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1. Introduction. 

In [7], Donaldson has defined polynomial invariants for smooth simply 
connected 4-manifolds with b^ > 3. These invariants have also been defined 
for 4-manifolds with fcj" = 1 in [25, 17, 18], along lines suggested by the work 
of Donaldson in [5]. In this case, however, they depend on an additional piece 
of information, namely a chamber defined on the positive cone of H2{X\ E) 
by a certain locally finite set of walls. Explicitly, let X be a simply connected, 
oriented, and closed smooth 4-manifold with b^ = 1 where b^ is the number 
of positive eigenvalues of the quadratic form qx when diagonalized over R. 
Let 

nx = {xeH2(x,R) |z2>o} 
be the positive cone. Fix a class A in H2(X, Z) and an integer c such 
that d = 4c — A2 — 3 is nonnegative. A wall of type (A, c) is a nonempty 
hyperplane: 

w(: = {xenx |z-C = o} 

in fix for some class ( G H2(X,Z) with ( = A (mod 2) and A2 - 4c < 
£2 < 0. The connected components of the complement in Qx of the walls of 
type (A, c) are the chambers of type (A, c). Then the Donaldson polynomial 
invariants of X associated to A and c are defined with respect to chambers 
of type (A,c). The invariants only depend on the class w = A mod 2 £ 
H2{X]Z/2Z) and the integer p = A2 - 4c = -d - 3, and we shall often 
refer to walls and chambers of type (w,p) as well. We shall write D*p{C) 
for the Donaldson polynomial corresponding to the 50(3) bundle P with 
invariants W2{P) = w and pi(P) = p, depending on the chamber C. 

1The first author was partially supported by NSF grants DMS-90-06116 and 
DMS-92-03940. The second author was partially supported by a grant from the 
ORAU Junior Faculty Enhancement Award Program and by NSF grants DMS-91- 
00383 and DMS-94-00729. 
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A basic question is then the following: Suppose that C+ and C- are 
separated by a single wall W**. Here there may be more than one class £ of 
type (A, c) defining W^. Then find a formula for the difference 

8X,P{C+,C-) = 0£p(C+) - !>£,(£-). 

We shall refer to such a difference as a transition formula. 
There has been considerable interest in the above problem. The first 

result in this direction is due to Donaldson in [5], who gave a formula in 
case A = 0 and c = 1. Kotschick [17] showed that, on the part of the 
symmetric algebra generated by 2-dimensional classes, <5*p(C+,C_) = ±(d 

for C2 = —(4c — A2) = p, and that ^p(C+,C_) is in fact always divisible 
by £, except when p = — 5 and C2 = — 1 (cf. also Mong [25] for some partial 
results along these lines). For a rational ruled surface J\T, all the transition 
formulas for A = 0 and 2 < c < 4 have been determined in [25, 35, 22]. 
Using a gauge-theoretic approach, Yang [37] settled the problem for A = 0 
and c = 2, and computed the degree 5 Donaldson polynomials for rational 
surfaces. The known examples and the work of Kotschick and Morgan [18] 
raise the following rather natural conjecture: 

Conjecture. The transition formula ^p(C+,C_) is a homotopy invariant 
of the pair (X, £); more precisely, if </> is an oriented homotopy equivalence 
from X' to X, then 

%:w,p{<t>*{C+),<t>*{C-)) = <i>*5lp(C+,C-). 

We remark that this conjecture is essentially equivalent to the following 
statement: the transition formula cJjjp(<?+,<?_) is a polynomial in £ and the 
quadratic form qx with coefficients involving only C2, homotopy invariants 
of X (i.e. 6^(X)), and universal constants. 

Our goal in this paper is to study the corresponding problem in algebraic 
geometry. More precisely, let X be an algebraic surface (not necessarily with 
&+(X) = 1) and let L be an ample line bundle on X. We can then identify 
the moduli space of L-stable rank two bundles V on X with ci(V) = A and 
C2(V) = c with the moduli space of equivalence classes of ASD connections 
on X with respect to a Hodge metric on X corresponding to L. Let 9JIL(A, C) 

be the Gieseker compactification of this moduli space. It is known that 
9JIL(A,C) changes as we change L, and that ;DTL(A,C) is constant on a set 
of chambers for the ample cone of X which are defined in a way analogous 
to the definition of chambers for fix given above. Using the recent result 
of Morgan [26] and Li [21] that the Donaldson polynomial of an algebraic 
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surface can be evaluated using the Gieseker compactification !DTL(A,C) of 
the moduli space of stable bundles, we shall work on DJIL(A,C) for suitable 
choices of L and in particular analyze the change in 9JIL(A, C) for L E C+ or 
L G C_, where C± are two adjacent chambers. It turns out that we can obtain 
9JIL+(A,C) from VJIL_(A,C) by a series of blowups and blowdowns (flips). 
Our results are thus very similar to those of Thaddeus in [33]. Thaddeus [34] 
and also Dolgachev-Hu [3] have developed a general picture for the variation 
of GIT quotients after a change of polarization, and although our methods 
are somewhat different it seems quite possible that they fit into their general 
framework. We have also found it convenient to borrow some of Thaddeus' 
notation. 

Next we shall apply our results on the change in the moduli spaces to 
determine the transition formula for Donaldson polynomials in case X is 
a rational surface with — Kx effective. We shall give explicit formulas for 
5Xp(C+,C-) in case the nonnegative integer £^ = (£2 — p)/4 < 2. These 
formulas are in agreement with the above conjecture, in the sense that the 
transition formula is indeed a polynomial in ( and qx with coefficients in- 
volving only universal constants, C2, and K^ = 9 — b^iX) = 12 — x(X) 
where x(X) is the topological Euler-Poincare characteristic of X. We shall 
also give a formula in principle for 8^p(C^,C-) in general (see Theorem 
5.4), but to make this formula explicit involves more knowledge of the enu- 
merative geometry of Hilbn X than seems to be available at present. In 
case — Kx is effective, the moduli spaces are (essentially) smooth and the 
centers of the blowup are smooth as well; in fact they are Pfc-bundles over 
Hilbni X x Hilb712 X for appropriate fc, ni and n2- In this way, we obtain gen- 
eral formulas which can be made explicit for low values of n. For instance, 
adopting Kotschick's notation [17] 

e(C,A) ^(-l)1-^ = (-!)( V), 

we show the following (see Theorem 6.4 for details): 

Theorem. Assume that the wall W^ is defined only by ±(i with i^ = 1 and 
that C± lies on the ±-side of W^. Then, on the subspace of the symmetric 
algebra generated by H2(X), 5^p(C_,C+) is equai to 

{-\)d+1 ■ e(C, A) -{did- 1) ■ (£]       ■ qx + {2K2
X + 2d + 6) 

Along the direction of the work of Kronheimer and Mrowka [19, 20], we 
also consider the difference of Donaldson polynomial invariants involving the 



14 Robert Friedman and Zhenbo Qin 

natural generator x E HQ(X;Z). More precisely, let u be the correspond- 
ing 4-dimensional class in the instanton moduli space. For a G H2(X;Z), 
we give a formula for the difference ^p(C_,C+)(arf~2,i/) in Theorem 5.5. 
It is worthwhile to point out that the similarity between Theorem 5.4 
and Theorem 5.5 may indicate that there exists a deep relation between 
d^iP(C-,C^)(ad) and d^p(C-,C+)(ad~2,u), and suggest a way to generalize 
the notion of simple type in [19, 20] from the case of frj" > 1 to the case of 
6^ = 1. For instance, modulo some lower degree terms, <5^p(C_, C+)(ad-2, is) 
can be obtained from (—1/4) • 5*;p(C-, C+)(ad) by replacing d by (d — 2) (see 
Theorem 5.13 and Theorem 5.14). In fact, based on some heuristic ar- 
guments, it seems reasonable to conjecture that 5Xp(C-,C+)(ad~'2,v) is a 
combination of 5*^ ,(C_,C+)(ad~4/i:) for various nonnegative integers k if the 
degrees are properly arranged. 

Our paper is organized as follows. In section 2, we study rank two torsion 
free sheaves which are semistable with respect to ample divisors in C- but 
not semistable with respect to ample divisors in C+. When the surface X 
is rational with —Kx effective, these sheaves are parametrized by an open 
subset of a union of projective bundles over the product of two Hilbert 
schemes of points in X. More precisely, if ■£ defines the wall separating 
C- from C+, define E7}1'712 be the set of all isomorphism classes of nonsplit 
extensions of the form 

0 -> Ox(F)®IZl -+V^ e>x(A - F) ®Iz2 -± 0, 

where F is a divisor class such that 2F — A = £ and Zi and Z2 are two zero- 
dimensional subschemes of X with £(Zi) = ni such that ni+n2 = ^. In case 
X is rational, En^n2 is a P^ bundle over Hilb711 X x Hilb712 X, and the set of 
points of E?1,n2 lying in VJIL- (A, c) but not in 9JIL+ (A, c) is a Zariski open 
subset of E7}1'712. The main technical difficulty is that it is hard to control 
the rational map from E7}1'712 to 9JtL_(A,c), and in particular this map is 
not a morphism. The general picture that we establish is the following: 
first, the map ES c —> 9Jt£,_ (A, c) is a morphism, and it is possible to 
make an elementary transformation, or flip, along its image. The result is 
a new space for which the rational map ES c —> dJlil_{^c) becomes a 
morphism, and it is possible to make a flip along its image. We continue in 
this way until we reach 9JIL+(A,C). 

It seems rather difficult to see that the above picture holds directly. 
Instead we shall proceed as follows. We define abstractly a sequence of 
moduli spaces, indexed by an integer k with 0 < k < ^ + 1, such that the 
moduli space for k = 0 is ?OIL_ (A, c), the moduli space for k = t^ + 1 is 
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9Jt£+(A,c), and moreover the kth moduli space contains an embedded copy 

of ES c such that the flip along this copy yields the (k + l)st moduli 
space. Thus the picture is very similar to that developed independently 
by Thaddeus in [33]. To define our sequence of moduli spaces, we define 
(Lo? C k)-semistability in section 3 for rank two torsion free sheaves, where 
LQ is any ample divisor contained in the common face of C+ and C_, £ is the 
set of classes of type (A, c) defining the common wall of C+ and C_, and k is 
a set of integers. We show that 9JIL_ (A, c) and 9Jt£/+ (A, c) are linked by the 

moduli spaces SJIQ where the data k is allowed to vary. When the surface 
X is rational with —Kx effective, we can obtain 9JIL+ (A, c) from 9JIL_ (A, c) 
by a series of flips. The fact that all (Z^Ck^semistable rank two torsion 

free sheaves do form a moduli space QJIQ in the usual sense is proved in 
section 4 where we introduce an equivalent notion of stability called mixed 
stability. Our method follows Gieseker's GIT argument in [13]. Roughly 
speaking, the goal of mixed stability is to define stability for a sheaf of the 
form V ® S, where V is a torsion free sheaf but S is just a Q-divisor. To 
make this idea precise, given actual divisors Hi and H2 and positive weights 
ai and a2, we shall define a notion of stability which "mixes" stability for 
V ® H1 with stability for V ® if2? together with weightings of the stability 
condition for V ® Hi. The effect of this definition will be formally the same 
as if we had defined stability of V ® 5, where S is the Q-divisor 

di + 0,2 fll + ^2 

After the first draft of this paper was completed, we learned from the 
preprint of Ellingsrud and Gottsche [8] that the existence of the relevant 
mixed moduli spaces follows from more general results of Maruyama and 
Yokogawa [23, 38]. They constructed coarse moduli spaces for semistable 
torsion free parabolic sheaves over general smooth projective varieties, using 
results of Simpson [32]. However, the proof given here for the special case 
that we need is considerably shorter than the general proof and is based on 
different ideas, and so will be given in full. 

In section 5, using our results on flips of moduli spaces, we give a formula 
for the transition formula of Donaldson polynomials when X is rational with 
—Kx effective, and compute the leading term in the transition formula. In 
section 6, we obtain explicit transition formulas when £^ < 2. 

Some of the material in our section 2 has been worked out independently 
by Hu and Li [16] and Gottsche [14]. Moreover Ellingsrud and Gottsche [8] 
have recently studied the change in the moduli space by similar methods and 
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have obtained results very similar to ours. Using very different methods, the 
results in Section 4 have also been obtained by Matsuki and Wentworth [24], 
who also consider the case of higher rank. They use branched covers of the 
surface X to study the change in the moduli space. We expect that a minor 
modification of the arguments in Section 4 of this paper will also handle the 
case of higher rank. 

Conventions and notations. 

We fix some conventions and notations for the rest of this paper. Let 
X be a smooth algebraic surface. We shall be primarily interested in the 
case where X is simply connected and — Kx is effective and nonzero. Thus 
necessarily X is a rational surface. However much of the discussion in sec- 
tions 1-4 will also apply to the general case. Stability and semistability 
with respect to an ample line bundle L will always be understood to mean 
Gieseker stability or semistability unless otherwise noted. We shall not men- 
tion the choice of L explicitly if it is clear from the context. Recall that a 
torsion free sheaf V of rank two is Gieseker L-stable if and only if, for ev- 
ery rank one subsheaf W of V, either IJ>L(W) < /iL(^) or /iL(W) = IJ>L(V) 

and 2x(P;F) < x(V)i where HL is the normalized degree with respect to L. 
Semistability is similarly defined, where the second inequality is also allowed 
to be an equality. For a torsion free sheaf V, we use Vvv to stand for its 
double dual. For two divisors Di and D2 on X, the notation Di = D2 
means that Di and D2 are numerically equivalent, that is, Di • D = D2 • D 
for any divisor D. For a locally free sheaf (or equivalently a vector bundle) 
£ over a smooth variety y, we use P(£) to denote the associated projective 
space bundle, that is, P(£) is the Proj of ®d>oSd(£). 

Fix a divisor A and an integer c. Let C_ and C+ be two adjacent 
chambers of type (A,c) separated by the wall W**. We assume that 
£ • C- < 0 < £ • C+. Let L± 6 C± be an ample line bundle, so that 
L_ • £ < 0 < I/+ • C, and denote by D3l± the moduli space WIL±(A,C) of 
rank two Gieseker semistable torsion free sheaves V with ci(V) = A and 
C2(V) = c. Let LQ be any ample divisor contained in the interior of the 
intersection of W^ and the closures of C±. Let £ = Ci>• • ■ >Cn be all the 
positive rational multiples of £ such that Q is an integral class of type (ttf,p) 
which also defines the wall W**. In sections 5-6, we will assume that n = 1 
for notational simplicity. 

Finally, we point out that our /i-map is half of the /i-map used in [17, 18] 
(see (viii) and (ix) in Notation 5.1). Thus our transition formula differs from 
the one defined in [18] by a universal constant. 
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2. Preliminaries on the moduli space. 

In this section, we study rank two torsion free sheaves which are re- 
lated to walls. These sheaves arise naturally from the comparison of L_- 
semistability and L^-semistability. We will show that when the surface X 
is rational with —Kx effective, the moduli spaces 2Jt± are smooth at the 
points corresponding to these sheaves. We start with the following lemma, 
which for simplicity is just stated for L--stability. 

Lemma 2.1. Let V be a rank two torsion free sheaf on X with ci(V) = A 
and C2{V) = c. IfV is L-.-semistable, then exactly one of the following 
holds: 

(i) Both V and VrVV are L--stable and Mumford L--stable. 

(ii) V sits in an exact sequence 

0 -> Ox(Fi) ® Jz! -> V -> Ox(F2) ® Iz2 -> 0 

where 2Fi = A = 2F2, and Z\ and Z^ are zero-dimensional sub- 
schemes of X such that 1{Z\) > £(Z2). Moreover in this case V is 
L-semistable for every choice of an ample line bundle L and V is 
strictly L±-semistable if and only if£(Zi) = £$2). 

Proof. Suppose that V is (Gieseker) L_-semistable. The vector bundle V77 

satisfies ci(Vvv) = A and C2(VVV) < c. Standard arguments [10] show that 
Fvv is Mumford L_-semistable. If Vvw is strictly Mumford L_-semistable, 
then by [10, 31], either L_ must lie on a wall of type (A, c) or if Ox(Fi) is 
a destabilizing sub-line bundle then A = 2Fi. Since by assumption L- does 
not lie on a wall of type (A,c), either Vvv is Mumford L_-stable or there 
is an exact sequence 

0 -> Ox{Fi) -* Vvw -+ Ox{F2) ® Iz -> 0, 
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where F2 = A — Fi = Fi and Z is a zero-dimensional subscheme of X. If 
Vvv is Mumford L_-stable, then V is Mumford L_-stable and therefore L_- 
stable. Thus case (i) holds. Otherwise Ox(Fi) n V is of the form Ox(Fi) ® 
/^x for some Zi and V/Ox(Fi)®Izi is a subsheaf of Ox(F2)®Iz and thus 
of the form Ox (^2)®^ for some Z2. Thus we are in case (ii) of the lemma. 
Since fJ,(Ox(Fi) ® Izi) = /^{V) and V is semistable, we have 

2x(Ox(F1) (8) JzJ < X(^) = x(Ox(Fi) ®Izl)+ x(Ox(F2) ® IZ2). 

Rencex{Ox{F2)®IZ2)-x{Ox(Fl)®IZl)>0. As F1 = F2 and x{Ox{FJ® 
IZi) = x(Ox(^)) - ^(^i), we must then have t(Zi) - Ifa) > 0. The last 
sentence of (ii) is a straightforward argument left to the reader. □ 

If V satisfies the conclusions of (2.1)(ii)3 we shall call V universally 
semistable. 

Next we shall compare stability for L_ and L+. 

Lemma 2.2. Let V be a torsion free rank two sheaf with ci(V) = A and 
C2(V) = C. 

(i) If V is L--stable but L+-unstable, then there exist a divisor class F 
and two zero-dimensional subschemes Z- and Z+ of X and an exact 
sequence 

0 -+ Ox(F) ® Iz_ -> V -> Ox{A - F) ® Iz+ -+ 0, 

wiiere L_ • (2F - A) < 0 < L+ - (2F - A). Moreover the divisor F} 

the schemes Z- and Z+, and the map F ® Iz_ —> V are unique mod 
scalars, and £ = 2F — A defines a wall of type (A, c). 

(ii) Converseiy, suppose that there is a nonsplit exact sequence as above. 
Then V is simple. Moreover, V is not L--stable if and only if it is 
L_-unstable if and only if there exist subschemes Zf and Z" and an 
exact sequence 

0 -> Ox(A - F) ® Iz* -> V -> Ox{F) ® /z" -> 0, 

if and only if yvv is a direct sum Ox{F) ®Ox{A-F). In this case 
the scheme Zf strictly contains the scheme Z+j £(Z') > £{Z+) and 
£(Z') + £(Z") = £(Z-) + £(Z+). Finally if Z- = 0 then V is always 
L ^-stable. 



