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ABSTRACT. We prove a Harnack inequality for eigenfunctions of cer- 
tain homogeneous graphs and subgraphs which we call strongly con- 
vex. This inequality can be used to derive a lower bound for the 
(nontrivial) Neumann eigenvalues by l/(8kD2) where k is the maxi- 
mum degree and D denotes the diameter of the graph. 

1. INTRODUCTION 

Let F = (V,E) denote a graph with vertex set V = V(T) and edge set 

E = E(T). Suppose a group Ti acts on V such that: 

(i) for all g e W, {gu, gv} e E if and only if {u, v} G E, 

(ii) for any two vertices u and v, there is a g G H such that gu = v. 

Then we say T is a homogeneous graph with the associated group H. In 

other words, T is vertex-transitive under the action of H and We can identify 

V with the coset space H/I where I = {g G H : gv = v} , for a fixed vertex 

v, denotes the isotropy group. We note that the Cayley graph is a special case 

of homogeneous graphs with I trivial. The edge set of a homogeneous graph 

F can be described by an (edge) generating set K C H so that each edge of F 

is of the form {v^gv} for some v G V, and g G K. In this paper we require the 

generating set K to be symmetric, i.e., g G K if and only if g'1 G K. 

We say that a homogeneous graph is invariant if for every element a G K, 

we have 

aKa-^K. 

In other words, K is invariant as a set under conjugation by elements of K. For 

example, a homogeneous graph associated with an abelian group is invariant 
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and we call the graph an abelian homogeneous graph. Suppose a homogeneous 

graph F is associated with a nonabelian group H. If the edge generating set 

if is a subgroup of W, then F is still invariant. 

In a graph G, the distance d{u,v) between two vertices u and v, is the 

minimum number of edges in any path joining u and v in G, and the diameter 

of G, denoted by D{G) is the maximum distance d{u^v) among all pairs of 

vertices. 

The diameter is closely related to various graph invariants. Let A denote 

the dominant eigenvalue of the Laplacian of G. For a regular graph G, the 

Laplacian L of G is just / — \A where / is the identity matrix, A is the 

adjacency matrix and G is A:-regular. The eigenvalues of L are denoted by 

0 = AQ < Ai < • • • < An_i. Many results for random walks on groups and 

Markov chains are based upon the following inequality for vertex-transitive 

graphs [1, 2, 6]. 

c 
(1.1) Ax > 

kD 2 

where c denotes some appropriate absolute constant, k is the degree and D 

denotes the diameter of the graph. For a general graph, however, (1) does not 

necessarily hold. (For example, the graph of two cliques Kn joined by an edge 

has A < ^ and D = 3). The main result of this paper is to generalize (1) 

for certain induced subgraphs of a homogeneous graph. An induced subgraph 

determined by a subset S of the vertices has edge set consisting of all edges 

with both endpoints in S. For convenience, we will use S to denote both the 

induced subgraph and its vertex set, if there is no confusion. 

An induced subgraph of a homogeneous graph can be viewed as a graph with 

boundary while the "host" homogeneous graph has no boundary. In Section 

2, we will define the Laplacian and Neumann eigenvalues for an induced sub- 

graph of a homogeneous graph. This can be viewed as the discrete analogue 

corresponding to the continuous case of Neumann eigenvalues for Riemannian 

manifolds with boundary (which is different from the Dirichlet eignvalues for 

domains with boundary, cf. [7]). 
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An induced subgraph S of a graph G is said to be stromgly convex if, for 

all pairs of vertices u and v in 5, all shortest paths joining u and v in G are 

contained in S. We will show that for a finite strongly convex subgraph S in 

an invariant abelian homogeneous graph F, an eigenfunction / with eigenvalue 

A satisfies 

|/(*)-/(2/)|2<8fcAsup|/(z)|2 

zes 
where the vertices x and y are adjacent and k is the degree of F. Furthermore, 

the dominant eigenvalue As of Ihe Neumann Laplacian of S satisfies 

where D is the diameter of S. 

