
COMMUNICATIONS IN 
ANALYSIS AND GEOMETRY 
Volume 2, Number 4, 593-625, 1994 

HARMONIC DIFFEOMORPHISMS INTO 
CARTAN-HADAMARD SURFACES WITH 

PRESCRIBED HOPF DIFFERENTIALS 

LUEN-FAI TAM AND TOM Y. H. WAN 

INTRODUCTION 

In [22], the second author showed that given a holomorphic quadratic differ- 

ential on the unit disk of the complex plane C, one can construct a harmonic 

diffeomorphism from the hyperbolic two space H into itself so that its Hopf 

differential is equal to the given one. Later, in [4], Au and the second author 

generalized the result for holomorphic quadratic differentials on C, provided 

the differential is not of the form cdz2 for some constant c. Even though it 

is not explicitly stated in [22, 4], the harmonic diffeomorphism is unique up 

to an isometry in the target. The method of proof in [22, 4] is to construct a 

complete constant mean curvature space-like surface (a constant mean curva- 

ture cut) in the Minkowski three space from the given holomorphic quadratic 

differential. The required harmonic diffeomorphism is just the Gauss map of 

the constant mean curvature cut. 

On the other hand, Li, Wang and the first author [17] studied a class of 

surfaces which is more general than the hyperbolic two space. They studied 

complete simply connected surfaces with Gaussian curvatures bounded be- 

tween a negative constant and 0, so that the first eigenvalue for the Laplacian 

for functions is positive. Following [17], we call such a surface a hyperbolic 

Cartan-Hadamard surface, or simply a hyperbolic CH surface. For exam- 

ple, a simply connected surface with Gaussian curvature pinched between two 

negative constants is a hyperbolic CH surface.  It was proved in [17] that a 
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hyperbolic CH surface is conformally equivalent to the hyperbolic surface with 

a conformal factor bounded between two positive constants. It was proved in 

[17], many things that are true for harmonic maps between hyperbolic two 

spaces, are still true for harmonic maps between hyperbolic CH surfaces. For 

example, in [17], the results in [14,15,16] on the existence, uniqueness and regu- 

larity on harmonic maps between hyperbolic spaces with prescribed boundary 

data at the geometric boundary are still true for hyperbolic CH surfaces. It 

was proved in [22] that a harmonic diffeomorphism between hyperbolic surface 

is quasi-conformal if and only if the norm of its Hopf differential is uniformly 

bounded. This has also been generalized to hyperbolic CH surfaces in [17]. 

It is interesting to see whether one can generalize the results in [22, 4] on the 

constructions of harmonic diffeomorphisms with prescribed Hopf differential. 

More precisely, given a holomorphic quadratic differential on the unit disk in 

C or on the whole complex plane C, one would like to construct a harmonic 

map, unique up to isometrics of the target, from the hyperbolic space or C 

into a hyperbolic CH surface, so that its Hopf differential is equal to the 

given holomorphic quadratic differential. In this situation, the target is not 

the hyperbolic space, and one cannot use the Gauss maps of constant mean 

curvature cuts as in [22, 4]. New methods have to be developed. In this paper, 

we are able to solve the existence problem completely and obtain the following: 

Main Theorem (Theorem 3.2). Let N = (D^cfe^) be a hyperbolic CH 

surface with Gaussian curvature KN satisfying —b2< K^ < 0 for some con- 

stant b > 0 and \i(N) > 0. Then given any holomorphic quadratic differential 

$ = (f)dz2 on ]D)#o; RQ = 1 or oo, there is a harmonic map u from IDRo to N 

with Hopf differential given by $. Moreover, if R0 = 1 or (j> is not a constant, 

then u can be chosen to be a harmonic diffeomorphism into N. Futhermore, 

if RQ = I and $ G BDQ(H), then u can be chosen to be a quasi-conformal 

harmonic diffeomorphism onto N. 

Here, Di is the unit disk and Poo is the complex plane. Since a hyperbolic 

CH surface is conformally equivalent to the hyperbolic space with conformal 

factor bounded between two positive constants as mentioned above, and since 

a map is harmonic depends only on the conformal structure of the domain 
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and not the metric of the domain in dimension two, the theorem is still true if 

the domain is a hyperbolic CH surface. In order to prove the theorem without 

using the properties of constant mean curvature cuts, we have to obtained 

more refined apriori estimates for the energy density and the dilatation of a 

harmonic map. One difficulty is that the Gaussian curvature of the target 

may be zero at some point. Therefore, one cannot use directly the generalized 

maximum principle as in [22] to obtain a bound of the energy density of the 

harmonic map in terms of its quadratic differential. However, if the target is 

a hyperbolic CH surface, then we can perturb the metric, and use the results 

in [17] to prove the theorem. 

For the uniqueness, we have some partial results. First, we will reduce the 

question on the uniqueness of harmonic diffeomorphisms to the question on 

the uniqueness of solutions of the equation satisfied by the d—energy density 

of a harmonic map. Then, we will prove, or example: 

Theorem 4.5. Let H = (D, ds2
p) be the Poincare disk and let N be a hyperbolic 

CH surf ace with Gaussian curvature KN. Let (j)dz2 be a holomorphic quadratic 

differential in BQD(I])). Let Ui and U2 be two orientation preserving harmonic 

diffeomorphisms from H into N with the same Hopf differential (/)dz2. Suppose 

e2wids2 is complete on D, for i = 1,2, where Wi = log||c?^||, and suppose 

KN(ui(z)) = KN(u2{z)) for all z G D. Then there is an isometry tN of N 

such that U2 = Uio LN. 

Here again, we cannot use the properties on Gauss maps of constant mean 

curvature cuts. One of the main difficulties to prove uniqueness is that the 

Gaussian curvature of the target may not be constant. However, even if we 

assume KN(ui) — KN(u2) as above, it is still not obvious that Wi = t^, 

because KN may equal to 0 somewhere. 

There are many other methods and results on constructing harmonic maps 

on noncompact manifolds, see [2, 3, 6, 7, 9, 14, 15, 16, 17, 23]. On the other 

hand, there are applications of harmonic maps to the Teichmiiller theory via 

Hopf differentials of harmonic maps, see [24, 11]. One of the basic result in 

this direction is the construction of a homeomorphism between the Teichmiiller 

space of a compact oriented surface of genus great than one and the space of 



596 LUEN-FAI TAM AND TOM Y. H. WAN 

holomorphic quadratic differentials on the same surface endowed with a fixed 

conformal structure in [24] (see also [11]). Later, in [22], by solving the pre- 

scribed Hopf differential problem for harmonic diffeomorphisms between M the 

second author constructed a continuous mapping from the space of bounded 

holomorphic quadratic differentials with respect to the Poincare metric on H 

into the universal Teichmuller space which is an extension of the inverse map- 

ping of the homeomorphism constructed in [24]. It was asked by the second 

author and conjectured by Schoen [19] that this mapping is bijective. The 

injectivity part of Schoen's conjecture was then proved by Li and the first 

author [16], and the surjectivity part is still open. Due to the success of the 

application of the restricted map on Teichmuller spaces of compact surfaces, 

this mapping is expected to be very useful in the study of general Teichmuller 

spaces of Fushian groups especially those of noncompact surfaces. Hence, the 

generalization of the prescribed Hopf differential problem for harmonic maps 

in this paper may give more information in the study of the conjecture of 

Schoen and also in the study of noncompact Riemann surfaces. 

Here is our plan. In §1, we will improve some of the results in [22] for the 

solution of the nonlinear scalar equation satisfied by the <9-energy density of 

a harmonic map. In §2, we will prove our main theorem in the particular 

case that the domain is H, the norm of the holomorphic quadratic differential 

is uniformly bounded, and the Gaussian curvature of the target is pinched 

between two negative constants. In §3, we will use compact exhaustion and 

perturbation method to prove the main theorem in its full generality. In 

§4, we will prove various results on uniqueness for harmonic maps with the 

same Hopf differential. In the Appendix, we collect some facts about quasi- 

conformal maps used in this paper for the convenience of the readers. Every 

surface considered in this paper is assumed to be connected and oriented. 

The authors would like to thank Thomas K. K. Au, S.Y. Cheng, and P. 

