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LAGRANGIAN MINIMAL SURFACES IN 
KAHLER-EINSTEIN SURFACES OF NEGATIVE SCALAR 

CURVATURE 

YNG-ING LEE 

Assume Mi,M2 are closed surfaces with hyperbolic metrics 51,52 respec- 

tively. Then (Mi,gi) x (M2, #2) is a Kahler-Einstein surface of negative scalar 

curvature. In this paper we prove the following results: 

Theorem 1. Let X) be a closed surface with x(J2) = PiX(Mi) = P2x(M2), 

where Pi,P2 are positive integers. Suppose 

f = (/i,/2) : £ - (M1,g1) x (M2,02), 

^feere deg fi — Pi, deg f2 = —P2 or deg fi = —Pi, deg f2 = P2. T/ien i/iere 

ea:i5t5 a unique minimal surface in the homotopy class of f and this minimal 

surface is Lagrangian. 

Remark. The case Mi = M2 and Pi = P2 = 1 is proved by R. Schoen in [15]. 

Theorem 2. Suppose f = (/i,/2) : T2 -> (Mi,31) x (M2,g2), where T2 is 

a torus and [/(T2)] = ai x a2, oti G Hi(Mi), i — 1,2. Then there exists a 

unique minimal surface in the homotopy class of f and this minimal surface 

is Lagrangian. 

Theorem 1 and 2 can also be interpreted as the existence and uniqueness 

of Lagrangian minimal surfaces in the depicted homotopy classes and conse- 

quently these Lagrangian minimal surfaces are area minimizing in their hom- 

topy classes.  We will discuss more about this point in next section.   Along 
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the line of this second intepretation we study the relations between symplectic 

geometry and Riemannian geometry, and show the following result. 

Proposition 1. Let (N,g) be a Kdhler-Einstein surface with Ci < 0, where 

Ci is the first Chem class of (N,g). Suppose (3 € H2(N) and there exists an 

embedded totally real surface J2r of genus r representing j3. Then every con- 

nected embedded minimal surface in (3 has genus no less than r. The equality 

holds if and only if the embedded minimal surface is Lagrangian. 

Remark 1. The Kahler-Einstein surface N in Proposition 1 is not necessarily 

a product space. 

Remark 2. The complex structure with respect to which ^r is totally real 

may be different from the one of g. All we need is that the first Chern classes 

of two complex structures are the same. 

The paper is organized as follows. In Section 1 we give an introduction 

of the known interesting results about the Lagrangian minimal surfaces. In 

Section 2 we review some necessary background of harmonic map theory. In 

the last section we proves the theorems. 

Acknowledgement. This work is based on part of the author's thesis. She 

would like to express her sincere thanks and deep gradititude to her advisor, 

professor Richard M. Schoen. She also like to thank the referee for some valued 

suggestions on the revision of the original manuscript. 

1. INTRODUCTION 

A symplectic manifold (N2n,uj) is a 2n-dimensional manifold with a closed 

nondegenerate 2-form u;, which is called a symplectic form. The most nat- 

ural and important submanifolds in a symplectic manifold are the so-called 

Lagrangian submanifolds. They are n-dimensional submanifolds of (iV2n,a;) 

on which a; vanishes. A Kahler manifold can also be viewed as a symplectic 

manifold with its Kahler form as the symplectic form. One can then combine 

the Riemannian structure and symplectic structure and study the Lagrangian 

minimal submanifolds which are both Lagrangian and minimal. 
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Lagrangian minimal surfaces have some very nice features. For instance, 

every Lagrangian minimal surface in R4 or a K-3 surface is holomorphic with 

respect to some compatible complex structure (see [8], [21]). Therefore, in 

these two cases Lagrangian minimal surfaces have all the same properties as 

holomorphic curves. Although this does not hold in general, there are still 

other interesting properties about Lagrangian minimal surfaces. 