This paper is organized as follows: In Section 2, we give definitions and ex- 

amples for the Laplacian of a homogeneous graph, the Neumann eigenvalues 

of an induced subgraph of a homogeneous graph and strongly convex sub- 

graphs. In Section 3, we derive a Harnack inequality for eigenfunctions of 

invariant homogeneous graphs. In Section 4, we prove a Harnack inequality 

for strongly convex subgraphs of invariant abelian homogeneous graphs. In 

Section 5 we establish an eigenvalue inequality using the Harnack inequality 

and then briefly discuss some applications of (1.2) in random walks and rapidly 

mixing Markov chains. 

2. THE LAPLACIAN, CONVEXITY AND NEUMANN EIGENVALUES 

Let F denote a homogeneous graph with associated group H and an edge 

generating set K. Let k = \K\. The Laplacian L of F acts on the space of 

functions / : V(r) —» R as follows: 

(2-1) Lf(x) = W(f(x)-f(9x)) 

and, therefore 

(2.2). (f,Lf) = lj:(f(x)-f(y)f 

Equivalently, we have 

L=I-IA 
k 
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where A is the adjacency matrix of F. Various properties of Laplacians and 

eigenvalues for general graphs can be found in [3] 

For an induced subgraph S of a homogeneous graph F, we define the bound- 

ary 6S of 5 by 

6(S) = {veV\S:v~ue S}. 

An induced subgraph S of a homogeneous graph F is said to be strongly 

convex if the edge generating set K satisfies the following condition: 

(A): For all a, b E K , x £ 6S, if ax e 5, bx  E  S, then we have 6"1a  E  K. 

We note that (A) is implied by the following condition: 

(B): For all pairs of vertices u and v in 5, all shortest paths joining u and v 

are contained in S. 

Clearly, the intersection of two strongly convex subgraphs is strongly convex. 

Example 1: Suppose we consider a homogeneous graph Ft with vertex set 

{(ai, a2, • • • , at)} : a* E Z, ]Pa* = n}. A vertex (ai, • • • , a*, • • • , a?, • • • , a*) is 

adjacent to (ai, • • • , a* + 1, • • • , a^ — 1, • • • , at) for 1 < i,j < t. In particular, 

for a fixed i, we define Hi = {(ai, a2, • • • , a£)} : a^ > 0} to be a halfplane. It is 

easy to see that Hi is strongly convex and DHi = {(ai, a2, • • • , a^)} E V(Tt) : 

a^ > 0} is strongly convex. 

Let S denote a finite induced subgraph of a homogeneous graph F. We 

define the extension S of 5 to be the graph formed by all edges {x, y} with 

at least one endpoint in S. We now define the Neumann eigenvalue of the 

subgraph S as follows: 

E (/(*)- f(y))2 

(2-3) Aa = inf{'*}6f   
/ k}2f2{x) 

xes 

where k denotes the degree in F and / ranges over all functions / : 6SUS —> R 

satisfying 

xes 
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Lemma 1. Suppose / is the eigenfunction achieving As in (2.3). For x G 5, 

we have 

L/(a;) = rE[/(a;)-/(^)] = W(^) 
K g€K 

and for x 6 6S, we have 

geK 
gxES 

The proof is by using a variational principle and will be omitted. We re- 

mark that the second equation in Lemma 1 corresponds to the vanishing of 

the normal derivative at the boundary which is usually called the Neumann 

condition. 

We also remark that the Neumann eigenvalues are intimately related to 

problems arising in random walks. In an induced subgraph S of a homogeneous 

graph with degree fe, we define the following random walk: The probability of 

moving from a vertex v to a neighbor u of v is 1/k if u is in S. If u is not 

in 5, we then move from v to each neighbor of u in S with the (additional) 

probability l/kdu where du denotes the number of neighbors of u in S. The 

transition matrix P for this walk, whose columns and rows are indexed by 5, 

is defined as follows: 

