On Harder-Narasimhan filtration of the tangent bundle

INDRANIL BISWAS

1. Introduction.

Given a vector bundle V on a polarized smooth projective variety, or more generally on a compact Kähler manifold, there is a natural filtration of V, called the Harder-Narasimhan filtration, such that the subsequent quotients are semi-stable sheaves satisfying a numerical condition. This filtration was introduced in [HN]. Here we are concerned with the Harder-Narasimhan filtration of the tangent bundle.

If the canonical bundle is ample is then from a Theorem of Yau it follows that the tangent bundle is semi-stable with respect to the polarization K. In general, of course, the tangent bundle is not semi-stable. In Theorem 2.2 we give a criterion for the length of the Harder-Narasimhan filtration of the tangent bundle to be at most two.

There is a well-known question of whether any holomorphic bundle admitting a holomorphic connection actually admits a flat connection. In Theorem 3.1 we produce a class of compact Kähler manifolds with the property that any holomorphic bundle on them with a holomorphic connection admits a flat connection. The proofs of Theorem 2.2 and Theorem 3.1 are quite similar in spirit and involve, among other things, a systematic use of the Leibniz identity.

2. A criterion for bounding the length.

Let X be an irreducible smooth projective variety over \mathbb{C} of dimension d. Fix an ample line bundle L on X.

For an \mathcal{O}_X coherent sheaf F on X, the degree of X is defined by

$$\deg(F) := \int_{Y} c_1(F) \cup c_1(L)^{d-1}.$$

For a torsion-free coherent sheaf F, the quotient $\deg(F)/\operatorname{rank}(F)$ is called the *slope* of F and is denoted by $\mu(F)$.

Definition 2.1. A torsion-free \mathcal{O}_X coherent sheaf V on X is called *semi-stable* (resp. stable) if for any proper sub-sheaf $0 \neq F \subset V$ with V/F being torsion-free,

$$\mu(F) \leq \mu(V) \quad (resp. \ \mu(F) < \mu(V)).$$

We will use the following convention. By a sub-sheaf of a torsion-free \mathcal{O}_X coherent sheaf we will always mean a \mathcal{O}_X coherent proper nonzero sub-sheaf such that the quotient is torsion-free. And by a quotient sheaf will mean a quotient by a sub-sheaf of the above type.

For any torsion-free coherent sheaf V there is a unique filtration by subsheaves, called the Harder-Narasimhan filtration [Ko, Ch. V, Theorem 7.15]

$$0 = V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_{k-1} \subset V_k = V$$

such that V_i/V_{i-1} is the maximal semi-stable sub-sheaf of V/V_{i-1} . The integer k will be called the *length* of the filtration. We will denote the number $\mu(V_i/V_{i-1})$, $1 \le i \le k$, by $\mu_i(V)$.

Let $T_0 \subset T_1 \subset T_2 \subset \ldots \subset T_l = T$ be the Harder-Narasimhan filtration of the tangent bundle T of X.

Theorem 2.2. If the following three conditions are satisfied

- (i) the first two sub-sheaves T_1 and T_2 are locally free;
- (ii) $\mu_1(T) := \mu(T_1) \geq 0;$
- (iii) The rank of the Neron-Severi group of X is one, i.e. $H^{1,1}(X) \cap H^2(X,\mathbb{Q}) = \mathbb{Q}$;

then either $T_1 = T$ (i.e. T is semi-stable) or $T_2 = T$, i.e. T is an extension of a semi-stable bundle by a semi-stable bundle with higher μ .

