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We give a characterization for an orientation preserving harmonic 
diffeomorphism from C into a complete, simply connected, nega- 
tively pinched surface to have a polynomial growth Hopf differen- 
tial. In particular, we prove that an orientation preserving har- 
monic diffeomorphism from C into the Poincare disk IH has a poly- 
nomial growth Hopf differential of degree m if and only if its image 
is an ideal polygon with m + 2 vertices on cM, with the assump- 
tion that the conformal metric on C with the 9-energy density as 
the conformal factor is complete. We will describe the geometric 
behavior of this harmonic diffeomorphisms in terms of the trajecto- 
ries of their Hopf differentials. We will also construct all harmonic 
diffeomorphisms in this class, and prove that there is an m — 1 pa- 
rameter family of nontrivially distinct harmonic diffeomorphisms 
from the complex plane to a fixed ideal polygon with ra-f-2 vertices 
in the hyperbolic plane. In particular, such harmonic maps are not 
unique, answering a question of Schoen. 

0. Introduction. 

This paper addresses some questions regarding the geometric behavior of 
harmonic maps between surfaces. Harmonic maps are closely related to the 
deformation theory of Riemann surfaces. One of the questions that arise 
naturally in the deformation theory is: whether Riemann surfaces which 
are related by a harmonic diffeomorphism are necessarily quasi-conformally 
related?   The case of interest is of course non-compact surfaces.   See R. 
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Schoen's article [S] for a general discussion of this area, where this and 
other questions were discussed. Note that a map between surfaces being 
harmonic depends only on the conformal structure of the domain surface, 
not on its metric structure, but depends on the metric of the target surface 
in an essential way. There is a theorem of Heinz [He] which says that there 
is no harmonic diffeomorphism from the unit disk onto the complex plane 
C with its flat metric. Later R. Schoen [S] provided a more geometric and 
simpler argument for a more general situation, a corollary of which is that 
there is no harmonic diffeomorphism from M onto a complete surface of 
nonnegative curvature. One interesting test case to the above question is 
the converse: can one map the complex plane C onto the Poincare disk H 
by a harmonic diffeomorphism! 

Proper harmonic maps between hyperbolic spaces have many nice and 
interesting properties. See, for example, the works of Li and Tarn [LT1, LT2, 
LT3], Akutagawa [A], and Akutagwa, Nishikawa and Tachikawa [ANT1, 
ANT2]. Harmonic maps from a surface into a negatively curved surface 
also have very rich geometries. For example, there is a connection between 
harmonic maps from a surface into M and spacelike constant mean curvature 
surfaces in the Minkowski space E2,1 through a theorem of T. Milnor [M], 
which says that the Gauss map of a spacelike constant mean curvature 
surface in E2,1 is a harmonic map from the surface into HL In [CT2], Choi 
and Treibergs constructed many entire spacelike constant mean curvature 
surfaces in E2'1. The images of the Gauss maps of these surfaces in HI are 
convex hulls of closed sets on the ideal boundary of EL In general, the 
conformal type of the surface is not easy to be determined. However, if the 
image of the Gauss map is the convex hull of a finite number > 3 points 
on the ideal boundary of H, then the surface has finite total curvature and 
is of the conformal type of C Thus their construction gives examples of 
harmonic diffeomorphisms from C into ideal convex polygons in HL In the 
case the boundary set on the ideal boundary of H contains an open interval, 
they can construct constant mean curvature surfaces of the conformal type 
of EL 

Another quantity which describes the geometry of a harmonic map be- 
tween surfaces is a quadratic differential associated with a harmonic map, 
called the Hopf differential. It is a fact that this differential is holomorphic 
for a harmonic map [CG]. It was proved in [WA] that given a holomor- 
phic quadratic differential $ = (f)dz2 in C, there is an orientation preserving 
harmonic diffeomorphism from C into HI with $ as its Hopf differential, pro- 
vided 0 is not a constant. Note that if 0 is a constant, then one can still 
construct a harmonic map with $ as its Hopf differential, but the harmonic 
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map fails to be a diffeomorphism. In any case, the constructed harmonic 
maps can be realized as the Gauss maps of constant mean curvature cuts in 
the Minkowski three space E2,1. The result of [WA] is generalized in [TW] 
to the case that the target is a complete, simply connected surface with 
nonpositive bounded Gaussian curvature, and with positive first eigenvalue. 

In this paper, we will discuss harmonic diffeomorphisms from C into a 
complete simply connected surface N such that the Gaussian curvature K^ 
of N is bounded between two negative constants. We will address the case 
when the associated Hopf differential ^ is a polynomial. This case can be 
considered as a first step to understand the open problem whether there 
is a harmonic diffeomorphism from C onto H. We will use a combination 
of the approaches mentioned above. First, in section 1 we will prove that 
if the Hopf differential $ = fidz2 of a harmonic diffeomorphism u from C 
into N is such that 0 is a polynomial of degree m, then the integral of KN 

over the image of u is exactly — rayr. By abuse of notation, we say that the 
differential $ = (f)dz2 is polynomial if 0 is a polynomial. 

We will also prove the converse. Namely, if u is a harmonic diffeomor- 
phism from C into N such that ||9w||2|c!^|2 is complete and that the integral 
of KN over the image of u is —TTITT, then m is a positive integer and the Hopf 
differential of u is a polynomial of degree m. Here \\du\\2 is the d-energy 
density of u. Combining these two results, if N = H, then we can conclude 
that the Hopf differential is a polynomial of degree m if and only if the image 
of the harmonic map is an ideal polygon with m + 2 vertices on the ideal 
boundary of HL In fact, this is true even if iV is only a simply connected 
surface with curvature pinched between two negative constants. 

We will also answer a uniqueness question. In [S], Schoen asked the 
following question: Is a harmonic diffeomorphism from C onto an ideal 
polygon of the Poincare disk unique up to composition with a conformal 
automorphism of C? In section 2 we will show that, generically, the answer 
is negative. In fact, for m > 3, we will construct an m — 3 real parameter 
family of nontrivially distinct harmonic diffeomorphisms from C onto a fixed 
ideal polygon in H with m vertices. We will show these are all possible 
harmonic diffeomorphisms with the fixed ideal polygon as image. 

Geometric behavior of harmonic maps between compact hyperbolic sur- 
faces has been studied in [Wo] and [My]. By adapting some of their ideas, 
as done in [Ha], we will show in section 3 that if the Hopf differential of a 
harmonic diffeomorphism from C into N is a polynomial, then near infinity, 
the image of a horizontal trajectory of the Hopf differential is asymptotically 
a geodesic in TV. See §3 for the precise meaning of this statement. We will 
prove that if the Hopf differential is a polynomial, then the image of a har- 
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monic diffeomorphism from C into N is the convex hull of the intersection 
of the closure of its image and the ideal boundary of N. This gives another 
proof and also a generalization of the result in [CT2] for the case that the 
Hopf differential is a polynomial. It should be mentioned that using the 
idea of trajectories of the Hopf differential, the first author proved part of 
the results mentioned above [Ha]. Namely, he proved that the image of a 
harmonic diffeomorphism from C into H with polynomial Hopf differential 
is a polygon. 

