Densities. 

The Riemannian density of ge is of the form i/g = (x2 + e2)~2v where 0 < 
u £ C,00(M x [0,6o]; tt(M)). We shall adopt a slightly different normalization 
of densities from that used in Part I and consider the (trivial) bundle, fix 5 
over M x [0, eo]e which has as generating section Vg (8) \de\/e. This bundle is 
just the density bundle over M x (0, eo] and lifts to Xs to 

(3.7) (f3[x,{o}xH]ynx = nb(xs). 

Notice that if the extra factor of e-1 is omitted, as it is in the normalization 
of Part I, then one simply gets the density bundle in (3.7) instead of the 
b-density bundle. 

The advantage of the extra factor of e-1 is that Qx lifts to be simple on 
-X/Ls- By Lemma 2.10, we have 

(3.8) Pit^b(Xs) = ^D(XLS) = pfpfp?Sl{Xhs). 

Note that the two functions iase (see section 1.3) and ilge are smooth 
functions of each other and equal to first order. In view of the behaviour of 
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the 'reduced normal operator' of section 5, it will often be advantageous to 
use ias e, and we shall frequently do this from now on. 

3.3. Lift ofVs(X). 

In Part I it is shown that the Laplacian associated to a surgery metric 
lifts to Xs to an element of Diff^X*), which is the enveloping algebra of 
VS(XS). Here Vs(Xs) is the Lie subalgebra of V6(-X"5) consisting of those 
vector fields which are tangent to the fibres {e = const}, it may also be 
described as consisting of the C00 vector fields on Xs tangent to the fibres 
and of finite length with respect to ge. We need to consider the lift of VS(XS) 
to XLS- 

As noted in section 3.1, ilge lifts to a (7°° function on XLS which is a 
total boundary defining function for all the boundary hypersurfaces above 
e = 0. Consider the Lie algebra 

VLS(XLS) = {V e Vb(XLs)- V • ilg6 = 0 and 

V is tangent to the fibres of B2(XjJs) over [—1,1]}. 

As with V5, VLS is the space of C00 sections of a vector bundle. To de- 
scribe this bundle directly on XLS, let 6

TXLS C bTX^ be the subbundle of 
codimension one given by 

6TX[S = Ker(6dilge) : bTXhs -* 6TX£S. 

Since the map ilge : X^ —> X^ is a b-fibration, Ker(6dilge) has codimen- 
sion one at every point. Let F C 6

TB2XLS be the subbundle of vectors 
tangent to the fibres of the fibration B2 -> [—1,1]. Then VLS is the space 
of smooth sections of bTXls that take values in F over B2. As explained in 
[22], section 8, this means that there is a bundle LsTXLs = F(6TX{jS) (in 
the notation of [22]) such that VLS is precisely the space of smooth sections 
of LS

TXLS. The metric lifts to a non-degenerate fibre metric on LS
TXLS- 

Following the approach outlined in [25], the bundle LS
TXLS is taken as 

the replacement for the usual tangent bundle TXLS in surgery geometry. 
We define surgery form bundles, surgery Clifford bundles, surgery frame 
bundles and surgery spinor bundles using LS

TXLS- Thus the surgery cotan- 
gent bundle, LsT*XLs is defined to be the dual of LS

TXLS. The surgery 
form bundle LS

A*XLS is the exterior bundle of the surgery cotangent bun- 
dle. The surgery Clifford bundle LsCl XLS is the fibrewise Clifford algebra of 
the surgery cotangent bundle with respect to the fibre metric g€ (defined on 
LS

T*XLS by duality). If Mn is spin, then the bundle of orthonormal frames 
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of LS
T*XLS lifts to a Spin(n) bundle Spin(XLs), which reduces over Bi and 

B2 to have structure group Spin(n — 1). The surgery spinor bundle is the 
associated bundle 

S^Ls) = Spin(-YLs) XSpin(n) S, 

where S is the spin representation of Spin(n). If M is odd-dimensional then 
the spin representation is irreducible on C2 with n = 2k + 1 and over 
£2, #(^Ls) has a natural splitting S(XLs) = S+(H) 0 5" (IT) given by the 
±1 eigenspaces for homomorphism given by multiplication by the surgery 
Clifford element dx/(Vx2 + e2). Restricted to each of the leaves of B2 on 
which s is constant they are the plus and minus spinor spaces, associated 
with the induced spin structure on iJ, on which the Dirac operator 3# acts. 

The space of Ls-differential operators, Diff£s(XLs; E, F), (where we write 
Diff£s(XLs;i£, E) = Diff£s(XLs;^)) consists of those differential operators 
from sections of E to sections of JP which are sums of products of vector 
fields in VLSJ acting via some connection, and smooth bundle maps (in other 
words, the enveloping algebra of VLS tensored with bundle maps). 

Lemma 3.1. If 5 is the adjoint of d with respect to ge, then 

d + 6(=Dittls(XLs;
LsA*Xhs) 

and 
Ae = (d + S)2 6 Diff2

s(XLs;
LsA*XLs). 

The Dirac operator for a Hermitian Clifford connection on an Hermitan 
LsT*XLs-Clifford module, E, is an element ge G Diffls(XLs] E). 

Proof. We may write c56 = X)iCl(ei)Vi, for an orthonormal frame e* of the 
surgery cotangent bundle; directly from the definition this shows c5e to be a 
first order Ls-differential operator. Similarly, we may write d = ]Ci(ei/MVi 
and S = — ]Ci^*(etL)> and (eiA) and e^L are smooth bundle maps on 
LS

A*XLS- Hence, A6 = (d + S)2 is also a Ls-differential operator. □ 

In particular this applies to 'the' Dirac operator on spinors if M is spin. 
The next result identifies VLS in terms of the Lie algebra V5 of Part I: 

Lemma 3.2. The Lie algebra VS(XS) lifts to X^ to span, over C00
(XIJS)^ 

the boundary-Ebration structure VLS(^LS) given by (3.9). 
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Proof. Away from the blown up submanifolds this is obviously so. Moreover 
it is certainly local over open sets of M so it suffices to consider the product 
case M = H x (—1,1) where H is just an open set in Euclidean space. The 
blow-ups then preserve the product structure so it suffices to consider the 
case that H is a point. Thus we only need consider the lift of the vector 
field 

(3.10) v* = {x2 + <?)h^. 

Near the corner of Xs the projective coordinates k = e/x and x are valid 
and in terms of these 

Vb = (l + fc2) K^"^) 
Under the logarithmic blow up of both boundary hypersurfaces this in turn 
lifts to 

H-(I"*-!>)V!-^) 
where £ = i\gx and K = ilg k. Finally under the radial blow up of £ = K = 0 
this becomes 

(,n)      ^^(-^'(^-^A 
or 

(3.i2)     n=[i+e,P(-i)y^±-Pin^) 
in terms of the coordinates P2 = € and po = «/(« + £) = (1 — s) or p2 = K 

and pi = £/(/£ + £) = 5 which together cover the new face. It is now easy to 
check that VQ spans the algebra VLS(^LS) in this case, so proving the result 
in general. □ 

This Lemma also shows that LS
TXLS = At* (STXS), where STXS is the 

surgery tangent space of Part I. 
Consider the normal operators for the structure VLS(-^LS)- At the level of 

the Lie algebra these correspond to freezing the coefficients of VLS(^LS) at 
the various integral submanifolds. Each level surface of e on which it is non- 
zero forms such an integral submanifold and VLS(^LS) restricts to the space 
of all smooth vector fields on these surfaces. The more interesting integral 
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submanifolds are those lying over e = 0. There are three essentially different 
cases. Consider first the restriction algebras. Let us use the notation Vf(Y) 
for the subalgebra of Vb(Y) consisting of those vector fields tangent to the 
leaves of a b-fibration / and VC(X) for the cusp algebra, determined by 
a choice of boundary defining function p on a compact manifold X with 
boundary Y : 

Lemma 3.3. Restriction to the three types of boundary hypersurfaces 
above e = 0 gives surjective Lie algebra homomorphisms 

(3.13) Ro = No : VLs(X) —► Vc(Mlog) 

(3.14) R2:VLs(X)-^Vf(Hx[0,l]) 

(3.15) fix = iVx : VLs(X) —+ Vc(iJlog) 

where / : H x [0,1] —► [0,1] is the projection. 

Proof. As in the proof of Lemma 3.2 it suffices to consider the special case 
where M is an interval. Then (3.13) just arises as the restriction of VQ in 
(3.11) to s = 0, giving £2d/<9£, which, with the vector fields on if, generates 
the cusp algebra with distinguished boundary defining function £. The other 
two restriction maps can be analyzed in the same way, with (3.14) arising 
from the fact that VQ in (3.12) vanishes at P2 = 0. □ 

The notation NQ and Ni in (3.13) and (3.15) is justified by the fact that 
the null spaces of these maps are precisely the Lie ideals 1 - VLS(^) where 
1 is the ideal of functions defining the boundary hypersurface in question; 
thus these maps are indeed the normal operators in the sense of [23] and the 
range spaces can be identified with C00(j9r;LsTXLS) for the corresponding 
boundary hypersurface in MI(XLS)- 

This is not the case for restriction to ^(XLS). Rather, the null space of 
the restriction map 

(3.16) C00 (B2(XLs); LsTXLs) —> Vf(H x [0,1]) 

is a one-dimensional Lie algebra over ^(XLS)- This line bundle is impor- 
tant since it generates the reduced normal operator, the properties of which 
largely determine the behaviour of the small eigenvalues of the Dirac oper- 
ator and Laplacian. In fact 
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Lemma 3.4. If V E VLS(X) has RziV) = 0 then V/ilge is smooth up to 

the interior of i^C^Ls) a^d? by projecting off any term in Vf(H x [0,1]), 
defines a vector field 

RN(Vr) = rn{V)Ds, with rn(V) e C00(B2), 

on the fibres of B2(XilS) over H] this vector field is smooth up to the bound- 
ary (but not necessarily vanishing there) and is such that in(V) = 0 if and 
onlyVel(B2).VLs(X). 

Proof. Again this is just a matter of examining the behaviour of the vector 
field VQ, in (3.11). Using the coordinates of (3.11), in the interior of i^C^Ls) 
ilge = pip2 so the restriction of (ilge)""1!^ to f = 0 is just 

(3.17) RN(Vb) = ^. 

This shows it to be smooth and non-vanishing up to both boundaries of 
B2. □ 

Thus the two maps i?2 and RN together capture the full normal operator 
at B2{XLs). 

Let us now calculate quite explicitly the form of the Dirac operator and 
the Laplacian in local coordinates near the boundary hypersurfaces of XLS- 

Choose a product decomposition of a neighbourhood of H C M and let 
(x,y) be corresponding coordinates, where y denotes local coordinates on 
H. Write p for local coordinates on M. 

Lemma 3.5. We have the following expressions in coordinates for the Dirac 
operator and the Laplacian near the boundary hypersurfaces of X^ : 

(i) Near J5i, and away from B2, using coordinates y, r = sinh_1(^/€) 
and ias e, we have 

(S-iS) A. ,„,2 

g£ = 7(-iVr) + %H + v ■ Q, 

Ae = -{Vr)2 + AH+vQ' 

where v is a function vanishing to infinite order at this face and Q, Q' are 
Ls-diiferential operators of order at most one, respectively two. 

(ii) Near B2, using coordinates y, s = iase • sinh_1(a;/e) and iase, we 
have 

9e = ias e • 7(-tVs) + 3H + v • Q, 

Ae = -(iase)2{Vs)
2 + &H + v-Q' 
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with v, a function vanishing to infinite order at B2 and Q, Q' as above. 
(iii) JVear i?o, using coordinates p and ias e, 

(3.20) V< = Zo + v.Q 
A€ = Ao + v-Q' 

with v a function vanishing to infinite order at BQ and Q, Q' as above. 

Proof. If h in the definition of the surgery metric is a product metric in 
\x\ < S for some defining function a; for H, then (3.18), (3.19) follow easily 
from (3.10) - (3.12). So write 

h = hij(0, y)dyldy^ + x ■ h'^x, y)dyldy^ + h"(x,y)dxdyj + h"'(x, y)dx2 

= ^i(0> y)*/W + x ■ h'ijix, y^dy3 

+ Vx^7 h''{x,y)-T^=dyj + (rr2 + <?)hm{x,v)-    ** 
V^T?  ^      ' '      ^'^(^ + 62) 

giving the metric in terms of the smooth surgery form dx/\/x2 + e2. The lifts 
to XLS of #, \/x2 + e2 and {x2 + e2) vanish to infinite order at Bi and B2 so 
only contribute to 3 or A a term of the form v • Q or v • Q'. The first term 
is a product metric in a collar neighbourhood of H so gives the principal 
terms. Hence (3.18) and (3.19) are established. (3.20) follows because in 
the interior of So, the surgery metric ge = go + v • g' with v vanishing rapidly 
on BQ and gf smooth on X^. □ 

3.4. Models. 

The Lie algebra homomorphisms in (3.13) - (3.15) extend to homo- 
morphisms of the enveloping algebras and define three of the four (closely 
related) 'model problems' we need to discuss in order to invert the original 
operator. 

Proposition 3.6. For the Dirac operator (Laplacian) of the metric g€ the 
normal operator Ro((5e) (Ro(Ae)) is the lift to Miog of the Dirac operator 
(Laplacian), 9o (^0)5 of M for the exact b-metric go] the normal operator 
Ri(de) (i?i(Ae)) is the lift to H\og of the indicial operator of do (Ao) as 
an M+ -invariant operator in H, the normal bundle to H in X; and the 
restriction operator i?2(5€) (i?2(Ae)) is <3# (A#), acting on the leaves of 
B2(XLs). 
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Thus the first three model problems are just the Laplacian on M and its 
indicial operator (in two guises). The fourth model problem arises from the 
reduced normal operator of Lemma 3.4. 

Proposition 3.7. Let U be the orthogonal projection onto the null space 
of^H and let s be the coordinate in (3.5). IfuE C00

(^(XLS)) is in the 
range of U and u is any smooth extension ofu to XLS, then 

(3.21) RN(S)u = n ((iase^Su \ B2{XLs)) = yDsu, 

independent of the choice of extension. Similarly, let ft be the orthogonal 
projection on the null space of AH, and let W be a vector Geld normal to 
B2 tangent to s = y = constant. IfuE C00(B2{XilS)) is in the range of ft 
and u is an extension ofu to C00(XilS) such that AH{WU \ B2) = 0, then 
Au vanishes to second order at B2 and 

(3.22) RN{A)u = ft ((iase)-2Au\B2(XLs)) = D*u, 

independent of the choice of extension. 

Proof. In the interior of J52, we can use 5, y and iase as coordinates. Then, 
writing u as a Taylor series in ias e off B2 and using the coordinate repre- 
sentations of 3 and A in (3.19), the proposition follows. □ 

The fourth model operator is therefore the ordinary differential operator 
7^)5 (D*) acting on smooth functions on [—1,0]U[0,1] with values in the null 
space of <3# (A#). In fact this operator comes with boundary conditions 
which turn it into an unbounded self-adjoint operator on the interval [—1,1]. 
To discuss these we need to recall, from [22], some properties of the 'extended 
L2 null space' of an elliptic operator. Here the cases of the Dirac operator 
and the Laplacian are somewhat different, so we discuss them separately. 
Let us treat the Laplacian first, as it is the more complicated case. Consider 
the null space of A^ on the weighted L2 space x~6Ll(M±), for 6 small. 
Each element v of this null space has an asymptotic expansion 

(3.23) AjfV = 0, v e x-dL2
b(M±) => v = vi logx + VQ + v' 

near H, Anivi) = 0, v' e xsL2. 

These generalized boundary values define a map into Ker(A#) © Ker(A#); 
the range will be written A±. It is necessarily a Lagrangian subspace 
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of Ker(A#) © Ker(A;y), so in particular has dimension equal to that of 
Ker(A#). For S > 0 small enough this gives a short exact sequence 

(3.24)   0 —> \v e x6Ll(M±)i AQV = o} —■> 

—> {v e x-6L2
b(M±); AQV = o} —» A± —► 0. 

This Lagrangian subspace defines the boundary condition for the reduced 
normal operator. Prom these Lagrangian spaces we define two subspaces of 
Kei(AH) : 

A£ = {fi'eKer(A2r);(ul,0)6A} 

^ A£ = {u" e KeiiAnh 3 (tx', tx'1) G A} . 

Clearly the sum of the dimensions of Aj? and A^, is equal, for either sign, 
to the dimension of Ker(A#). It was also shown in [22] that A^ and A^ are 
the ±1 eigenspaces of the scattering matrix associated to AM± at A = 0, so 
the boundary conditions are determined by the scattering matrix. 

To understand the boundary conditions associated to the fourth model 
operator, we prove a lemma concerning approximate small eigenfunctions u, 

by which we will mean u 6 C00
(XIJS; ^(X^)) such that (A — (ias e)2z2)u G 

i. 

PoPiP^^C^Ls; fi|)(^Ls))- Here, 'small' refers to the fact that the eigenvalue 
goes to zero with ias e. We shall see in section 6 that each such u is indeed 
a good approximation to a surgery eigenfunction. For such u we have by 
Proposition 3.7, A# (u \ B2) = 0, so u \ B2 can be regarded as a Ker(A#)- 
valued function u on [—1,0]5 U [0,1]5. 

1 

Proposition 3.8. Suppose u G C00(Xjja;ilf)(Xi,3)) satisfies 

(3.26) (A - (iase)V)u G fftfifiC^iXui 4(*Ls)). 

Tien u is C00 on [-1, l]s, with 

(3.27) (D2
s-z2)u = 0, 

(3.28) a^d   •ll—^.JMIc-ueA;, 
u\{s=+1} G A^, Dsu\{s=+1} e A^. 