Proof. For two local sections s and t of T, let [s,t] denote their Lie bracket. We want to deduce from the condition (ii) above that T_1 is closed under Lie bracket. We will use the notation \mathcal{T}_1 to denote the vector bundle given by the sheaf T_1 ; similarly for T_2 . Consider the following homomorphism of sheaves

$$(2.3) T_1 \otimes_{\mathbb{C}} T_1 \longrightarrow T/T_1$$

which assigns to $s \otimes t$ the image of [s,t] in T/T_1 . The Leibniz formula for Lie bracket, namely

$$[fs,t] = f.[s,t] - < df, t > .s$$

and the identity [X, Y] = -[Y, X] together imply that the homomorphism in (2.3) is \mathcal{O}_X -linear. In other words, it induces a homomorphism of bundles

$$\psi: \mathcal{T}_1 \otimes \mathcal{T}_1 \longrightarrow T/\mathcal{T}_1$$

The tensor product of two semi-stable sheaves is known to be semi-stable. Thus, since \mathcal{T}_1 is semi-stable, the tensor product $\mathcal{T}_1 \otimes \mathcal{T}_1$ is also semi-stable. So, the μ of any quotient sheaf of $\mathcal{T}_1 \otimes \mathcal{T}_1$ is greater than or equal to $\mu(\mathcal{T}_1 \otimes \mathcal{T}_1)$. But

$$\mu(\mathcal{T}_1 \otimes \mathcal{T}_1) = 2 \cdot \mu(\mathcal{T}_1) \geq \mu(\mathcal{T}_1)$$

The last inequality follows from the fact that $\mu(\mathcal{T}_1) \geq 0$. Since the μ of any sub-sheaf of T/\mathcal{T}_1 is less that or equal to $\mu_2(T)$ and $\mu_2(T) < \mu_1(T)$, considering the image of the homomorphism ψ we conclude that the homomorphism ψ must be zero. So T_1 is closed under Lie bracket. In other words, \mathcal{T}_1 is a holomorphic foliation on X. Now from the Theorem 3.2 and the subsequent identity (3.6) of [L] it follows that, for any integer $a > \dim_{\mathbb{C}}(T/\mathcal{T}_1)$, the characteristic class $(c_1(T/\mathcal{T}_1))^a = 0$. (Extend the partial connection along the foliation \mathcal{T}_1 given by the Lie-bracket on the normal bundle, T/\mathcal{T}_1 , to a $GL(q,\mathbb{C})$ connection $(q = \dim_{\mathbb{C}}(T/\mathcal{T}_1))$ on T/\mathcal{T}_1 . Use this connection to calculate $c_1(T/\mathcal{T}_1)^a$ by Chern-Weil theory (as done in Theorem 3.2 of [L]). The identity (3.6) in [L] would imply that the Chern form for $(c_1(T/\mathcal{T}_1))^a$, $a > \dim_{\mathbb{C}}(T/\mathcal{T}_1)$, vanishes identically.)

Since $H^{1,1}(X) \cap H^2(X,\mathbb{Q}) = \mathbb{Q}$, the class $c_1(T/\mathcal{T}_1)$ is a scalar multiple of the polarization class. So $c_1(T/\mathcal{T}_1)^a = 0$ implies that $c_1(T/\mathcal{T}_1) = 0$. Since T_2/T_1 is the maximal semi-stable sub-sheaf of T/\mathcal{T}_1 , if $\mathcal{T}_2 \neq T$ then

(2.4)
$$\mu_2(T) > 0$$
, and $deg(T/T_2) = deg(T/T_1) - deg(T_2/T_1) < 0$

We want to show that T_2 in also closed under the Lie-bracket operation. This is obvious if $T_2 = T$; assume that $T_2 \neq T$. Using the homomorphism of sheaves, $\psi: T_2 \otimes_{\mathbb{C}} T_2 \longrightarrow T/T_2$, given by the Lie bracket, and the Leibniz rule together, we have a homomorphism of bundles $\psi: \mathcal{T}_2 \otimes \mathcal{T}_2 \longrightarrow T/\mathcal{T}_2$ as before.