The authors would like to thank Shiu-Yuen Cheng, Peter Li and Richard 
Schoen for some useful discussions. This project is done partially during the 
visit of the first and the fourth authors at Stanford University, invited by 
Richard Schoen. They would like to thank his support and interest in the 
work. 

1. Harmonic diffeomorphisms with polynomial 
Hopf differentials. 

In this section, we will give a characterization for a harmonic diffeomor- 
phism from C into H to have a polynomial Hopf differential. More generally, 
we will study harmonic diffeomorphisms from C into a complete surface with 
nonpositive curvature. First, let us recall the definition and some proper- 
ties of harmonic maps between surfaces. Let Ei and £2 be two Riemann 
surfaces with conformal metrics p2(z)\dz\2 and a2(u)\du\2 respectively. The 
harmonic map equation for maps from Si into E2 can be written as 

uZz + 2(loga)uuzUz = 0. 

Define ||<9^||2 = p-|^|2, and \\du\\2 = ^Uz]2. The energy density ofu is 

given by e(^) = \\du\\2 + \\du\\2, and the Jacobian of the map u is J(u) = 
\\du\\2 — ||chx||2. At a point where \\du\\ is not zero, we have the following 
Bochner formula for the harmonic map w, see [SY] and [Sa]: 

AEliog||fti|| = -ii:2(ti)J(u) + iiri, 

where Aj^ is the Laplacian of Si, and Ki is the Gaussian curvature of E;, 
for i = 1, 2. The Hopf differential of u is defined as (fidz2 = a2(u)uzuzdz2. 
It is well known that if u is harmonic then (f)dz2 is a holomorphic quadratic 
differential defined on Si, see [CG]. Let u be an orientation preserving 
harmonic diffeomorphism from C into a complete surface N with Gaussian 
curvature K^  < 0.    Let \dz\2 and a2\du\2 be the metrics on C and N 
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respectively. Then the Bochner formula for u can be written as 

AQW = -KNJ(U) 

( ' j =-KN (e2- - |^|2e-2-), 

where AQ is the Euclidean Laplacian, w = log\\du\\, and (pdz2 is the Hopf 
differential of u. Since u is an orientation preserving diffeomorphism into 
iV, J(u) > 0, which implies that \\du\\ > 0 everywhere, and that 

(1.2) e2- > |^|. 

Hence (1.1) holds on the whole complex plane C. We want to prove the 
following theorem: 

Theorem 1.1. Let u be a harmonic diffeomorphism from C into H such 
that e2w\dz\2 is a complete metric on C, where w = log ||9^||. Let (frdz2 be 
the Hopf differential of u. Then the image of C under u is a generalized 
geodesic polygon with m + 2 vertices on the ideal boundary of HI if and only 
if (j) is a polynomial of degree m. 

Note that, by [WA], using the fact that e2w\dz\2 is complete on C, the 
harmonic diffeomorphism u can be realized as the Gauss map of a constant 
mean curvature cut in the Minkowski three space E2,1. 

We will prove some more general results, from which the theorem will 
follow. Let us first give the following Lemma, which is adapted from [Ha]: 

Lemma 1.2. Let w be a solution of 

Aow = h (e2w - \<t)\2e-2w) 

on C such that e_2M;|(/>| < 1, where (j) is a polynomial, not identically zero, 
and h is a smooth function such that h > a2 for some constant a > 0. Then 

lim (u;-;-log |0| ) =0. 

In fact, there is a constant C > 0, such that 

0 < L, - I bg |0| J (z) < exp (-Cr{z)) 

provided r(z) is large enough, where r(z) is the distance ofz from the origin 
with respect to the metric \(f)\\dz\2. 
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Proof. By the assumption that e~2w\^\ < 1, we have w — |log|^| > 0 at 
those points where (/> y£0. By [WA], there is a solution v of 

Aov = a2(e2v-\cf)\2e-2v), 

such that e-2v\<f)\ < 1, e2v\dz\2 is complete. By [W], see also [TW], we have 
w < v. By [Ha], 

(f;-Iog|^|)(2f)<exp(-C,r(2r)) 

for some constant C > 0, provided r(z) is large enough. Since w < v, the 
lemma follows. □ 

Theorem 1.3. Let u be an orientation preserving harmonic diffeomor- 
phism from C into N where N is a complete surface with Gaussian curvature 
KN ^ — a2 for some constant a > 0. Let (f)dz2 be the Hopf differential ofu. 
Suppose that 4* is a polynomial with degree m>l, then 

/     (-KN)dVN = ravr, 
Ju(C) 

where dVjsr Is the volume element of N. In particular, the area ofu(C) is 
less than or equal to (m7r)/a2. 

Proof. Let B(R) be the Euclidean ball with radius R centered at the origin. 
Since ^ is a polynomial of degree m > 1, there exists a constant RQ > 0 such 
that (f) has no zero in \z\ > RQ. Let w = log \\du\\. Since u is an orientation 
preserving harmonic diffeomorphism from C into iV, by the Bochner formula: 

Aow = -KN (e2" - \4>\2e-2w) 

> a2 {e2w - \<j>\2e-2w), 

in C, where we have used the assumption that K^ < —a2 and «/(«) > 0, 
which implies that e-2u,|<£| < 1. Since \<f>(z)\ ->• oo, as z -> oo, by Lemma 
1.2, 

(1.3) lim L-^logH)=0. 

Let zi, • • • , zm be the zeroes of 0 (counted with multiplicity), then 

AoQlogw)=f>Zi 
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in the distributional sense, where 6Zi is the point mass at Zi.   Thus for 
R > j?05 

rmr= AQ f-log|(/>M 

Combining with (1.1), we have, for R > i?o, 

/ (—K]sr)dV]sr — rnvr =  /      (—KN)J(u)dxdy — rMr 
Ju(B(R)) JB{R) 

= J      AoL-ilogHJ 

■^W^C"-!1*1*1)- 
Here j-dB(R\ stands for integral average over dB(R). If fu,cJ—Kisr)dVN < 
raTr, then for all R > i?o, 

(1.4) 

«/lXI 

{—K^dVjsf — rmr < —e 
(B(fl)) 

for some e > 0, which would imply 

Dividing i? on both sides of the inequality and integrating implies that 

/ (tii-±logM)<0 
J dB(R)   \ Z J 

for large i?, which contradicts w — \ log |^| > 0. On the other hand, if 
lu(C\{—KN)dVN > mn, then for sufficiently large i?, 

(.-I, %^f U-xlogH   >e 

for some e > 0.    Again dividing R on both sides of the inequality and 
integrating would imply 

/ L-I log 1^1] >elogi2 + C, 
J  dB{R)  \ l J 
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which contradicts (1.3).  This proves fu,cJ-KN)dVN = mir.  The second 

part of the theorem then follows from the fact that — KN > a2. O 

Remark. Let u be a harmonic map from C into a complete surface N 
with Gaussian curvature pinched between two negative constants, such that 
||3u||2|cfz|2 is complete and \\du\\ > \\du\\. If the Hopf differential of u is 
cdz2 for some non-zero constant c, then u(C) degenerates into a geodesic in 
N. In fact, in this case one can conclude that \\du\\ is a constant, see [TW]. 
Hence \\du\\ is a constant and so is the energy density. As in [Ht], the image 
of u is a geodesic. 