Converseij, ifu satisfies (3.27) and (3.28) then there is an extension u sat- 
isfying (3.26). 
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Proof. We first show that u and dsu match across s = 0. Using the local 
coordinates iase, r = sinh~1(a:/e) and y near J5i, we have by (3.18) (A — 
(iase)2^2) = — (g^:) + A# plus terms of second order. On JBI, U \ Bi is 
bounded, and (A/f — (^:)2)(^ \ Bi) = 0, so u \ Bi must be constant in 
r; hence the values of u \ B2 match across 5 = 0. We also have (A# — 

{if?) (teascti) r Si) = 0, and (ftaa.u) t #1 = r ■ (apiu) E r • C00^). Thus 
5ias€u is linear in r so can be written {{d\^eu) \ B\) = a + (3r. It should be 
noted here that we are taking the derivative c?iase keeping r and y fixed, not 
lifting diase from X^. Hence 

Thus 5su also matches across 5 = 0. 
A similar argument on B2 and BQ shows (3.28). Since u \ BQ 6 Ker(A^j) 

and is bounded, the boundary value u f BQ H B2 6 A^. Near BQ H -82 we 
can use coordinates ^ = ilga;, iase and y. Then by (3.20) (A — (iase)2z2) = 

— (^2^) +^M 
UP to terms of second order. We therefore have A^F(9iase7i \ 

Bo) = 0, and (9^^) f So = T1^) € r1^00^), so 

£\B&nBo = Z-7i2±-T\BonB2eA£. as a(ias e) 

This establishes (3.28). Finally, we show the smoothness of u. Near the 
interior of B2, using 5, iase and y we have, by (3.19) (A — (iase)2^2) = 
(ias e)2 • (D2 — z2) + AH up to terms of infinite order. Since (A — (ias e)2^2)^ 
vanishes to third order on #2, 

The left hand side is in Ker(A#) and the right hand side is orthogonal to 
the null space, so each must vanish. This gives (3.27). Since u satisfies a 
second order ordinary differential equation and u and its derivative match 
at 5 = 0, u extends smoothly across 5 = 0. This yields the necessity of (3.27) 
and (3.28). 

To prove the sufficiency, we reverse the argument. The discussion above 
yields the unique first and second terms in the Taylor series off BQ and Z?i, 
which are compatible with the given u and are annihilated by the normal 
operators JRO(A), i?i(A). These are also compatible with taking dp2u \ B2 = 
0. Then, by Propositions 3.6 and 3.7, u satisfies (3.26). D 

The argument to establish the boundary conditions for the Dirac opera- 
tor is similar, but less complicated since it is a first order operator. In this 
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case, we have as with A that if S > 0 is small enough each element of the 
null space of <3o on the weighted L2 space x~sLl(M±) has a decomposition 
near the boundary 

dQV = 0, v e x~sLl(M±) =» 

v&y) = vo(y)+v'(z,y), dH(vo) = 0, v' 6 x5L2
b(M±). 

The boundary value VQ defines a map into Ker(<3#); let us call the range 
A^j-. It is a Lagrangian subspace of Ker(S^) with respect to the symplectic 
structure on Ker(S^) given by the operator 7 = c\{dx/{y/x2 + e2). Then we 
have for the Dirac operator a result analogous to Proposition 3.8: 

Proposition 3.9. Suppose u 6 C^^Ls) satisfies (96-(ias6)^)^ = 0. Then 
u isC00 on [-1,1]*, with 

(3.29) {jDs - z)u = 0, 

(3.30) and   _{       ' 
^|{s=+i} G A3,+- 

The proof proceeds completely analogously to the first part of the proof 
of Proposition 3.8, so it is omitted. 

4.   The double space and the pseudodifFerential calculus. 

4.1.   Preliminary remarks. 

In the previous section, Ls-differential operators were defined. In this sec- 
tion, we set up a calculus of pseudodifferential operators adapted to 'surgery 
geometry', in the expectation, justified below, that the generalized inverses 
of elliptic Ls-differential operators will lie in the calculus. 

Our strategy for constructing the resolvent of Ae is: 
(i) Construct a parametrix G such that 

(4.1) (Ae-A2)Gf = Id-i?, 

where R is a 'small' remainder (residual operator), 
(ii) Invert Id —R using the Neumann series: 

(Id-i?)"1 = Id + i2 + R2 + • • • = Id+ 5. 
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(iii) Write the resolvent as 

(A€-A2)~1 = G.(Id+5). 

To carry out this program, we need to identify a space (an ideal) of 
residual operators which 'iterate away', that is, such that the Neumann 
series makes sense, is summable and sums to an element of our calculus. We 
also need to understand the compositions Ae • G, although this is easy since 
A€ is a differential operator, and G - S. In the rest of this section we proceed 
to set up this machinery to carry through these computations. 

4.2. Logarithmic Double space. 

By analogy with the logarithmic single space, define 

(4.2) *2.=(ja=(«)0tb- 
Recall that the surgery double space of Part I is 

(4.3) 
Xs

2 = [X2 x [0,eo];#2 x {0};X x H x {0};ff x X x {0}] . 

By Lemma 2.8, the b-fibrations IT* L and TT
2
 R : X2 —> Xs lift to b- 

fibrations TT^S^ and TT^J^ : X^ —> XLS, such that the following diagram 
commutes: 

*Ls- 

X, 

•x, 

•s,L 

2     wLa,R 

Ls 

xl 

Xhs 

Xs 

The lifted diagonal ALS C X2
S is a closed p-submanifold which is canoni- 

cally diffeomorphic to XLS; indeed, both projections TT
2
 L, TT

2
 R restrict to give 

the same diffeomorphism from ALS to X^. The structure algebra VLS(^0 

lifts from either factor to a Lie algebra of smooth vector fields transversal 
to ALS- 

We shall label the new boundary hypersurfaces of X2 as JBII(X
2
), aris- 

ing from the first blowup of (4.3), BQI{X
2
) arising from the second blowup 

and BIQ{X
2
) arising from the third blowup. The lift of the boundary at 

e = 0 will be denoted i?oo(-X"s); the boundary over e = eo will generally 
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be ignored. We use the same notation for the boundary hypersurfaces of 
(^s)log and for the boundary hypersurfaces of Xls to which they lift. The 
remaining boundary hypersurfaces arise from the blow up of both codi- 
mension three and codimension two faces in the final step of the definition 
(4.2). The boundary hypersurfaces arising from codimension three faces will 
be denoted 2?22(^LS)> those arising from the codimension two faces will be 
denoted £21 (J&), Bl2(Xls), S33(*&,), BniXfo and BviXfo according 
to whether the face blown up comes from Bii(X%) fl Boi(X%), Bii(X%) fl 
B10(X*), BniXfinBooiX*), Bl{){X

2
s)^Bm{X2

s) or B^X^nB^X2). As 
usual the connectedness properties of these faces depend on the orientation 
and separation properties of H. 

We next discuss the structure of these faces.   Recall that B^X^) = 
M\og, BiiXis) = Hiog. 

Proposition 4.1.  There are canonical diffeomorphisms: 

(4.4) Boo {Xl) = (M2
th)it = [(Bl)tb; H2 n {x'/x - ±1}], 

(4.5) B1o{Xls) = (B1xBo)tb, 

(4.6) Boi{Xls) = (BoxB1)tb, 

(4.7) Bn {Xl) = (H2
tb)lt = [(S?)tb; H2 n {x'/x = ±1}], 

(4.8) B22 {Xls) = [(B2
2)tb; Afib, A^1], 

(4.9) B21(Xl^=B2xBu 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

B12(Xls)=B1xB2, 

B20 (-^Ls) = B2X BQ, 

B02 (-^Ls) = Bo x B2, 

B33 (X& = (B2)
2. 

In (4.8) Afib (AgJ) is the fibre diagonal (anti-diagonal) of 3%, for the tibra- 
tion over [0,1], iifted to {B2)ih and x, x' are the original boundary defining 
functions for H on the left and right factors of X respectively. 

Proof. The maps KLSL 
an<^ ^LsR restricted to Bmn map to Bm and Bn 

respectively, for (mn) 7^ (33). In fact (^s L^LS R) ^
S
 from ^e interior of 



Analytic surgery and the accumulation of eigenvalues 157 

Figure 2. 



158 Andrew Hassell, Rafe Mazzeo and Richard B. Melrose 

Bmn to map diffeomorphically to the spaces indicated.   The space #33 is 
canonically diffeomorphic to H2 x H2 x [0,1]2 so (4.13) follows. D 

4.3. Densities. 

Lifting the canonical isomorphism 

7rL* 06 (M x [0,60]) ® 7rR*nb (M x [0, eo]) = Qh (M
2 X [0, eo]) ® fi& ([0, CQ]) 

to the (original) surgery spaces one obtains a canonical isomorphism 

(4.14) 
(irlLy Qb (Xa) ® (7rs

2
ijR)* fi6 (Xs) = nb (Xs

2) ® fi6 ([0, eo]). 

By Lemma 2.10, the lift of these density bundles to the logarithmic 
surgery spaces gives the canonical isomorphism 

(4.15) 

«L)* ^*LS ® ««)* "^^LS = nD(xls) ® nc {xls). 

The square root of this density bundle equation, 

(4.16) 

«Lr4(*LS) ® «fl)*4(^Ls)=nuxi) ® fii (^D. 
will be used in subsection 4.5. 

4.4. Logarithmic Surgery Pseudodifferential Operators. 

The purpose of the logarithmic double space is to carry the Schwartz ker- 
nels of logarithmic surgery pseudodifferential operators (Ls-^dos for short). 
These will be defined directly in terms of the regularity properties of their 
kernels.   An Ls-pseudodifferential operator acting on half-densities on M 
(and giving a half-density depending on e) will be defined to be a distribu- 

1 

tional section of ^(X^g), conormal to ALS and with specified behaviour at 
the boundary of X2

S. As motivation we first examine a simple example. 

Example 2. The kernel of the identity operator acting on multiples of the 
metric half-density bundle on M is, in the original coordinates (x, y) near 
if CM, 

Id = 8x(x') • Sy(y
f) • \dx • dx' • dy • dy'\* . 
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1W 
I dell and analyze Let us multiply this by the formal factor 

the resulting half density on X£s. Near BQO PI B33, using coordinates x'/x, 
P33 = ilg^) and poo = ilge/i033i a short computation gives 

Id- 
d(ilge) = s^-i)-W 
(ilge)2 

and near .B33 fl J5ii, with ^33 

(4.17) 

d(ilge) 

d(x'/x)   dpsz   dpoo 

P33 Poo x'/x 

ilg(e/x) and pu =ailge/pz3, 

dy ■ dy' 

Id- 
(ilge)2 

= <5 1   • W) 
d(x'/x)   dp^s   dpu 

x'/x ph P2n 
dy - dy' 

Thus the kernel of the identity is, in these regions and hence everywhere, 
a distribution supported on and conormal to ALS; it is clearly elliptic as a 
D-density on Xls. 

Since VLS lifts from the left factor of X^ to be transversal to ALS, LS- 

differential operators correspond precisely to Z?-densities supported on the 
diagonal with arbitrary polynomial symbol. 

We define the set of Ls-^dos of order A; and index family /C (formally) 
acting from sections of E to sections of F to be the sum of two pieces, the 
small calculus of order k and the boundary terms of index family /C : 

(4.18) 

**f (X; E, F) = ^Slsmi (*; E, F) + ¥*• jbdy (X; E, F) 

When the bundles E and F are equal or trivial (or clear from the context), 
we simplify the notation to tff (X;E) or V$f(X). 

The first part of (4.18), the small calculus, is the 'microlocalization' of 
the space of Ls-differential operators. To take care of the density and bundle 
factors consider the following bundle (the kernel density bundle) over X^ : 

(4.19)    KD(E, F) = 13* Rom{E, F) ® 

®««r(4(*Ls)) ® «Lr(n^ (*!*)) ® 4^) 
= «fl ® ^YiRomiE ® fl^ (XLs)), F ® atf (XLs)) ® 4(^LB)- 

Here, on the first line E and F can be either bundles over M or bundles 
over Xs or bundles over XLS with /? interpreted appropriately, in all cases the 
lift of the homomorphism bundle can be interpreted as a bundle over X^. 
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i 
On the second line E and F are bundles over X^. In case E = F = fl^ 

is isomorphic to the lift to X^s of £t£ from X* the kernel density bundle 
i 

reduces canonically to ^(X^)^ as is to be expected from (4.17). Then the 
operators in the small calculus, defined directly as kernels, are 

(4-20)   ^S)Smi (X; E, F) = ^Ke I*"? {Xls; ALs; KD(E, F)); 

K vanishes rapidly at all boundaries disjoint from ALS f - 

This notation means that K is 'classical' conormal (1-step polyhomoge- 
neous) to ALS of order k — 1/4, with values in the kernel density bundle. 
The '—1/4' in the order comes from the the extra e dimension; this space of 
kernels corresponds to operators of order k in the usual sense. 

The kernels in the boundary part of (4.18) are smooth in the interior 
of -X^s (i.e. have no diagonal singularities) and are polyhomogeneous at all 
boundaries, with index set K,(Bg) at Bg : 

(4-21) *£s,bdy (X; E, F) = A^s (J&; KD(E, F))) . 

The fully residual space, ^LsbdyC^O' ^s ^1G case wh616 aU entries of K, axe 
empty, corresponding to rapid decay at all boundary faces over e = 0, in 

powers of ilg e. Notice that #Ls~ml (
x\E,F) = *Ls,bdy (xi EiF) where ^ is 

the index family corresponding to smoothness up to all boundary hypersur- 
faces meeting ALS and rapid decay at all others. 

4.5.   Action on Distributions. 

In general the action of A G tfjf (X;E,F) on u G C-00^^;^) is 
defined by a generalization of the formula l(Au){x) = / A{x, y)it(y)rfy': 

(4.22) 

Au-n = (7rLS)L)*     A ■ (7rLS)L) */i • (irLs,R)*u ■ 
rf(ilge) 
(ilge)2 

Here /z G C00(XilS] O^) is a non-vanishing section. Equation (4.15) and the 
definition of the kernel density bundle imply that the argument of (TTLS L)* 

may be taken to be an F-valued (distributional) density. Pushing forward 
yields an F-valued density on XLS, which when divided by /i is a distribu- 
tional section of F independent of the choice of fi. The Pushforward the- 
orem, Theorem 2.3, implies that \I>£S)Sml (X] E, F) maps A^  (X^E) to 
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A^H (XLs; F) and that *£|bdy (X; E, F) maps A^g {Xhs; E) to ^hg(XLs; 
F) where Q is determined by )C and F. These results are not essential here, 
so the details are omitted. 

4.6. The Triple Space. 

The purpose of the triple space is to allow the direct analysis of the 
composite of two Ls-^dos. Composition of integral kernels requires three 
sets of variables, one of which is integrated out. To integrate in the context 
of Ls-ipdos we need a 'triple space' with three b-fibrations back to the double 
space; by the Pushforward theorem the pushforwards under these maps will 
preserve polyhomogeneity at the boundaries. 

The triple logarithmic space is defined by exact analogy with the single 
and double logarithmic spaces. It is obtained by further blowup from the 
triple space X^ considered in Part I and [21]: 

(4.23) xL = «)* = ((^)log) tb 

Another application of Lemma 2.8 shows that there is a commutative 
diagram: 

(4.24) XL 

'Ls.C 

'LS.F 

XL- 

xL 

-x 

+x2 

■x? 

Ls,S 

xL- 

%,s 

-X 

where the maps 7rLS F, TT^S C and TT^ S are simple b-fibrations. 
The degrees of boundary hypersurfaces of XL are defined as for the 

double space, i.e. d(H) is the codimension of the boundary face of X^ from 
which H arises by blov/up. Lemma 2.10 gives 

^D(XLS) = 7rit*fi&X 

for the lift of the b-density bundle of X^ to XL, and this in turn gives a 
canonical isomorphism 

(nls,FynD(xls) ® «cr<M*Ls) ® «srnD(xL) = 
= (nD(xl))2®K*ncxls. 



162 Andrew Hassell, Rafe Mazzeo and Richard B. Melrose 

The square root of this density bundle equation 

(4.25)     (<F)*4(*Ls) ® (<c)*4(*Ls) ® «s)*ni(^L.) = 
= nD(xls)®7r*nlxls 

is used below in the composition formula. 

4.7.    Composition. 

The composition of two Ls-^dos is in general defined by a formula similar 
to, and arising from, (4.22) for the action on a distribution 

(4.26) 

d(ilge) 
AB.u = «c)*    «c) V • «F)M • «S)*S 

(ilge)2 

Here, i/ is a nonvanishing Ls-half density on X^. Assuming A G S£!L'S (X; E, 

G) and B G ^s (-^J ^' F) the terms in the kernel bundle arising from ho- 
momorphism bundles compose appropriately, so the expression in the large 
parentheses is, by (4.25), a section of the bundle 

«c)* Hom(E ® n~J(xLs), F <g> n~J(xLs)) ® niixfo. 

Therefore it can be pushed forward, at least over the interior, to X^ as 
is • (AB) where AB is a section of the kernel bundle KD(£?, F). 

Theorem 4.2. Tiie composition of logarthmic surgery pseudodifferential 
operators is well defined and 

(4.27) tf Jf (X; E, G) o *Jf (X; G, F) C ^^'^ (X; E, G) 

where the dependence ofTZonlC and £ is determined by the combinatorial 
properties of the maps n^ 0 for O = F, 5, (7; namely for each hypersurface 
H> e Mx^J 

(4.28) n(H')c 

U (««5 W) + A<F W) " (dW - ^(^'))) • 
{F6Mi(^s);5rL,c(^)='ff'} 
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The 'extended union' in (4.28) is defined by 

Q\Jn = gu.mj{(z,p)\3(z,qi)eg 

and (z, #2) £ fi such that p = qi + q2 + 1}; 

the operation is commutative so extends uniquely to any number of index 
sets. Notice that the degrees d(H) and ^(jff7) are actually the codimensions 
of the boundary faces in X^ and X^ from which the hypersurfaces H and Hf 

arise. To prove this result some information on the combinatorial properties 
of the stretched projections is needed, so we start with 

Lemma 4.3. IfH disconnects M then any Q G Mi(Xg) is determined by 
its images in Mi(Xs) under the two stretched projections and any R G Mi 
(X^) is determined by its three images in Mi(Xs) under the three stretched 
projections; furthermore any element of Mf(Xg) (respectively M'(Xf)) is 
determined by its 'hull' in Mi(Xg) (resp. Mipff)), this being the set of 
boundary hypersurfaces which meet a neighbourhood of any one of its inte- 
rior points. 

