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1. Introduction.

Given a vector bundle V' on a polarized smooth projective variety, or
more generally on a compact Kahler manifold, there is a natural filtration
of V, called the Harder-Narasimhan filtration, such that the subsequent
quotients are semi-stable sheaves satisfying a numerical condition. This
filtration was introduced in [HN]. Here we are concerned with the Harder-
Narasimhan filtration of the tangent bundle.

If the canonical bundle is ample is then from a Theorem of Yau it follows
that the tangent bundle is semi-stable with respect to the polarization K.
In general, of course, the tangent bundle is not semi-stable. In Theorem 2.2
we give a criterion for the length of the Harder-Narasimhan filtration of the
tangent bundle to be at most two.

There is a well-known question of whether any holomorphic bundle ad-
mitting a holomorphic connection actually admits a flat connection. In The-
orem 3.1 we produce a class of compact Kahler manifolds with the property
that any holomorphic bundle on them with a holomorphic connection ad-
mits a flat connection. The proofs of Theorem 2.2 and Theorem 3.1 are
quite similar in spirit and involve, among other things, a systematic use of
the Leibniz identity.

2. A criterion for bounding the length.
Let X be an irreducible smooth projective variety over C of dimension

d. Fix an ample line bundle L on X.
For an Ox coherent sheaf F' on X, the degree of X is defined by

deg(F) = /X e1(F) Uen(L)*".
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For a torsion-free coherent sheaf F', the quotient deg(F)/rank(F) is called
the slope of F' and is denoted by u(F).

Definition 2.1. A torsion-free Ox coherent sheaf V on X is called semi-
stable (resp. stable) if for any proper sub-sheaf 0 # F' C V with V/F being
torsion-free,

p(F) < p(V) (resp. p(F) < u(V)).

We will use the following convention. By a sub-sheaf of a torsion-free Ox
coherent sheaf we will always mean a Ox coherent proper nonzero sub-sheaf
such that the quotient is torsion-free. And by a quotient sheaf will mean a
quotient by a sub-sheaf of the above type.

For any torsion-free coherent sheaf V' there is a unique filtration by sub-
sheaves, called the Harder-Narasimhan filtration [Ko, Ch. V, Theorem 7.15]

0Oo=VVcWcWwvwc...CWVi1CW=YV

such that V;/V;_; is the maximal semi-stable sub-sheaf of V/V;_;. The
integer k will be called the length of the filtration. We will denote the
mumber p(Vi/Vi_1), 1 < <k, by (V).

Let To C Ty C T C ... C T; = T be the Harder-Narasimhan filtration
of the tangent bundle T' of X.

Theorem 2.2. If the following three conditions are satisfied

(i) the first two sub-sheaves T} and T are locally free;

(ii) p1(T) = p(T1) = 0;

(iii) The rank of the Neron-Severi group of X is one, i.e.
HY X)NH*(X,Q) =@

then either Ty = T (i.e. T is semi-stable) or Ty = T, i.e. T is an extension
of a semi-stable bundle by a semi-stable bundle with higher p.

Proof. For two local sections s and ¢ of T', let [s, t] denote their Lie bracket.
We want to deduce from the condition (ii) above that T; is closed under
Lie bracket. We will use the notation 7; to denote the vector bundle given
by the sheaf T}; similarly for T5. Consider the following homomorphism of
sheaves

(2.3) T, ®cT — T/T;
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which assigns to s ® ¢ the image of [s,¢] in T'/T;. The Leibniz formula for
Lie bracket, namely

[fs,t] = f.s,t]— <df,t>.s

and the identity [X,Y] = —[Y, X] together imply that the homomorphism
in (2.3) is Ox-linear. In other words, it induces a homomorphism of bundles

Y:T1ieTh — T/Th

The tensor product of two semi-stable sheaves is known to be semi-stable.
Thus, since 7; is semi-stable, the tensor product 7; ® 77 is also semi-stable.
So, the i of any quotient sheaf of 7;®7; is greater than or equal to u(7:®71).
But

p(h®T) = 2.4(T1) 2 p(h)

The last inequality follows from the fact that x(77) > 0. Since the p of any
sub-sheaf of T'/T; is less that or equal to p2(T") and pe(T) < p1(T), consider-
ing the image of the homomorphism 1 we conclude that the homomorphism
1) must be zero. So T} is closed under Lie bracket. In other words, 77 is a
holomorphic foliation on X. Now from the Theorem 3.2 and the subsequent
identity (3.6) of [L] it follows that, for any integer a > dimc(7'/77), the
characteristic class (c1(T/71))* = 0. (Extend the partial connection along
the foliation 77 given by the Lie-bracket on the normal bundle, T'/7;, to
a GL(q,C) connection (¢ = dim¢(T'/71)) on T/T1. Use this connection to
calculate c;(T'/71)® by Chern-Weil theory (as done in Theorem 3.2 of [L]).
The identity (3.6) in [L] would imply that the Chern form for (¢;(T/71))%,
a > dimg(T'/T1), vanishes identically.)