Li for valuable discussions, and J.-P. Wang for his interest in this work. The 

research is done while the first author is visiting the Chinese University of 

Hong Kong. He would like to express his gratitude for the hospitality. 
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1. THE EQUATION OF <9-ENERGY DENSITY 

In this paper, 3Z^ will denote the disc centered at z of radius 0 < r < oo in 

R2. Here, by convention D2)00 is just E2. For 0 < r < oo, the Poincare metric 

on Dz,r is denoted by ds2^ = p^r(C)|dC|2, where plr(0 = 4r2/(r2 - \z- C|2)2. 

For simplicity, if z = 0, then we will denote Do,r5 Po,r5 and ds2
o r by Dr, pr, 

and d52
r respectively. If we also have r = 1, we simplify the notations further 

to write D, p, and ds2 instead of Di, pi, and ds2^ respectively. 

Let QZ)(Dr), 0 < r < oo, be the vector space of holomorphic quadratic 

differentials on Dr with respect to the standard conformal structure. For 

$ = (f)(z)dz2 e QJ5(Dr), we set \\$\\Pf.(z) = p;2(^)|(/)(z)| and I^HQ^D.) = 

suppr ||*||pr(^). It is easy to see that BQD(Br) = £QL>(Dr,ds2
r) = {$ e 

QD(Br) : ||$||QD(D.r) < oo} is a Banach space with the norm || • ||QD(Dr). To 

simplify notations, we write BQD, ||^||(z), ||$||QD 
to denote the corresponding 

objects for r = 1. Since we have global isothermal coordinate z on P, $ is 

represented uniquely by its coefficient <l>{z). So when there is no confusion, we 

will not distinguish $ and its coefficient (j>. For example, ||0||(^) is the same 

as m{z). 
Let us recall some basic facts about harmonic maps between surfaces. Let 

M and N be oriented surfaces with metrics p2|dz|2 and a-^d^l2, where z and 

u are local complex coordinates of M and N respectively. A C2 map u from 

M to N is harmonic if and only if u satisfies 

d2u        d\oga(u(z)) dudu 
+ 2 & „v  v      —— = 0> 

dz&z du dz dz 

The Hopf differential $ = (f)(z)dz2 oiuis defined by (f)(z) = cr2 (w(z)) t6z(^)iAz(0). 

If u is harmonic, then it is well-known that $ is a holomorphic quadratic dif- 

ferential on M. Let 

and 

du 
Oz (z), 

du\2 

dJ 
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be the d and 9-energy densities of u respectively. The energy density and the 

Jacobian of u are given by 

e{u) = \\du\\2 + \\du\\2 

and 

j(«) = nanf - \\du\\2 

respectively. If u is harmonic and \\du\\ 7^ 0, by [20], we have the following 

Bochner formula: 

AMW = -KN (u) (e2- - ||^||2Me-2-) + KM, 

where w = log||9^||, KM and KN are the Gaussian curvatures of M and 

AT, AM is the Laplacian operator on M, and ||^||M is the norm of the Hopf 

differential of u with respect to the metric on M. In our case, M is either H 

or R2. In this section, we will study the equation 

Apw = h(z) (e2™ - |H|2,.e-2-) - 1 

on a disc Dr, 0 < r < oo, for some function h(z), where Ap is the Laplacian 

operator with respect to the Poincare metric p2(2:)|d2:|2 on Dr. The results will 

be used in the later sections. The analysis is the same for all r with 0 < r < oo. 

Hence we will assume that r = 1 for simplicity. 

Let us first recall the following generalized maximum principle of Cheng 

and Yau [5]. 

Lemma 1.1. Let M be a complete noncompact manifold with Ricci curvature 

bounded below by —K, for some constant K > 0. Let u be a C2 function on 

M. 

(1) Suppose u satisfies the differential inequality A-u > f{u), where f is a 

continuous function with the property that 

fit] 
limsup^-f >0, 

t-oo   g(t) 

for some positive continuous function g, which is nondecreasing on 

[a, oo) for some a and f™ (j* g(T)dT)        < oo for some b > a. Then 

u is bounded from above. 
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(2) Suppose u is bounded from above, then there is a sequence of points Xk 

in M, such that 

lim u(xk) — sup^i, 

and 

lim |Vn(xfc)| = 0, 
k—>oo 

lim sup [±u{xk) < 0. 
k—>oo 

In our situations, we usually take g(u) = f(u) = Aeau — Be'^ — C for some 

constants a, /?, A, J5, and C > 0 to apply Lemma 1.1. Using the generalized 

maximum principle, we have: 

Lemma 1.2. Given fidz2 6 QD(Dr); r = 1 or oo. Xe^ Wi and W2 be two C2 

functions satisfying \(/)\e~2wi < 1, i = 1, 2; such that 

A0w1 > h^z) (e2™1 - \4>\2e-^) , 

and 

AoW2<h2(z)(e2wi-\<t>\2e-2w*), 

for some continuous nonnegative functions hi and h2, where AQ is the Eu- 

clidean Laplacian. Suppose e2w2\dz\2 defines a complete metric on Dr; hi(z) > 

h2(z), and b2 > h^z) > a2 > 0, Vz G Dr, for some constants b > a > 0, then 

Wi < W2' 

Proof First of all, |0|e-2^ < 1 implies that e2wi - \(j)\2e-2wi > 0, i - 1, 2. 

Hence hi(z) > h2(z) > 0 implies 

A0W2   <   h2(z)(e2w>-\<P\2e-2wi) 

Therefore, letting rj = wi — W2-) we get 

e-2^ Ao r?   >   h^z) (e2" - ^e^ - 1 + |M2|
2) 

>   aV - kV2" - 62, 

where I/X2I = |^|e_2u;2 < 1, and we have used the fact that b2 > h^z) > 

a2 > 0. It is easy to see that the curvature of e2w2\dz\2 is bounded below by 
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—h2(z)(l — IM2I2) > —b2. Since e2w2\dz\2 is complete, Lemma 1.1 implies that 

77 is bounded from above. Then, as in [22], the second part of Lemma 1.1 

implies that 77 < 0, i.e. Wi < u^.    □ 

Using the corresponding results in [22] for D and [4] for M2 with c = 1, we 

have the following lemma. 

Lemma 1.3. For any positive constant c2 > 0, and any (j)dz2 G QZ?(Dr), 

r = 1 or 00, with </> ^ 0 ifr = 00. There is a unique solution v of the equation 

onDr; such thate2v\dz\2 is complete onDr, ande~2v\(j)\ < 1 everywhere. Here, 

AQ is the Euclidean Laplacian o/Dr. Furthermore, 

(1) if r = 1, then v — log/? > — logc; where p2\dz\2 is the Poincare metric 

on D. //, in addition, (j)dz2 G BQDip), then 

v — log p < - log 
+ 71+4^11^11^^ 

2    to I 2c2 

and £/iere ea;i5i5 a constant Q < k < 1, depending only on C
2
||^||QD; 

such that e~2v\(j)\ < k. 

(2) If r — I, then e~2v\(j)\ < 1.  If r = 00, then either e~2v\(l)\ < 1 every- 

where, or v is a constant and (j> is a nonzero constant. 

Remark 1.1. It is easy to see that there is no solution to the equation A0^ = 

c2e2v in R2. 

Proof of the lemma. For r = 1, the lemma follows from applying the results 

in [22] to v — logp + logc with (/> replaced by c2(f). For r = 00, the existence 

and uniqueness of v follow from the results in [4], Therefore, it remains to 

prove statement (2) of the lemma. Consider the metric g = ds2 = e2u|d^|2 

which is complete on R2 by construction. Let Kg be the Gaussian curvature 

of g. Using the equation of v, it is easy to see that Kg = — c2(l — \(f)\2e~4v). 

