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0. INTRODUCTION 

Let M and iV be closed (connected) non-positively curved Riemannian man- 

ifolds and a : 7ri(M) —► 7ri(N) be an isomorphism. We showed in [9] that a 

is induced by a homeomorphism at least when dim M ^ 3,4. This result was 

motivated by Mostow's Strong Rigidity Theorem [23] which showed that a is 

in fact induced by an isometry if M and iV" satisfy some more geometric con- 

straints and provided we are allowed to change the metric on M by scaling it 

on each irreducible metric factor of its universal cover. These extra constraints 

are that both manifolds be locally symmetric spaces and that the universal 

cover of M does not have a 1 or 2 dimensional metric factor. (A slightly 

weaker condition on the universal cover is sufficient and the condition dim 

M 7^ 3,4 can be dropped.) Eberlein [5] and Gromov [2] showed Strong Rigid- 

ity still holds if Mostow's hypothesis that N is locally symmetric is dropped 

and the hypothesis on M is strengthened as follows: M must have some sec- 

tional curvature equal to 0 and no finite sheeted cover of M is a non-trivial 

metric product. The weaker conclusion of [9] is called topological rigidity and 

smooth rigidity would mean that a is induced by a diffeomorphism. We gave 

examples in [8] showing that smooth rigidity fails for compact non-positively 

(even negatively) curved manifolds. We in fact constructed a pair of compact 

negatively curved Riemannian manifolds M and N which are homeomorphic 

but not diffeomorphic, and additionally M is a locally symmetric space and 

M x M is not diffeomorphic to N x N. Hence neither of the two extra condi- 

tions on M in the Eberlein-Gromov strong rigidity theorem can be removed 
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and still even get smooth rigidity. 

There is another variant of strong rigidity recently proven. In it, Mostow's 

condition on M is strengthened to require that the sectional curvatures of 

M are all negative but not constant. And his condition that N be locally 

symmetric is dropped; but added is the condition that all of the sectional cur- 

vatures of N lie in the interval [—a2, — a2/4] for some number a ^ 0; i.e., N 

is l/4-pinched. This result was proven independently by Hernandez [17] and 

Yau-Zheng [26] when M is covered by complex hyperbolic space after scal- 

ing its metric by a positive constant. When M is covered (after scaling) by 

quaternionic hyperbolic space or the Cayley hyperbolic plane, the result fol- 

lows from the work of Hernandez [17], Corlette [4] and Gromov [13]; cf. [6, p. 

213]. On the other hand, we constructed examples in [10] of a homeomorphic 

pair of compact negatively curved Riemannian manifolds M and iV which are 

not diffeomorphic. In these examples, M is a locally symmetric space of non- 

constant sectional curvatures and N is almost 1/4-pinched. In fact, given any 

real number b > 4, examples are .constructed where all of the sectional curva- 

tures of TV lie in the interval [—6, —1] and M is covered by complex hyperbolic 

space. Hence the 1/4-pinching condition on N in the Hernandez, Yau-Zheng 

strong rigidity theorem cannot be removed and still even get smooth rigidity 

in general. 

One can also ask whether topological rigidity can be improved to PL-rigidity 

when M and N are closed non-positively curved; i.e., is a always induced by 

a piecewise linear homeomorphism; i.e., by a simplicial isomorphism between 

piecewise smooth triangulations of M and iV? But again this is generally not 

so. Ontaneda [24] has in fact recently constructed examples of pairs of home- 

omorphic 6-dimensional compact negatively curved Riemannian manifolds M 

and N which are not PL-homeomorphic. Given e > 0, he also has examples 

where the sectional curvatures of both M and TV are contained in the interval 

[—1 — e, — 1]; in fact, M is a real hyperbolic manifold. 

These results motivate the following query. 

Question. What extra geometric conditions will guarantee smooth (or PL) 

rigidity? 
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Searching for an answer led us back to Mostow's original work on strong 

rigidity [22]. He showed there that when the actions of 7ri(M) and TT^N) by 

deck transformations on the universal covers of M and N are topologically 

conjugate and this conjugacy extends to a C1- conjugacy at oo, then strong 

rigidity holds even if M and N are hyperbolic 2-manifolds. The assumption 

here is that M and N are both compact locally symmetric spaces of non- 

compact type; and at oo means on the Furstenberg maximal boundary of 

the corresponding symmetric spaces. When M and N are strictly negatively 

curved, the Furstenberg maximal boundary is the same as the Eberlein-O'Neill 

visibility sphere [7]. 