Theorem 1.4. Let u be an orientation preserving harmonic diffeomor- 
phism from C into a complete surface N with Gaussian curvature K^ < 0, 
sucli that e2w\dz\2 is a complete metric on C, where w = log\\du\\. Let 
(/)dz2 be the Hopf differential of u. Let fu,Q (—K^dVjsr = mn for some 
0 < m < oo. Ifm< oo, then (/) is a polynomial with degree < m. If we 
assume, in addition, that Kjsf < —a2 for some a > 0, then m is the degree 
of (j), and thus an integer. 

Proof. If m < oo, then C with conformal metric e2w\dz\2 is a complete 
surface of finite total curvature with nonpositive Gaussian curvature. The 
first part of the theorem can be deduced from the results in [F]. Here we 
will give a much simpler and more direct proof. 

First, we argue that <£ has only finitely many zeroes. The argument again 
follows by integrating the Bochner formula. If (p has more than [m]+l zeroes, 
then for all sufficiently large R for which dB(R) does not contain any zero 
of & 

W^H'^'H dRj dB(R) 

for some e > 0. Since the zeroes of a holomorphic functions are discrete, 
this inequality holds for all large R except a possibly countable set of ii's. 
Note that j-dB(R)(/w — \ log 101) is continuous in i?, so that by dividing R 

and integrating, we again obtain a contradiction with w — ^ log \(/)\ > 0. 
Next we prove an upper bound for w in the form e2w^ < ai\(f)\2\z\bl, for 
all z with large |z|, with some constants ai,&i > 0. It is elementary to see 
that if (/) is not a polynomial, then there is a curve in C diverging to oo 
with finite length in the metric |^)|2|^|bl\dz\2 (see, for instance, Lemma 9.6 
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in [0]), which would imply that e2w\dz\2 is not complete. The derivation 
of the claimed upper bound follows from the mean value inequality for the 
subharmonic function w — ^ log |0|. As in the proof of Theorem 1.3, we first 
obtain an upper bound for the spherical average of w — ^ log |0|: 

-I (w- -log|0| ) <e\ogR + c 
J dB(R) \        * ) dB(R) 

for some constants e, c > 0.  Notice that w — ^log|0| > 0 is subharmonic, 
therefore, for any z with sufficiently large |^|, 

±log\$\) (z) <-f L_Ilog|0|N 
Z
 ) J  B(z,\z\/2)  \ * j 

*\z\    JB{?>l2\z\\\B{\z\m  \ * J 
< 

4      MM 
< "^79 / {e\ogR + c)RdR 

^\z\    J\z\/2 

< bi log \z\ + ai 

for some constants ai, bi > 0. Exponentiating both sides gives us the desired 
upper bound. Thus we conclude that 0 is a polynomial with degree less than 
or equal to m.The second statement of the Theorem follows from Theorem 
1.3. □ 

Combining Theorem 1.3 and Theorem 1.4, we have: 

Corollary 1.5. Let u be an orientation preserving harmonic diffeomor- 
phism from C into a complete simply connected surface N with its Gaussian 
curvature KN bounded from above by a negative constant —a2. Suppose 
that e2w\dz\2 is a complete metric on C, where w = log \\du\\. Let 4>dz2 be 
the Hopf differential ofu. Then (j) is a polynomial of degree m if and only if 
fu(€) {~~KN)dVN = rmr. In particular, under the additional assumption that 

KN is also bounded below by a constant —b2, then (j) is a polynomial if and 
only ifu(C) has finite area. 

We are now ready to give the 

Proof of Theorem 1.1. By Corollary 1.5, and the fact that the Gaussian 
curvature of H is —1, we can conclude that ^ is a polynomial of degree m 
if and only if the area of u(C) is rmr. By [WA], using the fact that e2w\dz\2 
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is a complete metric on C, u can be realized as a constant mean curvature 
cut in E2'1. By Theorem 4.8 in [CT2], see also Proposition 2.1 in §2, there 
is a closed subset L in the ideal boundary of HI such that 'u(C) is equal to 
the convex hull of L. From the geometry of H, the area of u(C) is rrm if and 
only if L consists of exactly m + 2 points. The theorem then follows.       □ 

Remark. A key ingredient in the proof of Theorem 1.1 is Theorem 4.8 in 
[CT2], which asserts that u(C) is equal to the convex hull of L for a closed 
subset L in the ideal boundary of HL This is proved in [CT2] by studying 
the Gauss map of constant mean curvature cuts in E™'1. That method does 
not generalize to the case of a negatively curved target surface. In section 
3, by a more intrinsic geometric approach of harmonic maps, we will prove 
that Theorem 1.1 is still true if H is replaced by a simply connected surface 
with Gaussian curvature pinched between negative constants. 

In Theorem 1.3 the integral estimate fu,cJ—KN)dVN = mir does not 
involve the upper bound of KN in a quantitative way. It seems reasonable 
that the assumption on KN can be relaxed to KN < 0. In some particular 
cases, this can be done. More precisely, in [TW], it was proved that given a 
holomorphic quadratic differential (j)dz2 in C, one can construct a harmonic 
diffeomorphism u from C into a complete simply connected surface iV with 
positive first eigenvalue, and with the Gaussian curvature bounded between 
—b2 and 0, such that the Hopf differential of u is (f)dz2 and that ||<9u||2|Gfe|2 

is complete. In fact, u is the limit of a sequence of harmonic maps Ui from 
C into Ni with Hopf differential (/)dz2. Here each Ni is a simply connected 
surface with Gaussian curvature pinched between two negative constants. 
Moreover, each Ni can be realized as (D, e2Xids2) where ds2 is a Poincare 
metric on D, and A^ -+ A where e2Xds2 is the metric of N. Using this 
information and Theorem 1.3 and Theorem 1.4, we can conclude that: 

Proposition 1.6. Let N be a simply connected surface with Gaussian 
curvature K^ satisfying —b2< K^ < 0 and with positive first eigenvalue. 
Given any polynomial <f> of degree m > 1 on C, there is a harmonic diffeo- 
morphism u from C into N with Hopf differential (j)dz2 such that 

I      {—K]s[)dVN — mir. 
Ju(C) 
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2. Constant mean curvature cuts. 