Therefore —c2 < Kg < 0. Moreover, using the assumption that e~2v\(j)\ < 1, 

we have 

A9(-Kg)<A(-Kg). 
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Since — Kg > 0, we conclude, by mean-value inequality, see for example [10], 

that the set Kg = 0 is open. It is obvious that the set Kg = 0 is close, therefore 

we have either Kg < 0 everywhere or Kg = 0. If Kg < 0 everywhere, then we 

have e~2v\(j)\ < 1 everywhere. Suppose Kg = 0, then (]D)r^e2v\dz\2) is flat, so 

r = oo, and using a trick in [19] and the result in [13], we can prove that v is 

a constant. In fact, let o be the origin in M2, and let r0(x) be the Euclidean 

distance of a point x from o. There exists R > 1 such that r0(x) > 1 for all x 

with dg(o, x) > Rj where dg is the distance function with respect to the metric 

p. Since Kg = 0 and logr0 is harmonic and positive on Bx(l) for all x with 

dg(p,x) > 2R, where Bx{\) is the geodesic ball of radius 1 centered at x with 

respect to the metric g, the gradient estimate of [5] implies that there is a 

absolute constant Ci such that 

iVplogCroCxJJlXdlogCroCa:)), 

for all x with dg(o,x) > 2R. Hence, there is a constant C2 > 0 such that 

v(x) > -C2log(ro(x)) 

for all x with ro(x) large enough. S0V + C2 log(r0(x)) is nonnegative harmonic 

near infinity in E2. Therefore, by the argument in Corollary 5.5 in [13], 

v(x) = u(x) + C3 log(roO)) 

near infinity for some bounded harmonic function u and some constant C3. 

In any case, v is either bounded from above or bounded from below, so v is a 

constant. Then putting back into the expression of Kg and using Kg = 0, we 

conclude that |0| and hence (j) is a nonzero constant.    D 

Using Lemmas 1.2 and 1.3, we generalize the results of [22] to the following: 

Proposition 1.4. If (j)dz2 G QD{p) and h(z) is a function in C^C(D) satis- 

fying 0 < a2 < h(z) < b2 for all z G ID. Then there exists a unique solution 

w e cf (B) of 

(1.1) Apw = K(z)(e2w-Wre-2w)-l, 

such that e2wds2
p defines a complete metric on D and that \\(f)\\e~~2w < 1. 
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Proof. Note that if v is a solution given by Lemma 1.3, then v = v — logp 

satisfies 

Apt; = c2 (e25 - MV*) - 1. 

By Lemma 1.3, there exist solutions u?a and Wb of 

(1.2) Apwa = a2 (e2w° - I^HV2"'") - 1, 

and 

(1.3) Ap wb = b2 (e2wk - IMIV2"*) - 1, 

respectively such that e2WadSp and e2u;6d52 are complete metrics on D and 

satisfy ||0||c-2wb < 1 and ||</>||e-2u;a < 1. By Lemma 1.2, we have wb < wa. 

Since b2 > h(z) > a2 > 0 in D, ||^||e-2u;b < 1, and IHIe"2^ < 1, wa is a 

subsolution and tu& is a supersolution of (1.1). Using the method of sub- and 

supersolutions as in [22] (with modification of the regularity of solutions), we 

conclude that there exists a solution w E C^QD)) of (1.1) satisfying wb < 

w < wa. Since e2wbds2 is complete and satisfies ||</>||e"2u;/> < 1, e2wds2 is also 

complete on D and w satisfies ||(/)||e~2u; < 1. Finally, the uniqueness follows 

from Lemma 1.2. This completes the proof of the proposition.    □ 

Using Lemma 1.2 and the proof of the above proposition, we can obtain 

certain a-priori estimates on the solution w given by Proposition 1.4 under 

suitable assumptions on (j)dz2 and the function h. 

Proposition 1.5. Suppose w G C/o'^(D) satisfies 

Apw = h(z)(e2w-m2e-2w)~l, 

for some (j){z)dz2 G QD(D) and for some function h G C£C(D) with 0 < a2 < 

h(z) < b2, for all z G D, e2wdsl is complete on D, and IHIe-2™ < 1.  Then 

w > — log b. 

If in addition, (f)dz2 G BQD{p) and a2 > 0; then we also have 

1 
w < 7: log 

'l + ^l + 4a*\\<prQD 

2    0 I 2a2 
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Proof. Let Wf, as in the proof of Proposition 1.4. By Lemma 1.2 with wi = Wb, 

W2 = w, hi = b2 > 0 and /12 = h < 62, we conclude that u^ < ty. By 

Lemma 1.3, w^ > — log&, and hence w > —logb. If in addition a2 > 0 and 

IHIQD < 00, then we let wa be the function as in the proof of Proposition 1.4, 

and use Lemma 1.2 as before to conclude that w < wa. By Lemma 1.3, we 

have 

w   <   wa 

1 1 
<    TT^g 

+ yJl + 4a*M*QD
y 

2    * I 2a2 

and the proof of the proposition is completed.    □ 

If 11<^|| QD = 00, then we do not have the uniform upper bound for w. How- 

ever, if a > 0, we still have a local upper bound as follows. 

Proposition 1.6. Let (f)dz2 E QZ?(D), and let w be as in Proposition 1.5 with 

some h € Cg^B), and 0 < a2 < h(z) < b2 in D. Then for any z G D an^ r 

5wc/i £/&a£ 0 < r < 1 — |^|; 

1        /(I-Id2)2    1 +Jl + 4a4supDzJ</>||2_ 

^W ^ 2 l0g ^—^— W— L 

Proof By Lemma 1.3, there is a unique solution v of 

'Ap^v = a? (e2^ - MWl, e-2") - 1, 

< e2vds2
z r    complete on Dz,r, 

JHIP.J-*'< i, 
where Ap,jr is the Laplacian on DZ)r with respect to the Poincare metric. 

Note that sup^ r ||0||p,tr < r2snpBz r |</>|/4 < oo. We have, as in the proof of 

Proposition 1.5, 

v < - log 
1        /l + ^/l + 4a4supD^ 2 

Pz,r 

2    0 I 2a2 

Let tt; = w + logp — logpZ)r. Then by a straight forward calculation we have 

AP,> = MO (> - wLe"2i -1- 
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and H^Hp^e-2™ < 1 on DZjr. By Lemma 1.2 with obvious modifications, we 

get w < v and hence 

w{Q < log     ;   + - log ' 
P(C)       2   b\ 2az 

Putting C = z-i we get 

w(z) < log (—— J + - log ^ —  

which is the desired inequality.    D 

Proposition 1.7. Let (j)dz2 G QD(D); and Zet ^ 6e as in Proposition 1.5 

TOtfe some /i 6 C/ocOD)), ^^^ 0 < a2 < /i(2;) < b2 in D. T/ien /or any r and 

r', 0 < r < r' < 1, there exists Cs > 0, which depends only on r, r', a, b, 
SUP]D), 101; and ||^||c«(Dr/) 

such that 

Proof. By Propositions 1.5 and 1.6, w and AQ^ are bounded on Dri = D(r+r/)/2 

by constants depending only on a, 6, and suppr/ |0|, where AQ denotes the 

Euclidean Laplacian. So there exists a constant C4 > 0, which depends only 

on the bounds of w and AQW on Dri (see Chapter 4 in [10]), such that 

sup|Vtt;| < C4 

where r2 = ^(r + ri). Since w satisfies equation (1.1), the C0'a norm of AQW 

on Dr2 is bounded by a constant depending only on r, r', the bound of w and 

the bound on AQW in Dri. By the interior Schauder estimates (see Chapter 4 

in [10], for example), there is a constant C3 > 0, depending only on r, r', C0 

bound of w and C0'** bound of AQW on Dr2, such that 

|M|c2'«(Br) ^ ^3- 

Since |AoU>| is bounded on EDri by a constant depending only on a, b and 

supD , 101, the proposition follows.    D 

As a consequence of this proposition, we have the following: 
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Proposition 1.8. Let hn G C>£C(D). Suppose that hn —> h^ in Cgc(D) as 

n —> oo; and that 0 < a2 < /in(^) < b2 for n = 0,1,2,.... ■ Le£ if;n 6e solutions 

of 

Apwn = hn(z) (e2w« - \m2e-2w") - 1, 

swc/i i/iai e2WndSp complete and ll^lle-2™" < 1 for all n = 0,1,2, • • •. Then wn 

converges to WQ in Cf0C(D) as n —♦• oo. 