We now proceed to formulate our partial result Theorem 0.2 on this Ques- 

tion. We fix the following assumptions and notation throughout the remainder 

of this paper. Let M and N be compact (connected) non- positively curved 

Riemannian manifolds and let a : 7ri(M) —> 7ri(N) be an isomorphism. We 

also assume that dim M > 5. Let M and N denote the total spaces of the 

universal covers of M and N. Identify 7ri(M) and 7ri(N) with the groups of 

deck transformations of M and N, respectively. Let M(oo) and N(oo) denote 

the Eberlein-O'Neill [7] visibility spheres of M and N. Recall that a point on 

M(oo) is an asymptoty class of geodesic rays in M. Let S'M —» M denote the 

tangent sphere bundle of M. Then there is a natural map 

F:SM-> M(oo) 

defined by F(v) = 7f,(+oo). Here ^ is the unique geodesic in M satisfying 

7v(0) = v and.7v(+op) is the asymptoty class containing the geodesic ray 

{7t;(£) | * > 0}. The map JP restricted to any fiber of S'M —> M is a home- 

omorphism onto M(oo). Consequently, the action of 7ri(M) on M naturally 

induces an action on M(oo). 

Adjoining M(oo) to M gives a natural compactification M for M where M 

has the cone topology in the following sense, cf. [6, p. 182]. Let to : [0,1] —> 

[0, +oo] be any homeomorphism with a;(0) = 0 and x be any point in M. Then 



566 F. T. FARRELL AND L. E. JONES 

the function 

v *-* 7t;/H.(^(|v|)),    v ^ 0 

0 i—> x 

is a homeomorphism of the closed unit radius ball BXM with center 0 in TXM 

to M. (TXM denotes the tangent space to M at x and SXM = dBxM.) The 

actions of 7r1(M) on M and M(oo) then glue together yielding an action on 

M. 

DEFINITION 0.1. The visibility sphere M(oo) is naturally C1 provided M(oo) 

has a C1- manifold structure such that F : S'M —> M(oo) is a (^-map and F 

restricted to each fiber SXM of S'M —» M is a C1- diffeomorphism. 

Remark 0.1.1. If M(oo) is naturally C1, then this C1 structure is unique and 

the action of 7ri(M) on M(oo) is via C^diffeomorphisms. 

Theorem 0.2. The isomorphism a is induced by a smooth diffeomorphism 

f : M —► N when the following 4 conditions all hold. 

1. M(oo) and N(oo) are both naturally C1. 

2. The actions (M(oo),7r1M) and (N(oo),7riN) are a-equivariantly C1- 

conjugate. 

3. The Cl-conjugacy of condition 2 extends to an a-equivariant C0-semi- 

conjugacy from (M, TTIM) to (N^niN). 

4. The Euler characteristic x(M) = 0. 

Remark 0.2.1. Condition 2 of 0.2 means there is a C1- diffeomorphism (f) : 

M(oo) —> iV(oo) such that (^(^rc) = a(x)0(x) for each x G M(oo) and ^ G 

7ri(M). Condition 3 means 0 extends to a continuous map 0 : M —> iV such 

that 0(5^) = Q:(5)0(X) for all x G M, g G 7ri(M). It is important in proving 0.2 

that this semi-conjugacy 0 can be improved to be a C0-conjugacy $ extending 

(j) as follows. The restriction 0|^ is a lift of some map 0o : M —> A^*. Because 

of [9], there is a homotopy (j)t : M —^ N from 0o to a homeomorphism 01, 

t G [0,1]. Let <j)t : M -* iV" be the lift of this homotopy such that 0O = 0|^ 

and note that </>i is a homeomorphism. Define ip : M —> N by $1^ = (pi and 

^IM(   ) := ^^ c^ ^^ ParagraPl:i preceding Corollary 0.4. 