Since $0 \longrightarrow \mathcal{T}_1 \longrightarrow \mathcal{T}_2$ is the Harder-Narasimhan filtration of the bundle \mathcal{T}_2 , the μ of any quotient of $\mathcal{T}_2 \otimes \mathcal{T}_2$ is greater than or equal to $2.\mu_2(T)$. The

 μ of any sub-sheaf of T/\mathcal{T}_2 is less that or equal to $\mu_3(T)$, and from the properties of the Harder-Narasimhan filtration we have

$$\mu_3(T) < \mu_2(T)$$

Since $\mu_2(T) > 0$ (see (2.4)), we have $2 \cdot \mu_2(T) > \mu_2(T)$. Thus from the above observations we get that the homomorphism ψ must be zero. In other words, T_2 is closed under Lie-bracket. But, as earlier, that would imply that $\deg(T/T_2) = 0$, which in turn would contradict (2.4). This completes the proof.

Remark 2.5. (i) The condition (ii) is satisfied, for example when $deg(T) \ge 0$.

(ii) If X is a smooth projective variety with ample canonical bundle then X admits a Kähler-Einstein metric [Y]. This implies that T is semi-stable with respect to the polarization K_X .

If the canonical bundle of X is negative then there is an obstruction, known as the Futaki invariant, for the existence of Kähler-Einstein metric on X [F].

3. Bundles with holomorphic connections.

In this section we assume X to be a compact Kähler manifold equipped with a Kähler form ω . As before, let

$$T_0 \subset T_1 \subset T_2 \subset \ldots \subset T_l = T$$

be the Harder-Narasimhan filtration of the holomorphic tangent bundle of X.

We will use the following convention. For an holomorphic bundle V on X, $\Omega^{i}(V)$ will denote the holomorphic bundle $V \otimes \Omega^{i}$; and $\Gamma^{i,j}(X,V)$ will denote the space of all C^{∞} (p,q)-forms with values in V. We will not distinguish between a holomorphic bundle and the locally free \mathcal{O}_{X} -coherent sheaf corresponding to it.

A holomorphic structure on a C^{∞} bundle V on X is given by a first order operator $\overline{\partial}_V : \Gamma(X,V) \longrightarrow \Gamma^{0,1}(X,V)$ satisfying the Leibniz condition and the integrability condition $\overline{\partial}_V^2 = 0$. A holomorphic connection on a holomorphic bundle V is a first order differential operator

$$\partial : V \longrightarrow \Omega^1(V)$$

satisfying the Leibniz condition $\partial(f.s) = d(f).s + f\partial(s)$, where f is a holomorphic function and s is a (local) holomorphic section of V. It is easy to check that ∂ being a holomorphic connection is equivalent to the condition that the operator $\partial + \overline{\partial}_V$ is a connection with a holomorphic End(V) valued 2-form as curvature.

Example 1. Let ∇ be a flat connection on a C^{∞} bundle on X. Then the operator $\nabla^{0,1}$, the (0,1) part of ∇ , gives a holomorphic structure on V, and $\nabla^{1,0}$ gives a holomorphic connection on the holomorphic bundle.

From the Chern-Weil construction of characteristic classes it is obvious that all the Chern classes of a bundle with holomorphic connection vanish.

A holomorphic vector bundle V is said to admit a flat connection if there is a flat connection ∇ on V such that $\nabla^{0,1} = \overline{\partial}_V$.

Theorem 3.1. Let the Kähler manifold X satisfy the condition that $\mu_l(T) > 0$. Let V be a holomorphic bundle on X admitting a holomorphic connection. Then V admits a flat connection; also, the bundle V is a direct sum of stable bundles of slope zero.

Proof. Let $V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_n = T$ be the Harder-Narasimhan filtration of the bundle V. Let ∂ be a holomorphic connection on V. Note that using the duality between T and Ω^1 , ∂ induces a \mathbb{C} -linear homomorphism from the tensor product (over \mathbb{C}) of the sheaves, $T \otimes V$, to the sheaf V. Consider the following map of sheaves $T \otimes_{\mathbb{C}} V_1 \longrightarrow V/V_1$ given by mapping $\theta \otimes s$ to the projection of $\partial_{\theta} s$ on V/V_1 . Let \mathcal{O}_X denote the sheaf of germs of holomorphic functions on X. The Leibniz condition implies that the above map is \mathcal{O}_X linear, and hence it induces a homomorphism

$$(3.2) \psi : T \otimes_{\mathcal{O}_X} V_1 \longrightarrow V/V_1$$

Since V_1 is semi-stable and $\mu_l(T) \geq 0$, the μ of any quotient sheaf of $T \otimes_{\mathcal{O}_X} V_1$ is at least $\mu(V_1)$. This implies that the homomorphism ψ is zero.