Since H1(X) N H%(X,Q) = Q, the class ¢;(T/71) is a scalar multiple
of the polarization class. So ¢;(T'/71)® = 0 implies that ¢;(7'/71) = 0. Since
T, /T is the maximal semi-stable sub-sheaf of T'/7;, if T3 # T then

(24) p2(T) > 0, and deg(T/T2) = deg(T/T1) — deg(T2/T1) < O

We want to show that 75 in also closed under the Lie-bracket operation.
This is obvious if 7o = T'; assume that 75 # T. Using the homomorphism
of sheaves, 9 : T, ®c Ty — T'/T5, given by the Lie bracket, and the Leibniz
rule together, we have a homomorphism of bundles ¢ : T, ® T, — T/ T, as
before.

Since 0 — 7; — 75 is the Harder-Narasimhan filtration of the bundle
T2, the p of any quotient of 72 ® T3 is greater than or equal to 2.u2(T). The
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p of any sub-sheaf of T'//T; is less that or equal to u3(T"), and from the
properties of the Harder-Narasimhan filtration we have

p3(T) < p2(T)

Since pa(T) > 0 (see (2.4)), we have 2.u3(T") > po(T). Thus from the
above observations we get that the homomorphism 1 must be zero. In other
words, T is closed under Lie-bracket. But, as earlier, that would imply that
deg(T'/T») = 0, which in turn would contradict (2.4). This completes the
proof. a

Remark 2.5. (i) The condition (ii) is satisfied, for example when deg(T") >
0.

(i) If X is a smooth projective variety with ample canonical bundle then
X admits a Kahler-Einstein metric [Y]. This implies that T' is semi-stable
with respect to the polarization K.

If the canonical bundle of X is negative then there is an obstruction,
known as the Futaki invariant, for the existence of Kéahler-Einstein metric
on X [F].

3. Bundles with holomorphic connections.

In this section we assume X to be a compact K&hler manifold equipped
with a Kahler form w. As before, let

Thchh cTy Cc...CcT) =T

be the Harder-Narasimhan filtration of the holomorphic tangent bundle of
X.

We will use the following convention. For an holomorphic bundle V
on X, Q¢(V) will denote the holomorphic bundle V ® Q; and I'*V(X,V)
will denote the space of all C™ (p, q)-forms with values in V. We will not
distinguish between a holomorphic bundle and the locally free Ox-coherent
sheaf corresponding to it.

A holomorphic structure on a C* bundle V on X is given by a first
order operator Oy : I'(X, V) — I'%!(X, V) satisfying the Leibniz condition
and the integrability condition 5%/ = 0. A holomorphic connection on a
holomorphic bundle V is a first order differential operator

o :V — QlV)
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satisfying the Leibniz condition 8(f.s) = d(f).s + fd(s), where f is a holo-
morphic function and s is a (local) holomorphic section of V. It is easy to
check that 0 being a holomorphic connection is equivalent to the condition
that the operator 0+ Oy is a connection with a holomorphic End(V') valued
2-form as curvature.

Example 1. Let V be a flat connection on a C* bundle on X. Then the
operator V%!, the (0,1) part of V, gives a holomorphic structure on V, and
V10 gives a holomorphic connection on the holomorphic bundle.

From the Chern-Weil construction of characteristic classes it is obvious
that all the Chern classes of a bundle with holomorphic connection vanish.

A holomorphic vector bundle V is said to admit a flat connection if there
is a flat connection V on V such that V%! = gy

Theorem 3.1. Let the Kahler manifold X satisfy the condition that p;(T)
> 0. Let V be a holomorphic bundle on X admitting a holomorphic connec-
tion. Then V admits a flat connection; also, the bundle V' is a direct sum
of stable bundles of slope zero.