SMOOTH RIGIDITY AND C^-CONJUGACY AT oo 567 

Recall that condition 4 of 0.2 is redundant when dim M is odd since odd 

dimensional closed manifolds have zero Euler characteristic. We proceed next 

to formulate an addendum to Theorem 0.2 which gives useful information 

in the cases where x(M) ^ 0 but conditions 1, 2 and 3 are still satisfied. 

Recall that a homotopy n-sphere E is a (oriented) smooth manifold which is 

homeomorphic to the n-sphere Sn. The set of all oriented diffeomorphism 

classes of homotopy n-spheres (n > 5) is a finite abelian group under the 

operation # of connected sum. This group is denoted ©n and was analyzed 

by Kervaire and Milnor [20]. 

Addendum 0.3. // conditions 1, 2 and 3 of Theorem 0.2 are satisfied, then 

there exists a homotopy m-sphere S (where m = dim M) and a smooth diffeo- 

morphism f : M#x(M)Ti -+ iV which induces a. In particular, there exists 

a PL-homeomorphism g : M —► N inducing a. (Here M#x(M)E denotes 

connected sum with x{M)-copies ofTi.) 

Remark 0.3.1. The homotopy sphere S of 0.3 is explicitly constructed from the 

a-equivariant C1-conjugacy 0 : M(oo) —> iV(oo) of condition 2 (cf. Remark 

0.2.1) as follows. Pick points x G M, y E N and consider the closed unit 

radius balls Bx, By centered at 0 in the tangent spaces of M, iV at x, y, 

respectively. Then E results from gluing together the boundaries of Bx, By 

via the diffeomorphism which is the composition (py)-1 o (/> o gx where gx, gy 

are respectively the C1-diffeomorphisms 

dBxcSM ->M(oo), 

dBy c SN -> 7V(oo), 

given by condition 1 (cf. Definition 0.1). We do not know an example where 

this E is not diffeomorphic to S'm. In fact, we conjecture that E is always 

diffeomorphic to Sm. If so, then Theorem 0.2 remains true when condition 4 

is dropped. 

Throughout the rest of this introduction, we specialize to the situation 

where both M and iV are strictly negatively curved. Under these stronger as- 

sumptions, Mostow showed that the actions (M(oo),7riM) and (N(oo),7riN) 
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are always a- equivariantly C0-conjugate via a unique homeomorphism a^ : 

M(oo) —> N(oo). (Pugh's Closing Lemma is used in showing uniqueness.) Fur- 

thermore, aoo extends to an a-equivariant C0-semi-conjugacy from (M, TTIM) 

to (NjTTiN). This semi-conjugacy is constructed as follows. Let ip : M ^ N 

be any continuous map inducing a and let ip : M —> N be its a-equivariant 

lift to the universal covering spaces. Then a semi-conjugacy rf extending a^ 

is defined by ^j\^ = ^ and ^l^/^x = ^oo- Moreover, the map a^ is deter- 

mined by the following property valid for each vector v £ SM. Let 7^ be the 

geodesic such that 7V(0) = v. Then each geodesic ray in the asymptoty class 

of ^oo(7v(+oo)) is a finite Hausdorff distance from the set {^{^v{i)) | * > 0}. 

Note we can choose ^ to be a homeomorphism because of [9]; in which case, 

•0 is a C0-conjugacy. We consequently have the following strengthening of 0.2 

and 0.3 under this specialization. 

Corollary 0.4. Assume that both M and N are strictly negatively curved. 

Then there exists a smooth diffeomorphism 

f : M#x(M)E - N 

inducing a provided 

1. M(oo) and N(oo) are both naturally C1; and 

2. aoo is a C1 -diffeomorphism. 

Here E is the homotopy sphere constructed from a^ via the procedure given 

in Remark 0.3.1. 

Remark 0.4.1. We do not know an example where conditions 1 and 2 of 0.4 

are both satisfied but M and N are not isometric after multiplying the metric 

on M by a suitable constant. We hope that weaker conditions at 00 than 

conditions 1 and 2 should imply that M and N are diffeomorphic. 

We prove Theorem 0.2 and Addendum 0.3 in section 1. Section 2 is devoted 

to deducing an application. We complete this introduction by formulating this 

application. 