Flips and transition formulas 19 

Proof. We first show (i). Suppose that V is L_-stable but L_f--unstable. 
Then by (2.1) Vww is also L_-stable and L+-unstable. By [31], there is a 
uniquely determined line bundle Ox(F) and a map Ox(F) -> Vvw with 
torsion free quotient such that L_ • (2F - A) < 0 < £+ • (2F - A). Moreover 
C = 2F - A defines a wall of type (A, c). The subsheaf Ox(F) n V of Kvv 

is a subsheaf of Ox(F) and agrees with it away from finitely many points. 
Thus Ox(F) DV = Ox(F) ® /z_ for some well-defined subscheme Z_. 

Moreover the quotient v/[Ox(F) ® /z_] is a subsheaf of (9x(A - F) ® Iz 

for some zero-dimensional subscheme Z, and agrees with Ox (A — JF1) away 
from finitely many points. Thus the quotient is of the form Ox (A — F)®Iz+ 

for some zero-dimensional subscheme Z+. The uniqueness is clear. 
To see (ii), suppose that V is given as a nonsplit exact sequence 

0 -> Ox(F) ® Jz_ -> V -> Ox(A - F) ® /z+ ^ 0 

as above, where L_ • (2F - A) < 0 < L+ • (2F - A). Again by (2.1), V is L_- 
semistable if and only if it is L_-stable if and only if Vv v is L_-stable. Now 
taking double duals of the above exact sequence, there is an exact sequence 

0 -* Ox{F) -► Fvv -^ Ox(A - F) ® Jz ^ 0 

for some zero-dimensional scheme Z. Moreover, by [31], VrVV is I/_-unstable 
if and only if the above exact sequence splits, and in particular if and only if 
Z = 0 and Vvv = Ox(F)®Ox(A-F). In this case, the map Ox(^-F) -> 
Vvv induces a map Ox (A — F) ® Iz* -+ V for some ideal sheaf !&. We 
may clearly assume that the quotient is torsion free, in which case it is 
necessarily of the form Ox{F) ® Iz" with £(Z') + 1{Z") = 1{ZJ) + £{Z+). 
Using the nonzero map Ox (A — F) ® J^' —>• Ox (A — F) ® /z+5 we see that 
there is an inclusion Iz' C /z+; moreover this inclusion must be strict since 
the defining exact sequence for V is nonsplit. Thus Z' strictly contains Z+ 
and in particular i(Z') > £(Z+). Conversely, if there exists a nonzero map 
Ox (A - F) ® Iz* -> V, then there is a nonzero map Ox (A - F) -> VrVV 

and thus yvv is the split extension. 
We next show that V is simple. If V is stable then it is simple. If V 

is not stable, then Vyv = Ox{F) © Ox (A - F). There is an inclusion 
Rom(V,V) C Hom(Vvv,yvv). If yvv is split, then Hom(yvv, T/vv) - 
C © C. In this case, using a nonscalar endomorphism of V, it is easy to see 
that we can split the exact sequence defining V. 

Finally suppose that Z_ = 0 in the notation of (2.2). If V is L_- 
unstable, then we can find Z' with ^Z') > £{Z+) and a subscheme Z" such 
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that liZ') +t.(Z") = e(Z+). Thus e(Z') < 1{Z+), a contradiction. It follows 
that V is L_-stable. □ 

For the rest of this section, we shall assume that —Kx is effective and 
nonzero and that q(X) = 0. Thus X is a rational surface. 

Lemma 2.3. Suppose that 9Jl± is nonempty. Suppose that (w,p) ^ (0,0), 
or equivalently that DJl± does not consist of a single point corresponding to a 
twist of the trivial vector bundle. Then the open subset ofDJl± corresponding 
to Mumford stable rank two vector bundles is nonempty and dense. Every 
component of9Jl± has dimension 4c - A2 - 3 = —p - 3. Tie points of 9Jl± 
corresponding to L±-stable sheaves V are smooth points. 

Proof. Suppose that DJl± is nonempty, and let V correspond to a point of 
9Jl±. Then by general theory (e.g. Chapter 7 of [10]), 97t± is smooth of 
dimension 4c - A2 - 3 = -p - 3 at V if V is stable and Ext2(V, V) = 0, 
since h2(X]Ox) = 0. Moreover, setting W = V

PVV
, there is a surjection 

from H2(X; Hom(W, W)) to Ext2(F, V). Thus to show that Ext2(F, V) = 0 
it suffices to show that H2(X; Hom(W, W)) = 0. Now iJ2(X; Hom(W, W)) 
is dual to ^(XiHomiWi W) ® Kx)- Since —Kx is effective, there is an 
inclusion of H0(X;Hom(W,W) ® Kx) in H0(X;Hom(W,W)). If W is 
stable, then H0{X; Hom{W, W)) ^ C and H0(X; Hom(W, W) ® Kx) = 0. 
Thus 9Jl± is smooth at V. Standard theory [1, 10] also shows that every 
torsion free sheaf V for which Vvv is stable is smoothable. Thus the set of 
locally free sheaves is nonempty and dense in the component containing V 
in this case. 

Now consider a V such that W = Vv-V is not stable.  Using the exact 
sequence 

0 -> Ox(F) ^W-* Ox(F) ®lz^0 

for W which was given in the course of the proof of (2.1), it is easy to check 
that there is an exact sequence 

0 -> Hom(/z, W ® Ox{-F) ® Kx) -► Hom(^, W ® Kx) -^ 

-^ H0(W ® Ox(-F) ® Kx). 

Since -Kx is effective and nonzero, H0(W ® Ox(-F) ® Kx) = 
Hom(/z, W ® Ox{-F) ® J^x) = 0. Thus Hom(W; W ® ifx) = 0 as well. 
Once again V is smoothable. 
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Now we claim that a general smoothing Vf of V is Mumford stable. For 
otherwise by the proof of (2.1) there is an exact sequence 

0 -+ Ox{F) -> V1 -+ Ox{F) ® Iz -± 0 

as above, with &(Z) < ^(0) = 0. In this case V is an extension of Ox{F) ty 
Ox(F), forcing w = p = 0 and (since hl{Ox) = 0) V = Ox{F) 0 Ox{F). 
D 

It is natural to make the following conjecture, which is true for geomet- 
rically ruled X by [30] and is verified in certain other cases by [36]. 

Conjecture 2.4. If X is a rational surface with —Kx effective, then for 
every choice of L, A and c, SDTx,(A, c) is either empty or irreducible. 

Let us fix some notations for the rest of this paper. 

Definition 2.5. Let X be an algebraic surface (not necessarily rational), 
and let ( be a fixed numerical equivalence class defining a wall of type (A, c). 
Set ^ = (4c — A2 + C2)/4 = (C2 — p)/4. Choose two nonnegative integers 
n_ and n+ with n_ + n+ = ^, and let E^~'ri+ be the set of all isomorphism 
classes of nonsplit extensions of the form 

0 -> Ox{F) 0 Iz. -+ V -+ e>x(A - F) ® Iz+ -+ 0 

with C = 2F - A and 1{Z±) = n±. 
We remark that since ( = A (mod 2) and A2 - 4c < £2 < 0, ^ is a 

nonnegative integer. If V corresponds to a point of i£?~'ri+, then V is L+- 
unstable since L+ •£ > 0. By (2.2) (ii), V is simple, and if it is L_-semistable 
then it is actually stable. By (2.3), if X is a rational surface with — Kx 
effective, then 9Jt_ is smooth in a neighborhood of a point corresponding to 
a sheaf V lying in E7}~'n+ for some £,n_,n-|_. We shall now study E1?~'n+ 

in more detail for rational surfaces. 

Lemma 2.6. Suppose that —Kx is effective and that q(X) = 0. For 21 
and Z+ two fixed zero-dimensional subschemes of X of lengths n_ and n+ 
respectively, 

dimExt1(0x(A - F) ® Iz+,Ox{F) ®Iz_)=n-+n+ + h{C) =k + MO, 

where 

MO = h1(X;Ox(2F - A)) = £^*1 - £ - 1. 



22 Robert Friedman and Zhenbo Qin 

Proof. Note that B.om{Ox{&-F)®Iz+, Ox{F)®IZ_) C fr0(Ox(2F-A)) = 
0, since L_ • {2F - A) < 0. Likewise Ext2(Ox(A - F) ® /^+, Ox^) ® /z_) 
is Serre dual to Hom(C»x (J?) ® Jz_, Ox (A - F) ® Jz+ <8> Ify) C fT0 (C>x (A - 
2F) ® Kx) C ff^OxCA - 2F)), since -Kx is effective. Thus as L+ ■ 
(A - 2F) < 0, Ext2(Ox(A - F) ® Iz+,Ox(F) ® Iz_) = 0 as well. If we 
set x(Ox(A - F) ® Iz+,Ox(F) ® Jz_) = EiC-l)*dimExt^CxlA - F) ® 
Iz+,Ox(F)®Iz_), then 

x(Ox(A - f) ® Iz+,Ox(F) ® Iz_) = 

= - dimExt^OxlA - F) ® Jz+> Ox^) ® Iz_). 

Now a standard argument [28] shows that 

x(Cx(A - F) ® Iz+,Ox(F) ® /z_) 

= / chCCxlA - F) ® /z+)v • chCOx^) ® /z_) • Toddx • 

Here given a class a = J^aj G ^^(X), we denote by av the class 
]Ci(—l)lai- An easy computation gives 

/ ch(Ox(A - F) ® Iz+)y ■ ch{Ox{F) ® Iz_) ■ Toddx 
Jx 

L ch(Ox(A - F)v • ch(Ox(F) • Toddx -l(Z-) - 1{Z+). 
x 

Reversing the above argument, we see that 

ch(0x(A - F)v • cHOx{F) ■ Toddx = x{Ox{2F - A)) L 
= -/i1^; Ox{2F - A)) = ^ - ^^ + 1 = -/1(C). 

Putting these together we see that dim Ext1 (C?* (A-F)®/^, Ox(F)®Iz_) 
is equal to n_ + n+ 4- /i(C)- ^ 

Let us describe the scheme structure on 25?" 'n+ more carefully. For Z_ 
and Z+ fixed, the set of extensions in E^~in+ corresponding to Z_, Z+, 

is equal to P Ext1 (Ox (A - F) ® 2Z+, Ox(^) ® iz-)- To make a universal 
construction, let Hn± = Hilbn:fc X. Let Zn± be the universal codimension 
two subscheme of X x Hn±. Let TTI , 7r2 be the projections of X x 22^ x 22n+ 



Flips and transition formulas 23 

to X, Hn_ x Hn+ respectively, and let TTI^, TTI^ be the projections of X x 
Hn_ x Hn+ to X x Hn_, X x Hn+ respectively. Define 

£2-'n+ = Extl2(*iOx(A-F)®*ifiIZn+,*10x{F)®**iaIzn_). 

The previous lemma and standard base change results show that E?~ 'ri+ is 
locally free of rank h(C)+£c over Hn_ xHn+. We set ££-'*+ = P((^-'n+)v), 
if /i(C)+^c ^ ^- Moreover by standard facts about relative Ext sheaves there 
is an exact sequence 

0 -> R^HomfaOxi* -F)® *Ulzn+MOx(F) ® <2^n_) ^ 

-> 7r2*Extl (niOx{A - F) 0 TT^J^ , TTJOX^) ® <2^n_ ) "> 0. 

Corollary 2.7. WithX as in (2.6), if/i(C)+^ = h1{X]Ox(2F-A)+ic ^ 
0, J5;J-'n+ is a P^c-bundle over i?n_ x Hn+, where iVc = dimExt1 -1 = 

h(C) +£{-!• Thus ifh(C) + £{ ^ 0, then dim£j-'n+ = 3^ + h(C) - 1. 
Moreover in tMs case E^71' is a P^-^-bundie over iifn+ x i?n_, and N^ + 

iV_c + 2£c = -p - 4. If h{() +ec = 0, then E0^0 = 0 and E0^ = P"^"3 is 
a component of DJI+. Finally this last case arises if and only if (? = p and 
C-Kx = C2 + 2=p + 2. 

Proof. Note that N^ > 0 unless h(() + £^ = 0. Under this assumption, we 
have 

iVc + iV_c + 2ic = 4^c - C2 - 4 = -p - 4. 

The case where /i(C) + ^ = 0 is similar. Moreover if /i(() + ^ = 0, then 
it follows from (2.2) (ii) that all of the sheaves V corresponding to points of 
JE°'° are L+-stable. By (2.2) (i) the map E^ -> 2JI+ is one-to-one. Since 9Jt+ 

is of dimension —p — 3 and smooth at points corresponding to the sheaves in 
JB^'S -» 9JI+, the map E^ —>- 9Jt+ must be an embedding onto a component 
of 971+.   The final statement follows from the formulas C2 = 4£^ +p and 

If h(() +£{ 7^ 0, then by Lemma 2.2 there is a rational map from £;™-'n+ 
to the moduli space 9Jt_ which is birational onto its image. However this 
map will not in general be a morphism if n_ > 0 (see [16]). We shall study 
this more carefully in the next sections. 
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Let us also remark that standard theory gives a universal sheaf V over 

Proposition 2.8. Let p : X x ^-'n+ _> X x Hn_ x ^n+ be the natural 

projection, and let ^ ' XxE^~'n+ -> E^''71^ be the projection. Then there 

is a coherent sheaf V over X x E^~,n+ and an exact sequence 

0 -> p* (TT^XCF) (8) Trjy^) ® 7r50B»-.»+ (1) 

Remark 2.9. Very similar results hold in the case where — Kx is effective 
and nonzero (corresponding to certain elliptic ruled surfaces) or Kx = 0 
(corresponding to K3 or abelian surfaces). For example, in the case of a K3 
surface X, the moduli space is smooth of dimension — p — 6 away from the 
sheaves which are strictly semistable for every ample divisor (although there 
exist components consisting entirely of non-locally free sheaves for small 
values of — p). In this case however h(Q = — £2/2 — 2 and N^ + 7V_£ + 2^ = 
—p — 6, which is equal to the dimension d of the moduli space instead of 
to d — 1. For example, if ^ = 0, then N^ = iV_£ = d/2. In this case 
ES = Pd/2 is a maximal isotropic submanifold of the symplectic manifold 
DJl-. In other words, the natural holomorphic 2-form u on QJt_ vanishes 
on E^   and identifies the normal bundle of J5?'0 in 9Jl_ with the cotangent 

bundle of E0^0. 

3. Flips of moduli spaces. 

In this section, we begin by assuming again that X is an arbitrary al- 
gebraic surface. Let £ = Ci? • • • jCn be the positive rational multiples of ( 
such that d is an integral class also defining the wall W^. Our goal in this 
section is to deal with the problem that there is only a rational map in 
general from E?''71* to 3Jt_. We shall do so by finding a sequence of spaces 
between 9Jt_ and 901+, each one given by blowing up and down the previous 
one, such that for an appropriate member of the sequence the rational map 
J5?~'n+ —> 9Jl_ becomes a morphism (and a smooth embedding in the case 
of rational surfaces). Throughout the rest of this paper, LQ shall denote any 
ample divisor contained in the interior of the intersection of W** and the 
closures of C±. Recall that we have defined universal semistability after the 
proof of (2.1). 
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Definition 3.1.       Let k be an integer.   A rank two torsion free sheaf 
V with ci(V) = A and A2 - Ac2{V) = p is (Lo,(,k)-semistable if V is 
Mumford Lo-semistable and if it is strictly Mumford semistable, then either 
it is universally semistable or, for all divisors F such that 2F — A = £, we 
have the following: 

(i) If there exists an exact sequence 

0 -► OxWQlz! -> V -» Ox (A - F) ® /z2 ^ 0, 

then £(^2) < fe and thus £(Zi) > ^ - k. 

(ii) If there exists an exact sequence 

0 -> Ox(A - F) ® JZl -> V -± Ox(F) ® 7Z2 -> 0, 

then ^(Zi) > k + 1 and thus ^2) < £c - fc - 1. 

Likewise, setting C = (Ci? • • • ? Cn) and k = (fei,..., fcn), we say that V is 
(LQ, C? k)-semistable if V is (LQ? C^ A:i)-semistable for every i. Let 9#o de- 
note the set of isomorphism classes of (LQ? C? k)-semistable rank two sheaves 
V with CI(10 = A and A2 - 4c2{V) = p. 

Next we give some easy properties of (LQ, C? k)-semistability. 

Lemma 3.2. (i) If ki > £Q for all i, and V is not universally semistable, 
then V is (Lo,Ck)-semistabie if and only if it is L-.-stable. Likewise 
if ki < — 1 for all i and V is not universally semistable, then V is 
(Lo, C> k)-semistabie if and only if it is L+stable. 

(ii) If ki > £Ci for all i, then m^k) = 9Jl_. Likewise ifki < -1 for all i, 

then 9JlJC'k) =DJl+. 

(iii) For n2 > ki, m{^k) H El1'712 = 0. 

(iv)  There is an injection E^ —> QJIQ     •  Liicewise there is an injec- 
tion j^+^Ci-fc-i ^ gjt^k)    Finally) tbe images of Eki-^i and 

£/>.J are disjoint ifi^j. 

Proof. If fci > ^ for all i, then the condition that Ifa) < £& and £(Zi) > 0 
are trivially always satisfied and the conditions ^(^2) ^ —1 and £{Zi) ^ 
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i^ + 1 are vacuous. A similar argument handles the case hi < — 1 for all 
i.   It is easy to see that this implies (i).   Statement (ii) follows from (i), 

and (iii) follows from the definitions.   As for (iv), let V € E+y    *' \   To 

decide if V is in ODTQ J 
we 1°°^ for potentially destabilizing subsheaves 

with torsion free quotient. Similar arguments as in [31] show that the only 
potentially destabilizing subsheaves with torsion free quotient must be either 
Ox(F)®Izl or Ox{^—F)®Iz' By hypothesis, there is a unique subsheaf of 
V of the form Ox (F) ® Izi ? and it is not destabilizing. If there is a subsheaf 
of the form Ox{A — F)®Iz with torsion free quotient, then by Lemma 2.2 
we have t{Z) > t(Z2) = hi and so £(Z) > ki + 1. Hence such a subsheaf 
is also not destabilizing. Thus by Definition 3.1 V is (LQ, £> k)-semistable. 

The fact that the map EJ*"*** -> anJC'k) is one-to-one and that E*£~kuki 

and E,3 are disjoint iii ^ j also follow from similar arguments in [31]. 
k-\-l tr —h—\ 

The statement about E \   ' Ci    l     is similar. D 
Si 

Next suppose that we are given two integral vectors k and k7 and a 
subset / of {1...,n} such that k'i = ki'iii ^ I and kl

i = ki— 1 \ii £ I. We 

investigate the change as we pass from QJIQ      to OKQ     
;. 