When N is a, Kahler manifold of nonpositive Ricci curvature, every La- 

grangian minimal submanifold in N is stable. (See [3], [12], [13].) The unique- 

ness in our Theorem 1 depends heavily on this property. Moreover, J. G. Wolf- 

son has shown that a totally real minimal surface in a Kahler-Einstein surface 

with Ci < 0 is Lagrangian [21]. It indicates that the Lagrangian minimal sur- 

faces in Kahler-Einstein surfaces with Ci < 0 have a kind of "rigidity". These 

two features make it possible to develop a deformation theory for Lagrangian 

minimal surfaces in the moduli space of Kahler-Einstein metrics with Ci < 0 

[11]. We will discuss this in another paper. 

R. Harvey and B. Lawson studied the so-called special Lagrangian sub- 

manifolds in i?2n, which are calibrated by the n-form Re (dzi A • * • A dzn). 

(See [7],[8].) Being calibrated implies volume minimizing. So in particular, 

the special Lagrangian submanifolds are Lagrangian minimal submanifolds. 

Using the idea of calibrations, one can show that every Lagrangian minimal 

submanifold in a Kahler-Einstein manifold N with Ci (N) = 0 is volume min- 

imizing. It is false for the case Ci = Au; with A > 0, and is unknown for the 

case Ci = XLJ with A < 0. The uniqueness of the Lagrangian minimal surfaces 

in the classes mentioned in Theorem 1 and 2 implies that these Lagrangian 

minimal surfaces are volume minimizing in their homotopy classes. This gives 

some positive evidence for the case Ci = ACJ, A < 0. 

Unfortunately, very few is known about the existence of Lagrangian minimal 

submanifolds except those examples constructed by R. Harvey and B. Lawson 

in [8] and some very obvious ones. In fact, R. Bryant proved that both Ci (rep- 

resented by the Ricci form) and u> vanish on Lagrangian minimal submanifolds 

[2], therefore one cannot expect the existence of Lagrangian minimal subman- 

ifolds in a Kahler manifold in general. However, this obstruction disappears 

if we restrict the discussion on a Kahler-Einstein manifold. R. Bryant showed 
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the local existence of Lagrangian minimal submanifolds in this situation [2]. 

In Theorem 1 and 2, we obtain the global existence for some cases. 

2. PRELIMINARIES 

Most of the techniques we use are from the theory of harmonic maps. So 

in this section we want to introduce some basic definitions and facts about 

harmonic maps. 

Let M, N be compact manifolds with Riemannian metrics 5, h respectively. 

Given a smooth map u : M —* N, one can define the energy of u by 

E(u) = f Trgu*(h)dvg, 
JM 

where Trg means trace with respect to the metric g and dftg denotes the 

volume measure associated to the metric g. The critical points of this energy 

function are called harmonic maps. If N is isometrically embedded in i?^, the 

harmonic map equation can be written as 

(*) A«' + ^Mx))—— = 0,  i = 1,... , fc. 

Here the double indices means a summation and r*-j are the Christoffel symbols 

oih. 

If dim M = 2 and z = x1 + ix2 is a complex coordiate on M, denote 

dz~2^dx1     ?&c2^     &z~ 2W +tdx^' 

One can define the Hopf differential of u on M: 

$u    =u*(h)2'0dz2 

~~ lbii dz   dz ^ 

= lA\-t\2-\-t\2-*<-t,-t>)dz2- 
It can be checked by (*) that if u is a harmonic map then the Hopf differential 

is a holomorphic quadratic differential on M. The map u is conformal if and 

onlyif$n = 0. 

Now we also assume dimN = 2.   Let z = x1 + ix2, u = u1 + iu2 be 

complex coordinates on M, N respectively. Then the metrics of M, iV are of 
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the forms \2(z)\dz\2, cr2(u)|d^|2 respectively. The map u is represented locally 

by u = u(z). Then the harmonic map equation becomes 

,    N d2u      ^dloga dudu 
(**)  h2 = 0 

dz&z du    dz dz 

and the Hopf differential $n can be expressed as 

fdul du1  .  du2 du2 N , 2_   2/ ^dudu    2 

♦• = ^W(aFaF+fe&»^-^Wfe^- 
Define 

\du\\z) = A-2(2)a2Kz))|^|2,        |5n|2(^) = A" WK.))||||2. 