Proof. The fact that a boundary hypersurface of X^ or Xg is determined 
by its projections is easily seen from the definitions of the spaces and maps. 
The assumption that H disconnects M also shows that any intersection of 
boundary hypersurfaces of one of these spaces is either empty or consists of 
exactly one boundary face, proving the second part of the lemma. □ 

Proof of Theorem 4.2.    The composition formula (4.27) is readily derived 
from adjoint symmetry and the three special cases 

(4.29) 

*Ls,smi (*; E, G) o ¥LSiSml (X; G, F) C ^mi (*! E, F), 

(4.30) 

*Ls,smi (X;E,G) o ^shdy (X- G,F) C *fS)bdy (X;£7,F), 

(4.31) 

*£i,bdy (*! E, G) o ^sMy (X; G, F) C *£fbdy (X; £7, F), 

where TZ is given by (4.28). 
The first of these results shows that the small calculus is closed under 

composition. Now (4.29) follows easily from the pullback and pushforward 
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theorems (with the extension discussed at the end of section 2.3) and the 
following combinatorial fact concerning the boundary hypersurfaces at which 
an element of the small calculus can have a non-trivial expansion. 

(4.32) 

If Q G MI(XLS) is such that the interiors of T^^piQ) and ^L siQ) 

both meet ALs then ^F{Q) = 7r£S)5(Q) = 7r£S)C(Q). 

Indeed if J' is the index family on X^ corresponding to the small calculus 
then it follows from (4.32) that 

(4.33) J D «a)# («F)*J ■ «s)*j) ■ 

To see (4.32) recall that Mi(X£s) = M7^3), M^X^) = M'(X2
S) and 

MI(XLS) = M^Xs) and that the stretched projections between these spaces 
induce the same maps (e.g. the map induced by 7rLsF from MI(XLS) to 
Mi(X£s) is the same as that induced by 7r3F from M^X*) to M'p^)). 
An element 5 G MI(XLS) has interior meeting the diagonal if and only if 
the same is true of the element B G M'{X2) from which it arises by blow 
up. The interior of B meets the diagonal if and only if each element of its 
hull in Mi{X2) has the same property. Thus if Q G Mi^X^) is to have 
the stated property that its projections under 7rLS F and TT^S S should both 
have interiors meeting the diagonal then the element Q1 G Mf(Xl) from 
which it arises must have hull in Mi(X|) each element, P, of which has 
projections under 7r3F and TT

3
S into Mi(X2) with this same property. It is 

shown in Part I (and in any case is easy to see) that this implies that the 
two projections of P into Mi{Xs) must be the same. Thus any element of 
the hull of Q1 must have all three projections into Mi(Xs) the same, hence 
the three projections of the hull of Q1 into M'(X;) must be the same. Since 
a b-fibration is open, the hull of the projection is the projection of the hull, 
hence all three projections of Q as elements of M'(XS) are the same; this 
proves (4.32) and hence (4.29). 

The second result shows that the boundary terms, for any index family, 
form an ideal over the small calculus. Again this is a direct consequence of 
the pullback and pushforward theorems together with a combinatorial fact 
generalizing (4.32), namely 

(4.34) 
Given S G MI(XLS) there is exactly one Q G Mi{X^) such that 

Kh^siQ) — S and ^Ls.piQ) has interior meeting ALS 

and then ittsidQ) — &- 
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This also follows by using an argument with hulls justified by Lemma 4.3. 
Thus if Q has the stated property then so does an element of the hull, in 
Mi(Xg) of the element Qf 6 M^X^) from which it arises, i.e. each element 
of this hull has image under 7r^F having its two projections into Mi(Xs) 
equal. It follows that the projections of Qf into Mf(Xg) under TT^ S and TT^ C 

must have the same hulls, and therefore must be equal. Thus the projections 
of Q into Mi(Xls) under 7rLS S and TT^S C must be equal, which is the content 
of (4.34). 

The third result, that the boundary terms themselves compose with the 
index families controlled by (4.28) is a direct translation of the pullback and 
pushforward theorems. □ 

This theorem includes all the composition results listed in section 4.1. 
Of these, the identification of A • G for G G ^Ls' C^! ^0' ls ^n any case 

easy to understand, since composition on the left by an Ls-differential oper- 
ator has an alternative description in terms of lifting Ls-vector fields using 
7rLS L : XLS —> XLS, and letting them act on G. It is then immediate that 
composition with A€ gives a map 

y-;>£(X;E)->^(X;E). 

4.8.   An iteratively-residual ideal. 

We shall only explicitly construct the leading terms of the parametrix 
for the resolvent of Ae. The remainder term from this construction will be 
a harmless 'error term' provided it can be iterated away. Thus we look for 
an index family 6 which defines an iteratively-residual ideal IR in the sense 
that 

(4 35) lR = *^'bdy (X; E) SatisfieS ^ C ^'^ {X; E) 

where £& C S and Sk > rk —> oo as k —> oo. 

Lemma 4.4.  There is a natural index family, £, satisfying (4.35) and such 
that 

(4.36) 

f if d(H) = 1, then (n, 0) e €(H) for n > 1 and (1, k) 6 £(H) =>• k = 0; 

[ ifd(H) > 2, then (n, 0) G €{H) forn>2 and (2, ib) G £{H) => k = 0; 
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Proof. Consider the smallest index family for which (4.36) holds, and denote 
it by F. Thus ^(H) is the index sets {(n, 0)} where n > 1 if d(H) = 1 and 
n > 2 if d(H) > 1. Let J^ be the index family given by (4.31) for the square 
of the space ^Ls^dy ^' ^ ' ^nce *^ie b-fibrations involved are all simple this 
is an integral index family. Prom (4.31) in order to have (n, k) G ^{H') 
then must exist elements (n7,0) G ^(HF) and (n", 0) G ^{Hs) such that 
n > n1 + n" — d(H) + d(Hf) where i?', Hp and Hs are the images of 
H G MI(XLS) under the three stretched projections. 

Now for any hypersurfaces H G Mi(X£s) and H' G Mi(X^s) with 
7rLso(j^) == ^ ^ere are corresponding boundary faces h G M^Xf) 
and /i' G Mf(X^), from which they arise by blowup, which must satisfy 
71 s oCO :=: ^^ Under this map the codimension can decrease by at most 1. 
Thus the difference of degrees d(H)—d(Ht) is at most 1. Furthermore, if this 
difference is 1 then under one of the other two projections the image must 
have codimension at least 2. On the other hand if d{H') > 2 then all three 
image of H must have degree at least 2. Combining these combinatorial facts 
with the definition of J7 it follows that JF2 — 1, also satisfies (4.36). In fact 
this argument shows that if JC and £ are two index families satisfying (4.36) 
then the index family TZ obtained from (4.28) is such that 11—1 also satisfies 
(4.36). Let Fk be the index family arising from J7 by fc-fold composition. 
Then the minimum order in JFfc is J7 + &, so 

(4.37) £ = (jFk 
k 

is an index family satisfying the conditions of the lemma. □ 

Thus we can consider an iteratively-residual ideal XR as in (4.35). For 
such an ideal it is natural to expect behaviour similar to that of a Volterra 
operator. 

Lemma 4.5. If R G 1R as in (4.35) then in e < eo for some eo > 0 depending 
on R 

(4.38) (Id -R)'1 = Id -5, S G 1R. 

Proof. If R is an element of the residual space ^s bdy (^' ^) then R is sim- 
ply a smoothing operator on M depending smoothly on ilg e and vanishing 
rapidly as ilge -» 0. It then follows that (Id —i?)-1 = Id — S with S an oper- 
ator of the same type in e < CQ. If R G XR then the formal Neumann series 
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for the inverse of Id — R : 

(4.39) Id +R + R2 + • • • + Rk + • • • 

converges asymptotically, in view of (4.35). Thus the series can be asymptot- 
ically summed to an element Id — S\ with S' G 1R such that (Id —i?)(Id — S') 
= Id-R' with R' residual. Thus (Id-i?')-1 = Id-S" with 5" residual so 
S = S' + S" - S' o S" e IR, proving the lemma. D 

4.9. Symbol Map. 

In the ordinary pseudodifferential operator calculus, the symbol map is 
used as a tool to invert elliptic operators (see [16], Chapter 18). In the log- 
arithmic surgery calculus, we have an analogous symbol map on the small 
calculus. The symbol of A G ^Lssmi(^0 is '^ lading part of the Fourier 
transform of the kernel of A transverse to ALS; this Fourier transform is, by 
definition of \I>Ls smi(^0> a classical symbol. To make the density factors work 

1/2 
multi- out, we should divide A by the formal half density factor 

ply by the half-density exp-^^'/zH'H*/-*/)) ^dy'd^dr)]^2 and integrate 
over xf and y', obtaining a half-density. Thus ak{A)(p^,r])\^-dyd^dr]\1/2 is 
given by 

/ 
e-mog(x'/x)+V.(y'-y))A f     ^y/ _ y\ 

"0 (\y - y'\ log' 
dx'    , 
—dy 
x' 

dx 
dyd^drj 

Here p G ALS, ^ is a cutoff function and we use logfa'/x), y' — y for coordi- 
nates transverse to ALS- The half-density written here is a canonical factor 
on iV*ALs, so can be cancelled; the symbol then is a function on JV^ALS) 

which is polyhomogeneous on the fibres. As is to be expected it is the same 
as the lift of the symbol defined in Part I on As, lifted to ALS- The princi- 
pal symbol <Jk{A) is homogeneous of degree k and is independent of choice 
of coordinates. There is a quantization map from symbols of order k to 
^Lsmi^) given by inverse Fourier transform of the symbol in the (£,77) 
directions. Thus the symbol map may be used, as in the usual case, to 
solve operator equations P • G = Id, P G *Lssmi(^0 ^iptic^ UP to errors in 
^LiTsmiC^O- However, such errors are not uniformly compact as e | 0, since 
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elements of ^LsMniC-^") ^0 not vanish at the boundaries JBQO? Bn or JB33. 
To construct parametrices for elliptic operators one therefore also needs to 
solve model problems at these boundary faces. 

Lemma 4.6. Ac is an elliptic Ls-ipdo. 

Proof. Away from Bi and B2 this is true because the metric is non- 
degenerate. At Bi and B2 we have, up to a symbol of at most second 
order vanishing to infinite order (in Taylor series) at H : 

a2(A)(^7/) = |^ + |77|
2.. 

□ 

4.10. Model Operators. 

In this subsection we define model operators for A G \I/Lg (X). The model 
operator Nmn at face i?mri is in principle just the restriction of A to 5mn. 
The restrictions are defined as at the end of section 2.1, that is, by division 
by the canonical factor \dpmn/(pmn(i[ge)d)\ ; this maps into the degree 
half density bundle as described in section 2.1. 

These model operators have different characters. The first of them, 
TVQOJ maps into a blown up version of the cusp pseudodifferential calcu- 
lus, \IV0(Miog). This set of operators (Schwartz kernels) is, by definition, 
the space of D-half densities on the cusp double space 

\M2
log',H

2;H2nW/x = l}] 

conormal to the diagonal. Equation (4.4) shows that BQQ is canonically this 
space with the boundary of the 'anti-diagonals' also blown up. It also shows 
that it is a blowup of the b-stretched product Mjj of [22]. Under this blowup, 
b-pseudodifferential operators lift to cusp pseudodifferential operators; all 
the models considered in this paper will be lifts of b-pseudodifferential op- 
erators. The model iVn behaves analogously for H. 

The model operator ^33 maps *Lssmi(^0 to a family 0f operators in 
\I/£sml(iJ) parameterized smoothly by 5, the coordinate in (3.5) along ALSH 

533. This is because the lifts of VLS from both the left and right are tangent to 
the leaves s = constant (= s'). The operator on each leaf acts by convolution 
on H. For an operator B lifted from *Lssmi(^0> ^33 (^) Wl^ be the indicial 
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operator of B (in the terminology of [22] and Part I) on each leaf on which 
s takes a constant value, but in general the N^A) will depend on 5. 

The other models JVbi, Nio, N12, iNfei, ^02, ^20 and JV22 map ^{X) 

to the space Croo(iVmn;fij^ BmTl), since these faces are disjoint from the 
diagonal. 

To construct the resolvent of A we will need to know the model operators 
of A • G. 

Lemma 4.7. In the notation of Proposition 3.4 we have 

(4.40) Nmn(A • G) = Rm(&) • Nmn(G), (run) ± (33); 

(4.41) iV33(A • G) = Hi (A) • AMG). 

Proof. Lemma 4.1 identifies the various boundary hypersurfaces Bmn ^ B33 
as blown up products of boundary hypersurfaces of XLS- Since A acts on G 
by products of VLS-vector fields lifted from the left, which are tangent to the 
boundary, (4.40) follows. On £33, using coordinates s, f = log^'/x), y, 2/, 
the vector field Vo lifts from the left to be Jl, so (4.41) follows. □ 

Finally, we discuss the reduced normal operator RN(A). The following 
is a double space version of Lemma 3.7. 

Lemma 4.8. Suppose-iV^AG) = 0, that is, A#(iV2n(G0) = 0. Let W be 
a normal vector field to B2n tangent to the leaves {s,y = constant } and 
tangent to the right stretched projection to X^. If AH(W(G) \ I?2n) = 0 
then AG vanishes to second order at B2n a^d 

<4-42)       "*• ((itto=«<*.(«»• 
The result follows from Lemma 3.7. 

5.   One-dimensional surgery resolvent. 

We return to the reduced normal operator of section 3.4. This model 
operator does not appear in Part I and is precisely the new ingredient which 
allows us to construct the surgery parametrix down to A = 0. 
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5.1. Scaling property. 

Let K(s,s'jZ)\ds • dsf\1/2 be the Schwartz kernel of D2 — z2 on the in- 
terval [—1, l]s, acting on functions u taking values in the vector space 
V — Ker(A#), with boundary conditions as in (3.28). To illustrate 
the scaling property of this operator, let K • Idgedg^1^2 be the kernel of 
(Ae — (iase)2^2) on V-valued functions defined on [—1,1]^ with surgery 
metric g£ = dx2/(x2 + e2) and with boundary conditions as in Proposi- 
tion 3.8. Arclength is 

dx . _   i x 
, n = smh    - 

Vx2 + e2 e 

so the length of the interval with respect to ge is 2sinh 1(l/e) = 2Le. 
Consider the function iase = l/sinh~1(l/e) = L"1. Then 

iase = ilg2e + Oblige)00) = ilge(l + (log 2) ilge)"1 + 0((ilge)00) 

is a (7°° function of ilg e, equal to it to first order; however as the discussion 
above shows, iase is a more natural function to use than ilge in this setting. 
Let s be the rescaled arclength, s = r/Le, so s G [—1,1] for all e. Then 
Ae = D2 = (iase)2!}2, so 

(iase)2(D*-z2)K = 8{r-r') 

= (iase)J(s — s'). 

Hence, using coordinates 5, s', K scales in e as (iase)"1 : 

(5.1) K(s, s', e, z) = (ias e)"1^, s', z). 

Let us now multiply K by the canonical half density factor 

»/=|^edi/erf(ilge)/(ilge)2|1/2 

and lift to the logarithmic double space XLS([—1, l]a;). 

Lemma 5.1. Tie lift ofK • v to X2
S x Cz is a D-half-density meromorphic in 

z, conormal to ALS and (iase)_1x smooth up to all boundary hypersurfaces; 
that is, K is a meromorphic family of Ls-ipdos with index family —1. The 
restriction of (ias e)K • v to B22 is the resolvent (D2 — z2)~l. 
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Proof. All these assertions follow easily from (5.1). Meromorphy in z follows 
from meromorphy of the resolvent K = (A — z2)~l. To show that it lifts 
to be conormal to ALS? observe that K(s,s',z) = — {\)\s — s7) + K' with 
K1 a smooth function of {s,s',z). Since 5 is a smooth function on XLS, 

(ias e)~lK'{s, s*, z) lifts to be (ias e)-1 x smooth on X^. We need only show 
that (iase)~1(^)|5 — s'l lifts to be conormal on Xls. This is clear away from 
e = 0, so we need only check this in Taylor series at e = 0. Near the interior 
of 5n, (iase)"1^ — s'l = IsinbT^/e) — smbT1 (x1 je)\. Since rc/e, x'/e are 
coordinates on the interior of JBH, this is conormal to ALS = {#A == xf/e}. 
Near £33 and JSoo? 

(iasc)"1^ - a') = (log(x/e) - log2 - log(xf/e) + log2 + 0(^pg§)) 

so (iase)-1^ — s'] = \log(x/x')\ + O(P^PQQ) which is conormal to ALS = 
{log(x/xf) = 0}. The last assertion follows immediately from (5.1). □ 

5.2. Scattering Matrix. 

Let us calculate the scattering matrix, as defined in [22], Chapter 6, and 
in section 6.2 below, for the two one-dimensional Laplacians iVo(A) = AQ 

on M± = [-1,01a. and M*- 0n [-M] and [O^1] Ao = -(xDx)2 is a b- 
Laplacian near x = 0, and looks like —D2 at x = ±1, with mixed boundary 
conditions as above. The scattering solutions of (AQ — z2)u = 0 are defined 
by analytic continuation from Im z > 0 by 

(A - ^2)5(0, z) = 0, with 5(0, z) = xiz<t) + ^ near x = 0, (j) G V, ^ G L2. 

To satisfy the boundary conditions, 5(0, z) must be a linear combination of 

{(^ + x-iz)v, {xiz - x-iz)w] v e A£, ti; G A^} . 