Lemma 3.3. The set of sheaves V in 9JIQ ' ' which are not (LcCjk')- 

semistable is exactly the image ofU^jE^ .*' \ Likewise the set ofV£ 

9Jlo        which are not (LQ, C? k)-semistable is exactly the image of 
Uki/^-ki 

Proof. If V is (LojCj^-semistable but not (LojClO-semistable, then V 
must be Mumford strictly Lo-semistable. Suppose that the (LcCk')- 
destabilizing subsheaf is of the form Ox (F) ® /^i, where F corresponds to 

Ci for some i € /. Then ifa) < h (since V e 9JtJ)C'k)) but ^2) > fe (since 
the subsheaf is (LojC^k^-destabilizing, for k^ — ki — 1) so that ^(^2) = ki. 

£c —^ ki 
Thus V G JB/* *' *. The other possibility is that the destabilizing subsheaf 
is of the form Ox (A - F) 0 /^ • Here we need £(Zi) > ki +1 but e(Zi) < A:. 

(C k') and there are no such sheaves. The statement about 3Jto follows by 
symmetry. D 

(C k) We shall now describe a sequence of actual moduli spaces SDTQ    
; for 

which the integral vector k change in the way described before the statement 
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of (3.3). 

Definition 3.4. Suppose that Q = r^ij where ri is a positive rational 

number. Given t £ Q, let ti = rit, so that ti = t. Suppose that -^i——- is 

not an integer for any i. In this case, define 

hit) = 

where [x] is the greatest integer function, and define k(t) to be the vector 
is. +t- 

formed by the ki(t).  A rational number t is ^-critical if -^——- G Z and 

^c- + U 
— 1 ^ -^— ^ ^o*   We shall also say that ti is ^-critical.   Finally t is 

^-critical if it is Cz-critical for some i. Note that there are only finitely many 
such t. 

Given t E Q, let /(<) = {i : i is Ci-critical}.  Suppose that e is chosen 
so that, for every i, either there is no ^-critical rational number in [ti — 
ri£, ti + Tie] or ti is the unique ^-critical rational number in [ti — r$£, U + ne]. 
Equivalently either there is no C-critical number in [t — s, t + e] or t is the 
unique ^-critical number in \t — e, t + e\. Then we clearly have: 

V \ki(t + s)-l,    ifiGJ(t). 

In particular if there is no ^-critical number in [t — e, t + e], so that /(t) = 0, 
then ki(t — e) = ki(t + e) for every i. Further note that if t » 0, then 
ki(t) > £Q for every i, and if t <^ 0, then /^(i) < — 1 for every i. 

We then have the following theorem, whose proof will be given in the 
next section: 

Theorem 3.5. For all t E Q which are not (^-critical, there exists a natural 

structure of a projective scheme on QJIQ for which it is a coarse moduli 
space. 

The proof of (3.5) will also show that DJVQ    ^ " has the usual properties 

of a coarse moduli space: all sheaves corresponding to points of 9JIQ    ^ ^ will 
turn out to be simple (as they will turn out to be stable for an appropriate 

notion of stability), a classical or formal neighborhood of a point of SJIQ 

may be identified with the universal deformation space of the corresponding 
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sheaf, and there exists a universal sheaf locally in the classical or etale 
topology around every point of SPTQ • 

For the rest of this section, we shall again restrict to the case where X 
is a rational surface with —Kx effective, unless otherwise noted. Let £ = Q 
for some i and let k = k(t) for some t which is not ^-critical. The first step 
is to make some infinitesimal calculations concerning the differential of the 
map ES    '   —> ODTQ      and the normal bundle to its image. 

Proposition 3.6. Tie map Es ' -» iDDTo is an immersion. The iior- 

mal bundleM^Kk to £#"*'* iii9JlJC'k) is exactly p^S^'1" ®0 *C-M(-1), 

in the notation of the previous section. 

Proof. Since every sheaf in SDTQ is actually stable and therefore simple 
(which was also proved in (2.2)) we may identify an analytic neighborhood 
of V G 9#o with the germ of the universal deformation space for V, i.e. 

with Ext (V,V). Let us now calculate the tangent space to Es ' at V: 

suppose that f e Ext1 (Ox(A - F) <g>Iz2,Ox(F) ® izj = Ext1 is a nonzero 
extension class corresponding to V, where <£(i3i) = £{ — k and ^(^2) = k. Let 
J3>c_ib = Hilb^"* X and Hk = HilbfcX. Then there is the following exact 

sequence for the tangent space to EJ*    '   at £: 

0 -+ Ext1 /C-G^ Ttrf  k* -+ TZlHk-k 0TZ2Hk -+ 0. 

Note further that the tangent space to Hilbn X at Z is equal to Hom(/^, Oz), 
which we may further canonically identify with Ext1 (Iz,Iz) since X is ra- 
tional and by a local calculation. We then have the following: 

Proposition 3.7. For all nonzero £ G Ext1, the natural map from a neigh- 

borhood of £ in E^~ ' to QJIQ ^ is an immersion at f. The image of 

TgEf" '   in Ext1(y, V) is exactly the kernel of the natural map 

Ext^V, V) -> Ext^OxiF) ® /zx, Ox(A - F) ® /z2), 

and the normal space to E,c~ ' at £ in MQ ' may be canonically identified 

with Ext1 (Ox (F) ® J^, Ox (A - F) ® /z2). 
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Proof. Consider the natural map from Ext1(y, V) to 

ExtHCW) ® Izx, 0x(A - F) ® IZa). 

We claim that this map is surjective and will describe its kernel in more 
detail. The map factors into two maps: 

Ext^V, V) -> Ext^ViOxCA - F)®IZ2) 

Ext^V, Ox (A - F) ® Jz2) -> Ext^Ox^) ® /z^ Ox(A - F) 0 Jz2). 

The cokernel of the first map is contained in Ext2(V,C?x(F) ® ^Zi)- To 
see that this group is zero, apply Serre duality: it suffices to show that 
Hom(Ox(-f1) ® IznV ® Kx) — 0. Prom the defining exact sequence for V, 
we have an exact sequence 

0 -> Hom((9x(F) ® IZl,Ox{F) ® /Zl ® iiCx) 

->Hom(Ox(i?)®Jrz1,^®^x)^Hom(Ox(i?)®/z1,Ox(A-F)®/Z2). 

The first term is just H0(Kx) = 0 and the third is contained in H0(Ox(A — 
2F)®Kx) =0. ThusHom^x^)®^!,^®^) =0. The vanishing of the 
cokernel of the second map, namely Ext2 (Ox (A-F)®/^ Ox(A-F)® JZ2), 
is similar. Thus Ext1 (V,F) -> Ext1 {Ox(F)®Izl,Ox{&-F)® Jz2) is onto. 
If K is the kernel, then arguments as above show that there is an exact 
sequence 

0 -> Ext1^, Ox{F) ® IZl) -+ K -> 

-± Ext1 (Ox(A - F) ® /z2, Ox(A - F) ® Jz2) -> 0. 

Here Ext1 (Ox(A - F) ® /Z2,Ox(A - F) ® /Z2) = Ext1^,/^) is the 
tangent space to #£• Moreover, there is an exact sequence 

Hom(Ox {F) ® /z!, Ox (F) ® J^) -> 

-^ Ext1(Ox(A - F) ® Iz2,Ox{F) ® JZl) -> 

-^Ext^^Ox^)®/^)-^ 

-> Ext1 (Ox (F) ® /z!, Ox (F) ® JZl) -> 0. 

The last term is Ext1(/Zl,/Zl) which is the tangent space to H^^ at Zi, 
and the first two terms combine to give Ext1 /C-£. Thus the kernel K looks 

very much like the tangent space to E£ ' at ^ and both spaces have the 
same dimension. 



30 Robert Friedman and Zhenbo Qin 

Let us describe the tangent space to EJ*    '   at £ and the differential of 

the map Ef    '   to QJIQ      
m more intrinsic terms. It is easy to see that a 

Spec C[e]-valued point of Ef ' which restricts to £ defines two codimension 
two subschemes Zi C X x SpecC[e], Z2 C X x SpecC[e], flat over SpecC[e], 
restricting to Zi over X, and an extension V over X x SpecCfe] of the form 

0 -+ niOx(F) ® J^® -> V -> 7rJOx(A - F) ® Iz2 -> 0. 

Conversely such a choice of iJi, Z2 and V define a Spec C[e]-valued point of 

Ef    ' . Thus there is a commutative diagram with exact rows and columns: 

->   OxWQlz! 

■> TrfOxfF)®/^ 

-> V" -*    Ojf(A-F)®/za -> 0 

-^ V  ► TrfOxCA-F)®/^ -^ 0 

->   OxiF)®^ -> V  >   Ox{&-F)®Iz2 + 0 

0 0 0 

Here the extension V of V by V, viewed as a point of Ext1 (V, V), corresponds 
to the Kodaira-Spencer map of the deformation V of V. Likewise the left 
and right hand columns give classes in Ext1 (7^,7^) and Ext1(7^2,7^2) 
corresponding to Zi and Z2. A straightforward diagram chase shows that if 
V fits into this commutative diagram then the image of the extension class 
£ € Ext1 (V, V) corresponding to V in Ext1 (Ox (F) ® 7Zl, O^ (A - F) ® 7Z2) 
is zero. To see the converse, that every element in the kernel K of the map 
ExtHV, V) -+ Ext1(C>xCF,)®izi, Ox(A-F)®Iz2) is the image of a tangent 
vector to E^ ' at ^, use the arguments above which show that there is a 
surjection from K to 

Ext^OxiA - F)®IZ2,Ox(& - F)®IZ2) = Ext\lZ2Jz2). 

Thus there is an induced extension of Ox (A - F) ® Iz2 by Ox (A - F) ® 7^2, 
necessarily of the form Ox (A — F) ® T^, and a map from V to Ox (A — 71) ® 
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Iz2-> necessarily a surjection. The kernel of this surjection then defines an 
extension Ox (F) ® /^ of Ox {F) ® /Zl by Ox (F) ® Iz1 • It follows that K is 

in the image of the tangent space to ES ' at £. By counting dimensions 

the map on tangent spaces from T^Ef    '  to Ext (V, V) is injective, showing 

that the map from Es ' to 9JIQ 
; is an immersion and identifying the 

normal space at £. □ 

Let us continue the proof of Proposition 3.6. To give a global description 
ic—k k (C k) 

of the normal bundle to EJ*    '   in SJIQ     , recall by standard deformation 

theory [10] that the pullback of the tangent bundle of JWlf,k) to E^'*'* is 

just Ext^^V, V), where V is the universal sheaf over X x EJ    '   described 

in (2.8) and 7r2 : X x ES ' —>• Ef ' is the second projection. Moreover 
the calculations above globalize to show that the normal bundle is exactly 

Extl2(p*(irtOx(F)®nl2IZl)® 

7r2*0   ,C-M(1),P* KOX(A - F) ® TTxV^))! 

where p : X x E^~ ' -> X x i^c_fc x jEf^ is the natural projection. Using 
standard base change results and the projection formula, we see that this 
sheaf is equal to 

p*Extl2{'KlOx{F) ® 7rJ|2JZl,7rJOx(A - F) ® TT^/^) ® 0_€<-*.*(-l), 
c 

-»/Cj'C^     /C 

which is the same as p*£J^      ® O /c-jb,jb(—1). □ 

Finally, to compare the moduli space SDto with QJIQ J where 
t is the unique C-critical point in [t — e,t + e], we shall need the following 
result which is a straightforward generalization of (A.2) of [11]. 

Proposition 3.8. Let X be a smooth projective scheme or compact com- 
plex manifold, and let T be smooth. Suppose that V is a rank two reflexive 
sheaf over X x T, Eat over T. Let D be a reduced divisor on T, not neces- 
sarily smooth and let i : D —f T be the inclusion. Suppose that L is a line 
bundle on X and that Z is a codimension two subscheme of X x D, Bat 
over D. Suppose further that V -> i*7rJL ® Iz is a surjection, and let V be 
its kernel: 

0 -> V -> V -► UntL ® Iz -> 0. 
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Then there is a line bundle M on X and a subscheme Z1 of X x D codi- 
mension at least two, flat over D, with the following properties: 

(i) V' is reflexive and Sat over T. 

(ii) There are exact sequences 

0 -» TTIM ® IZi -+V\D -> nZL ® Iz -> 0; 

0^nlL®Iz® OD(-D) ->V'\D -> TT^M ® /z# -> 0, 

which restrict for each t € D to give exact sequences 

0 -► M ® /Z/ -^Vi -> L ® 7Z -> 0; 

0 -> L ® /z ^(Pt)' -> M ® IZi -> 0. 

if ere Z is the subscheme of X defined by Z for the slice X x {t} and 
Zf is likewise defined by Z1. 

(iii) If D is smooth, then the extension class corresponding to (Vt)' in 
Ext1 (M ® Iw, L®Iz) is defined by the image of the normal vector to 
D at t under the composition of the Kodaira-Spencer map from the 
tangent space ofTatt to Ext1(Vi, Vt), followed by the natural map 
Extl(VuVt) -+Ext1(M ® IZ/,L ® Iz). 

Here V' is called the elementary modification of V along D. This con- 
struction has the following symmetry: if we make the elementary modifi- 
cation of V' along D corresponding to the surjection V7 —>» ^(TTJM ® Iz')) 
then the result is V ® OXXT(-(X X £))). 

Here is the typical way that we will apply the above: given X, let M 
be a smooth manifold and Y a submanifold of M. Let T be the blowup of 
M along Y and let D be the exceptional divisor. Let TT : T -> M be the 
natural map. Then, given £ E D, the image in the normal space to 7r(£) of 
the normal direction at f to D under TT* may be identified with the line in 
the normal space corresponding to £. 

We can now state the main result as follows: 

Theorem 3.9. Suppose that t is the unique ^-critical point in [t — e,t + e]. 

If h{±Ci) + tfcCi ^ 0 for every if then the rational map gjt^k(t+£)) „> 

SDTQ ' ^ ~e'' is obtained as follows. For every i, fixing Q — C and ki(t + e) = 

k, blow up EJ*    '   in 9Jto •    Then the exceptional divisor D is a 

pJVc x p^-c-bundie over mib^~k X x Hilb^X.   Moreover this divisor can 
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be contracted in two different ways. Contracting the ¥N-< fibers for all 

possible £ gives QJIQ •   Contracting the FN< fibers for all possible £ 

gives SJIQ    ' ~£".  Moreover the morphism from the blowup to SDTQ 

is induced by an elementary modification as in (3.8), and the image of the 

the component of the exceptional divisor which is the blowup of EJ*    '   is 
k £c—k 

EJJ*    . Finally the construction is symmetric. 
Similar statements hold ifh(±Q) + £±£. = 0 for some i, where we must 

also add in or delete an extra component coming from ±Q. 

Proof. Begin by blowing up EJ" ' in 9JIQ ' ^ +e" for all possible £. For 
simplicity we shall just write down the argument in case there is only one 
£; the general case is just additional notation.  Let QJIQ denote the 

blowup and D the exceptional divisor. Note that the normal bundle .A/"/    ' 

to 23f-*•* in 3nP(t+e)) is p*^-* ® Cyc-M(-1), where p : E^'k* -> 

Hilb^-^^ x Hilb^X is the projection.  In particular Af^~ '   restricts to 

each fiber ¥N< to a bundle of the form ^JVC ® ^p^c^- ■'■)' anc^ an easy 
calculation using (2.7) shows that N = N-^ + 1. It follows that the fibers of 
the induced map from D to Hilb^"fc X x Hilb* X are naturally P^c x P^-c. 
Moreover it is easy to see that 0(D)\VN£ = (!?pjvc(—1), using for example 
the fact that 0(D)\¥N< x P^-c = 0(a, -1) for some a and the fact that 

#£'"*{¥*< = R07ru[O(-D)\FN< x P^-c] = [o^c
c+1] O OpNC(-a). 

For the rest of the argument, we assume that there exists a universal 
family on X x QJIQ •  0^ course, such a family will only exist locally 
in the classical or etale topology, but this will suffice for the argument. Let 
U be the pullback of the universal family to X x 9Jto • Locally again 
we may assume that the restriction of U to X x D is the pullback of the 
universal extension V of (2.8): 

0 -> p* faOxiF) ® <2^n_)  ® n*20En.,n+(l) 

-+ V -> p* (nlOxiA -F)® TrxVznJ -+ 0. 

Now consider the effect of making an elementary transformation of U on 
X x QJIQ ^    along the divisor D, using the morphism from U to the 
pullback of p* (TTIOJ^A — F) (g> TTJ^/^) given by considering the pullback 



34 Robert Friedman and Zhenbo Qin 

of the universal extension. Applying (3.8) to the elementary transformation 
Z/, we see that the fiber of U' at a point of the fiber F^c x P^-c lying over 
a point (Zi, Z2) 6 HirtA-* X x Hilbfc X is given by a nonsplit extension of 
the form 

0 -> Ox(A - F) ® Iz2 -± U -> Ox(F) ® JZl -^ 0. 

Moreover the extension class corresponding to U is given by the projectivized 
normal vector in P^-c. Thus it is independent of the first factor ¥N< and 
the set of all possible such classes is parametrized by the second factor 
P^-c. There is then an induced morphism from OTlJC'k(t+e)) to m^k{t~£)) 

and clearly it has the effect of contracting D along its first ruling and has 
the property that the image of D is exactly EJS . We leave the symmetry 
of the construction to the reader. This concludes the proof of (3.9). □ 

Remark 3.10. In the K3 or abelian case, the arguments of this section 

show that the rational map QJIQ —+ ^0 ls a Mukai elementary 
transformation [27, 29]. 

We can also use (3.8) to analyze the rational map from J5™-'n+ to 9Jl_, 
in the case where it is not a morphism. For simplicity we shall only consider 
the case of .E>'0, i.e. ^ = 1. In this case Z_ = p G X and Iz_ = vcip is 
the maximal ideal sheaf of p. Moreover Ext1((Px(A — F), Ox{F) ® nip) = 
^(OxftF — A) ® xtip). There is an exact sequence 

0 -> iJ^Cp) -> Hl(Ox(2F - A) 0 tnp) -> H1(Ox{2F - A)) ^ 0. 

Moreover, for p fixed, the extensions V corresponding to a split extension 
for Fvv are exactly the kernel of the map from H1(Ox(2F - A) ® nip) 
to Jff

1(Ox(2ir - A)), i.e. the image of i?0(Cp). The normal space is 
thus identified with ^{Oxi^F - A)). Now if the extension for Vwv is 
split, then there is a map Ox (A - F) ® rrip -> V with quotient (!?x(^1)- 
This way of realizing V as an extension gives a surjection Ext^V^F) -» 
Ext1 (Ox(A — F) ® ntp, Ox(F)), and we must look at the image of the nor- 
mal space Hl{Ox{2F — A)) in this extension group. On the other hand, we 
have an exact sequence 

0 -> H^Ox&F - A)) -► Ext1(Ox(A - F)®mp,Ox(F)) -> ^(Cp) ^ 0 

coming from the long exact Ext sequence, and it is an easy diagram chase to 
see that the induced map Ext1((!?x(A - F), Ox{F) ® nip) -^ Ext1 (Ox (A - 
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F)®mp,Ox(F)) factors through the map Ext1(Ox(A-F),Ox(F)®mp) -> 
^(OxfiF—A)) and that the image is exactly the natural subgroup Hl(Ox 
(2F - A)) of Ext^OxiA - F)9mp,Ox{F)). 