Prom the harmonic equation (**) and a standard argument [1], it follows that 

if \du\2 (respectively l^l2) is not identically zero, it has at most a discrete set 

of zeros. Again by (**), one can derive the following Bochner equations 

(1) Ap log \du\2 = -2Kh • J(u) + 2Kg 

(2) A, log \du\2 = 2Kh • J{u) + 2Kg, 

at points where \du\2 (respectively \du\2) is nonzero [17]. Here J(u) = \du\2 — 

\du\2 is the Jacobian determinant of u, and Kg, Kh are the Gaussian curvature 

fuctions of 5, h respectively. Using the same argument as in [17], their Theorem 

3.1 can be generalized to the following lemma: 

Lemma 1. Suppose (Mi,31), (M2, (72) are closed Riemann surfaces of genus 

r,i,r2 respectively, the Gaussian curvature Kg2 < 0 and f : (Mi, (71) —> (M2,32) 

is a harmonic map of degree s 7^ 0.  We have 

(a) Ifri = r2 > 1 and \s\ = 1, then f is a diffeomorphism. 

(b) //ri,r2 > 1 and |x(Mi)| = |s-x(M2)|, where x is the Euler character- 

istic number, then f : Mi —> M2 is a covering map with «/(/) ^ 0. 

Proof. Integrate both sides of equations (1), (2) and follow a standard residue 

argument, we get 

(3) Y, np = -5(4r2 - 4) + (4ri - 4) provided \df\ ^ 0 on Mi 
p€Mi 

(4) Y^mv = s(4r2 - 4) + (4r1 - 4)       provided \df\ ^ 0 on Mi, 
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where np (respectively mp) is the order of zero of df (respectively df) at p. 

Suppose s > 0, it follows that \df\2 is not identically zero. Because we 

have x(Mi) = s • xCMz)* the equality (3) becomes X)pGMi nP — 0- That is, 

np = 0 for any p G Mi. Therefore, \df\2 > 0 on Mi. We first claim that 

J(f) > 0 on Mi. Suppose to the contrary that 

i? = {peM1:J(/)(p)<0} 

is not empty. Then 

Idjf < |a/|2 on D and \df\2 = \df\2 on dD. 

Because \df\2 > 0 on Mi, it follows that \df\2 > 0 on D U dD.   We can 

substract (2) from (1) to obtain 

m A log -dk = -Wg2J{f) on D U dD. 

Thus log j-^L is smooth and superharmonic on 2?. Also 

lafl2 \df\2 

log ^V < 0 on D andlog p^- = 0 on dD. 

By the minimum principle it follows that 

log ^^ EE 0 on L>, i.e. J(/) = 0 on D. 

It is a contradiction. Thus J(/) > 0 on Mi. 

Because J(/) > 0 on Mi and it is not identically zero, we then have 

J(/)(p) = 0 if and only if |9/(p)| = |9/(p)| = 0 as in Proposition 2.2 of 

[17]. Suppose to the contrary that J(/)(p) = 0 but |0/(p)| = |9/(p)j > 0. 

Taking a small disk V about p where |<9/| > 0, from (1) and (2) one has 

A1°g!§€ = -4K*(|0/r-|a/|2) < -4^2Sar5/|2(j|^-l) < clog |W 

where c is a positive constant. That is, the non-negative function h — log JI^L- 

satisfies A/i < ch. By Lemma 6' of [10], it implies fvh dA < c'h(p) for some 

constant c' > 0. Thus /i = 0 in V, which is a contradiction. Hence 

|0/(P)| = |3/(P)| = O 
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Because of \df\2 > 0 on Mi, we have J(f) > 0 on Mi and / is a covering 

map (it is a diffeomorphism when 5 = 1). If s <0, a similar argument shows 

that the same result also holds.   □ 

3. MAIN THEOREMS 

Let N be a, compact Kahler surface. The necessary and sufficient conditions 

for /? € H2(N) to have a representative which is a Lagrangian surface are 

[u](f3) = 0 and Ci(JV)(/3) = 0. (See [4], [11].) These two conditions in a Kahler- 

Einstein surface become only one condition [UJ](/3) = 0. A class satisfying the 

condition is called a Lagrangian class. It only makes sense to discuss the 

existence of Lagrangian minimal surfaces and whether a surface is Lagrangian 

in a Lagrangian class. Here we first determine the Lagrangian classes in N = 

(Mi, (ji) x (M2,52)- We have the formula 

H2(N) = fr2(Mi) x Ho(M2) + #o(Mi) x #2(M2) + H1(M1) x tfi(M2). 