The scattering matrix S±(z) is the linear transformation that maps the 
coefficient of x"12 to the coefficient of xlz] thus S±(z)(v — w) = v + w and 
hence S±(z)v = v for i; G A^ and S±(^)ty = — w for ^ G A^. Hence 

5±(^)=projA2-projA^, 

independently of z. We also see from this that the smooth and logarithmi- 
cally growing null spaces of AQ are precisely A^ and A^. It follows that the 
reduced normal operator of Ae — (ias e)2z2 on [—1, l]x with boundary condi- 
tions as above is the operator D2 — z2 with the same boundary conditions. 
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In this model case, the reduced normal operator Reproduces' the original 
operator. 

5.3. Properties at the boundary. 

The boundary conditions associated to A imply that 

K(±l,8',z) eKom(V,A£) , 

dsK(±l,s,,z)eEom(V,A!l). 

Because A is self-adjoint, we also have 

K{s,±l,z) eHom(A£,V), 

ds>K(s,±l,z) G Hom(A£,F). 

Therefore, Z(±l, ±1, z)_ € Hom(A£, A^) and Z(±1, ^1, z) e Hom(A£, A^). 
Also, since (A - z2) • K = S(s - 5'), 

lim dsK(s, s\z) = Id + lim dsK(s,s\z). 
s'fs s'ls 

Hence 

Hom(A^,y) 3 ]xmda'K(s,l,z) = lim (a^l,^,^))* 

= -ld + lim(dsK(s,l,z)Y 

and lim^^i (dsK(s, 1,^))* G Hom(F, A^f). It follows that 

(5.2) ds,K(l - 0,1, *) = - proj A^ + ^(z) 

(5.3) <9SZ(1 - 0,1, z) =    proj A£ + A*(z) 

(5.4) dsfK(l, 1 - 0, z) -    proj A? + A(*) 

(5.5) a5Z(l, 1 - 0, zj = - proj A^ + A*(z). 

where il(z) E Hom(Ay, A£) 

Similar results hold at s = 5' = — 1. 

5.4. Eigenvalues. 

The spectrum of RN(A) is, by standard elliptic theory, a discrete se- 
quence 0 < ZQ < zf < • • • with each z2 of finite multiplicity.  The kernel 
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K(s, s^z) of (RN(A) — z2) is meromorphic in z with poles only at the 
±Zj. These poles are simple for all Zj ^ 0 with residue equal to {2ZJ)~

1
 times 

the projection onto the jth eigenspace and has a double pole at 0 if ZQ = 0, 
with residue zero and coefficient of z~2 equal to the projection onto the null 
space. This different behaviour at 0 is just the result of using z2 rather than 
z as the spectral parameter. 

We next discuss the eigenvalues of the reduced normal Dirac opera- 
tor, since these contribute to our formula for the limit of the eta invari- 
ant. Recall from section 3 that the reduced normal operator of 9e at B2 
is jDs acting on Ker(9#)-valued functions u on the interval [—1,1], where 
7 = c\(dx/y/x2 + e2) is the matrix (o_i) with respect to the splitting of 
the spinor bundle S = 5+ © S~ at i?2- This model operator has boundary 
conditions u \ ±1 G Ag^, where the Ag^ are the spaces of (7°° solutions (j) 
to <3M±0 = 0. Of course, Ag^ are the same as A^. 

Notice that if u is an eigenfunction of ^Ds with eigenvalue z then u = 
Aelzs + Be~lzs, where ^A = A and jB = —B. This satisfies the boundary 
conditions only if A + Be2iz e A? and A + Be'212 G Aj- But notice that 
Ae^z+k^s+(-l)kBe~^z+k^s also satisfies the equation and these boundary 
conditions, and so is an eigenfunction of jDs with eigenvalue z + ^L. Hence 
the eigenvalues of jDg are periodic with period ^. By WeyPs law, there 
must be precisely dimKer(9#) eigenvalues in the interval [0, TT). 

5.5. Heat kernel and large \z\ asymptotics of K. 

One can write down an explicit formula for the heat kernel e~*RN(A) 
using the reflection principle. This is a convenient way to obtain the large 
|^| asymptotics of K(s, 5', z) and to compute the eta invariant of RN(9). 

When reflecting 0 E V at s = ±1, one should take +0 if 0 6 A^ 
and —(f) if </> G A^; that is, in general one should take S±<l), where S± = 
proj Aj? — proj A^ is the scattering matrix for AM± at zero energy. There 
are four 'series' of reflections, originating from (/> at sf : they are 

{S+S-)kS+(l) at 4Jb + 2 - s', 

(S-S+)kS-<l> at -4fc-2-*', 

(S+S-)k(f) at 4A; + 5/ and 

(5-5+)^ at -4fc + 5/. 
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Thus e-mN(A)(s,5/) is given by 

i      ( 00 

(5.7) +e-l-4*+s'-*|3/«(5_5+)fc + e-|4*+2-*-8'|V4t()S.+iS._)fciS.+ 

+e_|_4/s-2-s-J!'|2/4t(5_5+)fcs,_j 1 

Prom this one can use the transform 

(5.8) (A-*2)"1- /    e-'V* <ft 

to obtain an infinite sum for the model resolvent K from which large \z\ 
asymptotics (Im z < 0) are easy to determine. Choosing a contour of in- 
tegration for (5.8) so that Ret > 0 and Refo2 < 0 consider the transform 
applied to a term 

1     e-\A±8-8'\*/4t . B 

of (5.7). l£\A±s-s'\ ^0 then 

f00      1     c-\A±s-s'\2/4tctz2
dt = _]_e-iz\A±s-s/\ 

Jo    y/^Jri 2iz 

is rapidly decreasing as \z\ -» oo, uniformly in any sector —TT + S < argz < 
—S. Hence, for (5,5') away from (1,1) and (—1, —1) the only term that con- 
tributes to (polynomial) asymptotics in z is the first, (47r£)_1/2e~ls~s/l /4*-Id 
and for (5,5') near (±1,±1), the only terms that contribute are 

1    (c-|—'I2/* Id +e-|±2-5-s'| 2/4* s±). 

Thus, performing the integral (5.8), we get, uniformly in any sector as above 
and for (5,5') in a closed set disjoint from (—1, —1) and (1,1), 

-iz \s—s'\ 

(5.9) If (a, s', z) = Id +0 {e-cW J 

and for (s,s') near the corners (±1,±1), 

(5.10) 

K(s,S',z) = -L(e-^ls-s'l + c-"l±2-*-«'l) proj A^ 

+J_(e-«l-^l _ e-«|±2-.-^|) proj A^ + 0 (e-c\z\j 
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Comparing these formulae with (5.2), we see that A(z) is exponentially 
decreasing as |,z| —> oo in this sector. 

5.6.   Eta invariant. 

We now explicitly evaluate the eta invariant of RN(<5) in terms of the 
subspaces A^, A^ which determine RN(3). To state this result, decompose 
the vector space V into an orthogonal direct sum V = Vi © V2, where 

Vi = A£ n A? © A^ n A^ © A^ n A^ © A? n A^ 
V2 = vevl. 

V\ is a 'trivial' subspace, a sum of vector spaces in which the boundary 
conditions are either Dirichlet or Neumann at each end. With respect to 
this direct sum, 7 and the scattering matrices S± — proj A^ — proj A^ split; 
write 7r, 55- for 7 \ V2, S±\ V2. The Dirac operator RN(3) therefore splits 
into a direct sum RN(3) = RN(9)i ffiRN(3)2, with RN(3)t acting on sections 

of Vi. Define the 'superdeterminant' Sdet of an operator A = (0 ^(-1)) on 
V2, diagonal with respect to 77,, by 

Sdeti4 = detil(1)(deti4("1))"1, assuming det^"1) ^0. 

Proposition 5.2.  The eta invariant of RN(3) is given by 

7?(RN(3)) = -logSdettld-SIS!:). 
TT 

Proof. Since RN(3) = RN(3)i © RN(3)2, r/(RN(3)) - r/(RN(3)i) + 
77(RN(3)2). But RN(3)i is spectrally symmetric, so 7?(RN(3)i) = 0. Hence 
we just need to calculate ry(RN(3)2). To simplify notation, assume that 
Vi = {0}, so that RN(3)2 is just RN(3). 

Recall that the eigenvalues of RN(3) are periodic with period 7r/2. It is 
well known that the eta invariant of an operator with eigenvalues k7r/2 + a 
is 1 - ^ for a ^ 0. Observe that dimAg = dimA^ = ±dimV. For if 
not, then the sum of the dimensions of some two of these subspaces would 
be bigger than dim^ and then they would have to intersect nontrivially. 
Thus RN((5) has no zero eigenvalues, because the multiplicity of 0 as an 
eigenvalue is precisely dim A^ fl AE. Therefore the eta invariant is the sum 

(5.11) E^1-—) 
J 
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over eigenvalues ay G (0, |). 
If a E (0,7r/2) is an eigenvalue of RN(3), then we can write the corre- 

sponding eigenfunction as 

e*a5(/> + e~iasil) 

where jcp = $ and jip = —if). The boundary conditions imply that 

(f) + e-^/lpeAD 
^ + e2ta^eAD 

Projecting off A^ and applying 7 yields the two sets of equations 

- projAiv </) = - projAiv e-2iaip    projAD cp = projAD e-2^ 

projAiv 0 = - projAiv e2^^       projAD 0 = projAD e22a^ 

whence 

£+(£ = e"22'"^    5+^ = e2ia(f) 

S-ct> = e2iai/;      S-iP = e-2ia<f), 

and so finally 

(J - S+S-)4> = (1 - e4**)*,        (I - S+S-W = (1 - e-4ia)V. 

By Weyl's Law and the 7r/2-periodicity of eigenvalues of RN(9), it follows 
that a E (0,7r/2) is an eigenvalue of RN(3) if and only if e±42a are eigenvalues 
of 5+5_ on the ±1 eigenspaces of 7. 

Finally, 

Mctj 

log Sdet(Id -S+S-) = log J] 1_e_4ia. 
j 

= log JJc**40*-*) = ^t(4ai - TT). 

Here we are using the standard branch of the logarithm. Multiplying by ^ 
yields (5.11), so (5.2) is established. D 

This calculation has also been done by Lesch and Wojciechowski [19]. 
Their formula, which they denote m(A+,A_), has a somewhat different 
form than ours, but it is easy to check that the two agree. Bunke [5] relates 
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this term to the Maslov index: it may also be calculated by averaging the 
Maslov index T(A+, A_,gA) as g ranges over the group of symplectomor- 
phisms fixing 7, where A is any fixed Lagrangian in V. 

6. Resolvent with scaled spectral parameter. 

In section 4.1 a brief outline of the construction of the resolvent of A was 
given. In this section we carry out the details of this construction, and prove 
Theorem 1.1. Here, as in the one-dimensional example, we write the spectral 
parameter A = (iase)z to capture the behaviour of small eigenvalues, and 
treat z as a parameter. In the next section we will construct the 'full' 
resolvent on a bigger space with contains both the region Xls x Cz and 
XLS x (C\K)A and unifies the resolvent constructed in this section with that 
constructed in Part I. 

As the construction is rather lengthy, we begin by outlining the strategy 
in more detail. 

6.1.   Strategy of the Construction. 

The first step in the construction is to build a parametrix G(z) for (Ae — 

(iase)2^2)    ; this means that we need to solve the operator equation 

(6.1) (Ae - (iase)2z2)G(z) = Id+R(z), 

with the 'error term' R(z) in the iteratively-residual ideal of Lemma 4.4. 
Initially (in subsections 6.2 — 6.7) we shall work under two simplifying re- 
strictions: that z2 lies away from the discrete spectrum of RN(A) and that 
AQ = A^- has no L2 null space. Under those restrictions we will construct 

a holomorphic family G(z) in the space ^LES'
-
 C^") satisfying (6.1); in fact, 

it will be a two-sided parametrix, with G(z) (Ae — (ias e)2z2) — Id also in the 
iteratively-residual ideal. The index family —1 is motivated by Lemma 5.1. 
Equation (6.1) involves satisfying three types of conditions: the full symbol 
equations across ALS, as always in the pseudodifferential approach to elliptic 
equations; model equations at each boundary hypersurface at e = 0, as de- 
scribed in section 4 and compatibility conditions for models at intersections 
of adjacent boundary hypersurfaces. The compatibility conditions are those 
for compatibility of Taylor series at a corner. In section 6.2 we list the model 
equations that need to be solved, write down the compatibility condition be- 
tween models at adjacent faces, and summarize results about b-Laplacians 
from [22]. Then in the following three sections we define models, order by 
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order, and check compatibility conditions. 
The key to solving for the model operators is to identify the top term 

(growing as (iase)-1) at i?22- This is shown in subsection 6.3 to be uniquely 
determined by the model equations and compatibility conditions, and is 
given, exactly as in Lemma 5.1, by the resolvent (RN(A) — z2)~ . Once this 
term is identified, the solutions to the other models are defined. 

In sections 6.6 and 6.7 we perform steps (ii) and (iii) of section 4.1, 
obtaining the resolvent (Ae — (iase)2z2) subject to the two restrictions 
noted above. In the following two subsections we remove these restrictions, 
first extending the construction to z near specRN(A) and then treating the 
case that AQ does have L2 null space. Finally we show that the 'very small 
eigenvalues', corresponding to z = 0, are actually exponentially decreasing 
in (iase), i.e. vanish as a power of e. 

6.2. Preliminaries. 

Model Operator Equations at each face To construct the parametrix it 
is necessary to construct several terms in the Taylor series at each boundary 
hypersurface of X2

S. To specify this precisely we need to discuss coordinate 
choices near each hypersurface. Fix coordinates (z, y) near H corresponding 
to a product decomposition of a neighbourhood of H C M. Let p denote 
any coordinate system on Miog and define r = sinh~1(a;/e), s = (iase)r, 
£ = ilgx as before. Denote the metric density on H by dh and the surgery 

metric density dge on XLS by /i. On XLS, denote the set of functions 

r, y by Ci, 5, y by C2, and p by CQ. Then the functions in Ci are coordinates 
on the interior of i?2. Denote 

Hi = dr - dh 

IA2 — ds • dh 

Ho = dgo. 

Lemma 6.1. The density ji cam be written 

d(ilgc) 
M = A** 

(ilge)2 
(iase)d^)-1 + 0(^). 

On X^s recall that every face Bmn ^ B33 is canonically isomorphic to 
a blown up version of i?m x Bn. Using primes to denote coordinates lifted 
from the right stretched projection Xls —> XLS, denote the collection of 
functions Cm U €„ by Cmn, write C33 = {s,log(a;//a?)>2/»y,}» and write v 
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for the canonical density dge • dgf
e (iwfe • Then the functions in CmTl are 

coordinates in the interior of Bmn. Define umn = /im ® /i^, and ^33 = 
ds{\.og{x'Ix))~2d\og{x'Ix)dhdh'\ then vmn is a smooth JD-density on J5mn 

and, corresponding to the above lemma, at each boundary hypersurface 

v = Vn 
d(ilge) 
(ilge)2 

{i^e)d(Bmn)-l+0{poOn) 

near Bmn. We shall use these coordinates and density extension results to 
extend models, defined initially on one boundary hypersurface Bmn, to a 
neighbourhood of X^. 

The models of G are D-half densities on Bmn; the top order models we 
denote 

G(-V=Nmn{(iase)G), 

since G is postulated to have growth of order —1 at each boundary hypersur- 
face. Here Nmn is the restriction, or normal operator, defined in section 4.10. 
If Amn is a D-half-density on Bmn, then write 

1. 

where this notation means that the function a is written in terms of the 
functions in Cmn. Then 

is an extension to a smooth D-half density in a neighbourhood of Bmri. We 
then define inductively 

(6.2) G(£ - Nmn f (iaa e)^ [G - £ (ias e)kG^n} J . 

We emphasize that the higher order models depend on the choice of coordi- 
nates Cmn- At each boundary hypersurface G has a 'Taylor series' in iase, 
using the coordinates Cmn in the interior of each boundary hypersurface: 

G=Y1 (iase)JG?mn + O(iase) near Bmn ,d{Bmn) = 1; 

1 

G=^2 i^^G^n + 0((iase)2) near Bmn,d(Bmn) > 2. 
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This is not a true Taylor series, since (iase) is a valid boundary defin- 
ing function only in the interior of each face; thus, for G E 5rLs2'~1(X), 

,00 -j-i the model Gmn may have growth of order ppj at an adjacent boundary 
hypersurfacef?pg. These are the only models we need to consider, as the 
higher order models are already error terms in (6.1). 

Lemmas 3.5, 4.7 and 4.8 shows how the Laplacian acts on models 5mn ^ 
.833. For £33 in terms of coordinates y, y', Xog^'/x), s the Laplacian looks 
like 

A = /(A) + v • Q = -{V\og{x>ix))2 + Atf + v • Q 

where v vanishes to infinite order at B33 and Q is a Ls-^do of order at most 
two. The model equations involving the identity operator are 

(6.3) 

(6.4) 

(6.5) 

A—r(0) - r^A TH— 

&HG33 
G33ATr Id H ■ 

The other equations for j — — 1 or 0 are 

(6-6) Rm(A)G^n = GlgRn(A) = 0 

for all ran when j = -1, and for mn ^ 00, 11, 33 when j — 0. The equations 
for j — 1 are a little more complicated. They are 

A_r0) _ r2r(-l) 
LXTJKJnn   — Z  Lr, M^02 

&HG12 Z2G 

02 

(-1) 
12 

^HG33 

,(1) 

(1) _ J2r(-1) 
33 

U20 ^M — Z U20 
.(1) GWAW = Z'G: a/3(-i) 21 "fl- - ^  ^21 

.(i) _ 

rJAH = -(Ds 

T2m 
M1)*- -     fr>2 

T2m 

z2)G[ (-i) 
m2   ' 

(1) The last two equations contain even more information. As AHG^ is or- 

thogonal to Ker AH and (JD^ - ^G^ is in Ker A#, both must be zero. 

A similar statement holds for G^- So we get 

(6.7) 
AHGM=GU- T2m m2&H = 0; 

(D2
S - z2)Gi^ = (Uj - *>)G£> = 0. 
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Note that the reduced normal operator only appears at order j = — 1 because 
it acts two terms down in the Taylor series. 