We start by recalling some definitions. First, M is strictly 1/4- pinched if 

there exists a positive real number a such that all the sectional curvatures 
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of M lie in the open interval (—a, —a/4). Next, there is a real valued length 

function lM : iri(M) —> R which assigns to each g G 7ri(M) the length ZM.(5) 

of the unique closed geodesic in the free homotopy class of curves determined 

by g. Then, a induces an isomorphism of marked length spectra provided 

IN O a = IM- 

It is a well known conjecture that any isomorphism of marked length spectra 

is induced by an isometry when the manifolds are compact and negatively 

curved; cf. [15], [6]. This conjecture has been verified in the important special 

case where one of the manifolds is a locally symmetric space. This result is 

due to Hamenstadt [16] when one of the manifolds is real hyperbolic; i.e., has 

constant negative sectional curvature. Her result was recently extended to 

the other negatively curved locally symmetric spaces by Besson, Courtois and 

Gallot [3]. Our application of Corollary 0.4 gives additional positive (albeit 

weak) information on this conjecture. 

Theorem 0.5. Assume that both M and N are strictly 1/4-pinched. If a 

induces an isomorphism of marked length spectra, then there exists a smooth 

diffeomorphism 

f : M#x(M)E -♦ N 

inducing a. (Here E is the homotopy sphere from Corollary 0.4-) In particular, 

M and N are always PL-homeomorphic, and diffeomorphic when dim M is 

odd. 

Acknowledgement. We wish to thank Chris Stark and Livio Flaminio for help- 

ful conversations concerning this paper. 

1.  PROOF OF THE MAIN RESULT 

We assume throughout this section that conditions 1, 2 and 3 of Theorem 

0.2 are satisfied. Hence there is an a-equivariant homeomorphism </> : M —> N 

such that 

1. 4>(M) = N and ^(M(oo)) = iV(oo); 

2. c^oo : M(oo) —► N(oo) is a C^diffeomorphism where (j)^ = ^l^   ... 
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Consider the a-equivariant homeomorphism </> : M —► N where ^ = ^| -; it 

induces a homeomorphism </> : M —* N. The groups 7ri(M) and 7Ti(N) act 

diagonally on M x M and N xN, respectively. And </> x </>: (M x M, 71*1 M) —* 

(iV x NjTTxN) is an a-equivariant C0-conjugacy of these actions. It induces a 

homeomorphism between the orbit spaces. Denote this homeomorphism by 

^:Mx^lMM-+iVx^liViV. 

Note that projection onto the first factors determine bundles 

MX^MM-^M  and  N X^N N -> N 

with fibers M and N; denote these bundles by TJM and fjN, respectively. Also 

T/S is a bundle map between them covering </>: M —> N. Because M and M(oo) 

are TTI (M)-invariant subspaces of M, they determine subbundles of 77^; which 

we denote by 77M and 77^, respectively. In particular, the total spaces of riM 

and 7]]% are M x7riMM and M x7riMM(oo). There are likewise subbundles 77^., 

77^ of 77// with fibers iV", iV(oo), respectively. The bundle map T/S respects these 

subbundles because of property 1 above. Let I/J and ip^ denote the induced 

bundle maps; i.e., 

We recall that the exponential map for M induces a smooth equivalence 

between the tangent bundle TM and 77^- via the TI^M equivariant map 

v " (7t,(0), 7.(1)) 

from TM —* M x M. (Remember from section 0 that 7^ denotes the geodesic 

in M such that 7V(0) = v where v G TM. Also, exp(^) = 7V(1).) The smooth 

bundles TN and 77^ are identified in the same way. Under these identifications 

ij) represents the tangent microbundle map d(j) : TM —> TN induced by the 

homeomorphism </>. Kirby-Siebenmann smoothing theory from [21, Theorem 

10.1, p. 194] yields that (j) is homotopic to a diffeomorphism / : M —> N 

provided d(f) is homotopic via topological bundle maps covering 0 to an affine 

bundle map; i.e., a bundle map which is an affine map on each fiber. 