In [S], Schoen asked the following question: Is a harmonic diffeomor- 
phism from C onto an ideal polygon of the Ponincare disk unique up to 
composition with a conformal automorphism of C? By [WA], see also [TW], 
given a polynomial (/) of degree m, there is an orientation preserving har- 
monic diffeomorphism u from C into H, with Hopf differential (frdz2, such 
that ||9^||2|d^|2 is complete. The map is unique up to isometry in EL By 
the results in §1, we see that the image of the harmonic map is an ideal 
polygon with m + 2 vertices. Hence we can establish a correspondence be- 
tween the set of polynomials of degree m and the set of ideal polygons in 
H with m + 2 vertices. By composition with conformal automorphism of C, 
we may consider only the set of polynomials such that the coefficient of the 
leading term is 1, and the constant term is 0. Hence that is 2m — 2 real 
parameter family of polynomials. An ideal polygon with m + 2 sides in H is 
determined by the m + 2 vertices. By composition with an isometry of H, we 
may assume that three of the vertices are 1, —1, and i. The family of such 
polygons has m — 1 parameters. Hence generically, for any fixed m + 2 points 
on the ideal boundary of H, there should be an m — 1 parameter family of 
harmonic diffeomorphisms such that the image of each of them is the ideal 
polygon with those m + 2 points as vertices. In this section, we will show 
that that is the case for every set of m + 2 points. In fact, we will construct 
all harmonic diffeomorphisms u with a fixed ideal polygon as image, such 
that ||du||2|d2:|2 is complete. Equivalently, we will find all parabolic constant 
mean curvature cuts with a fixed ideal polygon as the Gauss image. 

First, let us review some results in constant mean curvature cuts in 
[CT1, CT2, CT3]. Three dimensional Minkowski, E2'1, is E3 endowed with 
the Lorentz metric 

ds2 = dxi2 + dx^   — dx2. 

A smooth surface M C E2,1 is spacelike if the restriction of ds2 to M is 
a Riemannian metric. If the surface is given locally as a graph xs = f(x) 
where x = (a; 1,0:2) then the induced metric has the form 

\'j -) = us   = gijdxi aXj) gij = dij — Jijj- 

Thus, being spacelike is equivalent to |D/| < 1. 
A spacelike surface M C E2,1 is entire if the projection M 3 {x,xs) h-> x 

is onto R2, where x = (zi,^)- If it is also closed with respect to the 
ambient topology we call it a cut. It is well-known that if M is a constant 
mean curvature cut then M is the graph of a function / defined over the 
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entire M2, see [CT2] for example. Let {61,62,63} be an orthonormal frame 
of E2'1 adapted to M, that is, 63 is the future pointing normal vector field. 
The set of all future pointing vectors of E2,1 of length —1 is a hyperboloid 
% which is isometric to that Poincare disk in the induced metric. The map 
Q : M —> W taking a point to its unit normal translated to the origin gives 
the Gauss map 

Q{X) = e^(      Df 1        ^ yi-iwVi-iwy 
The isometry of H to H = (B,ds2) where D = {z € C : \z\ < 1} and ds2 

is the Klein metric, is given by (xi,X2,xz) >-¥ (zi/a^a^/^s) so the Gauss 
map becomes Q(x) = Df(x) : M —)■ H, see [CT2]. The geometric boundary 
coincides with the usual topological one H.(oo) = dD. 

The second fundamental form is gotten by covariantly differentiating the 
Gauss map htj = (V^ej, 63). The mean curvature H is given by 

(2.1) ff=Idivf   ,   Df       ) = hn + h2\ 

We summarize some facts about constant mean curvature cuts in the fol- 
lowing proposition [CT2, T2]. 

Proposition 2.1. Let M C E"'1 be an entire spacelike hypersurface whose 
mean curvature H is constant and which is closed in the ambient topology. 
Then 

(i) M is complete [CY].    (In fact, if a closed spacelike constant mean 
curvature surface is complete then it is also entire [W].) 

(ii) The length of the second fundamental form is bounded, [C, CY]. In 
fact, we have X^^i ^ij — n2H2. This implies the Bernstein property: 
H = 0 cuts of any dimension axe afiine subspaces. 

(iii) IfH>0, then M is convex: hij > 0 [CY, Tl]. Ifn = 2, by (ii), the 
Gaussian curvature satisfies — 2H2 < K < 0. 

(iv) There is a splitting phenomenon [M, CT2]. The matrix (hij) has 
constant rank. If ei(xo) is a null direction of hij at a point then 
M metrically splits a line, e. g., ifn = 2 then, up to a rotation, 
M = E1 x N where N C E1,1 is a spacelike constant curvature curve 
(a hyperbola). 
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(v) By convexity and achronicity, blowing down converges to a convex 
achronal homogeneous function, the projective boundary data 

V{x) =  lim :/M 
r>0 

wliicli is lightlike in the following sense [Tl]: there is a closed set, the 
set of lightlike directions Lf C S1 so that Vf(x) = sup{^«a; : ^ E 
Lf} where "• " is the usual R2 inner product. It follows [CT2] that 
G(M) = Conv(Lf), the convex hull in EL In fact by (iii) and (iv); 

if there are more tlian two points in Lf then Q : M —> G(M) is a 
diffeomorphism. 

(vi) The Gauss map is harmonic [M, I, CT2]. This is the Minkowski Space 
version of the Ruh-Vilms result. 

There is a corresponding existence theory. We define for each 0 G S71-1 

the asymptotic boundary values to be 

Af{0):=lim{f{rO)-r) 

which decreases either to a limit or to — oo. 

Proposition 2.2. [CT2, CT3] Let L C S71-1 be any closed set with at 
least two points and t(6) be an upper semicontinuous function defined on L. 
Then there exists a unique entire closed spacelike constant mean curvature 
H > 0 surface in Minkowski space, f G C^R71) satisfying (2.1) such that 
Vf(x) = sup{£ • x : f E L} and t{0) = Af(0) for all 9 6 L. 

Sketch of proof for the present case that n = 2 and L is finite. For m > 2 let 
L = {01,02* • • • ,0m} C S1 be distinct points taken sequentially around the 
circle and t = (ti,... , tm) E W1. We seek a unique spacelike entire solution 
/ to (2.1) which satisfies the boundary conditions 

(2.2) Vf(x) =    max   x.ek Af(0) = ('*'       *?= "*'   . 
fc=i,...,m l — oo,   otherwise. 

Our method is based on the construction of supersolutions and subsolutions 
which are constructed from (2.2) alone. These upper and lower solutions, 
say u > u, respectively, on M2 will have the property that 

lim {u{r9) - u{rO)) = 0 
r—too 
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for all e E S1. 
The basic building blocks for barrier construction are surfaces of rev- 

olution [HN, CT1, CT2, CT3]. The most basic are the hyperboloid and 
hyperbolic cylinder 

h{x) = VT + FF, T{X) = y/\ + |X2|2. 

Another is the semitrough which is asymptotic as\x\ -> ooto the hyperboloid 
for xi < 0 and the cylinder for xi > 0. It has the parametric form 

M2 3 (u,v) !->• (u — ^cothw, TjCothushv, ^cothuchv) . 