(2.4) Pfiv) = £ !/(«) +   £   ^/(u) 
uGS u£S A 

z^LS 

It can be easily checked that the stationary distribution is the uniform dis- 

tribution. Furthermore, the dominant eigenvalues p of P are related to the 

Neumann eigenvalues As by 

(2.5) l-p = As 



632 F. R. K. CHUNG AND S.-T. YAU 

This can be proved by using the Neumann condition in Lemma 1 as follows: 

E (/(*) - mr + E (m-mr/dz 
^ .   r x,yeS x,y€S,z&S 
l — p   =   mi ==—  

x€S 

E (/(») - f(y))2 + E E^/2^) - (E /(v))2]/^ 
x^y 2^5 x~z y~z 

_    .   r g,y€5  x^s yes 

f fcE/'w 
xGS 

E (/(*) - /(y))2 + E E(/2(*) - /2(^)) 
=   mf  

/ *.£/2(*) 
xG5 

E (/(*) - /(y))2 + E E(/(a;) - /(*))2 

=   mf  

E (fW-m)2 

= inf^}^^     — 

'      ^E/O*) 
=   As 

where / ranges over all functions / : 8S U S —> R satisfying 

E/(z) = 0 

The inequality (2.5) is quite useful in bounding the rate of convergence of 

random walks and the rapidly mixing of Markov Chains. For more discussions 

on random walk problems and their relations with the Neumann eigenvalue 

As, the reader is referred to [3]. 

3. A HARNACK INEQUALITY FOR HOMOGENEOUS GRAPHS 

We will first prove the following Harnack inequality for homogeneous graphs 

which are invariant. 
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Theorem 0. In an invariant homogeneous graph T with edge generating set 

K consisting of k generators, suppose a function f : V(r) —> R satisfies 

L/^)-iE[/^)-/M] = A/^)- 
k aGK 

Then the following inequality holds for all x G V(r); 

for any a > 2. 

Proof. We define 

/>(*) = TE[/(*)-/(^)]
2 

and we consider 

Ms) = ^E EM*)-/M]M/(M-/(«Mn 
beKa€K 

= -h E E l/(*) - /M - /(te) + /(ate)]2 
L.2 

+i E Et/W " /(a:c) " /(te) + /(aM][/(a:) - /(a*)] jL2 

Let X denote the second term above and we have 

2_ 
k2 

2_ 
¥ 

"k2 

X  =   TZ E E [/W " /M - /(te) + /(aM] [/(*) - /Ml 

2 EiEt/^) - /M - /(^ + f(bax)}}[f(x) - f(ax)} 
a£K  b£K 

+i E [E(/(ate) - /M)][/o»o - /(«»)] 
o\ 9 

=   T Et/^) - /Ml2 + p E[E(/(«te) " /M)][/(s) - /(ax)] 
aGK aGK 6GK 

Since F is an invariant homogeneous graph, we have 

£(/(afex)-/(bas)) = 0 
6GK 
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and therefore 

Lnfri = X = 
k Lp{x) = X = -Y,[m-f{ax)? 

aZK 

Now we consider 

£/2(*)  =  rEt/2^)-/2^)] k a€K 

= 2A/2(x)^ix:[/^)-/M]2 

Combining the above arguments, we have, for any positive a, the following: 

L(l E [/(*) " /Ml2 + ^/2 W) ^ ZaA2/2^) - ^-^ E [/(*) " /Ml2 

Now we consider a vertex v which achieves the maximum value, over all x G S, 

for 

TE[/(*)-/(aa:)]2+<*A/2(*) 

aGK 

We have 

0    <    TA 
"k 

<    2a\>f(v) - ^^ £ [/(t,) - /(a^)]2 

^ aEK 

This implies 

^E[/w-/M]2<|^/2w 
for a > 2. Therefore for every x € V(r), we have 

IE I/(«) - /Ml2 + "VfeO  < IE [/(«) - /M]2 + ^xfiv) 
a(zK 

2\a 

k aSK k aeK 

<   (-^ + a)Xf(v) 
a — 2 
a2 

a —2      y 

for any a > 2. The proof of Theorem 0 is complete. 