Since $\psi = 0$, the holomorphic connection ∂ induces a holomorphic connection on V_1 . Any \mathcal{O}_X coherent sheaf with a holomorphic connection is locally free [B, p. 211, Proposition 1.7]. (Though this proposition in [B] is stated for integrable connections (*D*-modules), the proof uses only the Leibniz rule (in particular, does not use vanishing of curvature). The Leibniz rule is valid for a holomorphic connection.)

Since the bundle V_1 admits a holomorphic connection, $c_1(V_1) = 0$, and hence $\mu(V_1) = 0$. Since $\mu(V) = 0 = \mu(V_1)$, we have $V = V_1$. This implies that V is semi-stable.

If V is actually a stable bundle then from [UY] it follows that V admits a Hermitian-Yang-Mills connection; this metric is determined up-to a global scalar. We noted prior to Theorem 3.1 that the given condition that V admits a holomorphic connection implies that all the Chern classes of V vanish. This implies that the Hermitian-Yang-Mills connection is actually a flat unitary connection.

If V is not stable then there is a filtration [K, Ch. V, \S 7, Theorem 7.18]

$$(3.3) 0 = W_0 \subset W_1 \subset W_2 \subset \ldots \subset W_{m-1} \subset W_m = V$$

such that W_i/W_{i-1} is a stable sheaf with $\mu(W_i/W_{i-1}) = \mu(V)$.

In view of the above mentioned result, [UY], that any stable vector bundle with vanishing Chern classes admits an unitary flat connection, Theorem 3.1 is implied by the following proposition.

Proposition 3.4. Each sub-sheaf W_i , $1 \le i \le m$, in (3.3) is of the form $W_{i-1} \oplus U_i$, where U_i is a stable bundle with vanishing Chern classes.

Proof. First we want to show that W_1 is a sub-bundle of V. In order to prove that we use the same method that has repeated been used in this paper: show that the holomorphic connection ∂ induces a holomorphic connection on W_1 , and then using [B, p. 211, Proposition 1.7] (as used earlier in proving that V is semi-stable) we may conclude that W_1 is locally free; we then show that V/W_1 has a quotient connection, and hence, using [B, p. 211, Proposition 1.7], V/W_1 is locally free. So W_1 must be a sub-bundle of V. We give the details of the argument below.

As in (3.2), the holomorphic connection ∂ induces a homomorphism of bundles $\phi: T \otimes W_1 \longrightarrow V/W_1$. Since W_1 is semi-stable with $\mu(W_1) = 0$, and $\mu_l(T) > 0$, the μ of any quotient sheaf of $T \otimes W_1$ is strictly positive. This implies that the homomorphism ϕ is zero. So the connection ∂ induces a holomorphic connection on W_1 . Let $\nu: V \longrightarrow V/W_1$ denote the quotient projection. For a local section s of V/W_1 , consider $s \longmapsto \nu(\partial(\bar{s}))$, where \bar{s} is a lift of s to a local section of V. Since the sheaf W_1 is closed under the connection ∂ , the section $\nu(\partial(\bar{s}))$ does not depend upon the choice of the lift \bar{s} of s. Using this it is easy to see that the map $s \longmapsto \nu(\partial(\bar{s}))$ defines a holomorphic connection on V/W_1 . So the sheaf V/W_1 is locally free. This implies that W_1 is a sub-bundle of V. As we already noted that the Chern

classes of a bundle admitting a holomorphic connection vanish, since W_1 admits a holomorphic connection, all the Chern classes of W_1 vanish. Since W_1 is a stable bundle with vanishing Chern classes, from the Theorem of Uhlenbeck-Yau it admits a flat unitary structure.