The next result is a first step towards accomplishing this smoothing crite- 

rion. We denote the set of all zero vectors in a vector bundle by 0. 
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Lemma 1.1. The map d(j) is homotopic through topological bundle maps cov- 

ering (j) to a map h such that h(0) = 0, h(SM) = SN and h is continu- 

ously differentiable on TM — 0 with respect to vectors tangent to the fibers of 

TM —> M. Furthermore, h restricts to a C1-diffeomorphism from TXM — 0 to 

T^X)N - 0 for each x e M. 

Proof Let p : E —> B be a fiber bundle with fiber F. We recall that the 

fiberwise cone on this bundle £ is a fiber bundle c£ defined by q : £ —> B where 

£ is the quotient space of E x [0, +oo] with points (ei, 0) and (e2,0) identified 

when p(ei) = p(e2). The map ^ is induced by composition of p with projection 

onto the first factor of E x [0, +oo]. The fiber of c£ is the cone on F; i. e. cF. 

And £ is identified with the subbundle of c£ determined by E x +oo. There 

is also a canonical cross section c : B —> £ where c(x) is the cone point of 

the fiber g~1(x); i.e., c(x) corresponds to the set p~1(x) x 0. Let c denote the 

image of this cross section. 

Since M has the cone topology, we can identify TJM with crj^. This iden- 

tification is determined as follows. To each pair v E SM and r.E [0,-f-oo], 

we associate the points in the total spaces of TJM and crj^ which are to be 

identified. The pair (7„(0), 7u(r)) E M x M determines the point in the total 

space of fJM- The triple (7t;(0), 7t,(+oo), r) E M x M(oo) x [0, +oo] determines 

the corresponding point in the total space of crj^. 

Under this identification TM = r)M becomes the complementary subbundle 

to 77^ in CTJM. Likewise, f}N and cr]™ are identified so that 

TN = r,N = crj^ - r/-. 

.00 The fiberwise cone of the bundle map ^oo is a bundle map CIJJQO : crj^ —> cq™ 
induced by the map ip^ x id[o,+oo]- With the above identifications, it restricts 

to a bundle map h : TM —> TN covering </>. This is the map posited to exist 

in Lemma 1.1. 

Let EM and EN denote the total spaces of crj^ and crj™, respectively. The 

natural C1 -structures on M(oo) and N(oo) together with the smooth struc- 

tures on M and N induce C1 -structures on EM — c and EN — c, respectively, 

making EM — c —> M and EN — c—> N into C1-fiber bundles. Note also that 
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c-^ooic) — c. Hence condition 2 of Theorem 0.2 shows that cij)^ is a home- 

omorphism between these C1 -manifolds which is continuously differentiable 

with respect to vectors tangent to the fibers of EM — c —> M. Furthermore 

for each x G M, c^oo maps the fiber of EM — C-^M over x diffeomorphically 

to the fiber of EN - c -> N over 0(x). The identifications of TM and TN 

with subbundles of cq^ and cq^ send 0 homeomorphically to c. And these 

identifications give C^-diffeomorphisms of TM — 0 and TN — 0 with the in- 

teriors of EM — c and EN — c, respectively. Consequently, h(0) =0 and h 

is continuously differentiable on TM — 0 with respect to vectors tangent to 

the fibers of TM —> M. Furthermore, h maps TXM — 0 diffeomorphically to 

%*)JV — 0 for each x G M. 

Under the above identifications of T/M with cr^ and 77^ with CT?^, T/J becomes 

a bundle map crj^ —> cr)™ covering </) and agreeing with T/;^ on 77^. Let Fi 

and F2 be a pair of compact spaces and g : cFi —> CF2 be a homeomorphism 

such that 3(Fi) = F2. Let ^ = g\F and C^QQ : cFi —► CF2 be the cone on g^. 

Recall the Alexander isotopy is a canonical (topological) isotopy from g to eg 

which is pointwise fixed on Fi. Since it is canonical, we can apply it fiberwise 

to the bundle maps ^ C^QQ : cry^ —» cry^. This yields a homotopy through 

bundle maps covering the homeomorphism </> : M —> A^ between -0 and C^QQ. 