Amax/2(y) 
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By taking a — 4 in Theorem 0 we have 

Corollary 1. In an invariant homogeneous graph Y with edge generating set 

K consisting of k generators, suppose a function f : V(r) —> R satisfies 

Lf(x) = l^[f(x)-f(ax)} = \f(x). 
K a€K 

Then for all xe V(T) 

^E[/W~/M]2^8ASUP/2^) 
K aeK y 

4. A HARNACK INEQUALITY FOR STRONGLY CONVEX SUBGRAPHS 

For strongly convex subgraphs, a similar but slightly different Harnack in- 

equality for Neumann eigenvalues can be derived. The proof is based on 

the Neumann boundary condition and the assumption that the homogeneous 

graph is invariant. 

Theorem 0. Suppose S is a finite strongly convex subgraph in an abelian 

homogeneous graph T with edge generating set K consisting of k generators. 

Let f : S —* R denote an eigenfunction associated with eigenvalue A.   Then 

the following inequality holds for x G S, a G K and ax G S': 

k\n>2 

[f(x) - f(ax)}2 + ka\f\x) <  sup /2(y) 
ot — 2, yes 

for any a > 2. 

Proof: We consider, for some g G K, 

<Pg(x) = [f(x)-f(gx)}2 + ka\f2(x) 

Let {z,az} be an edge in S achieving the maximum value of </)g(x) ranging 

over all g G K, x, gx G S. 

Claim: ^(x) < <l>a(z) for all x,gx G SS U 5. 

Proof: We consider the following three possibilities: 

Case 1: Suppose gx G S and x G 6S. We have, by using Lemma 1 

M*)   =    [f(x)-f(gx))2 + ka\f(x) 

=    [^ E f(bx) - ffa)]2 + *aA[i E /(Ml2 

bew w hew 
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where W = 8x fl S and w = |W|. Therefore 

^)^^Ei/(te)-/^)]a + -^-E/(te)2 

Prom the definition of strongly convex subgraphs, bx is adjacent to gx for 

bx G W: Therefore, we have 

^(z) < - Y, fafa) ^ 0a(^) 
^ 6GV^ 

Case 2: Suppose gx G 55 and x G S. 

Mx)   =   [f(x)-f(gx)]2 + kaXf2(x) 

<    A E [/(*) - /(W]2 + teA/9^) 
^   6G^, 

< —   ^   m£LX(/>Q(x) 
W   6^'     g 

< <t>a{z) 

where W = 8gx n 5 and w/ = |W'|. Here we use the fact that frgx is adjacent 

to x because of strong convexity. 

Case 3: Suppose that x, gx € 8S. We define 

Wi. = {& : fta; € S, 60s € S} 

P^ =. {6:6x€5,&5x^5} 

W3   =    {b : bx 0 S, bgx G 5} 
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We set Wi = \Wi\ and w = Wt + W2 + W3. Then 

(j)g(x) 

=   [f(x)-f(gx)}2 + kaXf2(x) 

= i—m + - E m)-—f(9x)-- E mx^+kaxfix) 
w w beWiuW2 w W beWiUWs 

< 
w h E [/(fe) - /(M]2 + E [/(**) - /(^)]2 + E [/.(*) - /(Wi2} 

66^1 beW2 beWs 

+^A{ ^ /2(te) + ^ /2(te) + ^ f{x)} 

bew! beW2 beWs 

Suppose we can show that bx ~ gx for b G W2 and x ~ fo^x for b G W3. Then 

by using Cases 1 and 2, we have </>p(a;) < 4>a(^)) &s desired. 

To see that bx ~ 50; for b G W2, we consider frgz 0 5 and ^x G S', bx G 5. 

By the definition of strong convexity, we have bx ~ gx. Also, x ~ bgx for 

b G W3, since bx $ S and x, ^x G S. The claim is proved. 