Proof, Since /in converges to /io in ^^(D), for each rf < 1, there is a uniform 

bound of ||^n||c°(Dr/)j n = 1,2, • • •. By Proposition 1.7, for any r < r', there 

exists a constant C5 > 0, which depends only on r, r', a, 6, supp , |</>|, and 

the uniform bound of ||/in||ca(Br/) such that ||^n||c
2'"(Br.) ^ Cs- Therefore, any 

subsequence of {wn} has a subsequence converges C2 locally uniformly on 

compact subsets. Let / G C2(D) be the limiting function of a subsequence of 

{wn} in C&C(B). Then / satisfies 

Ap/==/ioW(ea/-WV20-l, 

since /in converges to Zio- By Proposition 1.5, we have wn(z) > — logb on D 

for all n = 1, 2, • • •. Hence / > — log 6, and e2fds2 is a complete metric on P. 

By assumption, H^He-2™" < 1 for all n, so / also satisfies ll^lle-2^ < 1. The 

uniqueness part of Proposition 1.4 then implies that / = WQ. Since / is an 

arbitrary limiting function, {wn} converges to WQ in Cj^O). This completes 

the proof of the proposition.    □ 

Finally, let us prove a global "dilatation" estimate which is useful in later 

sections. 

Proposition 1.9. Let (j)dz2 G SDQ(P), and let w be a solution of equation 

(l.l) for some h G C£C(D) so that 0 < h(z) < b2 in D for some constant 

b > 0, such that e~2w\\(/)\\ < 1 and e2wds2 is complete. Then there exists a 

positive constant k < 1, which depends only on b2\\(f)\\QD, such that 

sup||</>||e-2u;<£;. 

Proof Let v be the solution in Lemma 1.3 with c = b and v = v — log p. By 

the generalized maximum principle Lemma 1.1 and the fact that h < 62, we 
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have w > v.  Therefore by Lemma 1.3, there is a constant k < 1 depending 

only on 6
2
||(/>||QD such that 

e-2w\m<e-2"M = e-2^\<k.   D 

2. BASIC EXISTENCE THEOREM 

Let N be a complete simply connected surface with Gaussian curvature 

KN satisfying —b2< KN < — a2 < 0 for some b > a > 0. It is well known 

that iV is conformally equivalent to the hyperbolic 2-space. Hence, N can 

be represented as N = (D, ds2) with ds2 = <72ds2 for some function a. It 

is also well-known that the first eigenvalue for the Laplacian for functions of 

N is positive. Therefore, AT is a hyperbolic CH surface. Note that by [17], 

the conformal factor a is bounded. In this section, we generalize the result in 

[22] to this class of surfaces, and show that given any ^d^2 E BDQ(1D)), there 

is a quasi-conformal harmonic diffeomorphism u from D onto TV, such that 

the Hopf differential of u is (/)dz2. In [22], N is the hyperbolic space and the 

harmonic diffeomorphism is constructed using the theory of constant mean 

curvature cut in Minkowski space. Here, we will use a more direct method. 

Observe that if u is a harmonic diffeomorphism, and let e2w = \\du\\2, then u 

and w satisfy the system: 

(Apw = -Ka(u(z))(e2™-M2e-2™)-l, 

\uT = p-2(j)e-2wuz. 

This system is coupled, unless KN is constant. Our first main step is to study 

the system and prove the following: 

Theorem 2.1. Given any holomorphic quadratic differential (j)dz2 E BQD{p), 

and any complete smooth conformal metric a2(z)ds2 on D with curvature K^ 

satisfying —b2 < Ka < —a2 < 0, there exist a smooth function w and a quasi- 

conformal diffeomorphism u from D onto D, such that 

(1) w and u satisfy the system of equations: 

(Apw = -K„(u) (e2- - |H|2e-2») - 1, 

\uY = p-2<]>e-2wuz, 

(2) u is normalized so that u(0) = 0 and u(l) = 1, 
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(3) e2wdSp is complete, 

(4) ||^||e-
2- < k < 1, 

where k is the constant given by Proposition 1.9 which depends only on ^H^HQ^. 

Remark 2.1. The quasi-conformal diffeomorphism u may be normalized by 

other methods. For example, we may normalize u so that u fixed three given 

points on the boundary of D. The problem on the uniqueness of the solutions 

w and u will be discussed in section 4. 

We will use the Schauder fixed point theorem to prove Theorem 2.1. Let 

<B ■= {w e C0(©) : [Ml* < +00}>   - 

where 

IMI» = SU
P P~

2
(
Z

)\
W

(
Z

)\ 

where p2(z) = (1_^[2s2. Here we may take any other continuous function 

/ > 0 in stead of p with the property that 1/f{z) —» 0 as \z\ —* 1. Note that if 

w € C0(D) and supu \w\ < oo, then w e 03. It is easy to see that (OS, || • ||^) is 

a Banach space. It is also easy to see that wn —> w in 5B implies that wn —» it; 

uniformly on compact sets on D as continuous functions. Let 

6 = {wG93:supM <'Ci and sup (||0||e-2u;) < fc}, 

where ' 
/      i     (i + Ji + WMiv 

d = max I log6, -log —^  

and 0 < k < 1 is the constant given by Proposition 1.9 which depends only 

on 6
2
||</>||QD- Since b > a > 0, C1 > 0. In fact, Ci > 0 unless b = a — 1 

and H^HQD = 0.. It is also easy to see that 6 is closefd and convex in 03. Let 

w = v — logp, where v is the solution given by Lemma 1.3 with c = a. By 

Lemma 1.3 and Proposition 1.9, w € 6. So 6 is nonempty. 

Now, given any holomorphic quadratic differential (f)dz2 G i?QD(D), and 

any complete smooth conformal metric cr2(^)ds2 on D with curvature Ko- sat- 

isfying -b2 < Ka < -a2 < 0, we define a mapping T from 6 to 03 as follows. 

For any w € 6, since supD (||0||e~2u;) < k < 1, by Theorem A.l, Theorem 

A.2 and Theorem A.4, there is a unique quasi-conformal diffeomorphism u 
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from D onto D such that u(0) = 0 and 'u(l) = 1, and u satisfies the Beltrami 

equation 

£-'-*-'•£■ 
Furthermore, u is in Ca(D) for some a > 0 depending only on k. By Propo- 

sition 1.4, there exists a unique v G C2>a(B) such that 

ApU = -Kriu) (e2v - m2e-2v) - 1 

and e2vdSp defines a complete metric on D with ||(/>||e~21' < 1. We define T(w) 

to be the unique solution v. Propositions 1.5 and 1.9 imply that 

re c 6. 

Lemma 2.2.  The map T is continuous on 6. 

Proof. Let wn —» w in 53, then wn converges locally uniformly to w on compact 

subsets of D. Let un be the quasi-conformal diffeomorphism on D such that 

un(0) = 0, ^n(l) = I? and 

(yUn -2"!   -2wr, V'U'n 

Similarly, let u be the quasi-conformal diffeomorphism on D, such that ^(0) = 

0, u(l) = 1, and 

First of all, Proposition A.5 implies that un converges locally uniformly to u 

in D. So, for any 0 < r < 1, there is a 0 < r' < 1 such that nn(Dr) C Dr/ 

for all n. Hence we conclude that the Ca(Pr) norm of K^Un) have a uniform 

bound which depends only on r, a, 6, ||</>||QD) and H^Hc1^,./)- By Proposition 

1.8, we conclude that T{wn) -^ T(w) locally uniformly in D as n —► oo. Since 

sup© |r(ii;n)| < Ci, supD |r(iy)| < Ci, and p~~l(z) —> 0 as \z\ —> 1, it is easy to 

see that T{wn) also converges to T(w) in the norm || • \\<£. This completes the 

proof of the continuity of T.    □ 

Lemma 2.3.  The image T& of 6 under the map T is precompact in 05. 
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Proof. By Proposition 1.7, and the proof of Lemma 2.2, any sequence {Twn} 

in TG has a subsequence which converges locally uniformly on compact subsets 

of ID). Since supjulTitfJ < Ci for all n, and p"1^) —» 0 as |z| —» 1, the 

subsequence is also convergent with respect to the norm || • 11$. Therefore T 

is precompact. 