Restricting this homotopy to the subbundle TM, then yields the homotopy 

through1topological5bundle maps covering </> between def) and h which is posited 

to exist inlLemma 1.1.   D 

We now assume additionally that x{M) = 0-. Hence, the tangent bundle 

TM —> M has a non-zero cross section cr; i.e., (j(M) 0 0 = 0. Use a to define 

an affine bundle map A : TM -* TiV covering 0 as follows. For each x G M, 

the derivative of /i at <7(x) in the direction of TXM is a linear transformation 

Lx : T^M —> T^X)N. It determines a vector ux G T^N by the formula 

its = h(a(x)) - Z/^c^x)). 

Let ^ : T^M —> T^N be the affine map given by 

Ax(v) = Lx(v) + ux 

for all v G T^M. Then, A is the bundle map defined by A\T     = Ax. 
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A parametrized version of a result of Stewart [25] produces a homotopy 

ht of topological bundle maps covering ^between A '= ho and h = hi. It 

is explicitly given by the following formula in which x G M, v G TXM and 

t€[0,l]: 

(1.2) 

'Ax(v), ift = 0 

fct(v) = < 

J[/i(t(^ - a(x)) + a{x)) - h(a{x))} + h(a(x)),    if t G (0,1]. 

Hence, the Kirby-Siebenmann smoothing criterion is satisfied proving Theo- 

rem 0.2. 

We now drop the assumption that x(M) = 0 and discuss the modifications 

in the above argument needed to prove Addendum 0.3. There is still a cross 

section a : M —> TM to the bundle projection p which meets 0 in a single 

point; i.e., a(M) fl 0 = cr(*) for some point * G M. Recall that the homotopy 

sphere E in 0.3 can be constructed by gluing B*M to B^N via 

h\SmM : S*M -> S^N-, 

cf. Remark 0.3.1. Hence E is diffeomorphic to S'm (where m = dim M) if and 

only if h\ extends to a C1-diffeomorphism from B*M to B^^N. We now 

prove 0.3 under the extra assumption that E is diffeomorphic to S171. Then we 

can modify the map h of Lemma 1.1 by using the previous sentence to obtain 

a bundle map h : TM —> TN with the following properties: 

1. h is homotopic to h through topological bundle maps covering 0. 

2. There exist open neighborhoods U C V of * in M such that h and h 

agree on p~1(M — V). 

3. h is continuously differentiable on (TM — 0) Up_1(C/) with respect to 

vectors tangent to the fibers of p : TM —> M. 

4. For each x G M, /i maps T^M — 0 diffeomorphically onto T^X)M — 0. 

5. For each x £ U, h maps TXM diffeomorphically onto T^M. 

Now define an affine bundle map A : TM —> TN covering (j) as in the proof 

of Theorem 0.2 but using h in place of h. Then, replacing h with h in formula 

(1.2) yields a homotopy of topological bundle maps covering </> between A and 
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h. This means that the conditions of the Kirby-Siebenmann smoothing crite- 

rion are again satisfied; thus proving Addendum 0.3 when S is difFeomorphic 

to Sm. The general case is handled similarly by an obstruction theory argu- 

ment using these techniques in a more detailed manner. The fleshing out of 

this argument is left to the reader. 

2. APPLICATION 

Throughout the remainder of this paper, we specialize to the situation where 

both M and N are strictly negatively curved. Let (SM, g1) denote the geodesic 

flow g1 on the total space SM of the unit tangent sphere bundle of M; (SN, g1) 

is likewise the geodesic flow on SN. This is the basic example of an Anosov flow 

[1]. Recall that (SM^g1) and (SN^g1) are Cl-orbit conjugate provided there 

is a C1-diffeomorphism A : SM —► SN which maps the orbits of (SM^g1) 

to orbits in (SN^g1) so that the time orientations are preserved. If the orbit 

preserving map A is only a homeomorphism, then the two flows are C0- orbit 

conjugate. The flows are Cr-conjugate (r = 0,1) provided 

Atf(v)) = g'iAiv)) 

for all v € SM, t € R and A is a C1- diffeomorphism when r = 1 and a home- 

omorphism when r = 0. Clearly, Cr-conjugacy implies Cr-orbit conjugacy. 

Observe that a C0-orbit conjugacy induces an isomorphism a : 7Vi(M) —* 

7ri(iV). (Recall dim M > 5.) Gromov [12] showed conversely that any iso- 

morphism a : 7Ti(M) —► 7ri(iV") is induced by a Cf0-orbit conjugacy. We now 

reformulate Corollary 0.4 in terms of C1-orbit conjugacy. 