Let xs = a(x) denote the graph of this solution and v(x) = fa]- or_is 
asymptotic to \x\ for \x\ —> oo with xi < 0 and a(x) is asymptotic to r as 
|a;| —± oo with xi > 0. Hence these solutions satisfy 

^(z) = \x\, Ah(9) = 0 

T/^       (\ A <a\     J0'        if« = (0,±l) 
I —oo,    otherwise. 

Uz),   if.an^O, Jo,        if0.(l,O)<O, 
Ma; I,       ifrz;i<0. I-oo,    otherwise. 

The key relation is that for x G M2, 

r(x) < CTAOE) = cr(a;i - A,x<2) 

for any constant ^4 so that 

M0)<A*AiP) 

for all 9. Under Minkowski Space isometrics, this relation continues to hold 
in the corresponding sector. 

Viewing x G C let {Ru){x) — u(e~lKx) denote rotation about the rrs-axis 
and (Tu)(x) — u(xi — a, X2 — b) + c denote translation. The isometry of 
boosting by angle 7 around the a;2-axis, is 

xichj + xsshj^ 

X2 

xi shj + x^ch^yj 
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Let xs = (Bu)(x) denote the function whose graph is the boost of the surface 
X3 = u(x). Using definitions, we check that any isometry o commutes with 
blowing down 

(LVf)(x) = Vif(x). 

On the other hand the asymptotic boundary values transform according to 

ATU(0) = M0)-M*0 + C 

(2.3) ARtt(0) = Au(e-iK0) 

ABu(0) = ch<yAu(eix) 

where x — xili 0) satisfies 

cosxch7 + sh7 + isinx 
0 = 

cosxsh7 + ch7 

For each k = 1,... ,m, by rotating and boosting it is possible to choose 
an isometry BR which takes the finite directions {±i} of AT to the pair 
{ifc_i,ifc} where 0o = 0m> Hence 

VBRT(X) =m<ix{x9 6k-i,xm0k}. 

Fixing a and choosing b and c appropriately for the translation T we can 
arrange that the composite Lk = BRT takes prescribed values at 9 = O^-i 
and 9 = %, 

ALkr{9)= ltk,        if 0 = 0*, 

^—00,    otherwise. 

Applying the same isometry to a we have 

fmax{x9 9k-.ux9 9k},   if 
lkAx)' IN, ot 

arg0A;_i <arga; <arg0fc 

otherwise. 

Aka(0) = { 

tk-l, 'tf0 = Ok-li 
tk, if0 = 0jb, 

-00, if arg 0fc_i < arg 0 < arg0fc, 

Xk(9), otherwise, 

where Xk(9) is a continuous function on the closed S1 segment from 9k to 

0fc-i. 
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The isometry ^ was determined by the prescription of ALkT for arg O^i < 
arg 0 < arg 0^ and is independent of a. Since there are only finitely many A;, 
by choosing a sufficiently large we may also arrange tk^(x) > LIT{X) for all 
#, k and ^. Let 

u(x) =    max   LkT(x), u(x) =    min   Lk<j(x). 
A;=l,...,m k=li...im 

u and u are subsolution and supersolution to (2.1) satisfying the boundary 
condition (2.2). By approximation [Tl] where a local version of Proposi- 
tion 2.1 (2) provides the compactness estimates, there is an entire constant 
mean curvature surface u > f > u with Vf = Va and Af = Ay,. 

To prove uniqueness, let u be another solution to (2.1) satisfying the 
boundary condition (2.2). Since any solution is convex by Proposition 2.1 
(3), then x • Qi + ti is a lower barrier for each i. Hence 

(2.4) u(x) > q(x) :=    sup    x*0k+tk 
k=li...,m 

so by achronicity, u(r0k) — q(r0k) ->• 0 as r —> oo. Let LkT be one of the 
subsolutions constructed above. By (2.4) u > LkT—£ if £ sufficiently large. In 
decreasing s, LkT — e remains a global subsolution for any solution u and any 
e > 0. If not, let SQ > 0 be the infimum of such e. Either u touches LkT — SQ 

at an interior point which cannot happen by the strong maximum principle, 
or by (2.4), it can touch asymptotically at most one possible point at infinity 
lim^oo u(rQ) — ^r(r^) = — SQ where 9 = 5(^-1 + Ok)- This cannot happen 
either as can be seen by "blowing up" at 0 G IH[(oo). In fact, if we let 
g = L^

1
U, then g > r — C'Q for some CQ > 0, and limrCl_4OOy(a;i,0) = 5 — s'Q. 

Then the constant mean curvature cut w(xi,X2) = lim^oog(xi +1,^) is 
the monotonic limit of constant mean curvature cuts which depends only 
on £2, and has boundary data Vw = VT and Aw = XT but w ^ r. This is 
impossible by looking at the ordinary differential equation satisfied by both 
w and r. Hence we have u > LkT for all fc. Hence u>u. 

To prove u > u, let us denote by a' = G[0k-u0k,tk-iitk\ the boosted a 
solution that has its Gauss map image G', the convex hull of S1 — (0fc-i> Ok), 
and Kff^Oi) = ti for i = A; — l,fe and which is minimal among those for 
which ar > q. If we take a subinterval [^1,^2] C (0fc_i,0fc) then the solution 
a" = cr[£i, $2? **-!»**] has G C G' C G" where G is the Gauss image of u. 
Hence a" > f in the sense that if z G G" — G, 9 = z/\z\, then 

hm -*—*■ > 9mz > Inn -*—'-. 
r->cx)      r r-^cx)      r 
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Together with the fact that u is achronal, 

lim (/'(rflJ-uCrfl) > 0. 
r—>-oo 

Hence also a" > u for all x G M2. Now, as for subsolutions, Lkcr is the 
infimum of such a". Hence L^a > u: and u > u. Since u — u tends to 0 as 
x —>• oo, and u>u, f > u, u — f by the mciximum principle. □ 

The constant mean curvature cuts are Hadamard surfaces whose behav- 
ior lies between C and EL If Lf contains an interval where Af is uniformly 
bounded, then M is conformally the disk [Mi]. (For Lipschitz continuous 
Af see [CT3].) Hence there is a uniformizing map Y : H —> M so that 
g o r : M -> (/(M) is harmonic. 

On the other hand, for finite L, by (iv), G(M) = IP is a polygon. Since the 
cut is complete and has finite total curvature (their Gauss image is diffeo- 
morphic to a polygon with finite area), then it must be parabolic according 
to the theorem of Blanc and Fiala [BF] and Huber [Hu]. Hence there is a 
uniformizing map T : C -> M so that u = Q oT : C -> IP is harmonic. We 
say that two harmonic maps ui,u<2 : C -* IP are nontrivially distinct if there 
is no conformal diffeomorphism w : C —> C so that ^2 = wi o w. 