Let us make a simplifying observation about the models Gi^ and 

G22 - The only requirement for these models is that they be smooth 
and Ker(A#) ® Ker(A#)-valued. It is possible to define such a model, 
compatible with all adjacent faces, if and only if the adjacent faces are 
Ker(A#) ® Ker(A#)-valued and compatible between themselves at the in- 
tersection with .822. This condition is always satisfied below, so we will 
ignore these models from now on. 

Compatibility between models on adjacent faces If the model operators 
are continuous functions, it is sufficient to check compatibility between mod- 
els on adjacent faces in the interior of the intersection. Suppose Bmn and 
Bpq intersect, and suppose that pmn and ppq are boundary defining func- 
tions, valid in the interior of Bmn fl Bpq, such that PmnPpq — iase- On each 
face G has a 'Taylor series' 

£(iMe)*G« or  ^(iaseyGg, 
i>-l 3>-l 

and at J5mn flBpq, GhL (resp. Gfq) has a Taylor series in ppq (resp. pmn), 
which we write 

2^, n>q   {^mnjpqj-i      ^resp.    2-j Pmn \    PQ 'mn,i-j) ' 

Comparing, we see 

V*'^' [ymnjpqj-i "" V^pq )mn,i-j 

is a necessary and sufiicient condition for these models to be compatible. 
It is useful to observe here that the sections $^ defined below have 

expansions of the form 

$W = Y,(\ogx)kbk(y) + 0(x6) 

at x = 0; they have no terms in their Taylor series in i\gx vanishing faster 
than a constant. Many of the (Gpq) _ . will therefore turn out to be zero, 
for i > j. This simplifies the checking of compatibility. 

Resolvent of a b-Laplacian Let us start by considering the model equa- 
tion (6.3): 

AMG00   = G00 AM = IdM * 
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Let us recall some facts from [22] regarding the resolvent (Ajj - A2)-1. 
In Chapter 6 of [22], it is shown that A^ — A2 is invertible in the b- 
pseudodifferential calculus for ImA < 0 with the inverse extending mero- 
morphically to a neighbourhood of 0 in CA . Provided A^ has no L2-null 
space, there is only a simple pole at A = 0, and the residue there is the 
projection onto the bounded null space of A-^. Thus at A = 0, (A^ — A2)-1 

has a Laurent series 

(6.9) (A^-A^^X^Res^, 

with Rest1) = -iprojC^Ker. Applying (A - A2) to (6.9) shows that 

A^j • Resij = Id, so that Res^ is an inverse to A^ (though not of course a 

bounded operator on L2), and for j > 1, A^Res^ = Res^T ^. If A^ does 
have L2 null space, then the series (6.9) must be replaced with one starting 

at A = —2, with Rest ^ = — projL2 Ker. Then we have AJJ ■ Rest = 

Id — projZ/2 Ker. Similar results hold for A-^; but, since H has a product 
metric, A^ never has L2 null space. 

We shall also need the notion of scattering solutions and scattering ma- 
trix. For definiteness we will describe these just for M+. Let {<#;} be an 
orthonormal basis for V, which splits into {<&}, 1 < i < dimA^, a basis for 
A+, and {^a}? dimAj + 1 < a < dimF, a basis for A+. We will use, in 
the summation convention, the form of the index — capital, small roman or 
small greek — to determine whether the sum is over a basis of V, Aj or A^f. 
The scattering solutions ^/(A), with A near 0, Im A < 0, are the solutions to 

(6.10) (A-A2)$7(A)=0 

with the boundary behaviour %(X) ~ x~'LX(/)j(y) + v, with v E L2 near H. 
They have an expansion 

2^ (A) = x-^My) + xiXSJK(X)My) + 0(xs), 

with S > 0 uniformly near A = 0. Here S is the scattering matrix; it 
is meromorphic near A = 0, symmetric, unitary for A real, and satisfies 
S(X)S(-X) = Id. Prom this this it follows that 5(0) = fl^) and dAS(0) 
is block diagonal with respect to the splitting V = A^ ffi A+. 

Let us denote (l/A;!)(^)fc^(A)rA=o by $\ and (l/A;!)(^)fc^(A)rA=o 
by S"JK. By differentiating (6.10) with respect to A, we obtain 

(6.11) AM40) = A^1) = 0 and Aw4^ = 4?. 
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We conclude that $i0) = 0, QV = S$$£\ and ^ (respectively i^) 
form the bounded (resp. logarithmically growing) null space of A^. 

We need to compute the top terms in the (polyhomogeneous) expansion 
of (A^j — A2)-1 at the faces of .Boo, that is, those terms with exponent 
tending to zero as A —> 0. At the 'front face', x = x' = 0, corresponding to 
#oo H S33, we have 

(6.12) (AM - A2)"1 ~ ± {(x'/x)±iXMy)My')+ 

At the left boundary x/xf = 0, corresponding to i?oo H #20? we have 

(6.13) (AW - A2)"1 - ^(xa^(y)^(f/)) 

and at the right boundary x'/x = 0, corresponding to J5oo H JBO2, we have 

(6.14) (Ajy - A2)"1 ~ ^ (x'a^(p)^(y')) • 

T/ie "Z' notation In defining models and checking compatibility we will 
exploit as much as possible the models Krnn oi the reduced normal operator 
studied in section 5. The space Ker AH has been viewed in two different 
ways: as a subspace of smooth sections over H, and as an abstract vector 
space V. In the latter guise it has played the role of a trivial vector bundle 
over [—1,1], sections of which are acted on by the reduced normal operator. 
If </) € V then denote the section over H to which it corresponds by £((/>), 
the 'transfer' of (p. We transfer continuous sections on Bi and B? from the 
logarithmic single space corresponding to [—1,1] to XLS(M) according to 

X{(k{r)<k) = £i(r)X(£)(y) on J5i; 

On B+O(XLS([—1,1])) the sections % ' are given by 

$ 
{0 if k is odd; 

l/k\<l>j(logx)k otherwise 

$(/b)= [Oif/ciseven; 
1 l/A;!0Q(loga;)^ otherwise. 



184 Andrew Hassell, Rafe Mazzeo and Richard B. Melrose 

Define the transfer on the C -span of these sections by 

I(#)=,u„#)=0 Jo if $ 
(M+) otherwise. 

Thus X(<&j ) has the same leading behaviour as $j at the boundary but 
may have lower order terms depending on derivatives of SjK at A = 0. 

We also want the transfer defined on sections over boundary hypersur- 
faces of XLS. Recall that Bmn ^ #33 is a blowup of Bm x Bn. Let TTL, TTR be 
the stretched projections to Bm and Bn. We define the transfer on sections 
of Bmn which are sums of products of sections on 2?m and Bn on which T 
is defined above. It is defined by 

On -833, define 

Z{(kj(s,log(x'/x))<k ® 4) = afJ(5,log(^7a;))X(^)(y)2:(^)(y/). 

The transfer is not defined on sections which are not of the above form. 
It will be applied to certain models of the reduced normal operator in the 
construction of models for our parametrix G. 

6.3. Terms of order (iase)-1. 

Consider equations (6.6) and (6.7) for j = —1. One might at first guess 
that these models should be zero, because there are no nonzero terms on 
the right hand side of these equations. Surprisingly, perhaps, this is not the 
case. Recall that in the one dimensional case, Klfe is actually the resolvent 
of the model problem (RN(A) - z2)~ (See Lemma 5.1). The general case 
behaves in the same way: 

Proposition 6.2. The model equations (6.6), (6.7) for G^ ' and the com- 
patibility conditions (6.8) have the unique solution 

G22    =%(K22   ). 

Proof. Equation (6.6) shows we can regard G^ as a one-dimensional ker- 
nel with values in End(y), where V = Ker(A#). Consider the boundary 
conditions given by compatibility conditions with adjacent faces. 
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On B12 and Bn the left model operator is A^, given in local coordinates 

by (3.18). Since G^, ' and G^ are bounded, they are constant in r = 
sinh~1(x/e), the variable across B12 and Bn, so they give trivial matching 

conditions across s = 0 for G^ , as in the proof of Proposition 3.8. We 
similarly get trivial matching conditions across £21, Bn at 5' = 0 and across 
533 at 5 = s'. Hence G^ ' is continuous on [— l,l]s x [—1, l]s/. At 5 = 

±1, G22 matches with G02 which is bounded and Ker(A^) x Ker(A/f)- 

valued; hence G22 f 5 = ±1 takes values in A^ <g> V = Hom(V, A^) and 

similarly G^ \ s' = ±1 takes values in V ® Ag = Hom(Ag, V). 

In the interior the derivatives dgG^ \ ds'G^ match across S12, B21. 

The derivative dgG^ at 5 = ±1 matches, as in the proof of Proposition 3.8, 

with the ^-1 term of G$ at ^ = 0, so dsG^ \ s = ±1 G Hom(y, A^) 

and similarly dgtG^ f s7 = ±1 G Hom(A^, V). Across #33, compatibility 

between G^ ' and G^ requires that at the intersection of B22 and £33, 

(dsi —ds)G22 matches the log(x,/x) coefficient of ^33^. The model equation 

for G^} is AwGfJ = Id^, so G$ is given by 

(6.15)    Gg = ^ — projyj- 
3=1 

fy 

-1 log -1 proj V + A{s) + B{s) log - 

where Vj is the j-th nonzero eigenspace of AH with eigenvalue cr|, and A(s), 
B(s) are End(Vr)-valued functions of s. There is a jump of Id G End(y) in the 

coefficient of log^'/z) between the two sides of B33. Hence (dsr — ds)G22 

has a jump of Id across 5 = 5'. These conditions on G22 uniquely determine 

that G22 = ^{Kis^s^z))^ the kernel of the one-dimensional resolvent 
studied in section 5. □ 

Indeed, not only does this argument yield G22 , it gives us all the Gmn • 

Compatibility of Gmn with G22 requires that Gmn = ^(Kmn ) for all 
mn. The compatibility of these terms itself follows from the compatibility 
on ^([-1,1]). 
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6.4. Terms of order (iase)0. 

To find the next term in the Taylor series at each face, we start with the 
faces i?oo, Bn and £33 whose normal equations, (6.3) - (6.5) have 'forcing 

terms' on the right hand side. Let us begin with GQQ;. By (6.3) and the 
discussion in section 6.2, this term takes the form 

(6.16) G$ = Resg? + terms in Kei(Aw) ® Ker(A^). 

The regular part of the resolvent can be calculated from (6.12) - (6.14). Its 
leading behaviour is, at the front face: 

(6.17) 

^ (-1 log J|id+Oog* + iogx')sJK(o)My)My') - i<h{v)Mi/)&£) 

= f-iogxproj A£ + iogx'pToi A? - iMy)My')£l,   i < 1 
[logrcprojA^ -logs'proj A^ - %Mv)<hc(l/)$]c, £ > 1, 

at the left boundary: 

i (logxMy^ip') -iMv)^) 

=i (iogx^(y)*50V) -iMy^ip') -^(yJ^i^PV)) , 

and at the right boundary: 

^(logx'^WMy') -i^UAy')) 

=i (logx'sfHpMjiy') - i$U(p)My') - ^^(y)^^)) • 

The relation between these expressions at the front face and at the left 
and right boundaries is perhaps not immediately evident since there only 
appears Sk\ with small roman indices, in the last two. The reason is that 

the S^l piece is contained in the $Q ^ term, which may have a part bounded 
up to the boundary 'beneath' the principal, logarithmically increasing one. 
Since d\SjK(0) is block diagonal with respect to the splitting V = Aj © A+, 

the other pieces Sr- ', S^J are zero.    The null space terms in (6.16)  are 
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determined by compatibility with Gyz   • The one-dimensional model is 

K$ = (iase)-1 (K(s,s',z)-K(l,l,z)) \ Boo 

= (ias e)-1 {(a - l)dsK(l, 1, z) + («' - 1)K(1,1, z)) \ Boo 

= logxdsKil, 1, z) + logx'ds'K(l, 1, z) 

= (logx (- proj A£ + A* (z)) + log x' (proj A? + A{z))     | < 1 

\log a; (proj A^ + A*(z)) + logx' (- proj A? + A(z))     | > 1 

for x, x' > 0; (5.2) has been used in the last two lines. The projection terms 
already appear in (6.17) and the A(z) terms take values in the null space 

terms which give compatibility with K^   ■ Hence, defining 

(6.18) 

Gff = Reg^O) +1 {logx A(z) + logz'^z)). 

= Reg^(0) + 4tf (*)*i,1)(p)fc(v') + A*a^)^(y)$W(p'), 

GQQ and G22 are compatible. The same argument shows that GQQ and 

^02   J ^20   ' ^33    are compatible. 
We can use similar reasoning for G33 and G^ . Using coordinates 

log(xf/x), 5, iase near B33, we have 

(6.19) _ _ 

if^ =(iase)~1 (i^(5,5 + iase\og(xf/x),z) — K(s,s,z)) \ Bn 

— log(x'/x)ds'K(s, 5, z) 

- - -I log -\Mv)Mi/) + log -AJ(S,z)ch(y)<l>j(yf), 
2 X X 

where this defines AJ- Note that JD/j(itl, z) = ^(proj A^—proj A^)+A*(^). 

By construction, the transfer of this term is compatible with G^ ', G^ 

and GQQ   • Referring to (6.15) and (6.17), we should also add a term to give 

compatibility with the d\S terms in GQQ • So define 

G{£ - Res^ + log -DUs,z)<k(v)Ml/) 
(6.20) .    H x 

Here if) is a cutoff function, with support near 0. The factor e-^i2-3-8') may 
appear somewhat mysterious; it will be needed in the next section when 
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we join these models with those constructed in Part I. The ^ term ensures 
compatibility of G^ with GQQ and does not affect the compatibility with 
any terms of order (iase)-1, since it has no part growing as p~q at any 
adjacent face. 

The G[i  term may be defined similarly except that no extra term is 
required as Bn is disjoint from BQQ. Using coordinates r, r', y, y', we have 

K^ =(ias e)"1 (K((ias e)r, (ias e)/, z) - K(0,0, z)) \ Bn 

=rasZ(0,0, z) + r'ds>K(0,0, z) 

=(r/ - r)ds,K(0,0, z) + rdsKiO, 0, z) 

= " l\r' - r\My)My') + (rf - ^Du^z^iy)^1) + rdsK{Q^z). 

With 

G{$ = Res^ +(r' - r)A,(0, z)tk(y)Ml/) + Z{rdsK(0,0,z)), 

(o) 
33 this model is compatible with all Gmn \ and with G 

Next consider GQJ and G^'. To satisfy compatibility with Gmn \ we 
must take 

G® - Srf) 6 C°°{[-1, l]y; C00 KertA^) ® F*). 

To make this term compatible with GQ0\ let us define 

(6.21) 

This is now compatible with all models defined above. Since the 'extra' term 
in GQ2 is supported away from G^ , we can define 

Gff=3:(xS>) 

and then GQX is compatible with all terms already defined. 

The model G^ must be of the form 

G{3 =T(Kg)) + (7oo([0,±l]s;End(F)) 

to satisfy its model equation and be compatible with all models of order 
(iase)-1. We also require compatibility with GQ^ and G^. X(iiCoi) is given 
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by 

1(K$) = ^((iase)-1^! - rW), (iaseKz) - K(l,0,z)) \ SQI) 

= 1 ( - log xdsK(l, o, z) + r'djKil, 0, zj). 

So GQI has the form 

Recall that $&   ~ —iXogx^a + S^lc^p at x = 0. We therefore define 

this now matches GQI at BQI PI S21 and is compatible with G^Q . The other 

models G20 , G^ and G^ are defined similarly. 

6.5. Terms of order (iase). 

These terms are only required for those faces Bmn with e(Bmn) = 2 (that 
is, for d{Bmn) > 2) and, as observed above, not for B22' Let us start with 

GQ2; • To satisfy compatibility with G^n 5 we must have 

G$-Z(K$) e C^fl-M], U [0,l]s';Ker-(AM) OF*), 

where Ker~(A^) is the direct sum of the bounded and logarithmically grow- 

ing null space of A^j. For compatibility with GQO and G^ , we may take the 
null space term to be zero; however let us add a term which will be required 
in the next section: 

eg = xa®) + Jv(i - sV
iz(W)*£2)(p)<My'). 

(Recall that $« has zero leading, (logo;)2 term. Hence there is no compat- 

ibility required between the last term and G^ ' as might at first appear.) 

We define G20 similarly. The G^ term may, in the same way, be taken to 

be ^(K^) but again we add a term required in the next section: 

(6.22) 

Gff = Ktfff) + ~</>(2 - s - s^e-^-'-^Ay^My')- 
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Finally we define 
GW =Z{KW), mn = 12,21. 

Checking compatibility of these terms is rather simple. As all the boundary 
hypersurfaces for which models of order (iase)1 need be defined are disjoint, 
they must be checked only against models of lower order. Then the comment 
made in the paragraph below (6.8) applies; it is straightforward to show that 
the models defined in this subsection are compatible with all those previously 
defined. 

6.6. Compatibility with the symbol. 

The diagonal singularity of (Ae — (iase)2^2), is equal to that of Ae + 
0((iase)2). In our chosen coordinates, A€ is constant, to infinite order at the 

boundary, so compatibility requires that terms Gmm and G33 are smooth, 

and the singularity of Gmm is the symbolic inverse of that of A€\ i?mm. 
This indeed holds because the restriction of Ae to BQQ (respectively Bn, 

B33) is Ajf (resp. A^-) and GQQ (resp. G^ , G^) are chosen to be, up to 
smoothing operators, the inverses of A^ (resp. A^). 

It follows that one can construct a holomorphic family of Ls-^dos 
 O    -I 

G(z) G \I/Ls' (X) restricting to the models which we have defined and 
having the correct diagonal singularity. This completes our construction of 
the parametrix. 