The Kahler form u in the product metric is u; = UJI + 002, where uji is the 

Kahler form and is also the volume form for (M^,^), i = 1 or 2. It is clear 

that the action of u; on ai x 0^2 is 0, where c^ G Hi(Mi),i = 1,2. Thus ai x a2 

is a Lagrangian class. The action of UJ on [Mi x 1] is 

f        UJ = [   U! = -27rx(Mi), 
J[MiXl] JMX l[M1 xl] 

where x(^i) ^ the Euler number of Mi. The last equality follows from Gauss- 

Bonnet Theorem and the facts that gi has constant curvature —1 and Ui is 

the volume form on Mi. Similarly, we have 

/        UJ = -27rx(M2). 
J[\XM2] 

Thus Pi • [Mi x 1] - P2 • [1 x M2] is a Lagrangian class, if Pix(Mi) = P2X(^2) 

and Pi,P2 are positive integers. Hence a general Lagrangian homology class 

in (Mi,#i) x (M2,g2) can be written as a linear combination of the classes 

Pi • [Mi x 1] - P2 • [1 x M2] and ai X 0^2, where OLI G ifi(Mi) and 0.2 £ H1(M2). 

In some of the Lagrangian homotopy classes, one can prove very strong 

results. 
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Theorem 1. Let Y, be a closed surface with xO — PiXi^i) — -PzxCMz); 

where Pi)P2 are positive integers. Suppose 

f = (/i,/2) : E -> (Mi^i) X (^2,92), 

where deg fi = Pi, deg /2 = —P2 ^^ ^5/1 = — A? deg f2 = iV T/ien ^Ziere 

exisfe a unique minimal surface in the homotopy class of f and this minimal 

surface is Lagrangian. 

The proof depends on the next lemma, which is a generalization of Lemma 

2.10 in [15]. 

Lemma 2. Suppose M, Mi,M2 are closed Riemann surfaces and fi, $2 are 

harmonic maps from (M, g) onto (Mi,gi), (il^,^) respectively. Moreover, 

J(fi) > 0, J(/2) < 0 and Kgi = Kg2 = —1. // ^/ie absolute values of their Hopf 

differentials coincide, i.e. I^/J = |$/2|, ^en 

|9/i| = |9/2| and |a/i| = |a/2|. 

Proo/. Substract (2) from (1), we get 

Alog M£ = -4^ JCA) = 4(|a/1|
2 - I^AI

2
). 

l^/l 12 

If we define u?i = log ||TT, then 

2A^1 = 41^11^1(111 - M) = 41^1(6- - e"-). 

That is, 

Ai^i = 4|$/1|sinht(;i. 

Similarly for ^2 = log ||^|, we have 

Au>2 = 4|$/2|sinh2i;2. 

Let rip (respectively rap, n^ and mp be the order of zero of dfi (respectively 

9/i, 9/2 and 19/2) at p. Because 

1^1 = 1^1     i.e.      \dh\\dh\ = \df2\\df2l 
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one has np + mp = n^ + m^. On the other hand, J(/i) > 0 and J(/2) < 0 

(therefore nv = O^m^ = 0), it follows that np = m^ and mp = n^. Hence 

Wx + W2 is a regular function on M satisfying 

A(TI;I + 1^2) = 4|$|(sinhtyi + sinh^), 

where |$| = [^/J = |$/2|. At a maximal point p of wi + W2 one has 

A(w1 + W2)(p)<0, 

it follows that 

Hence 

sinhu?i(p) + sm]iW2(p) < 0. 

(wi + W2)(p)<0. 

However, at a minimal point q of Wi + it^ one has 

K + ^2)(9)>0. 

Therefore 

^+^2 = 0     i.e.       --      ,      = 1. 
l^/i I |9/21 

This together with the fact that |<9/i||<9/i| = |<9/2||<9/2| follows that 

|3/i| = |0/2|    and    la/x^l^/al-    D 

We also need the following existence result by R. Schoen and S. T. Yau. 