The above has the following geometric interpretation: the locus U in 
EL' of L_-unstable sheaves is in fact a section of ES . If we blow up this 
section and then make the elementary transformation, the result is exactly 
the set of elements of ES   corresponding to nonlocally free sheaves.  This 

set is already a divisor in ES . There is thus a morphism from the blowup 

of ES   along U to 9Jl_ which is an embedding into 9!Jl_. Its image (ES )' in 

dJl- meets Es   exactly along the divisor in ES  of nonlocally free sheaves. 

We can now give a picture of the birational map from 9JL to 3Jt+ in this 
case. Begin with the subvariety ES   in 9Jt_ and blow it up. Let D0,1 be the 

exceptional divisor, ruled in two different ways. As £>' meets (Es )' along 

a divisor, the proper transform of (El9 )' in the blowup is again (ES )'. 
Making the elementary modification along D0,1, we then blow down D0,1 

to get a new moduli space. This moduli space then contains ES . At this 

point we can then blow up Es and contract the new exceptional divisor 
D1,0 to obtain 971+ (a few extra details need to be checked here concerning 
the Kodaira-Spencer class). Note again the symmetry of the situation. In 
principle we could hope to carry through this analysis to the case where ^ > 
1 as well, but we run into trouble with the birational geometry of Hilbn X. 
Somehow the construction of our auxiliary sequence of moduli spaces has 
eliminated the necessity for understanding this birational geometry in detail. 

4. Mixed stability and mixed moduli spaces. 

Our goal in this section is to give a proof of Theorem 3.5 (for an arbi- 
trary algebraic surface X). By way of motivation for our construction, let 
us analyze Gieseker semistability more closely. In the notation of the last 
section, we suppose that LQ is an ample line bundle lying on a unique wall 
W of type (w,p), and let Ci,...,(n be the integral classes of type (w,p) 
defining W. Let V be an Lo-semistable rank two sheaf. Thus either V is 
Mumford Lo-stsble or it is Mumford strictly semistable. In the second case, 
let Ox (F) ® Izi be a destabilizing subsheaf and suppose that there is an 
exact sequence 

0 -► Ox{F) 0 Iz1 -> V -> Ox{A - F) ® IZ2 -+ 0. 
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Let C = 2F—A. We shall assume that C = Ci for some i, or equivalently that 
C is not numerically equivalent to zero (i.e., V is not universally semistable). 
By assumption p^ty) > IJLLO{OX(F) <g> /zj, and so x(V) > 2x{Ox(F) ® 
JzJ. Since x(V) = x{Ox{F)®Iz1) + x(Ox(^-F)®Iz2), we may rewrite 
this last condition as 

x(Ox(A -F)® IZ2) - x(Ox(F) ® IzJ > 0. 

Now from the exact sequence 

0 -)• Ox(F) ® IZl -»• Ox(F) -»• 0Zl -»• 0, 

we see that x(Ox(F) ®Iz1)= x(Ox(F)) - l(Z{), and similarly x(Ox(A - 
-f) ® ^2) = xl^xCA - F)) - £(^2). By Riemann-Roch, 

x(Px(A - F)) - x^x^)) - ^((A - F)2 - (A - F) ■ Kx - F2 + F ■ Kx) 

= I(A2-2A-F + C-^x) 

= l-<;-{Kx-&)=t.. 

Thus we have the following conditions on Zi and Z2'. 

l(Z2)-e(Zl)<t; 

i(Z2) + e(Zi) = t(t 

and so 2^2) < ^c + *• Setting k 
'ij + i 

, we have ^(^2) < k. Applying 
2 

a similar analysis to a subsheaf of the form Ox (A — F) <g> Iz1 shows that, if 
there is such a subsheaf, with a torsion free quotient Ox (F) <8> Iz2 > then 

^2)<-^-=^--^-- 

In particular, if -^—— is not an integer, then this condition becomes ^(^2) ^ 

£Q — k — 1. Thus, provided -^-— is not an integer for every £ defining the 

wall W (i.e.   £ is not ^-critical for every £), V is (Lo?C5^)"semis*able for 

k —   -^——   and indeed V is (LojC^^J-semistable, where k is defined in 

the obvious way.   Conversely, assuming that t is not ^-critical for every £, 
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V is Gieseker Lo-semistable, indeed Gieseker Lo-stable, if it is (LOJCJ^)- 

semistable for k as above. 
We would like to produce a similar condition where t is allowed to be any 

rational number which is not ^-critical. One way to think of this problem 
is to consider the analogous problem where we replace A by A + 2S and 
make the corresponding change in c, so that A and p remain the same. This 
corresponds to twisting V by 0x(£),' and t is replaced by t — Q • S. In 
particular, we see that the notion of Gieseker stability is rather sensitive to 
twisting by a line bundle. Moreover if W is defined by exactly one £ such 
that there exists a divisor H with £ • 3 = 1, for example if £ is primitive and 
Pg{X) = 0, it is easy to see that we can construct the appropriate moduli 
spaces as Gieseker moduli spaces corresponding to twists of V by various 
multiples of 3. In general however we will need to consider a problem which 
is roughly analogous to allowing twists of V by a Q-divisor 5. This is the 
goal of the following definition of mixed stability: 

Definition 4.1. Let X be an algebraic surface and let LQ be an ample 
line bundle on X. Fix line bundles Hi and if2 on X and positive integers 
ai and a2. For every torsion free sheaf V on X of rank r, define 

PVMJIMM(n) = ^x(V ® Hi ® Lg) + yx(V ®H2® LJ). 

A torsion free sheaf V is (iZij-fl^jfli?^) Lo-stable if, for all subsheaves W 
of V with 0 < rank W < rank V and for all n » 0, 

PV',HuH2,ai,a2(n) > PWjtfi^ai^fa)- 

(Hi, H2,0,1,0,2) Lo-semistable and unstable are defined similarly. 
The usual arguments show the following: 

Lemma 4.2. If V is (Hi, H2,01,0,2) Lo-stable, then it is simple. 

In the case of rank two on a surface X (which is the only case which 
shall concern us), V is (Hi, H2^ 01,02) Lo-stable if and only if, for all rank 
one subsheaves W, and for all n » 0, we have 

atbciV ® #1 ® Lg) - 2x(W ® Hi ® £&)) + 

a2(x(V®fr2®£o)-2x(W®ir2®Lci))>0. 

In particular, if V is (#1,#2,01,02) io-stable then either F®ifi or V"®.ff2 
is stable, and a similar statement holds for semistability. A short calculation 
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shows that the coefficient of n in the above expression (which is a degree 
two polynomial in n) is (ai + a2)(Z>o ■ (ci(^0 — 2F)) where F = ci(W) and 
that the constant term is 

(ai + a2)(x(V) - 2x(W)) + aiJSTi • (c^V) - 2F) + a2i?2 • (ci(V) - 2F). 

Thus V is (Hi,H2,0.1,0,2) Lo-stable (resp. semistable) if and only if it is 
either Mumford Lo-stable or Mumford strictly semistable and the above 
constant term is positive (resp. nonnegative). It is easy to see, comparing 
this with the discussion at the beginning of this section, that formally this 
is the same as requiring that V ® E is (Gieseker) Lo-stable or semistable, 
where 5 is the Q-divisor 

CLi +02 Oi + O2 

Thus for example taking #2 = 0 and replacing Ji\ by a positive integer 
multiple we see that we can take for S an arbitrary Q-divisor. 

Let  us  explicitly relate  mixed  stability  to  our  previous  notion  of 
(Lo 5 C k)-semistability: 

Lemma 4.3. Given A and c and the corresponding w and p, let LQ be 
an ample divisor lying on a unique wall of type (w,p) and let V be a rank 
two torsion free sheaf with ci(V) = A and C2(V) = c.   Le£ 3 be the Q- 

divisor Hi H H2 and suppose that the rational number U = 
ai +02 ai + 02 

^0 • (Kx — A) - 0 • S is not Q-critical for every Q of type (w,p) defining 
W. Then, with t = ti, V is (LoX,k(t))-semistable if and only if it is 
(Hi,H2,01,02) Lo-semistable if and only if it is (Hi,H2,01,02) Lo-stable. 

Proof. Using the additivity of the polynomials pv\Hi,H2,aua2 over exact se- 
quences, it is easy to check that V is (Hi,H2,01,02) Lo-semistable if and 
only if it is Mumford Lo-semistable, and for every Mumford destabilizing 
subsheaf of the form Ox (F) (8) Izi, either V is universally semistable or we 
have 

x(V)-2x(Ox(F)®IZl)-Ci-E>0, 

where Q = 2F — A. Using our calculations above, this works out to 

£(Z2) - *(Zi) < ^Ci ■(Kx-A)-Ci-S = U 
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Thus Equivalently since £(Zi)+f.(Z2) = ^, this becomes ^(^2) ^ 

V is (Hi,H2iai,a2) Lo-semistable if and only if it is (Lo,C5lc(t))-semistable. 
Moreover, since t is not ^-critical, the inequalities are automatically strict, 
so that V is also (Hi,H2,0,1,0,2) Z>o-stable. □ 

Now choosing a So such that Ci 'So 7^ 0, every rational number t is of the 
form 5^1 • (Kx — A) — Ci • rSo for some rational number r. Thus Theorem 
3.5 will follow from Lemma 4.3 and from the more general result below: 

Theorem 4.4. Let X be an algebraic surface X and let LQ be an ample line 
bundle on X. Given a divisor A and an integer c, line bundles Hi and H2 on 
X and positive integers ai and 02, suppose that every rank two torsion free 
sheaf V with ci(V) = A, C2(V) = c which is (Hi,H2,0,1,0,2) Lo-semistable 
is actually (Hi, H2,01,02) Lo-stable. Then there exists a projective coarse 
moduli space 9Jt/,0(A, c; Hi, H2,01,02) of isomorphism classes of rank two 
torsion free sheaves V with ci(V) = A, C2(V) = c, which are (Hi,H2,01,02) 
Lo-semistable. 

Proof. The argument will follow the arguments in [13] as closely as possible, 
and we shall assume a familiarity with that paper. 

Suppose that V is (Hi, H2,01,02) I>o-semistable. Then either V ® Hi 
or V ® i?2 is Lo-semistable, and thus by [13], Lemma 1.3 the set of all 
such V is bounded. We may thus choose an n such that, for all V which 
are (Hi, H2,01,02) Lo-semistable, V ® Hi ® LQ is generated by its global 
sections and has no higher cohomology, for i = 1,2. Fix such an n for 
the moment, and let d; = h0(V ® Hi ® Lfi). Then di is independent of 
V and V is a quotient of (H"1 ® LQ*

1
)®*. Let Qi be the open subset of 

the corresponding Quot scheme associated to (H^1 ® LQ 
n)®di consisting 

of quotients which are rank two torsion free sheaves Vj, with ci(Vi) = A 
and C2(Vi) = c, and such that Vi ® Hi ® LQ 

ls generated by its global 
sections and has no higher cohomology. We will write a point of Qi as 
Vi, suppressing the surjection (H~l ® L^"71)®^ -4 Vi. Inside Qi x Q2, we 
have the closed subscheme JQ consisting of quotients Vi and V2 such that 
dimHom(Vi, V2) > 1- There is also the open subvariety /Q 

0f ^0 consisting 
of (Vi,l^) with dim Horn(Vi,V^) = 1. Using the universal sheaves Ui over 
X x Qi, we can construct a C* bundle / over IQ whose points are (Vi, V^, if), 
where ip : Vi —> V2 is a nonzero homomorphism, unique up to scalars. 

For i = 1,2, let Ei be a fixed vector space of dimension equal to di = 
h0(V ® Hi®L%). Fix once and for all an isomorphism (H^1 ® LQ 

n)e* = 
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(Hil®LQn)®Ei. A surjection (fl,r1®L-n)©* -> VJ then gives a map #f -> 
^0(Vi ® Hi ® LQ ) and via such a surjection a basis vi,..., v^ of J5i gives di 
sections of Vi ® jffi ® LQ and similarly for a basis iwi,..., Wd2 of ^2- Moreover 
GL(di) acts on (fl'r1 ® LQ 

n)e* and on Qj. By the universal property of the 
Quot scheme, this action extends to a GZ^d^-linearization of the universal 
sheaf Ui over X x Qi. Thus there is a right action of GL(di) x GLfa) on 
/, and it is easy to see that the elements (A Id, A Id) act trivially. Let Fi 
be the fixed vector space H0(A ® Hf ® LQ

71
), and F the fixed vector space 

H0(A®H1®H2®L2
Q

n). Let 

2 2 

J7 = Hom(/\ Eu Fi) 0 Hom(y/\ ^, F2) © Hom(jE7i ® J572, F). 

(The factor Hom(£?i ® E2,F) is there to make sure that the destabilizing 
subsheaves for V® Hi and V® H2 are in fact the same.) Note that GL(d\) x 
GL{d2) operates on the right on U and PC/. For example, the pair (A Id, /i Id) 
acts on the triple (Ti,T2,T) E U via (Ti,T2,T) v-> (A2Ti,/i2T2, A/iT). Thus 
(Ai,^) acts trivially on WU if and only if (Ai, A2) = (Aid, Aid). Given a 
quintuple F = (^1,^2,^1,^2, v), where Vi € Qi, ipi : Ei-+ H0(Vi®Hi®L%) 
is an isomorphism, and </> : Vi -4 V2 is a nonzero map, we will define 
a point (Ti(F),T2(Z),T(Z)) E PC/. To do so, fix an isomorphism 012 : 
det V2 —> Ox (A), and set ai = a2 o detip. (Thus ai = 0 if tp is not an 
isomorphism.) Given Vjt/ G Ei and ty,^' G S2, identify v^v' with their 
images in H0(Vi ® Hi® LQ) and similarly for w, w', and let 

Ti(Z)(« A «') = «i(v A «') = a2 o det ip(v A v') G JET0(A ® fl? ® L§n); 

T2(Z)(^ A ti;') = a2(w A u;') G iJ0(A ® iff ® L^); 

r(i0(t; ® ti;) = 02(^(1;) A w) G IT0 (A ®Hi®H2® ifi1). 

Changing 0^2 by a nonzero scalar A multiplies (Ti(T£),T2(F),T(F)) by A, so 
that the induced element of FU is well defined. Similarly, if we replace (p 
by Xcp, then (TiOQ^OQ^OQ) * replaced by (A2T1(Z),T2(Z), AT(Z)). 
It is easy to check that the map V_ *-> T(V_) induces a morphism from / to 
FU which is GL(di) x GL(d2)-equivariant. Further note that we can define 
{Ti (Z), T2(V), T(V)) more generally if we are given the data V_ of two rank 
two torsion free sheaves Vi and V2 with det Vi = A, a morphism (p : Vi -> V2, 
and linear maps fy : Ei-+ H0(Vi ®Hi® LQ ), not necessarily isomorphisms, 
although it is possible for {Ti(V_),T2{V)1T(V_)) to be zero in this case. 

We have not yet introduced the extra parameters ai and a2. To do so, 
define G(ai,a2) C GL(di) x GL(d2) as follows: 

G(ai, a2) = { (Ai, A2) I det A?1 det A^2 = Id }. 
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Thus unlike Thaddeus we don't change the polarization or the linearization 
but the actual group which we use to determine stability; still our construc- 
tion could probably be interpreted in his general framework. Fixing ai and 
a2 for the rest of the discussion, we shall denote G(ai,a2) by G. Since ai 
and a2 are positive, the matrix (A Id, A Id) lies in G if and only if A is an rath 

root of unity, where m = aidi +02^2. Thus a quotient of G by a finite group 
acts faithfully on FU. Moreover, the problem of finding a good quotient of 
FU (for an appropriate open subset of PC/) for G is the same as that of 
finding a good quotient of FU for GL(di) x Gi(d2), since 

G • C (Id,Id) = GL(di) x GLfa). 

This last statement follows since G clearly contains SL(di) x SLfa) and 
since C* x C* is generated by its diagonal subgroup and by the subgroup 

{(A,/i) : Aaidl/xa2rf2 = l}. 

We may thus apply the general machinery of GIT to the group G acting 
on FU. A one parameter subgroup of G is given by a basis {vi} of Ei, a basis 
{wk} of E2 and weights n^ rrik € Z, such that v* = \niVi, w^ = AmfcWfc, and 

ai^rci + flfe^Pmfc = 0. 
i k 

We shall always arrange our choice of basis so that ni < 712 < • • • < n^ and 
mi <m2 < "• < md2. Given (Ti, T2, T) E U and a one parameter subgroup 
of G as above, we see that IrniA-^oCTi, T2, T)A = 0 if and only if Ti(vi AVJ) = 0 
for every pair of indices i,j such that rii + rij < 0, T2(wk A wi) = 0 for every 
pair of indices fc, £ such that rrik + mi < 0, and T(vi ® Wj) — 0 for every pair 
i, k such that rti + mk < 0. Likewise the condition that \im\->o(Ti,T2,T)x 

exists is similar, replacing the < by strict inequality. Finally note that if 
rii + rij < 0, then ni + rij < 0, if rrik + me < 0 then mi + mt < 0, and if 
rii + rrik < 0 then ni + rrik ^ 0 and rii + mi < 0. 

We then have the following: 

Lemma 4.5. (i) Suppose that we are given the data V_ of two rank two 
torsion free sheaves Vi and V2 with det Vi = A, a morphism cp : Vi —> 
V2, and a linear map Ei —> H0(Vi ® Hi (8) LQ), not necessarily an 
isomorphism. If Ei -» -ff0(Vi ® Hi® LQ) is not injective for some i or 
ifip is not an isomorphism, then (TI(V_)JT2(V)JT(V_)) is either zero or 
G-unstable. 
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(ii) For n sufficiently large depending only on A and c and for V a rank two 
torsion free sheaf with det V = A and C2(V) = c, V is (Hi,H<2,«!, ^2) 
Lv-unstable if and only if (Ti(V),T2(V),T(V)) is G-unstable for all 
choices of data V_ such that Ei -> H0(Vi <8> Hi ® LQ) is injective and (p : 
Vi -> V2 = V is an isomorphism, and V is {Hi, H2,0,1,0,2) Lo-strictly 
semistable if and only if (Ti{V),T2(V),T{V)) is G-strictly semistable 
for all such V\ Tlius V is (Hi, H2,01,02) Lo-stable if and only if 
(Ti(V),T2(V),T(V)) is G-stable for all such V. 