6.7. From parametrix to resolvent. 

We have outlined already, in section 4.1, the process of getting the ac- 
tual resolvent from our parametrix G(z). We have now, for z G C \ M+, a 
holomorphic family G(z) such that (6.1) holds. Let — R = AG — Id G TR. 

Then by Lemma 4.5, we have 

(ld-R)-1 = ld+S, SelR. 

Hence 
(A - (iase)V)G(;z)(Id+£(;*)) = Id 

so by Theorem 4.2, 

(6.23) 

(A - (iase)V)-1 = G + G • S G ^^(X) + V^W 

where J7 is natural (see Definition 2). 
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In fact all coefficients of elements of the index family T with nonzero 
logarithmic behaviour are zero. To see this suppose that there is a nonzero 
logarithmic term PmnlogPmn ' Q") where a is a section defined on Bmn, oc- 
curring at power j, with j minimal. Since there is no other terms lower in 
the Taylor series with logarithmic behaviour, a must be annihilated by the 
reduced normal operators of A : 

i2m(A)-a = a-i2n(A)=0. 

But the solutions to the model problems on each face have the property 
(with one exception) that they are either bounded up to each boundary 
Bmn fl Bpq of the face or blow up like 1/'pVq there. The only exception is 
.633, which has this property with respect to B22 but not JBQO or Bi\. In 
any case, there is some face Bpq / .#33 at which a is nonzero, we have, by 
compatibility of Taylor series, a term on Bpq which behaves as logpmn. This 
contradicts the assertion above that solutions to models problems do not 
have logarithmic behaviour at the boundary. Therefore no such term exists. 
It follows then that (Ae - (iase)V)"1 e ^ll~l{X). 

6.8. Near the discrete spectrum of RN(A). 

Recall from Section 5 that K{s) s', z) = (D^ — z2)-1 is meromorphic in 
z with poles at the spectrum 0 < zjj < z\ • ■ • . We have already constructed 
the resolvent away from the discrete spectrum. In this subsection, we will 
construct the resolvent in a neighbourhood of one of the ZJ; at first, we shall 
take Zj 7^ 0. 

Near Zj the kernel K of section 5 has the behaviour 

(6.24) X(5, s', z) = 2^°j^) + Ko(s, s', z) 

where Vj is the jth eigenspace of RN(A) and ifo is holomorphic near Zj. We 
have 

(6.25) (D2
S - z2)Ko(s, s\z) = Id -2±£ proj Vj 

so KQ is an inverse up to finite rank near Zj. 
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Let us examine this on [-1, l]x with surgery metric g€ = dx2/(x2 + e2). 
With 5 = (iase) sinh~1(a;/e) as in section 5, and defining 

Ko(s,sf,z,iase) = (iase)~1Ko(s, s', z)\dsds' ,„    x9 12 

jb{s,s ,iase) = iaseprojK|a5a5 7-—rsrh, 
(ilge)^ 

we have (Ae-(iase)2z2)ii:o = Id-(zj+z)/2zj E on X^s([-131]). Returning 
to our manifold M, by Proposition 3.8 we can construct from e G Vj an 
approximate small eigenfunction e on X2

S such that (A — (iase)22:2)e G 

PoPiPiC^C^Ls^^C^Ls))- Let {efiili be an orthonormal basis of Vj, Nj = 
dimVj, and define 

rf(ilge) 
(ilge)2 e ^Sbfir W- (6.26) W = iase ^ei(p)ei(p') 

t=i 

Thus W is a uniformly finite rank operator of rank Nj, with 

ww = £(^) 

for fc < 1. 
The first step in the construction of our parametrix near Zj is analogous 

to the construction of KQ, an inverse for D2 — z2 orthogonal to the trouble- 

some terms e^. Here, we define the Gmn as before, but using KQ instead of 
K. Then we have, by comparing G with KQ, 

(6.27) (A€ - (iase)2*2)^) = ld+^-^W - R{z) 
2ZJ 

with W as above and R 6 IR. Inverting Id —R as before, we get 

(Ae - (ias6)2z2)(G(^)(Id+^))) = Id+^-^■W(Id+S{z)) = Id-W'(z) 
ZZj 

where Id +S = (Id — JR)"1. We now have an inverse up to the uniformly rank 
Nj error term W' = {ZJ + z)/(2zj)W{Id+S). The null space of Id-W is 
contained in range W = span {e;}. Let 

Wl(z)ei =aik(z)ek 
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where each a^(z) is a holomorphic map from a neighbourhood of Zj to 
^phg ([0> ^])' where G is natural. The function 

q(iase,z) = det(Sik - aik(z)) 

is holomorphic in z and polyhomogeneous conormal in iase with natural 
index set, and such that 

2zj   ) 
(6.28) q^z) = [z— 

For small ias 6, q has exactly Nj zeroes near Zj and does not vanish in some 
small annulus around Zj. Hence q vanishes precisely at the eigenvalues of 

A corresponding to z? G spec RN(A). The inverse (id— W')~ = Id+F is 
therefore meromorphic in z, in the sense that q- (Id +F) is holomorphic, and 
conormal in iase with natural index set. The resolvent is 

(Ae - (iase)2*2)"1 = G{z){Id+S{z))(Id+F) G (iasc)"1*^'^) 

and is meromorphic in the same sense as F, with Qf natural. 
As in the last subsection we can show that actually we can take Q' to 

be the C00 index family. Indeed, we already know this is so in any region 
away from Zj. Also we may calculate the projector onto small eigenfunctions 
corresponding to Zj by the contour integral 

IT, = -^ f (Ae - (iase)V)   1 2zdz 

where C is a small circle that encloses all the zeroes of q) for small ias e, 
and stays away from all eigenvalues corresponding to other Zk- The value 
is, by the results of the previous subsection, in ^j",' P0- Moreover, the full 
symbol of the Laplacian is holomorphic near Zj, so the singularity at ALS 

is removed and the result is actually in ^^^ (X). Hence we have shown 
that the projector onto small eigenvalues corresponding to one Zj is smooth 

on the space X^ and that the resolvent itself, (Ae — (iase)2z2) , is smooth 
on XLS and meromorphic in z. 

If ZQ = 0, the argument is the same, but some of the formulae must be 
modified to accommodate the presence of a double pole at z = 0. Equation 
(6.24) should be replaced by 

K(s,s',z)=pro]Vj(l + z-2)+Ko(s,s',z). 
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In equation (6.27), we must replace (ZJ+Z)/2ZJ by (1+z2). Finally, equation 
(6.28) is replaced by 

q(0,z)=z2N. 

6.9.   In the presence of L2 null space. 

Let {fa} be an orthonormal basis for the L^-null space of A^ on M+ U 
M_ (on half-densities). Lift the fa to smooth half-densities on X^SJ also 
denoted fa, which vanish to infinite order at Bi and i?2. This is possible 
since on the space M, fa decays at least as some positive power at the 
boundary, so on Miog it vanishes to infinite order. We can then form the 

finite rank operator UL2 = £• fa(p)fa(pf)   ffi^ 

to the projector onto the L2 null space of A. 
We have, near A = 0, 

1/2 
which restricts at i?oo 

(A-A2)  ^Reg^-A-2!!^, 

with Regi^(0) regular near A = 0. Since A-2 = (iase)-2^-2, we expect a 
term looking like (ias e)-2z~2IlL2 in our resolvent. Hence, we will get a 

nonzero term GQQ of order (iase)-2; since TlL2 vanishes to infinite order at 
all other faces this should be the only term of order (iase)-2. 

Define GQQ ^ = 11^2  f BQQ, and let the other Gmn terms be as above. 
(—2) The GQO term is not a good approximation to the term in the resolvent 

we expect, but it is a holomorphic term which has approximate range the 
projection onto the expected null space, which is what we need for the 
construction to work. Then instead of (6.27), we get 

(Ae - (iase)V)^ = Id-(1 + z2)(W + UL2) - R, 

with R in the parametrix-residual space, and W the approximate projection 
onto small eigenvalues corresponding to 0 G RN(A). The z2IlL2 term comes 

from — (iase)22:2 acting on GQO and Id —UL2 is produced from A acting on 

G§j = RegM(O). Inverting (Id-jR), we get 

(Ae-(iase)V)G(Id+5)=Id-(l + ^2)(W + nL2)(Id+5), 

where (Id+i?)"1 = Id +S. Then (1 + z2)(W + nL2)(Id+S) = Y' is a finite 
rank operator which we treat like W1 in the last subsection.  The range of 
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Y1 is spanned by ei and fa. Let SM — a^i be the matrix of Id —Y' relative to 
the basis above. Then 

g(iase,*) = det(4z - a^)) 

is holomorphic in z and polyhomogeneous conormal in iase with natural 
index set, and such that 

q{^z)=z2N, 

where N here is the sum of the dimensions of the I? null space of A^ 

and the null space of RN(A). The inverse (Id — Y1) = Id i-F' is therefore 
meromorphic in z, in the sense that q- (Id +Ff) is holomorphic, and conormal 
in iase with natural index set. The resolvent is 

(Ae - (iase)2*2)"1 = G(z)(Id+S(z))(Id+F') e v^PO 

and is meromorphic in the same sense as F'. 
The results of this subsection and the previous one show that as e -> 0, 

the small eigenvalues approach 0 or one of the eigenvalues of RN(A) or 
infinity, as claimed in Theorem 1.1. 

6.10.   Very small eigenvalues. 

The projectors IIj onto the eigenspace corresponding to Zj are smooth, 
that is, have a complete asymptotic expansion in powers of ias e at each 
boundary hypersurface of X^. For the eigenvalues corresponding to z = 
0, which will be referred to as 'very small eigenvalues', this expansion is 
particularly simple. Let ai be the first nonzero eigenvalue of AH- Then 

Proposition 6.3.  The very small eigenvalues Xi vanish as a power of e : 

(6.29) At(e) = o(er) for all r < max(ai, 1), 

so in particular are rapidly vanishing in ias e. 

Proof. Cappell, Lee and Miller prove a very similar estimate in [8]. As the 
notations of the two papers are rather different, we sketch the proof here. 

By the min-max principle, it is sufficient to construct an independent set 
of surgery 'test functions' ipi, equal to the number of very small eigenvalues, 
satisfying the estimate 

IIA^H < o((er))||^|| for all r <  max (ai,l). 
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Let {xi'LLi be a basis of L2 Ker A^ and let {??}£fc+i be a basis of Af DA?. 

Let {ft)®}^/..^! be the corresponding elements of the bounded null space of 
Ajy. Then, by the results of of [22], 

X? G ^gg (M) and ^ € C»(W) + ^ (M) 

where inf Re/C0 > cri. Hence, x?, 0? extend to Xii fa ^ ^phg (^) > on *'ie 

original surgery space (3.2), such that Xi \ Bi — 0? fyi \ Bi = ^ an(i with 
index family /C(I?i) = /C0 or 0+/C0 and /C(-Bo) = 0. Then the model operators 
of Ae kill the top terms at BQ and Bi so therefore A€Xz, Ac0i e ^phg (^s)» 
with index family J' satisfying infRe17(Si) > cri, infRei7(jBo) > 1. The 
estimate (6.29) follows. □ 

7.   Full Resolvent. 

7.1. Resolvent spaces. 

In this section we will unify the resolvent (A€ — (ias e)2z2) ~ , constructed 
in the last section, with the resolvent (A — A2)-1, A E C \ M, constructed in 
Part 1. 

At the level of parameters, iase and z (or A = ^iase), these regions are 
united in the space 

*LsR=[*LsXCA;{0}ilg£x{0}A], 

the 'zero-resolvent space'. We use C, the complex numbers compactified with 
a circle at infinity, to stay in the class of compact manifolds with corners. At 
ilge = 0 there are two boundary hypersurfaces, Bc = [C;0]A, a punctured 
complex plane and B0 = C^, where z = A/iase, a disc (hemisphere). We 
define single, double and triple spaces analogous to XlsR : 

XLSR = [XLs x CA;MI(XLB) X {0}A] 

(7.1) XlsR = [Xl x CA; M1(Xls) x {0}A] 

XlsR= [XlxCxiM^Xl) x {0}x]. 
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Then,  by Lemma 2.11,  we have a commutative diagram of simple b- 
fibrations: 

xL—>xL—-xLs—*xis. 

Each boundary hypersurface Bmn of Xls lifts to two hypersurfaces in -XJ^R, 

one a blown up version of jBmn x C^, which we will denote B^ and the 
other a blown up version of Bmn x CA, which will be denoted i?^n. For 
XlsR we define the degree of B^^Xl^) and Bmn(XlsR) to be the same as 
that of Bm^XL). The next Lemma indicates the form of the degree density 
bundles of the resolvent spaces. Suppose that Y is a manifold with corners 
with degrees, let K be a collection of boundary hypersurfaces of Y and let 
R be a product of defining functions over all elements of H. Form the space 
Z = [Y x C; H x {0}], and let TT be the stretched projection down to Y. Define 
degrees for Z by setting ^TT"

1
 (K X C)) = d{K) and ^TT"-

1
 (H X {0})) = d(H) 

for H EH. 

Lemma 7.1.  There is an isomorphism 

dXdX   . 
(7.2) nD([r x CA; W x {0}]) = <K*nD{Y) 

'AA + i?21 

Proof. The result is clear away from A = 0, so suppose we are near A = 0 
and near a corner of codimension k in Y x C Let Hi,. ..Hk be the bound- 
ary hypersurfaces forming the corner, with Hi.. .Hi G W let ri,... r^ be 
boundary defining functions and suppose that Hi.. .Hi are blown up in 
that order, creating new hypersurfaces H® ... ii/j0. Then the new boundary 
defining functions are p^, 1 < i < I where these are defined inductively by 

(P?)2=rf + |Az-i|2, where 
Ai-i 

AQ — A,    \i — 
p? 

Let pf = ri)p® = (1 + |Ai_i|2) 1/2 be a boundary defining function for the 
lift iff of Hi x C, 1 < i < I. Notice that pf = 1 on the lift of Hj x {0} for 
j > i. We first check (7.2) at H% n • • • fl ifz

0 fl • • • n Hk x C and then at an 
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intersection H^ D • • • n H^ D H^ fl — Ignoring the y factors in Y, which 
are irrelevant here, the right hand side of (7.2) is 

.     , TT /     dri     \ dXdX 

ii\rfHi)+1J l^ + Cn.-.r,)2' 

After blowup of Hi x {0}, we get 

nl     dri     \ 1 dri d\dX 

i=2 \rfHi)+1) (p0iPf)dmln'\M'2 + (ri..-rk)
2 

TT /     dn     \ 1 dpi (plVdXxdX! 0 

i£WHi)+1) (P0A)d{Hi) Pi WdAiP + ^^.-.r*)^ atJil 

nl     dri     \        dp^ 1 dXidXi 

i=2 W**1) (p0i)d{Hi)+1 (pf)d{Hl) lAil2 + (pfr2 ... rfc)2 • 

This is an expression of essentially the same form as (7.3) near (the lifts of) 
H2 x {0},... Hk x {0} since pf = 1 there. Hence applying this reasoning I 
times gives 

n( dft \   TT   I     drj     \  dXidXi 

which is explicitly a D-density near H® fl • • • n H^ fl • • ■ fl Hk x C since all 
the /9^, 1 < i < I are equal to 1 there. 

We also need to check (7.2) near intersections H^ fl H^. To do this, we 
only need to blow up Hi x {0} ... Hm x {0}, since all other blowups lie away 
from H^. Thus we can assume m = I. Then we have the boundary defining 
functions pf or pf = r//A/_i for Hp, p® or Xk-i for Hj* and 
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u = A^i/|A/_i| as angular coordinate. We have 

nf drf \ TT /      dn     \ d\i-id\i-i 
11 y{porm+i{pc)dmjii^m^ij i^p + (pc...pcirib)S 

■j-r   /     dn     \       Xi-idpf \Xi-i\dXi-i<L)_ 
jm+i    (pCAi_l)d(ffi)+i |Ai_1|2(l + (pC...pCi/5C)2) 

t=J+l    \r2 
l-l 

X n' " 
yV(P?)''<'''>+1(pf)''<"'> 

dri     \       dpfdXi-i udu 

Again, this is explicitly a jD-density, so we have proved the lemma. □ 

Taking Y = X£s, H = Mi(X£s), Lemma 7.1 yields 

dXdX (7.4) nD(xisR) = n*nD(xis)® 
AA + (iase)2 

7.2. Operator Calculus. 

To carry out the constructions of the previous section for the full resol- 
vent space, we need the ingredients of that section - small pseudodifferential 
calculus, boundary terms, an iteratively-residual ideal - all extended to the 
'full resolvent' setting. Here we can take advantage of the functorial na- 
ture of the constructions of section 4, and simply observe that we obtain all 
these things from that section by replacing the spaces X^s with X^sR. We 
will denote the resulting spaces of LsR-pseudodifferential operators by 

*LUI(*),     *Ls,bdyP0      and^PO. 

The composition properties of these operators are almost exactly as in 
section 4. Indeed, the combinatorics of the maps 7rLsR 0 : ^LsR ~"* -^LR 

are easy to describe. For each boundary hypersurface G (respectively H) of 



200 Andrew Hassell, Rafe Mazzeo and Richard B. Melrose 

Xls (resp. Xls) there are two boundary hypersurfaces, Gc and G0 (resp. 
iJc, ^0) of XlsR (resp. XlsR) and if ^>0G = H then 

^L^O^    = H    and ^Ls^O^0 = ^r0- 

Thus the mapping properties of the stretched projections on X^sR are the 
'same' as for X^. It follows that all the composition formulae in section 4 
hold in the logarithmic resolvent calculus, and there is an iteratively-residual 
ideal XR defined as in Lemma 4.4 which satisfies Lemma 4.5. 

7.3. Full Parametrix. 

We will look for a parametrix G in the space A~
2
\I/LSR (^0 such that 

(A-A2)G-Id = fleXij 

away from the continuous spectrum, that is, in the set X^^ \ {A G M, z = 
oo}. This includes the region where z is finite, down to iase = 0, and joins 
the region \z\ large, S < \ arg(^)| < TT — S with A small, 6 < | arg(A)| < TT — 6. 