Theorem 2.3. Let P C H be an ideal polygon in the hyperbolic space with 
m > 3 vertices 0k e IHI(oo). For each t G Mm let M(t) C E2'1 be the entire 
spacelike surface of constant mean curvature H = 1 whose Gauss image 
Q(M(t)) = P and AM(t){0k) — tk, which uniquely exists by Proposition 
2.2. Let N C Mm be the three dimensional subspace of restrictions ofafRne 
functions, 

N = {s e Mm : sk = (a, b) • 0k + c, k = 1,..., m,    some (a, 6, c) 6 M3 } 

Then for each ciass in [t] € Mm /N the harmonic maps 

(2.5) ii(-;*)=S(r(-;t);t):C^P 

are nontriviaiiy distinct. 

Proof. Observe that we do not get more maps. For if t — i E iV then 
there is a translation T so that ATOM = ^l^- However7 by uniqueness in 
Proposition 2.2, ToM = M. Hence Y and ToY are uniformizing the same 
surface. Therefore u = Y~l oToT:C—»Cisa conformal diffeomorphism 
giving the equivalence QoY = QoYou. 
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On the other hand suppose that the two surfaces M(t) and M(i) with 
uniformizations T(',t) : C -* M(t) have equivalent harmonic maps. Then 
we will show that these surfaces must differ by rigid motion and sot — tGN 
by (2.4). Thus we may assume that, for all £ G C, 

(2.6) g(T(C;t);t) = g(T(C;i);i). 

Consider the conformal diffeomorphism $ : M(t) -> M(t) defined by $ = 
f o T~l. By (2.6) we also have $ = Q~l o Q so that M and M are parallel 
at corresponding points. Let {e^} be an adapted frame near x G M and its 
translation the frame for M near $(x). Let {O1} be the dual frame for M 
near x and {91} the dual frame near <f>(x). Pulling back, we obtain functions 

Conformality means for some function p > 0, 

p2 ((01)2 + (02)2) = $* ((^1)2 + (^2)2) = ^ ftk P 0 0k. 

Hence p~l<t>lj is an orthogonal matrix. Thus, if it is also orientation pre- 
serving it satisfies 

(2.7) ^1=^2, 4>12 = -A- 

But we have the description of $ by Gauss maps Q = e^ to the hyper- 
boloid. Another translate of the frame is adapted to the hyperboloid near 
63. Denoting the coframe by {UJ

A
} and connection forms by {0i^} we find, 

des = 63l Bi = U)% Bi 

so that 
hijei = o3

i = g*u>>. 

Hence, because $ = Q"1 o Q we have 

(2.8) (l>ik0
k = $*di = Vjhjk0

k 

where hij(x) is the second fundamental form of M(t) and h^ {$(x)) is the 
inverse of the second fundamental form of M(i) which is invertible by Propo- 
sition 1.4. Thus $ is orientation preserving. 

We claim that conformality implies hij(x) — hij($(x)). The easiest way 
to see this is to assume that at a point, the second fundamental form is 
diagonal hij(x) = diag^i,/^)- Thus (2.7) implies 

ft11*! = h22K2, hl2K2 = -fc21«i. 
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First we have hu = 0. To see this, since h^ is symmetric, the second 
equation implies /I

12
(KI + K^) = 2Hh12 = 0. Then constant mean curvature 

and the first equation implies 

K>1 2H — Ki 

/in      2H - /in 

Hence Ki =hn and the claim follows. 
(2.8) implies ^ • = Slj. Hence $ is a diffeomorphism for which the first 

and second fundamental forms agree at the corresponding points. By the 
Minkowski Space version of the fundamental theorem of surface theory, the 
surfaces are translates of one another. □ 

If the ideal polygon has two vertices, by uniqueness in Proposition 2.2 it 
must be a rigid motion of the cylinder LT. The map ^(a;,sh^,chy) *-> (x,y) 
gives an isometry to C 

We want to show that any harmonic diffeomorphism u from C into H 
with the usual assumption and with polygonal image such that ||9^||2|dz|2 

is complete, then it can be realized as a constant mean curvature cut in 
the family constructed in Theorem 2.3. That is to say, for any m > 3, 
Theorem 2.3 give all the solutions for harmonic diffeomorphisms u from C 
into the hyperbolic space so that ||d?i||2|Gte|2 is complete, and that the Hopf 
differential of u is (/)dz2 with 0 to be a polynomial of degree m — 2. We 
always assume the mean curvature to be H = 1 in the following. According 
to Proposition 2.2, it is sufficient to show the following property about cuts 
with polygonal G{f)- 

Proposition 2.4. Let f C E2,1 be an entire spacelike H = 1 cut such that 

(2.9) Vf(x) =   max   x^Ok 
fc=l,...,m 

for some 0* e S1.   Tien A/(0) = -oo for 0 ^ Ok, and Af(0k) is finite for 
k = 1,... ,ra. 

Proof. Note that by Proposition 2.1(5), if the image is a polygon, then (2.9) 
holds with 6 := {0k}k=i,...1m C S1 the vertices of the polygon. Let 9 G S1, 
then we have 

(2.10) W"1        iteSe' v    ; vf(6)<i     ifflge. 
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By the definition of A/, we see that A/(0fc) = tk for 1 < k < m, where tk 
might be — oo, and Af(6) = —oo if 6 £ 6. Let s/- be arbitrary real numbers 
such that Sk > £&• By Proposition 2.2, there is u such that the graph of u is 
a constant mean curvature cut with the boundary conditions 

Vu(x) =   max   X9 9jz 

and 
'0 = 0k,l<k<m {Sk,      if< 

—oo    otl 
Au(0) = , +,       . 

otherwise. 

We want to prove, A/(0m) is finite, for example. Suppose not, then Af(0m) = 
—oo. Let 

5=    max    0m9 0k. 
l<k<m-l 

Then S < 1. For any p > 0, let (a, 6) = p0m G C, and let v(xi,X2) = 
u(xi — a, X2 — b) + 5p. By (2.3) we have 

Av(0) = Au(0)-p0m"0 + 8p. 

Hence if 9 ^ Ok, for all A;, then Kv{6) = — oo, and for 1 < k < m — 1, 

A^fljb)     ^    Au(9k)-p6mm9k + 5p    >    sk     >    tk 

by the definition of s^ and 6. Also Av(9m) > —oo. Hence Av > Af. By the 
proof of Proposition 2.2, we see that the supersolution v for constructing v 
satisfies v > f. Since v — v tends to 0 at infinity, v > f by the maximum 
principle. In particular, we have 

fipOm)     =     f(a,b)     <     v(a,b)     =     u(0,0)+6p. 

Dividing through by p, and letting p —> oo, we have 1 < 5, where we have 
used (2.10). This is a contradiction. □ 

Combining Theorem 2.3 and Proposition 2.4, we have 

Corollary 2.5. Aii orientation preserving harmonic diffeomorphism u 
from C into an ideal polygon P in H with \\du\\2\dz\2 complete on C can 
be realized as a constant mean curvature cut in the family constructed in 
Theorem 2.3 
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Proof. First note that any such a harmonic diffeomorphism can be realized 
as a constant mean curvature cut in E2,1, then use Proposition 2.4 and 
uniqueness in Proposition 2.2. □ 

As mentioned before, for a constant mean curvature cut in E2,1 which is 
the graph of the function /, suppose that Lj contains an interval and that A/ 
is uniformly bounded from below in that interval, then the cut is conformal 
to the disk by [Mi]. It is still therefore interesting to see whether A/ is 
always uniformly bounded from below. If this is true, then one can conclude 
that there is no harmonic diffeomorphism from C onto HL However, even 
the question whether A/ is bounded from below pointwise for every point in 
Lj is still open. Using the method of proof of Proposition 2.4, at least we 
can prove that: 

Proposition 2.6. Tie subset {9 6 Lf \ A/(0) > —oo} is dense in Lf. 