Proof. First let us prove (i). We may assume that (Ti(V),T2(V),T(V)) ^ 0. 
Suppose for example that vi G Ei *-+ 0 e H0(Vi ® Hi ® Lfi). Complete vi 
to a basis of Ei and choose a basis {w^} for E2. Then Ti(V)(vi A Vi) = 0 
for all i and T(y)(i;i ® ^^) = 0 for all k. Define a one parameter subgroup 
of G as follows: let Vi = A-^!, v* = XaVi for i > 1, and w^ = XbWk for 
all ife. Clearly limA^o(ri(Z)3T2(Z)jr(V;))A = 0 provided that a and 6 are 
positive, so that (Ti(V_),T2(V_),T(V_)) is G-unstable provided that the one 
parameter subgroup so constructed lies in G, or on other words provided 
that 

oi{-N + a(di - 1)) + 02bd2 = 0. 

It thus suffices to take a an arbitrary positive integer, b = ai, and N = 
a(di - 1) + ^2^2. 

The argument in case ip has a kernel is similar: in this case let vi E Ker <pm 

Then Ti(V) = 0 and T(V)(vi ® wk) = 0 for all k, so that the previous 
argument handles this case also. 

Next we show (ii). Let pv®Hi be the usual normalized Hilbert polynomial 
of V ® Hi, and similarly for pw®Hi? where W is a rank one subsheaf of V. 
Thus py®^ and pw®Hi have the same leading term. Given a polynomial p, 
let Ap denote the difference polynomial. In our case, all of the polynomials p 
that occur are quadratic polynomials with the same fixed degree two term. 
Thus if pi and P2 are two such polynomials, then pi(n) > P2(n) for all 
n » 0 if and only if the linear term of pi is greater than or equal to the 
linear term of P2, and if the linear terms are equal then the constant term of 
pi is greater than the constant term of p2- In this last case, where the linear 
terms are also equal, we see that pi(n) > P2(n) for all n » 0 if and only if 
Pi{n) > P2(n) for some n. Finally the linear term of pi is greater than or 
equal to the linear term of P2 if and only if Api(n) > Ap2{n) for all n, which 
we shall write as Api > Ap2. Thus if Api > Ap2 and pi(n) > P2(n) for 
some n, then pi{n) > P2{n) for all n » 0. If Api = Ap2, then pi(n) > P2{n) 
for some n if and only if pi(n) > P2{TI) for all n. 
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We shall show that, for sufficiently large n, if V is (Hi, H2,0.1,0,2) LQ- 

semistable and V_ corresponds to data where Ei -» H0(V ® Hi ® LQ) is in- 
jective and <p is an isomorphism, then {Ti(V_),T2(V_),T(V_)) is G-semistable. 
Note that V is Mumford semistable. First we may choose n so that V ® Hi 
is generated by its global sections and has no higher cohomology, and so 
xiV^Hi®^) = h0(V®Hi®L%) = di. Hence, since Ei -> if0^®^®^) 
is injective, it is an isomorphism. Let W be a rank one subsheaf of V. 
Since V ® Hi is Mumford semistable, Apw®Hi ^ Apy®^. Now the proof 
of (3) of Lemma 1.2 in [13] shows that there exists an N so that, for all 
n > N, with di as above, if W is a rank one subsheaf of V and such 
that h0(W ® Hi ® LQ) > dz72 for at least one i (i — 1,2), then in fact 
&Pv®Hi — Apw®Hi for all such W, and thus HioiV) = lJ>Lo(W). It is then 
easy to see that there is a twist W®-ffi®L^ , depending only on LQ and A, 
such that h0{(V/W) ®Hi® L^) = 0. The proof of Proposition 3.1 in [13] 
shows that in this case /i1(W^® Hi ® Z^"fc) is bounded by Q, where Q is some 
universal bound for the numbers hl(V ® ifi ® LQ ) as V ® i?i ranges over 
the appropriate set of Lo-semistable sheaves. Thus by (4) of Lemma 1.2 in 
[13], the W satisfying the condition that h0(W ® Hi ® LJ) > dz/2 for at 
least one i form a bounded family, and we may choose n so large, depending 
only on LQ, A, c, such that hj(W ® Hi ® LJJ) = 0 for j > 1 and i = 1,2. 

Now suppose that (Ti(V;),T2(Z),T,(Z)) is G-unstable. Then there exists 
a one parameter subgroup of G as above such that 

Let 

lim(T1(Z),T2(Z),T(Z))A = 0. 
A->-0 

si = #{j : TiQOfaAvj) =0}> max{j : m +nj < 0}; 

S2 = #{j :T2(V)(wiAwi) = 0} > max{^ : mi + m^ < 0}. 

Since ai^n^ + 02X1*: mfc = ^5 a^ ^eas^ one 0^ ni?mi is negative. By 
symmetry we may assume that ni is negative, and that ni < mi. Since 
for j < si, vi A Vj is zero as a section of det(y ® H1 ® LQ)? ^he sections 
corresponding to i?j, 1 < j < si, are all sections of a rank one subsheaf Wi of 
V. Likewise the sections w^, 1 < £ < 52, if there are any such, are all sections 
of a rank one subsheaf W2 of V. The condition that T(V_)(vi ® wi) = 0 
insures that Wi and W2 are contained in a saturated rank one subsheaf W, 
if 82 / 0, otherwise we shall just take for W the saturated rank one subsheaf 
containing Wi. Moreover h0{W<S)Hi®L%) > si and h0(W®H2®L%) > 52. 
Suppose that we show that 

ai(di - 2si) + a2(d2 - 2S2) < 0. 
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Thus in particular Si > di/2 for at least one i. By our choice of n and the 
previous paragraph, if s; > di/2 for at least one i, then h0(W ® Hi ® Lfi) = 
X{W ®Hi® L%) and furthermore fiLoiV) = HL0{W). Thus 

h0{W ® Hi® 1%) = x(W ® Hi® 1%) > Si 

for i = 1,2 and so py^j^a^H < Pw^^^^i^)- On the other 
hand, pv.Hi^aiM and pvy;iJi,iy2,ai,a2 are two quadratic polynomials with 
the same linear and quadratic terms (since Hioiy) — MLo(WO)) and 

PV^^au^in) < PW-HuH2,aua2(n) 

for one value of n. Thus the constant term of pw\Hi,H2,ai,a2 must be 
larger than that of py;/f1}j^2)ai?a2. This contradicts the (Hi,H2,ai,a2) LQ- 

semistability of V. 
To see that ai(di — 2si) 4- ^2(^2 — 2S2) < 0, let 

*i = #{i '.rij + mi <0} < 5i. 

Here h < si since T(1£)(?;J ®WI) = 0 implies that Vj and wi are contained 
in a rank one subsheaf of F, necessarily W, and thus that vi A Vj = 0. Let 

t2 = #{i:ni+mi<0}<S2. 

We have assumed that rii < mi. Then consider the expression 

ai ^2{ni + rij) + 0,2 ^(m + me). 

On the one hand from the definition of the one parameter subgroup we have 

ai ^^(ni + rij) + 0,2 ^(^1 + ^^) = 01^1^1 + 02^2^1- 
3 ^ 

On the other hand, to estimate 5^7 (ni + nj)? we cai1 ignore the positive 
terms where ni + nj > 0 and each of the si negative terms are at least 
ni + rii ^ 2ni. Thus YlAni + nj) > 2sini. Since ni < 0, this term 
is > 2siTii. Also this inequality is strict or ni + n^ < 0 for every i, which 
would say that every section of V® Hi ®LQ is really a section of W® Hi ® LQ 

contradicting the fact that V®Hi®LQ is generated by global sections. So 
]r\.(ni + Tij) < 2sini. Likewise we claim that X^(ni + m^) — 2s2ni. Here, 
to estimate X^fai + rn£)^ we may ignore the terms with ni + mi positive, 
leaving £2 terms ni + mt which are < 0, and moreover each such term is at 
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least rii + mi > 2ni.  Thus Yle(ni + rnf) ^ Zfeni, and since ^ < 52 and 
ni < 0, we have 2t2ni > 2s2ni. 

Putting this together we have 

aidini + 02^2^1 = ai 5J(ni + rij) + 0,2 2^(^i + ™>£) 
3 l 

> ai(2sini) + a2(252ni), 

so that 
ai(di — 2si)ni + 02(^2 — 252)ni > 0. 

As ni < 0, we must have ai(di — 2si) + 02(^2 — 252) < 0, as desired. 
We have thus shown that, if {Ti(V),T2(V),T(V)) is G-unstable, then 

V is (Hi,H2,0.1,(12) Lo-unstable. A very similar argument handles the G- 
strictly semistable case. 

Now we turn to the converse statement, that if V is (Hi, H2, (11,0,2) 
Lo-unstable then (Ti(V_),T2(V_),T(V_)) is G-unstable. Suppose instead that 

(Ti(Z),r2(Z),Tao) 

is G-semistable. Let W be a rank one subsheaf of V such that 

for all m ^> 0. We may assume that the quotient W' = V/W is torsion 
free. Thus Pw^tfi^ai^M < Pv^i^ai^M for all m » 0, and so 
Apw^Hi ^ Apv®Hi' Now we have the map Ei -> H0(V ® Hi ® LQ). 

Consider Ei nH0(W®Hi® Lg) C Ei. Let dimEi n H0(W ®Hi® Lg) = a^ 
Suppose first that ai(di —2si) + 02(^2 — 252) < 0. We claim that in this case 
(Ti(V_),T2(V),T(V_)) is G-unstable, a contradiction. To see this, choose a 
basis vi,..., Vfa for Ei such that 

for i < si, and similarly choose a basis wi,... ,^2 for E2 such that ^ G 
E2nH0(W®H2®L%) for i < 52. Thus, if z, j < 31 thenTiQOCvtAvj) = 0; if 
k,e<S2 then T2(V)(wk/\wi) = 0; if i < si and fc < 52 thenT(V)(vi®wk) = 
0. 

We will try to find a one parameter subgroup of G of the form 

Vi      \\nVi, 

for i < si; 

for i > 51, 
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and similarly 

\ABu;fc, 

for i < S2; 

for i > S2- 

It is easy to check that limx^o(T1(V),T2(V),T(V))x = 0 if and only if 
n> m. What we must arrange is the condition 

ai(-msi + n(di - si)) + a2(-ms2 + n(d2 - S2)) = 0. 

Now consider the linear function with rational coefficients 

/(*) = ai(-8i + t(di - si)) + a2(-S2 + tfa - S2)). 

Since the coefficient of t is strictly positive f(t) is increasing, and 

/(I) = ai(-5i + (di - si)) + a2(-S2 + ((h - S2)) 

= ai(di - 2si) + a2(d2 - 2S2) < 0. 

Thus there is a rational number t = n/m > 1 such that f(t) = 0, and this 
gives the desired choice of n and m. Thus if ai(di — 2si) + a2(d2 — 2S2) < 0, 
then (Ti(V_)jT2(V_),T(V_)) is G-unstable, contradicting our hypothesis. 

The other possibility is that ai(di — 2si) + 02(^2 — 252) > 0. In this case 
di > 2si for at least one i. Recalling that we have the quotient W1 of V by W, 
it then follows that for such an i the image of Ei in H®(W' ®Hi® LQ ) must 
have dimension at least dj/2. Arguing as in Proposition 3.2 of [13], it then 
follows from Lemma 1.2 of [13] that &pw'®Hi — ^Pv^Hi and so that V is 
Mumford Lo-semistable and /ii,0(V) = IJ>LO(W). Moreover, after enlarging n 
if necessary (independently of V) we may assume that h^(V ® Hi ® LQ ) = 0 
for j > 0. In particular, di = dimH0(V ® H» ® LQ) for i = 1,2, and 
JSi ->• iJ0(y ® ili ® LJ) is an isomorphism; so s* = /i0(W ® Hi ® LJ). As 

^Lo(^) = VLoiW), the polynomials pW;ifi,ff2,ai,fl2 and PV;HuH2mm have 

the same terms in degree one and two, and thus since pw^Hi^Ai^i771) > 
PV',HuH2,aua2 (m) for some m the same is true for all m, in particular for m = 
n. Moreover, for a general choice of a smooth curve C in the linear system 
corresponding to LQ, there is a fixed bound on the line bundle W®Hi\C. A 
standard argument as in the proof of-(2) of Lemma 1.2 of [13] shows that, 
for n sufficiently large but independent of V, we have H2{W® Hi ® 1$) — 0- 
Thus si = h0{W®Hi® Lg) > pw®Hi(n). It follows that 

ai(di - 2si) + a2(d2 - 2^2) < ai(di - 2pw®Hl(n)) + 02(^2 - 2pw<S)H2(n)) 

= 2(j)V',HuH2,a1,a2(n) "" PW;HltH2talta2 (n)) < 0- 
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This contradicts the assumption that ai(di — 2si) + 02(^2 — 252) > 0.  It 
then follows that (Ti(V),T2(Y),T{V)) is G-unstable. 

The strictly semistable case is similar. □ 

We may now finish the proof of Theorem 4.4. Let PC7SS be the set of 
G-semistable points of PC/. Let Jss be the inverse image of P?7SS under the 
morphism / —>• PC/. Since every semistable sheaf is stable, Jss is a C*-bundle 
over its image in Qi x Q2- Moreover the representable functor corresponding 
to 7SS is easily seen to be formally smooth over the moduli functor. Argu- 
ments very similar to those for Lemma 4.3 and 4.5 of [13] show that the 
morphism Jss -> ¥USS is one-to-one and proper, and thus in particular fi- 
nite. Thus we may construct a quotient 9ttL0(A, c; #1,712,^1,^2) 0f hs by 
G. This quotient maps in a one-to-one and proper way to the GIT quotient 
of PC/SS and is therefore projective. By the discussion at the beginning of the 
proof of Theorem 4.4 the points of 9Jt^0(A,c;iyi,i?2,tti,a2) may be iden- 
tified with isomorphism classes of (Hi,H2,0,1,0,2) Lo-semistable rank two 
sheaves. Standard arguments then show that 9JIL0(A,C;HI,#2,^1,0,2) has 
the usual properties of a coarse moduli space. □ 

5. The transition formula for Donaldson polynomial 
invariants. 

Prom now on, we will assume that the surface X is rational with —Kx 
effective, and will study the transition formula of Donaldson polynomial 
invariants: 

<^p(C+,C_) = Z^p(C+)-I)*p(C_) 

where C_ and C+ are two adjacent chambers separated by a single wall W^ 
of type (w,p) or equivalently of type (A,c). For simplicity, we assume that 
the wall W^ is only represented by ±£ since the general case just involves 

(k) (C k) additional notation. We use 9JIQ 
; to stand for the moduli space 9#Q 

;. 
When i^ = 0, we also assume that 

h(C) = hl(X-Ox(2F-A)^0 

(see Corollary 2.7). The special case when ^ = h(Q — 0 will be treated in 
Theorem 6.1.  By Theorem 3.9 and Lemma 3.2 (ii), we have the following 



48 Robert Friedman and Zhenbo Qin 

diagram: 

s        \           / 
II 
an. 

^0) 

\          /          \ 

II 
9n+ 

where the morphism Swf) -> Swf) is the blowup of JWlf) at E^ k'k, and 

the morphism SWJf0 -> Sw5*"1) is the blowup of SDlf "^ at ^C"A;. 
Next, we collect and establish some notations. Recall that in section 2 we 

have constructed the bundle ES    '   over H^-k x H^ where Hk = Hilb^ X. 

Notation 5.1.   Let ( define a wall of type (w,p). 

(i) Afc is the tautological line bundle over i?/    '   = P((£/    ' )v); for sim- 
plicity, we also use Xk to denote its first Chern class; 

(ii) pk : X x Es    '   —> X x iJ^-fc x if^ is the natural projection; 

(iii) pk : m^ -> m$\ is the blowup of gjif > at E^'**; 

(iv) ^-i : ^l^ -> SWf "^ is the contraction of ^^ to SWf "^j 

(v) A4 is the normal bundle of #/" '   in ODTQ   ; by Proposition 3.7, we have 

(vi) Dk = IP(A/^) is the exceptional divisor in.9Jlo  ; 

(vii) £fc = O—(k)(—Dk)\Dk is the tautological line bundle on D^ again, for 
jji0 

simplicity, we also use £& to denote its first Chern class; 

(viii) /iW(a) = -\pi{UW)/a where a e fyiX^Z) and U^ is a universal 

sheaf over Xx SDt^. Let ^(a) = /i_(a) and that ^'^(a) = /i+(a). 

(ix) i/(fc) = — jPi(W^)/a; where a; G i?o(^; Z) is the natural generator. Let 
i/('<) = i/_ and that i/t"1) = u+. 
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Note that, in (viii) and (ix) above, the sheaf U^ is only defined locally in 
the classical topology. However, since it is defined on the level of the Quot 
scheme a straightforward argument shows that pi(U^) is a well-defined 

(k) element in the rational cohomology of X x DJIQ \ at least in the complement 
of the universally semistable sheaves. In case there are universally semistable 
sheaves, then the work of Li [21] extends the /i-map to SUIQ , at least for the 
two-dimensional algebraic classes. We can then extend the //-map to the 
4-dimensional class via a blowup formula due to O'Grady (unpublished). 
Moreover, there is a universal sheaf Vfc over X x ES ' . In what follows, 
we shall work as if there were a universal sheaf U^k\ and leave it to the reader 
to check that our final Chern class calculations can be verified directly even 
when no universal sheaf exists. 

In the following lemma, we study the restrictions of p£/i(fc)(a) and p]>^ 
to Dk. 

Lemma 5.2. Let a E H2(X;Z) and a = (£ • a)/2.  Let ri and T2 be the 

projections ofEJ*    '   to H^-k and Hk respectively. Then, 

(Id xptYdiU^liX x Dk) = irJA + (pk\Dky\k 

pln^{a)\Dk = (pk\Dky [r^[Zk.k]/a) + r2*([^]/a) - aXk} 

pt^\Dk = \(pk\Dky [^([Zk.k]/x) + 4TS{[Zk]/z) - Xl] . 

,,   v ff  k   k 

Proof. Note that U(k'\X x Es ' = Vfc, where the sheaf Vk is constructed 
by Proposition 2.8 and sits in the exact sequence: 

0 -> irlOx(F)®ptTrl2IZl(_k®Tr*2\k -»■ Vk -»■ TrlOx(A-F)Op^/^ -> 0. 