Proof of Theorem 2.1. By Lemmas 2.2 and 2.3 and the Schauder fixed points 

theorem (see for example [10]), T has a fixed point w € 6. By the definition 

of T, we have a quasi-conformal diffeomorphism u on D, such that n(0) = 0, 

n(l) = 1, 

and 

A^ = -^M(e2--M2e-2-)-l, 

such that w e Cf0'c
a(D), e2™ds2 is complete, and ||(/>||e-2™ < k on D. By 

Theorem A.4 and using a boot-strap argument, one shows that w is in fact 

smooth. This completes the proof of the theorem.    □ 

Next, we will prove that the quasi-conformal map u obtained in Theorem 

2.1 is in fact a harmonic diffeomorphism. 

Lemma 2.4. Let N = (D,cr2|du|2) be a complete surface. Suppose the Gaus- 

sian curvature of N satisfies —b2 < KM < — a2 < 0 for some constant 

b > a > 0. Let (j)dz2 G BQD(3). Suppose w is a real valued smooth function 

on D and u is a quasi-conformal diffeomorphism from D onto KD such that 

(i) w satisfies the equation 

Apw = -KN{u)(e2w-\\<l>\\2e-2v')-l, 

(ii) e2wds2 is complete, 

(iii) e"2u,||(/)|| < k everywhere for some 0 < k < 1, 

(iv) u satisfies the Beltrami equation 
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Then u is a harmonic diffeomorphism from (ED, ds^) onto N, such that the 

Hopf differential of u is given by (frdz2 and ||<9u||2 = e2w. 

Proof. The method of proof is to define a metric in the target so that u is 

harmonic, and then we will show that the metric we defined is in fact the 

original metric on iV. Since u is a smooth quasi-conformal diffeomorphism, 

the Jacobi^an of u is positive and uz = du/dz ^ 0 everywhere on D. Let 

cri(C)|dC|2 be a conformal metric in the target. In order that u is harmonic 

under this metric, it is necessary that the d—energy density of u with respect 

to the new metric satisfies 

where p2\dz\2 is the Poincare metric on D. Hence, we define 

*K0 = e2w{z)p2(z)/\uz(z)\2, 

where z = ^~1(^). It is easy to see that a2(u)\du\2 is well defined since u is 

a diffeomorphism from D onto D. We claim that al(u)\du\2 is complete. In 

fact, at any z G D, 

«>?(C)|dCI2) = ^K(|dCI2) 
= crKu) \uzdz + Uzdz\ 

= crl(u) (uzdz + Uzdz) (Uzdz + uzdz) 

= al(u) (uzdz + e~2wp~2^uzdz) (uzdz + e~2wp~2(j)uzdz) 

= a2
1(u)\uz\2 {e-2wp-2 (cfidz2 + 4>dz2) + (1 + e"4-p-^]2) \dz\2} 

(2.1) = ct>dz2 + 4>dz2 + p2 (e2w + \m2e-2w) |dz|2, 

where we have used assumption (iv) and the definition of ai. Direct com- 

putations show that the two eigenvalues of the symmetric two tensor ^dz2 + 

'jdz2 + p2 (e2w + U\\2e-2w) \dz\2 are p2(ew + \\<f)\\e-w)2 and p2{ew - \\(f>\\e-w)2. 

By (2.1) and assumption (hi), 

^*(^|dC|2)>(l-fc)2e2V|d^|2. 

Assumption (ii) implies that u*(cr2|dC|2) is a complete metric and so is <72|d£|2. 
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Next, we want to prove that u is harmonic with respect to the metric 

ai(u)\du\2. Note that 

al(u)uzuz   =   e2w p2\uz\~
2uzuz 

= e
2vkrve-2u>-2</>uz- 

(2.2) •        =   4>, 

where we have used again the assumption (iv). Since </> is holomorphic, we 

have 

0   =   (t>-z 

=   (JIUZZUZ + 2ai(a1)uu2uzuz + (JIUZUZZ + 2ai{ai)uUzuzuz 

=   (TI{UZA + UZA) 

where A = uzz + 2{\og(Ji)uuzuz. By assumptions (hi), (iv) and the fact that 

uz ^ 0, we have A = 0. Therefore u is a harmonic diffeomorphism from 

(D,d4) onto iVi = (D^^dnl2) with Hopf differential given by 0d^2 and e2w 

is the 3-energy density of u with respect to cr2|dn|2. 

Finally, we want to prove that cri = cr. Using the Bochner formula in [20], 

we see that w also satisfies 

Apw = -KNl(u) {e2w - m2e-2w) - 1. 

So we have KN{u{z)) = KNl(u(z)) for all z G P by assumption (i) and (hi). 

Since u is a diffeomorphism, KN{U) = KNl(u) for all u G D. Hence we have 

—Aologcr   =    -^Aologcri 

where K(u) = KN{U) = KN^U). Therefore 

Since N is complete and if/v = K is pinched between two negative constants, 

by the generalized maximum principle Lemma 1.1, we have (J\<<J. Using the 

fact that Ni is complete, we prove similarly that a < cri. Therefore a = <Ji. 

So u is a harmonic diffeomorphism from (ID, ds2) onto N with Hopf differential 

given by (ftdz2 and ||9w||2 = e2w. This completes the proof of the lemma.    □ 
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By Theorem 2.1 and Lemma 2.4, we have the following particular case of 

the Main Theorem. 

Theorem 2.5. Let N = (P, cr^cful2) be a complete surface such that the Gaus- 

sian curvature of N satisfies —b2 < KN < —a2 < 0. Let (j)dz2 G BDQ{p). 

Then there is a quasi-conformal harmonic diffeomorphism u from (D, ds2) 

onto N with Hopf differential given by (f)dz2 and which is normalized so that 

u(0) = 0 and u(l) = 1. 

Remark 2.2. If N is the hyperbolic space, then u can be realized as the Gauss 

map of a complete constant mean curvature spacelike surface of hyperbolic 

type in Minkowski three space, see [22]. The complete surface is in fact iso- 

metric to (B,e2wds2
p). 

3. PROOF OF THE MAIN THEOREM 

Base on the Theorem 2.5, which is a special case, we will prove in this 

section the Main Theorem in its full generality. Let us first assume that the 

sectional curvature K^ of the target iV, a hyperbolic CH surface, satisfies 

—b2 < KN < —a2 < 0 for some constants b > a > 0. 

Theorem 3.1. Let N = (D,a2\du\2) be a complete surface with Gaussian 

curvature KN satisfying —b2 < KN < —a2 < 0 for some constants b > a > 0. 

Then given any holomorphic quadratic differential $ = (j)dz2 on O#0 with 

0 < RQ < oo, there is a harmonic map u from D#0 to N such that its Hopf 

differential is $. Moreover, if RQ ^ oo or <f> is not a constant, then u can be 

chosen to be a harmonic diffeomorphism into N. 

Proof. If $ = 0, we can take u{z) = Z/RQ for RQ ^ oo and the constant map 

for RQ = oo. So from now on, we assume $ ^ 0. 

By Theorem 2.5, for any i?o > R > 0, there is an orientation preserving 

harmonic diffeomorphism UR from D^ onto TV such that the Hopf differential of 

UR is $ restricted on D^ and ^#(0) = 0. In particular, (uR)z ^ 0 everywhere. 

The metric on the domain considered in Theorem 2.5 is the Poincare metric. 

As it is well known, the harmonicity depends only on the conformal structure, 

not the metric. So we can regard uR as a harmonic map from (DR, |dz|2), i.e. 
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with Euclidean metric, as well. But we should mention, on the contrary, that 

the energy densities depend on the metric on the domain. For example, the 

<9-energy density of UR is ||C?MR|| = tf^i*)!^! if we use the Euclidean metric 

on the domain. 

As before, let us write wR = log ||9itfl||- Then the Bochner formula in [20] 

takes the form 

(3.1) AoWR = -KN(uR)(e2w" - |0|V2w»), 

since the Euclidean metric is flat. From Theorem 2.5 that uR is a diffeomor- 

phism, we have 

(3.2) e2^>|0|, 

and e2u;R|d^|2 is a complete metric on 0#. For any 0 < r < R < i?o, by 

Lemma 1.3, there is a function va satisfying 

(3.3) A0va = a2(e2^-^\2e-2^) 

and e~2t;a|0| < 1 on Dr such that e2Vn|d2:|2 is a complete metric on Dr. By 

(3.1) and (3.2) we have 

(3.4) b2 (e2w" - \(t)\2e-2w") > A0wR > a2 (e2w» - \(f)\2e-2w") . 