Proof. Suppose A/(0) = —oo for all 0 e (OQ — e, Oo + e). For any fixed 
k G R, the function tk(0) = max{A/(0), k} is an upper semi-continuous 
function defined on Lf. Therefore, Proposition 2.2 implies that there exists 
a function u which graph is a constant mean curvature cut such that 

Vu(x) =sup{f •:& : ^ e Lf} 

and 

[—oo,    ifOgLf. 

Now let 
* = sup{£.0o : Ze Lf \ (Oo - e, 0o + e)} < 1, 

and for any p > 0, let (a, b) = pOo E C. Consider the function v(xi, X2) = 
u(xi — a, X2 — b) + Sp which graph is also a constant mean curvature cut. 
The rest of the proof is similar to Proposition 2.4. □ 

3. Geometry of harmonic maps. 

In this section, we will give detailed description about the behavior of 
the harmonic diffeomorphisms considered in §1 in terms of the trajectories 
of holomorphic quadratic differentials. In fact, the original approach that we 
took to study the mapping behavior of harmonic maps between surfaces was 
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to exploit the geometry of a holomorphic quadratic differential associated 
with the map, see [Ha] for a description. That approach suggested Theorem 
1.3 and provided a proof. Although we now have a much simpler proof as 
presented here in this paper, it is still instructive to see that proof to get 
a better picture of the geometry of harmonic maps. Moreover, this will 
give another proof of the result by Choi-Treibergs [CT1] that the image 
of a harmonic diffeomorphism u from C into H is the convex hull of the 
intersection of the closure of the image with the ideal boundary, for the 
special case that ||<9w||2|cte|2 is complete and the Hopf differential of the 
harmonic map is a polynomial. In fact we will prove more general results 
by allowing the target to be a complete simply connected surface iV with 
Gaussian curvature bounded between two negative constants. 

Let us give a brief summary of the background material on the trajecto- 
ries of a holomorphic quadratic differential on C. See [St] for more detailed 
information. Let $ = (f)dz2 be a holomorphic quadratic differential on C 
Then $ induces a "measured foliation structure" and a "singular flat metric 
structure" on C. Consider |^(z)||Gte|2 as a metric on C. Since $ is holo- 
morphic, near a point ZQ where ^(^o) 7^ 0, we may define w = w(z) by 
w(z) = f* y/(f)(z)dz. Here we choose a branch of the square root function. 
Then |0(^)||d^|2 = \dw\2, which means that |0(z)||d2:|2 is flat. The preim- 
ages of the horizontal lines in the w-plane are called the horizontal foliations 
of <I>, denoted by $^5 the preimages of the vertical lines in the w-plane are 
called the vertical foliations of $, denoted by $v. It is easy to see that $h 
and $v are independent of the choice of the branch of the square root func- 
tion, so they are canonically associated with <&. At the zeroes of <&, these 
foliations have multiple prong saddle singularities, which metrically corre- 
spond to cone-type singularities (with concentrated negative curvature). A 
horizontal leaf which is not properly contained in another one is called a 
horizontal trajectory. If a horizontal trajectory is parametrized by t € i?, 
then the half leaf corresponding to t > 0, or t < 0 is called a horizontal 
ray. A horizontal ray is said to be diverging if it leaves any compact set 
after finite time. Two diverging horizontal rays are said to be in the same 
horizontal asymptotic direction if there is a conformal coordinate region of 
the form {(x, y) : x > a, 0 < y < /i}, with the two rays corresponding to the 
top and bottom edges of the region. 

Now, let us assume that (f) is polynomial of degree m > 1. Then the 
differential (/)dz2 has a pole of order m + 4 near infinity. Hence by well 
known results, see [St], in a neighborhood U of the infinity in C, there are 
precisely ra+2 equivalent horizontal asymptotic directions. We can choose a 
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representative in each direction, and label them as Hi, • • • , i?m+2. Moreover, 
the two rays of any trajectory which stays in U will tend to infinity in two 
consecutive directions. In fact, for any two such consecutive directions, 
there is a family of trajectories which tend to infinity and such that the 
two rays of each one of the trajectories will tend to infinity in those two 
consecutive directions. We are ready to study the geometry of a harmonic 
difieomorphism from C into N. First we need the following lemma. 

Lemma 3.1. Let N be a complete simply connected surface with Gaussian 
curvature bounded above by —a2 for some a > 0. Let j be a C2 curve in 
N with geodesic curvature bounded by e > 0, where e < a. Let 7* be the 
complete geodesic passing through the end points of 7. Then there is a 
constant C > 0 which is independent 0/7 such that d(x^*) < Ce for all x 
on 7. 

Proof. Let 7 : [0,1] —> M be a C2 curve parametrized by arclength. Let 7* be 
the complete unit speed geodesic passing through 7(0) and 7(Z). Let (u7 v) 
be the Fermi coordinates with respect to 7* such that v = 0 is the geodesic 
7* and v is the distance from the point (u, v) to 7*. In these coordinates, 
the metric of N is given by ds2 = f2(u1v)du2 + dv2. Direct computation 
gives: 

Vlr|l = (l0g/^-//4' 

dv ov 

Let K be the geodesic curvature of 7(2) = (u(t),v{t)). From these formulas, 
one can compute to obtain 

(3.1) K
2
 = f {u + u2 (log/). + 2uv(logf)v)2 + {v- ffvu

2)2 

where " ' " is the differentiation with respect to t. We also have 

fw + Kf = 0 

(3.2) /(u,0) = l 

/«(«,<>) = 0 

Since K < —a2, fv > 0 for v > 0. Suppose the maximum vmax of v is 
attained at t = 0 or t = /, then we have vmax = 0.   Otherwise at some 
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interior point 0 < to < I where v attains its maximum, v = 0 and v < 0. 
Let {u(to),v(to)) = (^0,^0). Here VQ = vmax > 0. Since K

2
 < e2, by (3.1) 

ffvu2 < e 

at (UQ, VQ). Since |7| = 1, f2u2 + v2 = 1, hence at the point {UQ^VQ), we have 

(3.3) ^ < 6. 

Letting g = (logf)v = fv/f, by (3.2) we have 

Qv = — K — q2 

(3-4) ^2       2 

g > 0 for v > 0 and 5(^,0) = 0. Note that since g2(uo,vo) < e2 < a2, 
(72(?io,v) < a2 for all 0 < v < VQ. This is because at those points (UQ^V) 

where g2 < a2, gv > 0. By (3.4), for 0 < v < VQ, 

g(uo,v) > atanh(av), 

where we have used the fact that g(uQ,0) = 0. By (3.3), we have 

(3.5) atanh(a?;o) < e. 