Proof. Let Vy C V; C V5 C ... CV, =T be the Harder-Narasimhan filtra-
tion of the bundle V. Let 0 be a holomorphic connection on V. Note that
using the duality between T and Q!, 9 induces a C-linear homomorphism
from the tensor product (over C) of the sheaves, T'® V, to the sheaf V.
Consider the following map of sheaves T®cV; — V/V; given by mapping
0 ® s to the projection of dgs on V/V;j. Let Ox denote the sheaf of germs of
holomorphic functions on X. The Leibniz condition implies that the above
map is Ox linear, and hence it induces a homomorphism

(3.2) ¥ TR®oxVi — V/Vi

Since V1 is semi-stable and p;(T") > 0, the p of any quotient sheaf of T®o, V1
is at least u(V4). This implies that the homomorphism 1 is zero.

Since 1 = 0, the holomorphic connection d induces a holomorphic con-
nection on Vi. Any Ox coherent sheaf with a holomorphic connection is
locally free [B, p. 211, Proposition 1.7]. (Though this proposition in [B] is
stated for integrable connections (D-modules), the proof uses only the Leib-
niz rule (in particular, does not use vanishing of curvature). The Leibniz
rule is valid for a holomorphic connection.)
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Since the bundle V; admits a holomorphic connection, ¢;(V;) = 0, and
hence (V1) = 0. Since (V) = 0 = u(V1), we have V = V;. This implies
that V is semi-stable.

If V is actually a stable bundle then from [UY] it follows that V' admits
a Hermitian-Yang-Mills connection; this metric is determined up-to a global
scalar. We noted prior to Theorem 3.1 that the given condition that V'
admits a holomorphic connection implies that all the Chern classes of V'
vanish. This implies that the Hermitian-Yang-Mills connection is actually a
flat unitary connection.

If V is not stable then there is a filtration [K, Ch. V, §7, Theorem 7.18]

(3.3) 0=WyacW CcWy C...C Wy CWp =V

such that W;/W;_, is a stable sheaf with u(W;/W;_1) = u(V).

In view of the above mentioned result, [UY], that any stable vector bun-
dle with vanishing Chern classes admits an unitary flat connection, Theorem
3.1 is implied by the following proposition.

Proposition 3.4. Each sub-sheaf W;, 1 < 1 < m, in (3.3) is of the form
W1 ® U;, where U; is a stable bundle with vanishing Chern classes.

Proof. First we want to show that W is a sub-bundle of V. In order to prove
that we use the same method that has repeated been used in this paper :
show that the holomorphic connection d induces a holomorphic connection
on Wi, and then using [B, p. 211, Proposition 1.7] (as used earlier in proving
that V is semi-stable) we may conclude that W; is locally free; we then
show that V/W; has a quotient connection, and hence, using [B, p. 211,
Proposition 1.7], V/Wj is locally free. So W; must be a sub-bundle of V.
We give the details of the argument below.

As in (3.2), the holomorphic connection d induces a homomorphism of
bundles ¢ : T ® Wy, — V/Wj. Since W is semi-stable with u(W;) = 0,
and u(T) > 0, the p of any quotient sheaf of T'® W) is strictly positive.
This implies that the homomorphism ¢ is zero. So the connection 0 induces
a holomorphic connection on W;. Let v : V — V/W; denote the quotient
projection. For a local section s of V/Wj, consider s — v(9(5)), where §
is a lift of s to a local section of V. Since the sheaf W; is closed under the
connection 0, the section v(9(5)) does not depend upon the choice of the
lift 5 of s. Using this it is easy to see that the map s — v(9(3)) defines a
holomorphic connection on V/Wj. So the sheaf V/W; is locally free. This
implies that Wj is a sub-bundle of V. As we already noted that the Chern
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classes of a bundle admitting a holomorphic connection vanish, since W;
admits a holomorphic connection, all the Chern classes of W; vanish. Since
W1 is a stable bundle with vanishing Chern classes, from the Theorem of
Uhlenbeck-Yau it admits a flat unitary structure.

Actually the same argument as above implies that any W;, 0 < i < m,
is a sub-bundle of V. To see this, first check that for any W;, the analogue
of ¢ is zero. So the connection 0 induces a connection on W;. Then the rest
of the argument is identical.

Now we want to show that Wy = W1 @ Uz, where U is a stable bundle
with the property that all its Chern classes vanish. Since all the Chern
classes of both W; and Wy vanish, from the general properties of Chern
classes it follows that the Chern classes of Wy /W; vanish. So, for a bundle
U, satisfying the condition that Wo = W; @ U, all the Chern classes of U,
must vanish.