We will construct the parametrix G as before, as a finite Taylor series 
off the boundary hypersurfaces at ias e = 0. We will continue to write Gmk 
for the term at Bmn of order (ias e)-7 and write Gmn for the term at B^ of 
order 0 (there will be no other nonzero terms on the faces with A ^ 0). 

As in Chapter 6, we need to specify coordinates in order to define the 
higher order models. Let a denote the canonical density on ^LsR- R'ecall the 
densities i/mn defined in section 6.2. If Amn(z) (Arrin(X)) is a D-half-density 
on Bm^Xls) depending holomorphically on z (A), then write Amn(z) = 

a>{Cmn-> z)vmn or Amn(A) = a(Cmn, \)vmn, that is, express these half densities 
1/2 in terms of the coordinates comprising Cmn and the half density Vmn. Then 

^mn =a(Cmn,z)G2 or 

ji^ = a(Cmn,A)<72 

represents an extension of Amn to a neighbourhood of Bmri (i^n) C ^LsR- 
We then define higher order models according to (6.2). 

The appropriate models for nonzero A can be read off from the 
parametrix constructed in Part I. Lifting their results to ^sR' we 'iave 

^oo = (AM - A ) 

(7.5) GSMAir-A2)-1 

Gg-CAy-AT1 
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and all others are zero. Indeed, it is shown in Part I that the error in 
this parametrix is conormal of positive order on the original surgery space 
Xg, and so after logarithmic blowup vanishes to infinite order at all other 
boundary hypersurfaces. One can also derive these models directly on the 
logarithmic resolvent space, but that would conceal the simplicity of the 
results. We have defined the Gmli in the previous section, so as to satisfy 
the model operator equations and compatibility amongst themselves. We 
need to check that the two sets of models are compatible. As explained in 
section 6, for G22 and G22 we only need to check that adjacent faces are 
Ker(A^) ® Ker(A^)-valued and compatible amongst themselves; it is not 
necessary to write down explicit models for these terms. 

Compatibility with GQQ The face BQ0 intersects BQQ, B^Q, -B^, £33 and 

BQ2' Consider compatibility with G^ '. In the interior of the intersection, 
we may take boundary defining functions A for i?22 and 1/z for B^Q, and 
coordinates A log a;, ilg(a;//a;)/ilga;, y and yf along the intersection. We refer 
back to (6.8) for the compatibility condition. We calculate from (6.12) that 

(^00 ) 22,-1 is 

i ((x'/x)±i%(y)My')+xax'iX(l>J(y)SJK(0)My')) , 

and from (5.10), (Gfe^oco is Siven by 

e-iz\s-s'\ + e-iz\s-(2-s')\ e-iz\s-$'\ _ e-iz\s-(2-s')\ 

 2i Pr0j A± + 2i Pr0j A± • 

These agree since 5(0) = proj A^ - proj A^ and e~l2:ls~s/l = (x*lx)±lX and 
e-iz|,_(2-,')| = xi\xi^t 

Next consider compatibility with G^. We may use boundary defining 
functions A for S^ and \/z for B^ and coordinates A log a/, ilgrr, y and 
y' along the intersection. Let us do the calculation at s = sf = 1. The 
calculation for the compatibility of GQQ and G02 is very similar to that 

above, so we omit it. To check compatibility of Ggo and G02 , we compute 
from (6.14) 

(GT)22o = Uxlosx'$\z>y)<f>Ay% 
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and from (5.10) and (6.21) 

(^02))oo)o = S^ff) + ^((1 - Vme^-'^WSflM) 

= z(dsK(i, i - o, z)) + y-toW^tosffM) 

= |c-»(1-')*(i)^ + ^-'WptosflM), 

which agree. To check compatibility of GQQ   and G^ , we comPu*e 

= s6^1"0*? 'frMfoO + ^-iz(1-s')^2)(p)^(y,)) 

using (5.10) again, which agrees. 

Checking the compatibility of GQQ and G33 requires calculations very 
similar to those above, so we omit the details. Let us check the compatibility 
of GQQ and GJJQ . Again we.use A and 1/z as boundary defining functions. 
Then 

(Go?)oo,-i = Itesfe1) = -^P10^ I AAry = 0iv bounded } 

as remarked after (6.9), and 

(Coo'Vci =2:((K(l,l,z))oo,c,i) =T(-iprojA^) 

by (5.10), which agrees. For j = 0 we have 

(GiC))       -Res(0) 
VU00 >/00,0 ~ J:ieSM 

and from (6.18) 
/^(ojx _ Res(0) 
V^OO >/00,C,0 ~neSM 

since A(z) is rapidly decreasing in z. 

Compatibility with G^J The face B^ intersects B22 and .B33. In the 
interior of B^ fl JB^ we may use boundary defining functions A, 1/z and 
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coordinates \log(xr/x), (s + 5,)/2, y, y'. We need check compatibility only 

with G^ ^ 
For G33  we have an explicit expression in terms of the eigenvalues aj 

and eigenspaces Vj of AJJ (where CTQ = 0 and VQ = V): 

OO       -J<T]-\l\loe(x'/x)\ 

(7.6) Gg = (Ay- A2)"1 = 53 / 2      9      P^Jv, • 
i=o      2V0-? " A 

Hence 

(^33)22,-1 = 2i Pr0jv 

and by (5.10) and (5.9) 

2t (G22  033,C,1=  M Pr0JV 

which agree. (Note that, in (5.10), e IZ(2 s s^ and e *z( 2+s+s') are rapidly 
vanishing at 5^.) 

We next check compatibility of G33   and G33 . Again we use boundary 
defining functions A, 1/z. Then from (7.6) we calculate 

-.(Ch _ Projy 
(^33 Jss-1 -    2i 

,    (Q. _       (log(x7x))2 

iG33 J33,l " Tj Pr0JV- 

Prom (5.10) and (5.9), again observing that e lz^2 s  s) is rapidly vanishing 
at Bqfo, we see that the first one agrees with (G33 ^)33 c 1. Prom (6.20), since 

Z)(s, z) vanishes rapidly as \z\ -> 00, the second line agrees with (G^^)33 CQ. 

Finally we calculate (^33 /sac-i' Using coordinates as in (6.19), we have 

(G33 )33,C-1 = ^((^33 ) 33,0,-1) 

and 

-iz(ias6)log(a;/ /x) -iz^iaseliog^x'/x) 

(K$?)zwi = (—afe—p^+^r^Uo 

4» 
projF 
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which checks with the third line of (7.7). 
CO Compatibility with G^i      The checking of these compatibility conditions 

follows the same lines, but is considerably simpler; we leave these as an 
exercise for the reader. 

Compatibility with the diagonal singularity We showed in the last section 
that the models Gj171' were compatible with the diagonal singularity. On 

the faces B^iml the singularities of Ae\ Bmm = Aj^ and A^ are equal to 
infinite order after logarithmic blowup, so these models are consistent with 
the singularity too. This is just lifting the compatibility result from Part I 
to this space. 

It follows that one can construct a parametrix G restricting to all the 
given models and compatible with diagonal singularity. 

7.4. Pull Parametrix to Full Resolvent. 

This is done in exactly the same way as in section 6. We may also argue 
as before to show that the resolvent is smooth away from the diagonal. Let 
us summarize the results of sections 6 and 7: 

Theorem 7.2. The resolvent family Res(A) = (A — A2) ~ lifts to the resol- 

vent double space to an element of ^LSR (X) + A~
2
^LSR' (^0 awa7 from the 

continuous spectrum {A reai, \z\ = oo}. The leading terms at each boundary 
hypersurface are: 

ResJo2) = projI,2 

Res^HA^-A2)-1 

ResgMAn-A2)-1 

Resg3 =(A7r-X2)-1 and 

ResiS = 0 otherwise. 

Proof. The statement about smoothness follows from the argument given in 
section 6.7. The models Res$n are given by G%!»+(G-S)rJw,- By Theorem 4.2, 

G • S has no order —1 terms up to the boundary, so the Res^n terms 
are given by G^uP = £((RN(A) - z2)-1). At B^n the parametrix is good 
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to infinite order so the models of the resolvent agree with those of our 
parametrix. □ 

8.   Heat Kernel. 

In this section we will define the logarithmic heat space and associated 
spaces, and prove Theorem 1.2. The heat kernel e~tAe is given by the 
operator valued contour integral 

(8.1) ^ [e-tx2(Ae-X2)-l2XdX 
27r Jr 

where F G C is a contour that encloses (in a suitable sense) spec Ae C [0, oo). 
In the spirit of this paper, we will perform the integral as a pushforward 
under a b-fibration between appropriate spaces. Then the Pushforward the- 
orem will tell us that the result is polyhomogeneous and will give us the top 
order terms explicitly at each face. In the next subsection we will define 
the 'heat-resolvent space', lying above both the heat space and the resolvent 
space on which the integrand of (8.1) lies. 

8.1. The Heat Space and the Heat-Resolvent Space. 

The heat kernel for finite time [0, C2] has been treated in Part I. There 
are no changes that need to be made to treat the case when AH has null 
space; the heat space X^s defined in Part I is a suitable space to carry 
the heat kernel in general. It is in the behaviour of the heat kernel for 
large times that the situation is very different; in Part I the heat kernel was 
rapidly decreasing as t —> oo uniformly in e (up to finite rank) but here this 
is no longer the case. In fact, the structure of the heat kernel near t = oo 
has the same degree of complexity as the resolvent near A = 0. 

To define the heat space for large times t > C2, let r = y/i and denote 
by [C, oo]T the compactification of the interval {C < r < oo} with boundary 
defining function r-1 at infinity. Then we define the logarithmic heat space 
to be, in the notation of Lemma 2.11, 

^L^'
001

 = [XL x [C^UM.ixD x {r = oo}] . 

Denote the lifts of Bmn x [C, oo]T by Smn(XL^s'
00^) or just BmTl if this is 

unambiguous in context, and denote the result of blowing up Bmn x {oo} 

by B^n. Let the degrees of Smn(XL^s'
OOJ) and B^n be the same as that of 
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Bmm and define the degree of (the lift of) Xls x {00} to be 0 and the degree 
of XLS x {C} to be — 1. This means that the densities are smooth up to 
r = C, reflecting the fact that this is an artificial, and ignorable, boundary. 

The heat-resolvent space is a space which maps down to both the heat 
space and the resolvent space, ie, it has both t and A variables. It is not 
quite the space on which the integrand of (8.1) lies, since we also have to 
restrict to a contour of integration; this is done in the next subsection. To 
define the heat-resolvent space, let Bj {Bj0) be the set of Bmn (B^) for 
XLHS of degree j, for j = 1,2,3. The heat-resolvent space is defined to be 

(8.2) 

^SSm01 = [^SS?001 x C^B? >< WAJft x {0}X]B? x {0}y,B2 x {0}A; 

Brx{0}A;Bix{0}A]. 

The #3° x {0} blowup separates the B3 x {0} faces from the B™ x {0} and 
the fif x {0} faces, and the #2° x {0} blowup separates the B2 x {0} faces 
from the ^f0 x {0} faces. Hence, the heat-resolvent space is also given by 

(8.3)   X^] = [Xl^ x CA; B? x {0}A; B? x {0}A; Bf x {0}A; 

B3X{0}A;B2X{0}A;BIX{0}A]. 

We shall use both descriptions in order to lift maps to -^LSHR • Let us 

denote the lifts of B™^^001) x {0}, ^^(X^'001) xC, B^xW'"*) x 

{0}, and 5~n(^jg,00]) x C by B0
mn, B£B, 8%? and B%f respectively. 

Denoting the stretched projection -^LSHR ~* -^LHS' ^ 7r' define degrees 

for the hypersurfaces of Xjfi01 by letting d(H) = d(ir(H)) for all H e 

Miixflg*). 
These spaces have been defined with good mapping properties in mind. 

By Lemma 2.7, the b-fibration Xls x [C, oo]r -> Xls lifts to a b-fibration 

*B : Xi£,00] -^ Xls, and the b-fibration xl^ x CA -> X^'^ lifts 

to a b-fibration TTheat : ^LsH^ ^ XLUs,00]- By Lemma 2.5, the b-fibration 

^LH?'
001

 
x C -)• ^LS x C lifts to a b-fibration 7rreS : X^ST1 -* ^LR- 

We then have the bundle isomorphisms: 
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Figure 3. 

Lemma 8.1. 

T 

dr 

no (^i?001) = WD (XL) ® 

VD (xi^]) = KesnD (xlsR) ® 

d\dX 

AA + (iase)2 

Proof. The first two follow easily from the fact that the b-density bundle 
lifts to the b-density bundle when a boundary face is blown up. The third 
equation follows from Lemma 7.1. □ 
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8.2. Contour spaces. 

The contour of integration, F, with which we perform the integral (8.1) 
is a p-submanifold of X®^ of codimension one as illustrated in Figure 3. It 
should have the following properties: 

(i) F lies in the right half plane; 
(ii) For |2| > 1, 

TT 
F = closure {arg^ = ±—}; 

6 
(iii) For \z\ < 2, F is given by a relation {Rez = /(Imz)}, with / smooth, 

such that for \z\ > 1 this relation is given by (ii) above and /(0) = a, where 
a > 0 is real and a2 is strictly less than the smallest nonzero eigenvalue of 
RN(A); 

(iv) F is disjoint from the poles of (A — A2)  1, for ilge small. 
Condition (iv) is possible and compatible with (iii) by the results of 

section 6. 
It follows that F 'encloses' all of the spectrum of A except that cor- 

responding to L2 null space of A^ and ZQ G spec RN(A), if ZQ = 0. We 
denote F fl 5° by C, a contour in the right half z-plane enclosing all positive 
spectrum of RN(A), and F D Bc by 7+ U 7_, where j± = {arg A = ±7r/6}. 

Since F is an interior p-submanifold of XLSR of codimension one, the 

inverse images of F in X^sR and -X'LSHR
0
 are also interior p-submanifolds 

of codimension one, which we will denote X^sC and -X'LSHC respectively, the 
'double contour space' and the 'double heat-contour space'. Moreover the 
maps -^LsHC ~^ -^LsC ~* ^ are simple b-fibrations. Since these spaces are 
interior p-submanifolds of the respective resolvent space, their boundary 
hypersurfaces are given by their intersection with boundary hypersurfaces 
of the ambient space. We will use the same notation for maps between 
the resolvent spaces and their restrictions to the contour spaces. The map 
-^LsHC —>• F will be denoted 7rpar. We also use the same notation for the 
boundary hypersurface of the contour spaces as for the corresponding resol- 
vent space, and assign the same degree. With these degrees, 

I diase d\, 
' (ias e)2 A ' 

is a nonzero smooth section of fi£>(r). Similarly, we have 

irfA, 
nD(*Lc)s**M*LB)®, A 

.dA, 
n^LHc)^^^^001)®!^!- 
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It will be convenient in the proof of Proposition 8.2 to have the densities 
written in this product form. 

We need one more space before carrying out the integral (8.1). This is 
a space to carry the function e~tx . Note that this is smooth, everywhere 
away from {|A| = oo,ReA2 < 0}, on the space 

(8.4) [[T,OO]TXCA;{T = OO,A = 0}]. 

Hence by Lemma 2.1, this lifts to a smooth function on the space 

(8.5) XLSHR 

= [X°s x [T,oo]T x CA;{ilg£ = 0,T = oo,A = 0};{r = oo, A = 0}; 

{ilge = 0,A = 0};{ilge = 0,T = oo}] 

= [Xls x [T,oo]r x CA;{ilge - 0,r = oo};{ilgc = .0,r = oo,A = 0}; 

{ilg€ = 0,A = 0};{T = oo,A = 0}]. 

Indeed, by Lemmas 2.1, 2.5 and 2.7, this space maps down to both the 
space (8.4) and ^LsR with b-fibrations. Lifting F C -X'LSR to ^LSHR' 

we 

obtain the 'zero-heat-contour space' ^LsHC = 7r~1^- This is an appropriate 
space to carry the function e~tx , which is now smooth everywhere since 
F C {Re A > 0}. Now observe that, in fact, 7r_1r does not meet the face 
{r = oo, A = 0}, the last face to be blown up above, and so for the purpose 
of defining -X'LSHC this blowup could be omitted. Let us define the 'zero- 
heat-resolvent space' ^LsHR (without tilde) to be the space in (8.5) with 
this blowup omitted: 

*LsHR = [*Ls x [C,oo]T xC; {ilge = 0,r = oo}; {ilge = 0,r = oo, A = 0}; 

{i]g€ = 0,A = 0}]. 

Then, by Lemma 2.5, and using the second description (8.3) of X^HR
0
 > the 

map 
Xl x [C,oo]T xC—>XL x [C,oo]T xC 

lifts to a b-fibration 
r2>[C,CX)]    k   v0 

and so 

ALsHR > ALsHR 

ALsHC        > ALsHC 

is also a b-fibration. The point of this discussion of -X'LSHR and -X"LSHR is to 
show that e~tx   lifts to be smooth on ^LSHC' although it is not smooth on 
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-X'LSHR" Finaily we have the bundle isomorphism which we need to perform 
the integral (8.1): 

^D (XlsUC) - 4 (*LsR) ® 4 (^LHs'001) ® 4 (^LSHC) ® 
d(ilge) 
(ilge)2 

8.3. Behaviour as t -> oo. 

The contour F does not enclose the eigenvalues of A€ corresponding to 
L2 zero modes of A^ or the value 0 G spec RN(A). Hence, the integral 
(8.1) will yield the heat kernel projected off these modes. We will denote 
this by e~tAe . Similarly, RN(A)-L and A^r denote these operators projected 
off their L2 zero modes. Also let UQ denote projection onto the 0 eigenvalue 
of RN(A). In the previous subsection, spaces and maps were constructed as 
follows: 

(8.6) Y2 

LHs 

Explicitly, including density factors, e 

(8.7)    e-tAt.J 

-tAJ 

^LsHC" 

is given by 

TTheat * I 7r*ar(2A e -tx2 

•parv a;2) d(ilgc) 

r2,[C,oo] 

(ilge)^ 

and u is the D-density where K is   the canonical density on X*^^ 
I dt dilge 
I t lie7 

^| on -X^LSHC- The C2A2' arises because the measure in (8.1) is 2XdX and 
there is are formal factors of A-1/2 in both the resolvent and in CJ

1
/
2
 to 

be cancelled. Since (Ae - A2)"1 G A"2*^0^), the product in (8.7) is a 
smooth D-density on X2

sI{C. Note that TTheat has the property that every 
boundary hypersurface in X2

s}iC maps to a boundary hypersurface of the 

same degree, and each boundary hypersurface of ^LHS is the image of 
exactly two boundary hypersurfaces of X2

sHC, which intersect. Hence, by 
the pushforward theorem, 

e-tAt g A QUO 
phg (xiE-httr,), 
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where 0D0 is the natural index family which assigns to each boundary hy- 
persurface the index set 

{(n,0),(n,l);neN}. 