Since e < a, avo is less than some absolute constant, hence vmax = VQ < Ce 
for some constant. Similarly, one can prove that vmin > —Ce for some 
constant, and the lemma follows. □ 

In the following, we always assume that u is an orientation preserving 
harmonic diffeomorphism from C into a complete simply connected surface 
N with Gaussian curvature satisfying — b2 < Kj\f < —a2 for some positive 
constants a, 6. We also assume that ||3?/||2|d;z|2 is complete on C. Let 
$ = <l)dz2 be the Hopf differential of u. Then $ is holomorphic. We always 
assume that </> is a polynomial of degree m. As mentioned above, there are 
m+2 asymptotic directions for the horizontal rays of $ near infinity. We can 
choose a representative in each direction and label them as Hi,..., Hm+2- 

The relevance of the geometry of $ to the harmonic map u is revealed 
by the following computation: If we use w = x + i y as coordinates on C, 
where w = Jz y/cfidzj so that \dw\2 = \<f)(z)\\dz\2 is our metric on C, then 

(3.6) u*{a2{u)\du\2) = (e + 2)dx2 + {e- 2)dy2. 
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where a2(u)\du\2 is the metric tensor of iV, and e is the energy density of u 
with respect to the conformal metric |0||ete|2. Thus, $^ corresponds to the 
maximal stretch direction of du and Q>v corresponds to the minimal stretch 
direction of du at every point on C. In our notation, we have 

Lemma 3.2. For any 1 < i < m + 2, let Hi = {z(t) : t > 0}. Then 
lim^oo u(z(t)) = 0i for some 0i in the ideal boundary ofN. 

Proof. For simplicity, we consider the case i = 1, and assume Hi is the curve 
z(t)j t>0. Let w = log \\du\\, where ||chx||2 is the the d-energy density of u 
with respect to the Euclidean metric on C, and let wi = w — ^ log |0|. Then 
e = 2cosh(2wi). Let 7(t) = u(z{t)). The geodesic curvature of the image 7 
of 7(t) can be computed as in [Wo] and [My]: 

(3.7)     K(7) = -(e - 2)1/*|- log(e + 2)^ = -I(e - ^(e + 2)-1| 

By Lemma 1.2, if the distance of z to the zeroes of (j> is i?, then e{z) — 2 is 
bounded above by exp(—CiR) for some positive constant Ci, provided R is 
large enough. Note that we always have e — 2 > 0. By the Bochner formula 

A^wi = 2sinh(2wi), 

where A^j is the Laplacian for the metric |^||d^|2, which is complete near 
infinity of C By the standard gradient estimate, we see that |Vwi(;z)| < 
exp(—C2R) for some positive constant (72, where V is the gradient with 
respect to the </>-metric. Hence as t -> 00, the right hand side of (3.7) decays 
to zero as t —> 00. From this it is easy to see that u(z(t)) is a diverging 
curve in N. Fix a large to, and let 7* be the geodesic joining u(z{tQ)) and 
u(z(t)). Passing to a subsequence 7* will converge to a ray in iV. Let 61 be 
the point at the ideal boundary of N corresponding to this ray, then it is 
easy to see from Lemma 3.1 that limt_).oo^(^(^)) = 01- D 

Lemma 3.3. For 1 < i < m + 2, if L is a horizontal ray with the same 
horizontal asymptotic direction as Hi, then u(L) is asymptotic to u(Hi). 
More precisely, if L is given by z(t), t > 0, then u(z(t)) -» 0$, where 0i is 
the point in the ideal boundary of HI in Lemma 3.2. 

Proof. If we parametrize L and Hi by the arclength parameter t, then 
L(t) and Hi(t) are connected by a vertical line Vt(s),0 < s < h for some 
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fixed h, where s is the arclength of Vt. By (3.6) the length lt of u(Vt) 
is equal to JQ yje — 2ds. By Lemma 1.2, It —> 0 as t —>■ oo. Hence 
dist^ (?x(L(^)),iA(f/2(t)))) -> 0 as t —> oo. This completes the proof of the 
lemma. □ 

Lemma 3.4. There is a positive function e(R) with lim^^oo e(R) = 0, 
such that if the distance of a horizontal trajectory L from the zeros of<fr in 
the (fr-metric is R, then there are Qi and 0j in the ideal boundary ofN, such 
that distjv(^(I'),7) < e(R), where 7 is the geodesic joining 02- and Qj. Here 
0i and 0j are the points as in Lemma 3.2. 

Proof. By Lemma 3.2 and 3.3, if L is a horizontal trajectory near infinity in 
C, and if we parametrized L by z(t), —00 < t < 00, then there is 9i and 0j 
such that limt->oou(z(t)) = 0i and limt_>00^(j2r(t)) = 0j. As in the proof of 
Lemma 3.2, the result follows easily from Lemma 3.1 □ 

Lemma 3.5. Let #1,..., 0m+2 be the points in the ideal boundary ofN in 
Lemma 3.2, and let P be the convex hull of the O^s. Then u{C) C P. 

Proof. For any z G C, we can find a sequence of polygons Gk containing 
z such that the sides of G^ consists of m + 2 horizontal lines and m + 2 
vertical lines. We may choose Gk so that each horizontal line is contained 
in a horizontal trajectory which is asymptotic to two consecutive directions, 
and so that the length of each vertical lines in the ^-metric is bounded by a 
fixed constant. Moreover, the distance of the sides of Gk from the zeroes of 
(j) with respect to the ^-metric tends to 00 as k —> 00. By Lemma 3.2-3.4, 
dist/vCP, u(dGk)) —> 0 as k -» 00. By the maximum principle for harmonic 
maps, we see that u(z) E P. □ 

Theorem 3.6. Let u be an orientation preserving harmonic diffeomor- 
phism from C into a simply connected surface N with Gaussian curvature 
bounded between two negative constants. Suppose \\du\\2\dz\2 is a complete 
metric on C and the Hopf differential is (j)dz2 where (j) is a polynomial of 
degree m. Then there are exactly m + 2 distinct points 0i,..., 9m+2 in the 
ideal boundary of N such that the image of u is the convex hull of the set 
{Oi}7^2. Moreover, the image of a horizontal trajectory of (f)dz2 will be 
asymptotic to the geodesic joining two consecutive points of {Oi}^2. 
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Proof. Let 0i7... ,0m+2 be the points in Lemma 3.2.  Suppose 0,-'s are not 
distinct, then by Gauss-Bonnet theorem, we have 

/ (-KN) < rrar 

where K^ is the Gaussian curvature of N.  By Lemma 3.4, and Theorem 
1.3. 

raTr 
'x(C) 
/    (-KN) 

Ju(C) 

< lp(-
KN) < rmr. 

This is a contradiction. Therefore, 9^s are distinct, and u(C) = P. The last 
statement follows from Lemma 3.2. □ 
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