Theorem 2.1. Suppose that a is induced by a Cl-orbit conjugacy and that 

both M(oo) and N(oo) are naturally C1. Then a is also induced by a smooth 

diffeomorphism f : M#x(M)E —► N where E is the homotopy sphere con- 

structed from aoo via the procedure given in Remark 0.3.1. 

Proof. It is well known that these assumptions imply that aoo is a C1-diffeo- 

morphism and hence Theorem 2.1 follows from Corollary 0.4. But we supply 

a proof that aoo is a C1-diffeomorphism for the reader's convenience. Let A be 
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the C1-orbit conjugacy inducing a and g : M —► N be a homotopy equivalence 

also inducing a. Consider the diagram 

SM —£-> SN 

PM PN 

M ►   N 
9 

where p^? VN are the bundle projections. This diagram is homotopy commu- 

tative since N is a K^N^l). Let h : SM x [0,1] —> N be the homotopy 

between p/v o A and p o pM. Let A : SM —> SN be a lift of A. Note that A is 

also a C1-orbit conjugacy. Let h : SM x [0,1] —> N be the lift of h starting 

at pft o A where pft : SN -^ N is the bundle projection. A simple covering 

space argument shows that there exists a lift g : M —> N of g such that h is 

a homotopy between p^ o A and g o.p^; i.e., g makes the following diagram 

homotopy commutative 

SM —*—> SN 

p*l iPR 

M    ►   N 
9 

where p^ is also the bundle projection. An important consequence of this is 

the following. 

Fact 2.1.1. The set of real numbers d{p^(A(u)), ^(p^u))) where u £ SM is 

bounded above. 

We see from this that for each u G SM the curves 

■PtfCAteM)   and  <7(PM(A)) 

where t G [0, +oo) stay a finite distance apart. And consequently conclude 

that 

<Xoo(F(u)) = F(A(u)) 

for each u € SM- where F : SM ->• M(oo) and F : SN -»• iV'(oo) are the 
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canonical maps in Definition 0.1; i.e., the following diagram commutes 

SM    —^-»    SN 

M(oo)  > N(oo). 

(See the characterization of a^ in the paragraph preceding Corollary 0.4.) It 

follows that aoo is a C1-map since both M(oo) and iV(oo) are naturally C1; 

cf. Definition 0.1. An analogous argument shows that (a-1)^ is also C1. We 

conclude that aoo is a C1-diflFeomorphism since (aoo)-1 = (a-1)^.    □ 

Remark 2.1.2. Theorem 2.1 and Corollary 0.4 are essentially the same result 

since C1-orbit conjugacy is in fact known to be equivalent to a^ being a 

C^diffeomorphism when the Anosov splittings of TSM, TSN are C1. 

Feres [11] proved the following criterion for establishing that M(oo) is nat- 

urally C1. 

Lemma 2.2. // either the weak stable or the weak unstable foliation for the 

geodesic flow on SM is C1, then M(oo) is naturally C1. 

Remark 2.2.1. Hirsch and Pugh [18] showed that the Anosov foliations in SM 

are C1 when M is strictly 1/4-pinched. This result combined with 2.2 shows 

that M(oo) is naturally C1 when M is strictly 1/4-pinched. 

Proof of Theorem 0.5. Hamenstadt [14] showed that any isomorphism a of 

marked length spectra is induced by a C0- conjugacy A between the geodesic 

flows {SM.g1) and (SN.g1) inducing a. She showed in [15] that A is a C2- 

diffeomorphism provided the Anosov foliations in SM and SN are C1. Com- 

bined with Remark 2.2.1, Hamenstadt's results yield a C1-orbit conjugacy 

between (SM^g1) and (SN^g1) inducing a since M and N are assumed to be 

strictly 1/4-pinched. Theorem 0.5 now follows from Theorem 2.1 since M(oo) 

and N(oo) are naturally C1 because of Remark 2.2.1.    □ 

Remark 2.3. The above argument shows that the conclusion of 0.5 still holds 

when the assumption that M and N are strictly 1/4-pinched is replaced by 

the weaker assumption that the Anosov foliations in SM and SN are C1. 
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