Lemma 3 ([16]). Let N be a compact Riemannian manifold. Let f be a con- 

tinuous map from a Riemann surface M into N. Suppose the induced map of 

f on the fundamental group given by /* : 7r1(M) —> 7ri{N) is injective; then 

there is a branched minimal immersion h : M —> N so that h* = /* on TTI (M) 

and the induced area of h is least among all maps with the same action on 

7ri(M). If ^{N) = 0, then h can indeed be deformed from f continously. 

Proof of Theorem 1. Assume deg fi = Pi, deg f2 = —P2. We first prove that 

there exists at most one minimal surface in the homotopy class of /. For any 

hyperbolic metric g' on 2, there exists a unique harmonic map fg, homotopic 

to / from (E^O -> (Afi,gi) x (Ms,^). (See [6], [9].) Denote the Teichmuller 

space of E by Tr, where r > 1 is the genus of E-   Let P be a point in Tr 
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and CPO be a representative for P. Because of the conformal invariance 

of the energy function JE?(-), we can define E(P) = E(fgi) whose value is 

independent of the metric used to represent P. The function E is proper on 

Tr and its critical points are precisely the minimal immersions homotopic to / 

from Yl —* N. (See [16].) We claim that the minimal surfaces in the homotopy 

class, if there exists any are in fact Lagrangian. Assume (X], g) is a critical 

point. Then fg : (£,0) —► (Mi,51) x (M2,#2) is a conformal harmonic map 

[18], and the projection maps into the factors satisfy: 

fg1>} : (SjflO ~~^ (Mi,5i) is a harmonic map of degree Pi, and 

/j2^ : (S)^) ""> (M2,5'2) is a harmonic map of degree —P2- 

Because *(£) = Pix(Mi) - P2X{M2), by Lemma 1 we get that /j1), /j2> are 

covering maps and J(f^) > 0, J(fg2^) < 0. The conformality of /^ simply 

says that $f(i) = —$f(2), and hence from Lemma 2 we have l^/^ | = |<9/P^| 

and \dfM\ = \df(% Therefore, J{f^) = -J(/p
(2)) and we conclude that 

the symplectic form CJ vanishes on fg(J>2)' That is, fg(J2) is Lagrangian. 

Therefore, we conclude that every minimal surface in this homotopy class is 

a Lagrangian minimal immersion. (The immersion follows from the fact that 

J(f^) > 0.) Lagrangian minimal immersions in a Kahler manifold of non- 

positive Ricci curvature are always stable. (See [3], [12], [13].) In particular, 

the result holds on a Kahler-Einstein surface of negative scalar curvature. Be- 

cause E is proper on Tr and all of its critical points are local minima, we then 

conclude by elementary Morse theory that there is at most one critical point. 

For any given metric #', there exists a unique harmonic map fg* homo- 

topic to / from (E,^) -+ (Mi,51) x (M2)g2). Because *(£) = Pix(Mi) - 

P2x(M2), fg, and fg,' are covering maps by Lemma 1. Therefore the induced 

map /* : 7ri(M) —» 7ri(N) is injective. By Lemma 3 there exists a branched 

minimal immersion in the homotopy class of /. From the discussion above we 

know that the branch point cannot occur (since J(fg,) > 0). In summary, we 

have shown that there exists a unique minimal surface in the homotopy class 

of / and it is Lagrangian.   □ 

Remark. Theorem 1 can also be proved by using Lemma 1 and the result for 

the simple case Mi = M2 and Pi = P2 = 1. The argument follows from lifting 
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the map / into a covering space iV = J^ x X)- One can see that the unique 

minimal surface in the homtopy class of the diagonal in iV, which is a covering 

of the unique minimal surface in the homotopy class of /, is embedded in N. 

For other Lagrangian classes which are of the form ai x 0^2, oti € Hi(Mi) 

and 0:2 G H^Mz) we have 

Theorem 2. Suppose f = (/i,/2)-: T2 -> (Mi,gi) x (M2,p2), ^/iere T2 is 

a torus and [f(T2)] = ai x a2, ce^ € Hi(Mi),i — 1,2. T/ien t/iere exists a 

unique minimal surface in the homotopy class of f and this minimal surface 

is Lagrangian. 