Actually the same argument as above implies that any W_i , $0 \le i \le m$, is a sub-bundle of V. To see this, first check that for any W_i , the analogue of ϕ is zero. So the connection ∂ induces a connection on W_i . Then the rest of the argument is identical.

Now we want to show that $W_2 = W_1 \oplus U_2$, where U_2 is a stable bundle with the property that all its Chern classes vanish. Since all the Chern classes of both W_1 and W_2 vanish, from the general properties of Chern classes it follows that the Chern classes of W_2/W_1 vanish. So, for a bundle U_2 satisfying the condition that $W_2 = W_1 \oplus U_2$, all the Chern classes of U_2 must vanish.

For notational simplicity we will denote W_2/W_1 by W. Note that since both W_1 and W_2 are sub-bundles of V, the sheaf W is locally free. Let $c \in H^1(X, W^* \otimes W_1)$ be the element corresponding to the extension, namely W_2 , of W by W_1 . Let $C^{0,1}(X, W^* \otimes W_1) \subset \Gamma^{0,1}(X, W^* \otimes W_1)$ be the space of all $\overline{\partial}$ -closed (0,1)-forms with values in $W^* \otimes W_1$. Let $\rho: C^{0,1}(X, W^* \otimes W_1) \longrightarrow H^1(X, W^* \otimes W_1)$ denote the surjection given by the Dolbeault resolution of $W^* \otimes W_1$. Define $I:=\rho^{-1}(c)$.

Since W and W_1 are stable bundles with vanishing Chern classes, they admit flat unitary connections, namely the Hermitian-Yang-Mills connections. The Hermitian metrics on W and and W_1 induce a Hermitian structure on $W^* \otimes W_1$. Let

$$H \subset C^{0,1}(X, W^* \otimes W_1)$$

be the subspace consisting of all harmonic forms. The map ρ identifies H with $H^1(X, W^* \otimes W_1)$. Consider $\hat{c} := I \cap H$, the harmonic representative of the class c. Define the adjoint \hat{c}^* of \hat{c} as follows: Using the unitary structures on W and W_1 , for a (local) C^{∞} section s of $W^* \otimes W_1 = \operatorname{Hom}(W, W_1)$ we may consider its adjoint, s^* , which is a C^{∞} section of $\operatorname{Hom}(W_1, W)$, defined by $\langle s^*(a), b \rangle = \langle a, s(b) \rangle$, where a is a local section of W_1 and b is a local section of W. Now, if in some local holomorphic co-ordinate chart (z_1, \ldots, z_d) on X the section \hat{c} is equal to $\sum_k \theta_k \otimes d\bar{z}_k$ then

$$\hat{c}^* := \sum_{k=1}^d \theta_k^* \otimes dz_k$$

Since Hodge identities hold for Hermitian flat connections, the harmonicity of the section \hat{c} implies that \hat{c}^* is a holomorphic section of $\Omega^1 \otimes \text{Hom}(W_1, W)$. In other words,

$$\hat{c}^* \in H^0(X, \operatorname{Hom}(T \otimes W_1, W))$$

But, since $\mu_l(T) > 0$, there is no non-zero homomorphism from $T \otimes W_1$ to W (both W and W_1 are stable bundles with slope zero). So $\hat{c}^* = 0$, which in turn implies that $\hat{c} = 0$. Since the extension class vanishes, the exact sequence

$$0 \longrightarrow W_1 \longrightarrow W_2 \longrightarrow W \longrightarrow 0$$

splits. In other words, W_2 is isomorphic to $W_1 \oplus W$.