For notational simplicity we will denote Wy/W; by W. Note that since
both W; and W5 are sub-bundles of V', the sheaf W is locally free. Let
c € HY(X,W*® W) be the element corresponding to the extension, namely
Wa, of W by Wy. Let COL(X, W* @ W) c T'O1(X, W* @ W) be the space
of all d-closed (0,1)-forms with values in W* ® W;. Let p : CONX, W* ®
W1) — HY(X,W* ® W;) denote the surjection given by the Dolbeault
resolution of W* ® W;. Define I := p~1(c).

Since W and W; are stable bundles with vanishing Chern classes, they
admit flat unitary connections, namely the Hermitian-Yang-Mills connec-
tions. The Hermitian metrics on W and and W; induce a Hermitian struc-
ture on W* ® W;. Let

H c COYX,W* @ W)

be the subspace consisting of all harmonic forms. The map p identifies H
with H'(X,W* ® W;). Consider ¢ := I N H, the harmonic representative of
the class c. Define the adjoint ¢* of ¢ as follows : Using the unitary structures
on W and Wy, for a (local) C* section s of W* ® W7 = Hom(W, W;) we
may consider its adjoint, s*, which is a C* section of Hom (W7, W), defined
by < s*(a),b >=< a,s(b) >, where a is a local section of W; and b is a
local section of W. Now, if in some local holomorphic co-ordinate chart
(21,... ,2q) on X the section é is equal to ), 6x ® dZ; then

d
(3.5) & =) ;i ®dz
k=1
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Since Hodge identities hold for Hermitian flat connections, the harmonicity
of the section ¢ implies that é* is a holomorphic section of Q! @ Hom(Wy, W).
In other words,

& € HY%X,Hom(T @ Wi, W))

But, since p;(T") > 0, there is no non-zero homomorphism from T ® W; to
W (both W and W; are stable bundles with slope zero). So & = 0, which
in turn implies that ¢ = 0. Since the extension class vanishes, the exact
sequence

0O — W) —m Wy — W — 0

splits. In other words, W5 is isomorphic to W7 & W.
Now we will use induction to complete the proof of the Proposition 3.4.
Assume that W; = W,_1 ® U; for all 1 <1 < j < m (as in the statement
of the proposition). We want to show that W;;; = W, @ Uj+1, where Uj+1
is a stable bundle with vanishing Chern classes. From the assumption,

i
(3.6) Wi = > Uk
k=1

where each Uy, is a stable bundle with vanishing Chern classes. Let W denote
the quotient W;41/W;. Since both W;;; and W; are sub-bundles of V, the
sheaf W is locally free. Since the Chern classes of both W;, and W; vanish
(they admit holomorphic connections induced by 3), the Chern classes of
W must also vanish. Corresponding to the short exact sequence of bundles

0 — W, — Wj+1 — W = Wj+1/Wj — 0

we have the extension class ¢ € H'(X,Hom(W,W;)). Using the decompo-
sition (3.6) we have
J
£ =) &
k=1

where ¢ € H'(X,Hom(W,Ug)). For any 1 < k < j, both W and Uy
are stable bundles with vanishing Chern classes. Recall the argument for
proving the extension class ¢ corresponding to W, to be zero. Repeating
this argument we get that the class & must be zero for any 1 <k < j. (In
the argument for vanishing of the class ¢, W; should be replaced by Uy to
get the vanishing of £x). So the extension class £ must vanish. This implies
that the bundle Wj,, is isomorphic to W; & W. This completes the proof
of the Proposition 3.4. a
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Remark 3.7. (i) The flat connection on V that we obtained in Theorem
3.1 is actually an unitary flat connection.

(i) Form the proof of Theorem 3.1 it follows that if x;(T) > 0 and V is a
holomorphic bundle on X with a holomorphic connection, then V is semi-
stable. The strict inequality, ;(7") > 0 in Theorem 3.1 was used to prove
that V is a direct sum of stable bundles of slope zero (which is a stronger
statement than semi-stability).

(iii) Let X be a compact Riemann surface of genus at least 2. Consider the
flat PSL(2,R) connection on X given by the uniformization theorem. This
connection can be lifted to a flat SL(2, R) connection, and the corresponding
holomorphic bundle V' is given by the extension

0 — K2 Vv — K12 50

where K1/2 is a square-root of the canonical bundle, and the extension class
is1 e H(X,KY? @ K'/?) = HY(X,K) = C. This bundle V is clearly
not semi-stable. This example shows that in the statement of 3.7 (ii), the
condition that w;(T) > 0 is essential.
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