Thus, ci(Vfc) = TT^A + n*2\k and {Idxpk)*ci(U^)\(X x Dk) = TTJA + 
(pk\Dk)*\k. Moreover, c2(Vfc) = p^^-fc] + PJTT^I^*] + (TT^F + ^Xk) ■ 
TTI(A - F). Since 

pt^(a)\Dk = {pklDkY^ia)]^-^] = (pfc|i?fc)*[-ipi(Vfc)/a], 

we have 

^M(fc)(a)|Z>fc = (pfc|I>fc)* [rfd^-fcl/a) + T2*([Zfc]/a) - aAfc] . 
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Similarly, p*kvW\Dk = \(pk\Dk)* [^([Zk.k)/x) + ^([Zk]/x) - X*].      □ 

It follows from the work of Morgan [26] and Li [21], together with un- 
published work of Morgan, that D^p(C±)(ad) = 6(A) • /i±(a)d and 

D^p(C±)(ad-2,x) = 6(A) • ^(a)*-2 ■ u± 

where d = -p - 3, 6(A) = (_i)(A2+A ^x)/2 is the difference between the 
complex orientation and the standard orientation on the instanton moduli 
space (see [6]), and x G Ho(X; Z) is the natural generator. Strictly speaking, 
their methods only handle the case of D^p(C±)(ad). To handle the case of 

Dw,p(C±)(ad~2i x)i one needs a blowup formula in algebraic geometry, which 
has been established by O'Grady (unpublished). To compute the differences 

ti+(a)d - LL-(a)d    and    /i+H^"2 ■ i/+ - fi-(a)d-2 ■ */_, 

we need to know how /^^(a) and /i^~1^(a) are related, and also how i/W 
and i/^-1) are related. The following lemma handles this problem. 

Lemma 5.3. For a £ H2(X; Z) and the natural generator x E Ho(X] Z), 
we have 

Qk *  1^
k-1Ha)=pt^(a)-aDk 

qU^k-l) = plvW - \[D2
k + 2(pk\Dky\k}. 

Proof. Prom the construction, the sheaf (Id xqk-i)*U(k'~1) OUXXMQ is the 
elementary modification of (Id xpk)*U^ along the divisor XxDk, using the 
surjection from (Id xpk)*U^ to the pullback of pk{iriOx(A-F)®n*93Izk)'. 

0 -> (Id xq^yU^-V -+ (Id xpk)*uW 

-> (Id xpk\Dk)*pt(ntOx(A - F) ® TTXV^) ^ 0 

where (2F — A) = C and TTI is the natural projection X x H^-k x Hk —> X. 
Note that (Id xpk\Dk)*p*k(7rlOx(A - F) ® TT*^/^) is a sheaf supported on 
X x Dk, and that its first and second Chern classes are equal to (X x Dk) 
and (X x Dfy - 7r*(A - F) • (X x D^) respectively. It follows that 

(Id Xft-O'ci^*-1)) = (Id xpiO'cifwW) - (X x Dfc) 

(Id x^_1)*C2(ZY(A:-1)) = (Id xpk)*C2(Uto) - (Id xptfaiuW) - (X x Dk) 
+ *i(A-F).(XxDk). 
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By Lemma 5.2, (Id xp^^U^) ■ (X x Dk) = {AxDk) + (X x(pk\Dk)*Xk). 
Thus, 

(Id xgfc_1)*p1(W(*-1)) = (Id xpfc)^^*)) + (X x 1)2) - 4(A -F)xDk 

+ 2(Idxpk)*c1(uW)-(XxDk) 

= (Id xpkYpiiU^) + 2{2F -A)xDk 

+ Xx[Dl + 2(Pk\Dk)*\k]. 

Now the conclusions follow from some straightforward calculations. □ 

In the next two theorems, we will give formulas for the differences 
[^+(a)]d - [fJ,-(a)}d and [/z+(a)]d-2 • i>+ - [/i_(a)]d-2 • i/_ in terms of the 
intersections in i^c_fc x Hk and the Segre classes of the vector bundles 

£/~ ' © (£j/"~ )v on Hic-k x -Hibj where A; = 0,1,... ,^. The arguments 
are a little complicated, but the idea is that we are trying to get rid of the 
exceptional divisors Dk as well as the Chern classes of the tautological line 
bundles £& and A^. 

Theorem 5.4. Let £ define a wall of type (w,p), and d = (—p — 3). For 

a e H2{X] Z), put a = (C • a)/2. Tien, [^+(ce)]d - [n-{a)]d is eclual to 

^    (      ) • (-l)MO+^+i . ad-3 . 

1=0     <>< 

k 
• J2 ([2k-k}/a + [Zk]/aY • s2k^(£e

c^
k © (f^"ls)v). 

fc=0 

Proo/. By Lemma 5.3, we have ^_1/i(
A:~1)(a) = p^/i^)(a) - aZV Since ^ 

and ^_i are birational morphisms, 

b^(fc)(a)]d = [M(fc)(a)]dand 

[Ci^W = b(fc-1) («)]"• 
Thus, [/x(A:-1)(a)]d - [M(fe)(a)]d is equal to 

t=i   V V 

t=i   VZ/ 
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By Lemma 5.2, p*pW(a)\Dk = (pfc|^)*([^c_^/a + [Zk]/a - aAjb). So we 
have 

d v d 

-E 
i=l 

i=o  v  ^   ^ 

=E y • (-a<i"j) • ([<v*]/°+[^v^' • 

EC;')-^1-^)^ 
,=0     ^ 

^ ^d' 

i=o   ^ 
d-l-i 

i=0 

Now, our formula follows from the following claim by summing k from 0 to 

k- 
Claim. 

{[zk_k\i* + [zk)iay • E  (• +1) • tt • (-^)d"1"i"i 

= ([Zk-k]la + {Zfc]/aV • (-l)MC)+<c+;-i • S2,<_i(^-fc,A: © (^-*)v). 

Proof. For simplicity, on the exceptional divisor Dfc, we put 

a. = ([Ze^/a + [Z4]/ay • E (j + J) ' «fc' (-W*' 
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So we must compute aa-i-y Notice the relation 

v* + A* • °s-i = ([Ztt-kV* + [ZkV*? - (& - Afc)
s. 

Thus for 0 < t < s, we have 

t-i 

as = (-A*)* • <7s_t + ([Zk-k]/<x + [Zk]/cx)j • £(& - Afc)5- - (-Afc)\ 

Put s = d — 1 — j and t = 5 — iV_£ = d — 1 — j — iV_£, where iV_£ = 
^_c + /i(~C) - 1 = k + H-C) - 1 as defined in Corollary 2.7. Then, crd-x-, 
is equal to 

(-Afc)*"1-'"-"-' • ^_c + ([^_*]/a + [J2:fc]/aH" • 
d-2-j-N-( 

Since dimE>c~ ' = d~ 1 — iV.^, we see that (—Xk)d~1~i~N-< • crjv_c is equal 
to 

(-A*)*-1^-^ • ([Zk-k]/a + [Zk}/ay • ^ (^1J • & ■ {-X^-^ 

= (-A*)*-1-'-"^ • ([^-»]/a+[zk)/ay ■ ef-c 

= ([^-fc]/a + [Zk]/ay • (-Afc)"-1^-^^ • fa - Afc)^ 

since the restriction of £fc to a fiber of Dk —> ^c ' is a hyperplane. There- 
fore, 

a^j = ([Zk_k]/a + [Zk]/aY -      ^      (& - A*)^1-^ • (-A*)*. 

Now, we shall simplify (&. — Ajfc)^-1-^-1. Since ^ is the tautological 
line bundle on Dk = PCA/^), the line bundle (& ® A^"1) is the tautological 
line bundle on 

pw ® A^1)=p[((pfci^-fc)v5!:^-*)v]. 

Since JV_^ + 1 is the rank of £_'/    , it follows that 

Jf=l 
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One verifies that in general, for u' > iV_£, one has 

(& - Afc)
B' = su'-Ar_c(^-fc) • (& - A*)^ + O ((^ - A*)*-'-1) 

where s^EjJ* ) is the ith Segre class of £_'/" • Therefore, since (d — 1 — 

j) —i> N-^ we see that (£& — Ajfe)^""1"^""* is equal to 

8d-1-.j-i-N_((£k_f-k) ■ (6 - Xk)N-< + O ((& - A*)"-'-
1
) 

and that ([^-fc]/a + [Zk]/a)J ■ (6 - Afc)^"1^)-* • (-A*)* is equal to 

([Ze(-k]/a + [Zk]/ay ■ [5(i_1_i_i_iv_c(^
c"") • (& - Afc)^] • (-Afe)

i 

= ([^_fc]/a + [2fc]/a)^ • 8d-1-j-i-N_((e
k*-k) ■ (-XkT- 

Next, we note that ([-Z^.^/a + [Zk]/®)J ' 8d-i-j-i-N-.{(£J{ ) is a cycle 

on JE> ' pulled-back from H^-k x jfffc. So this term is zero unless of — 
1 - i - iV_c < 2^, that is, i > d - 1 - iV_c - 2£c. Note that by Corollary 

2.7, d - 1 - N-C - 2£c = Nc and iVc + 1 = h(Q + ^ is the rank of e\c~k%k. 

Since \k is the tautological line bundle on E^~ ' = P((£/ ' )v), we see 
as before that 

Putting all these together, we conclude that (Jd-i-j is equal to 

{[zk_k}ia + [zk}iay ■ 
d-1-j-N-c 

■   J2    *d-i-i-t-iv_c (£'lf~k) ■ i-iy ■ si-N< {£*<-k'k) 

i=0 

= ([Zk_k}/a+[Zk]/ay-(-iy+N<- 

2^-i 

• £   «(Me-iH((£!?"fc)v)-*i(£cC"M) 
2=0 

= ([^-fc]/a + [^]/a)J • (-l)J'+Ar< • s2e^j(£^-k'k © (^f -fc)v) 

This completes the proof of the Theorem. □ 

For the difference [^+(a)]"  2 -u^. — [/i_(a)]d     •^-, we have the following. 
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Theorem 5.5. Let ( define a wall of type {w,p), and d = — p — 3. For 
a G H2{X; Z), put a = (( • a)/2. Then, [/i+(a)]d-2 • i/+ - [/i_(a)]d-2 • V- is 
equal to 

- ' Yl (d ~ ^ (-l)fc(c)+'«~1+J' • a'2-2-^ 

53([^_fc]/a + [2:*]/a)^ • [a^-i - 4([^_fc] + [ZfcD/a: • 824-2-;] 
fc=0 

where Sj stands for the ith Segre class of£/:    '  © (£_'/    )v- 

Proo/. By Lemma 5.3, we have ^_1/Lt(fc_1^(a) =p^/i('i;)(a) — a£>fc and 

flfc-i^*-1* = Pt^ - JP2 + 2(p*|i?Jfc)*A*]. 

It follows that [//(fc-1)(a)]d-2 • i/t*"1) - [M(fe)(«)]rf~2 • ^(fe) = A + h where 

/1 = [/i<*>(a) - aDfe]
d-2 • ^[-D2 - 2(pfc|r>,)*Afc] 

= [/x(A;)(a)|JDfc + a6]d-2^(6-2Afc) 

=E (d 72) • ^wi^]*-2-' • c1 • (-«') • M*^*)- 

First of all, since ij^k\a)\Dk — {[Z^-k]/® + [Zk]/& — ^^A;)? we see that 

Ji = [([Zk-k}/a + [Zk]/a) + afa - Xk))d-2 ■ ^k - 2Xk) 

= i E ( ,-   • ad~2~j ■ ([^-*]/«+[**]/«)' • 

■^k-h)d-2-j-(^-2Xk) 
If 

= i E (d 72) • ad"2"j • (tv*]/*+1^*]/^ • 
j=o v   J   ' 
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• [(& - A*)*-1-' " Afc • (& - A,)*-2-'-] 
2/ 

i=o ^   J   ' 

■ [Sd-l-j-N^-^     ) - Afc • Sd-2-j-iV_c(^_'C
<_  )J • 

Next, by Lemma 5.2, we have i/(*)|Dfc = \ [4[^c_fc]/a; + 4[Zk]/x - A|]. 
Thus, as in the proof of Theorem 5.4, we can verify that I2 is equal to 

j[A[Ze<_k}/x + 4[Zk]/x-Xl]- 

■E(V)-IM
W

(«)|J* 'tr-'-c
1 ■(-«') 

=i [^.j/x+4^]/^ - xi]. Y: {d.2) • (-«d-2-j') • 
.7=0 ^    J     ' 

2ic+Nc-2-j 

• ([^c-,]/a + [Zk]/aY •       £       ^3-i-^_c(tf ?"*) ■ (-W 

1   2£<   /W_9\ 

=1E ( ,- ) • (-ad_2"i) • a^c-*]/"+i^y^y ■ 
j=o \  J   / 

.[A{[zk_k} + [zk})ix.{-iy+N< v- 
2<c+iVc-2-j 

-   £   ^-3-J-i-Jv_c(^'cc"fe)-(-Afcr
+2 

2=0 

= 1E {d 72) • ad"2"j • ([**-*]/«+1^]/^ • 
j=o ^   J   ' 
m2tc+Nc-2-j 

i=0 

-4([^c_fc] + [Zk})/x . (-iy+N< ■ s') 

where s1 stands for S2ec-2-j(£/:    '  © (£_'/    )V)- Thus, Ii +12 is equal to 

1E (d /) • ad"2"J' • a^c-*i/«+^]/«)j • 
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'2^+Arc-2-j 

i=-2 

-4([^c_fc] + {Zk})/x ■ (-iy+N< • s'] 

.7=0 ^    J     ' 

. [(-i)^c : ^ - 4([^c_,] + [Zk))/x • (-iF^c . 5'] 

.[5"-4a^c_,]+[^])/x.5'] 

since Nc = h(() + €f - 1, where a" stands for s2k-j{£
i

c
<~k'k 0 (£^c~V). 

Letting A; run from 0 to ^, we obtain the desired formula. □ 

Remark 5.6.     For the sake of convenience, we record here the following 
relation among the Chern classes and the Segre classes of a vector bundle: 

Sn = -Cl ' Sn-i - C2 ' 5n_2 - • • • - Cn 

with the convention that SQ = 1. We refer to [12] for details. 
In the next section, using Theorem 5.4 and Theorem 5.5, we shall com- 

pute [/i+(o0]d - [/MaO]d and [M+(«)]d~2 ' "+ - [A*-(«)]rf"2 ' "- explicitly 
when 0 < IQ < 2. In principle, Theorem 5.4 and Theorem 5.5 give formulas 
for these differences in terms of certain intersections in iJ^-fc x iJ^- How- 
ever, it is difficult to evaluate these intersection numbers in general. In the 
following, we shall compute the term 

k 
(5-7) Sj = £ ([Zk.k}/a + [Zk}/ay - a^-itf?"*'* © (£?-"?) 

k=0 

in the special cases when j = 2^ and 2^ — 1. We start with a simple lemma. 

Lemma 5.8. Let a,/3 G H2(X;Z). Then 

2k        (2^)'      /   2\k m/<*rk = ^ ■ (a2) 
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{[Zk}lafk-' ■ ([Zky0) = 2*-i.,r*.1/m_  W-    (ay-i.^.^) 
2fe • jfe! 

(2k - 2)! 
2k-l . (jfe _ 1)1 ^)*-1^ + 2fc-^("fc

2_'2)1-(^)*-2-(«^2- 

Proof. The first equality is well-known (see [29] for instance).   The other 
statements follow from the first one by considering 

([Zk]/a + [Zk}/pyk = ^ . ((a + (3)2)k, 

and formally equating the terms involving (2A; — 1) copies of a and one (3 or 
(2k — 2) copies of a and two copies of /?. □ 

The next result computes the term (5.7) when j = 2^. 

Proposition 5.9. Let ( define a waii of type (w,p)j and a E H2(X]Z). 
Then, 

S2k = E ([*«-*]/« + IZM")"* = nrr' ^k' 
k=o ^, 

Proof. This follows in a straightforward way from Lemma 5.8 (i): 

k 
Y,([Zk-k}/a + [Zk}/ar< 
k=0 

k 

i—n     v        ■' fc=0 

k 

^o  U/    L2«c-*-(«c-fc)!'1    J      J 
(2*)! 

2k-k\ (a2)" 

= Y,{k 
-^  \kj   2k -e^l 

(^.(a^ 
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□ 

To compute the term (5.7) when j = (2^ — 1), we study £_'/      and 

E^    ' , and evaluate their first Chern classes.   We begin with a general 
lemma. 

Lemma 5.10. Let Z, W be codimension 2 cycies in a smooth variety Y. 

(i) If Z C W, then Hom{IwJz) = Oy; 

(ii) If(Z — Zn W) is open and dense in Z, then Hom(Iw^Iz) = Iz; 

(iii) If Z and W are local complete intersections meeting properly, then 
there is an exact sequence: 

0 -> Ext1 (Iw, Iz) -> Ow ® det iV^ -> Ov^nz ® det Nw -> 0 

where iV^ is the normal bundle ofW in Y; 

(iv) Assume that ZHW is nowhere dense in W and that W is smooth at a 
generic point. Then, as a sheaf on W, Extl(Iw, Iz) is of rank 1; thus, 

co(Extl(Iw,Iz)) = c^Ext^IwJz)) = 0, c2(Ext1(Iw,Iz)) = -[JF]. 

Proof, (i) Applying the functor Hom(Iw, *) to the exact sequence 

0 -» Iz -> Oy -> Oz -> 0, 

we obtain 0 -> Hom(Iw^Iz) -> Hom^w^Oy) = Oy. Thus, Hom(Iw,Iz) 
= lu for some closed subscheme C/ of y. On the other hand, since Z C W, 

H0{Y',Hom{Iw,Iz)) = Hom(V,/z) ^ 0. 

Thus, [/ must be empty, and Hom(Iw^Iz) = Oy. 
(ii) As in the proof of (i), Hom^w, Iz) — lu for some closed subscheme 

UofY. Applying the functor IIom(',Iz) to the exact sequence 

0 -> Iw -> Oy -> Ow -> 0, 

we get 0 -> J^ -> Hom(Iw,Iz) = lu -> Extl(Ow,Iz)-   Thus, C/ C Z; 
moreover, since Ex&iPwJz) = 0 on (X - W), we have (Z - Z nW) = 
(u-unw). So 

(z - z n w) c c/ c z. 
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Since (Z — Z fl W) is open and dense in Z, it follows that U = Z. 
(iii) We begin with the local identification: let R be a regular local 

ring, and let Z and W be two codimension 2 local complete intersection 
subschemes of R meeting properly. Applying the functor HomR(',Iz) to 
the Koszul resolution of W 

0->R->R®R^Iw-^0 

gives Iz © Iz ->• Iz -> ExtlR(Iw,Iz) -> 0. It follows that ExtlR(Iw,Iz) = 
Izl{Iz'Iw)' Since Z and W are codimension 2 local complete intersections 
meeting properly, we have Iz • ijy = Iz H /VP- Thus, Extyjwilz) — 
Iz/(Iz n /H^)? 

and we can fit it into an exact sequence 

0 -* Ext^ilw, Iz) -+ R/Iw -> R/(Iw + Iz) -> 0. 