Now we will use induction to complete the proof of the Proposition 3.4. Assume that $W_i = W_{i-1} \oplus U_i$ for all $1 \le i \le j < m$ (as in the statement of the proposition). We want to show that $W_{j+1} = W_j \oplus U_{j+1}$, where U_{j+1} is a stable bundle with vanishing Chern classes. From the assumption,

$$(3.6) W_j = \sum_{k=1}^{j} U_k$$

where each U_k is a stable bundle with vanishing Chern classes. Let W denote the quotient W_{j+1}/W_j . Since both W_{j+1} and W_j are sub-bundles of V, the sheaf W is locally free. Since the Chern classes of both W_{j+1} and W_j vanish (they admit holomorphic connections induced by ∂), the Chern classes of W must also vanish. Corresponding to the short exact sequence of bundles

$$0 \longrightarrow W_j \longrightarrow W_{j+1} \longrightarrow W := W_{j+1}/W_j \longrightarrow 0$$

we have the extension class $\xi \in H^1(X, \text{Hom}(W, W_j))$. Using the decomposition (3.6) we have

$$\xi = \sum_{k=1}^{j} \xi_k$$

where $\xi_k \in H^1(X, \operatorname{Hom}(W, U_k))$. For any $1 \leq k \leq j$, both W and U_k are stable bundles with vanishing Chern classes. Recall the argument for proving the extension class c corresponding to W_2 to be zero. Repeating this argument we get that the class ξ_k must be zero for any $1 \leq k \leq j$. (In the argument for vanishing of the class c, W_1 should be replaced by U_k to get the vanishing of ξ_k). So the extension class ξ must vanish. This implies that the bundle W_{j+1} is isomorphic to $W_j \oplus W$. This completes the proof of the Proposition 3.4.

Remark 3.7. (i) The flat connection on V that we obtained in Theorem 3.1 is actually an unitary flat connection.

- (ii) Form the proof of Theorem 3.1 it follows that if $\mu_l(T) \geq 0$ and V is a holomorphic bundle on X with a holomorphic connection, then V is semistable. The strict inequality, $\mu_l(T) > 0$ in Theorem 3.1 was used to prove that V is a direct sum of stable bundles of slope zero (which is a stronger statement than semi-stability).
- (iii) Let X be a compact Riemann surface of genus at least 2. Consider the flat $PSL(2,\mathbb{R})$ connection on X given by the uniformization theorem. This connection can be lifted to a flat $SL(2,\mathbb{R})$ connection, and the corresponding holomorphic bundle V is given by the extension

$$0 \longrightarrow K^{1/2} \longrightarrow V \longrightarrow K^{-1/2} \longrightarrow 0$$

where $K^{1/2}$ is a square-root of the canonical bundle, and the extension class is $1 \in H^1(X, K^{1/2} \otimes K^{1/2}) = H^1(X, K) = \mathbb{C}$. This bundle V is clearly not semi-stable. This example shows that in the statement of 3.7 (ii), the condition that $\mu_l(T) \geq 0$ is essential.

References.

- [B] A. Borel et al.: Algebraic *D*-modules. Perspectives in Mathematics, Vol. 2 (Ed. J. Coates, S. Helgason), Academic Press.
- [F] A. Futaki: An obstruction to the existence of Kähler-Einstein metrics. Inv. Math. 73 (1983) 437-443.
- [HN] G. Harder, M. S. Narasimhan: On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann. **212** (1975) 215-248.
- [Ko] S. Kobayashi: Differential geometry of complex vector bundles. Publications of Math. Soc. of Japan, Iwanami Schoten Pub. and Princeton University Press, 1987.
- [L] H. B. Lawson: The quantitative theory of foliations. CBMS Regional Conference Series in Math. No. 27, AMS.
- [NS] M. S. Narasimhan, C. Seshadri: Stable and unitary bundles on a compact Riemann surface. Ann. Math. 82 (1965) 540-564.
- [UY] K. K. Uhlenbeck, S. T. Yau: On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Comm. Pure Appl. Math. 39 (1986) 257-293.

[Y] S. T. Yau: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I. Comm. Pure Appl. Math. 31 (1978) 339-411.

SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH
HOMI BHABHA ROAD, BOMBAY 400005, INDIA
INDRANIL@MATH.TIFR.RES.IN

RECEIVED MARCH 17TH, 1995.