Proof. Because [/(T2)] = ai x #2, we have that /* : TT^T
2
) —> 7ri(iV) is 

injective. By Lemma 3 there exists a branched minimal immersion in the 

homotopy class of /. Suppose </>(T2) is minimal, (j) '- T2 —> N is a conformal 

harmonic map with respect to the induced metric g. One can classify all 

the harmonic maps from T2 —* y, where Y is a closed Riemannian surface 

(see [14]). From the conditions we have, we can conclude that 01 maps T2 

onto a closed geodesic Ci of (Mi,<7i) and fa maps T2 onto a closed geodesic 

C2 of (M2,32)- Therefore </>(T2) is Lagrangian. Let r^ be a closed curve in 

the homotopy class [Cj] with the smallest length. The curve r^ will then 

be a geodesic in Mj and there exists a harmonic map Fj from (T2,g) onto 

Tj C Mj. Since i^- is homotopic to fj, by the uniqueness of harmonic maps in 

a homotopy class (see [9]) we have (j)j is the composition of a rotation of r^ 

with Fj. Therefore, (f)(T2) = ri x r2. Since the images ri and r2 are unique, it 

implies the uniqueness of minimal surfaces in this homotopy class and clearly 

it is Lagrangian. Moreover, rank J((j)j) = rank J(Fj) — 1, but at a branch 

point rank </(</>) = 0, therefore the minimal surface has no branch point.    □' 

About the relations between minimal surfaces and Lagrangian surfaces, we 

have the following proposition: 

Proposition 1. Let (N,g) be a Kdhler-Einstein surface with Ci < 0 (not nec- 

essarily a product space).  Suppose (3 G if2(^0 and there exists an embedded 
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totally real surface J]r of genus r representing j3. Then every connected em- 

bedded minimal surface in (3 has genus no less than r. The equality holds if 

and only if the embedded minimal surface is Lagrangian. 

Proof For a real surface L which has isolated complex tangencies in a complex 

surface, there are relations between the number of complex tangencies and 

ci, x(i') ,x(l/) where x(^) is the Euler number for the normal bundle (see 

[5]). In particular, for a totally real surface which has no complex tangency 

representing /?, we have 

X(D+XM = 0,    and   c1(iV)(^) = 0. 
r 

When a surface is embedded, xM = (P* U/?»)(#) where ^ 6 H2(N;Z) 

denotes the Poincaxe dual of /3. Thus we have 

0 = (2 - 2r) + (/?« U pt)(N) = ci(#)(/?). 

For a minimal immersion f(M) which is not holomorphic or antiholomor- 

phic in a Kahler surface, J. G. Wolfson proved that its complex and anti- 

complex points are isolated and each has a negative index. If we denote the 

numbers of complex points and anticomplex points of /(M) by P and Q re- 

spectively, we then have 

-P-Q = X(M) + X(v) 

Q-P = c1(N)(MM}). 

(See [19], [20], [21] and also compare with [5].) Suppose the genus of M is k 

and /(M) is embedded. We then get 

-P - Q = (2 - 2k) + (/?» U ^){N) 

<0 

= c1(iV)(/?) 

= (2-2r) + (ptupt)(N). 

It follows that k > r. The equality holds if and only if P — Q = 0 which 

means that f(M) is a totally real surface. When N is a Kahler-Einstein 

surface of negative scalar curvature, J. G. Wolfson [21] proved that every 
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totally real minimal surface in N is a Lagrangian surface. Therefore f(M) is a 

Lagrangian surface. The case that /(M) is a connected embedded holomorphic 

or anti holomorphic curve cannot happen in a Lagrangian class. This proves 

Proposition 1.    □ 

Remark 1. The equation for the embedded totally real surface 

0 = (2 - 2r) + (/?« U @){N) = c^NM) 

depends only on the complex structure. All the arguments go through if the 

two complex structures are different but have the same first Chern class. 

Remark 2. In the proof of Proposition 1, we also show that if there is no 

restriction on Ci of the Kahler-Einstein surface (#,(/), then in the conclusion 

"Lagrangian" is replaced by "totally real". Simlar conclusions hold when iV 

is only a Kahler surface. 
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