Here (Iw + ^z) corresponds to the intersection WHZ. The identification of 
Exiji(Iw)Iz) and Iz/(Iz Hiiv) is not canonical. Globally we must correct 
by detiViy. Thus globally we have an exact sequence: 

0 -> Ex^tfw, Iz) -► Ov^ ® det JV^ ->• Ov^nz ® det iVw -^ 0. 

(iv) It is clear that Exfitfwilz) is a sheaf supported on TV. To show 
that it has rank 1 as a sheaf on TV, it suffices to verify that it has rank 1 at a 
generic point w of TV. Since Z fl TV is nowhere dense in TV and TV is smooth 
at a generic point, we may assume that w £ Z and that w is a smooth point 
of TV. Then it follows from (iii) that Exfitfwilz) ls of rank 1 at w.        D 

Lemma 5.11. Let Horn = Hom(Izk,Izi _*)> -E^i1 = Ext1(Izk,Ize _fc), 
TTI and 7r2 be the projections from X x (H^k x Hk) to X and (H^-k x Hk) 
respectively. 

(i) There exist a row exact sequence and a column exact sequence: 

0 
i 

I 
0 -*    fl1^ (TjOjr(C) ® i^om)    -. ^<-*»fc -H. 7r2* (TT^XCC) ® S^1) ^ 0; 

i 

I 
0 
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(ii) ci {R1irto(**lOx(0®Hom)) = [Zk-k)/(S-Kx/2)+n2*[c3(0Zt(_k)]/2; 

(iii) ci (^(TTJOXCC) ® Sa;*1)) = [Zk]/(( - Kx/2) + 7r2,[c3(Extl))/2. 

Proof, (i) Note that the bundle £/    '   is defined as 

Extl2{irlOx{& -F)® IZh,*iOx(F) ® IZl<_k) = 

= Ea42{Izh,*iOx(Q®Izl(_h). 

Since B^^intOxiC) ® Horn) = 0, the row exact sequence follows from 
standard facts about relative Ext sheaves. To see the column exact sequence, 
we use Lemma 5.10 (ii) and apply the functor 7r2* to the exact sequence 

0 -> ^Ox(C) ® Izic-k -> <Ox(C) ^ <Ojf (0 ® o^.fc -> 0. 

(ii) Note that Horn = Izl _k and that Ri'K2^lOx{0 ® Jfom) = 0 for 
i = 0,2. By the Grothendieck-Riemann-Roch Theorem, we have 

- ch [R^^lOxiQ ® Horn)) 

= 7r2* (ch(7rJOx(0 ® ^c-J • *i Todd(Tx)) 

= 7r2* (TTJ cHOx(C)) - ch(I2lc_k) • Trt Todd(Tx)) . 

Now, the conclusion follows by comparing the degree 1 terms and by the 
fact that 

<%(°ztf-k) cHiZl<_k) = i - cHOZk_k) = i - [zk_k} ^— + 

+ (terms with degree > 4). 

(iii) We have #^2* (irf Ox (C) ® Ext1) = 0 for i = 1,2. By Lemma 5.10 
(iv), 

chiExt1) = [Zk] + C^        ' + (terms with degree > 4). 

Again, using the Grothendieck-Riemann-Roch Theorem, we obtain 

ch^WOxK)®^*1)) 
= Tra* (ch(7r1*Ox(C) ® Ext1) ■ TTJ Todd(rx)) 

= 7r2* (TTI ch(Ox(C)) • ch(£7xi1) • TTJ Todd(Tx)). 
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Then, our conclusion follows by comparing the degree 1 terms. □ 

Now, we can compute the term (5.7) for j = 2^ — 1. 

Proposition 5.12. Let a e H2(X; Z) and a = (£ • a)/2. Then, 

k 
S2k^ = ^ ([Zk.k}/a + [Zk]/a)*<-1 - *!(£*-*•* 0 (^-*)v) 

(-q.vpiL.^-Ka. 

Proof. By the symmetry between k and (^ — k), we see that 82^-1 is equal 
to 

£ ([iV*]/a + [^]/a)2V 

2 ' 

From Lemma 5.11, we conclude that ci(£,c    ' ) is equal to 

([^-d + [^])/(C - Kx/2) + ^       <c       ■ 

Since 51(^"fe'fc 0 (^"fc)v) = ci(^<-fc) - ci^"*'*), we see that 

where the cs's are cancelled out. Therefore, by Lemma 5.8, 

k 

(-2)i[Zk-k]+[Zk])/C 

821,-1 = 2 ([^c-*]/" + [^]/«)2'C"1 • (-2) • ([^-*]/C + lZk]/0 
k=Q 

= (-2) • E [(^ " ^ • ([^-d/a)^-2*-1 • m/a)" ■ [Zk-k}/C 
1—n     V / k=0 

2ic - 1 
+ I 2£_";_ ) • ([^-d/a)2^-2* • ([^J/a)2*"1 • [2fc]/C] 
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(2^)! . t^lc-l = (_4).^.(aT-.a 

D 

It is possible, but far more complicated, to compute (5.7) for j = 2£^ — 2. 
Next, we shall draw some consequences from our previous computations. 

Recall that qx denotes the intersection form of X, and that 

A2+AKX 

6(A) = (-1)—^ 

is the difference between the complex orientation and the standard orienta- 
tion on the instanton moduli space (see [6]). Adopting Kotschick's notation 
[17], we put 

Theorem 5.13 below has already been obtained by Kotschick and Morgan 
[18] for any smooth 4-manifold with &2~ = 1. 

Theorem 5.13. Let £ define a wall of type (w,p), and d = —p — 3. Then, 

[/.+(a)]d- [Ma)]d = 

- (-1)fc(C)+* * kl. {d- 2k)\ ■ ^ ■{a2)k    (mod ^^ 

for a G H2{X; Z), where o = (C ■ a)/2. Thus, 

^p(C_,C+) = 

Proof. By Theorem 5.4 and our notation (5.7), we have 

^+(a)]d-[M-(a)]d=    Y.     (   j^-l^^^'-o^'-Si    (mod ad-2^+2). 
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By Proposition 5.12, S^-i is divisible by a. Therefore, 

[/,+ («)]d - Ma)]d = (2^) • (-1)^^ • ad-^ ■ S2k    (mod a*'^). 

Now, the first conclusion follows from Proposition 5.9, and the second follows 
from the facts that 7±(ad) = J(A) • /z±(a)d and that 

*(A) • (-l)*(0-rtc = (-1)^^ . (-1)^^-4-^ = (-l)^c .e(C, A). 

We remark that the sign in ^p(C_,C+) is indeed a homotopy invariant. 
(Note that the sign in Theorem 6.1.1 in [18] is not correct.) 

The following is proved by using a similar method. 

Theorem 5.14. Let ( define a wali of type (w,p). For a E ^2(^5^)? let 
a = (C-aO/2. Tiien, modulo a^-2^, [/^(a)^-2 •i>+ - [/i_(a)]d-2 •!/_ is equai 
to 

I. f_i)MC)+^-i (d"2)! ad-2-2^ . fa2)^ 

Proof. By Theorem 5.5, [//+(a)]rf~2 • u+ — [/i_(a)]rf_2 • z/_ is equal to 

1      ^    /d-2\    (_1)M0+lc„1+iBad.2_iB^ 

j=2€c-l ^    J     ' 

modulo ad~2i(, where Sj is the notation introduced in (5.7). By Proposition 
5.12, 821,-1 is divisible by a; by Proposition 5.9, we have 

Therefore, modulo ad~2iz, [/i+(a)]d~2 • z/+ - [p-{a)]d~2 • P- is equal to 

4   l     j ^!.(d-2-2£c)! l    ;   " 

a 

6. The formulas when ^ = 0,1,2. 

In this section, we shall compute [/i_t-(a)]d — [/i_(a)]d and 

Ma)]d-2.^-Ma)]rf-2.I,_ 
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by assuming that £^ = 0,1,2. Our first result, Theorem 6.1 below, was first 
obtained by Mong and Kotschick [17]. 

Theorem 6.1. Let ( define a wall of type {w,p) with l^ — 0. Then, 

I^(a)]--Ma)]d = (-l)MC,-(^)d 

for a G H2{X\Z). In other words, «*p(C-,C+) = (-l)d • c(C, A) • (C/2)d. 

Proof. There are two cases: h(C) > 0 and h(C) = 0. In the first case when 
/i(C) > 0, the formula follows immediately from Theorem 5.4. In the second 
case when /&(£) = 0, we must have £2 = p and £ ■ Kx ^C2 + 2=p + 2 
by Corollary 2.7. Then 9Jt-|_ consists of 9Jl_ and an additional connected 
component Ejr = P~P~

3
.   We have constructed a universal sheaf U over 

X x £°'c
0: 

0 -* 7rJOx(A - F) ® TT^A -> ZY -^ TTJOX^) "> 0 

where F is the unique divisor satisfying (2F — A) = £, A is the line bundle 
corresponding to a hyperplane in JBJ> = P~^~3

5 and TTI and 7r2 are the 

natural projections of X x £? V. Thus for a G H2{X\ Z), we have 

/*+(<*) =: A*-(«) - 1' Pi(U)la = /i_(a) + aA 

where a = (£ • a)/2. Since /i(^) = 0, we conclude that 

□ 

The proof of the next result is similar to the proof of Theorem 6.1. 

Theorem 6.2. Let C, define a wail of type (w,p) with £^ = 0, let d = — p—3. 
Then, for a G JE^pf; Z), we have 

Ma)]*-2 • "f " [M-(«)]d-2 • *- = J ■ (-l)^-1 • (^) 
d-2 
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□ 
Next, we shall study the difference ^p(C_,C+) when £^ = 1. In this 

case, we have to know (5.7) for j = 2,1,0. In view of Propositions 5.9 and 
5.12, it suffices to calculate (5.7) for j — 0. The following lemma deals with 
this. 

Lemma 6.3. Let £ define a wall of type (w,p) with t^ = 1. Then 

SQ = "£ s2(£l-k>k © (£*'f
1-*)v) = (6C2 + 2K2

X). 

Proof. First, we compute the Chern classes of 6^ . Let notations be as in 
Lemma 5.11, and set £^ = 1 and k = 0 in Lemma 5.11. Then Ext1 = 0. 
Since (H^-k x Hk) = X, the codimension 2 cycle Zi is exactly the diagonal 
in X x {Htc-k xHk)=XxX. Thus, ^(TT^XCC) ® C?^(_J = Ox(0- By 

Lemma 5.11 (i), the bundle £/  sits in an exact sequence: 

0 -)■ Ox(C) -> 4'° - Rl*2* (*iox(0 ® ^f^07") "^ 0® /l(C) -»• 0- 

Thus, ci (5C
1'0) = C and cs^1'0) = 0. 

Next, we compute the Chern classes of £,' . Let £^ = 1 and A; = 1 in 
Lemma 5.11. Then, Ext1 = det(iV) where iV is the normal bundle of Zi in 
X x X. Thus, 

^2* {n*iOx(0 ® S^1) = OxiC - Kx). 

By Lemma 5.11 (i), the bundle £'?'1 sits in an exact sequence: 

Q^Q® MO _>. £0,i ^ 0x^ _ Kx>j _^ 0 

Thus, ci^J'1) = C-Kx andc2(5c
0'1) = 0. ReplacingC by -C gives ci^1) = 

-C - Kx and c2(£°,
c

1) = 0. It follows that c^1'0 © (f^H = X + Kx and 
that 

C2{£lfi ® {S^lY) = C-(C + Kx)=(2 + C-Kx. 

So we conclude that the Segre class S2(£/  © (£_V)V) is equal to 
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Replacing C by -C gives S2(^® (fj'1)7) = 3C2 -K'Kx+Kx- Therefore, 

k=0 

= s2(£l'0 © (StyV) + s2(£
0

c'
1 © (£l'c

0)v) 

= s2(£
1

c'
0 © (5!'^) + 52((^0,1)v © ££) 

= (3C2 + 3C-Kx + ^i) + (3C2-3C-^ + ^i) 
= 6^ + 2^. 

D 

Now we can compute the difference <^p(C_,C+) when £$ = 1. 

Theorem 6.4. Let C define a waii of type (u;,p) witi £^ — 1. Then, 

K(a)]d-[^_(a)]d = 

= (_i)MC)+i . |d(d _ j). ad-2 . a2 + (2|f2. + 2d + 6) • ad} 

for a 6 H2(X; Z), where a = (£ ■ Q:)/2. Jn other words, d^tP(C-,C+) is equal 
to 

(-l)d+1 ■ £(C, A) • ld(d - 1) • ( £ )       • gx + (2^| + 2d + 
d-2 

2. -©' 
Proof. From 5.4, 5.9, 5.12, and 6.3, we conclude that 

= (_i)MC)+i. d(d _ ^ . ad-2 . a2 + (.^MO+i. 8d. ad 

+ (_i)fc(0+i . ad . (6C2 + 2^1:) 

= (_i)MC)+i . |d(d _ JJ . ad-2 . a2 + ^2, + 2d + 6) • ad} 

For |jti+(a)].<i 2 ■ v+ — [ij,-(a)]d 2 • i/_, we have the following. 

□ 
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Theorem 6.5. Let £ define a wall of type {w,p) with H^ = 1, iet d = -p-3. 
For a E H2{X\ Z), let a = (C • a)/2. Tiien, [/i+(a)]d-2 • z/+ - [/x_(a)]rf-2 ■ i/_ 
is equai to 

I. (-l)MC) . J(d _ 2)(d - 3) • arf-4 • a2 + (2^ + 2d - 18) • a^"2] . 

Proo/. By Theorem 5.5, [/i+(a)]d 2 • z/+ - [^_(a)]d 2 • v- is equal to 

i-E(rf;2)-(-i),i(c)+i-«d-2-i-^ 
i=o 

1 

j=o ^   3   ' 

By Proposition 5.9, Proposition 5.12, and Lemma 6.3, we have 

52 = 2a2, Si = -8a, So = 6C2 + 2ir£. 

Therefore, we conclude that [/x+(a)]d~2 • 1/4. - [/i_(a)]d~2 • z/_ is equal to 

I. (-i)MO . J(rf _ 2)(d - 3) • ad-4 • a2 + (2^ + 2d - 18) ■ a^"2] . 

a 

In the rest of this section, we assume that £^ = 2. The following standard 
facts about double coverings can be found in [2, 10]. 

Lemma 6.6. Let (/> : Yi -» Y2 be a double covering between two smooth 
project!ve varieties with 0*0^ = CV2 ® L"1 where L is a iine bundle on Y2. 

(i) KY1 = <t>*(KY2 ® L) and L02 = C?y2(S) where B is the branch locus in 
Y2 and is the image of the fixed set of the involution L on Yi; 

(ii) If D is a divisor on Yi, then ^{Oy^D)) is a rank 2 bundle on Yz with 
ciOM^Vi (£>))) = ^D-L and 

C2(MOY1(D))) = I • [(^D)2 - MD2) - <f>*D • L] . 
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Next, we recall some standard facts about the Hilbert scheme if2 = 
Hilb2(X). Let AQ C X x X be the diagonal, and let L be the obvious 
involution on H2 = B1AO(^ 

X
 X), the blowup of X x X along AQ. Let 

E be the exceptional divisor of the blowup in fl^- Then, H2 = ^A and 
the branch locus lies under E. Let Z2 C X x H2 be the pullback of the 
codimension 2 cycle ^ C X x if2- Then, 2^ splits into a union of two 
cycles H12 and H13 in X x H2, which are the proper transforms in X x H2 
of the two morphisms of X x X into X x (X x X): the first maps the first 
factor in X x X diagonally into X x X which is the product of the first and 
second factors in X x (X x X), while the second maps the first factor in 
X x X diagonally into X x X which is the product of the first and third 
factors in X x (X x X). Thus each Hij is isomorphic to B1AO(^ X X), and 
the projection of each to H2 is an isomorphism. If a G H2(X; Z), then 

(6.7) f-Sy/a = a ® 1 + 1 ® a = a ® 1 + **(a ® 1) 

where a® 1 and 1 ® a are the pull-backs of a by the two projections of H2 to 
X. Fix x EX. Let Xx be the pull-back of X x x C X x X to ^2- Then, Xx 

is isomorphic to the blow-up of X at p with the exceptional divisor (XxnE)m, 
moreover, 

(6.8) [Z2]/X = XX + L*XX. 

It is known (see p. 685 in [9]) that Z2 is smooth. Let B be the branch locus 
of the natural double covering from Z2 to H2. Then, B ~ 2L for some divisor 
L on H2, and the pull-back of B C H2 to #2 is 2iS. Let i : i^ -► -X" x #2 
be the embedding, and TTI and 7r2 be the natural projections of X x H2 to 
X and #2 respectively. 

In the following, we compute the Chern and Segre classes of £>_ ' for 
k = 0,1,2. The method is to use Lemma 5.11 together with Lemma 6.6. 
We start with f?'0. 

Lemma 6.9. ca^'0) = <*(££,0) = 0, ci(^'0) = [.Zy/C - L, and 

C2(£c
2'0) = ^ [m/Q2-e-xx-[sy/c• L] 

where a; is any point on X, and Xc stands for [Z2]/x. 

Proof. Let notations be as in Lemma 5.11, and let ^ = 2 and A; = 0. Then, 
Ext1 = 0. By Lemma 5.11 (i), Es   sits in an exact sequence 

0 -+ (7r2 • t),^ • t)*Ox(C) -»• 5C
2'0 -> [<9ffa]® fc<« -)• 0. 
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Since fa • *)*fa • i)*Ox(0 has rank 2, ca^'0) = c4(£^0) = 0. By Lemma 
6.6 (ii), 

ci(£c
2'0) = fa • ij.fa • i)*C - i = [22]/C " L 

since (7r2 • i)*(7ri * ^)*C =:: [-^J/Ci moreover, we have 

c2(£c
2'0) = i [(fa. o.fa. i)*c)2 - fa • o.(fa • iTO2- 

-fa-*)*fa 'O'C-^l 
= I [a-zy/o2 - c2 • xx - [z2]/c • L] 

since fa • zMfa • iYO2 = C2 • (^2 • O.fa • t)*a; = C2 ■ ffl/x = C2 • Xx.   D 

The following follows from Lemma 6.9 and Remark 5.6. 

9 n Corollary 6.10. The Segre classes of the bundle £s   are given by 

s1(£
2

<'
0) = L-[Z2}/<; 

S2(£2
<>
0) = I [m/tf - 3[3i]/C • L + 2L2 + C2 • Xx] 

s3(£
2'0) = [[^2]/C]2 • L - 2[Z2)K ■L2 + L3-C2-Xx- [Z2]/C + C2 • Xx ■ L 

72,0x _  (C  ) ,.,2 

Here we have identified degree 4 classes with the corresponding integers. 