Using Lemma 1.1, (3.3), the second inequality in (3.4), and the fact that 

e2i;a|d^|2 is complete on Dr, we see that 

WR < va 

on Dr. Hence for any fixed r', 0 < rf < r < JRO, there is a constant Ci 

independent of i?, such that for all RQ > R > r, wR < Ci on Dr/. By the 

definition of wR and the fact that uR is an orientation preserving diffeomor- 

phism, we conclude that the energy density of uR are uniformly bounded on 

compact subsets of B)Ro. Since ^#(0) = 0 for all i?, passing to a subsequence 

if necessary, uR converges uniformly in the C00 sense to a harmonic map u on 

compact subsets of D^. Moreover, it is easy to see that the Hopf differential 

of the limiting harmonic map u is $. So we have proved the first part of the 

theorem. 
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To prove the second statement, we note that if i?o 7^ 00 or (j) is not equal to 

a constant, then by Lemma 1.3 there is a function v^ satisfying 

(3.5) Aon = b\e2*» - \4>\2e'^), 

and e2vb > \<f>\ on D^ such that e2t;b|d^|2 is complete on BRo. Using Lemma 

1.1, the first inequality in (3.4), (3.5), and the fact that e2™/?|d2|2 is complete 

on DR, we see that 

on D/j. Since ewn = WOURW = cr(uR)\(UR)Z\ converges uniformly to \\du\\ = 

cr('u)|^z| on compact sets in D^, we have \\du\\2 > e2vh > \<f>\ everywhere in 

IS)Ro. We conclude that the Jacobian J(u) = \\du\\2 — \(j)\2\\du\\~2 is positive 

everywhere in Dj?0 and hence u is a local diffeomorphism. 

It remains to prove that u is globally one-to-one. In fact, the inequalities 

Vb <l WR ^ va and (3.2) not only imply the boundedness of \\du\\ and the 

positivity of J(u). They also imply that J(UR) is uniformly bounded away 

from zero on compact sets. Therefore, UR are local quasi-isometries with 

quasi-isometric constants independent of R. That is to say, for any point 

p G Dflo and q = u(p), there is a neighborhood U of p, a neighborhood V of q 

such that UR(U) is contained in V, UR maps U onto UR(U) quasi-isometrically, 

and the quasi-isometric constants can be chosen independent of R for R < R0. 

Since UR is a diffeomorphism for each R < R0, it is not hard to see that u 

must be one-to-one. This completes the proof of the theorem.    □ 

Remark 3.1. By the proof of the theorem, it is easy to see that, if (j) =fc 0 the 

harmonic map satisfies \\du\\ > 0 and e2u;|d2:|2 = ||9n||2|d2:|2 is complete on 

DR0. In fact, w > Vbj where Vb is the solution in (3.5). 

Now, we are going to remove the pinching condition on Theorem 3.1 and 

complete our proof of the Main Theorem. Recall that a hyperbolic CH surface 

is a complete simply connected surface N with Gaussian curvature KN of N 

satisfying —b2< KN < 0, and with positive first eigenvalue for the Laplacian 

for functions. We want to construct harmonic maps from H or M2 into a 

hyperbolic CH surface with prescribed Hopf differential. Since the KN is not 

bounded above by a negative constant, we cannot use Proposition 1.6.  One 
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obvious way to overcome the difficulty is to perturb the metric on iV so that 

the perturbed metric has negatively pinched Gaussian curvature. One can do 

this provided that the first eigenvalue of iV* is positive. If this is the case, then 

by the results in [17], N can be represented as (D, e^ds^) with |^| uniformly 

bounded, where ds^ is the Poincare metric. This fact will be used in the 

following proof of the Main Theorem to perturb the metric. Note that, since 

iV is simply connected, it is well-known that the first eigenvalue Xi(N) is 

positive if KN < —a2 < 0. 

Theorem 3.2 (Main Theorem). Let N = (D,e2,/;Gte2) be a hyperbolic CH 

surface with Gaussian curvature KM satisfying —b2< K^ < 0 for some con- 

stant b > 0 and Xi(N) > 0. Then given any holomorphic quadratic differential 

$ = (j)dz2 on Bflo; i?o = 1 or oo, there is a harmonic map u from D^ to N 

with Hopf differential given by $. Moreover, if RQ = 1 or (/> is not a constant, 

then u can be chosen to be a harmonic diffeomorphism into N. Futhermore, 

if i?o = 1 and $ G J52?Q(D), then u can be chosen to be a quasi-conformal 

harmonic diffeomorphism onto N. 

Proof. If $ = 0, then the identity mapping and constant mapping are the 

required harmonic diffeomorphism and harmonic map for RQ = 1 and RQ = oo 

respectively. So we only need to consider the case that $ ^ 0. 

As we mentioned above, |^| is uniformly bounded. So for all 0 < t < 1, 

e^ds2 is quasi-isometric to ds2 and hence complete on D. In fact, e-
2suvM < 

e2^ < e2supM. Denote (D,e2t,/,ds2) by Nu and let Kt be the Gaussian curva- 

ture ofNt. Then 

=       Aofo/Q + logp 

_      tApip + Ap log p 
~~ e2tifjp2 

-   -(1 - t)e-2^ + te^-^Kj,, 

where ds^ = p2|du|2, and we have used the equation p~2AQf +1 + KNe2^ = 0. 

Therefore, 

-62te2(1-t)sup|,/'1 - (1 - £)e2tsupM < Kt < -(1 - i)e-2t8upl*lJ 
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for all 0 < t < 1. And hence there exists a constant ft > 0 independent of t 

such that 

(3.6) -/?2<^<-(l-^)e-2isup|,/;|, 

for all 0 < t < 1. Since -(1 - t)e-2tsulpM < 0 for 0 < t < 1, by Theorem 3.1 

there is a harmonic map Ut from B#0 to iV* with ^(0) = 0 such that their 

Hopf differential is $. Furthermore, as it is stated in Remark 3.1, we also have 

\\dut\\ > 0 for all 0 < t < 1, e2wt\dz\2 = ||9^||2|dz|2 is complete on D^0, and 

Wt^ivp, where vp is the solution of (3.5) with b = {3. 

Case 1: If RQ = 1 or (f) is not a constant. 

In this case, by Lemma 1.3, we have e~2vfi\(f)\ < 1. Since Wt > vp for all 

0 < t < 1, for any fixed r, 0 < r < RQ, there is a constant 0 < k < 1 

independent of t such that 

e-2w<\(f)\ < 1 - k 

in Dr for all 0 < t < 1. Therefore 

(3-7) j^M < l - fc> 

on Dr. Now, from the proof of Theorem 3.1, ut is a harmonic diffeomorphism 

into Nt. It is easy to see that Xi(Nt) > C > 0 for some constant independent 

of t. So a local version of Theorem 1.1 in [17] implies that the energy density of 

Ut is locally uniformly bounded. Using ut{Qi) = 0 and the fact that e2t^ —► e2^ 

as t —> 1, we conclude that there is a harmonic map u from D^ into iV such 

that the Hopf differential of u is $. As in the proof of Theorem 3.1, one shows 

that u is in fact a harmonic diffeomorphism into iV. 

Case 2: RQ = oo and (/) is a nonzero constant. 