To calculate the coefficients of these terms, we shall use Lemma 2.4. Note 
that the index set allows logarithmic terms at every boundary hypersurface. 
We show below that in fact the logarithmic terms do not appear. If e~<Ae is 
in PQC

00(X^^00 , fip ) at a boundary hypersurface G write the restriction 

of (iase)~fce~tAc \ G as H1-^k\G). The following proposition contains the 
'long time information' of Theorem 1.2 and more: 

Proposition 8.2. The heat kernel projected off nuii modes, e~iAe , is a 

smooth D-density on the long-time heat space -XxiL • ^e ^0P models at 
each face are given by: 

JH'±(j)(Stoo) = 0foraili 

i^(0)(i?oo) = e-tA# 

H^0HBn) = e-tAH 

H-L^{B33) = e-tAH and 

HL{-l\Bmn) = T( - Ho r Bmn) otherwise. 

Proof. First consider the faces B^n. The boundary hypersurfaces in -X^sHC 
that map to B%n are B^n and B%f. At B%f the function e-tx2, lifted to 
-^LsHC> vanishes to infinite order so there is no contribution to the asymptotic 
expansion at B^n from Bmn , and moreover, (2.15) shows that there are no 
logarithmic terms at B^n. 

At B^'   the top term in the integrand (8.7) is 

A~2projL2 Idudv'—\e~Tz22XdX 

=z    projL2 \di/aiy—|e        2zdz. 

This is integrated over a contour which encloses no poles of the integrand, 
and which vanishes rapidly as z -> oo. Hence, this integral gives zero; there 
is no contribution to the face JBQQ of order (iase)0. 

(8.8) 
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The top order contribution from each other face Bmn, is 

= /ce-^(i4->)2^^f| 
= s(eTRN(A,'-rB„)| 

since the integral encloses all points of the spectrum of RN(A) except 0. 
At i^oo, e~tx   vanishes to infinite order so e~<Ae   = 0 to all orders at 

Btoo- 
Next consider the faces -Bmn. The boundary hypersurfaces that map to 

Bmn are B^ and -B^n. Recall that, by Theorem 7.2, the resolvent has just 
one term in the full Taylor series at B^Bi^B^ namely (A^ — A2)~ , 

(A^— A2) and (A^— A2) respectively, and vanishes to infinite order at 

the other faces B^. At the faces i?^, the top terms are, for JBQQ, GQCI — 

z~2 projL2, and for the other faces, Gmn' = %[Kmn ) • The integrand in (8.7) 
also contains the factor A2, which increases the power at which the terms on 
the faces B^n appear by two. Therefore, by (2.15), the only possibility for 

a logarithmic term is at SOO(-X*LHS )» a* or(ler zero. This term comes from 

the corner JBQQ fl JB^Q, which consists of two copies of SOO^LHS )• ^e 

integrand is, at this corner, equal to 2projL2 '\dudufdilge/ilgedt/t\. Note 
that the direction of integration is opposite on the two copies: at one the 
contour is coming in from infinity, and at the other the contour is going 
out to infinity. Since the contour integral is a directed integral, these two 
contributions cancel, giving no logarithmic term on ^LHS'    • 

The smooth term at BQQ is, by Lemma 2.4, given by the sum of the 
b-integrals on BQ0 and BQ0. The regularized integral on BQQ is 

(8.9) 

¥??[£/ (A-A2)-V^22A2^±log*projL2 

The log S term is zero after summing over ±, as also follows from the van- 
ishing of the term coming from the corner. Expanding the integrand, 

((A - ATV^A2^) = projL2 (f 2e-**a) + A(A^- A2)"^^'^ 

the second term is holomorphic near zero, and so is absolutely integrable. 

Letting 6 —> 0 we obtain e~    M from the integral. For the first term we may 
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write 

(8.10) 

/ 
_tX2 dX 

ujL2   I ^ 

rooe:ti7r/6 

projL2 / 2e-tA y 

/ 2e tx projL2 — qp / 2e tA projL2 —    and so 
JSe±iTr/6 A Ji A 

limV'proj^ / 2e~tA2-- = limY^ / 2projr2-T— 

Now consider BQQ. This regularized integral is 

lim2projL2    / — . 
^0 L./cn|A<i/(5| z J 

By changing variable of integration from z to l/z in this integral, one finds 
that the sum of this term and (8.10) is zero. Therefore the total contribution 

The top term at Bn and £33 is given by 

ff'L(0)(511)=jyJ-W(S33)= /   (A-A2)-1e-*Aa2A2^ = e-tAir. 
A* A 

Finally, let us calculate the HL^ term at each face Bmn, for (mn) ^ 
(00), (11), (33). This comes from the top term at B^i 

H^l\Bmn) = f Z((KN(A) - z^-^zdz. 

Prom (5.9) it follows that on these faces (RN(A) — z2)~l is exponentially 
decreasing as \z\ —> 00, argz = ±7r/6. Hence, by dominated convergence we 
can calculate this integral as 

H^^iBmn) = lim / e-rz2T((RN(A) - ^2)-12^ 
^4-0 Jc 

= limXfe" 

= -^(no) 

= limX(e-TRN(A)-n0) 
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on these faces. This completes the proof of the proposition. □ 

8.4. Very small eigenvalues. 

In the last subsection we split off from A€ the projection onto eigenfunc- 
tions corresponding to very small eigenvalues. We will denote by ne the 
projection onto these eigenfunctions, and write 11^2 (respectively Ho) for 
the projection onto eigenvalues corresponding to L2 zero modes (resp zero 
modes of RN(A)). Let us analyze the behaviour of nee~*nc. 

Proposition 8.3. The operator Ilee~m€ is a uniformly finite rank operator, 

with Schwartz kernel smooth on ^LHS everywhere except possibly up to 
Btoo- The top terms at each face ^ i?too ^e 

(nee-^)(0)(Boo) = (n£e-
tn<)(0)M) = nL2 

{U£e-
m'f)(Bmn)=%(Uo) 

(Uee-
t^f\B^n)=%(Uo). 

tx22\d\ 

Proof. The operator n£e 
tnE is given by a contour integral 

n£e-'n< = -^ /    (A-A2)"1 

for c small enough that the contour excludes all points of specRN(A) apart 
from zero. By the results of section 6, the contour encloses precisely those 
eigenfunctions corresponding to n€ and no others, for e sufficiently small. 
The problem with this integral is that the function e~tx is growing rapidly 
on the (appropriate) heat-contour space. To fix this, weight both sides with 
a factor small enough to kill this growth: 

c-te»(ias6)'. n   -tne = A_ f     (A _ A^-V^^V^AdA. 
^J\z\=c ) 

By the pushforward theorem this is smooth on -^LHS • The added factor 

e-tc (lase) is sm0oth and nonzero on all faces except Btoo? where it vanishes 
rapidly. Hence nee

_me itself is smooth everywhere except possibly at .Btoo- 
□ 

Notice that there is no reason to believe that Jlee~me is in fact smooth 
up to this face, since in principle the small eigenvalues of 8e could cross zero 
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infinitely often as e -> 0. 

8.5. Pull Heat Kernel. 

To obtain the full heat kernel we need to discuss the heat kernel for small 
time [0, C2] and combine it with the long time heat kernel constructed above. 
This is a simple matter of lifting the result from Part I to our logarithmic 
spaces. 

In Part I, the heat kernel was constructed on the space 

*hs = [X? x [0, oo]f; (A, x {t = 0}), {dt}]. 

Here A5 is the diagonal p-submanifold in X2 and the blowup is performed 
parabolically, with the extra argument, dt, giving the directions in which 
the homogeneity is two. (See [22], chapter 7). For our purpose we just need 
this space restricted to {t < C2}. The heat kernel for finite time lifts to the 
space 

X2i:&C] = [XL x [0, C2]t; (ALs x {t = 0}), {dt}]. 

In fact, since As is transverse to the boundary of X2, the logarithmic and 
total blowups that turn X2 into X2

S commute with the diagonal blowup. 

Thus there is a blow-down map X^f] -» X^ fl {t < C2} and we lift the 
heat kernel by pulling back under this map. (We must also multiply the heat 
kernel by (te)~~1/2 to correct for different normalization of densities used in 

Part I.) Then the heat kernel lifts to be a .D-half-density on XLjjs' , with 
the models 

#(0)(Boo) = e-'AM 

H^(Bu) = e-tAH 

H^(B33) = e-tAH 

and all other models are identically zero. The two heat spaces X^^    and 

-^LHs are both just a product of X^ with a time interval (canonically) 
away from t = 0 and infinity. Hence the spaces can be identified at t = C2 to 
produce the full heat space X^^. Since the heat kernel is unique, it extends 
smoothly across t = C2 to be the full heat kernel of this space. Let us 
summarize the properties of the full heat kernel: 

Theorem 8.4. The heat kernel is a D-density on the heat space X2
S, 

t~nl2 x smooth near t = 0, and smooth everywhere eise except (possibly) at 
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the face 5too- The top terms at each face ^ J3too are given by: 

HW{B%n) = T(e-
TRN(A)), T = tliase? for other B%n; 

HW(Boo) = e-tAM 

H^(Bu) = e-tAH 

H^(B33) = e-tAH and 

H^XBrnn) = 0 for other Bmn. 

9.   Limit of Eta Invariant. 

9.1. Eta invariant. 

The eta invariant of 9e is given for each e > 0 by the formula (1.1): 

(9.1) r?(9£) = ^rilTr(gee-
(9?)^. 

y/n Jo t 

At e = 0, the b-eta invariant is defined by 

(9.2) m®M±) = 4= r^b-Tr^M^1^)^ 
v n Jo t 

where b-Tr is defined in section 2.3. We will show below that this is in- 
dependent of the choice of boundary defining function in the definition of 
b-TV. 

As in the previous section we split the operator 36 into two pieces, S^-, 
orthogonal to the finite number of eigenfunctions corresponding to the L2 

null space of So and 0 E specRN(S), and the projection ne onto these 
eigenfunctions. Then 

(9.3) »;(a£) = 1/(9^) +1/(110 = V^e) + m(e), 

where r]fd(e) is just the signature of ne, that is, the dimension of the 
space of eigenfunctions with positive eigenvalue minus the dimension of the 
space of eigenfunctions with negative eigenvalue. Hence r/fd takes values in 
{o,±i,..., 
±iV}, where N is the rank of n€. The cJ1- part of (9.3) we calculate by apply- 
ing the Pushforward theorem to the integral (9.1), replacing 96 with 9^-. As 
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this involves the trace of 3ee ^ we first consider the diagonal submanifold 

of^Hs- 

9.2. The diagonal of the Logarithmic heat space. 

The diagonal ALHS of ^LHS 
IS ^e lift of ALS X [0,oo]r C Xls to XlRs. 

It is transversal to all boundaries and has the form 

ALHS = [ALS x [0, oo]T; (B33 H ALs) x {r = 00}; (Boo n ALs) x {r = 00}; 

(BiinALB)x{T = oo}]. 

We define the degrees of boundary hypersurfaces of ALHS to be those of 
the corresponding hypersurfaces of ^LHS* ^n a comPact manifold without 
boundary, JV, one has the canonical density bundle isomorphism 

0^(iVx7V)f A = ft(A). 

This means that, given a half-density on N x JV representing the Schwartz 
kernel of a (suitable) operator, one can restrict to the diagonal and inte- 
grate the resulting density to obtain the trace. Here, our version of this 
isomorphism is, from (4.16), 

^(X^SHALHS® 
d(ilge) 
(ilge)s = MALHS)- 

Hence, if t is the inclusion ALHS 
t-^ -^LHs anc^ P 1S t^ie maP -^LHs ~* 

[0,ilg€o]iige, we can express the eta invariant for 9^- as 

(9.4) 

r}(^) = ^=p,(t12.l,*(tv^e-^2). 
d(i\ge) 
(ilge)2 

')■ 

d(ilge) 

(ilg€)2 

-1 

9.3. Asymptotic expansion of rj as e —> 0. 

Consider the integral (9.4). To apply the Pushforward Theorem (Theo- 
rem 2.3), we must check the integrability condition /C(G) > d(G) for all G 
such that p(G) — [0,ilgeo], that is, for G — Bt^ Btoo- Proposition 8.2 as- 
serts that the integrand is rapidly vanishing at Btoo. At Btf it is well known 
that the heat kernel has growth of order £~n/2. However after taking the 
pointwise trace, Patodi in [27] showed that extensive cancellations occur in 
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the integrand and the growth is of order t1/2, making (9.4) integrable. This 
also follows rather simply using Getzler's rescaling (see [13]). 

The structure of the integrand on the double heat space follows readily 
from Theorem 8.2. 

Proposition 9.1. On X^, the integrand I in (9.4) is in C^iXl^Q,^) 
and the leading terms at each diagonal face at ias e = 0 are 

lW{B%n) = -^T(rhrRN(g£)e-™(3<)2) 

j(0)(Boo) = ^"trgMe-tg^ 

/(°>(B11) = -i=t5trg3re-*8ir 

lW(B33) = -LfhrS^-^. 

Proof. The last three lines are immediate from Theorem 8.2. The first line 
follows for Bffi since there Q = dH + (iase) RN(3) + 0((iase)2) and t1/2 = 
(iase)~1T1/2. This determines the other top terms on B^n by compatibility. 
□ 

Of the six boundary faces at iase = 0, four, BQQ, Bn, BQQ and B™ 
have degree one and the other two, S33, £33 have degree two. Using the 
Pushforward theorem and the result above, we see that for small e 

^(96)e^hg([0,ilgeo]iige), 

where £ is the index set 

£ = {(-l,0)}u{(n,0),(n,l);nEN}, 

that is, asymptotically 

V(de)~   J^   «n5fc(iase)n(log(iase))fc. 
(n,k)€£ 

There are exactly two terms in this expansion that could prevent r](Qe) from 
having a limit as e -> 0, a-1,0 and ao,i- The (—1,0) term comes from .833 
and the (0,1) term comes from Bu fl B^ and .Boo H -B33. Let us compute 
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these coefficients. The term a-^o is the integral of /(0)(J333). Consider the 
pointwise trace 

tr^e-^TT = tr (dH + jD{,osxl/x))e-^e-\^'^2^ \ ALs. 

Note that e~t9^ is diagonal with respect to the grading of the spinor bundle 
S = S+ 0 S~, while 3^ is the sum of a piece which is off diagonal with 
respect to the grading of S and a piece which kills e-^0^'/^ /4* at ALS = 
{(loga//^) = 0}. Hence this term is identically zero, and therefore a-^o = 0. 
This also proves the remark above that (9.2) is independent of the choice 
of boundary defining function. In fact, after taking the pointwise trace, the 
integral is absolutely convergent. 

Next, ao,i is an integral over Bn D B33 and BQQ n £33. The integrand is 
the restriction of 

i(1)(Bg) = 3:(ri RN(ge)
J-e-TRN^)JL2) 

to each corner. To compute this, refer to the explicit formula (5.7) for 
e-TRN(A)  rpj^ jntegraj is at T = 0, so the only terms that contribute are 

_1       (C-|*-.'|V4T Id + eH2-S-5'|
2/4r£    + c-|-2.W|74T5_) . 

As noted in section 5, tr7 = tr7S± = 0. Hence ao,i is also zero. 
It follows that r?(9e) does have a limit as e —» 0. As the (0,0) term is 

constant up to e = 0 and all other terms vanish at e = 0, the limiting value 
is 

^        roo        1 r 

ao,o = -7= /    t~*dt /   tr (3]^"* **) 
V* Jo JM 

V* Jo JH 

+   1    TT-^T f1 d5trX(RN(g€)e-
TRN^)2). 

The first integral gives %(g^), the second gives zero, since 1^(3^3) — 0 
and the third is the eta invariant of RN(9). Hence we have shown 

Hmr?^) = 1/6(8^) + r\b&M-) + i?(RN(3)) 

and therefore 

(9.5) 
7?(ge) = 776(9^+) + %(3w_) + mi?) + »/(RN(a)) + 0((iase) log(iase)). 
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In fact, it is not hard to see that all logarithmic terms a^i, n > 0 vanish. By 
(2.15), there are no contributions to an}i from the faces at finite time becuase 
they have no terms in their Taylor series at order n. So, a logarithmic term 
can only come from the corners Bffi fl B$$ or Bff n B$$. On Bgg, ^ + Ae 

has the model operator (iase)^ + Ajj. Hence H^(BQQ) takes values in 
C^QO, oo]^; Ker A^ ® Ker A-^) and inductively it follows that 

H^(B^) e ^{[O,oo]^; [span ^ ... c^"1)]2), 

where the <I>W are defined in section 6.2. Hence, H^ has, at this corner, an 
expansion of the form X^o X)j£Lo cjk{^Sx)~H^ ~s)k with only nonnegative 
powers of (1 — s) and only nonpositive powers of (ilga;). As ex(i?33) = 1 
and ex(i?oo) — 0? the result follows from (2.15). This improves the error 
estimate in (9.5) to O(iase). 

An explicit formula for 77(RN(3)) in terms of the scattering matrix is 
given by Proposition 5.2. 
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