Proof. Since the computation is straightforward, we only calculate s^ES ). 
For simplicity, let c; denote the 2th Chern class ofEs . Note that C3 = C4 = 0 

by Lemma 6.9. Thus, 54{£^0) = cf - 3ciC2 + c^ by Remark 5.6. Therefore, 

MO = ([^i/c - L)4 - 3([3»]/C - i)2 4 [(^i/o2 - c2 • ^ 

-[^]/C • L] + J [([22]/C)2 - C2 • xx - [Z2]/C • L]s 

= L4-5--[Z2}/{-LS+7-.([Z2}/<;)2.L2 + lc2-Xx-L'> 

- Im/o* + \(C2)2 ■ xl+c2 • azy/o2 • x, 

since ([^j/C)3 ■ L = 0 = [ZTI/C ' L ■ Xx. Now, we need a claim. 
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Claim. Let a,(3 € H-xiX;!,). Then, we have the following: 

(i) [Z2]/a-[Z2]/P-Xx = a-P; 

(iii) Xx-L
2 = -1; 

(iv) L4 = 6x(Ox)-^|; 

(v) [Z2}/a-L3 = a-Kx; 

(vi) [Z2J/a-[i?2]//?-L2 = -2(a-/3). 

Proof. Let TT : H2 -> H2 = H2/1 be the quotient map. By (6.8), we have 

n*Xx = n*([Z2]/x) = [i2]/x = (Xx + t*Xx). 

(i) Recall from (6.7) that 7r*([,gy/a) = [^J/a = a®l + l®Q;. Thus, 

[Z2]/a ■ [Z2]/P ■ Xx = i • ^([^/a) • 7r*([S2]//3) • TT^X, 

= --(a®l + l®o)-(/3®l + l®/3)-(Xx + t*^) 

(ii) Let xi € X be a point different from x. Then, 

Xx = Xx- XXl = - • vr*^) • Tr*(XXl) 

= y ■ \XX + i Xx) • (XXl + t XXl) 

= 1. 

(iii) Since B ~ 2L and 7r*(B) = 2E, 7r*(L) ~ J5. Thus, 

Xr • L  = - • (Xx + o*Xx) • E = Xx • E  = (Xx ■ E)  = —1. 

(iv) Since E = P(JVV) where N is the normal bundle of AQ in X x X, 
—E\E = £ is the tautological line bundle on E. Since N = TA0, 

i2 = -WEYaiN) ■ £ - c2(iV) = (n\EyKAo ■ £ + (K2
X - 12x(Ox))- 
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It follows that £3 = (2^2. _ 12x(Ox)) • £• Therefore, 

L4 = l-E* = -±.e = 6X(Ox)-K%. 

(v) Note that (a ® 1)|E = (7r|E)*Q! since AQ = X. Thus, 

[^2]/a-L3 = l-(a®l + l®a)-E3 = {a®l)-E3 = (ir\E)*a-£2 = a-Kx. 

(vi) Again since {a ®\)\E — {Ti\E)*a. = (1 <g> Q!)|E, we have 

[Z2]la ■ [Z2}IP ■L2 = \-{a®l + l®a)-{p®l + \®p)-E2 

Zi 

= -2 • {'K\E)*a ■ (40)*/? • ^ 

= -2(a-/3). 

We continue the calculation of 54(^' ). By Lemma 5.8 (i), ([-S^J/C)4 = 
3(C2)2. It follows from the above Claim with a straightforward computation 
that 

S4(£c
2'0) = ^ - 5C2 - ^C • KX + (6X(Ox) - Kl). 

U 

Next, we compute the Chern and Segre classes of £/   on H2- 

Lemma 6.11. c^S^) = C4(£°'2) - 0, ci(£c
0'2) - [2:2]/(C - Kx) + L, and 

C2(5C
0'2) = l[L- [Z2]/(C - Kx) + m/tt - Kx)}2 - (C - Kx)2 ■ Xx] . 

Proof. Let £^ = 2 and k = 2 in Lemma 5.11. By Lemma 6.6 (i), 

(detT^)"1 = 0Z2(KZ2) = (-K2 ■ iyOH2(KH2 + L). 

Let Nz2 be the normal bundle of Z2 in X x #2- Since £2 is smooth and has 
codimension 2 in X x H2, Ext1 = Extl(Iz2,OxxH2) 1S isomorphic to 

det JV^ = i* detTxxH2 ® (detT^)"1 = Oz2((7r2 • 2)*^ - (TTI • i)*Kx). 

By Lemma 5.11 (i), £+'   sits in an exact sequence 

0 -»• [OH2]® 
fc(C) -»" ^c'2 -»• (^2 • i)*022((7r2 • i)U + (TTX • t)*(C - KX)) -»• 0. 
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Note that (712 • i)*(7r2 ■ i)*L = 2L. Thus, by Lemma 6.6 (ii), 

ci(£j'2) = (7r2 • t)* [fa • i)*L + (TTX • i)*(C - Kx)] -L = [Z2]/({ - Kx) + L. 

Also, Lemma 6.6 (ii) together with a straightforward calculation gives 

C2(£c
0'2) = \[L- [-zy/K - iSTx) + [[3i]/(C - ^x)]2 - (C - ^)2 • x,]' 

where we have used the projection formula 

(7r2 • tMfo ■ i)*L • (Tn . t)*(C - KX)] = M*2 ■ 0«(^i • 0*(C - KX) 

and the fact that fa • «)*(7r2 • i)*jC2 = 2L2. D 

The following follows from Lemma 6.11 and Remark 5.6. 

n 1 Corollary 6.12. The Segre classes of £+'   are given by 

81(q*) = [Z2]/(Kx-C)-L 

+3[S2]/(C -Kx)'L + 2L2 + (C - KX)2 ■ Xx] 

S3(£c
0'2) = -m/iC - Kx)? ■ L - 2[Z2]/(C - KX) -tf-L* 

-((-Kx)2-Xx-[Z2]/((;-Kx)-(t-Kx)2-Xx-L 

s4{£(  ) = 2 ^   x ~^   ~ 

-^(Kx-0-Kx + mOx)-K2
x). 

Proof. The calculation of 54 (£^ ) is similar to that of 34 (^,0) in Corollary 
6.10. □ 

Note that 54 (£S ) may be obtained from 54 (£^ ) by replacing £ by 
Kx — C and indeed this holds more generally for Si when we add the sign 
i-iy. 

Now we compute the Chern and Segre classes of £s   on X x X. 

Lemma 6.13. Let T\ and T2 be the two natural projections ofX xX to X, 
let AQ be the diagonal in X x X, and let j : AQ —> X x X be the inclusion. 
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Then 

C2(5C
1
'
1
) = T1*C-T2*(C-^) + AO 

cs&l'1) = TK • Ao - T2*(C - KX) ■ Ao - j*KAo 

Proof. Let ^ = 2 and k = 1 in Lemma 5.11. Recall that TTI and 7r2 are the 
natural projections of X x (X x X) to X and (X x X) respectively. 

Claim 1. 7r2* (7rJOx(C) ® £7^1) = rfOxiC - Kx) ® /AO- 

Proo/. Let A12 be the diagonal in X x X which is formed by the first and 
second factors in X x (X x X), and let A13 be the diagonal in X x X which 
is formed by the first and third factors in X x (X x X). Then, A12 x X and 
A13 x X are smooth codimension 2 subvarieties in X x (X x X). Here it is 
understood that the factor X in A13 x X is embedded as the second factor 
in X x (X x X). Moreover, A12 x X and A13 x X intersect properly along 
the diagonal A123 in X x X x X. Thus, from Lemma 5.10 (iii), we conclude 
that 

Ext1 =Ext1(IAl3XxjA12xx) = I®detN 

where N is the normal bundle A13 x X in X x (X x X), and / is the ideal 
sheaf of A123 in A13 x X. Now, the restriction of 7T2 to A13 x X gives 
an isomorphism from A13 x X to X x X. Via this isomorphism, A123 in 
A13 x X is identified with the diagonal AQ in X x X, det N is identified with 
T2 (—Kx), and the restriction 7r*C?x(C)l(^i3 x X) is identified with r^(C)- 
Therefore, 

7r2* {7rtOx(0®Exti) s TTS* (nlOxiQ ® /® det JV) = ^^(C-^A:)®^- 
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□ 

Note that ^(^(^(C) ® OAI2XX) = rfCC).  Thus by Lemma 5.11 (i) 
and Claim 1, we have a row exact sequence and a column exact sequence 
(6.14) 

0 

I 
rf(C) 

I 
0 ->   R1^* (*tOx(0 ® ffom)   -> f^'1 -»• r2*C»x(C - i^x) ® IA0 -> 0. 

I 
[C?xxx]® fc<« 

4 
0 

In the next claim, we compute the Chern classes of JA0. Clearly, 

COUAO) = 1- 

Claim 2. CI(/A0)  = 0, C2(/AO) = Ao, C3(/A0)  =  -j*KAo, C4(IA0)  = 

Proof. Note that ToddiN^)-1 = 1 + KAo/2 + {Klji - X(OAO))- By a 
formula on p.288 of [12] (a special case of the Grothendieck-Riemann-Roch 
Theorem), 

ch(j!Oao) =j,(TodHNAo)-
l-&(0A,))=j,(Todd(NAa)-

1) 

= A„ + ^ + J4L-*(Oao)V 

Since ch.(j\OAo) is just equal to ch(j*OAo), we obtain 

ch(/Ao) = ch((!?Xxx)-chO;CAo) = i-Ao-^^-i* I % - X(OA0)) . 

Prom this, the Chern classes of IAQ follows immediately. In particular, 

C4(/AO) = — + 3* I —g"2- - 6X(OAO) I = -^ 
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since AQ
2
 = C2(Tx) = 12x(0x) - K2

X (see the Example 8.1.12 in [12]).    □ 

Now the calculation of the Chern classes of £s   follows from (6.14) and 
Claim 2. In particular, 

C4(£C
M) = -rft • r2*(C - Kx) • AQ - rfC ■ i*^Ao + T2*(C - i^x)2 • Ao 

+ 2r2*(C-^).i^Ao + ^=:-So 

since rfC • r2*(C - Ifx) • Ao = C ■ (C " Kx) and rfC ■ J^Ao = C ■ ^x-        □ 

The next result follows immediately from Lemma 6.13 and Remark 5.6. 

Corollary 6.15. Let notations be the same as in Lemma 6.13. Then 

*2(el'1) = TfC2 + rfC • r2*(C - KX) + T2*(C - KX)2 - A0 

's^c1,1) = -rfC2 • T2*(C - KX) - rlC ■ T2*(C - Kx)2 

+ TfC ■ Ao + 3T2*(C - Kx) • Ao + i^Ao 

S4(^1•1) = (12C • Kx - 12C2 - 3K2x). 

D 

We can now work out (5.7) explicitly for £^ =2 and j = 2,1,0.   For 
simplicity, let 

(6.16) 5, = ^ 5i>* = 5]([^-*]/a + [ZJfe]/a)^.«4-i(£c
2-Me(^f-T). 

Lemma 6.17. 52 = 64a2 + (12C2 + 4^ - 20)a2 where a = (C ■ a)/2. 

Proo/.      Note that  Si(£^ k)   (respectively,  5^)  can be obtained from 

Si{£^2~k) (respectively, {-l)j • Sj^-k) by replacing C by -C- Also, 52,2 is 
equal to 

([22]/a)2 • 82{£°* 0 (5!'c
0)v) = 

= ([Z2}/a)2 ■ [52(£°'2) - s1(€l'2) • Sl(£!'c
0) + *2(«!?)] • 
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Therefore, by Corollary 6.10 and Corollary 6.12, we obtain 

#2,2 + #2,0 = 32a2 + (6C2 + 2K2
X - 12)a2 + 2(a • K*)2- 

Let TI and T2 be the projections of X x X to X. Then, by Corollary 6.15, 

^2,1 = (rfa + r2*a)2 • ss^1'1 0 (5l'c
1)v) 

= Ka + r2*a)2 • [s^1'1) - sx^1'1) • sx^1) + s^1)] 

= 32a2 + (6C2 + 2KJC - 8)a2 - 2(a • Kx)2- 

It follows that 52 = (52,2 + Skjo) + 82,1 = 64a2 + (12C2 + 4^ - 20)a2.   D 

Next, adopting the same method as in the proof of Lemma 6.17, we 
compute the values of Si and So in the next two lemmas respectively. 

Lemma 6.18. Si = -(48<2 + 16^ - 120)o where a = (C • a)/2. 

Proof. In view of (6.16), we have to compute 51,2,51,1, and 5i,o. Note that 
5i,o can be obtained from —51,2 by replacing £ by — £• Using Corollary 6.10 
and Corollary 6.12, we see that (51,2 + 5i,o) = -(24C2 + SK^ - 72)a - 6(C • 
Kx){a ■ Kx)- Let n and T2 be the projections of X x X to X. Then, by 
Corollary 6.15, 

51,1 = Ka + T2*a) • sstfl'1 ® V-l^ 

= -(24C2 + 8K2
X - 48)a + 6(C ■ Kx)(a ■ Kx). 

It follows that Si = (5i,2 + 5i,o) + Si,i = -(48C2 + 16X1- - 120)o. □ 

Lemma 6.19. SQ = 18(C2)2 + (121^ - 105)C2 + [2(.K£)2 - 50K| + 96]. 

Proof. We need to compute 5o,2,5o,i, and So,o. Again, So,o can be obtained 
from So,2 by replacing ^ by —£. Using Corollary 6.10 and Corollary 6.12, 
we see that 

(50,2 + So,o) = 9(C2)2 + (6K£ - 63)C2 + [(K2
X)

2 - MK2
X + 60]. 

By Corollary 6.15, 5o,i = 9(C2)2 + (6K| - 42)C2 + [{K^)2 - 1K2
X + 36]. 

Therefore, 

So = (So,2 + So,o) + So,i = 18(C2)2 + (12K|:-105)C2 + [2(ii:l)2-50if|+96]. 
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□ 
Now we can calculate the difference ^p(C_,C+) when £$ = 2. 

Theorem 6.20. Let C define a wall of type (w,p) with ^ = 2. Then 

[/H(a)]d - ^(a)]d = (-l)fc(0 • {go • arf + Pi ■ a^"2 • a2 + 52 • a""4 • (a2)2} 

for a 6 H2(X; Z), where a stands for (£ • a)/2 and 

52 = 2!-(d-4)! 

5i =11 .(4K^+4d + 8) 

po = 2d2 + 4d ■ X^- + 2(K]C)
2 + 13d + 10i^ + 21. 

In other words, the difference S^p(C-,C+) is equal to 

9i 

Proof. In view of Theorem 5.4 and the notation (6.16), we have 

[/M*)]" - [Ma)]d = E  (fj ■ (-l)h^+j ■ ad-i ■ Sj. 
3=0  VJy 

Now, 5^4 and S3 are given by Proposition 5.9 and Proposition 5.12 respec- 
tively; 82,81, and So are computed in the previous three lemmas. So it 
follows that the coefficient of (—l)h(Q ■ ad~4 ■ {a2)2 is equal to 

d! 
52_2!-(d-4)!' 

Similarly, also keeping in mind that C2 = (p + 8) = (5 — d), we have 

9i = (f) • (12C2 + 414 + 16d - 52) = Q • {AK2
X + 4d + 8) 

gQ = 64 • ( d ) + (48C2 + IGi^i - 120) • d + 

+ [18(C2)2 + 12C2 • K% + 2(K]()
2 - 105C2 - 50K% + 96] 

= 2d2 +Ad-K2
x + 2{K2

X)
2 + 13d + IM\ + 21. 
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Corollary 6.21. Let ( define a wall of type (w,p) with £^ < 2. Then, the 
difference S^p(C-^C+) of Donaldson polynomial invariants is a polynomial 
in ( and qx with coefficients involving only (?> homotopy invariants of X, 
and universal constants. 

Proof. Follows from Theorems 6.1, 6.4, and 6.20. □ 

Finally, we compute the difference [fj,+ (a)]d~2 • v+ — [/x_(a)]d_2 • i/_ for 
^ = 2. 

Theorem 6.22. Let £ define a wall of type (w,p) with £^ = 2; and let 
d = -p - 3. Tien, [/i+(cx)]d-2 • v+ - [/i_(a)]d-2 • ^_ is equal to 

1 • (-l),l(C)+1 • {po • ad-* + 5i • ad-± • a2 + 52 • a^6 • (a2)2} 

for a G H2{X\ Z), where a stands for (£ • a)/2 and 

(d-2)! 
2!-(d-6)! 52 = 

5!=^   2   J-(4^+4^-40) 

£o = 2d2 + 4d ■ K2
X + 2(is:i)2 - 35d - 38^1 - 99 

Proof. By Theorem 5.5, [/i+(Q!)]d 2 ■ v+ — [//_(Q;)]d 2 • V- is equal to 

j=o \   3    ' J=Q \   3   / 

where for simplicity we have defined Tj = Y2k=oTj,k as 

J2({Z2_k}/a + [Zk]/ay ■ ([Z2_k} + [Zk})/x ■ s2-j(£
2

c-
k>k © (f *f fe)v). 

fc=0 

Next, we compute TQ. Using Corollary 6.10 and Corollary 6.12, we obtain 

To,o = Xx-s2(Sl
0®(£0_:l)v) 

= Xx ■ [s2(e
2

c>
0) - sriE2'0) ■ s^) + S2(£!'c

2)] 

= (3C2 + 3C • Kx + K2
X - 3). 
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Note that TQ^ can be obtained from TQ^ by replacing £ by — (. Thus, 

To,2 - (3C2 -K-KX + K2
X- 3). 

Similarly, using Corollary 6.15, we get TQ,! = (6C2 + 2^ - 4). Therefore, 

2 

To = 5>o,fc = (12C2 + 4tf| - 10). 
fe=:0 

By similar but much simpler arguments, we conclude that Ti = —16a and 
Ta = 4a2. 

Prom (5.9), (5.12), (6.17), (6.18), and (6.19), we have 

S4 = 12(a2)2, 

53 = -48a • a2, 

52 = 64a2 + (12C2 + UQ - 20)a2, 

Si = -(48C2 + 16^1: - 120)0, 

5o = 18(C2)2 + (12i4 - 105)C2 + [2(^1)2 - SOK^c + 96]. 

Putting all these together, we see that [/x+(a)]d_2 • v+ — [fj,-(a)]d~2 ■ v- is 
equal to 

\ • (-l)M0+i • {p0 • ad-2 + & ■ a*-* ■ a2 + ~g2 ■ a*'* ■ (a2)2} 

where go,gi, and g2 are as defined in the statement of Theorem 6.22 above. 
D 
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Added in the proof. Recently, Ellingsrud and Gottsche obtained detailed in- 
formation on the transition formula, and showed that there is an algorithm that 
computes the SU(2) and 50(3) polynomial invariants for the projective plane and 
other rational surfaces X as long as the corresponding chamber contains an ample 
divisor H with H • Kx < 0. 