In this case, Vp = | log |^| = c is a constant on R2. For all 0 < t < 1, 

Ao^ = -Kt(nt)(e
2-' - MV2""-)- 

is also satisfied trivially by c. Note that e2w''|d^|2 and c|d2;|2 are both complete 

on R2. Since Kt is bounded between two negative constants, by Lemma 1.2, 

Wt = c. Therefore the energy densities of ut are again uniformly bounded and 

we can get the required harmonic map from B)^ = M2 to N as in case 1. Note 

that we may not have a diffeomorphism in this case. 
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Finally, for the last assertion of the theorem, we observe that, if i^o = 1 and 

$ £ J3JDQ(B), Theorem 2.5 and Proposition 1.9 imply that the harmonic maps 

Ut given by Theorem 3.1 are quasi-conformal diffeomorphisms with dilatation 

bounded uniformly by a constant 0 < k < 1 depending only on ||<I>||Q£). Then 

Theorem A.3 asserts that the limiting harmonic map n, which is not a constant 

map, is also quasi-conformal. This completes the proof of the theorem.    □ 

4. RESULTS ON UNIQUENESS 

In this section, we will prove some results on the uniqueness of harmonic 

diffeomorphisms with the same Hopf differential. The following theorem re- 

duces this question of uniqueness to the question of uniqueness of the solutions 

of the scalar equation satisfied by the d—energy density of the harmonic dif- 

feomorphism. 

Theorem 4.1. Let M = (3rjp
2\dz\2), where r = 1 or r = oo and p2\dz\2 

is the Poincare metric for r = 1, and the Euclidean metric for r = oo. Let 

N be a simply connected surface with nonpositive curvature. Let Ui and U2 be 

two orientation preserving harmonic diffeomorphisms from M into N with the 

same Hopf differential and with images Qi and 0,2 respectively. Suppose that 

\\dui\\ = ||c?tfc2||. Then U2 o (ui)-1 : fti —> ^2 is an isometry. If in addition, 

the metric of N is analytic, then U2 = LN 
OU

I for some isometry LN of N. 

Proof. Let (j2|du|2 be the metric of AT, where u is a complex coordinate. Let 

tfci, i = 1, 2 are orientation preserving harmonic diffeomorphisms with the 

same Hopf differential (fidz2. Note that \\dui\\ > 0, i = 1, 2. For any z G KSV, 

as in (2.1), the pull-back of the metric tensor on N under Ui is given by 

(u;) VI<M2) = Wz2 + $dz2 + p2 (e2^ + |M|2c-2u") |d^|2. 

for i = 1, 2, where Wi = log ||chxi||. By assumption, wi = W2^ and hence 

(uOVldul2) = (u2y(a2\du\2). 

From this, it is easy to see that U2 o (ui)"1 is an isometry from Qi onto ^2- 

Since A^ is simply connected with nonpositive curvature, ^2 0 (^i)-1 can be 

extended to a map from N into N which maps geodesies from some fixed point 

in Qi onto geodesies from its image in f^ under U2 o (ui)~l. If furthermore, 
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the metric on iV is analytic, then the extended map must be an isometry of 

N. This completes the proof of the theorem.    □ 

Next, we want to study the problem on uniqueness of the solutions of the 

scalar equation satisfied by the d—energy density of a harmonic diffeomor- 

phism. We need the following proposition, which may have interest in its own 

right. 

Proposition 4.2. Let H = (D, ds*) be the Poincare disk, and let N be a 

hyperbolic CH surface. Let u be an orientation harmonic diffeomorphism from 

M into N so that e2wds'^ is complete, where e2w = \\du\\2. Suppose the Hopf 

differential <pdz2 of u is in BQD{&). Then u is surjective, quasi-conformal, 

and the energy density of u is bounded. 

Proof. By the definition of a hyperbolic CH surface, the Gaussian curvature 

KN of iV satisfies — b2 < K^ < 0 for some b > 0. Since u is a diffeomorphism, 

e~2w;||^|| < 1. By the Bochner formula and Proposition 1.9, there is a constant 

0 < k < 1, such that 

(4.1) sup||0||e-2u;<A;. 
zeB 

Since e2wds2 is complete, by the computations right after (2.1) in the proof 

of Lemma 2.4, we see that the pull back of the metric of iV under u must be 

complete. Here we have used (4.1), and the fact that k < 1. Hence u must be 

onto. By (4.1) again, u is quasi-conformal. By [17], we conclude that u has 

bounded energy density.    □ 

If N is a hyperbolic CH surface, then the Gaussian curvature may not 

be bounded above away from 0. So we cannot apply Lemma 2.1 directly. 

However, in some cases, the results in Lemma 2.1 are still true: 

Lemma 4.3. Let Wi and W2 be two solutions of the equation 

where Ap is the Laplacian o/H, cpdz2 6 QD(]D)), and h is a continuous function 

on HI withO < h < b2 for some constant b > 0. Suppose e2wids2 is complete on 

B, and e~2wi\\(l)\\ < 1, fori = 1, 2, so thatwi — u^ is bounded.  Then w1 = u>2. 
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Proof. By the proof of Theorem 2.1 in [17], see also [22], one can prove that 

(4.2) e2->i 

for % = 1, 2. In fact, since 0 < h < b2, and e2wi\\(t)\\ < 1, 

Using the fact that e2wLds2 is complete, with curvature bounded below by 

—62, we see that — Wi is bounded from above. By the generalized maximum 

principle Lemma 1.1, (4.2) follows. Let 77 = wi — W2. By assumptions, r] is 

bounded. Let a > 1, then by (4.2) 

(4.3) awi -W2>(a-1) log - + 77. 

In particular, awi — W2 is bounded from below. By the generalized maximum 

principle Lemma 1.1, there is a sequence of point Zk in D, such that 

inf(aitfi - W2) = lim (awi - i^X^/O, 
B k—>-oo 

and 

(4.4) lim A(cm;i - W2)(zk) > 0. 

Since rj = Wi — W2 is bounded and e~2u;2||(^|| < 1, we may assume that 

lim ri(zk) = a, 
k—>oo 

and 

lime-^IMKzfcHm, 

for some constant a and m with 0 < m < 1. By (4.4) and the fact that Wi 

satisfies the equation in the lemma, given e > 0, we have 

-6 < h(zk) (ae2w^ - e2wa(Zfc) - ||0||2(^) (ac-2tt,l(zfc) - e-2u;2(2fc))) - a + 1, 

if k is large enough. Since a > 1, if we choose 6 small enough, then 

0 < h(zk) (ae2w(Zk) - e2w^Zk) - M\2(zk) (ae-2wi{Zk) - e"21"2^))) , 

provided that k is large enough. Since h > 0, we have 

0 < ae2nn{Zk) - e2w*{Zk) - \W(zk) (ae-2tl,l(Zfc) - e-2tx;2(zfc)) 
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for k large. Dividing the above inequality by e2w2 and let k —» oo, we have 

0<ae2a-l-m2(ae-2a-l). 

Let cti > 1 so that a* —► 1. Denote the corresponding a and m by a^ and m^ 

respectively. For all i 

(4.5) 0 < ^e2ai - 1 - (m^)2^^-2^ - 1). 

Since a* and ra* are bounded, we may assume that di —> a and m^ —► m. By 

the definition of the a^ and b^ and by (4.3), it is easy to see that 

(4.6) inf{wi — W2) > a. 

By (4.5), if we let i —> 00, we get 

0<e2a-l-m2(e-2a-l). 

It is then easy to see that a > 0. By (4.6), we have Wi > W2. Similarly, one 

can prove that W2 > Wi. So Wi = ^2.   D 

We will also need a similar result on C. The proof is different. 

Lemma 4.4. Let Wi and W2 be two solutions of the equation 

A0w = h(e2w - |(/>|2e-2-), 

on C, where AQ is the Euclidean Laplacian ofC, (j)dz2 G QD(C), and h is a 

continuous function on C with h>0. Suppose that Wi — W2 is bounded. Then 

Wi —W2 is a constant. If in addition, h is not identically 0, then Wi = W2. 

Proof. Let r) = Wi — W2- Then 

Aory = he2w> (e2r> - 1 - e"4^H2 (e-2r7 - 1)) . 

It is easy to see that at 77 > 0, AQT? > 0, and at 77 < 0, Ao?7 < 0. Therefore, 

min{77,0} is superharmonic and max{77,0} is subharmonic. Since they are 

both bounded, and every bounded superharmonic or subharmonic function on 

C is constant, 77 must be a constant. If in addition, h is not identically 0, then 

it is easy to see that the constant must be 0. This completes the proof of the 

lemma.    □ 
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Remark 4.1. In general, we cannot expect Wi to be bounded in the above two 

lemmas. 