Let <f>(x) denote (f>a(x). We consider 

L4>(x)   =    I^[^)-^(6x)] 

^  r E[(/(a;) - /M)2 - (/faO - /(«te))2] - «A Et/2^) - /2(te)] 
6GK b€K 

=     Y + Z 

where 

Y = ^E[(/(^)-/M)2-(/(te)-/(ate))2] 
K b€K 

2 £(/(*) - /(^) " /(te) + /(ate))(/(x) - /(ax) 
^be/c 

T E(/(:c) - /M - f(bx) + /(ate))2 

K
  beK beK 

<   2X[f(x)-f(ax)} 2 
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and, 

Z   =   aX^ifix) - f(bx)) 
b€K 

< 2aX{Y/lf(x) - f(bx)]f(x) - J2[f(x) - /(6x)]2} 
b£K b£K 

< 2a\{k\f2(x)-Y,{m-f(bx)}2} 
beK 

Therefore, we have 

0 < L4>(z) < 2kaX2f(z) - X(a - 2) ^[/(t;) - f(av)]2 

aEK 

and 

[/(,)- fiaz)}2 < ^f2(z) 
a — 2 

for a > 2. Therefore for all x 6 S, g 6 K, gx G S, we have 

[f(x) - f(gx)}2 + kaXf(x)   <    [f(z)-f(az)}2 + kaXf2(z) 

<   ^f(z) + kaXf2(z) 
a — 2 

a — 2 
a2 A k 2 

a — 2    yzs 

for any a > 2. The proof of Theorem 0 is complete. 

By taking a = 4 in Theorem 0 we have 

Corollary 2. Suppose S is a strongly convex subgraph in an invariant abelian 

homogeneous graph T with edge generating set K consisting of k generators. 

Let f : S —> R denote an eigenfunction associated with eigenvalue X. Then 

for all x € 5, a G K, we have 

{f(x)-f(ax)]2<8kXsnpf2(y). 
y£S 

5. EIGENVALUES AND DIAMETERS 

The Harnack inequality in previous sections can be used to derive the fol- 

lowing eigenvalue inequality: 



HARNACK INEQUALITY 639 

Theorem 0.  The eigenvalue Xs of a convex subgraph S of an invariant ho- 

mogeneous graph T satisfies 

Xs >     1 

8kD2 

where k is the degree ofT and D is the diameter of S. 

Proof: Let / denote an eigenfunction defined on 6S achieving As = A. We 

can choose / such that 

sup |/(aS)| = l = sup/(x) 
xes xes 

Let u denote a vertex with f{u) = maxxes f(x) = 1 and let v denote a vertex 

with f(v) < 0. Such v exists since ^ /(x) = 0. We now consider a shortest 
xes 

path P in S joining u and v. We denote 

p z= (u = VQ, viy - • • , Vt = v). Since the diameter of S is I?, we have t < D. 

We consider 
t-i 

s = Et/K) - /(^)]2 

i=0 

By Theorem 2, we have 

S<8kXD. 

On the other hand, we have 

s = Ei/M -/(vi+i)]5 

i=0 

> ^Uiu)-f(v)f 
1 

> — 
-    D 

Therefore we obtain 

A> 
%kD2 

and the proof of Theorem 3 is complete. 

We remark that eigenvalue lower bounds of the form -^ are particu- 

larly useful for deriving polynomial approximation algorithms for enumeration 

problems since many families of combinatorial structures can often be repre- 

sented as certain subgraphs of some appropriate homogeneous graphs. Eigen- 

value lower bounds then translate to upper bounds (of the form l/A^logn) 
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for the rate of convergence on the random walk problems which, under some 

mild conditions, can then be used to obtain randomized approximation algo- 

rithms. We note that the condition for strongly convex subgraph still pose 

quite severe constraints for some applications. In a subsequent paper [4], the 

convexity condition will be further relaxed and eigenvalue inequalities similar 

to that in Theorem 2 are derived for large families of graphs. The main meth- 

ods are by using properties of the heat kernels and the approach is entirely 

different from that in this paper. Numerous applications in rapidly mixing 

Markov chains are further explored in [5]. 
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