Theorem 4.5. Let H = (D, ds^) be the Poincare disk and let N be a hyperbolic 

CH surface with Gaussian curvature K^. Let (f)dz2 be a holomorphic quadratic 

differential in BQD(3). Letui andu2 be two orientation preserving harmonic 

diffeomorphisms from H into N with the same Hopf differential (j)dz2. Suppose 

e2WidSp is complete on D, for i = 1,2, where Wi = log\\dui\\, and suppose 

KN{UI(Z)) = KN(u2(z)) for all z € D. Then there is an isometry iN of N 

such that U2 — in 0 ui' 

Proof. By Proposition 4.2, Ui and U2 are both surjective with bounded energy 

density. As in the proof of Lemma 4.3 

e2wi > — 
- b2' 

for i = 1, 2, where — b2 is the lower bound of KN. Hence Wi = log \\dui\\ is 

uniformly bounded in H, for i = 1, 2. Since Ui is a harmonic diffeomorphism, 

we have e2w;i|0| < 1.   Since we assume KN(UI) = KN(U2)1 by the Bochner 

formula, both Wi and W2 satisfy the same equation: 

A^ = /i(e2--||(/>||2e-2-)-l, 

where h = —KN(ui) — —KN{U2), 0 < h < b2. By Lemma 4.3, we conclude 

that Wi = W2. By Theorem 4.1, noting that Ui and U2 are both surjective, the 

theorem follows.   □ 

If the norm of (j)dz2 is not uniformly bounded, or if the domain is C, then 

the result in the previous theorem is still true if we make stronger assumptions 

that the curvature of N is pinched between two negative constants and the 

metric is analytic. 

Proposition 4.6. Let M = (Pr, p
2\dz\2) forr = 1 or r = oo, where p2\dz\2 is 

the Poincare metric ifr = 1, and p2 = 1 ifr = oo. Let N be a simply connected 

complete surface with Gaussian curvature KN pinched between two negative 

constants —a2 and —b2. Let (j)dz2 be a holomorphic quadratic differential in 

Dr, and let Ui and U2 be two orientation preserving harmonic diffeomorphisms 

from M into N with the same Hopf differential (j)dz2.  Suppose e2wip2\dz\2 is 
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complete on Dr, for i = 1,2, where Wi = log ||c?tti||, and suppose KN(ui(z)) = 

KN(u2(z)) for all z G Dr. Then U2 o (^i)"1 is an isometry from ui(M) onto 

1x2 (M). If in addition the metric of N is analytic, then there is an isometry 

iN of N such that u^ = LN O UI. 

Proof. The proof is similar to the proof of Theorem 4.1, by using Lemma 1.2, 

and Theorem 4.1. We omit the details.   □ 

If we assume W\ — W2 is bounded, then we can remove the restriction that 

the curvature of N is bounded above by a negative constant. 

Proposition 4.7. Let M = (pr,p
2\dz\2) for r = 1 or r = oo, w/iere p2|cb|2 

is the Poincare metric if r = 1, and p2 = 1 if r = oo. Le^ N be a simply 

connected complete surface with Gaussian curvature KN bounded between —b2 

and 0. Let (pdz2 be a holomorphic quadratic differential in Dr and let Ui and 

U2 be two orientation preserving harmonic diffeomorphisms from M into N 

with the same Hopf differential (f)dz2, where (p is not a constant. Suppose 

e2Wip2\dz\2 is complete on Dr; for i = 1,2, where Wi = \og\\dui\\, and suppose 

KN(ui(z)) = KN(u2(z)) for all z G Dr. Ifwi — W2 is bounded, thenu2o(ui)~1 

is an isometry from ui(M) onto ^(M). // in addition the metric of N is 

analytic, then there is an isometry L^ of N such that 112 = L^ oui. 

Proof In case r = 1, the proof is similar to the proof of the previous proposi- 

tion, except we use Lemma 4.3 rather than Lemma 2.1. If r = 00, then we can 

use Lemma 4.4 to get the result, provided we can prove KN(ui) = KN{u2) is 

not identically 0. To prove this, note that if KN{ui) is identically 0, then Wi is 

harmonic by the Bochner formula. By the proof of Lemma 4.3, Wi is bounded 

from below. So it must be a constant. However, Ui is a diffeomorphism implies 

that |0| < e2wi. Hence (j) is bounded. By the Liouville theorem for holomor- 

phic function, </> must be constant. This contradicts the assumption on (j). The 

proof of the proposition is completed.    □ 

Remark 4.2. If TV is the hyperbolic two space, then KN is identically -1, and 

the condition KN{ui) = KN{u2) is automatically satisfied. In this case, the 

metric is obviously analytic.   Hence Theorem 4.5 and Proposition 4.6 are 
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generalizations of the results in [22] and [4]. Here, the results have been 

proved without using the properties of constant mean curvature cuts. 

APPENDIX A. 

In this appendix, we collect some facts about quasiconformal mappings 

which are used in this paper. The main reference is Letho-Virtanen's book 

[12] and Ahlfors' book [1]. The first result we need is the following: 

Theorem A.l. Let f2 and £1' be simply-connected domains which are confor- 

mally equivalent. Suppose /J, G ioo(^) satisfies Halloo < 1-  Then there exists a 

quasiconformal homeomorphism u : Q —> f^ such that 

du        du 
-7— = u-r-    almost everywhere. 
oz        oz 

The quasiconformal homeomorphism u is unique up to a conformal transfor- 

mation on ft'. 

The next result gives the uniform Holder estimate for normalized family of 

quasiconformal mappings. 

Theorem A.2. Let u be a quasiconformal homeomorphism from D onto D, 

such that the dilatation ofu satisfies |/x| = \uz/uz\ < k < 1 almost everywhere, 

for some k < 1. Suppose u(0) = 0 or u fixes three points on the boundary, u 

is Holder with exponent (1 — k)/(l + k) on D and the Holder norm over ID is 

bounded by a constant depenending only on k and the method of normalization. 

Proof See Chapter 3 in [1] or Chapter 2 of [12].   □ 

From this, we have: 

Theorem A.3. Let {un} be a sequence of quasiconformal homeomorphism 

from D onto D with uniform dilatation bound, i.e. there is a constant k < 

1 such that \fin\ = \(un)z/(un)z\ < k < 1. Suppose one of the following 

conditions holds. 

(1) {un} fixes a point in the interior of 3; or 

(2) {^n} fixes three points on the boundary of 3. 

Then {un} is normal in B), i.e. any subsequence in {un} has a subsequence 

converges locally uniformly on compact subset in D. 
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For applying the Beltrami equation to study harmonic maps, we need also 

the following regularity result. 

Theorem A.4. Suppose the complex dilatation of a quasiconformal homeo- 

morphism u from D onto D is in C£C(D). Then u is regular, i.e. u is differen- 

tiable and its Jacobian never vanish on D. Moreover, if the complex dilatation 

ofu is inC%?(B), k> 0, then u is in C^ip) 

Proof. This first statement is a special case of Theorem 7.1 in Chapter 5, 

Section 7.1 of [12]. For the second statement, one can result [18].    □ 

Finally let us prove a continuity result for normalized quasiconformal home- 

omorphism form D to D. 

Proposition A.5. Suppose the complex dilatation iin of un : D —> ED con- 

verges a.e. to /JLQ, the complex dilatation of UQ : ID) —> D, and {un} and UQ 

are normalized so that they fix the same three points on the boundary or fix 

the same point in the interior and the same point on the boundary. Then un 

converges locally uniformly to UQ. 

Proof. First we notice that {un} is a normal family. Hence if we can show 

that UQ is the unique limiting function of the sequence, then un will actually 

converges to ^o- Let / be a limiting mapping from ID to ED. Then by Chapter 

2, section 5.6, Theorem 5.5 in [12], / is either a quasiconformal homeomor- 

phism from D onto D or mapping D to a boundary point of D. Since un are 

normalized, the later case cannot happen. Then Theorem 5.2 in Chapter 4, 

section 5.6 of [12] implies that / and -UQ have the same complex dilatation ^o- 

Therefore the normalization condition implies that / = UQ. This completes 

the proof of the proposition.   □ 
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